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Cardinal Coordinate Independence for Expected Utility 

PETER WAKKER 

lhiversity Nijmegen 

A representation theorem for binary relations on IF?” is derived. It is interpreted in the 
context of decision making under uncertainty. There we consider the existence of a subjective 
expected utility model to represent a preference relation of a person on the set of bets for 
money on a finite state space. The theorem shows that, for this model to exist, it is not only 
necessary (as has often been observed), but it also is sufficient, that the appreciation for 
money of the person has a cardinal character, independent of the state of nature. This 
condition of cardinal appreciation is simple and thus easily testable in experiments. Also it 
may be of help in relating the neoclassical economic interpretation of cardinal utility to the 
von Neumann-Morgenstern interpretation. 

1. INTR~OUCTI~N 

In this paper a characterization of the subjective expected utility (SEU) model is 
given. To this end in Section 2 a representation theorem for binary relations on IR” is 
given. It is based mainly on Debreu (1960), or Chapter 6 of Krantz, Lute, Suppes, 
and Tversky (1971). The new characterizing property, denoted by CCI, is simple, 
and yields a handy, empirically testable, criterion. The question what such a property 
is, has more or less been posed (in the footnote on p. 19 of Marschak and Radner 
(1972), Section 7.2 of Fishburn (1970), and as Formula 2.7 of Drize (1982). It leads 
to a cardinal utility function in the von Neumann-Morgenstern sense; i.e., its 
stochastic expected value is used to value bets. It may also appeal to the neo-classical 
economic interpretation, where cardinal utility is a psychological primitive, indicating 
strength of preference. 

In Sarin (1982) and Fishburn (1970, Theorem 7.4) a quaternary relation 2*, 
comparing preference differences, is introduced as a primitive. Then, in terms of >*, 
conditions are given under which a SEU model exists, such that it agrees with >*. 
We take as the point of departure that only the preference relation > on the set of 
acts is observable. (In Section 3 we use the term “bets” instead of “acts.“) A strength 
of preference relation >* may exist, but is not considered directly observable. 
Therefore our characterization is directly in terms of >. With the notion of strength 
of preference in mind, one will not be surprised by the form of our new characterizing 
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property. It guarantees the possibility of deriving from > a strength of preference 
relation for money, independent of the state of nature. Thus the condition is not only 
necessary for the existence of a SEU model (as has often been observed), but it also 
is sufficient, in the present context. 

Most common, in characterizations of SEU, is the approach, originating from von 
Neumann and Morgenstern (1944, 1947, 1953, Section I.3 and appendix), where 
lotteries on the set of acts are introduced. See, for instance, Fishburn (1982). If act x 
is preferred to a lottery that with probability l/2 yields act y, and with probability 
l/2 act z, then the strength of preference between x and y should exceed that between 
z and x. In Segal (1982) the case is considered where there is an upper bound for the 
number of prizes of lotteries. 

In Camacho (1980) a preference relation on sequences of acts (maintaining 
terminology) is considered. If twice act x is preferred to once act y and once act z, 
then the strength of preference between x and y should exceed that between z and x. 
Thus in both mentioned approaches strength of preference directly derives from an 
extra notion. 

In de Finetti (1937) the SEU model is derived, with the (implicit) assumption that 
the bets, considered there, can be summed. There, if bet x is preferred toy, then x + u 
should be preferred to y + v for all u. Then again, if x + y is preferred to z + w, then 
the strength of preference between x and z exceeds that between w  and y. (This will 
come down to the special case of our Theorem 3.1 where U is identity.) 

The best known derivation of the SEU model is in the first five chapters of Savage 
(1954). Here only the preference relation > on the set of acts is taken as primitive, 
and no strength of preference relation is brought in “from outside” by some extra 
notion. This has also been our aim. (Contrary to what is often thought, in Savage’s 
model the state space can be denumerable. For other misunderstandings w.r.t. Savage 
(1954), see Wakker (1981).) 

For surveys on SEU characterizations see Fishburn (198 1) or Schoemaker (1982). 

