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INTRODUCTION

1.1 Acute Myeloid Leukemia

1.1.1 Hematopoiesis and leukemia

In the bone marrow, a continuous, strictly organized process of blood cell production or
hematopoiesis takes place. The human hematopoietic system is capable of replacing the
normal daily turnover of blood cells and is capable of maintaining a balance between the
blood cell formation and increased blood cell demands such as in bleeding or infection.
The different types of cells that are normally present in the peripheral blood are all
derived from committed progenitor cells (1-4). The compartment of these committed
progenitor cells is maintained by a small number of pluripotent stem cells (2,5.6). The
process of proliferation and differentiation is regulated by cellular interaction, the micro-
environment of the bone marrow, several regulatory glycoproteins and hematopoietic
growth factors (3,5,7,8).

Leukemia is the condition of malignant transformation of hematopoietic cells leading to
the accumulation of immature abnormal cells in blood and bene marrow. According to
the clinical presentation, the leukemias are divided in acute and chronic leukemias.
Depending on the cell lineage involved, a further distinction can be made in myeloid and
lymphoid leukemias. The focus of this thesis is on "acute myeloid leukemia” {(AML).
AML is a clonal disease, characterized by a maturation amrest during the differentiation of
the hematopoietic cells to mature blood cells (9-11), leading to accumulation of a
population of immature abnormal myeloid cells, ultimately resulting in suppression of
normal hematopoeisis. Clinically. the replacement of normal functional blood cells by
leukemic blasts in bone marrow and peripheral blood will result in anemia,
granulocytopenia and thrombocytopenia.

1.1.2 Characterization of AML

AML comprises a heterogeneous group of disorders of which the diversity is
characterized by differences in morphologic, immunophenotypic and genotypic features.
The currently used morphologic classification, is the French American British (FAB)
classification described by Bemnmett er al. (12,13). It distinguishes FAB types M1-7 by
morphologic and histochemical characteristics. A close correlation between morphologic
and genotypic characterizations of AML has been described in the past decades (12-13).
Recently, a new classification of myeloid hematological malignancies based on
morphelogic, immunophenotypic and cytogenetic features has been proposed by the
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CHAPTER 1

World Health Organization (WHO) (16). The immunophenotype represents the stage at
which the maturation arrest has occurred during hematopoietic development. The
karyotype, according to international guidelines (17), reveals the numerical and/or
structural abnormalities of the chromosomes in the leukemic blast cells. The cytogenetic
abnormalities play an important role in the leukemogenesis of AML. Some structural
genetic abnormalities are specific for AML, like t(8;21), inv(16) and t{15;17), while
others are also involved in other hematologic malignancies, such as #(9;22) and 1123
with mixed lineage leukemia (ML) gene rearrangements in acute lymphoblastic
leukemia (ALL). Because of the heterogeneity of AML, it is important to classify every
single case of AML using clinical characteristics (like age, white blood count, associated
syndromes like Down’s syndrome), morphology (FAB), immunophenotype and
karyotype.

1.1.3 Epidemiology of AML

In adults, AML is the most frequently occurring form of acute leukemia. In childhood
however, it is a rare disease, being diagnosed in only 15-20 pediairic patients per year in
The Netherlands. The incidence increases with age from 1-3 per 10° each year in
childhood and early adulthood to 15 per 10° persons each year at the age of 70 years, and
to 35 per 10 ° at age 90 (18-20). The incidence rates are higher for males than for females
(20-22). The median age of AML patients at diagnosis is over 60 years (23).

At present, the cause of AML is not known. Some environmental factors have
consistently been linked to the origin of the disease, fe. exposure to natural radiation,
alkylating agents, chronic benzene exposure and cigarette smoking, and also exposure to
radioactive irradiation as illustrated by long-term survival studies of exposants of the
atomic bomb (24-34). Some hereditary diseases like Fanconi’s anemia, Down’s syndrome
and Bloom’s syndrome are associated with an increased risk for the development of AMIL
(22,35,36). Infrequently, families with an unexplained high risk of AML have been
described (37).

1.1.4 Prognostic factors in AML

A variety of clinical and biologic parameters has been examined for potential value in
predicting treatment response and survival (Table 1) (38). Increasing age, higher
peripheral white blood cell count, poor response to induction chemotherapy, short
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Table 1. Prognostic factors in AML

INTRODUCTION

Prognostic factors Good misk Poor risk Reference
Clinical (39,40-43)
Age children elderly
WBC low high
Response after induction CR PR/RD
Time to relapse long short
Performance scale good poor
Morphology (38.44-46)
FAB M3, M4Eo MO0, M3, M6, M7
Auer Rods
Karyotype (38,42.43.,45-
47}
Structural aberrations inv(16), 1(16;16). 7q-. 5g-. 1(9:22),
®15:17). 1(8:;21) 1123 with MLL
rearrangements
complex
karyotypes
Numerical aberrations -5,-7
+3
Immunophenotype (38.48-36)
panmyeloid CD34+
CDI13+,CD14+
CDI1b, CD1lec
biphenotypic
(>2 lymphoid
markers)
MDR (54.56-64)
MDRI,
(LRP/MVP,
MRP1)
(co-)expression
Other Fi3/TD (65-68)

CR: complete remission after 1 or 2
chemotherapy: RD: refractory disease.

cycles of chemotherapy: PR: partial remission after 2 cycles of
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CHAPTER 1

duration of first complete remission (CR), and a poor performance scale are important
independent adverse clinical prognostic features (38-40).

Morphological features like the occurrence of dysmyelopoiesis, which is associated with
a poor prognosis, have been reported to be of prognostic importance (39). Infants with
AML with FAB types M4 and M35 have a relatively favorable prognosis (44). Also, both
adult and pediatric patients with FAB M3 and M4Eo have a relatively good outcome
{Table 1) (39), whereas adults with M1, M3, M6, and M7 fare worse (38). Several reports
suggested a relationship between some antigens [CD11b, CD13, CD14, CD34, CD56 or
terminal deoxynucleotidyl transferase (TdT)] and the poor prognosis of AML patients
(38,48-36). Most studies confirm the correlation of the expression of the immature
phenotypes with bad prognosis whereas the expression of panmyeloid markers was
associated with a better outcome. However, subsequent studies have produced conflicting
results (Table 1) (40,48-55).

Based on karyotyping, cytogenetic risk-groups have been recognized. In adult AML
patients, monosomy 7, 7g-, t{9;22) and complex karyotypes are accepted as predictors for
poor survival (45,46,69-71). The adverse prognostic value of 11¢23 with MLL
Tearrangements, trisomy 8§, rmonosomy 5, 5q- is more debatable (42). Good prognostic
chromosomal aberrations are inv(16), t(8:21) and t(15:17) (45.46). Although in some
studies abnormalities of chromosome 7 have been established as adverse prognostic
factors, in childhood AML (42,47,72-74), monosomy 7 is not generally used as an
unfavorable prognostic factor for stratification of therapy as yet (43,73,76). Until now,
there 1s no explanation for the extremely poor outcome in adult AML patients with
monosomy 7. However, monosomy 7 patients are more likely to have secondary
leukemias and myelodysplastic syndrome related AML, which forms a group of more
resistant leukemias,

The prognostic significance of the drug resistance proteins encoded by the breast cancer
resistance protein (BCRP) gene, the multidrug resistance protein (MDR1) gene, the
multidrug resistance related protein (MRP1) gene and the lung resistance related protein
(LRP) gene, will be discussed in paragraph 1.2.3.1.

Recently, an internal tandem duplication (ITD) of the F/#3 gene at chromosome 13, which
encodes a tyrosinekinase receptor that regulates proliferation and differentiation of
hematopoietic stem cells, has been associated with poor prognosis in adult (66,68) and
childhood AML (65,67). This mutation seems to overrule other prognostic factors in
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INTRODUCTION

multivariate analyses and may be important for treatment stratification in the future,
especially in AML patients with normal cytogenetics (65).

Based on the knowledge of prognostic factors in AML, several stratification scores have
been proposed. In some of them the permeability-glycoprotein (P-gp) expression is
involved, and combined with clinical, morphelogic and cytogenetic risk factors. An
example is a the recent study by Legrand er al, who proposed a prognostic score
combining the prognostic factors age. WHO performance status, P-gp activity, expression
of panmyeloid markers, and the several cytogenetic risk groups for elderly AML patients
(40). Another example of stratification in which MDR1 expression was involved has been
proposed by Estey et al., according to age, cytogenetics, performance status and MDR]
expression (77), and by Del Poeta ef al. who identified an unfavorable risk group based
on P-gp expression, TdT expression and unfavorable cytogenetic abnormalities, like
complex karyotypes, numerical or structural deletions of chromosome 3 and 7, trisomy 8,
W(9:22) and 11g23 with MLL rearrangements (78). Overall, until now, cytogenetic
abnormalities are considered to be the most valuable prognostic determinants in AML
(45.,46).

1.1.5 Treatment of AMI
The purpose of freatment of AML is to eradicate all malignant cells. Treatment strategies
have been developed using combinations of cytostatic drugs, sometimes followed by
bone marrow fransplantation in order to restore normal hematopoiesis to obtain long term
survival. Without treatment, the median survival of an AML patient is only 2 months
(79}
Standard chemotherapy for AML consists of remission induction and post-remission
chemotherapy (80). Complete remission (CR), is defined as a reduction in the marrow
blast percentage to less than 5% as assessed by traditional light microscopic examination
of the bone marrow. In adults, remission induction therapy usually inciudes one or two
cycles of a combination chemotherapy of 7 days of cvtosine-arabinoside (Ara-C) (81),
and 3 days of an anthracycline {82), like doxorubicin, idarubicin (83-85), daunomye<in or
mitoxantrone (86). Amsacrine (87) and etoposide (88) have also been frequently included
in induction regimens. In addition, others have combined high doses of Ara-C (HDAC)
(1-3 g/m") with asparaginase or daunomycin (89). In children, comparable systemic
induction chemotherapy is used in combination with central nervous system prophylaxis
using intrathecal therapy. Acute promyelocytic lenkemia (PME) with FAB type M3, is
generally characterized by a t(13;17), in which the PML gene on chromosome 17 and the
15
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retinoic acid receptor o (RAR-¢) gene on chromosome 15 are involved. In this subtype of
AML, induction therapy starts with all-trans retinoic acid (ATRA) as it induces
maturation of the AML cells in vitro and in vivo, followed by induction chemotherapy
(90).

Post-remission consolidation chemotherapy consists of intensive chemotherapy, that has
proven to be more effective than the prolonged maintenance with low doses of
chemotherapy strategies, used in the 1980s (91-94). However, in individual patients
maintenance therapy might be of value by at least offering a longer relapse free survival,
like for instance in elderly patients (95). Consolidation therapy as a curative regimen,
usually consists of HDAC and anthracyclins, which in children often will be combined
with L-asparaginase (96,97).

Recently, in adults, myeloid growth factors have been added to AML therapy with two
distinct objectives: to recruit dormant malignant cells mto the cell cycle for a more
efficient cell killing by the chemotherapy given at the same time (41,98-103), and
secondly, o reduce the duration of neutropenia and the toxic death rate when given after
induction chemotherapy. Currently, clinical studies have shown that the application of
these growth factors (104-106) did not decrease the number of documented infections or
the number of days of hospitalization (106). An increase in the rate of initial responses
(98), and survival using granulocyte-macrophage colony stimulating factor (GM-CSF)
has been reported in adults (100), however a recent study in 652 young adolescents (< 2]
years) and children, adding granulocyte colony-stimulating factor (G-CSF) did not
influence induction CR rates post remission, outcome, nor overall survival (43). Although
AML blast cells generally express functional G-CSF and GM-CSF receptors on their
surface (107), thus far. the fear that treatment with G-CSF or GM-CSF could provoke the
growth of leukemic cells in patients has not been substantiated {(108).

Other contributions to the improvement of AML treatiment in the past decade are the
improvement of supportive care like treatment with antibiotic and anti-fungal drugs, the
availability of anti-viral drugs, and improvement of feeding supplements.

Allogeneic bone marrow transplantation (BMT) in patients up to 55 years of age is
generally recommended for patients in first CR (109). Recent protocols have omitted
allogeneic BMT in AML patients with the karyotypes t(8;21), inv(16), t(16:16) and
t(15;17), as the prognosis is good with chemotherapy only. For patients transplanted with
bone marrow from a HLA identical sibling, the 5 years survival ranges from 40 to 63%.
However, less than 10% of adult patients with AML are candidates for allogeneic BMT,
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INTROBUCTION

as the median age of AML patients in adults is over 60 years and the availability of HLA
compatible donors is a major problem {109-111). Transplantation with stem cells from a
matched unrelated HEA compatible donor (MUD) has been developed as an alternative
donor source. but this approach is associated with a higher morbidity and mortality
(109,110,112). In children and young adults T-cell depletion, variation of cell dosages
(113) and CD34 concentration (114), and the availability of cord bloed (115,116) as a
powerful stem cell source, have pushed interest in unrelated donor transplants, especiaily
n extremely poor prognostic groups (114). Apart from being effective for the restoration
of normal hematopoiesis after engraftment, allogenic stem cell transplantation is also
effective because of the ‘graft-versus-leukemia™ effect, a phenomenon that was first
described in 1956 by Barnes and Loutit (117), confirmed after the excess of relapses after
full T-cell depletion in the 1970s and 1980s (118) and cuurently consolidated by the use
of donor lymphocyte infusions to reinduce remission in relapsed leukemia patients post-
allogeneic BMT (119,120). In children, allogeneic BMT is recommended in first CR, in
case of availability of an HLA identical sibling donor, with the exception of patients with
Down’s syndrome, and of AML patients with t(15;17), inv16 and (8;21), which have an
event free survival (EFS) of 60-90% with conventional chemotherapy (75,121-123).
Autologous bone marrow transplantation (ABMT) is less toxic than allogeneic BMT,
however, it is less effective. most likely because of lack of the graft-versus-leukemia
effect and the risk of reinfusion of minimal residual clonogenic disease. The benefit over
conventional chemotherapy is disputable in adults (109.124.125) and not shown in
children (43,123,126-129).

It is obvious that in subgroups of AML patients like for instance elderly, or very young
infants, specific treatment choices have to be made depending on performance status,
organ function and the presence of favorable or unfavorable prognostic factors
(61,77.130-133).

With the current treatment protocols, a CR rate is achieved of 70-85% in younger adult
AML patients, 50% in the elderly, and 75-92% in childhood AML. An event free survival
of 20-30% is reached in younger adults and only 10-15% in the elderly patients. In
general it could be stated that in AML outcome worsens continuously as age increases
{93,97.108,123,127,128,134-143). it is not clear what accounts for the better prognosis of
children with AML in comparison with adults. The different treatment protocols,
heterogeneity of the disease, performance state and tolerance, combination with other
diseases and the biological behavior, cellular resistance and pharmacokinetics and/or

pharmacodynamics at different ages might play a role.
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AML patients who relapse after chemotherapy only have a small chance to achieve a
second remission after treatment with intensive chemotherapy (144-146). The probability
of achieveing a second CR is mainly dependent on the duration of the first CR (147,148},
After reaching a second CR, only 20 - 30% of younger adult patients can be cured by
allogeneic stem cell transplantation, and only exceptionally by chemotherapy alone
(108,149).

New treatment options are under investigation now. For instance, the efficacy of
liposomal anthracycling, alone or in combination with conventional doses of Ara-C or in
combination with topoisomerase Ila (Topotecan) or angiogenesis inhibitors like
thalidomide and SUS3416 (77) is cuwrently analyzed in AML (150-152). Another
promising drug for the future treatment of AML is targeted immunochemotherapy with
CMA 676 (Mylotarg), an anti-CD33 monoclonal antibody conjugated to the anthracyclin
calicheamycin (153-157). Also, Phase /Il studies evaluating IL-2 after consolidation
chemotherapy have been performed in AML. The results with respect to outcome are
awaited (158). Moreover, Phase I/IT trials are planned with hypomethylating agents like
decitabine (77.159) and/or histone deacetylase inhibitors, like trichostatin A, butyrates,
and depsipeptide (152,160-164). Alse promising in AML treatment are protein kinase C
(PKC) inhibitors, like bryostatin and UCN-01. There are a number of combination studies
underway with bryostatin (152). Those that are involved in leukemia or myelodysplastic
syndromes include phase I trials with Ara-C, fludarabine, and with 2-
chlorodeoxyadenosine (2-CdA). There is also a phase II study in combination with
ATRA for AML (152). Phase I trials in adults and children with novel retineids, like
fenretinide (165) that induce apoptosis in malignant cells, independent of the nuclear
retinoid receptor pathway (166,167) in adults and children are being evaluated now (132).

1.2 Multidrug resistance (MDR)

1.2.1 Resistance to chemotherapy

The principal reason for treatment failure in patients with AML is the presence or
development of resistance to chemotherapy. Treatment regimens in which different types
of chemotherapy are combined, will not in all cases lead to CR. According to the Goidie
and Coldman hypothesis, the multi-agent chemotherapy regimens can select drug
resistant clones that develop by spontancous mutation or tumor cell adaptation (168).
From clinical settings it is widely accepted that patients with a high tumeor burden, ie.
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INTRODUCTION

organomegaly and high peripheral white blood cell counts are more susceptible to
induction failure and relapse. Although most AML patients will reach CR after induction
chemaotherapy following a logarythmic decrease of malignant cells, eventually a large
number of patients will relapse, probably because of the remaining minimal residual
disease (MRD), which gives rise to the expansion of an AML clone with very often a
more resistant phenotype in a later stage. At time of diagnosis most acute leukemic
patients have a tumor burden that exceeds 10" clonal cells. At time of complete
remission, as much as 10'° leukemic cells might still be present in these patients.
Currently, minimal residual disease (MRD) can be measured by very sensitive
flowcytomesric and polymerase chain reaction (PCR) techniques (169). In the future,
these techniques might be helpful to identify patients that need more intensive or different
forms of therapy, for instance before or after allogeneic BMT, to prevent relapses.
Clinically, the probability of achieving a second CR and long term survival drops
dramatically after relapse. As sald, clinical resistance to anticancer agents can occur at
relapse, but also at the time of presentation, which is called primary refractory disease.
For these patients it is even more difficult to find a way to achieve a CR and subsequently
long term survival.

Multidrag resistance (MDR) is the phenomenon that cancer cells are resistant to
chemotherapy. even to drugs that have not previously been used (170,171). This concerns
several of the most effective anticancer drugs, such as vinca alkaloids, bacterial
anthracyclins and other semi-synthetic or synthetic analogues and organic compounds,
These compounds differ in their mode of toxicity and cellular targets, which inciude the
cell membrane (gramicidin D), microtabule assembly (vinca alkaloids), DNA replication
(anthracyclins), transcription (actinomycin D} and protein synthesis. The drugs also differ
in size, chemical composition and distribution of reactive groups. However, they do share
a2 general hydrophobic and amphipathic character, being usually lipid soluble and
possessing a positively charged nitrogen atom at neutral pH (172,173). In cell lines, the
MDR phenotype is stably maintained during growth in the absence of the drug, while
selection for higher levels of resistance results in a phenotype showing a decreased
intracellular drug accumulation and an increased drug efflux (174,175). This phenomenon
can be reversed by modifiers of the several multidrug resistance phenotypes {paragraph
1.2.4.1) (176,177). In the past decades, in AML, expression of several mechanisms of
drug resistance have been reported. These will be discussed in the next paragraphs.
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CHAPTER 1

1.2.2 Mechanisms of multidrug resistance

1.2.2.1 (Membrane) transport associated drug resistance proteins

These proteins have in common that they act by reduction of the intracellular drug
concentration by increased efflux. or by reduced accessibility due to drug sequestration.
Classical multidrug resistance (MDR1). Classical multidrug resistance (MDR1) is
characterized by the expression of the Permeability-glycoprotein (P-gp), a 170-kDa
membrane protein that has been believed for a long time to act as a ‘classical” drug efflux
pump. Indeed, upregulation of the MDR1 gene, localized on chromosome 7q21.1, results
in a decreased intracellular concentration of anthracyclins (doxorubicin, daunorubicin,
idarubicin}, vinca alkaloids (vincristine, vinblastinej and epipodophyllotoxins (etoposide,
tenoposide), taxanes (taxol, taxotere) and amsacrine. These drugs have few structural and
functional similarities except that they are small, hydrophobic molecules. Alkylating
agents like cyclophosphamide, melphalan, chlorambucil, platinum derivates and
antimetabolites do not share these characteristics. Hydrophobic compounds that are
substrates for P-gp do not fully penetrate into the cytoplasma of ceils that express P-gp
(178). Interaction of substrate with P-gp has been shown to take place within the
membrane (179).

The functional domains of P-gp have been studied by genetic apalysis and biochemical
studies in which labeling sites of photoaffinity analogues of drugs were identified (180).
P-gp is a transmembrane glycoprotein comsisting of two simular, but not identical
domains. Each domain has six transmembrane segments, and one intracellular adenosine
triphosphate (ATP) binding site (181). The presence of two ATP-binding sites defines the
mammalian P-gp as a member of the ATP-binding cassette (ABC) superfamily of
proteins {182). Most of these proteins are known to be transporters. For a long time it was
hypothesized that the ability of P-gp to reduce drug accumulation was caused by an
unidirectional energy-dependent dmg-efflux pump mechanism with broad substrate
specificity (183,184). Currently, an alternative, so-called ‘flippase’ model (184,185, is
accepted which is based on the hypothesis that P-gp directly flips drugs from the inner
leaflet of the lipid bilayer to the outer leaflet.

There is some evidence that P-gp is also involved in the cellular redistribution of drugs in
the cytoplasm resulting in diminished accessibility of the drug to critical nuclear) targets
(186). The physiological function of the mammalian MDR1 gene remains unknown. The

gene is differentially expressed in a variety of normal tissues, particularly along the apical
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INTRODUCTION

surface of secretory epithelium of the jejunum and colon, proximal tubular epithelium of
the kidney, pancreatic small ductile epithelium, and the glandular epithelium of the
pregnant uterus. In addition, P-gp i1s expressed in the adrenal gland, placenta, capillary
endothelium of the brain and testis, as well as in hematopoietic precursors and
lymphocytes (187,188). Based on this expression pattern, it is assumed that P-gp plays a
role in the elimination of xenobiotic substances. The MDR1 gene, encoding P-
glycoprotein has been cloned and sequenced (189-192), inserted into an expression
vector, and transfected into drug-sensitive tumor cell lines. This has resulted in
transfectants, that expressed the full MDR1 phenotype characterized by resistance to
several classes of drugs comprising anthracyclins, vinca-alkaloids and
epipodophyllotoxing (176,183,190,193,194). In virro studies have also demonstrated that
tamor cells are able to increase MDR]1 gene expression in response to Cytotoxic agents
(195). as weli as to physiologic stresses such as heat shock (196-198) and to agents which
induce cell differentiation (199). The resistance can be partly overcome by competitive
binding of P-gp modulators or modifiers (paragraph 1.2.4.1)(200-203).

Although MDRI is extensively characterized as a mechanism of drug resistance, very
litile is known about its relationship to other cellular respenses e.g. programmed cell
death (apoptosis). Some authors revealed that loss of the p33 tumor suppressor gene can
result in a MDR phenotype in cells that normally require pJ33 to underge apoptosis
following appropriate stress such as DNA damage (204-206). Other authors have reported
point mutations in the promoter region of the MDR] gene in correlation with a regulatory
effect on MDR1 transcription and poor prognosis (207). Another epigenetic effect, ie.
methylation of the CpG islands has been investigated in AML. Uniil now no convincing
data are available that suggest that the methylation status of the CpG-rich domain acts as
a switch to regulate expression of the MDR1 gene In patient samples (208), although
experiments with demethylating agents in P-gp positive and negative cell lines had
suggested an important role for methylation of the AMDR1 gene (209).

Recently, genetic polymorphisms of the MDRI gene have been described at positions
2677 and 2995 (210). At position 2677, mutation is G to T, leading to an amino acid
change from Alanine (Ala) to Serine (Ser), while at position 2993 the mutation G to A
changses aminoacid Ala into Threomine (Thr) (210). Using this polymorphism, MDR]
gene related clonal selection was found during the development of disease towards
resistant disease in Burkitt's lymphoma patients (211). Until now, it is not clear what the
role of these polymorphisms is in AML.
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It is difficult to compare MDR1 expression in cell lines and clinical samples from
different studies because many different detection methods have been used such as
immunocytochemistry, flow cytometry, RNase protection assays. quantitative PCR, and
also because of the different thresholds for positivity, the use of different monoclonal
antibodies, comparison of different expression levels (DNA/RNA versus protein),
different internal controls, and differences in purification methods of the leukemic blasts.
To deal with this problem, international workshops have been organized in order to
define the objective methods to investigate MDRI expression (212-216). For P-
glycoprotein, functional assays (see paragraph 1.2.4.1) are available based on the MDR1
specific modifier effects in thodamin 123 (Rho 123} or anthracyclin retention assays. For
studying the expression of P-glycoprotein, a panel of monoclonal antibodies like MRK
16, UIC2, C219, JISB-1 is commercially available (217).

Multidrug resistance related protein (MRP1). MRP!1 has been identified by Cole et al
(218) in cell lines that showed a typical MDR phenotype without elevated P-gp
expression. Gene transfection studies have revealed that MRP1 expression resulted in a
decreage of the intracellular concentrations of drugs, including anthracyclins, vinca-
alkaloids and epipodophyllotoxins (219), and of toxic agents (220). The MRPI gene,
located on chromosome 16pl3.1 encodes a 1531-amincacid N-glycosylated integral
membrane phosphoprotein, with a molecular weight of 190 kDa. Based on the
characteristic structural motifs, MRP1 has been classified as a member of the ABC-
fransporter superfamily, The amino-acid homology between P-gp and MRP1 is 15%.
Althoughy MRP1 is a transmembrane protein, anti-MRP1 antibodies mainly stain
intracelluiar epitopes.

The physiclogical role of MRPI1 is unknown, but inside-out plasma membrane vesicles
isolated from MRP1 overexpressing cells showed an increased ATP-dependent transport
of glutathion S-conjugates and glucuronate and sulphate conjugates. Evidence that intact
cells require glutathion (GSH) for extrusion of several drugs by MRP1 was obtained by
depleting cells of GSH (221). MRP1 has been detected at high levels in all human tissues
including blood. Only in erythrocytes and liver canaliculi, the levels of MRP1 were lower
than in other tissues. Like P-gp, MRPI is thought to be involved in altered drug
distribution of intracellular compartments in the cytoplasm, leading to decreased
concentrations of cytostatic drugs at their target sites (136). A major difference between
P-gp and MRP1 is, that P-gp is less dependent on phosphorylation for function than
MRP1 (222). Like P-gp, MRP1 can be investigated by functional assays using
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carboxyfluorescein diacetate (CF) (223) or by measuring the expression levels using
specific monoclonal antibodies like MRPrl, MRPmé, QRL-1 and QRL-3 (223).

Lung resistance-related protein/major vault protein (LRP/MVP). The lung resistance-
reiated proteir (LRP) was initially identified in an anthracyclin-resistant non-small celt
lung cancer cell line characterized by the MDR phenotype, but lacking P-gp
overexpression (224). The LRP gene is localized on chromosome 16p13.2 (225). LRP,
also called the major vault protein (MVP) is the main constituent of a ribonucleoprotein
particle: the vault complex. Vaults are evolutionarily conserved cytoplasmic organelles
that may be present in the nucleus (226,227), and are found in most eukaryotic cells.
Using electronmicroscopy (EM), purified vaults display a very distinct and complex
morphology, resembling the multiple arches of a cathedral, the reason why they were
named that way by Kedersha et ol (228). The vault components assemble mto hollow
barrei-like structures with an invaginated waist and two protruding caps which most
likely consist of minor vault proteins (227). In normal tissue, LRP/MVP has been
suggested to play a role in detoxification processes (186), but the physiclogical function
of LRP/MVP is unknown. Until now, it is unclear which drugs are influenced by tumor
expression of LRP/MVP. Transfection studies in cell lines have suggested that vauits may
contribute to resistance to anthracyclins, vincristine and platinum derivates (229-231).
There is circumstantial evidence for a role of vaults in clinical drug resistance (230-232).
Most importantly, in a varety of drug-selected tumor cell lines, increased levels of
LRP/MVP are consistently associated with increased levels of drug resistance (233,234).
Furthermore, the expression of LRP/MVP closely reflects known chemoresistance
characteristics in panels of unselected tumor cell lines and clinical cancers of different
histogenetic origins. Some clinico-pathological studies, but not all, demonstrated that
LRP/MVP expression at diagnosis is a strong and independent prognostic factor for poor
response to chemotherapy in several malignancies (232,235-241). However, transfection
of drug sensitive cells with only LRP ¢cDNA (chromosomal DNA) did not confer drug
resistance (231). This may either suggest that LRP/MVP is not the limiting component in
vault assembly, or that vaults do not significantly influence MDR. Other vault
components like the minor vault proteins and/or vault RNA. are also necessary to obtain
functional vault particles. Recently Kitazono er al. presented the first evidence that vaults
are causally related to drug resistance (230). Reduction of LRP/MVP expression by the
use of specific ribozymes in SW620 cells, that were induced to overexpress LRP/MVP by
exposure to sodium butyrate, was sufficient to revert the drug resistant phenotype of these

cells {230). The intriguing question that remains is, how vaults may confer the MDR
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phenotype. It is suggested, that vaults may be involved in the sequestration of drugs in
exocytotic vesicles and/or in the nucleo-cytoplasmic transport of various substrates.
Future studies will have to corroborate the role of vaults in MDR and reveal the
molecular mechanism by which they do so. As vet, there have been no reports of
modulators of drug resistance mediated by vaults, that could be used for (pre-}clinical
studies. For investigation of protein expression levels the specific monoclonal antibodies
LRP-36, LMR-5 and MVP-37 are available.

