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Abstract

Maximal outerplanar graphs are characterized using three different classes
of graphs. A path-neighborhood graph is a connected graph in which every
neighborhood induces a path. The triangle graph T (G) has the triangles of
the graph G as its vertices, two of these being adjacent whenever as trian-
gles in G they share an edge. A graph is edge-triangular if every edge is in
at least one triangle. The main results can be summarized as follows: the
class of maximal outerplanar graphs is precisely the intersection of any of
the two following classes: the chordal graphs, the path-neighborhood graphs,
the edge-triangular graphs having a tree as triangle graph.

Keywords: maximal outerplanar graph, chordal graph, triangle graph, path-
neighborhood graph, elimination ordering
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1 Introduction

An outerplanar graph is a planar graph that has a plane embedding such that all
vertices lie on the outer cycle. A maximal outerplanar graph is an outerplanar
graph such that the number of edges is maximum. Another way to view a maximal
outerplanar graph is that it is the triangulation of a plane cycle. Because of their
simple and nice structure maximal outerplanar graphs, also known as MOP’s, have
attracted much attention in the literature. Many structural and computational
results are available, for a selection of the literature see [15, 2, 10]. This paper
involves characterizations of maximal outerplanar graphs in terms of three different
classes of graphs. The first class is that of the chordal graphs. They are well-known
and well studied: a graph is chordal if it does not contain an induced cycle of
length at least 4. They were introduced as rigid circuit graphs by Dirac [5], who
gave the fundamental characterization that chordal graphs are precisely the graphs
admitting a simplicial elimination ordering. The second class is that of the ‘path-
neighborhood graphs’, introduced in [12]: a path-neighborhood graph is a connected
graph in which every neighborhood induces a path. The third class involves triangle
graphs, introduced by [17], see also [6, 1, 13]. Let G be a graph. The triangle graph
T (G) of G has the triangles of G as its vertices, and two vertices of T (G) are
adjacent whenever as triangles in G they share an edge. The third class we have
in mind is the class of graphs G such that every edge of G is in a triangle and
T (G) is a tree. The main results of this paper can be summarized as follows. The
maximal outerplanar graphs form a proper subclass of each of these three classes,
but the intersection of any two of these three classes consists precisely of the class
of maximal outerplanar graphs.

2 Maximal outerplanar graphs and three classes

An outerplanar graph is a planar graph that allows an embedding in the plane such
that all vertices are on the outer face. In the sequel we will always assume that
such a plane embedding is given. A maximal outerplanar graph is an outerplanar
graph with a maximum number of edges. In the plane embedding the boundary
of the outer face is then a hamiltonian cycle. All other edges form a triangulation
of this outer cycle. Outerplanar graphs occur for the first time in the literature in
Harary’s classical book [9]. The following theorem appeared in [14]. Its proof is an
easy exercise: maximality implies that each induced cycle is a triangle.

Theorem 1 Let G be a maximal outerplanar graph with its plane embedding, and
let v be any vertex. Then the neighborhood of v consists of a path v1 → v2 →
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. . . → vk and the edges vv1 and vvk are on the outer face, whereas the edges
vv2, vv3, . . . vvk are interior edges.

A path-neighborhood graph is a connected graph in which the neighborhood of
each vertex induces a path. Path-neighborhood graphs were introduced in [12]
The k-fan, or simply fan, Fk is the graph consisting of a (k + 2)-cycle with k − 1
extra edges sharing a common end, that is, it consists of a Pk+1 with an extra
vertex adjacent to all vertices of the Pk+1. In a path-neighborhood graph each
vertex together with its neighbors induces a fan. Theorem 1 says that all maximal
outerplanar graphs are path-neighborhood graphs.

Let P be a property of a vertex in a graph G = (V, E) of order |V | = n.
A P-elimination ordering of G is an ordering v1, v2, . . . , vn of V such that vi has
property P in the subgraph of G induced by vi, vi+1, . . . , vn, for i = 1, 2, . . . n− 1.
For instance, a simplicial vertex is a vertex, the neighborhood of which is a clique.
Then a simplicial elimination ordering of G is a P-elimination ordering in which
property P is “being simplicial”. Similarly, a degree-two elimination ordering of G
is a P-elimination ordering in which property P is “having degree 2”. With such
a property we have to amend: in the last step of the elimination order vn−1 does
not have degree 2 anymore for obvious reasons: there are only two vertices left.
So now we require that vn−1 has degree as close to 2 as possible, so vn−1vn is an
edge. Note that a graph admitting a degree-two elimination ordering necessarily is
connected.

