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AGREEING PROBABILITY MEASURES-FOR COMPARATIVE 
PROBABILITY STRUCTURES' 

BY PETER WAKKER 

University of Leiden 
It is proved that fine and tight comparative probability structures (where 

the set of events is assumed to be an algebra, not necessarily a a-algebra) have 
agreeing probability measures. Although this was often claimed in the litera- 
ture, all proofs the author encountered are not valid for the general case, but 
only for a-algebras. Here the proof of Niiniluoto (1972) is supplemented. 
Furthermore an example is presented that reveals many misunderstandings 
in the literature. At the end a necessary and sufficient condition is given for 
comparative probability structures to have an almost agreeing probability 
measure. 

1. Introduction. The axioms, definitions and basic results can be found in most of 
the references. For the basic results we shall refer to Niiniluoto (1972) (see his paper to 
Lemma 3). We shall use his notations and formulations, except that we prefer "compara- 
tive" to "qualitative", and "agreeing with" to "realizing". So we write CP (= Comparative 
Probability) instead of QP (= Qualitative Probability). 

One minor correction: 
We say that two events B and C are almost equivalent (notation B * C) if the following 
two conditions are satisfied: 

(i) B u E C for all E >4) such that B n E=+, 
(ii) C U F B for all F> 4 such that C n F=4). 
Our present formulation avoids the unintended consequence that A * X (X is the sure 

event) for every event A. 
It seems that the first clear and precise statement of the axioms of CP was given by de 

Finetti (1931). 
We emphasize the fact that the set of events, I, is an algebra, and not necessarily a a- 

algebra, and that our probability measures are only assumed to be finitely additive, not 
necessarily countably additive. 

Elements of a partition are always assumed to be events. Let us repeat one definition 
of Savage (1954): An (n-fold) almost uniform partition (abbreviation: AUP(n)) of an event 
B is an (n-fold) partition of B such that C c D whenever C and D are unions respectively 
of r and r + 1 elements of the partition and 1 c r < n. 

We shall ascribe properties of the CP-structure to the CP-relation, so we shall say- 
has an agreeing probability measure, - is fine, ' contains an atom, etc. We say that - is 
AUP(oo) if there exists an AUP(n) of X for every n E N. 

One important new definition: We say that two events A and B differ by no more than 
n times C (n E N, C an event) if there are events A1 ...... An and B1, * . . , Bn such that 
Aj _ C and B. c C for all j c n and, furthermore, A - u n=i A1 _ B and B - u q= Bj < A. 

If A and B differ by no more than n times C, they evidently also differ by no more than 
m times D for any m - n and any event D - C. Instead of "1 times C" we also say "C". So 
-is fine iff for every B > 4 there is an n E N such that 4 and X differ by no more than n 
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times B. Finally let us emphasize the importance of Niiniluoto (1972) Lemma l.b: for all 
A, B, C, D in I, if A n B = 4, A ?- C, B-? D, then A u B -C u D. It will be used many 
times without further mention. 

2. The Theorems. 

THEOREM 1. If -is AUP(oo) then there is a unique probability measure P that almost 
agrees with >. 

PROOF. See Savage (1954), Section III.3, first part of Theorem 2 and its proof. [ 

REMARK. Although Savage assumes I = 2X, his proof up to 8.a is also valid for the 
general case of I being an algebra. In the literature often the mistake is made of also 
applying other theorems of Section III.3 of Savage (1954) to the general case, although in 
Section III.4 at the top of page 43, Savage points out that this is not correct if I is not a 
a-algebra. 

LEMMA 1. Let - be atomless. Then for every event G > 4) there is a sequence of events 
(G)n'=1 in I such that G1 = G, Gn+1 C Gn, Gn > 0, and Gn+1 < Gn -Gn+l for all n. 