Breast cancer resistance protein (BCRP). In 1990, Chen et al. reported on a 95-kDa
MDR associated membrane protein (P-95), now called breast cancer resistance protein
(BCRP), in a doxorubicin-resistant subline of the M(CF-7 breast cancer cell line (242).
The resistant subline, termed MCF-7/AdrVp, did not express P-gp, and was found to be
highly resistant to anthracyclins, melphalan and teniposide (VM26), but not to vinblastine
(243). P-95 has been noted to be expressed in the MDR small cell lung cancer lmes NCI-
H1688 and NCI-H660 and in clinical samples obtained from patients with solid tumors
refractory to doxorubicin, (244). The murine gene is mapped on chromosome 6, 28-29
c¢M from the centromere, in humans on chromosome 4 at position g22, between the
markers D482462 and D4S1557. An association of P-95 and the upregulation of the 79
gene has been observed by Doyle in MDR cell lines (MCF-7/AdrVp and NCI-H1688)
(245). The HI19 gene is an imprinted gene that has an important role in fetal
differentiation, as well as a postulated role as a tumor suppressor gene {245). The new
transporter P-93 was called “breast cancer resistance protein’ (BCRP) by Doyle ef al.,
because it caused drug resistance when transfected into drug-sensitive celis and because it
was isolated from human breast cancer cells (243). The GenBank accession mumber for
BCRP is AF098951. Other groups have termed BCRP “mitoxantrone resistance protein’
(MXR) (246) or “placental ABC transporter’ (ABCP) (247), The BCRP/MXR/ABCP gene
is evolutionary distinct from the families that encode P-gp and MRPI, being on a
completely separate limb of the phylogenetic tree (248). In contrast to the MDR1 and
MRP1 gene it encodes a protein which is 2 half-transporter molecule requiring
dimerization in order to function (248-250). Marked overexpression of BCRP has been
observed in human cancer cell lines selected for daunorubicin, mitoxantrone or topotecan
{251,252}. Maliepaard er al. showed, that BCRP transported 70% of topotecan out of the
T8 and MX3 cell lines in 30 seconds (232). In human normal tissue, the apparent
localization of BCRP is quite distinct from that of P-gp and MRP1. BCRP levels are
highest in the placenta, and in certain areas of the midbrain (putamen} (243,247). The
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expression of BCRP in normal adult tissues and fetal tissues is relatively low, with the
highest expressing adult organs being liver, small intestine, and colon. As yet, the
monoclonal antibody (Moab BXP-34) is available for expression studies of BCRP (253).
For functiona! assays Rho 123 in combination with the modulators GF 120918 or
fumitremorgin C (FTC) can be used {(251,254-257).

Other (membrane-) transport associated drug resistance proteins. Recently, several new
members of the ABC transporter super famly have been identified, such as the sister of
P-glycoprotein (sP-gp). the transporter associated with antigen processing (TAP), the
anthracyclin resistance-associated protein (ARA) and six new homologues of MRP
(MRP2 or cMOAT, MRP3, MRP4, MRP5, MRP6 and MRP7).

sP-gp has a sequence homology of 61% with MDR1 (238), and is proposed to be the
product of an earlier gene duplication and is only expressed in the liver of pigs. Whether
it is expressed in hwman mmors is anknown. Overexpression of the peptide transporter
involved in antigen-presentation (TAP) might also contribute to the multidrug resistant
phenotype In many non-P-gp tumor cell lines. TAP is a heterodimer that is composed of
TAP]1 and TAP2 proteins. The heterodimer mediates the peptide translocation from the
cytosol into the endoplasmatic reticulum (259). These peptides are then coupled to class I
molecules of the major histocompatibility complex and the assembled complex is
translocated to the plasma membrane for presentation to cytotoxic T lymphocytes.
Besides its role in class I restricted antigen presentation, TAP has recently been
agsociated with drug resistance, by transfection of 74P/ and TAPZ2 genes into TAP
deficient lymphoblastic cells which resulted in resistance to MDR related-drugs including
doxorubicin (DOX) (260). TAP might contribute to resistance by facilitating the
sequestration of anthracyclins in the endoplasmic reticuivm but this hypothesis awaits
further investigation.

The ARA gene encodes a 49.5 kDa protein which resembles the C-terminal half of the
MRP§G molecule (261). The 3° end of the MRP6 gene corresponds with the 3° end of the
ARA gene. The hypothesis is, that ARA is a splice variant of MRP6 (262). The relevance
with respect to clinical resistance needs further mvestigation. Apart from MRP6, Kool et
al. described MRP2, MRP3, MRP4 and MRP5 (262), The levels of MRP2-5 mRNA were
analyzed in a panel of DOX and cisplatinum selected cell lines (262}, Only the MRP2
mRNA level was related to cisplatin resistance, whereas no relationship with DOX
resistance was found. To date, MRP2 (also called canalicular multiorganic anion
transporter, ¢cMOAT) and MRP3 (also known as MOAT-D) have been cloned and

transfected into drug-sensitive cells. Recently, an upregulation of MRP2 and MRP6 has
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been reported in AML patients with inv(16) in patients especially in those with loss of
one MRP] homologue suggesting that there might be a compensatory role for these
transporter proteins in AML (263). Enforced expression of MRP2 resulted in resistance to
cisplatin, anthracyclins, etoposide, and methotrexate (264-266); enforced expression of
MRP3 caused resistance to vinca alkaloids, etoposide, and methotrexate (267). Recently,
MRP7 has been described as a ribosomal protein. The relevance of this protein for drug
resistance has not been established as yet (268).

1.2.2.2 Mediators of Ara-C response

Cytosine-arabinoside (Ara-C} is a cytotoxic nucieoside analogue which acts by
competing with the physiologic counterpart (cytidine) for incorporation into nucleic
acids. As an inhibitor of DNA synthesis it has its greatest cytotoxic effects during the S-
phase of the cell cycle (269,270). Ara-C enters the cell via a nucleoside carrier (271),
although simple diffusion across the cell membrane has alse been described (272).

- Ara-C

Cytldlne deamn:ey Qixycyhdme kinase

CAra-U : Ara-CMP .
T &dCMP k:nase-

 domp _déafninase -

o Ara-CDF
- Ara-UMP ¢NDP kinase
Ara-CTP

S el
membrane

Figure 1. Metabolism of Ara-C by tumor cells

d: deoxyribose: MP: monophosphate; DP: diphosphate; TP: triphosphate: NDP: nuclcoside diphosphate.
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After entering the cell, Ara-C is phosphorylated into its mono-, di- and (the intracellulary)
active triphosphate form Ara-CTP, by the action of three enzymes: deoxycytidine kinase
(dCK), deoxycytidine monophosphate (dCMP) kinase and nucleoside diphosphate (NDP)
kinase respectively (Figure 1). The first phophorylation step is catalyzed by
deoxycytidine kinase (dCK), which has been appreciated as the rate-limiting enzyme in
the metabolism of Ara-C. Ara-CTP inhibits DNA polymerase, and is competatively
incorporated into DNA instead of the natural substrate deoxycytidine tripfosphate (dCTP)
(273). Also, small amounts of Ara-CTP are incorporated into DNA, where the
incorporated Ara-C residues act as relative chain terminators (274-277). Other
mechanisms that have been suggested to be involved In cytotoxicity are effects on
mitochondrial functions (278), direct mduction of apoptosis (279,280), and inhibition of
DNA ligase (281).

Several mechanisms of Ara-C resistance have been identified (Table 2) (282). In this
thesis, we have focussed on the dCK gene {chapter 6), as this enzyme seems to play a
major role in the mechanism of action of Ara-C (283). The gene has been assigned from a
lymphoblast DNA library by Stegmann ef al (284). Murine neoplasm and human cell
lines like HL-60 and AB 9228 confer resistance by decreased enzymatic activity (285-
288).

Table 2. Mechanisms of Ara-C resistance

1. Kinetic resistance of Ara-C {(non-cycling cells are less vulnerable)
2. Pharmacologic resistance:
A. Impaired Ara-CTP formation
a. Failure of Ara-C to enter the cells (low concentration)
b. Enzyme activity - decrease of deoxycytidine kinase (ACK)
- increase of cytidine deaminase (¢DD)
B. Enhanced DNA repair mechanisms

C. Reduced incorporation into the DNA (Mutations DNA. polymerase)
D. Direct influence on apoptosis

1.2.3 The clinical relevance of multidrug resistance in AME

1.2.3.1 (Membrane} transport associated drug resistance proteins in AML

MDR1 and AML. I de novo AML, P-gp overexpression has been found in several
studies of adult patients (56,59,62,64,289-291). The percentages of MDRI positive
samples in de novo AML vary from 17 to 71% (56,57,59,61,292-296). The quantitative
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Table 3. Prognostic significance of MDR1 in de nove AML

No. of Expression Correlation with
Author Year patients  alc level outcome
CR Survival

Sato 1990 36 a RNA S S
Kuwarzara 1990 17 a protein S s
Pirker 1991 63 a RNA S 5
Marie 1991 23 a RNA S -
Campos 1992 150 a protein S S
Gruber 1992 34 a RNA NS NS
Zhou 1992 51 a RNA/protein S S
Marie 1993 42 a RNA/protein 8 -
Te Boekhorst 1993 47 2 protein S S
Pirker 1994 63 a RNA 8 -
Tno 1994 52 a protein NS NS
Wood 1994 54 a protein S NS
Hart 1994 36 a RNA 3 5
Zichbaver 1994 52 a RNA/protein S s
Del Poeta 1994 117 a protein 3 s
Guerci 1993 69 a protein S S
Sievers 1995 130 c protein NS N8
Zhou 1995 51 a RNA S -
Schuurhuis 1993 17 a RNA/protein NS NS
Del Poeta 19946 158 a protein S S
Nussler 1996 102 a protein 5 S
List 1996 21 a protein S S
Samdani 1996 96 a protein 5 S
Goasguen 1996 25 ar¢ protein NS NS
V. d. Heuvel 1997 120 ace protein S S
Hunault 1997 110 a RNA/protein ~ § S
Del Poeta 1997 223 a protein S S
Martinez 1997 30 a proteir: S S
Filipits 1997 80 a protein 8 8
Hart 1997 a7 a RNA NS -
Lohri 1997 57 a RNA - NS
Wiilman 1997 349 a* protein s S
Willman 1997 203 a# protein S S
Leith 1997 352 a protein s S
Legrand 1998 53 a protein s -
Borg 1998 91 a protein S S
Kasimir 1598 40 a protein NS -
Senent 1998 82 a protein s NS
Pallis 1999 47 a protein s S
Michieli 1999 96 a protein S 3
Del Poeta 1699 204 a protein S S
Legrand 1999 30 a protein S S
Broxterman 2000 98 a protein NS NS

(N} §: (not) significant; -: not evaluated; CR: complete remission after induction chemotherapy: a: adults;
c: children: *: < 55 year; #: > 33 year
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differences between these studies may result from the variety of analytical assays that
were used for P-gp analysis. Moreover, several studies showed that MDRI1 is expressed
with high frequency (70%) in older patients, with the percentage of P-gp positive patients
being similar in de #novo and secondary AML (61,62). This is in striking contrast with the
finding that MDR1 was expressed in 30% of younger adult (< 35 year) AML patients
(62,297-299). MDRI expression in AML is associated with the expression of the
mmmature phenotype CD34 (56,295) and with CD7 expression (298). In contrast to the
other AML subtypes, the promyelocyte subtype (FAB M3) is devoid of P-gp expression.
(300-303). In most studies of relapsed AML, MDRI expression does not exceed the level
which was measured in groups of AML patients at diagnosis (212,304-313). However,
studies of paired AML samples, investigating MDR1 expression during the development
of refractory and/or relapsed disease in the same patients are scarce.

In adults, in de novo AML, MDR expression is a well-documented independent adverse
prognostic factor for achieving CR and for survival (54,56-59,62,64.239,303,314)(Table
3). In children, the prognostic significance of MDRI is less clear. The only study
available on a respectable number of pediatric patients, i.e. a study of 30 infants and 100
children above the age of one, by Sievers er al. did not show a correlation of MDR1
upregulation with the achievement of CR, nor with long term survival (315). More
prospective studies evaluating the prognostic significance of drug resistance proteins in
large cohorts of children are needad.

MRP1 and 4ML. Several studies have investigated MRP1 expression in AML. The
reported percentage of clinical samples with MRP1 expression ranges from 7 to 30% (60,
223,316-327). The incidence of MRP1 overexpression was obtained by RNA or protein
techniques. As for the other resistance proteins, the different studies are difficult to
compare because of heterogeneity of patient populations, techmiques, and because of
different criteria with regard to the definition of overexpression (60,316-327). No
difference was found between MRP1 mRNA expression in normal bone marrow and in
nitial AML blasts. A reiation of MRP1 expression and FAB subtype has been found by
Lohri et al. (328). The MRP1 mRNA levels were clearly lower in the group of M4 and
M3 as compared to the other FAB subgroups, and the lowest values were found in the 4
cases with a CBFB/MYH]] transcript caused by the chromosomal abnormality inv(16).
In a small group of patients, Kuss ef al, found a better clinical outcome in cases with FAB
type M4Eo AML i which one allele of the MRP] gene was deleted (329). However,
Dohner et al. and Van der Kolk ef al. did not find differences in MRP1
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Table 4. Prognestic significance of MRP1, LRP and BCRP in de nove AML

No. of Expression  Correlation with outcome
Author Year Patients  alc level CR Survival
MRP1
Hart 1994 36 a RNA NS -
Schuurhuis 1995 17a a RNA NS NS
Schneider 1995 29 a RNA NS -
Zhoun 1995 52 a RNA NS -
Te Boekhorst 1995 35 a RNA N3 N8
Hunault 1997 110 a RNA S NS
Filipits 1997 80 a protein NS NS
Lohri 1997 57 a RNA NS NS
Hart 1997 47 a RNA NS -
Leith 1997 332 a protein NS N8
Kasimir 1998 40 a protein NS -
Legrand 1998 53 a protein NS(E) -
S(F) -
Legrand 1999 50 a protein S S
Borg 1998 91 a protein NS N3
LRP /MVP
List 1996 21 a protein S S
Goasguen 1996 25 ate protein NS NS
Leith 1997 352 a protein NS NS
Hart 1997 67 a RNA 8 -
Pirker 1997 23 a protein 3 S
Willman 1997 349 a* protein NS NS
Willman 1997 203 a# protein NS N8
Filipits 1998 36 a protein S 8
Borg 1998 91 a protein S S
Legrand 199§ 33 a protein NS -
Pallis 1999 47 a protein NS -
Michieli 1999 96 a protein NS NS
BCRP
Ross 2000 14 a RNA 57 -

(N)S: (not) significant; -; not evaluated: CR: complete remission after induction chemotherapy; a: adults; ¢:
children: *: < 33 years; #: > 55 years; E: expression level: F: functional assay, S?: indicates a trend, very small
group of patients.
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expression in patients with and without deletion of an MRPI allele in patients with
mv(16) (330,331), suggesting that this deletion has no prognostic impact in these AML
patients. In contrast to P-gp, MRP1 levels are higher in CD34- than in CD34+ leukemic
cells (223,320). In several studies in relapsed AMIL, no or only minor differences have
been found in MRP1 mRNA at relapse as compared to diagnrosis (312,316-318).
However, other studies found higher levels of MRP mRNA at time of relapse. Only one
of these studies was performed in paired samples (316,317,323,332-334). MRP1 was
found to be inversely related to the accumulated anthracyclin levels (318,335). It is not
clear whether this is due to co-expression with P-gp i adult AML samples (60,323,336).
Several studies on the prognostic value of MRP1 expression in AML patients have shown
contradictory results (Table 4) (61,239.291,316,320). Overall, most studies conclude that
MRP1 expression is not a prognostic factor for CR and survival in adult AML. Co-
expression of both P-gp and MRP1 in a functional assay is likely to be of more prognostic
value (223,291). The prognostic value of MRP1 in children with AML has not been
studied as yet.

LRPMVP and AML. LRP/MVP expression has been observed in 26-61% of the adult
patients with AML (61,235-239,337.338). In some studies, LRP/MVP expression has
been reported mainly in FAB M4 and M5 subtypes (60,238). The clinical impact of
LRP/MVP in AML is contradictory (Table 4). A number of studies have reported a lower
remission rate and/or a lower probability of long term survival in LRP-positive AML
patients (236,238-240,335,340), while other studies have failed to demonstrate a
prognostic value of LRP/MVP expression with regard to clinical outcome (60-
63,339,341-343). Other studies failed to demonstrate a correlation between LRP/MVP
expression and in vitro resistance to anthracyclins in adult AML (235344). In adult
AML, an association has been observed between LRP expression and anthracyclin
accumulation, but not with rhodamin retention (335,345). Discrepancies in the clinical
significance of LRP/MVP seem to be partly related to the methodology used, as the
studies which do not show a prognostic value of LRP/MVP, use a flowcytometric
technique to assess the expression in leukemic blasts (60,63,339,341,342). In contrast,
LRP/MVP was a significant prognostic facter in adult AML in stedies using
Immunocytochemical or mRNA LRP/MVP analysis by reverse transcriptase-polymerase
chain reaction (RT-PCR) (235-240,337,338). In a paired analysis of 17 clinical AML
samples, List ef al. showed that LRP/MVP was higher at relapse than at diagnosis (233).
However. in another study a paired analysis of § clinical AML samples revealed no

31



CHAPTER 1

differences between diagnosis and relapse (236) as did non-paired studies (240). An
association between LRP/MVP expression and older age, increased white blood cell
counts and unfavorable karyotypes was reported (60,63,235,239,339). In childhood
AML, no studies with respectable numbers of patients are available as yet.

BCRP and AML. Little is known about the expression of other ABC transporters and
thetr relevance for clinical resistance in leukemia. Ross er al. investigated BCRP/P-95 in
14 samples of de nove adult AML patients, by means of a quantitative RT-PCR assay
(323). He found a relatively high expression of BCRP in 30% of the de nove AML
samples was found, as compared to the MCF7 cell line. The samples with a high
expression of BCRP showed a higher remission induction failure than patients with a low
expression, but the number of patients was small. (323). AML blasts positive for BCRP
were more resistant in vitro to anthracycling compared with the BCRP negative samples.
Perhaps BCRP accounts for part of the recently described subset of AML patients whose
blast cells had cyclosporin-resistant drug-efflux, not associated with the overexpression
of P-gp, MRPI or LRP/MVP (60.248). Ross er al. found a very weak correlation between
the expression of MDR1 mRNA and BCRP expression (346). If BCRP expression indeed
confers drug resistance in leukemia, It may be interesting to involve BCRP in current
studies on the predictive value of MDRI, LRP/MVP and MRPL. Also, if BCRP and
MDRI are co-expressed in clinical AML samples, this might at least partly explain the
disappointing results of MDR1 modifying agents in clinical studies so far (340).
Currently, studies on the prognostic value of BCRP in AML are awaited. In children, no
studies on BCRP expression are available as yet.

Co-expression of (membrane-) transport associated drug resistance proteins as a
prognostic factor in AMIL. Several studies have shown that not the expression of one
resistance protein, but a combination of two or even more may predict clinical drug
resistance. Co-expression of P-gp and LRP/MVP occurs in a relatively small number (6-
31%) of de novo AML patients (235,238.239,337,339). In these cases, both P-gp and
LRP/MV?P may potentially seem to contribute to the resistance phenotype. In one study,
the longest survival was observed in AML patients with the lowest LRP and P-gp
expression (239). This was also published by Broxterman et al., who observed a strong
association of AML with expression of both the LRP and P-gp phenotype with treatment
failure (56 %, versus 8% in the double negative group) (347). Michieli et @l investigated
98 de nove AML patients and reported that co-expression of LRP/MVP and P-gp was
associated with a low daunorubicin retention and a poor clinical outcome (63).
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Co-expression of P-gp and MRP1 is asgociated with an extremely poor outcome in AML
(236,317,339). Hunault et al have pointed out that MRP1 and MDR1 expression were
significantly correlated in AML (64). The MDR1/MRP1-double positive phenotype was
expressed to a lesser extent in the ‘good-risk® cytogenetic risk group. Recently, using a
functional assay for MDRI and MRP1 expression, patients with low accumulation of
both Rho 123 and carboxyfluorescein (CF), had the lowest CR rate. However, no
correlation was found with overall survival (348). A study of the co-expression of P-gp,
MRP1, bel-2, mutant p53 and heat-shock protein 27 in AML showed that co-expression
of at least 2 proteins was predictive for CR (344). In this study no correlation was found
between the expression of any of these proteins alone and treatment outcome (344).

1.2.3.2 Ara-C resistance in AML

Ara-C is used 48 a standard drug in the treatment of patients with AML. In combination
with other chemotherapeutic agents it induces complete remission in 70-80% of adalts
and 80-90% of pediatric patients with de novo disease {43,75).

Ara-C is currently the most potent drug in the treatment of AML. As pointed out before,
the enzyme dCK determines the rate limiting step in the phosphorylation process of Ara-
C to the active component Ara-CTP. Cell lines from leukemic blasts of patients with
ALL, who had become resistant to treatment with Ara-C showed markedly decreased
Ara-CTP pools due to decreased dCK activity, suggesting that dCK deficiency is
important in the clinical situation (349). Experiments on Ara-C resistant T-lymphoblast
cell Hnes (Ara-C-8D and ddC50) revealed structural alterations, like point mutations and
deletions within the coding region as well as decreased mRNA levels of JCK (287,350).
In adult AML, low or altered dCK levels are associated with clinical cytarabine resistance
(351,352).

Flasshove er al. studied 16 adult AML patients with relapsed and refractory AML. (353).
They found point mutations in the 4CK gene in 7 patients, two silent mutations {codon 86
and 285), and five followed by amino-acid changes {codon 20, 93, 99, 98, 134). One of
these, the point mutation in codon 99 (TAT>TGT) leading to an amino acid substitution
from tyrosine to cysteine, was associated with absent dCK activity, whereas enzyme
activity was normal in patients with a point mutation in codon 98 and 20. Recently,
alternative splice variants of the dCK gene have been described in AML patients in which
the resistant phenotype was not associated with JCK mutations. The alternatively spliced
transcripts, in which one or more exons (354,355) were deleted, were shown to code for
enzymatic inactive proteins in vitro.
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1.2.4 Reversal of multidrug resistance in AML

1.2.4.1 In vitro reversal of multidrug resistance in AML

The first observations that drug resistance could be reversed were done by Tsuruo ef al.
(356), who showed that verapamil was able to enhance drug accurnulation of vincristine
and vinblastine in the P388/VCR. drug-resistance cell line in vitro and in vivo. Since then,
a number of miscellanecus compounds have been described to efficiently inhibit MDR
(Table 5} in several cell lines expressing the MDRI phenotype (177). Two possible
approaches of MDRI1 reversal can be distinguished. First, MDR1 specific anti-sense
oligonucleotides (357) and protein C kinase inhibitors like staurosporine are capable to
down-regulate MDR1 expression (195,358) which may result in decrease of resistance.
The other way is to modify P-gp function by the {competitive) inhibition of P-gp by so-
called reversing agents. It is currently accepted that such agents can restore drug
accumulation by competing with cytostatic drugs for P-gp binding sites or by direct
binding to P-gp. Agents that have this capacity include calcium channe! blockers (e.g.
verapamil), calmodulin inhibitors, indole alkaloids, detergents, steroids, anti-estrogens,
cyclosporin analogues {e.g. cyclosporin A, PSC SDZ 833), pipecolinate derivatives (V-
104), acridone carboxamide derivatives (GF120918 or GG918), polypropylene polymers
(pluronic L61} and others (Table 5) (359-364). Several of these reversal agents share
common chemical features, such as a planar aromatic dornain and two amino groups, one
of which has a cationic charge at physiologic pH and they all are highly lipophilic. A
combination of different reversal agent, may resulf in a synergistic effect (363). This
observation suggests that the exact mechanism of drug reversal may not be identical for
different reversing agents. Recently, a study suggested that there are 4 drug binding sites
which display complex allosteric interactions through which interaction of drug at one
site switches other sites between high- or low-affinity conformations (366). As pointed
out before, the function of the ABC transporters can be investigated using flow
cytometric assays with fluorescent dyes using drug resistance modifiers. Various authors
have reported theoretical and practical considerations in the choice of fluorescent dye,
dye concentration, and choice of modulator in assays to determine functional activity of
P-gp in leukemic samples (367-371). Recently, a new fluorescent probe (JC-1) to test P-
2p activity has been reported, which might have a higher detection level for resistant cells
in AML samples as compared to Rho 123 (372).
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INTRODUCTION

Mechanism of MDR Mechanism of modulation Examples
MDR1 P-gp binding inhibition
Calcium channel blockers Verapamil, Dexniguldipine,
PAK-200, AHC-52
Calmoduline inhibitors Trifluoperazine
Immunosuppressive agents Cyclosporine A, PSC 833
FK 506
Quinolones Quinidine
Detergents Cremopher EL
Steroids Progestesterone, Tamoxifen,
Megestrol acetate
Protein kinase C inhibition Stavrosporine
Anti-sense oligodeoxy nucleotides
Acridone carboxamides GF120918
Propylene polymers Pluronic Lé1
Pipecolinate derivates V-104
MRP1 Tyrosine kinase inhibiton Genistein
Direct binding to MRP], Probenecid, MH-571
PAXK-104P, VX-170
Intracellutar gluthathione depletion BSO
BCNU
Inhibition glutathione S-transferase + Indomethacin,
direct binding to MRP1 Ethacrynic acid
Imidazothiazole derivates
ATP depletion
LRP/MVP Specific LRP/MVP ribozymes
BCRP

Fumitremorgin C,
GF120918
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Currently, anthracycline or Rho 123 retention or efflux studies are commonly used in
preclinical studies in cell lines or in clinical samples studying the functional level of P-
glycoprotein using cyclosporin A or PSC 833 as modifiers (367,373,374).

In vitro reversal of drug resistance in fresh AML specimens has also been investigated.
Verapamil, cyclosporin A, and other reversing agents increase the intracellular retention
of daunorubicin in AML-blast cells which express P-gp, but not in drug-sensitive or P-gp-
negative AML. cells. This pharmacological effect is associated with increased cytotoxity
of anthracyclins in in vitro clonogenic assays or in the MTT test, a cellular in vitro drug
resistance assay using 3-4,5-dimethylthiazol-2,5-diphenyl tetrazolium bromide (MTT)
(289,295, 375-385). Because of potential side-effects of cyclosporin A, i.e. nephrotoxicity
and immunosuppression, PSC 833. a cyclosporin 1) analogue was developed for clinical
reversal of P-gp-mediated muitidrug resistance. Te Boekhorst et af. showed that in AML
patients the MDRI1 phenotype was predominantly expressed in the CD34 positive cells.
The level of daunomycin accumulation in the CD34 positive cells was restored to the
level of CDD34 negative population of cells using the modifier PSC 833 (361).

The difference in dependency on phosphorylation for function can be used for
differentiating between the two efflux pumps MDR1 and MRP1 by the use of functional
assays (222). The function of MRP1 can be blocked by many compounds with a variety
of dissimilar structures (Table 5) (339,386). The best way to investigate functional MRP1
expression is to use carboxyfluorescein diacetate as a substrate, as it is specific for MRP1
{325). Other compounds like calcein AM, daunomycin and Rho 123 are substrates for
both P-gp and MRPI1. Another way to block transport by MRPL is ATP depletion
(387,388). In studies performed by Aszalos et al., three prototype P-gp modifiers were
used: verapamil, PSC 833 and cremophor EL (248,389,390). These “blockers™ increase
both the calcein uptake and the Rho 123 uptake in parental and VP16 selected cell lines
(like UMCCQ1 human lung cancer ceils and MCF-7), in a flowcytometric assay. The fact
that the substrate specificity for P-gp and MRP1 were overlapping but not identical was
also found by Paul er al. (391).

Inhibition of BCRP mediated drug efflux has recently been described in cell lines using
the compound GF120918 or Fumitremorgin C or its indolyl-diketopiperazinederivates as
reversing agents (254,256,392), and mitoxantrone or daunomycin and Rho 123 as
substrates. GF120918 was found to be an effective medifier in P-gp and BCRP
expressing cell lines but was ineffective in MRP1 overexpressing cells (256,386.393). For
LRP/MVP no functional assay s available.
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1.2.4.2 In vivo reversal of multidrug resistance in AML

The discovery that the expression of MDRI is an independent adverse prognostic factor
for CR and survival in adults with AML, has led to several clinjcal studies with MDR1
modifiers in AML. At present, cyclosporin A and the cyclosporin D analogue PSC 8§33
{Valdospar} have been widely studied as reversal agents for resistance (394). These
agents can be safely administered at sufficient doses to achieve effective serum Ievels for
P-gp reversal and at the same time they can be combined with cytotoxic agents without
an unacceptable increase of toxicity.

Administration of cyclosporin A and PSC 833 may result in increased toxicity of the
anticancer drugs in patients for two reasons. First, the CD34+ hematopoietic progenitor
cells are potentially harmed by a combination of a modulator and myelotoxic drugs
because these cells express P-gp (395). Secondly, these modulators appear to alter
pharmacokinetics of cytostatic drugs through modulation of ABC transporter proteins in
the biliary canalicufi and renal tubuli, thereby blocking biliairy and renal drug
elimination, leading to an increased plasma retention time and plasma area under the
curve (AUC) of the anthracyclins and its metabolites (396).