A chordal graph is a graph without induced cycles of length at least 4. In 1961
Dirac [5] proved the classical result that a graph is chordal if and only if it admits
a simplicial elimination ordering. For more information on chordal graphs see [8].

As observed above, each induced cycle in a maximal outerplanar graph is a
triangle. This implies the well-known fact that a maximal outerplanar graph is
chordal. Furthermore, any simplicial vertex having degree 3 or more will be part of
a K4 subgraph, a well-known obstruction for outerplanar graphs, see [4]. In light
of these considerations, we can formulate another result, which is part of folklore.

Theorem 2 A maximal outerplanar graph is necessarily chordal, admitting a sim-
plicial elimination ordering which is at the same time a degree-two elimination
ordering.

Let us call an elimination ordering that is both simplicial and degree-two a
triangle elimination ordering. This seems appropriate because by eliminating such
a vertex we destroy a triangle by deleting a vertex from the triangle that has no
neighbors outside the triangle. Closely related is the concept of a 2-tree, see [16],
namely, a graph constructed by beginning with K2 and at each iteration adding a
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new vertex v, joining it to two existing, adjacent vertices, thereby forming a new
triangle. While it is not essential to our main results, we next note, in passing, a
strengthening of the above result. In essence, this result is proved earlier, from an
algorithmic point of view, and within the proof of a different result, see [16]. We
offer our version for clarity and brevity.

Theorem 3 A graph is maximal outerplanar if and only if it admits a triangle
elimination ordering and does not contain a K1,1,3.

Proof. Let G be a maximal outerplanar graph. Then obviously G does not
contain a K1,1,3: the obstruction K2,3 is a subgraph of K1,1,3. The existence of the
elimination ordering follows from Theorem 2.

Conversely, let G be K1,1,3-free having a triangle elimination scheme. We pro-
ceed by induction on the number n of vertices. For n ≤ 3 it is obvious that G is
maximal outerplanar. So let n ≥ 4, and let v be a simplicial vertex of degree 2 in
G. Let x and y be the neighbors of v, so that xy is an edge. By induction G− v is
maximal outerplanar. It suffices to prove that xy is on the outer-cycle in a plane
embedding of G− v. Assume to the contrary that xy is a chord of the outer-cycle.
Then we can find vertices p and q such that x, y, p and x, y, q induce triangles on
different sides of xy in the plane embedding of G − v. But now v, x, y, p, q induce
a K1,1,3 in G. This impossibility completes the proof. � � �

As observed a maximal outerplanar graph is a chordal graph as well as a path-
neighborhood graph. The following result states that together these properties
suffice. A related (but not identical) result, with a somewhat longer proof, is that
G is maximal outerplanar if and only if G is a path-neighborhood graph that is
‘2-degenerate,’ namely, every subgraph of G has a vertex of degree 2 or less, see
[11].

Theorem 4 A graph G is a chordal path-neighborhood graph if and only if G is a
maximal outerplanar graph.

Proof. Theorems 1 and 2 tell us that a maximal outerplanar graph is a chordal
path-neighborhood graph.

We prove the converse by induction on the number of vertices n. For n ≤ 3,
the theorem is trivial. So assume that n ≥ 4. Let v be the first vertex in a
simplicial elimination ordering, making v simplicial and G− v still chordal. Since
the neighborhood of v is both an induced path and an induced clique, it must be
an edge xy. Then N(x) induces the path Px = v → y → . . . , and N(y) induces
the path Py = v → x→ . . . . So in G− v the neighborhood of x induces the path

5



Pv−v = y → . . . , and the neighborhood of y induces the path Py−v = x→ . . . .
Hence G − v is again a chordal, path-neighborhood graph, so that, by induction,
G− v is a maximal outerplanar graph. By Theorem 1, the edge xy is on its outer
cycle. This implies that G is also maximal outerplanar. � � �

The triangle graph T (G) of a graph G is the graph with the triangles of G as
vertices, and two such vertices are joined in T (G) if, as triangles in G, they share an
edge. Triangle graphs were first introduced in a different context by Pullman [17].
They were introduced later independently a couple of times, see e.g. [6, 1, 13]. The
3-sun consists of a 6-cycle with three chords that form a triangle. It is sometimes
also called a trampoline or Hajós graph. The following facts follow easily from the
definitions.

Fact 5 An induced K1,3 in T (G) comes from a 3-sun in G that is not necessarily
induced.

Fact 6 K1,4 does not occur in T (G) as an induced subgraph.