2. A REPRESENTATION THEOREM 

This section will be technical. First some notations and definitions are introduced. 
Elements of R” are denoted by a, Y, x, etc., with coordinates a,, x2, etc. Elements of 
R are denoted by Greek characters, a, /I, etc. (#excepted). A notation that is less 
standard is the following: (X-~(T) is the element of R” with ith coordinate a, other 
coordinates equal to those of x; (~-,,~a,& is the element of I?” with ith coordinate (x, 
jth coordinate p, other coordinates equal to those of x. For a binary relation > we 
write x > y instead of (x, y) E >. For the usual properties of binary relations the 
reader is referred to the references. Some more notation, x < y if y > x, x < y if not 
x>y, x>y if not x<y, x~y ifx>y andy>x. A weak order > is total (x&y or 
y > x for all x, y) and transitive, inducing an equivalence relation Z. Coordinate i is 
essential (w.r.t. >) if (~-,a) > (x-J3) for some x, a, j3. We say + is monotone if x >y 
whenever xi > yj for all j, and > is continuous if {x 1 x > y} and {x 1 x < y} are closed 
for all y. 
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DEFINITION. We say > is coordinate independent (CI) if 

@ia) + (Y-ia) * (x-iP> > (Y-iP) for all x, Y, i, a, Pa 

DEFINITION. We say > is cardinally coordinate independent (CCZ) if for all x, y, 
U, W, CI, p, y, 6, j, and essential i, from (X-to)< (y-ib) & (X-iv)> (y-id) & 
(U-ja) > (w-jP) follows (U-jy) $ (w-js)* 

Elucidation. Replacement of (a, /3) by (y, 6) changes 4 into >, from the first 
preference to the second. We imagine this replacement should thus kind of 
“reinforce” > from the third to the fourth preference. So certainly not should it 
change > into <, from the third to the fourth preference. 

DEFINITION. We say > is standard sequence invariant if for all x, y, ,u, v, u, r, 
i # k, j# 1, with i essential, the relation (Y-~,~/I, a) z (~-~,,y, r) is implied by the 
relations (X-i,kGP) z (X-i,kP, V>T (X-i,kPv rC> z (X-i,kY, V>, and (.J-j,,a, 0) z 
(Y - j,lPT r>* 

This property is (a minor variation on) the condition in Theorem 15(i) of Section 
6.11.2 of Krantz et al. (1971). Their Axiom 5 in Section 8.2.6, formulated in a 
complex structure, comes closest to our CCI. 

For the case n = 2 we shall need one more property. 

DEFINITION. If n = 2, then $ satisfies the Thomsen-Blaschke (TB) condition if 
the relation (y,,~) zz (a, v) follows from (a,,~) z (/I, v), (a, v) =: (J, u), and 
(y, v) z (a, a), for all a ,..., 0. 

LEMMA 2.1. If z is an equivalence relation, then x z y whenever xi = yj for all 
essential j. 

Proof. As an example, let 1, 2, 3 be not essential, Xj = Yj for all j > 4. Then 
x= (“-lYl)= (x-1,2Y1,YJ= ((x-,,,Y,,Y*)-3Y3)=Y. I 

LEMMA 2.2. If z is an equivalence relation, then CCI implies CI. 

Proof. If no coordinate is essential this follows from Lemma 2.1. Otherwise 
reflexivity of > is sufficient. To see this, let /I E IR, (x - ,a) 2 ( ymja). Let i be 
essential. Then apply CC1 with (v-,a) < (b-ia), (a-#) > (V-ip), (x-ju) > (y-jo), 
yielding (X-jfi) > (Y_jP). Here u is arbitrary. fl 

LEMMA 2.3. CC1 implies standard sequence invariance. 

Proof. It is logically stronger. fl 

LEMMA 2.4. If z is an equivalence relation, or if at least one coordinate is 
essential, then CC1 implies TB. (For n = 2.) 
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Proof. Let n = 2. If no coordinate is essential Lemma 2.1 applies. Next let coor- 
dinate 1 be essential. Let i =j = 1, (a, V) < (& o), (y, V) > (a, a), (a,~) > (& v), then 
CC1 yields (y, ,u) > (a, v). Exchanging in these preferences first and second bet gives 
Ca, 0) =G (a, v), (a, a) > (Y, ~1, VA v)> (a,~), so (a, VI> 6s~) by ~1. Thus CC1 
implies TB. If coordinate 2 is essential a symmetric argument applies. fl 

We are now ready for our main theorem. 

THEOREM 2.1. Let > be a binary relation on R”. Then the following (i) and (ii) 
are equivalent: 

(i) There exist nonnegative (Aj)TE, and a continuous function U: R -+ R, such 
that x 3 y o Cyz 1 Aj U(xj) > Cj”=, lj U( yj) for all x, y. 

(ii) > is a continuous weak order that satisfies CCI. 

Furthermore, if (i) applies, and two or more coordinates are essential, then U is an 
interval scale (i.e., can be replaced by U’ if and only if/I and positive a exist such 
that U’ = aU + p). 

ProoJ It is straightforward that (i) implies (ii). Next we assume (ii), and derive 
(i). If no coordinate is essential, then by Lemma 2.1 we see that x z y for all x, y; and 
everything follows. If one coordinate, say i, is essential, then we apply Section 4.6 of 
Debreu (1959). This guarantees existence of a continuous function 4: R” -+ R, such 
that for all x, y we have x >y o 4(x) > Q(y). Then let 4(x) = U(x,), li = 1, ~~ = 0 for 
all j f i. 