Such an effect. recognized in mice has been observed in patients treated with verapamil
and doxorubicin (397), verapamil with VAD (vincristine, doxorubicin and
dexamethasone) (398,399), bipredil plus vinblastine (400), cyclosporin A plus
daunorubicin and high dose Ara-C (340), cyclosporin A with vincristine, doxorubicin,
and dexamethasone (401) and cyclosporin A plus etoposide (402). These studies showed
that cyclosporin A, when present in the blood at effective levels, leads to an
approximately two-fold increase of the plasma retention time of etoposide, daunorubicin,
and doxorubicin. The first attempt to treat a refractory AML patient with daunomycin and
cytarabine in combination with cyclosporin A was performed in 1990 by Sonneveld et al.
(403). This patient was refractory to standard induction treatment and he subsequently
achieved a short-lasting remission. Several phase I/II trials were initiated in AML patients
who were either refractory to primary treatment or had relapsed after a previous response
(Table 6). In general, combining modifiers and anthracyclines resulted in high areas
under the curve (AUC) of the used cytostatic agents and metabolites (341,404,405),
especially when the dose of the cytotoxic drug was not reduced. Also, considerable
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Table 6. Nea-randonized clinical frials with MDRE modifiers in AML patients

Author, year Plase Reference Number of Modulator Diagnosis Age group Chemotherapy

paticnts
List, 1993 11 (340) 42 CsA poor risk AML 3-75 year Ara-Cf daunomycin
Bennan, 1995 I 417 14 Tamoxifen rel./frefractory AML 22-67 year  daunomycin
Kornblau, 1997 ] (410) 10 PSC 833 reb./refractory not etoposide/ MXN

AML/MDS mentioned

Advani, 1999 I (408) 37 PSC 833 reb/refractory AML 27-70 year  etoposide/ MXN/Ara-C
Pea, 1999 | (4086} 27 CsA/Verapamil  de nove and rel. AML adults ida/Ara-C
xahi, 2000 1I (411} 66 CsA rel/refractory AML children etoposide/ MXN
Tidefelt, 2000 " (404) 10 PSC 833 de nove AML 55-84 year daunomyein
Sonneveld, 2000 11 (299 19 PSC 833 de nove AML elderly daunomycin/Ara-C
Chauncey, 2000 i 407y 31 PSC 833 de novo AML > 56 year ctoposide/ MXN
Smeets, 2001 H (396) 15 +/- CsA poor risk AML < 58 year ida/ Ara-C
Damiani, 1998 11 341) 46 - CsA de novo AML < 68 year ida/ Ara-C
Tallman, 1999 i1l (405) 38 +- CsA rel./refractory AML <65 year etoposide/ MXN/Ara-C
Lee, 1999 Hi (413 110 +/-PSC 833 de nove AL elderly etoposide/

daunomycin/Ara-C

CsA: cyclosporin A; Ara-C: eylesine-arabinoside; MXN: mitoxantrone; [da: idarubicing rel.: relapse, =/-: comparing patients treated with or without the medulator, in a

nen-randomized way.



Table 7. Raudomized clinical trials with MDR1 modifiers in AML patients

Diagnosis

Age group

Chemaotherapy

Resuits

Authior Institute/
Group

Solary GOELAM

Wattel GOELAM/
GEM

Sonneveld HOVON
Bumelt MRC
Ldwenberg HOVON

MRC
List SWOG

Ravindranath ~ POG

completed 650

poor risk

high risk

MDS/ AMIL

Refractory
AML
AML
AML,

poor risk
AML

AML

< 65 years
< 80 years
< 65 years
=60 years
> 60 years

adults

children

Ara-C/ MXN
Ara-C/MIXN
etoposide/MXN

daunorubicin/ Ara-C/
6TG

daunorubicin/

Ara-C

daunorubicin/
HD-Ara-C

Ara-C/
aathracylins

ne effect on CR
na effect on DFS
higher CR rate
P-gp+:higher DFS
analysis pending

high toxicity

CR/DFS equal
P-gp+:higher DES

equal CR rate

RFS and OS higher with
CsA (p=0.04 and 0.05)
analysis pending

CsA: cyclosporin A; Ara-C: cytosine-arabinoside; MXN: mitoxanteone; 6-1G: 6-thioguanine; CR: complete remission; DFS, disease-free survival; EFS, event-fres survival; RFS: relapse-
fres survival, P-gp +; P-glycoprotein positive, POG: pediatric oncology group, SWOG: seuth west oncology group, MRC: Medical Research Courcl, HOVON: Duich-Belgian Hemato-
oneotogy collaborative group, GOELAM: Groupe quest est des leucémies aigués myélotdes, GEM: Groupe frangais des my<lodysplasies,
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toxicity, related to the dose of the modifier like severe marrow hypoplasia, nausea,
hyperbilirubinermia and cardiovascular toxicity has been reported (340). This has resulted
in dose adjustments for modifiers (299,406) and anthracyclins (340,407) in the clinical
protocols.

In some studies, equal to higher CR rates than in historical controls have been reported in
adults with relapsed and refractory AML (408-410). In children, thus far only one study
has been performed in 37 patients with recurrent or refractory AML using cyclosporin A.
The remission rate was 35%, while 12% achieved a partial remission and %% died of
infection. The use of cyclosporin A improved the response rate in the MDRI positive
patients, but not in the MDR1 negative AML patients (411).

In de novo AML patients, modifiers have been used in elderly (299,408.412,413) and in
younger adults (341,404,407). Again, the addition of modulators was well tolerated but
required adjustment of dosages of the cytostatic drugs (407). In the largest non-
randomized in 110 elderly AML patients, Lee er ¢f. did not find a difference in CR rate
between the two groups of patients treated with or without PSC 833 (413).

A number of randomized studies have been conducted in AML. Solary et al. found that a
slightly better response in patients was associated with higher toxicity, leading to an
overall similar clinical benefit in a study of 315 poor risk leukemia patients treated with
and without quinine as modifier (Table 7} (414). Wattel er al. studied the use of guinine
in 131 high risk MDS and AML and found an increase in CR rate and survival in the P-gp
positive patients (Table 7) (415). More recently, the South-Western Oncology Group
(SWOG) performed a randomized study in relapsed or high-risk patients using standard
induction treatment as compared to an attenuated dose of daunomycin with cytarabine
plus cyclosporin A. Although the response rates were not different in both arms, the
overall survival and the progression-free survival was significantly better in patients
receiving cyclosporin A (416). The Dutch and British study groups have just completed a
prospective randomized phase III trail fo evaluate the clinical benefit of PSC 833 used in
front line therapy in this group of 300 elderly AML patients.

Reversal of multidrug resistance in clinical setting warrants further investigation,
preferably in randomized clinical triais. The results of more of these studies will become
available soon. Clinical modifier studies of the other multidrug resistance proteins are not
available as yet. For the future, emphasis should be part on the development of reversing
agents that inhibit P-gp and preferably other drug resistance proteins in tumor celis only,
and do not influence the pharmacokinetics of cytostatic agents.
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1.3 Aims of this thesis

Resistance to chemotherapy is an important cause of treatment failure in AML. In case of
relapsed AML, the probability of achieving complete remission is lower as compared to
de novo disease. The aim of the studies described in this thesis is to evaluate the clinical
relevance of different aspects of several multidrug resistance phenotypes in AML. We
have investigated the prognostic significance of MDR1 expression in adults and children
with de novo AML as compared to other prognostic factors in a multivariate analysis.
Also, we have investigated several drug resistance mechanisms in paired analyses of
adults and children with AML at relapse and/or refractory disease as compared to
diagnosis.

In chapter 2 we have shown the prognostic value of MDR expression as compared to
other prognostic factors like age, WBC, karyotype and CD34 expression in de novo AML
using uni- and muitivariate analyses.

In chapter 3 we investigated whether MDR]1 gene related clonal selection plays a role in
the development of the disease from diagnosis to relapsed/refractory disease by analyzing
the genetic polymorphism of the MDR]I gene at position 2677 in AML.

In chapter 4 we studied which of the drug resistance genes MDR1, LRP/MVP, MRP1 and
BCRP, was overexpressed at relapse/refractory state compared to initial diagnosis using
real time PCR (Tagman) in a paired analysis of AML patients.

In chapter 5 the results are presented of a study in which we investigated the poor-risk
AML patients with partial or complete monosomy 7, to determine the level of expression
of MDR1 and the specificity of the allelic loss of the MDR1 gene, which is located on
chromosome at position 7¢21.1.

In chapter 6 we have shown the results of a study in which we performed a mutation
analysis of the deoxycytidine kinase (dCK) gene in AML patients at diagnosis and
relapse, appreciating the fact that dCK is the rate lmiting enzyme in the Ara-C
metabolism.

In chapter 7 the in virro effect of one of the MDRI specific modifier GF 120918 is
reported in leukemia and myeloma cell lines.

In chapter 8§ the results and relevance of the presented experimental data will be
discussed.
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MDRI1 AS PROGNOSTIC FACTOR IN AML

Sammary

The multidrug resistance gene (MDR1) is frequently expressed in acute myeloid leukaemia
(AML). MDR1 is agsociated with resistance to chemotherapy in vitro and with a poor
response rate in AME. We have investigated the prognostic value of MDR1 expression in
relation to other patient characteristics with respect to response and survival.

One hundred and thirty patients aged 0-88 years were treated for de novo AML with standard
induction and consolidation chemotherapy. MDR1 expression was determined by
immunocytochemistry. Univariate and multivariate analyses were conducted to identifiy
prognostic factors for reaching complete remission (CR) and for overall survival from
diagnosis, in order to compare MDRI with known prognostic factors. Univariate analysis
showed that higher MDR1 was an adverse prognostic factor for CR (P<0.001), as was higher
age (P<0.001) and unfavourable karyotype (P<0.01). These factors were also negative
prognostic  factors for overall survival (respectively P<0.001, <0.05 and <0.005,
respectively). In the multivariate analysis MDR1 (P<0.001), higher age (P<0.001} and
karyotype (P<0.01) were independent adverse prognostic factors for CR as well as for overall
survival (P<0.001, P<0.005, P<0.001, respectively). Qur data indicate that MDR.] expression
1s a disease-related unfavourable prognostic factor which has a significant impact on CR and
overall survival n AML. Analysis of MDRI] may be used to determine prognosis in
individual patients,

Introduction

Treatment of acute myeloid leukaemia (AML) with cytosine-arabinoside (Ara-C) and
daunorubicin results in approximately 63% complete remissions (CR) in adults (1-4).
However, with conventional post-remission chemotherapy only 23% of these patients remain
relapse-free (1.5.6). Intensive conmsolidation chemotherapy or myeloablative therapy,
followed by allogeneic or autologous stem cell transplantation may overcome minimal
residual disease and prevent relapse, resufting in the accomplishment of long-term survival
(3,7.8). Because of the significant toxicity associated with this myeloablative therapy, a
substantial proportion of patients, such as those above the age of 60, do not benefit from
intensification regimens. Other patients relapse with refractory disease, in spite of intensive
consolidation therapy.

Expression of transmembrane transporter proteins in tumour cells has been identified as an
Important cause of chemotherapy resistance (9,10). Of these, the MDR1 gene encodes a
membrane P-glycoprotein (P-gp), which 1s expressed in 19-75% of untreated AML and is
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associated with a low probability to attain a CR (11-14).

At relapse, expression of MDRI is more frequently observed, indicating that P-gp positive
cells surviving induction therapy may form a reservoir of resistant leukaemia cells, ultimately
resulting in treatment-refractory disease.

At present it remains to be determined if MDRI1 expression of AML cells at diagnosis
independently influences the outcome of remission induction therapy and long-term survival.
We have performed a prognostic study to identify the clinical role of MDRI1 in de novo
AML. For this purpose univariate and multivariate analyses were performed in protocol-
greated patients to investigate the impact of MDR1 expression on response and survival in
untreated AML in relation to other prognostic factors.

Patients and methods

Patients

After informed consent, bone marrow specimens from all newly diagnosed AML patients
who were admitted during a period of 4 years (adults) and 7 years (children) respectively,
were included in the study.
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Figure 1. Survival of all AML patients from the start of treatment,
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Patients who had received prior chemotherapy or radiotherapy for haematological disorders
or solid tumours were excluded. BM aspirates were taken for evaluation of the AML
phenotype, morphology, cytogenetic and other studies. Morphological classification was
performed on May-Griinwald-Giemsa stained bone marrow smears according to the French-
American-British (FAB) criteria (15).

Table 1. Cliniczl characteristics of the 130 AML patients

Age group {years)

0-15 16-60 61-88 Total

Patients 23 61 46 130
Sex

Male 13 35 26 74

Female 10 26 20 56
Age

Median 8 44 67 51

Range 0-15 16-60 G1-38 0-88

FAB classification

MO - 2 - 2
M1 3 10 10 25
M2 4 14 23 41
M3 - 5 1 6
M4 7 17 6 30
M5 6 8 6 20
M6 1 3 - 4
M7 - 2 - 2
Treatment protocols

The study included 61 adult patients (aged 16-60 years) who were treated according to the
standard protocol of the Dutch Haematology-Oncology Group for AML (HOVON-4).
Chemotherapy consisted of daunorubicin (DNR, 43 mg/m:, 1v., days 1-3) and Ara-C (200
mg/ir’, iv., days 1-7), followed by a second induction cycle of amsacrine (120 mg/m”, i.v.,
days 4-6) plus Ara-C (2 g/m’, i.v. , days 1-6) and a consolidation cycle of mitoxantrone (10
mg/m’, i.v., days 1-3) plus etoposide (100 mg/m®, i.v., days 1-3). Patients under 55 years with
an HLA-identical sibling were eligible for allogeneic bone marrow transplantation. Patients
in CR without a marrow donor were randomised to treatrnent with autologous, unpurged
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bone marrow transplantation or no further therapy. Forty-six patients aged 61 years or more
were freated according to an elderly AML protocol (HOVON/EORTC 9/11). Remission-
induction treatment consisted of 2 cycles of DNR (30 mg/m”, i.v.. days 1-3) or mitoxantrone
(8 mg/mz, Lv.,, days 1-3), combined with Ara-C (200 mg/mz, Lv., days 1-7), followed by
consolidation with DNR (30 mg/m’, i.v.) or mitoxantrone (8 mg/m®, i.v., days 1-3). and Ara-
C (100 mg/m’, iv., days 1-7). Twenty-three paediatric patients (0-15 years) were treated
according to the protocols of the Dutch Childhood Leukaemia Study Group (DCLSG) with
idarubicin or daunomycin (respectively 12 and 60 mg/m®, iv., days 3-5) plus Ara-C (100
mg/rnz, 1v., days 1 and 2; 200 mg,/mz_. 1.v., days 3-8), etoposide (150 mg/mz, iv., days 6-8),
and intrathecal Ara-C on day 1, followed by consolidation with prednisolone (40 mg/m/d,
orally for 28 days), 6-thioguanin (60 mg/m’, orally for 43 days), vincristine (1.5 mg/m-/week,
i.v., four times), doxorubicin (30 mg/m*/week, iv.. four times), Ara-C (75 mg/mz, iv., 24
times), cyclophosphamide (500 mg/m’, i.v., twice), combined with intrathecal Ara-C (four
times) and intensification with Ara-C (3000 mg/mz, iv., 10 times) plus mitoxantrone (10
mg/mz_. L.v., twice), followed by etoposide (125 mg/mz_. 1.v., four times), or etoposide alone
(125 mg/m*/day, i.v., eight times) again with intrathecal Ara-C on day 1. Thereafter, patients
were eligible for allogeneic bone marrow transplantation if an HLA-identical sibling was
available,

CR status was defined according to the criteria of the CALGB, i.e.. normoceilular marrow,

< 5% blasts in a BM smear, or < 5% promyelocytes in case of AML-M3, and < 10% blast
cells + promyelocytes (13), with normal peripheral blood cell counts. Both BM and bleod
cell counts should remain nommal for at least one month. The clinical characteristics of the
patients are listed in Table 1.

Cell samples

Bone marrow specimens were agpired from the posterior iliac crest at diagnosis and collected
in heparinized tubes. Mononuclear cells (MNC) were isolated from the samples by Ficoll-
Hypaque density gradient centrifugation (density 1.077 g/ml, Pharmacia, Uppsala, Sweden).
Further purification of AML blast cells was performed by E-rosette and adherence depletion.
After these steps > 95% of the cells were of AML blast cell morphology. Evaluation of CD34
membrane expression and MDR1 expression was performed on these purified blasts.

Analysis of MDRI expression
MDRI expression was evaluated by immunohistochemistry on cytospin slides using two
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monoclonal antibodies (Moab) which are reactive with different epitopes of the P-gp
molecule, i.e. C219 (cytoplasmatic epitope) and C494 (extracellular epitope) (Centocor,
Malvern, PA, USA). Purified bone marrow specimens were washed twice in phosphate
buffered saline (PBS) and cytocentrifuge slides were prepared. The slides were fixed in
acetone/formalin phosphate buffer {50%/25%/25%), soaked in 50 mM Tris in 0.02% Tween
20 for 5 minutes and incubated with 10%4 normal rabbit + 1% normal goat serum for 30 min
€219, C494, or isotype matched, non-reactive antibody controls {IgG2a)(Coulter Clone,
Hialeah, Fla., USA) were added for 60 minutes at 37°C. Anti-mouse Immunoglobulin was
added and after washing, the slides were incubated with alkaline phosphatase substrate
(APAAP) for 60 minutes at 37°C and washed three times after repeating these two steps. The
cells were countersiained using Papanicolaot’ sclution]®/Harris' haematoxylin solution
(Merck, Darmstadt, Germany). For each sample, four slides were prepared, which were
stained with two antibodies and two controls, respectively. The whole staining procedure was
performed twice on different days. The mean percentage of positive cells of four stained
shdes was counted by two independent investigators. The myeloma cell lines RPMI 82268
and its MDR1 expressing derivatives 82264 and 8226D40 were used as controls. Of these,
822614 expresses MDR] at a low level of resistance, while 8226 D40 is highly positive.
Using this technique of membrane staining of AML blast and control cells, the lower limit of
detection in counterstained cytospin slides was 10% positive cells. Samples with < 20%
positive cells (lower limit + twice standard error) were grouped together. All samples were
scored in three prospectively defined arbitrary groups, ie with < 20%, 21-50 % and > 50%
MDR1 positive AML cells.

Analvsis of CD34 expression

Cells were washed in PBS supplemented with 2% bovine serum atbumin (BSA). Next, the
cells were incubated with phycoerythrin (PE) conjugated HPCA-2 [anti-CD34 PE: Becton &
Dickinsen (BD), San Jose, CA, USA] for 30 minutes at 0°C. An irrelevant, 1sotype matched
Moab was used as a negative control. After washing, 5000 events were counted using 2
FACScan flowcytometer (BD)). The PE fluorescence signal was logarithmically amplified.
The blast cell population was gated using scatter parameters. Data analysis was performed
using PClysis software (BD), and the sarnples were divided in three groups: those with 0-
10%, 11-50% and 51-100% CD34 positive AML cells.

89



CHAPTER 2

Morphologic classification
Morphologic classification on May-Grimwald-Giemsa-stained bone marrow smears was
performed according to the French-American-British (FAB) criteria (15).

Cytogenetics and immunologic marker analysis

Cytogenetic analysis of the AML blasts was performed by standard techniques (16).
Chromosomes were identified by banding techniques according to the International System
for Human Cytogenetic Nomenclature (ISCN) (17). For statistical analysis the patients were
subdivided in three cytogenetic subgroups: ie favourable karyotype [t(15;17), t(8:21),
mnv(16)], unfavourable karyotype [-7/7q-, -5/5q-, 1(9:22) or complex (more than two
abnormalities) karyotype], or neutral [normal karyotype or karyotype not belonging to the
above groups] (18). Immunologic surface membrane marker analysis was performed as
described previously (19).

Statistical analysis

The data are based on 130 patients treated according to cooperative group protocols. CR was
determined according to the treatment protocols, after 2 cycles of induction therapy. Overall
survival was recorded from diagnosis to the date of death or last contact. Disease-free
survival was recorded from the date CR was reached to the date of relapse, death or last
contact, whichever occurred first. The actuarial method of Kaplan and Meier was used to
calculate survival curves (20). The following variables were included in the analysis of
prognostic factors: the percentage of CD34-positive bone marrow blasts, the percentage of
MDR1 positive blasts, white blood cell count, age and, cytogenetics at diagnosis. Patients
were divided In three arbitrary, a priori chosen groups for each variable. All reported P
values are two-sided, and a significance level of < 0.05 was used. Spearman's rank correlation
test was used to determine the relation between the variables.

Logistic regression, univariate and roultivariate, with the varjables divided in three groups,
was used to see whether there was a difference in CR rate between the subgroups. The
variables that were significant in the univariate logistic regression were also used in a
multivariate logistic regression (21). Univariate survival analysis was performed using the
logrank test to see whether there was a difference in survival between the subgroups (22), and
the univariate Cox regression was used to determine whether this relation was varied (23).
The variables that appeared significant in the univariate Cox regression were also used in a
multivariate Cox regression.
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Table 2. Qutcome of treatment according to are oroups

Age group (years)

0-15 16-60 61-88 Total

Total 23 61 46 130
Treatment
Chemotherapy 14 47 46 107
Allogeneic BMT 5 S - 13
Autologous BMT 4 6 - 10
Complete response 20 (87%;) 33 (54%) 19 (41%) 72 (535%)
Relapse after CR 10(50%) 20 (61%) 12 (63%) 42 (58%)
Death in CR 1 1 2 4
Death after relapse 7 17 10 34
Present clinical status

Alive 12 15 7 34

Dead 11 46 39 96
Median follow-up of patients 393 57.3 352 49.5
Still alive (months)
Median overall survival from 62.2 9.9 7.8 10.4
diagnosis (months)
Results

One hundred and fifty-two patients with newly diagnosed de novo AML were treated in the
participating centres, Z.e. two haemato-oncology wards for adults (accruat from 1987 to 1990)
and in the haemato-oncology departments of two children's hospitals (accrual from 1987 to
1994). All patients who were treated with at least one induction cycle of chemotherapy were
incleded in the study. Of these, 22 patients were not included in the present analysis because

of the following reasons: no protocol treatment applied (n=7), no evaluation or follow-up
data available (n=5). no bone marrow available for immunocytochemistry (n=10). Thus, 130
patients (23 children, 107 adults) were included in the analysis. Of these, 23 patients received
intensive consolidation treatment with autologous or allogeneic transplantation in first

remission (Table 2).
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Table 3. Distribution of risk factors of the 130 patients

Age group (vears)

0-15 16-60 61-88 Tota]

CD34 expression (%)

<10 8 22 15 45

11-50 4 20 i3 37

> 50 11 19 17 47

Unknown - - 1 1
WBC(x10°1)

<20 6 2 18 47

21-50 3 15 9 29

> 30 12 23 19 54
MDRI expression (%)

<20 10 18 20 43

21-50 20 9 38

> 50 4 23 17 44
Karyotype*

Favourable 2 12 - 14

Unfavourable 5 17 10 32

Neutral 16 32 36 84

*Favourable cytogenetics: 1(15:17), t(8:21}, inv(16). Unfavourable cytogenetics: -7/7q-, -3/5g-, 1{9:22), complex
karyotype (more than two abnormalities). Neutral: normal or abnormal karyvotype.

Seventy-two patients (55%) attained a CR. Patients aged 15 or younger had a significant
better CR rate (87%) as compared to adult patients (34%) or eiderly patients (41%) (Table 2).
The relapse rate was not different between age groups. Among these age groups, the
distribution of risk factors for CR, i.e CD34 expression on AML blasts, leukaemia-associated
cytogenetic abnormalities and a high white blood cell count (WBC) at presentation was
investigated (Table 3). No significant difference of the presenting whiteblood cell counts was
observed among paediatric, adult and older patients. MDR1 expression was observed in all
age groups. Spearman's rank correlation test indicated that MDR1 was only correlated with
CD34 (P<0.01) but not with WBC, age or cytogenetics. Univariate logistic regression
analysis showed that MDR1 expression (P<0.001), higher age (P<0.001) and unfavourable
cytogenetics (P<0.01) were negative prognostic factors for the probability to achieve a CR
(Table 4).
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Table 4. Univartate logistic regression analysis for reaching CR using the variables divided in
the three subgroups

Variable 7 CR (%) Qdds ratie 95%CI P- value
Sex

Male 74 55 1 1.0
Female 56 55 0.998 0.50-2.01

Age (years)

0-15 23 87 1 <0.001
16-60 61 54 0.177 0.05-0.66

61-88 46 41 0.106 0.03-0.41

Karyotype

Favourable 14 71 1 < 0.01
Unfzvourable 32 31 0.182 0.05-0.72

Neutral 34 62 0.650 0.19-225

CD34 (%)

<10 45 76 1 <0.001
11-50 37 30 0.137 0.05-0.36

> 50 47 57 0.437 0.18-1.07

WEC (x10°1)

0-20 47 60 1 <0.8
21-50 29 32 0.727 0.29-1.85

> 50 54 54 0.787 0.36-1.74

MDR1 (%)

<20 48 77 1 <0.001
21-50 38 50 0.297 0.12-0.75

> 50 44 36 0.170 0.07-0.42

‘When different thresholds for MDR1 positive cells were studied, MDR1 remained significant
at levels from 2% to 50% positive cells. However, the optimurn significance was reached at
20 % positive cells. CD34 expression was also a significant adverse factor for reaching a CR
(P<0.001), but here the group with 11-30 % CD34+ cells did worse than the other groups. No
significant correlation of the white blood cell count with CR was found from counts of 20 x
10°/L up to 100 x 10°/L.,
Using univariate analysis, higher age (P<0.03), unfavourable karyotype (P<0.005) and
MDR]1 expression (P<0.005) but not CD34 were adverse prognostic factors for overall
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survival (Table 5). Multivariate logistic regression revealed that increased MDRI
(P<0.001), age (P<0.001), and karyotype (P<0.01) were independent adverse prognostic
factors for CR. By Cox multivariate regression analysis, increased MDRI expression
(P<0.001), higher age (P<0.005) and cytogenetics (P<0.001} were negative prognostic
factors for overall survival (Table 6.). In Figure 1, Kaplan-Meier curves for the overall
survival, event-free survival and disease-free survival of the whole group of patients are
presented. Figure 2 shows the actuarial survival for different prognostic factors. These
data indicate that MDR1 is an independent adverse prognostic factor for complete
response and survival in de nove AML.

MDR expression; %P-gp
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= 0.40%
-
E
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¢ 12 24 36 43 &0 0 12 24 36 48 82
months months

Figure 2, Survival according to MIDR1 expression, age. cytogenetics and CD34 expression.
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Table 5. Univariate analysis for overall survival using the logrank test to show a difference
between the three subgroups

Variable Hazard ratio 95% CI P- value
Sex

Male 1 <09
Female 1.029 0.69-1.34

Age (years)

0-15 1 <0.05
16-60 2.020 1.04-3.91

61-83 2.559 1.30-5.03

Karyotype

Favourable 1 < 0.005
Unfavourable 3.06 1.26-7.47

Neutral 1.90 0.82-4.40

CD34 (%)

<10 1 < 0.06
1130 1.865 1.12-3.12

> 50 1.508 0.92.2.47

WBC (x10°/1)

0-20 1 <05
21-50 1.332 0.77-2.30

51-100 1317 0.83-2.09

MDRI (%)

< 0-20 1 <0.001
21-50 1.593 0.96-2.64

50 2205 1.34-3.62
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Table 6. Multivariate analysis for reaching complete remission (CR) and overall survival,
using the risk factors that were significant in the univariate analyses

CR

Qdds ratio 93% CI P- value
Age 0.36 0.20-0.67 < (0.001
Cytogenetics 0.36 0.18-0.75 <0.01
MDR1 0.39 0.23-0.64 < (0.001
Overall survival

Hazard ratio 95% C1 P- value
Age 1.54 1.15-2.07 <0.005
Cytogenetics 1.99 1.36-2.92 <0.001
MDR1 1.61 1.25-2.06 <0.001

Discussion

Refractoriness to chemotherapy is the major cause of treatment failure in AML and several
other haematological malignancies. Higher age, high WBC at diagnosis, and M morphology
have been recognised as clinically adverse prognostic factors in AML. Additional biological
or disease-related prognostic variables which are associated with a poor survival include
higher age, hyperlencocytosis, autonomous leukaemia growth in vitro, expression of the
immature stem cell antigen CD34 and karyotypic abnormalities like monosomy 7, 5q-, 7g-,
the Philadelphia chromosome [t(9:22)] and a complex karyotype (8,24,25). On the other
hand, cytogenetic abnormalities like inv(16), t(8;21) and t{15;17) are associated with a good
response to chemotherapy.

The presence of the multidrug resistance phenotype (MDRI1) at diagnosis seems to be of
biological and clinical importance in AML. There is strong evidence that the MDR1 encoded
P-glycoprotein is associated with enhanced efflux of amsacrine, anthracyclins, vinca-
alkaloids, etoposide and mitoxantrone from lenkaemia cells, leading to lower intracellular
concentrations of these drugs.

In untreated de nove AML patients MDR1 is expressed in 19 % o 75 % of the patients (11-
14,26,27). In these patients, MDR1 iz frequently associated with an immature phenotype
{CD34)} and autonomous AML growth. in vitre (13). Univariate analysis of MDR1 and CD34
expression in our study indicates that both are unfavourable prognostic parameters in AML.
A predominance of MDRI expression may be present in AML cells with an immature
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immunophenotype (CD34) (13). These characteristics emphasise that MDR1 is a biological
marker which may offer an explanation for poor response to anthracyclins, mitoxantrone and
etoposide in AML.

Several studies have shown that treatment of patients with leukaemia or myeloma with
anthracyclins and vinca-alkaloids may even further increase MDR1 expression in (previously
negative) patients or that the expression levels are higher in previously treated and/or
refractory patients (10,28). MDRI1 thus seems to be a potential important marker for
refractory disease in AML. However, a major problem with studies of MDRI in AML 1s
caused by the use of different assays and different thresholds for MDRI expression. In
addition, all studies published to date, were retrospective studies. No study has performed an
in depth analysis of MDR] with other prognostic factors In uniformly treated patients. We
have initialised a systematic analysis of MDR1 in AML patients 7 years ago. using an
immunocytological method with which MDR1 could be identified in the actual tumour
{blast) cells. Although this assay does not provide evidence of MDR1 functionality, it offers
the possibility 1o study all accrued patients, even those from which not sufficient material can
be obtained for functional or RNA assays (29). Moreover, we have found a good correlation
with MRK 16 staining using flow cytometry and the rhodamine 123 exclusion assay, as used
in another prospective study (30). However, a substantial analysis of the role of MDRI1 in
relation to already known prognostic factors is needed to further defme the relevance of
MDRI expression.