PROOF. Having constructed Gm(m E N),, we construct Gm+i as follows: Gm is not an 
atom so there is A E I, A C Gm such that 4 < A < G,,,. If A < G,,, - A we take Gm+i = A, 
otherwise we take Gm+ = Gm - A. O 

LEMMA 2. Let - be fine, n E N, G > 4 an event. Then for each event A there is a 
partition {A1, ...., An) of A such that Ai and Aj differ by no more than G for all i, jc 
n. 

PROOF. As is fine there is a partition {B,* ...... B',) of X such that every B' c G. 
Taking Bj = B n A for all j gives a partition {B1, *.... B,) of A with all elements _ G, for 
every A E L Induction hypothesis (m): "If there is an m-fold partition of A with all 
elements _ G, then there is an n-fold partition of A with all elements differing mutually by 
no more than G, for every event A." If m = 1 we can simply take A1 = A, A2 = .... = An 
= 4. Next we prove that, for any mo E N, the induction hypothesis (mo + 1) follows from 
the induction hypothesis (mo). So let m = mo + 1. Let A be an event, let {B1, . . . ., Bm) 
be an m-fold partition of A with all elements c G. {B1, ....* Bm_1} is an (m - 1)-fold 
partition of Ujm=Il Bj with all elements c G. By the induction hypothesis (mo) there is a 
partition {D1, . . . ., Dn) of u j=-1 Bj (m - 1 = mo) such that for all i, j c n Di and Dj differ 
by no more than G. Let k c n be such that Dk -< Dj for all]j n. Now define Ak = D% u Bm, 
AJ = Dj for all]j 7 k. Realizing that B,,, C G one easily verifies that {A1, Al .., An) is a 
partition of u jit Bj = A such that for all i, j c n Ai and AJ differ by no more than G. So the 
induction hypothesis (mo + 1) is proved. O 

THEOREM 2. If : is fine and atomless then it is AUP(oo). 

PROOF. Let n E N. We will construct an AUP(n) of X. First we make an n(n + 1)-fold 
partition {X1, .... , Xn.(n+l)} of X with 4 < X1 ' X2 .. <Xn.(n+l). This can be done by 
means of Lemma 1 with G = X, setting 

Xn.(n+l>*k= Gk+l -Gk+2 for 0 c k ' n. (n + 1) - 2 and X1 =Gn.(n+1,. 

By lemma 2 we can also take a partition {B1, .... Bn) of X with the Bi mutually 
differing by no more than X1, and B1 c B2 c * - - < Bn,. We shall show that this partition 
is an AUP(n) of X. To this end we first note that B1 >-u 7-= Xj. For if this were not the 
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case, then the fact that any B, differs by less than X1 c X,,+1 from B1 would imply that Bi 
< u '+i Xj --u- U o xjn+i 1 c i c n, and hence X = u 1in Bi <u=L uJo Xjn+i = X, which 
manifestly is not true. 

Since for any r c n - 1 the events u.j=i Bj and UY =n-r+l Bj differ by no more than r 
times X1, hence by no more than n times X1, and thus by no more than u7=L Xj, it follows 
that they differ by no more than B1, and hence by no more than Br+1. Consequently 
uJ= B >Un =n-r+l Bj for all r < n - 1. For every r n - 1, uj=+ Bj is the smallest union 
of r + 1 elements of the partition, and U7=nr+i B1 is the greatest union of r such elements, 
so the partition {B1 ....., Bn} is almost uniform. [ 

LEMMA 3. If - is fine, then there is a unique probability measure that almost agrees 
with -. 

PROOF. Follows from Niiniluoto (1972) Lemmas 4 and 5 and our Theorems 1 and 2. 

LEMMA 4. Let - be fine and let P almost agree with -. Then for any event B we have 
P(B) = 0 iff B -). 

PROOF. Suppose B > 4. Then there is a partition {X1, Xi ., Xnj of X with Xj c B for 
all j. So P(X,) c P(B) for all j, as P almost agrees with-. Thus P(B) = 0 implies 
P(X,) = 0 for all j, contradicting 1 = P(X) = 1 P(Xj). Consequently, B > 4) implies 
P(B) > 0. 

