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Introduction. 

The development of tissues can be studied by observing the proliferation and differentiation 

of the composing cell types. In this thesis the development is studied of the endocrine human 

fetal pancreas throughout the second trimester of pregnancy. There arc two main reasons to 

study the fetal development of islet cells. The first concerns the detection of islet stem cells, 

which have remained unidentified so far. It is conceivable that proliferating endocrine cells 

or their precursors are detectable in the rapidly growing human fetal pancreas, whereas human 

adult fi cells have limited proliferative capacity (De Vroede et aI., 1990). Identification of 

islet precursor cells and knowledge of the stimulation of islet cell proliferation allows the in 

vitro replication of islet cells. This may eventually result in therapeutic strategies in diseases 

in which insulin-producing 6 cells are underrepresented, most notably diabetes mellitus. 

The second reason is the link that has emerged from the literature between fetal islet (fi) cell 

development and adult pathologic states as type-I (insulin·dependent) and type-II (non·insulin· 

dependent) diabetes mellitus. Clinical studies have indicated that the endocrine cell mass depends 

on events during pregnancy. Small for gestational age (SGA) infants, as a result of intrauterine 

nutritional deficits, have pancreata containing less fi cells (Van Assche and Aerts, 1979). Hales 

et al. (1991) find a relationship between low birth weight and glucose intolerance later in life. 

Experimental studies suggest that aberrant tolerance induction during fetal development may 

play an important role in the evolvement of autoimmune diseases (e.g. type·1 diabetes mellitus). 

The timing of fetal antigen expression may determine whether the immune system will be tolerant 

to these antigens. In this thesis potential autoantigens involved in type·1 diabetes mellitus have 

been studied, using type·1 diabetic patient antisera. 

Antigen expression patterns, related to proliferation and differentiation of fetal islet cells, may 

be important for the pathogenesis of type·1 (insulin dependent) diabetes mellitus, which is reviewed 

in Chapter 2. The human fetal pancreas was studied because rodent fetal development and 

rodent models for type-I diabetes mellitus are essentially different. 

Apart from morphological and morphometrical studies (Stefan et aI., 1983, Clark and Grant, 

1983), little was known about the human fetal pancreas when the studies presented in this thesis 

were started. The aim of the thesis was to increase the knowledge of endocrine cell development 

in the human fetal pancreas, investigating: 
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1. Developmental islet cell interrelationships of the four major endocrine pancreatic cell 

types: insulin- (8), glucagon- (,,), somatostatin- (5), and pancreatic polypeptide- (PP) 

containing cells. 

2. Identification of potential endocrine stem cells. 

3. Separation of the islet cells from the other pancreatic cells for in vitro studies. 

4. The reactivity of type-I diabetic patient sera to fetal islet cells and the development 

of the fetal thymic T-cell repertoire, both of which relate to tolerance development. 

The actual experimental work is described in Chapters 3-7. In the general discussion (Chapter 

8), the experimental work is discussed, proposing future experiments. 
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Chapter 1. Islets of Langerhans and their devel~pment. 

* Adult pancreatic islet anatomy. 

In the experimental work of this thesis, hormone and protein expression patterns of human 

adult pancreatic islets were used for comparison with those in human fetal pancreata. In this 

section, the anatomy of adult islets of Langerhans is briefly reviewed. 

The pancreas consists mainly of digestive enzyme producing exocrine cells, arranged in acini. 

In 1869 the islets of Langerhans, now known to consist of endocrine cells, were discovered. 

Human adult pancreata contain over I million islets of Langerhans. interspersed throughout 

the exocrine parenchyma. The evolutionary advantage of having many small islets instead of 

one large islet organ, as fish have (Endo et a!., 1991), remains unclear. TIle islets vary considerably 

in size; a typical islet consists of2,500 cells and measures 140 I'm in diameter (Hellman and 

Hellerstrom, 1969). The islets comprise 1 % of the adult pancreatic mass (Weir and Bonner-Weir, 

1990). Four major endocrine cell types have been characterized in islets: insulin-producing 

3 cells, glucagon-producing ex cells, somatostatin-producing ocells, and pancreatic polypeptide

producing PP cells. In the adult islet of Langerhans the central 6 cell core constitutes 80% 

of the islet volume and is surrounded by a mantle of the other three cell types. In the caudal 

part of the pancreatic head, which stems from the ventral pancreatic primordium, the islet 

mantle consists mainly of PP cells and 0 cells. The remaining part of the pancreas stems from 

the dorsal pancreatic primordium and contains islet mantles made up of ex and 0 cells. In the 

human adult pancreas, 6 cells are the predominant islet cell type (65-80% of the endocrine 

cells), followed by ex cells (15-20%), 0 cells (5-10%), and PP cells (5-10%) (Stefan et a!., 

1982, Rahier et a!., 1981). Electronmicroscopic analysis shows that each endocrine pancreatic 

cell type contains characteristic secretory granules. Granules of acells are black, electrondense, 

sometimes with a dark grey outer rim; 6 cell granules have crystalline black cores surrounded 

by a white halo or, when immature, are uniformly black to grey; 0 cell granules are the largest 

in size, relatively electronlucent, light grey. These granule characteristics were found in both 

human adult and human fetal pancreas (Like and Orci, 1972, Dudek and Boyne, 1986) (FIGURE 

IA,B). The granule morphology of PP cells has not been described clearly in the literature. 