In the present study the value of age, white blood cell count, percentage CD34 expression,
cytogenetics, and MDR] expression at diagnosis on the outcome of induction treatment and
on overall survival and disease-free survival were studied in 130 AML patients,

The non-selected groups of patients with representants of all age groups were all treated
accordingly to their standard, age-restricted protocols. In this study MDR1 expression is an
mndependent, unfavourable prognostic factor not only for complete response, but also for
overal] survival. It may therefore be an Important marker of resistant disease, which provides
insight in the cause of treatment failure. We now know that many antileukaemic agents are
transported by P-gp, including anthracyclines and etoposide. MDR1 expression may be an
explanation why dose-escalation of these agents does not improve the survival in AML. In
contrast, the effect of Ara-C is not affected by MDR1 expression. High-dose Ara-C
administered during induction or consolidation therapy significantly improves the disease-
free and overall survival of AML patients (3,31). A significant improvement of survival may
also be accomplished by intensification with alkylating agents or radiation therapy followed
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by marrow transplantation. However, such intensive treatments cannot be tolerated by elderly
patients, and consequently, the prognosis for these patients has remained poor (32). Previous
studies have frequently failed to demonstrate an independent prognostic value of MDR1 after
adjustment for both karyotype, CD34 and age. largely because these retrospective analyses
did not determine all prognostic factors in the whole study population, or because of the small
patient sample (33-33).

Recently, phase /I clinical trials have evaluated the possibility to circumvent MDR1 effiux
function by adding noncytotoxic agents such as cyclosporing A or verapamil (36-38).
Second-generation reversal agents which lack major immunosuppressive or cardiovascular
side-effects are now coming available. Patients with MDRI1 positive AMIL may profit from
reversal agents when these are combined with standard induction therapy. Future studies,
however, should also take other resistance mechanisms into account which were identified
after this prospective study had started, in order to further improve our knowledge about the
prognostic value. Taken together, the results from the present study indicate that MDRI1
expression 18 an independent adverse prognostic factor in AML, that allows us to identify
patients who may benefit from agents that reverse resistance to chemotherapy.
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MDR1 RELATED CLONAL SELECTION IN AML

Abstract

The expression of P-glycoprotein (P-gp), encoded by the MDR]1 gene, is an independent
adverse prognostic factor for response and survival in de rove acute myeloid leukemia
(AML). Little is known about MDRI expression during the development of disease. We
investigated whether MDR] gene related clonal selection occurs in the development from
diagnosis to relapsed AML, using a genetic polymorphism of the A4DR1 gene at position
2677. Expression and function of P-gp were studied using monoclenal antibodies MRK 16
and UIC2 and the thodamine 123 (Rho 123) retention assay with or without PSC 833.

No difference was found in the levels of P-gp function and expression between diagnosis
and relapse in purified paired blast samples from 30 AML patients,

Thirteen patients were homozygous for the genetic polymorphism of MDR1 (n=7 for
Guanine, p=6 for Thymidine), while 17 patients were heterozygous (GT). In the
heterozygous patients no selective loss of ome allele was observed at relapse.
Homozygosity for the MDR1 gene (GG or TT) was associated with shorter relapse-free
intervals (P=0.002) and poor survival rates (P=0.02), compared with heterozygous
patients. No difference was found in P-gp expression or function in AML patients with
cither of the allelic variants of the MDR] gene. We conclude that P-gp function or
expression is not upregulated at relapse/refractory disease and expression of one of the
allelic variants is not associated with altered P-gp expression or function mn AML,
consistent with the fact that MDRJ gene related clonal selection does not occur when
AML evolves to recurrent disease.

Introduction

Classical multidrug resistance (MDR) encoded by the MDR] gene is characterized by
expression of P-glycoprotein (P-gp), which acts as a drug efflux pump in the plasma
membrane. Expression of MDRI1 has been identified as an independent adverse
prognostic factor for CR and survival in patients with acute myeloid Jeukemia {(AML),
especially in adults (1-11). Little is known about possible changes in MDR1 gene
expression during the development to relapse or refractory disease, especially in paired
analyses of clinical samples of AML patients. It is conceivable that MDR1 positive
clones develop by clonal selection during chemotherapy or by MDR] gene activation.
This phenomenon has been described for Burkitt’s lymphoma, in which single allelic
MDR]1 expression was found to be upregulated during the development of disease (12).
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In the present study, we investigated whether clonal selection of one MDRI1 allele
contributes to drug resistance in AML, by studying the genetic polymorphism of the
MDR] gene at position 2677 (13). This study was performed in paired samples of AML
patients at time of diagnosis and at first relapse or refractory disease. In addition, an
analysis was performed of the expression and function of P-glycoprotein. To the best of
our knowledge, no previous studies have been reported in which the P-glycoprotein levels
were measured in the allelic variants of the MDR1 gene.

Patients

Bone marrow samples of 30 AML patients (9 children, 21 adults) were obtained from the
posterior iliac crest at diagnosis and at time of first relapse (n=27) or refractory disease
{n=3) (Table 1}. From each patient and/or parents written informed consent was obtained
to perform these studies. AML classification, according to the French-American-British
(FAB) criteria (14) was M1 (n=8), M2 (p=11), M4 (0=2), M5 (n=7), M6 (n=2).
Cytogenetic analysis was camied out by standard techniques, and the findings were
described according to the international nomenclature (15). Patients with a deletion or
loss of chromosome 7 were not included in the study, because of the (possible) loss of
one MDRI gene which is located on 7g21.1, which complicates the analysis of
polymorphism in these patients. All patients were treated according to the Helsinki
agreement and were included in treatment protocols of the Dutch-Belgian Hemato-
Oncology Collaborative Group (protocol HOVON 4/4a resp. HOVON 29) for young
adults (n=17}, European Organization for Research and Treatment of Cancer (EORTC
protocol LAM 9) (n=1) for patients > 60 years, and the Dutch Childhood Leukemia Study
Group (DCLSG: protocol ANLL 87 and 94 )(n=9) for the children (age< 18 years). After
relapse or in case of refractory disease after induction therapy, adults were treated
according to the HOVON 30 protocol. The pediatric patients received treatment
according to institutional protocols {Table 2).

For some patients, individual therapy choices were made (Table 1). Complete remission
(CR) status was defined as normocellular marrow with < 3% blasts in a BM smear and
normal peripheral blood cell counts.
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Table 1. Clinical characteristics of the 3¢ AML patients

Diagnosis Relapse/Refractory disease
Expression Age FAB Karyotype Timeto  Treatmentattime  Response
of MDR1 (years) relapse of to
geng poly- (months) relapse/refractory  reinduction
morphism disease
(G/T variant)
1 GT 2 M5 U 3 NT
2 G 1 M6 N 4 2CdA/Ara-C/lda NoCR
3 GT 47 M2 N 50 HOVON30 CR
4 T 55 M2 N - HOVON30 No CR*
5 T 50 M5 N 25 HOVON30 CR
6 GT 50 M2 N 7 HOVON30 CR
7 GT 62 MI U 31 HOVON30 CR
8 GT 61 MI N 29 HOVON30 Ne CR
9 GT 35 Ml F 12 HOVON30 CR
16 GT 9 M3 U 9 NT
11 GT 12 Ml N 33 DCLSG ANLL94 CR
12 @GT 37 Ml N 12 HOVON29 CR
13 @GT 57 M4 N 4 NT
14 G 46 MS3a N 6 Ara-C TD
15 @GT 67 M2 N S EORTC S Neo CR
16 T 16 Mdeo F 8 HOVON29 CR
17 @GT 1% Msa N 28 HOVON29 No CR
18 GT 42 M2 N 11 HOVON29 CR
19 GT 1 Ml N 14 DCLSG ANLLE? NoCR
2 G 41 M6 N 4 HOVON30 CR
21 @7 10 M2 F 58 DCLSG ANLL94 CR
22 T 63 M2 N 8 NT
23 G 1 M3 U 10 DCLSG ANLL87 NoCR
24 GT 27 M2 N 14 HOVON30 CR
25 G 34 M5 N - HOVON30 No CR*
26 GT 5 Ml N 18 DCLSG ANLLE7 CR
27 G 18 M2 N g Mitoxantrone No CR
28 T 53 Ml N - HOVON30 No CR*
29 T 49 M2 N 6 NT
3 G 67 M2 N 5 HOVON30 No CR

CR: complete remission after 1 or 2 courses of re-induction chemotherapy: No CR: refractory disease attime of
relapse; No CR*: never CR after diagnosis; NT: not treated for relapse; Karyotype: U: unfavorable, t(9:22),
11g23 with MLL rearrangements, complex karyotype, S¢-: F: favorable, inv(16). 1(15:17) and t(8:21). N:
neutral, normal and other karyotypes; TD: toxic death..
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Methods

Patient samples

Bone marrow aspirates were obtained in heparinized tubes. Mononuclear bone marrow
cells (MNC) were collected by Ficoll Hypaque density gradient centrifugation (density
1.077g/m3) (Pharmacia, Uppsala, Sweden). To obtain purified samples with more than
85% of blasts, T-cell depletion and adherence depletion was performed (16). Cells were
cryopreserved m Iscove’s Dulbecco’s medium (IMDM; Gibeo, Paisly, UK) supplemented
with 10% dimethyl sulfoxide (DMSQ; Merck, Darmstadt, Germany) and 20% fetal calf
serum (FCS; Gibco) and stored in liquid nitrogen. On the day of the experiments bone
marrow cells were thawed. For flowcytometry experiments, cells were washed and
resuspended in IMDM supplemented with 10% FCS and gentamyecin at a concentration of
4x10° cells per ml. Total RNA was isolated using TRISOLV extraction (Biotecx,
Houston, TX, USA).

Oligonucleotide hybridization and dotblor analysis

Both DNA and RNA were used as templates in the PCR. One microgram of genomic
DNA was used as a template in the PCR for 40 cycles to investigate the genetic
polymorphism at the DNA level. One microgram of total RNA was reversally transcribed
and cDNA template was subjected to 40 cycles of PCR. The following primers were used
as described by Mickley: 5° %' GCAAATCTTGGGACAGGAAT; 3° RNA, 27
CTCCTTTCGTGTGTAGAAAC; 3° DNA,*ICCTTC* CACTCAGTTTGATTT (12,
13). Reverse transcriptase treatment preceded amplification in order to evaluate RNA
expression. All PCR experiments included controls without DNA or RNA. After
amplification of 1 ug of template, 30% of the PCR product was loaded in each of two
adjacent wells of a slot-blot apparatus. The Zeta Probe nylon filter was cut out into two
halves and each halve was hybridized with a different oligonucleotide. Two 19-bp allele-
specific oligonucleotide probes (HMO7 and HMOS) were 5°-phosphorylated with [y*~P]-
ATP and T, polynucleotide kinase. HMO7 and HMOS cover residues 2667 to 2685 and
were used for hybridizations. HMO7 possesses a G at position 2677 and HMOS contains
a T at this position. Internal controls for hybridization and specificity were included in all
experiments. For this purpose twe 30-bp oligonucleotides, designated HMC3 and HMC4,
were used. These oligonucleotides cover residues 2656 to 2685 of the MDR1 gene with
HMC3 possessing a G at position 2677 and HMC4 a T at this position. Equal amounts of
each control were spotted on both sides of the filter. Because the hybridizations were

performed under identical conditions, with probes labeled to similar specific activities,
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Table 2. Comulative drug doscs (In mglm") in the freatment protocols for acute myeloid leukemia

Ara-C - DNR  Adeia  Amsa  Ida VP16  Mitox Pred 6TG VCR CP CsA
Induction
HOVON 4/4A 13400 135 360 500 50
HOVON 29* 13400 360 36 500 50
DCLSG 22400 180 120 1050 1120 2580 6 1060
ANLYL87**
DCLSG 33400 120 36 950 20 1120 2580 6 OG0
ANLL94#*
Reinduction
EORTC-9 6000 90 50
HOVON 30 500 50 +5 mg/kg

Ara-C: cytosing-ambinoside; Adria: addamycine; DNR: daunorubicine; Amsa: amsacrine; Ida: idarubicine; VP16: etoposide; Milox: mitoxantrons; Pred: prednisolone;
6TC: 6 thioguanine; VCR: vineristine; CP; eyclophesphamide; *: HOVON 29 patients were randomized to receive +4 G-CSF; *¥: 4 5x inteathecal Ara-C; CsA:

cyclosporine A,
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the signals from the control oligonucleotides were similar. For quantification of the
hybridization spots, the blots were exposed to a Phosfor Imager screen (Molecular
Dynamics, Sunnyvale, CA, USA).

Expression of P-glycoprotein

For measurement of the expression of P-gp, celis were incubated at room temperature
with the monoclonal anti-P-gp antibodies MRK 16 (17) (Kamiya Biomedical Company,
Tukwila, WA, USA) at a concentration of 10 wg/ml and also, in separate tubes, with
UIC2 (18) (Immunotech, Marseille, France) at a concentration of 12.5 pg/mi or with an
isotype matched mlgG2a control antibody (Sigma, St. Louis, MO, USA} at a
concentration of 10 pg/ml, Cell-bound antibodies were detected by fluorescein
isothiocyanate {(FITC)-labeled rabbit anti-mouse immunoglobulin antibodies (DAKO,
Glostrup, Denmark}. Results are given as the ratio of the mean fluorescence of cells
incubated with the anti-P-gp antibody divided by the mean fluorescence of cells
incubated with the control migG2a antibody. To measure the expression of P-gp in
CD34-positive cells, cells were labeled with phyco-erythrin-Cy5-labelled CD34 antibody
or a phycoerythrin-Cy3-labelled matched mlgGl antibody (Immunotech, Marseille,
France).

Function of P-glycoprotein

For measurement of the function of P-gp, the fluorescent molecule Rho 123 (Sigma, St.
Louis, MO, USA) was used as a P-gp substrate (19,20). Cells were incubated for 1 hr at
37°C at 5% CO; in the absence or presence of 2 uM of the P-gp modulator PSC 833
(Novartis, Basel, Switserland). After this incubation, 200 ng/ml Rho 123 was added to the
cells. A sample was taken at t=0 minutes (min) to correct for background fluorescence
and at =75 min to measure intracellular Rho 123 retention. Results were calculated as the
PSC/Rho 123 retention ratio of the mean intracellular Rho 123 fluorescence of cells
exposed o PSC 833 divided by the mean intracellular Rho 123 fluorescence of celis not
exposed to PSC 833. As controls, the drug-sensitive human myeloma cell line 8226 § and
the drug-resistant P-gp expressing variant 8226 D6 cells (21) were included in each
experiment. Taken all experiments together, the mean ratioc of P-gp function of the
negative control cell line 8226 S was 0.91 £ 0.07 (mean £ SD). The mean ratio of P-gp
function of the positive control cell line §226 D6 was 7.03 * 4.69 (mean = SD).

For analysis of the function of P-gp in CD34.positive cells, cells were labeled with
phyco-erythrin-Cy3-labelled CD34 antibody or as a control phycoerythrin-Cy5-labetled

mlgG1 antibody (Immunotech). Fluorescence was measured using a FACScalibur
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Table 3. Paired analysis of P-glycoprotein expression and function in AML patients at
diagnosis and relapse/refractory disease

At diagnosis At relapse and/or P- value
refractory disease
MDR1
MRK 16
Median 216 1.83 0.14
Range 1.22-7.65 1.02-3.55
n= 2
MRK 16/CD34+
Median 277 2.28 1.00
Range 1.52-9.27 1.46- 9.6
n= 11
UIC2
Median 237 1.74 0.22
Range 147-12.3 0.99-6.39
n= 23
UIC2/CD34+
Median 3.3 242 0.07
Range 1.51-26.6 0.86-74
= 8
PSC/Rho 123
Median 1.13 1.10 0.26
Range 0.837-2.11 0.81-2.19
= 27
PSC/Rho 123/CD34+
Median 143 1.22 0.39
Range 0.98-2.7 0.82-3.26
n= 12

For P-gp expression the Moabs MRX 16 and UICZ are used: for P-gp function the PSC/Rho 123 retention ratio.
In samples with >10% CD34 expression the variables were also evaluated in the CD34 + subfraction of the
blasts. The P.values indicate the differences between diagnosis and relapse/refractory disease.

flowcytometer (Becton-Dickinson, San José, CA. USA). Cells were incubated with 0.1

pM TO-PRO-3 (Molecular Probes, Eugene, Oregon, CA. USA) to exclude non-viable

cells in the functional and expression studies.

Statistical analysis

Expression and functional levels of P-glvcoprotein, either at diagnosis or at relapse or

refractory disease, were compared between subgroups using the Mann -Whitney test in

case of two subgroups, and the Kruskal-Wallis test in case of three subgroups. Moreover,
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MDRI1 expression at relapse or refractory disease was compared to that at diagnosis using
the Wilcoxon matched-pairs signed-ranks test, which was restricted to patients with data
available both at diagnosis and at relapse or refractory disease. All P-values are two-sided
and a significance level ¢=0.05 was used.

Results

Thirty AML patients were studied at diagnosis and during the course of their disease.
Twenty-seven patients developed a relapse after reaching complete remission with
induction chemotherapy. Three patients were primary refractory to induction
chemotherapy (Table 1).

Oligonucleotide hybridization and dotblot analysis

Oligonucleotide hybridization studies of position 2677 of the MDRI gene revealed 7
patients with a G variant, 6 patients with a T variant, and 17 patients with a GT variant,
The 17 patients with heterozygous expression at diagnosis also showed GT expression at
relapse. In these patients, no upregulation of either allele was noticed during the
development of disease at RINA level. Consequently, in this group of patients no evidence
of a MDR]1 gene associated selection of a resistant clone was found.

P-glycoprotein expression and function

MRK 16 expression (n=27) and UIC2 expression (n=25) revealed no differences in P-gp
expression at relapse or refractory disease as compared to diagnosis (P=0.14 resp. 0.22)
(Table 3). No difference of MRK 16 expression in the CD34-positive subpopulation, was
found (n=11) (P=1.0) in the paired analysis. The analysis of UIC2/CD34 in matched pairs
showed a trend to a lower expresston level (P=0.07) in relapsed/refractory disease as
compared to diagnosis, although the number of patients that could be analyzed for
UIC2/CD34 was small (n=8) (Table 3, Figure 1C). The CD34 expression was not
different at relapse as compared to diagnosis (P=0.31).

The PSC/Rho 123 retention ratio (n=27) was not significantly different between diagnosis
and relapsed/refractory AML (P=0.26). When analyzed i the CD34-positive
subpopulation of blasts (n=12), comparable result were found (P=0.39) {Tabie 3, Figure
1A). No difference was found in P-gp expression (P=0.67 for MRK 16 expression,
P=0.82 for UIC2 expression) or PSC/Rho ratic (P=0.09) at diagnosis nor at
relapse/refractory disease (P-values respectively 0.42, 0.67 and 0.11) between adults and

children.
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Figure 1. P-glycoprotein expression and function in the CD34-positive population of the paired AML
samples. The UIC2 and MRK 16 ratio’s represent the expression of P-glycoprotein. PSC 833/Rko 123
represents the function of P-glycoprotein. Dx: diagnosis, Rel/RD: relapsed’ refractory AML. The dotted lines
indicate the median values.
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P-glycoprotein versus MDRI allelic expression

As the functional meaning of the genetic polymorphism of the MDRI gene has not been
established as yet, we analyzed P-glycoprotein in patients with expression of the G, T,
and GT variants respectively. The median MRK 16 expression ratic was not significantly
different in the various allelic variants (P=0.72 at diagnosis and P=0.34 at relapse). Also,
no difference was found with Moab UIC2 (P=0.81 at diagnosis and P=0.25 at relapse)
and the PSC/Rho 123 retention ratio (P=0.26 at diagnosis, P=0.11 at relapse). No
difference was found in P-gp expression or function when homozygous patients were
compared with heterozygous patients (Table 4). Similarly, in the CD34-positive fraction
we did not find differences in P-gp expression and function between the different AJDR1
allelic variants at diagnosis nor at relapse and/or refractory disease. The results show that
there is no difference in P-gp expression and function in AML blast cells between the
different specific allelic variants of the MDR1 gene. The therapeutic outcome of patients
with the different allelic variants showed a significant difference, i.e. homozygosity was
associated with a shorter time from diagnosis to relapse (P=0.002) and a shorter overall
survival from relapse (P=0.02) (Figure 2A and 2B).

Discussion

Clinical resistance to chemotherapy is a major problem in relapsed and/or refractory
AML. MDRI1 expression in de nove AML is an adverse prognostic factor for CR and
survival (3-7,11,22). It is conceivable that upregulation of the MDRI1 gene is involved in
the development of relapse and/or refractory disease, although this has not been
investigated in paired analyses of respectable numbers of clinical samples of AML
patients (12). Ir the present study we analyzed whether clonal selection associated with
the MDR1 gene is involved in the development of relapsed AML.

This is the first study that examined the allelic expression of MDRI1 in AML, using the
genetic polymorphism of the MDR1 gene. Our data show, that there is no evidence of a
MDR1 gene related clonal selection in the evolution of AML to relapse or refractory
disease. This is consistent with our observation that P-glycoprotein expression and
function did not increase from diagnosis to relapsed/refractory state. Several studies have
reported a higher MDRI expression at time of relapse as compared to diagnosis (23-29).
However, most studies compared patients that were not matched and studies in paired
patient samples are scarce and generally they were performed in small numbers of
patients.
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Table 4. Analysis of P-glycoprotein expression and function in the homozygous vs the
heterozygous allelic variants of the MDR1 gene at time of relapse/refractory disease

GGorTT GT P- value
MDRI1
MRK 16
Median, 1.54 2.14 0.15
Range 1.02-5.45 1.18-5.55
n= 13 17
MRK 16/CD34
Median 1.88 2.68 0.22
Range 1.49-4.90 1.46- 9.6
n= 7 7
UIcz
Median 1.56 2.28 0.22
Range 1.12- 6.39 0.99-5.24
n= 13 17
UIC2/CD34
Median 1.67 272 0.10
Range 0.86- 7.34 1.39-5.15
n= 7 3
PSC/Rho 123
Median 1.08 1.14 0.30
Range 0.81-1.85 0.84-2.19
n= 13 17
PSC/Rho 123/CD34
Median 1.21 142 0.40
Range 1.07-1.72 0.82-3.26
n= 9 9

For P-gp expression the Moabs MRK 16 and UIC2 are used. for P-gp function the PSC/Rho 123 retention ratio.
In samples with more than 10% CD34 expression. the varizbles were also evaluated in the CD34 positive
subfraction of the blasts. The P-values indicate the differences between the homozyncus and heterozygous
patients.

Most studies suggest an identical expression or even lower level of MDRI1 in
relapsed/refractory AML (29-32). Only the sequential analysis by Wood, who used
Immunocytochemistry techniques, showed a higher percentage of P-gp positive samples
in 14 relapsed AML patients as compared to diagnosis (33). In pediatric patients only
three case reports are available (23,34,35). Therefore, although many studies have
suggested that MDRI1 is upregulated m relapsed and/or refractory AML, sequential
studies do not support this (Table 5 and 6).
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Table 5. Review of analyses of MDR1 expression in paired samples of AML patients

Author Reference  Number Expression Age category MDR1
of patients  level MDR1 expression in
relapsed versus
de novo AML
Gekeler (35) i RNA children higher
Beck {46) 1 RNA children higher
Guerci (26) 4 Protein adults higher/equal
Hart (32) 9 RNA adults higher/lower
Ino 3N 21 Protein adults equal/lower
Sato 47 6 RNA adults equal
Ito B0) 10 DNA adults equal
1 RNA adults equal
10 Protein adults higher/lower
Kaczorowski (34 1 Protein children higher
List 29) 17 Protein adults lower
Marie 24 4 RNA adults higher/equal
Marie (48) 4 RNA adults higher/lower/
equal
Ma (38) 2 Protein adults higher/equal
Musto 23) 2 Protein adults higher
Maslak 27 5 Protein aduits higher
Michieli 28 7 Protein adults higher/lower/
equal
Wood (33) 14 Protein adults higher

The present analysis, which is the largest paired study in AML sofar, is an attempt to
quantify MDR1 expression at genomic and protein level during the development towards
resistant disease. In these 9 children and 21 adults we did not find evidence that MDR1,
aithough being a strong prognostic factor at the time of diagnosis, is upregulated at time
of relapse and/or refractory disease in AML. We suggest that similar sequenti al studies of
other mechanisms of drug resistance should be performed in AML patients during the
course of their disease in order to determine which drug resistance proteins are associated
with clonal selection at relapse. In these studies it will be important to analyze children
and younger adults separate from elderly patients with AML, since different mechanisms
might be important in different age groups (6). Until now, the only study that analyzed P-
ap expression in a large group of children with AML showed that in contrast with adult
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patients that are heterozygous (GT) for the genetic polymorphism of position 2677 of the MDRI1 gene.
A, Time from diagnosis until relapse/refractory disease. B. Qverall survival from relapse/refractory disease.

N: number of patients investigated; O: observed events,
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Table 6. Review of MDR1 expression in AML in non-paired studies

Author Ref. No. of Patients  Expression  Age category ~ MDRI expression
Dx Relapse  level relapsed vs
de novo AML
Beck (46) 14 23 RNA children higher
Guerci (26) 69 10 Protein adults higher
List 29 21 29 Protein adults equal/
lower
Marie (24) 21 6 RNA adults equal
Musto 23) ] 7 Protein adults lower
Maslak 27 i8 19 Protein adults higher
+ children
Michieli (28) 38 21 Protein adults higher

Dx: at diagnosis, Ref: reference.

AML, MDR1 expression was not of prognostic significance (36). In the present study no
difference was found in P-gp expression and function between adults and children.

This is consistent with our observation that P-glycoprotein expression and function did
not increase from diagnosis to relapsed/refractory state. Several studies have reported a
higher MDR1 expression at time of relapse as compared to diagnosis (23-29). However,
most studies compared patients that were not matched. Studies in paired patient samples
are scarce and generally they were performed in small numbers of patients. Most studies
suggest an identical expression or even lower level of MDR1 in relapsed/refractory AML
(29-32). Only the sequential analysis by Wood, who used immunocytochemistry
techniques, showed a higher percentage of P-gp positive samples in 14 relapsed AML
patients as compared to diagnosis (33). In pediatric patients only three case reports are
available (25,34.35). Therefore, although many studies have suggested that MDRI is
upregulated in relapsed and/or refractory AML, sequential studies do not support this
(Table 5 and 6). The present analysis, which is the largest paired study in AML sofar, is
an attempt to quantify MDR1 expression at genomic and protein level during the
development towards resistant disease. In these 9 children and 21 adults we did not find
evidence that MDR1, although being a strong pro gnostic factor at the time of diagnosis, is
upregulated at time of relapse and/or refractory disease in AML. We suggest that similar
sequential studies of other mechanisms of drug resistance should be performed in AML
patients during the course of their disease in order to determine which drug resistance
proteins are assoclated with clonal selection at relapse. In these studies it will be
important to analyze children and younger adults separate from elderly patients with
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AML, since different mechanisms might be important in different age groups (6). Until
now, the only study that analyzed P-gp expression in a large group of children with AML
showed that in contrast with adult AML, MDR] expression was not of prognostic
significance (36). In the present study no difference was found in P-gp expression and
function between adults and children.

Our study emphasizes that it is important to study MDR1 expression in clinical samples
from AML patients. In many cell lines, including even AML cell lines, MDR expression
may be upregulated as a direct response of cells to antineoplastic drugs. However, it
seems apparent that this does not occur in AML patients (37-45).

This is the first analysis of the functional significance of the genetic polymorphism of
MDR] in highly purified samples of AML. P-glycoprotein function and expression were
similar in either one of the specific allelic variants (G, T and GT). These findings suggest,
that the genetic polymorphism of the MDR] gene (at position 2677) lacks functional
importance in AML. However, we found that patients with homozygous expression of the
MDR1 gene (GG or TT) had a shorter time to relapse and overall survival from
relapse/refractory disease than heterozygous patients. This finding warrants further
studies on the role of genetic polymorphisms of MDR1 in AML.

MDRI expression at diagnosis is a strong adverse prognostic factor in AML. However,
our sequential analysis reveals that there is no higher function or expression of P-gp at
relapse or refractory disease, and that specific allelic expression is not related with
increased P-gp expression or function. Since no loss of a specific MDR1 allele has been
observed in these AML patients, MDR]1 gene related clonal selection plays no role in the
development of resistant disease. These data suggest that other mechanisms than MDR1
might be responsible for the development of clinical resistance in these patients.
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BCRP AND AML

Abstract

Expression of the multidrug resistance proteins P-glycoprotein, encoded by the MDRI
gene, multidrug resistance assoclated protein (MRP1} and the lung resistance-related
protein. or major vault protein (LRP/MVP) is associated with clinical resistance to
chemotherapy in acute myeloid leukemia (AML). Recently, the breast cancer resistant
protein {BCRP), the equivalent of mitoxantrone resistant protein (MXR) or placental
ABC transporter (ABCP), was described in AML. As no such simultancous analysis has
been reported m the past, we investigated MDR1, MRP1, LRP/MVP and BCRP mRNA
expression in 20 paired clinical AML samples from diagnosis and relapse or refractory
disease, using quantitative Taqman analysis. In addition, standard assays for P-
glycoprotein expression and function were performed.

BCRP was the only resistance protein that was expressed at a significantly higher RNA
level (median 1.7-fold, P=0.04) at relapsed/refractory state as compared to diagnosis. In
contrast, LRP/MVP mRNA expression decreased as disease evolved (P=0.02), whereas
MDR1 and MRP] mRNA levels were not different at relapse as compared to diagnosis.
Also, at the protein level no difference of MDRI1 between diagnosis and relapse was
found. A significant co-expression of BCRP and MDR1 was observed at diagnosis
(r=0.47, P=0.04). The present results suggest that BCRP, but not MDR1, MRP1 or
LRP/MVP is associated with clinical resistant disease in AML.