The fact that P almost agrees with - gives the converse implication. [ 

LEMMA 5. If - is fine and atomless and almost agrees with P, then P(A) = P(B) iff 
A * B. 

PROOF. Suppose P(A) - P(B) = E > 0. Then P(A - B)-E. Using lemma 1 we 
construct a sequence (Gn)n=1 with G1 = A - B (so G1 > 4)). Then P(Gn) < 2 -n+ P(A - B) 
for all n, so there is an m such that P(Gm) < -. (Since Gm > 4, Lemma 4 implies P(Gm) > 
0.) Now Gm n B =4,O as Gm C A - B. So P(B u Gm) = P(B) + P(Gm) < P(B) + C = P(A). 
Since P almost agrees with-, this implies B u Gm < A, so not B * A. 

Conversely, if A and B are not almost equivalent and B < A, then there is an event 
G >4) such that B n G =4) and B u G < A. Then P(B) + P(G) = P(B u G) c P(A). Since, 
by Lemma 4, P(G) > 0 it follows that P(B) < P(A). [ 

THEOREM 3. Let - be fine. Then there is a unique probability measure P that almost 
agrees with -. Furthermore, - has an agreeing probability measure iff - is tight or- 
contains an atom. 

PROOF. The first assertion is Lemma 3. The second assertion follows from Niiniluoto 
(1972) Lemmas 4 and 5, and the following argument. 

Suppose - is atomless. We compare the three relations: 
(i) A B, (ii) A * B, (iii) P(A) = P(B). 
Now first suppose has an agreeing probability measure. Since P is the unique almost 

agreeing probability measure, P must agree with -. So (iii) implies (i). By lemma 5, (ii) 
implies (iii). So (ii) implies (i), - is tight. 

Next suppose - is tight. Then (ii) implies (i). By lemma 5, (iii) implies (ii). So (iii) 
implies (i). Since P was already almost agreeing, this implies that P agrees with -. [ 

COROLLARY. If - is fine and tight then there is an agreeing probability measure. 



AGREEING PROBABILITY MEASURES 661 

REMARK: If - has an agreeing probability measure and is atomless, then - must be 
tight, but it does not have to be fine, as follows from Nunke and Savage (1952). 

3. An example. Let X = [0, 1) and let I be the algebra consisting of all finite unions 
of intervals [aj, bj) of X with aj, bj E (Q u {X[/4}) n X, a. c b, (Q is the set of all rationals). 
Let P1 be Lebesgue measure. Define P2 by P2(A) = 2 P1{A n [0, 1/2)) for all A E L Let- 
be the relation induced by Pi "refined" by P2, i.e.: 

if P1(A) > P1(B), then A > B; 

if P1(A) = P1(B) and P2(A) > P2(B), thenA > B; 

if P1(A) = P1(B) and P2(A) = P2(B), thenA B. 

One easily verifies that - is a CP-relation and that (X, I, -) is a CP-structure. 
Furthermore, - is fine, atomless and AUP(oo). However, is not tight since [0, 1/2) 
* [1/2, 1) while [0, 1/2) > [1/2, 1). Now P1 almost agrees with-, but does not agree with> 
since [0, 1/2) > [1/2, 1) while P1[0, 1/2) = P4[1/2, 1). By Theorem 3 - cannot agree with a 
probability measure. It is important to note that I is not a a-algebra. 

I is countable, so Condition (C5) on page 19 in Fine (1973) is satisfied, and as remarked 
before - is AUP(oo), but does not agree with a probability measure. This contradicts the 
assertion in lines 15-17 on page 25 of Fine (1973). 

Furthermore, [0, V2/4) cannot be partitioned into two almost equivalent events, i.e., 
(by Lemma 5) into two events with equal P1-probability. So the theorem (* * *) on page 25/ 
26 in Fine (1973) is false, as well as Lemma 7 (iii) and (iv) and Theorem 4 (iii) in Niiniluoto 
(1972). 