From the viewpoint of constructing the triangle-graph T (G) of a graph G, any
vertex or edge in G not contained in a triangle is irrelevant, and may be deleted.
Therefore we restrict ourselves to graphs in which every edge is contained in a
triangle. We call such a graph edge-triangular, for want of a better term.

Let G be an edge-triangular graph, and let u be a vertex of G. Its neighborhood
N(u) consists of all neighbors of u. Assume that N(u) induces a disconnected
graph, consisting say of two disjoint subgraphs N1 and N2 with no edge joining N1

and N2. Let H be the graph obtained from G by replacing u in G by two new
vertices u1, u2 and joining ui to all vertices in Ni, for i = 1, 2. Note that in H the
distance between u1 and u2 is at least 4. We say that H is obtained from G by
splitting u. Clearly, we have T (G) ∼= T (H). By successive splittings we can get an

edge-triangular graph Ĝ from G in which all neighborhoods are connected. In fact,
as we show in the next result, Ĝ is independent of the order of the splittings and
is hence unique. Clearly we have T (G) ∼= T (Ĝ).

Proposition 7 The splitting operation on an edge-triangular graph is order inde-
pendent.

Proof. It suffices to show that any splitting operation preserves the connected
components of neighborhoods for all vertices.

Assume to the contrary that in splitting a vertex u, replacing it with u1 and
u2, some other vertex w has adjacent vertices x and y which were in the same
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connected component of N(w) prior to the split, but afterwards are in different
ones. But then, prior to the split, x was connected to y via a path in N(w). This
path was destroyed in splitting u. So this path must have contained u. No edges
are destroyed in splitting u. So u1w and u2w both are edges after u is split, which
is impossible. � � �

By the above proposition, for any edge triangular graph G, it makes sense to
define Ĝ to be the unique graph obtained from G by successive splittings and having
all its neighborhoods connected. On the class of connected edge-triangular graphs
we may also define the relation ∼ by G ∼ H if Ĥ ∼= Ĝ. The relation ∼ is clearly an
equivalence relation: two equivalent graphs have the same triangle-graph; and any
equivalence class contains a unique graph with connected neighborhoods, viz. Ĝ,
for any graph G in the class.

Let G be a maximal outerplanar graph. Then it is easy to see that T (G) is a
tree of maximum degree 3. It can also be obtained from the dual graph of G by
deleting the vertex that represents the outer face of G. This graph is the so-called
weak dual of G, see [7]. It can be obtained from G as follows: the interior faces of
G are the vertices of the weak dual G∗, two vertices in G∗ being adjacent whenever
as faces in G they share an edge in there boundaries. The weak dual was used in [2]
to construct recognition algorithms for outerplanar graphs. And it was used in [10]
to study maximal outerplanar graphs and their interior graphs: the graph obtained
by deleting the edges on the exterior face of the maximal outerplanar graph.

Theorem 8 Let G be a edge-triangular graph. Then T (G) is a tree if and only if

Ĝ is a maximal outerplanar graph.

Proof. As observed above, if Ĝ is a maximal outerplanar graph, then T (G) ∼=
T (Ĝ) is a tree.

Conversely, let G be an edge-triangular graph such that T (G) is a tree. Recall

that T (G) ∼= T (Ĝ). In Ĝ all neighborhoods are connected. We prove by induction

on the number of vertices n of T (Ĝ) that Ĝ is a maximal outerplanar graph. First

note that, by Fact 6, the maximum degree in T (Ĝ) is 3.

If n = 1, then Ĝ is a triangle, and we are done. So assume that n ≥ 2. Then
T (Ĝ) contains a pendant vertex x adjacent to a vertex y. Then y is a vertex of

degree 1, 2, or 3. So in the tree T (Ĝ) − x it is a vertex of degree 0, 1, or 2. Let

x represent the triangle in Ĝ on a, b, c, and let y represent the triangle in Ĝ on
b, c, d. Then the edges ab and ac in Ĝ are not contained in any other triangle, so a
is a vertex of degree 2 in Ĝ. Moreover, edge bc is contained only in the triangles
representing x and y. So in Ĝ − a edge bc is contained in a unique triangle. Now
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T (Ĝ) − x is the triangle-graph of Ĝ − a. Moreover, Ĝ being an edge-triangular

graph with connected neighborhoods, it follows that Ĝ − a is again such. So, by
induction, Ĝ − a is a maximal outerplanar graph. Since edge bc is in a unique
triangle in Ĝ − a, it must be on the outer face of Ĝ − a. Hence, if we add a back
on, then Ĝ remains a maximal outerplanar graph. � � �

A snake is a maximal outerplanar graph in which every triangle shares an edge
with the outer face. Otherwise formulated, it is a 3-sun-free maximal outerplanar
graph. Clearly, its triangle-graph is a path.