Introduction

Clinical resistance to chemotherapy in AML is often assoclated with expression of
(membrane) transport associated multidrug resistance proteins (1). Expression of P-
glycoprotein (P-gp), encoded by the MDR] gene is an independent adverse prognostic
factor for response and survival in de nove acute myeloid leukernia (AML) (2-11). More
recently, it was observed that not only P-gp, but also the multidrug resistant associated
protein (MRP1) and the lung resistance-related protein (LRP), also designated as the
major vault protein (MVP), are expressed in AML. The precise prognostic significance of
these latter resistance proteins is not yet known (8,10-20). Recently, 2 new drug resistant
protein, i.e. the breast cancer resistance protein (BCRP) (21-23), which is the equivalent
of the mitoxantrone resistant protein (MXR) (24,25) and of the placental ABC transporter
(ABCP) {26), was found to be expressed in AML (27,28). BCRP maps to the hunan
chromosome 4g22, between the markers D452462 and D4S1537 (26, 29).
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Little is known about the expression of MDR1, LRP/MVP and MRP1 at presentation and
at relapse in the same patients. Paired studies of the expression of these genes in clinical
AML samples are limited to small numbers of patients (30-33). Consequently, it is still
not clear if the expression of these resistance proteins increases from diagnosis to relapse,
nor whether a resistant clone which is already present at diagnosis, regrows at relapse. At
present, there is no information about the clinical relevance of BCRFP gene expression in
AML.

We investigated whether MDR1, MRP1, LRP/MVP and BCRP mRINA. expression evolves
from diagnosis to relapse/refractory disease in 20 paired AML samples, using a
quantitative real-time polymerase chain reaction (PCR) assay. As upregulation of MDR1
has been claimed as a major event in resistant AML, we also investigated P-glycoprotein
in these cells.

Table 1. Clinieat characteristics of the 20 AML patients

Patient Diagnosis Relapsefrefractory discase
Ape FAB Karyotype [nduction treatment Time ffom CRto  Reinduction freatment (at time of Response
{years) fat diagnosis) relapse {months)  telapse/refractory disease) (1o remnduction)
1 1 Mo Neutral Ara-ClAdra 4 2CdA/Ara-Cllda NoCR
2 50 M2 Neutral Ara-C/DNR 7 [da/VPLE CR
3 62 M1 Untavorablz Ara-C/Mitoxantrone 31 [da/VPi6 CR
4 61 M1 Newrrzl Ara-C/DNR 29 [da/VP16 No (R
3 35 Ml Favorable Ara-Cflda 12 1dalVPlé CR
[ 12 Mi Neutral Ara-CiAdra 33 Ara-C/Adra CR
7 46 W32 Neutral Ara-Cllda 6 Ang-C TD
8 67 M2 Neytral Ar-C/DNR 9 Ara-CIDNR NoCR
9 16 Mdeo Favornble Am-Cllda 8 Arp-Cllda CR
10 19 Msa Neutral An-Cllda 2% Ar-Clida NeCR
1 42 M2 Neutral Ara-Cllda 11 Ar-Cllda CR
12 41 Mo Neutral Are-Cilda 4 [da'VP16 CR
13 10 M2 Favorable Ara-CiAdria 58 Ara-ClAdria CR
i4 63 M2 Neutral Ara-C/DNR b NT
15 27 M2 Newtral Ara-Cilds 14 [da/VP16 CR
16 34 M5 Neutrsl Ara-C/DNR - 13a/VP16 No CR*
17 5 M1 Neusal Ara-ClAdriz i8 An-C/Adrin CR
1% i M2 Newtral VP16/Mitoxantrone 8 Mitexantrone No CR
i9 55 M1 Neumal Am-C/DNR - Ia/VP16 No CR*
] 57 M2 Neutral Ar-C/DNR 3 1da/VP16 No CR

CR. compiete remission after 1 or 2 courses of re-induction chemothetapy: No CR: refractory disease ot time of relapse; Ne CR*: never CR afier diaguosis; NT: not
treated for relapse; TD: toxic death; Karyotype: Unfavorable: £%:22), 11923 with MLL rearongements, complex karyotype, 5q- Favorable: inv(16) and 8i21):
Neutrak: norma! and other karvotypes. Ar-C: cytosine-arebinoside: DNR: dounorubicing, Adria: adriamyein; Ida: idarubicin: VP16: etoposide.
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Patients

Bone marrow samples of 20 AML patients (4 children aged <16 years and 16 adults),
median age 38 years (range 1-66 years), were obtained from the iliac crest both at diagnosis
and at time of first relapse (n=18) or primary refractory disease (n=2} (Table 1). AML
classification, performed according to the French-American-British (FAB) criteria (34) was
M} (n=6} , M2 (n=8), M4 (n=1), M5 (n=3), M6 (n=2). Cytogenetic analysis was carried out
by standard technigques, and the findings were described according to the international
nomenclature (335). All patients and/or their parents had given informed consent, and they
were treated according to the Helsinki agreement. Most of them were included in treatment
protocols of the Dutch-Belgian Hemato-Oncelogy Collaborative Group (HOVON 4 resp.
HOVON 29) for young adults, European Organization for Research and Treatment of
Cancer (EORTC LAM 9) for elderly patients, and the Dutch Childkood Leukemia Study
Group (DCLSG: ANLL 82, 87 and 94) for the children {30,36,37). At relapse or in case of
refractory disease after repopulation following induction therapy, adult patients were
treated according to the HOVON 30 relapse protocol. Treatment of the 4 pediatric patients
was by the institutional protocol (Table 1). As shown in Table 1, for some adult patients
individual treatment choices were made. One patient died before reinduction treatment
started because of septicernia. The induction therapy used in HOVON 4, 29 and 30, the
EORTC 9/11 and the DCLSG ANLL protocols all consisted of an anthracycline and Ara-C
(30). Complete remission status was defined as normocellular marrow, with < 5% blasts in
a BM smear, with normal peripheral blood counts.

Materials and methods

Patient samples

Bone marrow aspirates were obtained in heparinized tubes. Mononuclear bone marrow cells
{MNC) were collected by Ficoll Hypaque density gradient centrifugation (density
1.077g/m") (Pharmacia, Uppsala, Sweden). To obtain purified samples with more than 85%
of blasts, T-cell depletion and adherence depletion was performed as described (38). Cells
were cryopreserved in Iscove’s Dulbecco’s medium (IMDM; Gibco, Paisly, UK)
supplemented with 10% dimethyl suifoxide (DMSO; Merck, Darmstadt, Germany) and 20%
fetal calf serum (FCS; Gibco) and stored in liquid nitrogen. At the day of the experiments
bone marrow cells were thawed. For flowcytometry experiments, cells were washed and
resuspended in IMDM supplemented with 10% FCS and gentamycin at a concentration of
4x10° cells per ml. Before RNA and DNA isolation, cells were washed with PBS (Gibco).
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LRP/MVP, MRP), MDR1 and BCRP mRNA analysis

Isolation of RNA.. Total RNA was isolated using the TRISOLV extraction as described
by the manufacturer (Biotecx, Houston, Tx, USA). RNA was aliquotted and stored at -
80°C. RNA samples were analyzed for RNA integrity by gel electrophoresis.

cDNA synthesis. cDNA was synthesized by the use of the TagMan Reverse Transcription
Reagents (Applied Biosystems, Foster City, CA, USA). ¢cDNA was diluted, aliquotted
and stored at -80°C.

Ouantitative Real-time PCR. The mRNA levels of MDR1, MRP), LRP/MVP, BCRP and
two endogenous reference genes, fe glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and porphobilinogen deaminase (PBGD), were measured by quantitative real-
time PCR based upon Tagman-chemisiry on an ABI PRISM 7700 sequence detector
(Applied Biosystems). PCR products were detected using a dual-fluorescent non-
extendable probe containing a FAM reporter and TAMRA quencher for all reactions
except for the GAPDH reaction in which FAM was replaced by VIC.

Table 2. Primer and probe combinations used in quantitative RT-PCR

LRP/MVP Forward 5-CAGCTGGCCATCGAGATCA
Reverse 3S-TCCAGTCTCTGAGCCTCATGC
Probe  5-CAACTCCCAGGAAGCGGCGGC

MRP] Forward 3'-CAATGCTGTGATGGCGATG
Reverse 5-GATCCGATTGTCTTTGCTCTTCA
Probe  5-AGACCAAGACGTATCAGGTGGCCCAC

MDR1 Forward 5-GGAAGCCAATGCCTATGACTITA
Reverse S-GAACCACTGCTTCGCTTITCTG
Probe  5-TGAAACTGCCTCATAAATTTGACACCCTGG

BCRP Forward 5-TGGCTGTCATGGCTTCAGTA
Reverse 5'-GCCACGTGATTCTTCCACAA
Probe  53-AGCAGGGCATCGATCTICTCACCCTG

PBGD Forward 3-CTGCACGATCCCGAGACTCT
Reverse 5-GCTGTATGCACGGCTACTGG
Probe  5-CTGAGGCACCTGGAAGGAGGCTG
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All primers and probes, designed by the oligo 6.0 primer analysis software (Medprobe,
Oslo, Norway), did not amplify contaminating genomic DNA (Table 2). The G4PDH
mRNA levels were measured using the Pre-developed TagqMan Assay Reagents for
human GAPDH {Applied Biosystems).

Forty nanograms of patient sample cDNA were used as a template in duplicate in the
presence of 300 nM forward and reverse primers, 200 nM of probe, 200 uM dNTPs, 1.25
U of AmpliTag DNA polymerase and 4 mM MgCl; in sample buffer A {Applied
Biosystems) in a total volume of 50 pl. Samples were heated for 10 min at 95°C and
amplified for 50 cycles of 15 sec at 95°C and 60 sec at 60°C. As a positive control, a
serial dilution of ¢cDNA from a cell line RNA pool (CEM, K562 and two EBV induced
lymphoblastoid B-cell lines) in H.O was used. All PCR reactions were performed with
comparable efficiencies that exceeded £ = 0.95. The relative expression levels of MDR],
MRP1, LRP/MVP and BCRP1 mRNA were calculated using the comparative cycle time
(Ct) method (K. Livak, User bulletin #2) (39). Briefly, the target PCR Ct-values, i.e. the
cycle number at which emitted fluorescence exceeds the 10 times standard deviation of
base-line emissions as measured between cycles 3 to 15, is normalized to the average Ct-
value of the reference PCRs (GAPDH and PBGD). From this ACt-value, the relative
expression level for each target PCR was calculated using the equation: relative
expression = 2—[Cnarget-CI(GAPDH.’PGBD)]-

The average Ct-value of two reference PCRs was used instead of a single reference

reaction to limit patient sample specific variation in housekeeping gene expression.

P-glycoprotein expression and function

Expression of P-glycoprotein

To measure the expression of P-gp, cells were incubated at room temperature using the
moncclonal anti-P-gp antibodies (Moabs) MRK 16 (40) (Kamiya Biomedical Company,
Tukwila, WA, USA) at a concentration of 10 pg/ml and alse, in separate tubes, using
Moab UIC2 (41) (Immunotech, Marseille, France) at a concentration of 12.5 pg/ml or
with an isotype matched mlIgGZ2a control antibody (Sigma, St. Louis, MO, USA) at a
concentration of 10 pg/ml. Cell-bound antibodies were detected by fluorescein
isothjocyanate (FITC)-labeled rabbit anti-mouse immunoglobulin antibodies (DAKO,
Glostrup, Denmark). Results are given as the ratio of the mean fluorescence of cells
incubated with the anti-P-gp antibody divided by the mean fluorescence of cells
incubated with the control mIgGZa antibody. To measure the expression of P-gp in
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CB34-positive (CD34-PECyS5) cells, cells were labeled with phyco-erythrin-Cy3-labelled

CD34 antibody or as a contrel phyco-erythrin-Cy3-labeled mlgGl antibody (Tmmu-
notech).

Function of P-ghycoprotein

For measurement of the function of P-gp, the fluorescent moiecule thodamine 123 (Rho
123) (Sigma) was used as a P-gp substrate (42,43). Cells were incubated for ! hr at 37°C
at 5% CO; in the absence or presence of 2 uM of the P-gp modulator PSC 8§33 (Novartis,
Basel, Switserland). Next, 200 ng/ml Rho 123 was added to the cells. A sample was taken
at =0 min to correct for background flucrescence and at t=75 min to measure
intracellular Rho 123 retention. Results were calculated as the PSC/Rho 123 retention
ratio of the mean intracellular Rho 123 flucrescence of cells exposed to PSC 833 divided
by the mean intracellular Rho 123 fluorescence of celis not exposed to PSC 833.

As controls in each experiment, the drug-sensitive hurman myeloma cell line 8226 S and
the drug-resistant P-gp expressing variant 8226 D6 cells were included (44). Taken all
experiments together, the mean ratio of P-gp function of the negative control cell line
8226 S was 0.91 £ 0.07 (mean £ SD). The mean ratio of P-gp function of the positive
control cell line 8226 D6 was 7.03 £ 4.69 {mean = SD). For analysis of the function of P-
gp in CD34-positive cells, AML cells were labeled with the PE-erythrin-Cy3-labelled
CD34 Moab or with mlgGl PE-Cy5 (isotype matched control antibody)(Imumunotech).
Fluorescence was measured using a FACScalibur flowcytometer (Becton-Dickinson, San
José, CA, USA). Cells were incubated with 0.1 pM TO-PRO-3 (Molecular Probes,
Eugene, Oregon, CA, USA) to exclude non-viable cells in both the functional and
expression studies.

Statistical analysis

The mRNA expression levels of the resistance proteins and of P-glycoprotein levels at
time of relapse or refractory disease as compared to the levels at diagnosis were
calculated using the univariate Wilcoxon matched-pairs signed-ranks test, which was thus
restricted to patients with data available both at diagnosis and at relapse and/or refractory
disease state. Also, MRP1, LRP/MVP, BCRP and MDR] mRNA levels were compared
with each other as well with patient characteristics at diagnosis and at relapse and/or
refractory disease, by calculation of the Spearman rank correlation in order to test
whether the two variables concerned are independent. All P-values are two-sided and a
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significance level of o= 0.05 was used.

Results

AML samples of 20 patients were mvestigated both at diagnosis and at relapse (n=18) or
refractory disease (n= 2). The patient characteristics are listed in Table 1. BCRP was the
only resistance protein that was expressed at a significantly higher mRNA level at relapse
or refractory disease state than at diagnosis (Figure 1, Table 3). No differences between
the levels of MDR] mRNA and MRP] mRNA were observed at relapse compared with
diagnosis, whereas LRP/MVP mRNA even decreased significantly at relapse (Table 3).
BCRP mRNA expression was not associated with FAB classification, nor with CD34
expression or cytogenetic abnormalities at diagnosis. Interestingly, at presentation lower
peripheral white blood cell counts (WBC) were associated with higher BCRP mRNA
levels (=-0.67, P=0.001).

At diagnosis, a correlation between the expression of BCRP mRNA and MDR1 mRNA
expression was found (r=0.47, P=0.04). None of the other analyzed resistance proteins

Table 3. Paired analysis of the resistance genes in 20 AML patients

Diagnosis Relapse/ Ratio P-value
Dx RD RD/Dx
BCRP mRNA
Median 0.08 0.15 1.91 0.04%
Range 0.01-254 0.00-7.30
LRP/MVP mRNA
Median 11.6 4.75 0.62 0.02%
Range 1.55-592 03-182
MRPImMRNA
Median 16.6 10.5 0.72 0.37
Range 3.79-160.2 0.19- 126.6
MDR1 mRNA
Median 0.11 0.09 0.69 0.17
Range 0.00-526 0.0- 0.92

The P-values indicate the differences between diagnosis and relapse orrefractory disease using the Wilcoxon
signed-ranks test. The 'n” indicates the number of patients involved in the paired analysis. The Pvalue indicates
the differcnce between diagnosis and relapse/refractory disease, * indicates a statistically significat difference
between relapse and diagnosis.
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Table 4. Correlation between the quantitative mRNA expression of resistance proteins and
the rhodamine 123 retention assay with/without PSC 833

Correlation with PSC/Rho 123

Diagnosis Relapse/refractory disease

(3] P-value 9] P-value
BCRP mRNA 0.48* 0.04% 0.04 0.88
MDR1 mRNA 0.59% 0.01%* 0.88% 0.01%%
LRP/MVP mRNA -0.01 0.97 0.12 0.61
MRP1 mRNA 0.06 0.80 0.22 0.34

(r): the Spearman rank-correlation coefficient; *: correlation is significant at the 0.05 level; **: comrelation is
significant at the 0.01 level.

were correlated with each other. Upregulation of BCRP mRNA at the time of relapse
(Table 3) was not associated with wpregulation of transcription of any of the other
resistance genes. At relapse, only co-expression of MRP! mRNA and LRP/MVP mRNA
was found (= 0.49, P=0.03).

‘We observed that BCRP mRNA expression was correlated with a positive effect of PSC
833 on Rho 123 retention in diagnostic samples, but not in relapsed/refractory AML
samples (Table 4). This functional assay also showed a strong correlation between P-
glycoprotein fimction and MDR1 mRNA levels at diagnosis (r=0.58, P=0.009) and at
relapse (7=0.88, P=0.00). The MDR]1 mRNA levels correlated well with the expression of
P-glycoprotein (r=0.57, P=0.009 for MRK 16 and r=0.52, P=0.02 for UIC2) at relapse,
but not at diagnosis (7=0.15, P=0.55 for MRK 16 and r=0.47, P=0.06 for UIC2).

BCAP mRNA LRP/MVFP mRNA MDA mRNA MRP1T mRNA
p=0.04 p=0.02 p=0.17 p=0.37

TEA

(110

E'lc‘wga'c'gmmmaoo;]

03+

dx rel dx rol dx rol dx rel

Figure 1. BCRP, MDR1, LRP/MVP mRNA expression in paired AML samples at diagnosis, The P-value
indicates the difference between the two time points in a paired analysis.
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Discussion

Clinica! resistance to chemotherapy is a major problem in the treatment of AML. It is
concelvable that functional expression of the resistance proteins P-gp, MRP1, LRP/MVP
or BCRP is associated with the development of relapse and/or refractory disease. For
instance, MDR1 and MRP1 have been reported as adverse prognostic factors for CR and
survival (1,5,7,8.10,17.20). This is the first report on a cohesive analysis of the expression
of these resistance proteins, in paired clinical samples of AML patients using quantitative
PCR. Qur data demonstrate, that BCRP is the single resistance gene which is expressed at
a higher level at relapse as compared to diagnosis (P=0.04). In contrast to what has been
suggested in the literature, no increase of MRP1 or MDRI levels was found at relapse.
LRP/MVE mRNA levels even showed a decrease at the time of relapse/refractory disease.
Increased levels of BCRP mRNA were not correlated with an increase of expression of
any of the other resistance genes at time of relapse/refractory disease, leaving only BCRP
expression as a possible contributor to refractory/relapsed disease.

BCRP, also identified as mitoxantrone resistance protein (MXR) or ABCP (ABC
transporter cloned from human placenta) is responsible for drug resistance phenotypes in
MCF7 cell lines after transfection experiments, Resistance was found for mitoxantrone,
daunomycin, doxorubicin and DNA topoisomerase I inhibitors like topothecan and SN-
38, the active form of irinothecan, while sensitivity to platinum, paclitaxel and vincristine
was retained (22,28,43,46). The BCRP/MXR/4BCP gene is evolutionary distinct from the
other members of the ABC transporter family that encode P-gp and MRPI, being on 2
completely separate mb of the phylogenetic tree {28). In contrast to the AMDR1 and
MRP] genes, it encodes a protein which is a half-transporter molecule requiring homo- or
heterodimerization in order to function. This suggests a unique and probably
complementary role for BCRP among the other resistance proteins (28,47,48). In normal
tissues, BCRP is quite distinctly expressed from P-gp and MRP1. BCRP mRNA is
highest in the placenta (22,26) and certain areas of the midbrain {putamen), and relatively
low in other normal fetal and adult tissues (28).

Until now, only one study is available studying BCRP expression In clinical resistance in
AML. In clinical samples studied by Ross ez al.. a 1295-fold variation in expression levels
in de novo AML patients was reported (27). Also, they described a weak association (=
0.44) of MDR1 and BCRP mRNA expression in nine AML patients in which both drug
resistance proteins were investigated. Based on this limited analysis, it was suggested that
this co-expression of BCRP and MDRI1 may explain
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Table 5. Published studies of expression of the drug resistant proteins in paired samples of
AML patients

Author Reference  Number of  Expression Age Expression in
patients level relapsed vs de
novo AML
MDR1
Guerci (62) 4 protein, adults higher/equal
Hart (53) 9 RNA adults higher/lower
Ino (Bn 21 protein adults equal/lower
Sato (66) 6 RNA aduits equal
Tto (32) 10 DNA adults equal
10 protein higher/lower
List (33) 17 protein adults lower
Mare 60y 4 RNA adults higher/equal
Marie (67} 4 RNA adults bigher/lower/
equal
Maslak (63) 5 protein adults higher
Michieli (64) 7 protein adults higher/lower/
equal
Wood (65) 14 protein adults higher
Van den Heuvel (30 30 protein adults + equal
children
MRP1
Schneider (5% 13 RNA adults higher
Zhou a2 not RNA adults equal
mentioned
Hart (16) 8 protein adults equal
Van den Heuvel (Ps) 20 RNA adults + equal
children
LRP/MVP
Hart (16) 8 protein adults equal
List (38) 17 protein adulss higher
Van den Heuvel (Ps) 20 RNA adults + lower
children
BCRP
Van den Heuvel (Ps) 20 RNA adults + higher
children

Ps: present study,
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the disappointing results of MDR] reversal agents in clinical studies in AML.
Interestingly, Leith et al. described in a large SWQG study a distinct subgroup of AML
patients of whom the blast cells exhibited cvclosporine resistant efflux of rhodamin 123,
that was not correlated with MDR1, MRP1 or LRP/MVP protein expression (49). They
suggested the existence of another as yet undefined efflux mechanism in adult AML
blasts cells.

In our group of AML patients, the BCRP mRNA levels varied 240-fold at diagnosis. At
diagnosis, we also found a weak, but significant correlation between the expression of
BCRP and MDR1 mRNA (r=0.47, P=0.04), and not between any of the other resistance
proteins. This association was confirmed by a correlation between BCRP mRINA
expression and functional drug efflux which could be inhibited by PSC 833. This
correlation disappeared at relapse, where no co-expression of BCRP and MDRI1 was
observed, leaving only BCRP expression as a possible contributor to refractory disease. If
co-expression of BCRP and MDR]1 would occur in AML, this could open a possibility for
new clinical trials using reversal agents that block both P-gp and BCRP such as
GF120918 (25,50,51). Moreover, recent studies have identified additional BCRP specific
modulators such as fumitremorgin C (FTC) and analogues (46.51) which may be
candidates for feasibility studies of BCRP blockers in a clinical setting.

Our study is the first that has investigated BCRP mRNA expression, simultaneously with
MDR1, MRP] and LRP/MVP mRNA expression in paired AML samples and shows that
BCRP is the only drug resistance gene which is expressed at a higher level at
relapse/refractory disease. Previous studies have shown conflicting results with regard to
MDRI1, MRP and LRP/MVP upregulation at relapse, probably because they were often
performed in a heterogeneous pool of diagnostic, relapse and secondary AML samples
(Table 5)(12, 16, 29, 52-58).

It has often been suggested that MDR] expression at the time of relapse is higher as
compared to diagnosis (33, 59-63). In the present study, we did not find a higher level of
MDR1 mRNA, nor P-glycoprotein function and expression at relapse or in refractory
disease in these AML patients.

We conclude that BCRP and not MDR1, LRP/MVP or MRP1 may play a relevant role in
the development of relapsed or refractory AML. Studies in larger cohorts of AML
patients are necessary to establish the prognostic role of expression and co-expression of
these drug resistance proteins in relation to other already appreciated clinical prognostic
factors.
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MDRI1IN -7 /7q- AML

Abstract

Expression of the multidrug resistance (MDR1) phenotype, encoded by the MDR1 gene,
is an adverse prognostic factor for complete remisson (CR) and survival in acute myeloid
leukemia (AML). Other prognostic factors, such as specific cytogenetic abnormalities,
have been identified in AML. We have investigated the expression of the A/DR! gene in
untreated AML patients with monosomy 7 (n=12), and partial deletions (n=7) of the long
arm of chremosome 7 (resp. ~-7/7q-), because of the extremely bad prognosis associated
with these cytogenetic abnormalities and because of the fact that the MDR] gene is
located on chromosome 7q21.1. The findings were compared with the level of MDRI
expression in a group of 42 other AML patients, matched for age with favorable, neutral
or complex cytogenetic aberrations. MDR1 mRNA expression, as measured by the RNase
protection assay was significantly higher in the -7/7q- group vs other AML patients
(median 1.3 vs 0.1 AU, P=0.02). Protein expression of MDRI in the —7/7q- group, as
determined with the monoclonal antibody MRK 16, was found to be similar to the levels
found in the control group. With a functional rthodamine retention assay using the
modulator PSC833, increased MDRI1 activity was observed in the —7/7g- group as
compared to the control group of patients (P=0.05). Considering the higher MDR1 mRNA
expression and equal or slightly elevated level of protein expression of MDRI, we
studied the presence of MDRI genes in this group of —7/7q- patients. Fluorescence in situ
hybridization (FISH) studies, using a specific MDR] probe revealed no loss of an MDR]1
allele in any of the deleted g- arms of the 7 pattents with 7q-, whereas all monosomy 7
patients lacked one MDRI1 gene homologue. To determine whether there was selective
loss of the MDR] gene in the --7/7g- patients, the genetic polymorphism of the MDR]
gene was used. Both allelic variants (G and T) were represented in the -7/7g- and in the
contro] group, showing a predominance for GT at position 2677 of the MDR]1 gene in the
control group. In the 12 monosomy 7 patients loss of the MDR1 allele was random.
Methylation studies of the CpG island of the AMDRI gene revealed no hypermethylation
in any of the —7/7¢- patients. We conclude that MDR1 expression in —7/7q~ AML patients
is upregulated at tramscriptional, but not at tramslational level, suggesting that other
mechanisms than MDR] are responsible for the poor prognosis in these patients.

Introduction

Intrinsic or acquired drug resistance is a major cause of treatment failure in acute myeloid
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leukemia (AML). Resistance to anthracyclines, such as daunorubicin, doxorubicin, vinca
alkaloids and epipodophyllotoxines, 1s associated with the classic multidrug resistance
phenotype (MDRL). In cell lines that are cross-resistant to these drugs, the ATP-binding
cassette (ABC) transporter P-glycoprotein (P-gp) is expressed (1-4). This acts as a
transmembrane dmg efflux pump and is encoded by the MDR1 gene, located on
chromosome 7 at band g21.1 (5-7). In leukemic blast cells, P-gp expression is associated
with a lower intracellular retention of cytostatic drugs and a relative resistance to these
agents (8-11). In addition, other proteins are associated with multidrug resistance,
including the lung resistance protein (LRP) gene, located on chromosome 16pl13.2 and
the 190 kD multidrug resistance associated protein (MRP1) gene, located on
chromosome 16p13.1 (12-14).

In AML, MDR1 expression was identified as an independent adverse prognostic factor
with respect to complete response to induction freatment and survival (15-22). Also, other
prognostic factors such as specific cytogenetic abnormalities, age, CD34 expression and
white blood count at diagnosis have been identified (15-20).

AML patients with —7/7q- have an extremely poor outcome, which is mdependent of the
above mentioned clinical and immunological prognostic factors (15-22). It is not known
why and how the (partial) loss of a chromosome 7 affects the sensitivity of these AML
cells to chemotherapy (23-25). The breakpoint of partial chromosome 7 deletions is close
to the 7q21.1 site of the MDRI gene in many patients. Therefore, we have attempted to
investigate whether the poor response to therapy of AML patients with --7/7q- is
associated with an altered regulation of the MDR1 gene, and whether selective loss of one
MDR]1 allele is involved in this process.

