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AGREEING PROBABILITY MEASURES FOR COMPARATIVE
PROBABILITY STRUCTURES'

By PETER WAKKER

University of Leiden

It is proved that fine and tight comparative probability structures (where
the set of events is assumed to be an algebra, not necessarily a o-algebra) have
agreeing probability measures. Although this was often claimed in the litera-
ture, all proofs the author encountered are not valid for the general case, but
only for o-algebras. Here the proof of Niiniluoto (1972) is supplemented.
Furthermore an example is presented that reveals many misunderstandings
in the literature. At the end a necessary and sufficient condition is given for
comparative probability structures to have an almost agreeing probability
measure.

1. Introduction. The axioms, definitions and basic results can be found in most of
the references. For the basic results we shall refer to Niiniluoto (1972) (see his paper to
Lemma 3). We shall use his notations and formulations, except that we prefer “compara-
tive” to “qualitative”, and “agreeing with” to “realizing”. So we write CP (= Comparative
Probability) instead of QP (= Qualitative Probability).

One minor correction:

We say that two events B and C are almost equivalent (notation B ~ * C) if the following
two conditions are satisfied:

(i) Bu E = Cfor all E > ¢ such that B n E = ¢,

(ii) Cu F = B for all F > ¢ such that C n F = ¢.

Our present formulation avoids the unintended consequence that A ~ * X (X is the sure
event) for every event A.

It seems that the first clear and precise statement of the axioms of CP was given by de
Finetti (1931).

We emphasize the fact that the set of events, I, is an algebra, and not necessarily a o-
algebra, and that our probability measures are only assumed to be finitely additive, not
necessarily countably additive.

Elements of a partition are always assumed to be events. Let us repeat one definition
of Savage (1954): An (n-fold) almost uniform partition (abbreviation: AUP(n)) of an event
B is an (n-fold) partition of B such that C = D whenever C and D are unions respectively
of r and r + 1 elements of the partition and 1 = r <n.

We shall ascribe properties of the CP-structure to the CP-relation, so we shall say =
has an agreeing probability measure, = is fine, = contains an atom, etc. We say that = is
AUP() if there exists an AUP(n) of X for every n € N.

One important new definition: We say that two events A and B differ by no more than
n times C (n € N, C an event) if there are events A;, ----, A, and By, - - - -, B, such that
Aj =< C and B, = C for all j < n and, furthermore, A —U}.; Aj=Band B—- U}, B;<A.

If A and B differ by no more than n times C, they evidently also differ by no more than
m times D for any m = n and any event D = C. Instead of “1 times C” we also say “C”. So
= is fine iff for every B > ¢ there is an n € N such that ¢ and X differ by no more than n
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times B. Finally let us emphasize the importance of Niiniluoto (1972) Lemma 1.b: for all
A B C,Dinl,if AnB=¢,A=C,B=D,thenA u B=Cu D.It will be used many
times without further mention.

2. The Theorems.

THEOREM 1. If=is AUP(x) then there is a unique probability measure P that almost
agrees with =.

ProoF. See Savage (1954), Section II1.3, first part of Theorem 2 and its proof. 0

REMARK. Although Savage assumes I = 2%, his proof up to 8.a is also valid for the
general case of I being an algebra. In the literature often the mistake is made of also
applying other theorems of Section II1.3 of Savage (1954) to the general case, although in
Section II1.4 at the top of page 43, Savage points out that this is not correct if I is not a
o-algebra.

LEMMA 1. Let = be atomless. Then for every event G > ¢ there is a sequence of events
(Gr)n=1 in I such that Gy = G, Gp1 C G, G, > ¢, and Gn+1 < G, — Gy for all n.

Proor. Having constructed G,.(m € N), we construct Gn+1 as follows: G, is not an
atom so thereis A € I, A C G, such that ¢ <A < G,,.. If A = G, — A we take G+1 = A,
otherwise we take G,..1 = G, — A. 0

LEMMA 2. Let = be fine, n € N, G > ¢ an event. Then for each event A there is a

partition {Ay, ----, A} of A such that A; and A; differ by no more than G for alli,j <
n.