Corollary 9 Let G be a edge-triangular graph. Then T (G) is a path if and only if

Ĝ is a snake.

The following new characterization of maximal outerplanar graphs is an easy
consequence of Theorem 8.

Theorem 10 A graph G is a path-neighborhood graph with a tree as its triangle-
graph if and only if G is a maximal outerplanar graph.

Proof. If G is a path-neighborhood graph, then Ĝ = G, and Theorem 8 tells us
that, T (G) being a tree, G is maximal outerplanar.

The converse follows from Theorems 8 and 1. � � �

Finally, we consider the intersection of the class of chordal graphs and that of
the graphs with a tree as triangle graph.

Theorem 11 A graph G is a chordal graph with a tree as its triangle-graph if and
only if G is a maximal outerplanar graph.

Proof. Let G be a maximal outerplanar graph. Then it follows from Theorems 4
and 8 that G is chordal and has a tree as its triangle-graph.

Conversely, let G be a chordal graph with T (G) a tree. Then, T (G) being a
tree, K4 and K1,1,3 do not occur in G. Hence a simplicial vertex in G is of degree
2, and the triangle containing the simplicial vertex is a pendant vertex in T (G).
We use induction on the number n of vertices. For n ≤ 3 the assertion is trivial.
So assume that n ≥ 4, and let v be a simplicial vertex of G with neighbors x and
y. Then v, x, y form a triangle representing by a pendant vertex p in T (G). Let its
neighbor q in T (G) represent the triangle in G on x, y, z. Now G − v is a chordal
graph with T (G) − p as its triangle graph. So, by induction, G − v is maximal
outerplanar. If edge xy is on the outer face of G − v, then G is outerplanar as
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well. Consider the neighborhood N(x) of x in G − v. Since G − v is maximal
outerplanar, N(x) induces a path Px. If y would be internal vertex of this path,
say, with neighbors z and w, then v, x, y, z, w would produce a K1,1,3 in G. So y is
not an internal vertex of Px. So, by Theorem 1, the edge xy is on the outer face,
and we are done. � � �

3 Concluding Remarks

 

Maximal 

outerplanar 

graphs 

Path-
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Edge-triangular 

T(G) is a tree 

Chordal graphs 

PN 

CH 

TT 

   MOP = PN ∩ CH 
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Figure 1: Maximal outerplanar graphs and the three classes

In this paper we have considered three classes of graphs, namely, chordal graphs,
path-neighborhood graphs, and edge-triangular graphs having a tree as triangle-
graph. Note that, by definition, a path-neighborhood is connected. Moreover, if
a graph G is edge-triangular, then its triangle graph being connected implies that
G itself is also connected. In the previous sections we have proved that the in-
tersection of any two of these classes constitutes precisely the class of maximal
outerplanar graphs. This is depicted in Figure 1. As part of our concluding re-
marks, we present examples that show that the class of maximal outerplanar graphs
is properly contained in each of the three classes.

Any complete graph with more than three vertices is chordal but not a path-
neighborhood graph and its triangle-graph contains a K4.
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The triangulated band Zn in [12] is a path-neighborhood graph, but it is not
chordal, and its triangle-graph is the n-cycle. For a picture of Z4 see Figure 2.

Take a snake, in which the vertices of degree 2 are at distance at least 4. Glue
the two vertices of degree 2 together. This is not a chordal graph and not a path-
neighborhood graph, but its triangle-graph is a path. See Figure 2 for an example.

 

The triangulated band  Z4  T(G) = P7  

Figure 2:

There is a rich and still growing literature on chordal graphs. The path-
neighborhood graphs and the triangle graphs are not as well studied. It seems
that here there are still many interesting open problems.

Jointly with chordal graphs, there is a rich literature on simplicial elimination
orderings. But there are many more interesting elimination orderings, which will
yield many interesting problems. For instance, ‘find a nice characterization of the
graphs admitting degree-two elimination orderings,’ to mention but one.

In [3] the existence was shown of so-called 3-simplicial vertices in planar graphs:
a vertex is 3-simplicial if its neighborhood can be edge-covered by at most three
cliques. Here the analogue for outerplanar graphs is rather trivial. An outerplanar
graph always contains a vertex of degree at most two, which is 2-simplicial, if it
has two non-adjacent neighbors, and otherwise it is simplicial.
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