If two or more coordinates are essential, then first we guarantee existence of 
continuous functions ( Vj)jn_, , such that [X >Y o CT= 1 Vj(Xj) > J$‘= I Vj( Yj)] for all 
x, y E R”. If exactly two coordinates are essential, then we leave out the other coor- 
dinates. This may be done by Lemma 2.1; the Vis associated with the removed coor- 
dinates j are taken constant. As indicated in Debreu (1960), the “Hauptsatz iiber 
Sechseckgewebe” of Section 1.2 of Blaschke and Bol (1938) guarantees the existence 
of (Vi)&, as above, for any continuous weak order on R2 that is CI and TB, and has 
both coordinates essential. CI and TB of > have been guaranteed by our Lemmas 2.2 
and 2.4. 

If three or more coordinates are essential, then we apply Theorem 3 of Debreu 
(1960). This guarantees existence of ( Vj)yZ 1 as above, for any continuous weak order 
on R” that is CI, and has at least three coordinates essential. CI of > has been 
guaranteed by our Lemma 2.2. 

So, if two or more coordinates are essential, then (Vi)& I as above exist. By 
Lemma 2.3 we see that > is standard sequence invariant. By Theorem 15 of Section 
6.11.2 of Krantz et al. (1971) this is (necessary and) sufficient for the existence of 
real numbers (Aj)j”= 1, and a continuous U, such that Vi = A,U for all j. Since CC1 
excludes (x-,a) > (xJ3) & (yPjp) > (yPja), all Aj’s are either nonpositive (then 
replace U by -U, and Aj by -ij), or nonnegative. Hence (i) is derived. m 

If (i) and (ii) are satisfied, one may furthermore note that, if no coordinate is 
essential, then x > y for all x, y by Lemma 2.1, and U should be chosen constant, or 
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all S’S are chosen zero. If one or more coordinates are essential, then U is not 
constant, and Jj is zero if and only if coordinate j is not essential, and (Jj)j”= i can be 
replaced by (A;);=, if and only if there is a > 0 such that Lj = aLj for all j. If exactly 
one coordinate is essential, then U is ordinal, i.e., U may be replaced by U’ if and 
only if there exists increasing 4 such that U = d 0 U’ (U’ continuous o 4 
continuous). 

For the case where > applies to a bounded subset of R”, the following result is of 
use. 

THEOREM 2.2. Let > be a binary relation on (a, T)“, where --a~ < u < z < CO. 
Then the results of Theorem 2.1 apply (with now > on (a, z)“, and U: (a, t) -+ R). 

Proof. We introduce a bijective increasing (thus continuous) map 4: R --t (6, r), 
and define >’ on R” by (xi ,..., x,) >’ (y, ,..., y,) if and only if 
(#(xi) ,..., 4(x,)) > (#(yi) ,..., $(y,)). Then we apply Theorem 2.1, and define U’ on 
(a, r) by U’(f) = U(y), where y’ = 4(y), for all y’ in (a, r). The essential point in this 
is that the map d does not affect transitivity, totality, continuity, or CCI, of >. I 

3. DECISION MAKING UNDER UNCERTAINTY 

In this section we interpret the previous theorems in the context of decision making 
under uncertainty. Let S = {s i,..., s,} be a finite set, called the state space, where 
n E iN. Its elements are (possible) states (of nature). Subsets of S are events. Exactly 
one is the true state; the other states are not true. A person T is uncertain which of 
the states is true. As an example, one may think of horse races. Of n participating 
horses exactly one will win. By sj we denote the “possible state of nature” that horsej 
will win. An element x = (xi,..., x,) of (a, z)~, where -co < u < r < co, denotes a bet 
for money, that yields $xj if sI is the true state. Money is assumed to be a 
continuously divisible quantity that can take all real values between u and r (also 
negative, if u < 0). By > we denote the preference relation of T on the set of bets. 
(We use the term “bet” instead of “act” in this section.) If T prefers x to y we write 
X>Y* 

We assume in descriptive context, if T chooses x out of {x, y}, then x >y, and in 
prescriptive context, if x >y, then T will be willing to choose x out of {x, y}. We 
consider > as the only observable entity in our model, the other entities have their 
meaning through >. 