PRrROOF. As = is fine there is a partition {B7, --.., B}} of X such that every B; < G.
Taking B; = Bj n A for all j gives a partition {Bj, ----, B;} of A with all elements < G, for

every A € I. Induction hypothesis (m): “If there is an m-fold partition of A with all
elements < G, then there is an n-fold partition of A with all elements differing mutually by
no more than G, for every event A.” If m = 1 we can simply take A; = A, A= .... = A4,
= ¢. Next we prove that, for any mo € N, the induction hypothesis (mo + 1) follows from
the induction hypothesis (mo). So let m = mo + 1. Let A be an event, let {B;, ----, B,,}
be an m-fold partition of A with all elements = G. {B;, +---, B,—1} is an (m — 1)-fold
partition of U %' B; with all elements < G. By the induction hypothesis (mo) there is a
partition {D,, - -+, D,} of U ZT* Bj(m — 1 = my) such that for all i, j < n D; and D, differ
by no more than G. Let k£ < n be such that D, < D, for all j < n. Now define A, = D U B,,,,
A, = Dj for all j # k. Realizing that B,, = G one easily verifies that {4, ----, A,} is a
partition of U Z; B; = A such that for all i, j < n A; and 4, differ by no more than G. So the
induction hypothesis (m, + 1) is proved. 0

THEOREM 2. If = is fine and atomless then it is AUP ().

Proor. Letn € N. We will construct an AUP(n) of X. First we make an n(n + 1)-fold
partition {Xi, -- -+, Xp.(ue1} Of X With ¢ < X; = Xp =< ...+ = X,,.(n+1). This can be done by
means of Lemma 1 with G = X, setting

Xo.n+1)-& = Gre1 — Graz forO<k=<n-(n+1) —2 and X; = Gn.(n+1).

By lemma 2 we can also take a partition {Bi, ..., B,} of X with the B; mutually
differing by no more than X;, and B; < By < - ... < B,. We shall show that this partition
is an AUP(n) of X. To this end we first note that B; =u ; X;. For if this were not the
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case, then the fact that any B, differs by less than X; < X,..; from B; would imply that B;
<UM™M' X; < URo Xjn+i, 1 =i <n, and hence X =U}L; B; <UL Uiy X+ = X, which
manifestly is not true.

Since for any r = n — 1 the events U}—; Bj and U}-,_,.+; B; differ by no more than r
times X, hence by no more than n times X;, and thus by no more thanuj.; X}, it follows
that they differ by no more than B;, and hence by no more than B,.;. Consequently
Uil B, =ur, .. Bjforallr <n— 1. For every r = n — 1,U2] Bjis the smallest union
of r + 1 elements of the partition, and U}-,_,+1 B; is the greatest union of r such elements,

' so the partition {Bj, ----, B,} is almost uniform. [

LEMMA 3. If = is fine, then there is a unique probability measure that almost agrees
with =.

Proor. Follows from Niiniluoto (1972) Lemmas 4 and 5 and our Theorems 1 and 2.
0

LEMMA 4. Let = be fine and let P almost agree with =. Then for any event B we have
P(B) =0iff B ~ ¢.

ProoF. Suppose B > ¢. Then there is a partition {Xi, ---, X,,} of X with X; < B for
all j. So P(X,) < P(B) for all j, as P almost agrees with =. Thus P(B) = 0 implies
P(X,) = 0 for all j, contradicting 1 = P(X) =Y 1 P(X;). Consequently, B > ¢ implies
P(B) > 0.

The fact that P almost agrees with = gives the converse implication. [

LEMMA 5. If = is fine and atomless and almost agrees with P, then P(A) = P(B) iff
A ~ = B.