Patients and methods

Patients

Routine cytogenetic studies on bone marrow samples of newly diagnosed AML patients
revealed 19 patients to have a deletion of the long arm of chromosome 7 or monosomy 7
(Table 1). Cytogenetic analysis had been carried out by standard techniques, and the
findings described according to the international nomenclature (26). Forty-two other
karyotyped AML patients, matched for age, FAB, and WBC, were taken as controls
{Table 2). Written informed consent was obtained to perform these studies, according to
the Helsinki agreement. Morphologic classification was performed according to the
French-American-British (FAB) criteria (27). In the ~7/7q- group the FAB classifications
were MO (n=1), M1 (n=4), M2 (n=3), M4 (n=3}, M5 (n=4), M7 (n=2).
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Table 1. Karyatype and FAB type of the 19 newly diagnosed AML patients with complete or partial monosomy 7

Pat.no. Age  WBCx10°1 FAB  Karyotype (ISCN, 1995)

1 1 30 M4 45XY,-7[19]/ 46,XY [3]

2 53 138 M35 45 XX,-7[12)/46,XX [4]

3 64 3 M4 45,XY,-7 [25] / 46,XY [6]

4 67 196 M5 45, XY ,-7 [ 12]1/46,XY {16}

5 43 32 Ml 45,XX,-T[191/46,XX [1]

6 57 40 M7 45XY,-727]

7 80 2 M7 46,XY,r(7) [8] / 45,XY,-7 [2]/ 46, XY [11]

: 35 206 M1 45,XX,inv(3)(q21q26),-7 [27]

9 16 130 M4 45,XY,inv(3)(q22q26),-7 [25]

10 22 5t M2 45,XX,inv(3)1(q22q26),-7 [31]/ 46, XX [1]

1t 44 43 M2 44-48,X,-Y,add(3)(q27),dic(5;21)(q1 1;022),-7,der(12)t(12;15){p1 2;q15), -15, der(163t(16;17)

(pl2;q11),17,18,idic(21)(q2 1), Hdic(21){q2 [ x1-2,+marl Fmar2 Fmar3 [32]*
12 5t 256 M1 43, XX,ins(3:3)(q24;q25q21),del{5)(q1 1},-7 der{ 7}pseudic(7;5){p13,cen) t{5;11)(q21;q1 1)add(7}(q35),
der{1 DT 11){pS;pl(5;11)q21;q1 1) [11]/ 46,idem4{7) [T}/ 46,XX [2]

13 34 49 Ml 46,XX,7add(7){q21) [41] /46, XX 1]

14 66 23 M35 46,XX,del(7){q21.3) [32]/ 46,XX [5]

15 29 13 M2 46,XX,del{T)(q22) [33] / 46, XX [1]

i6 76 10 M2 46,XX,del(7){q22.2q36) 141]

17 76 119 MO 47,XX,del(7)(q22q36),+8 112]/ 46, XX [8]

18 57 2 M5 46,XY,del{7)(q27q376),{20] / 47,XY,+13 [5]/46,XY [9]

19 3 1 M2 46,XX,del(?){q31q34) [11] /46,XX [1]

WBC: white blood cell count, *add{3}.ish der(3M(3;6)(q277; 7 wep3+,wep6t) marl ish der(7)(( 7, {wpeT+een7+Hmdr) mor2.ish der{ 7)H(7;15)(wepi5+), mar3.ish
der(MU(17)vepl 74)
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The FAB classifications of the control group were M1 (n=9), M2 (n=15}, M3 (n=2), M4
(n=9), M5 (0=7), and M7 (n=1). The —7/7q- group included 12 patients with a monosomy
7, and 7 with a 7q-karyotype. The cytogenetic abnormalities in the control group were
favorable in 6 patients [t(8;21), inv (16), t(15;17)], unfavorable in 4 patients [t(9;22), 5q-,
and 11g23 with mixed lineage leukemia (MLL) rearrangements], and normal or other
karyotypes in 33 patients. The median age of the ~7/7g- group of patients was 54 years,
the median age of the control group was 55 years.

All patients were treated according the protocols of the Dutch-Belgian Hemato-Oncology
Cooperative Group (IIOVON 4/4a, respectively HOVON 29). Induction therapy
consisted of daunorubicin (45 mg/m” for 3 days), cytosine arabinoside (200 mg,/m1 for 7
days followed by 2 g/m? for 6 days), and amsacrine (120 mg/m” for 3 days) (Hovon 4/4a).
In Hovon 29 induction treatment consisted of cytosine-arabinoside (200 mg/m? for 7
days), idarubicine (12 mg/m” for 3 days), followed by amsacrine (120 mg/m” for 3 days
and cytosine-arabinoside (2g/m”) for 6 days. Sixteen of 19 patients with the -7/7g-
karyotype received standard induction chemotherapy as compared to 36 out of the 42 in
the control group. Three (19%) of sixteen -7/7q- AML patients, as compared to 22/36
(61%) of the controls, achieved complete remission (P=0.007). A group of a 104 normal
healthy blood donors was, after informed consent, used as a pilot study to assess the
genetic polymorphism of the MDR1 gene (peripheral blood mononuclear cells) in the
normal population.

RNase protection assay

For RNA and protein studies in the AML patients, mononuclear cells from bone marrow
or blood were freshly isolated and separated by Ficoll-Isopaque centrifugation (Nycomed,
Oslo, Norway). All samples contained more than 85% of blasts. In normal subjects, blood
nucleated cells were used as a control. Total RNA was isolated, using TRISOLV
extraction (Biotecx, Houston, TX, USA} as is originally described by Chomczynski et al.
(23). Quantitative detection of MDR1 and MRP1 gene transcripts was performed by the
RNase protection assay. The assay was done with the RPA II kit (Ribonuclease
Protection Assay Kit; Ambion, Austin, TX, USA), a modification of the method
described by Zinn et al. (29). Ten pg of total RNA were hybridized with **P-CTP-RNA
probes under standard conditions, followed by RNase-A/RNase T1 treatment. For RINase
protection, an MDR]1 specific mRNA antisense RNA probe was obtained by transcription
of a 302 nucleotide ¢cDNA fragment (nucleotide positions 3498 - 3801) with SP6 RNA
polymerase (Ambion) (30).
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Table 2. Control group of AML patients witheut partial or complete monosemy 7

Patno. Age WEC x 10771 FAB Karyotype
1 35 39 M4Eo F
2 66 12 M2 N
3 74 42 M4 N
4 76 122 M2 N
5 76 51 M1 N
6 61 38 M2 N
7 58 194 M7 U
8 61 476 M4 N
9 73 200 M1 N
10 88 47 M2 N
11 51 31 M2 N
12 23 494 M4 N
13 24 3 M3 F
14 20 173 M4 N
15 50 70 M2 N
16 65 48 M1 N
17 61 14 M1 N
18 58 351 Ml N
19 54 227 M4 N
20 8z 215 M5 U
21 55 5 M2 N
22 69 38 Ml N
23 44 173 M2 N
24 58 180 M2 N
25 61 164 M5 U
26 67 53 M2 N
27 37 108 Ml N
28 45 7 M2 N
28 41 32 M2 F
30 78 46 M4 N
31 30 28 M3 F
32 51 26 M3b N
33 61 157 M5 N
34 69 103 M5 N
35 30 126 M4 U
36 53 2 M2 N
37 63 50 M3a N
38 71 418 M2 N
39 17 13 M2 F
40 35 38 M1 F
41 7 72 M5 N
42 30 6 M2 N
43 44 25 Mi N

U: Unfavorable: 11923 with MLL rearrangements, 1(9:22), 5g~ and multiple aberrations; F:
(15:17). (8:21) and inv(16); N: normal or other cytogenetic abnormalities.
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The MRP1-specific probe is complementary to sequences at the 57 end of the MRP1
mRNA  (nucleotides 240-484) (7,13). A human glyceraldehyde-3-phosphate
debydrogenase (GAPDH) probe was included in all RNase protection assays as a control
for RNA integrity and recovery. The mRNA levels of MDR1 and MRP1 were quantitated
by scanning the films with the ultrascan XL -laser densitometer (LKB, Uppsala, Sweden)
and data were analyzed with the gelscan XL software package (31,32). The colchicin-
resistant KB 8-5 and KB § cell lines, and the drug-sensitive KB 3-1 parental cell line
were used in each experiment as positive and negative controls (33). The signal obtained
with a 10 ug total RNA sample of KB 8-5 cells was assigned an arbitrary expression level
of 30 arbitrary units (AU), and the level in the KBS cells was related to the level of the
KB 8-5 cells, (3 AU). The cell lines GLC4 and GLC4/ADR were used as negative and
positive controls for MRP1 expression levels in the different experiments (12). The
MRP1 mRNA levels were expressed in units relative to the expression of MRP1 in
GLC4/ADR which was arbitrarily set at 100 U. The calculated MRPI expression of
GLC4 was set to 4 U (34). The MDR] and MRP] mRNA levels were standardized
according to the amount of GAPDH mRNA. All individual experiments included torulla
yeast RNA as a control for specific hybridization of the probes to the mRINA samples.

Analysis of the expression of P-glycoprotein in bone marrow samples

For measurement of the expression of P-gp, cells were incubated {at room temperature)
with monoclonal anti-P-gp antibody, MRK 16 Moab (Kamiya Biomedical Company,
Tukwila, WA, USA) at a concentration of 12.5 pg/ml or an isotype matched control
antibody mlgG2a (Sigma, St. Louis, MO, USA) at a concentration of 10 pg/ml. Cell-
bound antibodies were detected by fluorescein isothiocyanate (FITC)-1abeled rabbit anti-
mouse immunoglobulin antibodies (DAKO, Glostrup, Denmark).

Results were given as the ratio of the mean of cell-associated fluorescence of cells
incubated with the anti-P-gp antibody divided by the mean of cell-associated fluorescence
of cells incubated with the control mIgG2a antibody.

As conirols in each experiment, the drug-sensitive 8226 S and the drug-resistant §226 D6
cells were included to measure expression of P-gp. The mean of the ratio of the MRK 16
expression of the negative control cell line 8226 S was 1.32 + 0.29 (mean £ SD; n=59).
The mean of the ratio of the MRX 16 expression of the positive control cell line 8226 D6
was 30.23 + 5.01. The ratio of the expression was measured in the total population of
blasts and also in the CD34-positive cells, when a subpopulation of more then 10% CD34
positive cells was present.
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Analvsis of the function of P-glycoprotein

For measurement of the function of P-glycoprotein, the fiuorescent molecule rhodamine
123 (Rho 123) was used as a P-gp substrate. Therefore, cells were incubated for 1 h at
37°C at 5% CO- in the absence or presence of 2 uM PSC 833. After this incubation, 200
ng/ml Rho 123 (Sigma) was added to the cells. A sample was taken at t=0 min to correct
for background fluorescence and at t=90 min to measure intracellular rhodamine
accumulation.

Results are given as the ratio of the mean intracellular thodamine fluorescence of cells
exposed to PSC 833 divided by the mean intracellular rhodamine fluorescence of cells
not exposed to PSC 833.

Fluorescence in situ hybridization (FISH)

Dual colored fluorescence in sity hybridization (FISH) was carried out, using standard
techniques (35), on metaphases in cytogenetic preparations using a biotin labeled o-
satellite probe for chromosome 7 (p7tl) detected with avidin FITC {(green), and a
digoxine-labeled cosmid probe CHMRS, specific for the AMDR1 gene at 7g21.1, detected
with Texas Red (red). The probes were labeled by standard nick translation using Biotin-
16-dUTP according to the manufacturer’s instructions (Gibco BRL, Gaithersburg State,
MD, USA). Between 5 and 32 metaphases per patient were examined.

Detection of MDRI polymorphism and allelic expression

The presence and allelic expression of the genetic polymorphism of MDR1 at position
2677 was detected using oligonucleotide hybridization as described by Mickley et al,
(36,37). The PCR products were dot-blotted to a Zeta Probe blotting mermbrane (Bio-Rad,
Hercules, CA, USA) which was prehybridized for 30 min at 50° C in 5 x SSPE, 0.5%
SDS, 5 x Denhardt’s, 50 ug/ml denatured herring sperm DNA. Hybridization, using
radiolabeled oligonucleotides as allele-specific probes, was performed for 2 hours at 50°
C after which the blots were rinsed twice at room terperature in 2 x SSPE, 0.1% SDS
and subsequently washed for 10 min at 55° C in 5 x SSPE, 0.1% SDS. Two 30-bp
oligonucleotides, designated HMC3 and HMC4, were used. These oligonucleotides cover
residues 2656 to 2685 of the MDR1 gene with HMC3 possessing a G at position 2677 and
HMC4 a T at this position. Equal amounts of ¢ach control were spotted on both sides of
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the filter, thus providing the means of an indicator of specificity. Because the
hybridizations were performed under identical conditions, with probes labeled to similar
specific activities, the signals from the control oligonucleotides were usually similar.
Phosphor imager techniques (Image quant) were used to confirm G and T positivity.

PCR

One pg of genomic DNA was used as a template in PCR for 40 cycles to detect genetic
polymorphism at the DNA level. To detect allelic expression, 1 pg of total RNA was
reverse transcribed and cDNA template was subjected to 40 cycles of PCR. The primers
used for DNA and RNA oligonucleotide hybridization are described above.

Methylation-specific PCR (MSP)

The MSP assay is a two step technique. In the first step DNA. is pretreated with bisulfite.
Bisulfite induces a chemical modification of the DNA sequence by altering cytosine to
uracil (which subsequently is replaced by thymidine in the PCR reaction). In this
reaction, all cytosines are converted to uracil, except methylated cytosines (3-
methylcytosine), which are resistant to this modification. The second step is a PCR based
amplification of the altered DNA. PCR primers are designed to distinguish methylated
from unmethylated DNA, taking advantage of the sequence differences after bisulfite
modification.

Bisulfite Modification. DNA (1 pg in a volume of 50 pl) is denatured by NaOH (final
concentration 0.2 M) for 10 min at 37°C. Thirty microliters of 10 mM hydroquinone
(Sigma) and 250 pl sodium bisulfite (Sigma) at pH 5, both freshly prepared, are added
and mixed. The samples are incubated under a layer of mineral oil at 50°C for 16 h.
Modified DNA is purified by using the Wizard DNA purification resin according to the
manufacturer (Promega, Madison, W1, USA) and diluted in 50 pl of water. Modification
is completed by NaOH (final concentration 0.3 M) treatment for 5 min at rcom
temperature. Then follows an ethanol precipitation. DNA is resuspended in water and
used immediately, or stored at —20°C.

PCR Amplification: Primer pairs were designed in the 5°-UTR CpG island of the
published MDRI1 sequence (accession number AC002457, position 141267 sense and
141383 antisense). The primer sequences are: 5°-GGAGGGAGAATTGTATTIGGTGGT-
3" (unmethylated sense); 5°-GAGAATCGTATTGGCGGC-3" (methylated sense); 5°-
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CATTAATACCCCAACTACTCTAACCACA-3" (unmethylated antisense); 5°-CCCCA-
ACTACTCTAACCGCG-3" (methylated antisense).

The PCR mixture contains 1 x PCR buffer (16.6 mM ammonium sulfate, 67 mM Tris, pH
8.8, 6.7 mM MgCl2; 10 mM 2-mercaptoethanol), dNTPs (each at 1.25 mM), primers
(300 ng each per reaction), and bisufite-modified DNA (50 ng) in a final volume of 50 ul.
PCR reactions are hot started at 95°C for 5 min before the addition of 1.25 units of Taq
polymerase (Boehringer, Mannheim, Germany). Amplification 1s carried out for 35
cycles (30 sec at 95°C, 30 sec at the annealing temperature of 60°C, and 30 sec at 72°C),
followed by a final 4 min extension at 72°C. Bach PCR is loaded on a 6-8%
nondenaturing polyacrylamide gel, stained with ethidium bromide and directly visualized
under UV illumination (38.39).

Statistical analysis

The units of mRNA from MDR1 and MRP1, the MRK 16 and 1gG ratios, as well as Rho
123 retention were compared between the two subgroups (-7/7q vs. control) using the
Wilcoxon rank-sum test. The Hardy-Weinberg formula was used to evaluate the genetic
polymorphism of MDR]1 in the normal population (40,41). All reported P-values are two-
sided and a significant level of o = 0.05 was used.

Results

Patients characteristics

Of the 19 untreated AMI. patients with an abnormality of chromosome 7, 12 had a
monosomy 7 {Table 1). In 6 instances (patients 1-6) this was the sole cytogenetic
abnormality. Three patients (patients 8-10) also had an inv(3)(21¢26), an association that
has been previously reported (42). Patient 7 had two karyotypically independent clones,
one with monosomy 7 and one with a ring chromosome 7. In patient 12, the main clone
had monosomy 7 and a partial deletion of the remaining chromosome 7 was found. For
this study all these patients were grouped together as monosomy 7 patients. Seven
patients (patients 13-19) had deletions of the long arm of chromosome 7 (Table 1, Figure
1). Forty-two other AML patients without chromosome 7 abnormalities, were used as
control group.
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chromosome 7

14 15 16 17 18 19

Figure 1. An ideogram of chromosome 7 showing the MDR1 gene at 7g21.1, and the deleted segments
involved in the patients with 7q- (patients 12-19). The extent of the deleted region in patient 18 was unclear
dug to the quality of the metaphases,
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Figure 2. RNase protection assay. Analysis of MDR] expression in conirol cell lines (KB 8.5, KB 8, KB 3.1)
and BM mononuclear cells of 16 of the investigated 48 patienty (13 -7/7q- and 35 comntrols).
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mRNA expression

MDR1 mRNA expression was analyzed in 13/19 patients with a —7/7q~ and in 35/42
control patients. In patients with the —7/7¢- karyotype, the median MDR] mRNA
expression was 1.3 AU (range 0.05-107), as compared to 0.1 AU (range 0 -12.7) in the
other combined karyotypes (P = 0.02) (Figure 2 ). The median MRP1 mRNA expression
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Table 3. MDR1 and MRP1 expression in AML

Karyotype P-value*
-7/7a- Other AML
Number of patients 19 42
MDR1 mRNA {AU)
Median 1.3 0.1 0.02
Range 0.05-1.07 0.0-12.7
Observations 13 35
MRP1 mRNA (AU)
Median 5.7 3.0 0.20
Range 1.1-138 0.0-31.1
Observations g 35
MRK 16/IgG2a ratio
Median 1.76 1.46 0.17
Range 0.82-4.21 0.95-3.04
Observations 18 20
PSC/Rko 123 retention
Median, 1.35 1.18 0.05
Range 0.96- 5.95 1.0-1.9
Observations 18 19

*P-value belongs to the hypothesis that values in patients with karyofypic abnormalities —7 and 7q- are equal to
those with other cytogenetic abnormalities or with normal cytogenetics.

was 5.7 AU (range 1.1-13.8) in 8/19 AML patients with a (partial) deleted chromosome 7
as compared to 3.0 AU (range 0-31.1) in the control group (P =0.20) (Table 3).

Protein expression

P-gp expression was analyzed by flowcytometry in 18 of 19 patients with —7/7g-, and the
results were compared with 20/42 {for MRK 16 expression) and 19/42 (for PSC/Rho 123
modulation) control patients. The selection of the investigated subjects in the control
group with flowcytometry was based on availability of viable cell samples. The median
PSC/Rho 123 retention ratio’s were 1.35 (range 1.01-2.34) in -7/7g- samples as
compared to 1.18 (range 1.0-1.9) in the other AML patients (P = 0.05). The median value
of the MRK 16/IgG2a staining ratio of all —7/7q- samples was 1.76 (range 0.82-4.21) as
compared to 1.46 (range 0.95-3.04) in the controls (P = 0.17}.
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Figure 3. Results of the dual colored fluorescence in situ hybridization (FISH) study on one of the AML
patients with a partial deletion of one chromosome 7, showing the biotin labeled g-satellite centromere probe
(7pta) for detection of chromosome 7 (green) and the digoxinine-labeled (CEIVMRG) for the MDRI gene (red).
The arrows indicate the chromosomes 7. Two copies of the MDR1 gene are present in this metaphase.

Presence of the MDRI gene

Dual colored FISH studies on metaphases from the monosomy 7 patients, showed that
only one copy of the MDR] gene on the remaining chromosome homologue was present.
Patient 7 had two karyotypically independent clones, one with monosomy 7 and one copy
of the MDRI gene, and the other clone with two copies of the MDR1 gene due to a ring
chromosome 7 and a normal chromosome 7 analogue. Two other monosomy 7 patients
had complex variations (patient no. 11 and 12). For patient 11, additional FISH studies
revealed that a marker chromosome was of chromosome 7 origin, which was negative for
the MDR1 gene. In patient 12, the main clone had monosomy 7 and the remaining
chromosome 7 had undergone structural changes but was shown by FISH to carry the
MDR]1 gene. A subclone of this patient had a ring 7 instead of monosomy 7. This ring
also had retained the MDR] gene. For the discussion all of these cases were grouped
together as having monosomy 7 with one copy of the MDRI gene.
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Figure 4. Detection of the genetic polymorphism of the MDR1 gene in blasts of AML patients. The DNA
and RNA lanes indicate which alleles are expressed. The oliponucleotides HMC3 and HMC4 represent the
hybridization controls for the G and T primer respectively. The box at the bottom side, right of the figure shows
the results of initial controls on the procedures (PCR- and RT-).

MDR]I polymorphism and allelic expression.

Seven patients (pat.13-19) had deletions of the long arm of chromosome 7 (Table 1). In
all instances dual colored FISH showed both chromo some 7 homologues to be positive
for the MDR] gene (Figure 1) allelic expression. Hybridization studies with the MDR]-
specific primers for position 2677 at 7q21.1 were performed in 12 patients with

monosomy 7. In eight cases, one primer hybridized (7x with G, Ix with T), while 4 of
these patients hybridized with two primers (GT). Patients with 7q - expressed a G gene
variant in 3 cases, a T variant in 2 cases, and a GT MDRI variant in two cases. Five of
these 7q- patients were homozygous for MDR] since they had been shown to have 2
copies of the MDR1 gene by FISH (Figure 3). In the control group, 15 patients were
examined with oligonucleotide hybridization. Twelve expressed the heterozygous variant,

whereas the G variant was found twice and the T variant once (Figure 4). In the
peripheral white blood samples of 104 healthy volunteers the G variant was found 43

times, the GT variant 45 times and the T variant 16 times.
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Figure 5. An example of the MDR1 DNA methylation assay in monosomy 7 (samples 1 and 2 ) and 7¢-
(samples 3 and 4) patients. All samples show unmethylated DNA in the CpG island of the A/DR1 promoter. U,
unmethylated; M, methylated.

Methylation studies of the MDR1 gene

Methylation analysis was performed in all monosomy 7 patients, 5/7 patients with 7q-,
and 15/42 of the AML patients of the control group. In all samples the CpG island of the
promoter of MDR1 gene was found to be unmethylated (Figure 5).

Discussion

AML patients with ~7/7g- have a poor response rate to induction chemctherapy and a
short overall survival (15-20). Expression of MDRI in de novo AML patients is also
associated with a poor outcome (16-19,21,22.43). The MDR1 gepe is localized on the
long arm of chromosome 7 at band 7q21.1 (5-7). The aim of our study was to investigate
whether the extremely poor prognosis of —7/7g- AML patients could in part be due to a
modified MDR] gene expression.

Our data show that the MDR] expression at the mRNA level in blasts of 19 -7/7g- AML
patients, was 13-fold higher than in matched AML patients with other abnormal or
normal cytogenetics. However, the increased mRNA level was not reflected in higher
protein levels as measured with the monoclonal antibody MRK 16, ie. levels were
similar in —7/7q- patients as compared to the control group. Only a small increase of
MDRI activity was observed in the —7/7q- group (P=0.05). Dual colored FISH studies
showed the presence of only one MDR]1 gene in the monosomy 7 patients, whereas all 7q -
patients revealed both ADR1 genes, even if the breakpoint was very close to band
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7q21.1. Apparently, in the -7/7g- patients, P-glycoprotein levels are preserved,
irrespective of the number of MDR]1 alleles.

A high level of MDR1 mRNA. expression in monosomy 7 patients may be explained by
retention of the most active MDR1 gene. If the genetic polymorphism of MDRE is
functionally imgportant, upregulation or activation of the remaining most resistant MDR1
allele would be expected. Evidence for this theory was found in a study of Mickley et al.
who described this phenomenon in patients with Burkitt’s lymphoma, who lost one of
their MDR-1 alleles during development to resistant disease, suggesting selection of a
drug-resistant clone (37). However, we observed, by analysis of the genetic
polymorphism of the MDR] gene at position 2677, that the loss of one MDR] allele in
patients with monosomy 7 was random, ie. both G and T variants were found. The T
variant was expressed less frequently, but this was concordant with the random
distribution of the G and T variants, using the Hardy Weinberg formula for distribution of
alleles in the normal population. A low incidence of the T variant was also reported in by
Mickley et al. (37). He found 3x a T variant and 15x a G variant in cell lines, and 8x a T
variant and 21x a G variant in normal tissue at position 2677 of the MDR1 gene in
homozygous cases.

These findings indicate that, while the MDR]1 gene is upregulated at the RNA level, the
functional expression has not changed. Upregulation of the MDRI gene as a result of
{somatic) mutations was not the focus of our study. Methylation changes of the CpG
islands in the promoter region of housekeeping genes is one of the mechanisms by which
gene transcription is regulated (44). Especially in human cancers, de nove methylation of
the islands usually has a significant (negative) effect on the transcription level of the gene
invelved. in our study the methylation analysis of the MDR] promoter-associated CpG
island in 17/19 of our —7/7q- patients and (15/42) control AML patients showed no
abnormal methylation pattern in any case. Therefore, we conclude that the transcription
of the MDR1 gene is not regulated through methylation changes of the promoter region.
Fryxell ef al. suggested in their detailed study that methylation changes upstream of the
promoter, in an ALY repeat may be important for transcription regulation, but they did
not show a correlation between the methylation level of the ALU repeat and transcription
level of the MDR] gene (45). The only study that showed a correlation between MDR]
expression and methylation of the MDR] gene was performed by Kantharidis er al. They
examined two AMIL cell lines, of which only one expressed MDR1. However, their
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conclusions are mainly based on DNA digestion of Hpall sites, which are located just
outside the CpG island of the MDR1 gene, and it is not known what the effect of the
methylation status of this region wiil have on the expression of this gene (46).

We identified 4 patients with monosomy 7 and one copy of the MDR1 gene as shown by
FISH, who had heterozygous MDR1 (G and T) expression. This phenomenon may be the
result of contamination of the purified bone marrow samples with normal cells. An
alternative explanation may be that these patients had a leukemia with disomy for
chromosome 7, which had not been detected by karyotyping or FISH.

We have demonstrated, that MDRI1 expression is upregulated in —7/7q- patients at a
transcriptional level which is not translated to the protein level. The mechanism for
higher expression level was found to be due neither to selective allelic loss of the MDR1
gene, nor to methylation changes of the promoter region of MDRI. As P-glycoprotein
expression does not follow the upregulation at transcriptional level, we suggest that
MDRI is not a mechanism of drug resistance in poor prognostic AML with —7/7g- .
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dCK MUTATIONS IN AML

Abstract

Resistance to chemotherapy is a major problem in the treatment of acute myeloid leukemia
(AML). As cytosine-arabinoside (Ara-C) is an important agent in the treatment of AML it
is conceivable that leukemic blasts become resistant to Ara-C during the development to
relapse/resistant disease. Although several registance mechanisms are involved in Ara-C
metabolism, deoxycytidine kinase (dCK) is of particular interest because it is the rate-
limiting enzyme in the phosphorviation process from Ara-C to Ara-CTP. Structural
analysis of the 4CK gene has revealed mutations which are associated with dCK
deficiency and Ara-C resistance in vitro and in vivo. We searched for mutations in the dCK
gene in a unique set of paired samples obtained from 31 AML patients at diagnosis and at
relapse and/or refractory disease (10 children, 21 adults). Using a RT-PCR to amplify the
dCK ¢cDNA, followed by direct sequencing of the PCR product, we did not find any of the
previously reported mutations in the dCK gene involving codons 20, 93, 98, 99 and 154,
Also, we did not find new mutations at time of relapse, nor at diagnosis. These results
show that mutations in the dCK gene are scarce and not of major importance for Ara-C
resistance in AML patients.

Introduction

Cytosine-arabinoside (Ara-C) is a standard drug in the treatment of patients with acute
myeloid leukemia (AML). In combination with other chemotherapeutic agents it induces
complete remission (CR) in 70-80 % of adults and in 80-90 % of pediatric patients with de
nove disease. Ara-C is a cytotoxic nucleoside analogue which is phosphorylated
intracellular into its active form Ara-CTP, by the action of three enzymes; deoxycytidine
kinase (dCK}, dCMP kinase and nucleoside diphosphate (NDP) kinase. Ara-CTP inhibits
DNA. polymerase and acts by competing with its physiological counterpart for
incorporation into nucleic acids, the natural substrate dCTP.

Clinical resistance resulting in relapse or refractory disease, contributes to a low survival
rate in AML. [n vitro drug resistance studies in AML have shown a strong correlation of
Ara-C resistance with prognosis (1.2-6). Several mechanisms of Ara-C resistance have
been identified (7). As dCK has been appreciated as the rate-limiting enzyme in the
metabolism of Ara-C, we have focussed on the dCK gene in this study. The human dCK
cDNA has been cloned by Chottiner ef al. from a T lymphoblast cDNA library and the
genomic structure has been established (8,9). Stegman er al. assigned the gene to 4q13.3-
g21.1 in 1993 {10). Murine neoplasm and human cel] lines like AB 9228 and HL-60

confer resistance by decreased dCK activity (11-14). Cell lines prepared from leukemic
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blasts of a patient with acute lymphoblastic leukemia (ALL), showed markedly decreased
Ara-CTP pools due to decreased dCK enzymatic activity after the patient had become
resistant to treatment with Ara-C, suggesting an importance of dCK deficiency in the
clinical situation (15). Experiments on Ara-C resistant T-lymphoblast cell lnes (Ara-C-8D
and ddC50) revealed structural alterations like point mutations and deletions within the
coding region, as well as decreased mRNA levels (9,13). In adult AML, low or altered
dCK activity has been assoclated with clinical Ara-C resistance (16.17).

Flasshove et al. (18) found different point mutations in the dCK cDNA in 7 out of 16 adult
patients with relapsed and refractory AML. Two silent mutations (codon 86 and 42), and
five mutations resulting in amino-acid changes (codon 20, 93, 99, 98, 154). One of them, a
point mutation in codon 99 (TAT->TGT) leading to an amino acid substitution from
tyrosine to cysteine, was associated with absent dCK activity, whereas the enzyme activity
was normal in patients with a point mutation in codon 98 and 20.

The hypothesis of the present study was that point mutations in the coding region of the
dCK gene might be responsible for changes in Ara-C sensitivity in the course of the
disease towards relapse/refractory disease.