DEFINITION. We say (SEU=) [(u, z)“, >, (pj)y, 1, U] is a Subjective Expected 
Utility (SEU) model (for >) if -co < u < r < co, > is a binary relation on (a, z)~, the 
pis are nonnegative real numbers that sum to 1, and U: (a, r) --) R is a function, such 
that [X > Y 0 Cj”= 1 Pj u(Xj) >, Cj”= 1 Pj U( J’j)] f or all x, y. Then pj is the subjective 
probability for state sj, U the (subjective) utility function (for money), and 
.Zj”=lP/U(xj) th ( b t ) e su jet ive expected utility for bet x (under SEU). 
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It is the applicability of the SEU models that we characterize in this section. We 
restrict our attention to the special case of continuous utility functions. One quickly 
observes that a necessary property for the appropriateness of an SEU model is that > 
is CI. In the context of decision making under uncertainty CI is known under the 
name “Sure-thing Principle” (Savage, 1954). In Economics it is called something like 
“separability,” such as “strong separability” in Barten and Bohm (1982), “complete 
strict separability” in Blackorby, Primont, and Russel (1978), or “additivity” in 
Katzner (1970). In Measurement Theory it is called “independence,” such as in 
Debreu (1960), Krantz et al. (197 l), and Roberts (1979), or “mutual preferential 
independence,” Keeney and Raiffa (1976). We like most the following verbal 
formulation for it: the preference between bets x and y depends only on (their values 
at) the states where they differ; it is independent of (their values at) states where they 
are equal. 

To indicate the meaning of CC1 for decision making under uncertainty, and to 
show how it is related to strength of preference, consider the following. 

DEFINITION. We say (a, /I) +T(r, 6) if there exist x, y such that (~-~a) > (y-J>, 
and (x-,JJ) < (Y-~S); we also say (a, /3) >T (y, S) if > can be replaced by >, or < by 
<. 

For the idea of this definition, suppose (X-la) > (y-ip), (X-iy) < (y-is), and 
a > /I, y > 6. Then, since a > /3, the possibility of state si seems to yield a positive 
argument for bet (xeia) as compared to bet (y-ip), assuming T prefers more money 
to less money. If we now replace (a,/?) by (y, S), then this still applies. Yet by this the 
preference has reversed. Since at the other states of nature nothing has changed, this 
reversal can only be explained by the change of matters at state Si. Apparently the 
positive argument, yielded by the possibility that state Si is true, has lost some of its 
strength by the replacement. We conclude that at state si the strength of preference 
between (a, /I) exceeds that between (y, S), and write (a, /I) >j” (y, 8). Note that this 
strength of preference notion has been derived from the preference relation >. 

Of course, in general the above definition does not have to make sense, the >* and 
>* relations may have undesired properties. 

DEFINITION. We say the appreciation for money (of T) has a cardinal character, 
independent of the state of nature, if (a, p) >T (y, 6) 8c i essential * not 
04 4 >i* (a, P), for all a, B, y, 4 i,j. 

LEMMA 3.1. The appreciation for money has a cardinal character, independent of 
the state of nature, if and only if> is CCI. 

ProoJ Straightforward. Note: 

(a, P) 25% 4 0 (4 r> >WB, a>; 

(a, P> X%4 4 0 (4 Y) XW a>. I 
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THEOREM 3.1. There exists an SEU model with continuous Ufor >, if and only if 
> is a continuous weak order, and the appreciation for money of T has a cardinal 
character, independent of the state of nature. Then > is CI; and U is non-decreasing 
if and only if> is monotone. 

ProoJ The first assertion follows from Lemma 3.1 and Theorem 2.2. The second 
is straightforward. (Cj”=rpj = 1 can always be arranged.) 1 

In descriptive context, this characterization shows that, taking the continuity and 
weak order property for granted, an observed preference relation cannot be described 
by an SEU model if and only if CC1 can be falsified. In normative, or prescriptive, 
context, it shows that, again taking continuity and weak order for granted, a person 
can be convinced that he should use the SEU model to determine his behavior, if and 
only if he can be convinced of the appropriateness of CCI. 

Finally some more on strength of preference. We have only considered strength of 
preference w.r.t. amounts of money. One may also derive a strength of preference 
relation >* w.r.t. bets, from >. This is reversed from Sarin (1982), and Theorem 7.4 
of Fishburn (1970), where > is derived from >* by x > y if (x, y) >* (y, y). Deriving 
>* from > is done as follows (where we do not make explicit the assumptions that 
justify this, they can be found in Sarin, 1982). To see that (x, y) >*(u, w) we find 
a,P, 7 such that (y-,a)zx, (w-,@~v, and (y-,y)~w. Then 
(x,Y)+* (~,~)~((~-~a),y)~*((w-~P),w)~((~-~,~a,y),(y-,y))~* ((W-A 
(Y-~Y))o(Y-~,~~,Y)~(W-~P). 
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