ProoF. Suppose P(A) — P(B) = ¢ > 0. Then P(A — B) = & Using lemma 1 we
construct a sequence (G,)2=; with G = A — B (so G1 > ¢). Then P(G,) =27"*'.P(A — B)
for all n, so there is an m such that P(G,) < ¢. (Since G» > ¢, Lemma 4 implies P(G,) >
0.) Now G, n B=¢, as G, CA — B. So P(B u G») = P(B) + P(G») < P(B) + ¢ = P(A).
Since P almost agrees with =, this implies B U G,, < A, sonot B ~ = A,

Conversely, if A and B are not almost equivalent and B < A, then there is an event
G > ¢ such that Bn G = ¢ and B U G < A. Then P(B) + P(G) = P(B u G) =< P(A). Since,
by Lemma 4, P(G) > 0 it follows that P(B) < P(A).O

THEOREM 3. Let = be fine. Then there is a unique probability measure P that almost
agrees with =. Furthermore, = has an agreeing probability measure iff = is tight or =
contains an atom.

Proor. The first assertion is Lemma 3. The second assertion follows from Niiniluoto
(1972) Lemmas 4 and 5, and the following argument.

Suppose = is atomless. We compare the three relations:

(i) A ~ B, (ii) A ~ = B, (iii)) P(A) = P(B).

Now first suppose = has an agreeing probability measure. Since P is the unique almost
agreeing probability measure, P must agree with =. So (iii) implies (i). By lemma 5, (ii)
implies (iii). So (ii) implies (i), = is tight.

Next suppose = is tight. Then (ii) implies (i). By lemma 5, (iii) implies (ii). So (iii)
implies (i). Since P was already almost agreeing, this implies that P agrees with =. 0

COROLLARY. If = is fine and tight then there is an agreeing probability measure.
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REMARK: If = has an agreeing probability measure and is atomless, then = must be
tight, but it does not have to be fine, as follows from Nunke and Savage (1952).

3. An example. Let X = [0, 1) and let I be the algebra consisting of all finite unions
of intervals [, b,) of X with a;, b; € (Q U {v2/4}) n X, a, < b, (Q is the set of all rationals).
Let P; be Lebesgue measure. Define P, by Py(A) = 2 P,{A n [0, %)} for all A € I. Let =
be the relation induced by P; “refined” by P, i.e.:

if Pi(A) > Py(B), then A > B;
if Pi(A) = Py«(B) and P3(A) > Py(B), then A > B;
if Pi(A) = Pi«(B) and Py(A) = Py(B), then A ~ B.

One easily verifies that = is a CP-relation and that (X, I, =) is a CP-structure.
Furthermore, = is fine, atomless and AUP(x). However, = is not tight since [0, %) ~
* [%, 1) while [0, %) > [%, 1). Now P; almost agrees with =, but does not agree with =,
since [0, %) > [%, 1) while Pi[0, %) = Pi[%, 1). By Theorem 3 = cannot agree with a
probability measure. It is important to note that I is not a o-algebra.

I is countable, so Condition (C5) on page 19 in Fine (1973) is satisfied, and as remarked
before = is AUP(x), but does not agree with a probability measure. This contradicts the
assertion in lines 15-17 on page 25 of Fine (1973).

Furthermore, [0, \/5/4) cannot be partitioned into two almost equivalent events, i.e.,
(by Lemma 5) into two events with equal P;-probability. So the theorem (*#*) on page 25/
26 in Fine (1973) is false, as well as Lemma 7 (iii) and (iv) and Theorem 4 (iii) in Niiniluoto
(1972).

Our example is also a counterexample to Theorems 5.4 and 5.5 in Narens (1974). In line
9 of the proof of his Theorem 5.4, the assertion “y U z = x” is false. Furthermore Conditions
(C3) and (C4) of Niiniluoto (1972) must be added to Theorems 3.4, 3.5 and Section 5 in
Narens (1974).

Now let us define =, as the CP-relation agreeing with P, so A =; B iff P1(A) = P:(B).
Then (X, I, =) is a CP-structure, =, is fine, atomless, AUP(x), and also tight. By the
definition of =; P; agrees with =;. Considering the events A = [0, %), B=[%, 1), C=D
= [0, % /2) one sees that Condition (4) in Definition 2 on page 781 of Luce (1967), which
is Axiom 5 on page 207 in Krantz et al. (1971), and “L” on page 25 of Fine (1973), is not
satisfied. So Theorem 6 on page 26 in Fine (1973) is not correct, neither is on this point the
survey on page 207, 208 in Krantz et al. (1971).