Patients

Bone marrow (BM) samples of 30 acute myeloid leukemia (AML) patients, and 1 chronic
myeloid leukemia (CML) patient (10 children, 21 adults), were obtained from the iliac
crest at diagnosis and at time of first relapse (n=27) or refractory disease (n=3), and in case
of CML at the first and second blast crisis {n=1) {Table 1). From each patient and/or
parents, written informed consent was obtained to perform these studies. AML
classification performed according to the French-American-British (FAB) criteria (19) was
M1 (n=8}, M2 (n=11), M4 (n=2), M5 (n= 7), M6 (n=2). Cytogenetic analysis was carried
out by standard techniques, and the findings were described according to the international
nomenclature (20). All patients were treated according to the Helsinki agreement and were
included in treatment protocols of the Dutch-Belgian Hemato-oncology Collaborative
Group (HOVON 4/4a respectively HOVON 29) for young adults (n=17), European
Organization for Research and Treatment of Cancer (EORTC LAM 9) (n=2) for patients >
60 years, and the Dutch Childhood Leukemia Study Group (DCLSG: ANLL 87 and 94)
{n=10) for the children (age <18 years). After relapse or in case of refractory disease after
mduction therapy, adults were treated according to the HOVON 30 relapse protocol (Table
2). The six pediatric patients received treatment according to institutional protocols. For
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Table 1- Clinical characteristics of the 31 patients

dCK MUTATIONS IN AML

Diagnosis Relapse/Refractory disease

Age FAB Karyotype Time to Treatment Response

(years) relapse (at time of (to

(months) relapse/tefractory  reinduction)
digease)
1 2 M5 Unfavorable 8 NT
2 1 Mé Neutral 4 2CdA/Ara-C/lda No CR
3 47 M2 Neutral 30 HOVON30 CR
4 35 M2 Neutral - HOVON30 No CR*
5 50 M3 Neutral 25 HOVON30 CR
6 50 M2 Neutral 7 HOVON30 CR
7 62 Mi Unfavorable 31 HOVON30 CR
3 61 M1 Neutral 29 HOVON30 NoCR
9 35 M1 Favorable 12 HOVON30 CR
10 9 M5 Urfavorable 9 NT
1112 M1 Neutral 33 DCLSG ANLL94 CR
12 37 M1 Neutral 12 HOVON29 CR
13 57 M4 Neutral 4 NT
14 46 Msa Neutral 6 Ara-C TD
15 67 M2 Neutral 9 EQRTC 9 Ne¢ CR
16 16 Mdeo Favorable 8 HOVON29 CR
17 19 M5a Neutral 23 HOVON29 No CR
18 42 M2 Neutral 11 HOVON29 CR
19 1 Ml Neutral 14 DCLSG ANLLS7 NoCR
20 41 M6 Neutral 4 HOVON30 CR
21 10 M2 Favorable 58 DCLSG ANLLY4Y CR
22 63 M2 Neutral 3 NT
23 1 M5 Unfavorable 10 DCLSG ANLLS7 NoCR
24 27 M2 Neutral 14 HOVON30 CR
25 34 M35 Neutral - HOVON30 No CR*
26 5 M1 Neutral 18 DCLSG ANLLS7 CR
27 138 M2 Neutral 8 Mitoxantrone No CR
28 35 MI Neutral - HOVON30 No CR*
29 16 1st BC Unclassified 3 EQRTC 9 No CR
CML

30 49 M2 Neutral 6 NT
31 67 M2 Neutral 5 HOVON30 No CR

BC: blast crisis; CR: complete remission after 1 or 2 courses of re-induction chemotherapy: No CR: refractory
disease at time of relapse; No CR*: never CR after diagnosis; NT: not treated for relapse: TD: toxic death; Uc:
unclassified. Unfavorable karyotype: t(9:22). 11923 with MLL rearranpgements, Complex karyotype: 5g-
Favorable karyotype: inv(16). 1{15:17) and t(8:21); Neutral karyotype: normal and other karyotypes,

173



CHAPTER 6

some patients, after relapse, individual therapy choices were made (Table 1). Complete
remission status was defined as normocellular marrow, with < 3% blasts in a BM smear,

with normal peripheral blood (PB) counts.

Methods

Collection of bone marrow samples

Bone marrow aspirates were collected in heparinized tubes. Mononuclear BM cells
(MNC) were isolated by Ficoll-Hypaque density gradient centrifugation (density 1.077
g/ml; Pharmacia, Uppsala, Sweden). To obtain purified samples with more than 85% of
blasts, T-cell depletion and adherence depletion was performed (21). Cells were
cryopreserved in Iscove’s Dulbecco’s medium (IMDM; Gibeo, Paisly, UK) supplemented
with 10% dimethylsulfoxide (DMSO; Merck, Darmstadt, Germany) and 20% fetal calf
serum (FCS; Gibco) using a temperature controlled freezer (Kryo 10, Planer Biomed, UK)
and were stored in liquid nitrogen. At the day of the experiments BM cells were thawed.

RNA Isolation
Total cellular RNA from BM or PB was isolated by using Trizol (a mono-phasic solution
of phenol and guanidinium isothiocyanate) according to the recommendations of the

manufacturer (Gibco BRL Life Technologies, Grand Istand, NY, USA). Samples were
stored at -80 °C.

¢DNA synthesis

Following a denaturation step of 5 min at 70 °C, 500 ng RINA was used as a template in 2
reverse transcriptase reaction. The reaction contained 10 ng random hexamers (Gibco BRL
Life Technologies), 0.5 mM of each dNTP, 200 U M-MLV Reverse Transcriptase (RT),
20 U RNAsin Ribonuclease Inhibitor and 4ul M-MLV-RT 5x first strand synthesis buffer
(1 x buffer consists of 30 mM Tris-HCI pH 8.3, 75 mM KCl, 3 mM MgCl, and 10 mM
DTT) in a total volume of 20 pl. After an incubation for 1 hour at 37°C the RT enzyme
was heat-inactivated at 95°C for 5 min All products were purchased from Promega
(Madison, Wisconsin, USA).

Amplification and direct sequencing of the dCK gene
The dCK cDNA was amplified by PCR using the Expand High Fidelity PCR System
(Roche, Mannheim, Germany). Each PCR contained approximately 200 ng of ¢cDNA, 200
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uM of each dANTP, 3.5 U DNA polymerases (a mixture of Tag and Pwo DNA
polymerase), 1.5 mM MgCl:, 5 pl 10 x HF buffer and 25 pmol of each primer (forward
primer 53° CTCCCAGCCCTCTTTGCCGGAC; reverse primer 5° ACAAAGCTGAA-
GTATCTGGAACC) in a total volume of 50 ul. The PCR conditions were as follows: a 2
min 94°C denaturation step followed by 30 cycles of 1 min 94°C, 2 min 60°C, 3 min 72°C
and finally 10 min 72°C. Part of the reaction products were analyzed on a 1.5% agarose
gel in 0.5 x TAE buffer. Ethidium bromide was added to visualize the expected DNA
fragment of 8§84 bp which was either isolated directly from the gel using the QIAquick gel
extraction kit (QIAGEN, Hilden, Germany) or isolated from the PCR mix by the
QIAquick PCR purification kit (QIAGEN). The complete nucleotide sequence of both
strands of the purified fragment was determined by cycle sequencing using the BigDye
Terminator Cycle Sequencing Ready Reaction Kit (Perkin & Elmer Biosystems, Forster
City, CA, USA) and analyzed in a ABI Prismz 310 Genetic Analyzer (Perkin & Elmer
Biosystems) wusing the following sequencing primers: 5’AGCTCTGGGCCGCCAC-
AAGAC; 5’GGCTGCCTGTAGTCTTCAGCAAG, 3" AACCGATCTGTGTATAGTGAC-
AGG; 5’CCTGGGTCACTATTTACACAGGGATCGTTC.

Results
In order to investigate the BM samples of the AML patients for JCK mutations, we
initially used the procedure as described by Flasshove ef al (18). Shortly, total RNA was
isolated, converted to cDNA In a reverse transcriptase reaction and the JCK ¢cDNA PCR
amplified using Tag polymerase and two primers, flanking the 4CK coding sequence as
described in the Methods section. The single PCR product of 884 base pairs, that could be
detected in all samples, was cloned into pCRIT (TA cloning kit). From 21 diagnostic
samples and 25 relapse and/or refractory disease AML patients BM samples, both strands
of at least three clones of each sample were completely sequenced. In the diagnostic
samples, 33 different point mutations were found (12 silent and 21 giving rise to amino
acid substitutions) and in the relapse samples 61 mutations were found (15 silent and 46
giving rise to amino acid substitutions). Some dCK inserts contained no mutations at all
whereas others, derived from the same patient sample displayed multiple mutations.
Also, mutations found in diagnostic samples were not present in relapse samples of the
same patient, and vice versa. The large number of silent mutations that can not give rise to
altered dCK enzymatic activity and as a consequence can not give rise to Ara-C resistance,
and the abundant number of randomly found mutations was suggestive for experimental
artifacts
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‘Fable 2, Cumulative drug doses in the treatment protecols for acute myeloid leukemin

Arm-C DNR  Adria  Amsa Ida VPG Mitox Pred 6-TG VCR CPH CsA
Induction
HOVON d4/4A 13400 135 360 500 50
HOVON 29+ §3400 360 36 500 S0
DCLSG ANLLE7** 22400 180 120 1050 1120 2580 [ 0G0
DCLSG ANLLO4** 33400 120 36 950 20 1120 2520 6 1000
Reinduction
EOQRTC 9 6600 20 50
HOVON 30 500 50 Smg/ky

(Totat cumulative dose in mg/m?). Ara-C; eylosing arabinoside; DNR; daunorubicine; Amsa: amsacrine; 1da; jdarubicing; VIP16: ctoposide; Mitox: mifoxantrone; Pred: prednisolone; 6 TG
6-tioguanine; VCR: vincristing; CP: cyclophosphamide; *: In HOVON 29 patients were randomized to receive +/- GCS¥F; **; + 5 x inimthecal Ar-C; BMT: bone marrow

transplant (allo and/or autofogous); CsA: eyclosporine A,
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Therefore, to adjust our procedure, we used another thermostable DNA polymerase that, in
contrast to Tag DNA polymerase, possesses 37 to 57 exenuclease preofreading activity
enabling the polymerase to correct nucleotide incorporation errors. Secondly, we used a
direct method to sequence the amplified PCR product. We attempted to use high-fidelity
Pfiy DNA polymerase but were unable to reliable amplify dCK cDNA. These problems
were solved using the Expand High Fidelity PCR System (Roche), which uses a mixture
of Tag and Pwo DNA polymerase and which displays proof-reading activity.

The modified procedure, i.e. the direct sequencing of dCK ¢DNAs obtained by RT-PCR
from 31 paired patient samples, revealed no mutations in any of the 62 samples. So, none
of the previously described mutations by Flasshove, involving the codons 20, 93, 98, 99
and 154 were found, nor the silent mutations in codon 42 and 86 (18). Also, other
mutations that have been described in cell lines {13) were not found in our group of
patients.

Discussion
In a group of 31 patients, in which the classical MDR1 phenotype was not upregulated at
time of relapse/refractory disease as compared to diagnosis, we performed a sequence
analysis of the CK ¢DNA in order to screen for mutations including ones that were
previously found to be associated with low or absent dCK activity (13,18). To our
knowledge this is the largest group of AML patients that has been investigated for JCK
mutations, and the first group with a respectable number of sequential samples. Using the
method which has been described by Flasshove ez al. (18), including a RT-PCR procedure
using Tag polymerase, followed by cloning of the amplified fragment and sequencing of
independent clones, we found a large number of random mutations in 21 diagnostic and 25
relapse/refractory AML samples. The large number of random ‘mutations’ prompted us to
omit the cloning step from our procedure and to perform a direct sequence method on the
PCR product. In addition. we used a thermostable DNA polymerase mixture, that is less
prone to errors. Using this method, we did not find any of the previously described
mutations (13,18) at diagnosis or at relapse. The abundant number of mutations we found
in the method used by Flasshove is most likely due to the relatively low fidelity of the Tag
polymerase. Our results do rise the question whether the 7 mutations found by Flasshove
in 16 AML patients were true mutations, as the presence of the mutations are not
confirmed at the genomic level and in only one of them a lowered dCK activity was found.
The resulis of our present study indicate, that CK mutations are not of major importance
for Ara-C resistance in AML patients.
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Several studies showed that a decreased dCK activity was not associated with mutations in
the dCK gene. A study performed by Kobavashi er al did not reveal mutations in the
human Ara-C resistant cell line KY-RA (22) mutations in the ¢cDNA coding region.
Stammler er al. showed that pediatric ALL patients at diagnosis were more susceptible to
relapse if dCK expression was low, but they did not find any mutations in the dCK gene
(23). Kakihara er al. reported a great variability of JCK gene expression in a lumited
number of ALL and AML patients at diagnosis. In two patients that were investigated both
at diagnosis and at relapse a lower JCK mRNA expression at relapse as compared to the
diagnostic state was observed. No dCK point mutations were found in this study (24).
Martincic ef al. studied 7 leukemic samples, in which 5 showed Ara-C resistance in vitro.
Four of the 5 leukemic samples showed decreased levels of JCK mRNA levels with semi-
quantitative PCR. Using dideoxy fingerprinting (ddf) of the full-length JCK coding
sequence, they did not find any mutations (25).

As dCK is the rate limiting step in the phosphorylation cascade towards Ara-CTP, it
remains an interesting question, which biological mechanism is respomsible for the
lowered or absent dCK activity in several of the above mentioned studies in which no
mutations were found in the dCK gene. There 15 some evidence that in cell lines not
mutations, but hypermethylation of the cgeg boxes of the promoter region of the dCK gene
might be responsible for downregulation of dCK. However, in a study of eight Ara-C
resistant AML patients the 4CK 5° CpG islands were largely unmethylated (25). As the
dCK activity was not measured in these patients, the direct effect of a variegated
methylated promoter region of the JCK gene is not established. Although other steps in the
Ara-C metabolism like lowered deoxycytidine deaminase (¢DD) activity, enhanced DNA
repair mechanisms or an impaired apoptosis pathway have been suggested to be of
importance in the mechanism of resistance to Ara-C, obviously, dCK plays a crucial role.
Recently, Veuger et al. described AML patients in which the resistant phenotype not was
associated with dCK mutations, but with the expression of alternative splice variants in
addition to the wild type dCK (26). The alternatively spliced transcripts, in which one or
more exons were deleted, were shown to code for enzymatic inactive proteins in virre (27).
In our study we did not amplify aberrantly spliced dCK variants.
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Based on our own results in a relatively large panel of paired clinical samples and reports

from the literature we conclude, that mutations in the dCK gene are scarce and not of

major irportance for Ara-C resistance in the development to resistant and/or refractory
disease in AML.
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Abstract

Resistance to chemotherapy in multiple myeloma (MM) and acute myeloid leukemia (AML)
is frequently cansed by multidrug resistance (MDR), characterized by a decreased
mtracellular drug accurmulation. MDR is agsociated with expression of P-glycoprotein (P-gp).
GF120918, an acridine derivative, enhances doxorubicin cell kill in resistant cell Jines, In this
study, the effect of GF120918 on MDR cell lines and fresh human leukemia and myeloma
cells was investigated. The reduced net intracellular thodamine 123 (Rho 123) accurmulation
in the MDR cell lines RPMI 8226/Dox1, Mox4, Dox6é and /Dox40 as compared with wild-
type 8226/5 was reversed by GF120918 (0.5 - 1.0 pM), and complete inhibition of
thodamine efflux was achieved at 1 - 2 pM. This effect could be maintained in drug-free
medium for at least 5 hours (h). GF120918 reversal activity was significantly reduced with a
maximum of 70 % in cells incubated with up to 100 % serum. GF120918 significantly
augmented Rho 123 accumulation in vitro in CD34- positive AML blasts and CD38-positive
multipel myeloma (MM} plasma cells obtained from 11/27 de nove AML and 2/12 refractory
MM patients. A significant correlation was observed between a high P-gp expression and
(GF120918 induced Rho 123 reversal (P=0.0001). Using a MRK 16/71gG2a ratio > 1.1,
samples could be identified with a high probability of GF 120918 reversal of Rho 123
accurmulation. In conclusion, GF120918 is a promising MDR reversal agent which is active
at clinically achievable serum concentrations.

Introduction

Resistance to chemotherapy in multiple myeloma (MM) and acute myeloid leukemia (AML)
is frequently caused by multidrug resistance (MDR), which is associated with expression of
P-glycoprotein (P-gp), a 170 kDa ATP-dependent membrane protein encoded by the MDR1
gene (1-6) and the multidrug resistance-related protein (MRP1). Increased expression of
MDRI mRNA or P-gp has been observed in hematological malignancies, including untreated
and refractory AML and refractory MM (1,2.4-9). Expression of P-gp by malignant cells is
associated with a decreased intracelluiar accumulation of anthracyclines and vinca alkaloids,
which is mediated through an enhanced transmernbrane efflux (1,10-15). In AML, P-gp
expression 18 assoclated with a lower probability to achieve a complete remission rate
{8,11,15-19). Several structurally unrelated, noncytotoxic agents, such as verapamil and
cyclosporine A (CsA) interfere with P-gp mediated efflux of cytostatic drugs in virro (20).
Some of these MDR reversal agents act by mhibition of the transmembrane drug transport
through competitive binding to the active site of P-gp (21). Jn vitro studies have shown that
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CsA and verapamil may completely restore the intracellular accumulation of daunorubicin
and/or doxorubicin in resistant cell lines and in fresh AME and MM specimens (12,13,19,22-
24). Recent clinical trials with verapamil and CsA added to standard chemotherapy suggest,
that MDR reversal in vivo may represent a potential approach to treat refractory patients with
MM and AML (25.26). Prospective phase III studies have now started in order to determine
the therapeutic value of such an approach. GF120918 (N-{4-[2-(1,2,3 4-tetrahydro-6,7-
dimethoxy-2-iso-quinelinyl)-ethyl]-phenyl }-9,10-dihydro-5-methoxy-9-oxo-4-acridine
carboxamide) is an acridine carboxamide analogue, which inhibits the transmembrane
transport function of P-gp. In contrast to several other modulating agents, the in viro
concentrations of GF120918 that are required to block P-gp mediated efflux, can be achieved
in vivo in animals (27). This property makes GF120518 a potential candidate for clinical trials
to modulate multidrug resistant cancers. Based on these in vitro data, we undertook a study to
clarify the conditions required for P-gp inhibition in cell lines. In addition, we examined the
effect of GF120918 in isolated tumor cells obtamed from patients with MM and AML, in
order to establish a minimum effective concentration required for clinical modulation of P-
glycoprotein with GF120918.

Materials and methods

Cell lines

For studies of MDR modulation, the sensitive multiple myeloma cell line, RPMI 8226/S
(8226/8) and its multidrug resistant derivative lines 8226/Dox 1 (Dox1), 8226/Dox 4 (Dox4),
8226/Dox 6 (Dox6) and 8226/Dox 40 (Dox40) were used, which were kindly provided by
WS Dalton (University of Arizona, Tucson, AZ, USA). 8226/Dox1, 8226/Dox4, 8226/Dox6
and 8226/Dox40 are cell lines of increasing resistance to doxorubicin and increasing levels of
P-gp, which have been selected through doxorubicin {(DOX) exposure. These lines are also
cross-resistant to mitoxantrone, vincristine and etoposide (28). 8226/Dox1, 8226/Dox4,
8226/Dox6 and 8226/Dox40 were cultured in the presence of 10, 40, 60 and 400 nM DOX,
respectively. DOX was dissolved in FIBSS at | me/ml, filtered sterile and stored as aliquots at
-20°C. Dilutions were made immediately before use.

All cell lines were cultured in DMEM (Gibco, Paisley, UK) with 20 mM Hepes (Gibeo), 10
% fetal calf serum (inactivated), 50 pg gentamycin/ml (Gibco) and 10 pg ciprofloxacin, a
non-P-gp transported quinolone (Bayer, Mijdrecht, the Netherlands) in 175 cm® flasks
(Falcon; Becton Dickinson, Mountain View, CA, USA) at 37°C in a fully humidified
atmosphere comprising 3 % CO- in air. Medium was changed twice a week. One day before
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the experiments, the cell medium was changed for medium without cytostatics.

MDR1/P-gp expression was examuned by two different assays, ie. firstly, P-gp expression
was determined by MRK 16 monocional antibody {Moab) staining in fresh, unfixed cells by
flow cytometry and secondly, the intracellular rhodamine 123 (Rho 123) retention ratio was
determined by measuring the ratio of Rho 123 in the presence/absence of GF120918 (29,30).
A RT-PCR of MDR! and MRP] mRNA was performed in all cell lines, in order to exclude
any interference of GF120918 with MRP1 (multidrug-resistance related protein), which is
also an active membrane transporter of doxorubicin.

MDR] expression

RNA was isolated by Trisolv extraction {Biotecx, Houston, TX, USA). Subsequently, RT-
PCR was performed for analysis of MDR]1 and MRP mRNA expression in all cell lines, in
17/27 AML and in 8/12 MM samples, using reverse transcriptase (Gibco/BRL) and Tag
polymerase (Promega, Madison, WI, USA) for 30 cycles 1 min, 90 <C, 2 min, 60°C, 1 min
72°C in a Hybaid thermocycler (Omnigen/Biozym, Landgraaf, The Netherlands). The MDRI1
and MRP] primer sets were according to Futscher er 2l (31). The presence of the PCR
products was visualized by gel electrophoresis.

P-gp expression

Bone marrow specimens and cell lines were washed in buffer (PBS supplemented with 0.2%
rabbit serum (Gibeo), 0.02% goat serum (Gibeo), 0.2% bovine serum albumin (BSA) and 2
mM sodium azide). Sera were inactivated for 30 min at 56°C. The samples were centrifuged
for 5 min at 650 g and the pellet was resuspended with 25 pl (2.5 pg) of the monoclonal
antibody MRK 16 (Hoechst, Amsterdam, The Netherlands), The cells were incubated at
room temperature for 60 min. The same amount of irrelevant IgG2a was added to the control
tubes. After washing, 50 pl 1:20 (volivol) diluted fluorescein isothiocyanate (FITC)-
conjugated rabbit anti-mouse Ig antiserurmn (Dakopatts, Glostrup, Denmark} was added and
cells were incubated for 60 min at 0°C. The cells were washed with washing buffer and 10 pl
of normal mouse serum (1:100) was added. In addition, in clinical specimens 10 pl of
phycoerythrin (PE)-conjugated anti-CD34 (AML specimens) or CD38-PE (MM specimens)
(Becton Dickinson) was added to the cells. To the control tubes 10 pl of IgGI-PE was added.
The tubes were incubated at 0°C for 45 min, then washed with washing buffer and
resuspended in 0.5 ml PBS containing sodium azide. Fluorescence was analyzed by flow
cytometry using a FACScan (Becton Dickinson). The ratio between the MRK 16 and IgG2a
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fluorescence was calculated, as this accounts for a measure of P-gp positivity (32).

Rhodamin 123 assay

To establish a dose-effect curve, GF120918 (Glaxo, Research Triangle Park, NC, USA) was
prepared as a 2.5 mM solution in methanol/HC] 0.1 N (4:1) and stored as aliquots at -30°C.
Dilrtions were made in medium immediately before use. Rho 123 (Eastman Kodak, New
York, USA) was kept as a stock solution of 2 mg/ml in ethanol 99 % at 4°C in the dark.
Immediately before use, a fresh working solution was made by diluting the stock 1 : 100 in
phosphate buffered saline (PBS). After suspending the cells at 1x10%ml in DMEM
containing 10 % FCS, GF120918 was added at various concentrations and Rho 123 at a final
concentration of 200 ng/ml. The cell lines were incubated for 120 min, followed by washing,
after which the suspensions were incubated for 120 min under the same conditions, vet
omitting Rho 123. Samples were taken and immediately transferred to FACS tubes
containing 2 ml PBS/sodium azide. The tubes were centrifuged for 5 min at 650 g, PBS was
decanted and 0.5 ml fresh PBS containing 2 mM sodium azide was added. Intracellular 123
accumulation was measured using FACScan (Becton and Dickinson). The accumulation of
Rho 123 was calculated as a function of GF120918 concentration. For comparison, the
procedures described above were performed with cyclosporine A (Sandoz, Basel,
Switzerland), which was kept as a 40 mM stock at 4°C.

The duration of the GF120918 effect was studied by adding Rho 123 at 200 ng/ml either with
or without GF120918 (2 puM) to 8226/Dox40 or 8226/S in medium. Samples were taken at
several times, starting at 0 min. After 120 min, the cells were washed with medium and Rho
123 was added. Then GF120918 was added at the same concentration and in control tubes
medium only was added. Incubation continued for 5 h and samples were taken at several
times. All samples were immediately added to FACS tubes containing 2 ml of PBS/azide. All
samples were washed at 630 g for 5 min and resuspended in 0.5 mi PBS/azide. Intracellular
Rho 123 accumulation was measured using a FACScan.

Ejfect of Protein binding

To determine the effect of protein binding on GF120918, the 8226/Dox40 cell line was
incubated in PBS containing 4.5 g glucose/l, GF120918 (1.0 uM), Rho 123 (200 ng/ml) and
0, 0.10, 0.25, 0.50, 1.0, 5.0, 10.0, 25.0, 50.0, 75.0, or 100 % fetal calf serum (FCS). After
incubation for one hour, the cells were washed with PBS, centrifuged at 650 g for 5 min and
resuspended. The incubation continued in the above described suspension, omitting Rho 123.
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After a 90 min incubation, 2 ml PBS/2 mM azide was added, cells were washed, centrifuged
at 630 g for 10 min and resuspended in 0.5 mi PBS/azide. The intracellular Rho 123
accumulation was measured using the FACScan.

Patient tumor specimens

After informed consent, bone marrow aspirates from 27 patients with acute myeloid leukemia
and 12 patients with multiple myeloma were obtained. Twentyfive of 27 AML patients had
untreated, de nove AML. Two patients were sampled at the time of relapse after prior
treatment with daunorubicin/cytarabine. Twelve MM patients were studied, Ze. 7 with VAD-
refractory disease and 5 with untreated myeloma. Leukocytes were separated by density
grade centrifugation using Lymphoprep (Nycomed Pharma, Oslo, Norway) and the
remaining blasts or plasma cells were washed with Hank's Balanced Salt Solution (HBSS;
Gibco). The cells were cryopreserved in freezing mixture (10% DMSO, 10% FCS in HBSS)
using a temperature controlled freezer (Kryo 10; Planer Biomed, UK) and were subsequently
stored in liquid nitrogen. immediately before use, the material was thawed in water and then
put on ice. The contents of the ampuls were transferred to a 50 ml Falcon tube and ice-cold
HBSS was added every minute to 9 minutes in an increasing volume, till a dilution of 1:9 was
reached. This suspension was centrifuged (5 min 650 g) and the pellet was resuspended in
DMEM containing 10 % FCS. Viability was checked with Trypan Blue. No difference of P-
gp expression or efflux was observed between fresh and cryopreserved AML/MM cells (12),

Accumulation studies in clinical specimens

The effect of GF120918 on P-gp blockade in human tumor cells was investigated in
cryopreserved, purified tumor cells which had a viability >935 % as checked by Trypan Blue.
Cells were washed at 650 g for 5 min and resuspended in DMEM contaiming 10% FCS to
concentrations of 5x10%ml. The suspension was transferred to 15 ml Falcon tubes and
incubated at 37°C, 5% CQx for 1 hour, either with or without GF120918. In this experiment,
concentrations were used that were derived from a concentration-effect curve of GF120918
determined in the 8226/Dox lines. Afier 1 hour, Rho 123 was added at a final concentration
of 200 ng/ml and a 2 hour incubation followed. Samples were taken and immediately
transferred to 12 x 75 mm FACS tubes containing 2 ml ice chilled phosphate buffered saline
(PBS) containing 2 mM azide and 0.1% BSA. Intracellular Rho 123 was measured using the
FACScan.
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FACScan analysis

Analysis of P-gp expiation in clinical samples was performed by staining with MRK 16 in
fresh cells using flow cytometry (FACScan; Becton Dickinson). All analyses were done in
tumor cells by selecting those cells with a lineage specific epitope, f.e. CD34 in AML cases
and CD38 in myeloma cases. Excitation was done at 488 nm and floorescence was measurad
at 515-545 nm (green fluorescence: MRK 16-FITC and Rho 123) or 563-607 nm (red
fluorescence: CD34-PE and CD38-PE). Both FITC and PE fluorescence signals were
logarithmically amplified. Backeground autofluorescence was determined by measuring the
fluorescence of cells not exposed to Rho 123 and subtracted from the signal (33). Each
analysis was performed on 5000 cells. Rho 123 accumulation was determined by taking the
mean channel fluorescence of the CD38+ plasma cells (MM) or CD34+ myeloblasts (AML)
using the analysis program PCLysis (Becton Dickinson). In order to prevent background
fluorescence of PE in the Rho 123 fluorescence, the settings of the signal amplifiers was
adapted for each sample individually, as described before (12). Analysis of MRK 16
fluorescence and Rho 123 fluorescence in control cell lines was performed in unselected
cells, with the same settings of the flow cytometer, such that 8226/3 and 8226/Dox40 cells
were used to calibrate the amplifier.

The data presented are based on three different experiments performed at different occasions,
of which the median value is given.

Results

RT-PCR

MDR1 mRNA was present in the RPMI/8226 Dox40 cell line, but not in the parental cell iine
8226/S (Figure 1). No MRP1 mRNA levels above backeround were found in the
8226/Dox40 as compared with the sensitive parental cell line, indicating that MRP expression
was not increased in these resistant cells (results not shown).

Dose-effect

The effect of different concentrations of GF120918 on Rho 123 accumulation in cell lines is
shown in Figure 2. The concentration of GF120918 required for restoration of intracellular
Rho 123 fluorescence was different between the cell lines depending on the degree of
resistance. In Table 1, the concentrations of GF120918 that induced a platean of the

intracellular Rho 123 retention are presemted. The results are compared with equimolar
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concentrations of cyclosporine A. In all resistant cell lines, the effect of GF120918 reaches a

plateau at 2 pM, showing no additional increase even in highly resistant cells up to 10 uM of
GF120198.