Our example is also a counterexample to Theorems 5.4 and 5.5 in Narens (1974). In line 
9 of the proof of his Theorem 5.4, the assertion "y u z = x" is false. Furthermore Conditions 
(C3) and (C4) of Niiniluoto (1972) must be added to Theorems 3.4, 3.5 and Section 5 in 
Narens (1974). 

Now let us define ?- as the CP-relation agreeing with P1, so A ?1 B iff Pi(A) - P1(B). 
Then (X, I, ?-) is a CP-structure, >1 is fine, atomless, AUP(oo), and also tight. By the 
definition of ?1 P1 agrees with ?1. Considering the events A = [0, 1/2), B = [1/2, 1), C = D 
= [0, 1/4 ) one sees that Condition (4) in Definition 2 on page 781 of Luce (1967), which 
is Axiom 5 on page 207 in Krantz et al. (1971), and "L" on page 25 of Fine (1973), is not 
satisfied. So Theorem 6 on page 26 in Fine (1973) is not correct, neither is on this point the 
survey on page 207, 208 in Krantz et al. (1971). 

Naren's theorems neither have to be valid if I is a a-algebra, which can be seen from our 
example (X, I, -), by extending I to the Borel-a-algebra on X. The other results above are 
valid for a-algebra's, and they all result from erroneous application of the terminal 
conclusion of Theorem 2 on page 34 of Savage (1954). 

Finally, for every n E N, the partition {[j/2n, (j + 1)/2n) u [1/2 + j/2n, 1/2 + (j + 1)/ 
2n) 0 ? ' j < n) is a partition of X into n equivalent events, and also our structure is 
"Archimedean" as defined on page 205 of Krantz et al. (1971) (a consequence of the fact 
that for all events A with P1(A) = 0 also P2(A) = 0). Yet (X, I, -) has no agreeing 
probability measure! So lines 10-12 on page 1582 of Niiniluoto (1972) are not correct, 
neither is on this point the survey on page 206 etc. in Krantz et al. (1971): De Finetti 
(1931) and Koopmans (1940) constructed only almost agreeing probability measures. 

4. More results. The notion of - being trisplittable as defined in Narens (1974) is 
equivalent to the existence of an AUP(3) of every B E L This implies, as one can see with 
not much more work than the proofs of Lemma 2 and Theorem 2 that - is AUP(oo). By 
our Theorem 1, due to Savage (1954), this already implies the existence of a unique almost 
agreeing probability measure. So the conditions in Section 5 of Narens (1974) are unnec- 
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essarily strong. 
The technique used to prove Theorems 5.1 and 5.2 in Narens (1974) is valuable. It gives 

rise to the next important theorem. Apparently this result is not new, but the author does 
not know of any reference to it. 

THEOREM 4. Let (X, I,-) be a CP-structure (so the Conditions (C1) through (C5) of 
Niiniluto (1972) must be satisfied!). Then there is an almost agreeingprobability measure 
iff there are no two finite sequences of events (Aj),=1 and (Bj)7=1 such that Aj - Bj for all 
jc n andZ,=l (1A ,-1B,)(x) < O forallx EX. 

This can be proved in two steps. 
(1) The theorem is valid in case I is finite. For the proof of this see Kraft et al. (1959), 

Theorem 3. 
(2) - has an almost agreeing probability measure iff every finite substructure of (X, I, 

-) has an almost agreeing probability measure. (See also Kaplan, 1973.) The "if" part is 
proved completely analogous to Theorems 5.1 and 5.2 in Narens (1974). The "only if" part 
is trivial. 

COROLLARY. If satisfies the finite cancellation axiom as given in Definition 3.4 of 
Narens (1974) or in Krantz et al. (1971) or, equivalently, satisfies the condition of Scott, 
given as (**) on page 23 in Fine (1973), or as 4B on page 246 of Scott (1964), then - has 
an almost agreeing probability measure. 

The example in Section 3 shows there does not have to be an agreeing probability 
measure, even though the structure there is "Archimedean". 
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