Naren’s theorems neither have to be valid if I is a ¢-algebra, which can be seen from our
example (X, I, =), by extending I to the Borel-o-algebra on X. The other results above are
valid for c-algebra’s, and they all result from erroneous application of the terminal
conclusion of Theorem 2 on page 34 of Savage (1954).

Finally, for every n € N, the partition {[j/2n, (j + 1)/2n) U [ +j/2n, % + (j + 1)/
2n)|0 = j < n} is a partition of X into n equivalent events, and also our structure is
“Archimedean” as defined on page 205 of Krantz et al. (1971) (a consequence of the fact
that for all events A with P1(A) = 0 also P3(A) = 0). Yet (X, I, =) has no agreeing
probability measure! So lines 10-12 on page 1582 of Niiniluoto (1972) are not correct,
neither is on this point the survey on page 206 etc. in Krantz et al. (1971): De Finetti
(1931) and Koopmans (1940) constructed only almost agreeing probability measures.

4. More results. The notion of = being trisplittable as defined in Narens (1974) is
equivalent to the existence of an AUP(3) of every B € I. This implies, as one can see with
not much more work than the proofs of Lemma 2 and Theorem 2 that = is AUP(x). By
our Theorem 1, due to Savage (1954), this already implies the existence of a unique almost
agreeing probability measure. So the conditions in Section 5 of Narens (1974) are unnec-
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essarily strong.

The technique used to prove Theorems 5.1 and 5.2 in Narens (1974) is valuable. It gives
rise to the next important theorem. Apparently this result is not new, but the author does
not know of any reference to it.

THEOREM 4. Let (X, I, =) be a CP-structure (so the Conditions (C1) through (C5) of
Niiniluto (1972) must be satisfied!). Then there is an almost agreeing probability measure
iff there are no two finite sequences of events(A;) -1 and (B;)-1 such that A; = B, for all
J=nand} (14 —1p)(x) <O forallx €X.

This can be proved in two steps.

(1) The theorem is valid in case I is finite. For the proof of this see Kraft et al. (1959),
Theorem 3.

(2) = has an almost agreeing probability measure iff every finite substructure of (X, I,
=) has an almost agreeing probability measure. (See also Kaplan, 1973.) The “if” part is
proved completely analogous to Theorems 5.1 and 5.2 in Narens (1974). The “only if” part
is trivial.

COROLLARY. If = satisfies the finite cancellation axiom as given in Definition 3.4 of
Narens (1974) or in Krantz et al. (1971) or, equivalently, satisfies the condition of Scott,
given as (++) on page 23 in Fine (1973), or as 4B on page 246 of Scott (1964), then = has
an almost agreeing probability measure.

The example in Section 3 shows there does not have to be an agreeing probability
measure, even though the structure there is “Archimedean”.

ACKNOWLEDGMENT. Prof. W. Vervaat stimulated the author to study the subject. The
presentation of the paper has been much improved by his and Prof. J. Fabius’ comments.
The referees made some useful remarks.

REFERENCES

DEe FINETTI, B. (1931). Sul significato soggettivo della probabilita. Fund. Math. 17 298-329.

FiNg, T. L. (1973). Theories of Probability. (Chap. 2). Academic, New York.

FisHBURN, P. C. (1970). Utility Theory for Decision Making. Wiley, New York.

KaAPLAN, M. (1974). Extensions and limits of comparative probability orders. Ph.D. thesis, Cornell
Univ.

Kooprman, B. 0. (1940). The axioms and algebra of intuitive probability. Ann. Math. 41 269-292.

KRraFT, C. H,, PRATT, J. and SEIDENBERG, A. (1959). Intuitive probability on finite sets. Ann. Math.
Statist. 30 408-419.