Marker

1 MQ

2 RPM1822/S

3 RPM18226/Dox40
4 KB 3-1

5KB8

6 KB 8-5

7 KB V-1

Marker

Figure 1. RT-PCR gel of MDR1 of MDR cell Lines. The lanes were loaded with 10 1l of the reaction mix.
RPMIS226/S, Dox40 and KB 3-1, 8, 8-5 and V-1 were loaded in lane 2 to 7 respectively. In lane 1 primer mix
without template was loaded

Table 1. Modifyer activity of GF 120918 compared with cyclosporine A

Cell line Intracellular Rho 123  Concentration of GF Concentration of
fluorescence (AU) 120918 (um) for cyclosporine A (um}
maximurn medulation  for maximum
of Rho 123 retention modulation of
Rho 123 retention

8226/S 1108 no extra retention no extra retention
8226/Dox40 16 1 >3

AU, arbitrary units
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Figure 2. Dose-effect curve of GF120918 in 8226/8 and Dox resistant cell lines. Rho 123 fluorescence after two
hours of incubation and with different concentrations of GF120918 int the presence of 10 % FCS.

Accumulation/efflux curve

8226/DoxA0 cells which were incubated with GF120918 during the entire period of 300 min
accurnulated Rho 123 1n time. In separate samples, the cells were incubated with GF120918
for 120 min, after which it was omitted. In these cells, Rho 123 accummlation remained
constant during 180 min after GF120918 was omitted. Cells incubated without GF120918
showed no significant accumulation of Rho 123. However, when GF120918 was added to
these cells after 120 min, Rho 123 fluorescence increased, reaching the same plateau of cells
incubated with GF120918 during the whole period of time (Figure 3).

Influence of protein binding on GF120918

After incubation of the 8226/Dox40 cell line in PBS containing 0 - 100% FCS with 2 WM.
GF120918, the effect of protein on the intracellular Rho 123 accumulation was analyzed. P -
gp reversal by GEF120918 was reduced by 42% in the presence of 1% FCS. Higher pro tein
concentrations further reduced GF120918 activity by a maximum of 70% at 100% FCS
(Figure 4).
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Figure 3. Accumulation/efflux curve of Rho 123 ceil line 8226/D0ox40 was incubated with 2 pM GF120918 and
samples were taken at several times. Four different procedures were followed: incubation with GF120918 during
the entire period (A). incubation with GF120918 until ¢ = 120 min, ormission hereafter {{0), incubation without
GF120918 constantly (#) and incubation without GF120918 until 7= 120 min. hereafter with the drug {V).

Puatients

Twenty-seven cases of AML (25 de nove, 2 relapse AML) and 12 cases of MM (7 VAD
refractory, 5 untreated) were analyzed. MRK 16 was determined in the live-gated sub-
populations of tumor cells (plasma cells in MM samples; myelo blasts in AML samples) using
the FACScan flowcytometer. Fluorescence was expressed as the mean peak fluorescence. In
these tumor cells a significant relation between MRK 16 expression and the reversal of Rho
123 accumulation by GF120918 is observed (Figure 5). The level of P-gp expression, as
quantified by the MRK 16 peak channel fluorescence correlated with the modulation effect
by GF120918 in patient samples (Spearman correlation coefficient, 0.87, with a two -sided P
value <0.0001). In 23/27 patients with AML and 6 of 12 with MM, the MRXK 16/IgG?a ratio
was greater than 1.1 which is consistent with increased P -gp expression as compared with
vahies observed in normal blood cells. Seven VAD refractory MM patients had a high MRK
16/1g(G2a ratio, associated with P-gp expression on plasma cells.

MRP!1 expression above background levels was detected in 11/17 tested AML and in (/8
tested MM samples. Nine of 11 MRP1 -positive AML samples were also MRK 16 positive
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Figure 4. Effect of serum addition on GF120918 efficacy. The Rho 123 accumulation was determined after one
hour incubation with 1.0 uM GF120918 in PBS/glucose containing Rho 123 and increasing final concentrations of
fetal calf serum (FCS). The ratios of the fluorescence with/without GI'120918 were calculated {modulagon ratio).

(see below). Using the Spearman non-parametric test, no significant correlation was detected
between MRP and MRK 16 positivity, These clinical samples were analyzed to determine the
(GF120918 reversal ratio in those which had a MRK 16/1gG2a ratio > 1.1 (P-gp positive,
mean ratio: 1.72, n=29) as compared with the P -gp negative samples (MRK 16/Ig(32 ratio <
1.1, mean ratio: 0.94, n=8). These two groups had a significantly different reversal effect by
GF120918, as determined by Fisher exact test (two-sided P=0.005; odds ratio 10.57, with 95
% confidence interval 1.9-58.5). Reversal of modulation of Rho 123 accumudation by
(GF120518 was significantly higher in the P-gp positive group as compared with the P-gp
negative group (M + sem: 3.1 = 0.7 vs 1.1 £ 0.1, P = 0.02, two-sided Student’s t- test).
However, in 12/27 AML cases, as opposed to 2 of 12 myeloma cases significant reversal was
observed. This implies that reversal of the intracellular Rho 123 accumulation by GF120918
is restricted to MRK 16 positive tumor cells.
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Figure 5. MRK 16/IgG2a ratio and Rho 123 modulation by GF120918: The MRK 16/1gG2a ratio in CD34~+
blasts (AML, A) and CD38- plasma cells (MM. &) is compared with the thodamine modulation ratio by GF120918
in these cells.

Discussion

MDRI is a significant prognostic factor in unireated and relapse AML and in VAD-
refractory MM (8.11,14,15.24-26). Phase II studies have shown that reversal of P-gp
transmembrane transport function by so-called MDR modulating agents is feasible
(24.26,34,35). In vitro studies indicate that a complete restoration of the intracellular
accumutlation of anthracyclines and vinca alkaloids is pessible (9,12,13,19,23,24). Many
agents that are capable of restoring sensitivity to MDR-type cytostatic drugs, lack specificity
and therefore they canmot be used for clinical modulation of drug resistance.

GF120198 is a novel MDR modulating agent, which is active in several solid tumor cell lines
(27). In this study, we evaluated its effect in two hematological malignancies, ie. de novo
AML and refractory MM, which frequently have P -gp over expression.

From experiments investigating the effect of protein binding on the GF120918 efficacy, it
appears that increasing concentrations of protein in the incubation medium substantially
reduce the reversal of rhodamin efflux with a maximum of 70% in full serum. In the present
studies experiments were always performed in the presence of 10% fetal calf serum (FCS).
Although at this serum concentration absolute inhibition of GF120918 activity is observed to
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some extent, the ratio between GF120918 treated and control cells only diminishes from
serum concentrations of 25% and over. However, these observations imply that the MDR1
reversal by GF120918 in vive will be substantially affected by protein binding, and that
dosing strategy of future clinical trials has to take into account the effect of protein binding of
the drug.

In the sensitive cell line 8226/S and resistant Dox1, Dox4, Dox6 and Dox40, a dose-effect
curve of GF120918 was established using Rho 123 ag fluorescent probe for P-gp. The effect
of GF120918 increased as the dose increased, until a plateau was reached at I uM. However,
the level to which the intracellular Rho 123 accumulation could be restored, was different
between cell lines of increasing resistance. Asswiing a 30% reduction of the GF120918
effect in vive by serum protein binding, it would therefore be appropriate to achieve a blood
concentration greater than 1-2 pM GF120918 in order to attain an optimal reversal in clinical
studies.

In this study we attempted to evaluate if GF120918 is capable of reversing MDRI in tumor
cells from patients with acute leukemia and multiple myeloma, which may also express
alternative mechanisms of drug resistance besides MDR 1. In these specimens, we attempted
to analyze the effect of GF120918 in specific subsets of cells, i.e., those with lineage specific
markers such as CD34 (acute myeloid leukemia) and CD38 (multiple myeloma), thereby
reducing the likelihood of analyzing non-malignant bone marrow cells. In both tumors, there
was a correlation between the MRK 16/1gG2a ratio of the tumor cells with the Rho 123
modulation by GF120918. Based on the MRK 16/1gG2a ratio, two groups could be identified
with a high vs low probability that GF120918 reverses Rho 123 accurnulation. Thus, a MRK
16/IgG2a ratio greater than 1.1 could potentially be used to identify patients who could
benefit from a GF120918 reversal effect. Recently, MRP1 has been designated as an
alternative drug-efflux pump in refractory tumor cells. Also in our study, several clinical
AMI. samples expressed MRP1 alone or both MRP1 and MDRI. No correlation between
MRP!I and MDRI expression was observed. However, the number of samples is limited, and
does not allow conclusions about a possible effect of GF120918 on MRPI mediated efflux.
From the experiments performed in cell lines we conclude that after saturation with 1-2 uM
of GF120918, the inhibitory activity lasts for at least 5 hours in 8226/Dox40. These data also
suggest that in clinical trials of GF120918 a dosing schednle of three to four times daily,
resulting in trough blood level of 1-2 uM could be appropriate.
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GENERAL DISCUSSION

General discussion

The major cause for treatment failure in acute myeloid leukemia {AML) is pre-existent or
acquired resistance to chemotherapy. In the past two decades, clinical resistance to
chemotherapy has been found to be assoclated with the expression of (membrane)
transport associated drug resistance proteins like P-glycoprotein (P-gp), encoded by the
multidrug resistance (MDR1) gene, multidrug resisiance related protein (MRP1), lung
resistance related protein (LRP) or major vault protein (MVP). Recently, the novel drug
resistance protein ‘breast cancer resistance protein’® (BCRP) has been described. The
results of our and several other studies that reported about the correlation between clinical
resistance and the expression of these resistance proteins induce some arguments. First of
all, this study underscores the value of studies in paired purified clinical samples of AML
patients at diagnosis and relapse. One of our studies showed that comparing paired
samples gave an insight in the clonal evolution of AML towards resistant or refractory
disease. which was found not to be MDR] gene related and revealed no P-glycoprotein
upregulation at time of relapse as compared to diagnosis. In contrast, in previous reports,
MDRI1 expression was suggested to be upregulated at time of relapse or refractory
disease in some studies of non-paired AML samples, and in cell lines studies, in which
multidrug resistance phenotypes are upregulated after exposure to chemotherapeutic
agents. The question remains what mechanisms are responsible for the higher clinical
resistance levels of relapsed and refractory AML. Further studies described in this thesis
showed that MRP] and LRP/MVP were not upregulated at RNA level in relapsed AML
as compared to diagnosis, again in paired analyses. Considering the fact that Ara-C in the
most powerful drug in AML, we also investigated the JCK gene which encodes
deoxycytidine kinase (dCK), the rate limiting enzyme in the metabolism of Ara-C. No
mutations in this gene were found during the clonal expansion of AML cells to resistant
disease, suggesting that JCK mutations do not play the important role in relapsed or
refractory AML as has been suggested in previous reports.

However, we found that BCRFP was upregulated in AML patients at time of
relapse/refractory disease. Until now, it was not clear what role BCRP might play in
clinical resistance in AML. Results of studies investigating the prognostic value of BCRP
in AML are not available as yet. The upregulation of BCRP mRNA in our study was not
correlated with an increase of any of the other resistance proteins at time of
relapse/refractory disease. Interestingly, Leith ef al. deseribed a distinct subgroup which
demonstrated cyclosporine resistant efflux that was not correlated with MDR1, MRP1 or
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LRP/MVP expression, in a large study of adult AML patients. They suggested that the
existence of another as vet undefined efflux mechanism might exist in adult AML. BCRP
is a candidate protein, that might contribute to this resistance phenotype, The BCRP gene
is evolutionary distinet from the families that encode P-gp and MRPI, being on a
completely separate limb of the phylogenetic tree. In contrast to the MDR1 and MRPI
gene it encodes a protein which is a half-transporter molecule requiring homo-
dimerization in order to function. These facts might suggest a unique and probably
complementary role for BCRP among the other resistance proteins. The fact that BCRP in
normal tissue is quite distinctly expressed from P-gp and MRP1 might underscore this.
Although P-gp expression in de nove AML is accepted as a poor prognostic factor for
complete remission (CR) and survival in adults, it is still not clear whether this is also
true for childhood AML. Studies of MDR1 but also MRP1, LRP/MVP and BCRP in large
cohorts of children are not available as yet. Theoretically, differences in prognosis of
childhood AML as compared to adults might be related to the differences in expression of
(one of) the drug resistance proteins. Studies in the elderly age group have already
pointed out the relationship between age and MDRI expression. The increase in P-gp
expression per decade of age is related to the decrease in prognosis, independently from
other prognostic factors. At the moment the biologic mechanism which is responsible for
the correlation between age and drug resistance is not fully understood. Comparing
children and adults, the difference in incidence of certain cytogenetic and
immunophenotypic features might partly explain the difference in outcome, in addition to
the differences in treatment protocols, performance state, tolerance, combination with
other diseases, cellular resistance and pharmacokinetics in the different age groups.

As the MDR]1 gene is located on chromosome 7¢21.1. not far from the breakpoints of the
chromosome in several patients with 7q21, we hypothesized that MDR1 expression
played a role in the poor prognostic subgroup of AML patients with partial or complete
loss of chromosome 7. However, no increase in P-gp expression was found in this group
of patients. On the other hand, interestingly, in monosomy 7 patients we did not find a
downregulation of MDR1 if one allele was lost. This finding suggests an upregulation of
the other remajning MDR1 homologue. This is consistent with the fact that the CpG
islands of the promoter region of the MDR1 gene were all unmethylated. Untl now, it is
not known what mechanism is responsible for the poor prognosis in patients with a
deletion of chromosome 7.
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In de nove AML patients, our study confirmed the report of Ross et al. who suggested co-
expression of MDR] and BCRP. This finding needs confirmation in larger cohorts of
AML patients. However, co-expression may well account for the rather disappointing
results of clinical MDRI specific modifier studies that have been reported so far, which
follow the promising in vitro modifier studies performed in the past. Clinical studies with
modifying agents like GF 120918 might be important for the future, because of the
blocking capacity of both ABC transporter proteins. More studies are needed to identify
the specificity, substrate identity, inhibitors, and {co-) expression of the several drug
efflux pumps causing multidrug resistance in AML before we can fully explore the
potential of trapsporter-specific modulators to improve clinical outcome. Also, it is
important to point out that, apart from membrane transport related drug resistance
proteins, other drug resistance mechanisms for cytostatic drugs like cytosine-arabinoside,
thiopurings, asparaginase are important for the full understanding of clinical dmg
resistance in acute myeloid leukemia.



Summary

Acute myeloid leukemia (AML} is a clonal disease in which immature hematopoietic
cells in the bone marmrow do not mature to normal blood cells. Accumulation of these cells
replaces normal hematopoiesis which causes anemia, thrombocytopenia and increased
risk of infection. Without treatment AML is a fatal disorder.

Treatment of AML consists of cytostatic or chemotherapeutic agents, often foliowed by
bone marrow transplantation. After treatment with chemotherapy, bone marrow
evaluation in most patients does not reveal leukemic cells anymore. This is called
complete remission (CR). Even though in most patients a recurrence or relapse of the
disease occurs. Relapsed AML is difficult to cure with chemotherapy. In the last decades,
AML has shown to be a heterogeneous disease. A number of subgroups of AML have
been identified which reflect prognrostic subgroups. Characterization of these subgroups
is mainly determined by age and cytogenetic abnormalities of the leukemic blasts.
Treatment failure in AML is associated with the presence or development of resistance to
several chemotherapeutic agents. This phenomenon is called multidrug resistance
(MDR). Several mechanisms of multidrug resistance have been investigated in the past.
This thesis describes studies involving the clinical relevance of multidrug resistance in
patients with AML at diagnosis and relapse.

In chapter 1 the drug resistance proteins that have been investigated in this thesis are
discussed. P-glycoprotein (P-gp) is the protein which is encoded by the MDR1 gene,
which is localized on chromosome 7q21.1. This is usually called ‘classical” MDR. P-gp is
a transmembrane protein which transports drugs outside the cells, resulting in a
diminished accumnulation of chemotherapy in leukemic cells. Two other transmembrane
muitidrug resistance proteins are the multidrug resistance-related protein (MRP1),
encoded by the MRP1 gene on chromosome 16p13.]1 and the recently described breast
cancer resistance protein (BCRP) encoded by the BCRP gene on chromosome 4922, In
contrast, the lung resistance related protein (L.RP), which gene is localized on 16p13.2, is
an intracellular protein of which the exact structure and function are not known as yet. In
chapter 1 the prognostic value of these drug resistance proteins is discussed.

One of the most powerful drugs in the treatment of AML is cytosine-arabinoside (Ara-C).
Ara-C is an effective drug which inhibits DNA replication. during the S-phase of the cell
cycle. Resistance to Ara-C is not regulated by multidrug resistance proteins. Mechanisms
of Ara-C resistance in AML are discussed in chapter 1.

In chapter 2 a study of the prognostic value of the expression of P-glycoprotein (P-gp) in

leukemic blasts in bone marrow smears in de novo AML is presented. Expression of P-gp
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has shown to be an independent prognostic factor for complete remission (CR} and long
term survival in a multivariate analysis.

In the next studies we investigated MDRI1 and the other resistance proteins in paired
analyses of AML patients as their disease evolved from diagnosis to refractory/relapsed
disease. From cell line studies it is known that exposure of AML blasts to chemotherapy
induces MDR1 expression. Translated to clinical settings it was suggested that at relapse
a more resistant clone is selected, associated with a higher expression of multidrug
resistance proteins. However, in a paired analysis of diagnostic and relapse samples of
AMIL patients we did not find MDR1 gene related clonal selection (chapter 3). Expression
studies, using specific antibodies for P-gp and functional assays, using a rhodamin
retention assay with or without a P-gp specific modulator confirmed this. In consecutive
studies we analyzed the role of the other drug resistance genes in relapsed AML. We
showed that the expression of MRP1 and MDR1 is not different at relapse as compared to
diagnosis. The expression of LRP even decreases at relapse. Only BCRP expression was
expressed at a higher level at relapse as compared to diagnosis (chapter 4). At diagnosis a
co-expression between MDR1 and BCRP was found, but not between any of the other
genes mvolved, This co-expression may be important in the future for further studies of
modifyers that do not only block P-gp but also BCRP, like the compound GF 120918,
which 1s described in chapter 7.

The cytostatic drug Ara-C is being phosphorylated in the cell to Ara-CTP. This Ara-CTP
competes with the incorporation of the natural counterparts, the nucleotides, in the DNA.
Incorporation of Ara-CTP inhibits DNA replication. The rate limiting step in the
formation of Ara-CTP is the phosphorylation of Ara-C to Ara-CMP which is catalyzed by
deoxycytidine kinase (dCK). As in the past some reports have been made on the
correlation between mutations in the dCK gene and decreasing dCK activity, we
investigated the role of dCK mutations in relapsed AML. In chapter 6, we describe that
this mutation was not found in our patient, We conclude that 4CK gene mutations do not
seem to play a major role in Ara-C resistance in AML.

One of the subgroups of AML which has a very poor prognosis is the group of patients
with partial or complete monosomy 7. Because of the fact that the MDR1 gene is located
on chromosome 7 we wondered whether the poor prognosis was associated with altered
MDR1 expression in a group of —7/7q- patients as compared to a group of AML patients
with normal chromosomes 7. In chapter 5 we report that the loss of chromosome 7 1s
random in monosomy 7 patients. For these studies we used a polymorphism of the MDR]
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gene. P-gp expression was not elevated in the poor prognostic --7/7q- group of patients,
which suggests that MDR1 expression does not play an impoertant role in the resistance of
patients with partial or complete monosomy 7.

In chapter 7 the results of this thesis are discussed. Emphasis is made on the fact that in
contrast to adults AML, childhood studies on the clinical and prognostic value of drug
resistance proteins are not available as yet. Also, we focussed on the potential impertance
of the nove! drug resistance protein BCRP, which may contribute to clinical resistance in
AML especially at time of relapse, and which may be an important target for future
modulator studies in AML.



SAMENVATTING

Samenvatting

Acute myeloide leukemie (AML) is een vorm van kanker waarbij onrijpe bloedvormende
cellen in het beenmerg niet uitrijpen tot normaal functionerende bloedeellen en
ongecontroleerd defen. Door ophoping van deze onrijpe leukemie cellen wordt de
normale bloedcel-vorming  verdrongen wat leidt tot bloedarmoede, verhoogde
bloedingsneiging, en stoornissen in de afweer tegen infecties. Zonder behandeling is dit
een fatale aandoening.

De behandeling van AML bestaat uit het toedienen van celgroei remmende middelen, ook
wel cytostatica of chemotherapeutica genoemd, eventueel gevolgd door beenmerg
transplantatie. Na chermotherapie worden bij het merendeel van de AML patienten geen
leukemie cellen meer in het beenmerg of bloed aangetoond. Men spreekt dan van het
bereiken van een complete remussie (CR). Desondanks treedt er bij het merendeel van
deze patienten toch terugkeer, ofiewel ¢en recidief, van de ziekte op. Een recidief AML is
met cytostatica minder goed te behandelen. Inmiddels is in de afeetopen jaren bekend
geworden dat AML een heterogene ziekte is, dat wil zeggen dat er een aantal subgroepen
van AML zijn te onderscheiden, die een al of niet grotere kans op overleving (betere
prognoss) hebben. De prognostische subgroepen worden met name bepaald door de
leeftijd van de patient en de aanwezigheid van chromosomale afwijkingen in de leukernie
cellen.

Het falen van chemotherapeutische behandeling kan veroorzaakt worden door het bestaan
of ontwikkelen van ongevoeligheid voor verschillende vormen van cytostatica. Dit
phenomeen noemen we multidrug resistentie (MDR). Verschillende mechanismen van
multidrug resistentie zijn te onderscheiden. In dit proefschrift wordt beschreven wat de
klinische relevantie is van multidrug resistentie in patienten met AML bij diagnose en
recidief.

In hoofdstuk 1 worden de in dit proefschrift onderzochte multidrag resistentie eiwitten
besproken. Het MDRI1 gen, gelegen op chromosoom 7g21.1, codeert voor het eiwit P-
glycoproteine (P-gp). Deze vorm van MDR wordt ook wel de klassieke MDR gencemd.
P-gp is een eiwit in de celmembraan wat in staat is cytostatica uit de cel te transporteren,
zodat deze hun werking niet optimaal kunnen doen. Twee andere transmembraan eiwitten
die hier op lijken zijn het multidrug resistance-related protein (MRP1), gecodeerd door
het MRP1 gen op chromosoom 16pl13.1 en het recentelijk beschreven breast cancer
resistance protein (BCRP), gecodeerd door het BCRP gen op chromosoom 4q22. Een
ander resistentie eiwit wat zich in de cel bevindt, en waarvan de structuur en exacte
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fonctie nog niet bekend zijn, is het lung resistance-related protein (LRP), gecodeerd door
het gen op chromosoom 16p13.2. Naast de beschrijving van deze eiwitten wordt tevens
de prognostische waarde van de expressie van deze eciwitten in AML patienten
uiteengezet. Eén van de meest krachtige medicijnen tegen AML is cytosine arabinoside
{Ara-C). De resistentic mechanismen voor Ara-C in relatie met AML worden besproken
in hoofdstuk 1.

Uit ons onderzoek beschreven in hoofdstuk 2 blijkt dat de expressie van P-gp bij diagnose
een onathankelijke veorspellende waarde heeft voor het bereiken van complete remissie
(CR) en lange termijn overleving bij AML patienten. We hebben ons afgevraagd wat er
gebeurt met de expressie van MDRI en de andere resistentie elwitten op het moment dat
de AML recidiveert. Vanuit laboratorium onderzoek met cellen die oorspronkelijk
afkomstig zijn van kanker patienten die daarna zijn doorgekweekt (cellijnen) blijkt
namelijk, dat er een verhoogde expressie van MDRI1 is, naarmate er meer en/of
langduriger chemotherapie aan toe gevoegd is. Vertaald naar de kliniek zou dit kunnen
betekenen dat bij recidief AML patienten er een meer resistente groep cellen (kleon)
uitgeselecteerd wordt die op basis van de verhoogde expressie van resistentie eiwitten
minder gevoelig wordt voor chemotherapie. In een groep AML patienten die we bij
diagnose én recidief (gepaarde analyse) hebben onderzocht, vonden we echter dat er geen
sprake was van MDR] gen gerelateerde klonale selectie (hoofdstuk 3). Onerzoek nar de
expressie van het eiwit P-gp zelf en de functie hiervan bevestigden deze bevinding.
Vervolgens werd onderzocht welke rol de andere resistentie genen spelen in het geval van
een recidief. Hierbij werd gevonden dat MRP1 expressie, evenals MDR1 expressie niet
verhoogd is byj recidief, LRP expressie zelfs afneemt en alleen BCRP expressic toeneemt
bij recidief (hoofdstuk 4). Tevens werd bij diagnose een samenhang (co-expressie) in
expressie gevonden tussen MDR1 en BCRP maar niet tussen de andere resistentie genen.
Deze co-expressie is belangrijk omdat het de basis kan vormen voor verder onderzoek
naar modulatoren die niet alleen P-gp maar ook BCRP blokkeren, zoals de stof
GF120918 waarvan in hoofdstuk 7 de modulerende werking wordt beschreven.

Het cytostaticumn Ara-C wordt, als het in de cel is opgenomen in een aantal fosforylatie
stappen omgezet tot Ara-CTP. Dit Ara-CTP gaat een competitie aan met de natuurlijke
inbouw van DNA bouwstenen, waardoor de DNA replicatie afgeremd wordt. De
belangrijkste stap in de fosforylering van Ara-C tot Ara-CTP wordt geregeld door het
enzym deoxycytidine kinase (dCK), wat Ara-C omzet in Ara-CMP. Omdat er in het
verleden een relatie is gelegd tussen afwijkingen, mutaties in het dCK gen en verlaagde
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dCK activiteit werd met behulp van een gepaarde analyse in beenmerg van diagnose en
recidief van AML patienten, gezocht naar dergelijke mutaties. In hoofdstuk 6 wordt
beschreven dat deze mutaties door ons echter niet werden aangetroffen bij diagnose en
met name niet in de recidief monsters, op grond waarvan geconcludeerd wordt dat
mutaties in het 4CK gen geen belangrijke rol spelen voor Ara-C resistentie in AML.

Eén van de zeer moeilijk behandelbare subgroepen met AML is die met de chromosoom
afwijkingen monosomie 7 waarbij én volledig chromosoom 7 verdwenen is, en 7g-
waarbij een deel van een chromosoom 7 verdwenen is. Aangezien het MDR1 gen op
chromosoom 7 gelegen is, was de vraag of de slechte prognose van deze patienten
samenhangt met MDR expressie en wat er gebeurt met het MDR1 gen in deze patienten.
In hoofdstuk 5 wordt beschreven dat het verlies van het betreffende AMDR1 allel,
gebrutkmakend van een genetisch polymorphisme voor het MDR]1 gen, willekeurig is.
MDRI1 expressie was niet verhoogd in de groep —7/7¢- patienten in vergelijking met een
controle groep AML patienten met twee chromosomen 7, hetgeen er op wijst dat MDRI1
expressie in deze patienten geen belangrijke rol speelt, bij de slechte prognose.

In hoofdstuk 8 volgt een discussie van de resultaten van het onderzoek zoals dit
beschreven is in dit proefschrift. Hierbij wordt met name vermeld dat in tegenstelling tot
bij volwassenen met AML, over de prognostische waarde van deze resistentie eiwitten bij
kinderen met AML nog bijna niets bekend is. Tevens wordt benadrukt dat het meest
recent beschreven resistentie eiwit BCRP, een belangrijke bijdrage zou kunnen leveren
aan klinische resistentie van AMI en een belangrijk doelwit zou kunnen zijn bij
interventie studies met modulatoren van multidrug resistentie.



List of frequently used abbreviations

ABC transporters ATP-binding cassette protein.

ABCP placental ABC transporter

ABMT autologous bone marrow transplantation
ALL acute lymphoid leukernia

Ala alanine

AML acute myeloid leukemia

ARA Anthracycline resistance-associated protein
Ara-C cytosine arabinoside

Ara-CMP cytosine arabinoside monophosphate
Ara-CDP cytosine arabinoside diphosphate

Ara-CTP cytosine arabinoside triphosphate

ATP adenoside triphosphate

BCRP breast cancer resistance protein

BM bone marrow

BMT bone marrow transplantation

BSA bovine serum albumin

C cytosine

CD cluster of differentiation/cluster of designation
cDNA. complementair DNA, copy DNA

CF carboxyfluorescein

cMOAT canalicular multiorganic anion transporter (=MRP2)
CR complete remission

CsA cyclosporin A

dCk deoxycytidine kinase

dCTP deoxyeytidine triphosphate

DNA deoxyribonucleine acid

DNR daunomyscin/daunorubicin

DMSO dimmethylsulfoxide
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EFS event-free survival

FAB French-American-British cytomorphological classification of
acute leukemias

FCS fetal calf serum

FITC flucrescein isothiocyanate

FISH fluorescent in situ hybridization

FTC fumitremorgin C

G guanine

G-CSF granulocyte colony-stimulating factor

GM-CSF granulocyte macrophage colony-stimulating factor

G-v-H graft — versus - host

G-v-L graft — versus - Jeukemia

HLA Human leucocyte antigen

Ida idarubicin

IMDM Iscove’s modified Dubecco’s medium

-2 interleukine-2

v intravenously

kDa kilo Dalton

LRP lung resistance-related protein

MVP major vault protein

MDR multidrug reisistance

MDS myelodysplastic syndromes

MNC mononuclear cells

Moab monocional antibody

MOAT-D MRP3

MP monophosphate

MRD minimal residual disease

mRNA messenger RNA



MRP1-7 multidrag resistance related protein, subtype 1-7

MTT methyl tetrazolium bromide
MVP major vault protein

MXN mitoxantrone

MXR mitoxantrone resistance protein
NR non-responder

P53

P-170 P-glycoprotein

PB peripheral blood

PBS phosphate-buffered saline

PE phycoerythrin

P-gp P-glycoprotein

PkC protein kinase C

PR partial remission

RNA ribonucleine acid

RT-PCR reverse-transcriptase polymerase chain reaction
RD refractory disease

Ser serine

T thymidine

TdT terminal desoxynucleotidyl transferase
Thr threonine

TP triphosphate

VCR vineristine

VP16 etoposide

U uracil

WBC white bloed cell count
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