KraNTz, D. H,, Lucg, R. D., SuPPES, P. and TVERSKY, A. (1971). Foundations of Measurement. Vol.
I. Additive and polynomial representations (Chap. 5). Academic, New York.

Lucg, R. D,, (1967). Sufficient conditions for the existence of a finitely additive probability measure.
Ann. Math. Statist. 38 780-786.

NARENS, L., (1974). Minimal conditions for additive conjoint measurement and qualitative probability.
J. Mathematical Psychology 11 404-430.

NIINILUOTO, I, (1972). A note on fine and tight qualitative probabilities. Ann. Math. Statist. 43 1581-
1591.

NUNKE, R. J. and SAvVAGE, L. J. (1952). On the set of values of a nonatomic, finitely additive, finite
measure. Proc. Amer. Math. Soc. 3 217-8.

SAVAGE, L. J. (1954). The foundations of Statistics. (Chap. 3). Wiley, New York.

Scott, D. (1964). Measurement models and linear inequalities. J. Mathematical Psychology 1 233-
247.

RIJKSUNIVERSITEIT TE LEIDEN
SUBFACULTEIT DER WISKUNDE
WASSENAARSEWEG 80

PostBUS 9512

2300 RA LEIDEN, THE NETHERLANDS



	Article Contents
	p. 658
	p. 659
	p. 660
	p. 661
	p. 662

	Issue Table of Contents
	The Annals of Statistics, Vol. 9, No. 3 (May, 1981), pp. 465-696
	Front Matter [pp. ]
	Gauss and the Invention of Least Squares [pp. 465-474]
	Admissible Selection of an Accurate and Parsimonious Normal Linear Regression Model [pp. 475-485]
	Uniqueness and Eventual Uniqueness of Optimal Designs in Some Time Series Models [pp. 486-493]
	A Density-Quantile Function Approach to Optimal Spacing Selection [pp. 494-500]
	Asymptotic Theory of Nonlinear Least Squares Estimation [pp. 501-513]
	Neyman Factorization and Minimality of Pairwise Sufficient Subfields [pp. 514-530]
	Estimation of the Parameters of Stochastic Difference Equations [pp. 531-543]
	A Nonparametric Control Chart for Detecting Small Disorders [pp. 544-554]
	Stochastic Approximation of an Implicity Defined Function [pp. 555-566]
	Maximizing the Variance of M-Estimators Using the Generalized Method of Moment Spaces [pp. 567-577]
	Tail-Behavior of Location Estimators [pp. 578-585]
	The Jackknife Estimate of Variance [pp. 586-596]
	Conditional Exponential Families and a Representation Theorem for Asympotic Inference [pp. 597-603]
	Asymptotic Inference in Lévy Processes of the Discontinuous Type
[pp. 604-614]
	Estimation of the Spectral Parameters of a Stationary Point Process [pp. 615-627]
	Large Sample Estimates and Uniform Confidence Bounds for the Failure Rate Function Based on a Naive Estimator [pp. 628-632]
	Unbiased and Minimum-Variance Unbiased Estimation of Estimable Functions for Fixed Linear Models with Arbitrary Covariance Structure [pp. 633-637]
	Measures of Information Based on Comparison with Total Information and with Total Ignorance [pp. 638-657]
	Agreeing Probability Measures for Comparative Probability Structures [pp. 658-662]
	Some Properties of the Asymptotic Relative Pitman Efficiency [pp. 663-669]
	Short Communications
	A Bayesian Criterion for Sample Size [pp. 670-672]
	The Shortcoming of Locally Most Powerful Tests in Curved Exponential Families [pp. 673-677]
	Properties of Bayes Sequential Tests [pp. 678-682]
	On Trigonometric Series Estimates of Densities [pp. 683-685]
	The Quadratic Loss of Isotonic Regression Under Normality [pp. 686-688]
	Strong Consistency of Least Squares Estimators in Regression with Correlated Disturbances [pp. 689-693]
	On Berry-Esseen Rates for Jackknife Estimators [pp. 694-696]

	Back Matter [pp. ]