This cell type has not been studied in this thesis, because its frequency in the human fetal pancreas 

(except the caudal pancreatic head) is very low. 
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Communication between islet cells occurs through gap junctions, allowing tile passage of molecules . 

up to 1.2 kD, and through desmosomes and tight junctions (Pipeleers et aI., 1992). 

Islets are richly vascularized, receiving 10% of the pancreatic blood flow, whereas they make 

up only 1 % of the adult pancreatic mass (Ufson et aI., 1980). The afferent arteriole enters 

straight into the 6 cell core. Within the islet, a glomerular-like capillary network ensures a 

vascular order of perfusion rrom 6 to" to <1 cells (Stagner and Samols, 1992, Weir and BOImer-Weir, 

1990). The order of vascularization of the islet cells indicates that intra-islet regulation of insulin 

secretion through intravascular release of somatostatin and/or glucagon is unlikely. Individual 

6 cells have been shown to have a distinct orientation, facing an arteriolar capillary with its 

basolateral portion and a venous capillary with its apical portion. This latter portion contains 

relatively more insulin secretory granules (Bonner-Weir, 1988). Between the lateral surfaces 

ofB cells, canaliculi span the distance between arterial and venous domains, providing an interstitial 

flow (EOlmer-Weir, 1989). The microvilli in these canaliculi are enriched in glucose transporters 

allowing glucose sensing (Orci et aI., 1989). 

hmervation of tile islets occurs tirrough sympatiletic (adrenergic) nerves, parasympatiletic (cholinergic) 

nerves, as well as peptidergic nerves (Larsson, 1979, Ahren et aI., 1986). TIle functional significance 

and the target cells of these nerves are largely unknown. 
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Figure lAo Electronmicroscopic analysis of a 15 week human fetal pancreas, embedded in 

Epon. A 6 cell, of which part of the nucleus can be observed in the lower left corner, can 

be recognized by characteristic secretory granules with a crystalline black core and a white 

surrounding halo (large arrows). The cell in the left upper part of the picture (nucleus marked 

by asterisk) is a characteristic IX cell, with round electrondense secretory granules, sometimes 

with a slightly less electrondense outer rim (small arrows). Final magnification is 16440x. 
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Figure lB. Electron microscopic analysis of a 15 week human fetal pancreas, embedded in 

Epon. A fetaiB cell, containing two ultrastructurally different granule types, can be observed. 

The characteristic 6 cell secretory granule type, shown in figure lA can be seen in right part 

of tllis picture (small arrows). In addition, granules filled with less electrondense, non-crystallized 

material are mainly found in the left part (large arrows). Later iml1luno-electronmicroscopic 

experiments revealed that these granules also contain insulin. The latter granule type has been 

suggested to represent a fetal type of B cell granule. Final magnification is 16440x. 
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• Fetal auatomical pancreatic islet development. 

The initiation of pancreatic development may be observed as early as 4 weeks gestation in 

the human embryo (FIGURE 2A,B). A dorsal and ventral outpocketing of foregut endoderm. 

at the site of the future duodenum. contain cells that proliferate into the adjacent mesenchyme. 

Dudek et al. (1991) showed that adult ductal epithelium without hormone producing cells. 

co-transplanted with fetal mesenchyme. resulted in the formation of islets with insulin and 

glucagon containing cells. They postulated that the fetal mesenchyme may have a differentiating 

effect on ductal epithelium. At 7 weeks the ventral and dorsal primordia fuse to become the 

pancreas. Proliferating cellular cords of the pancreatic diverticula form branching ductules. 

Both exocrine and islet cells are thought to differentiate from ductal epithelial precursor cells. 

The first sign of hormone production detectable by immunohistochemistry is at 7 weeks gestation. 

when glucagon producing cells appear (Assan and Boillot. 1973, Dubois, 1989). At 8 weeks 

gestation, B cells, Ii cells, and PP cells can be found (Stefan et aI., 1983). Initially, single 

endocrine cells are found in the pancreatic parenchyma. With advancing fetal age, endocrine 

cell clusters of increasing size can be observed, leading to the formation of mature islets of 

Langerhans. Studies with mouse chimaeras showed that islets derive from several independent 

ancestor cells (Deltour et aI., 1991). Chimaeric embryos resulted from a cross between transgenic 

mice carrying the human insulin gene with a normal mouse strain. Species-specific monoclonal 

anti-insulin antibodies discriminated the origin of the B cells. Several small clusters of B cells, 

derived from both embryos, suggested multiple ancestor cells with limited intra-islet proliferative 

capacity. In the human fetal pancreas the first mantle islets, which are thought to represent 

the mature islet type, appear at 15 weeks (Dubois, 1989) (FIGURE 3A,B). It remains unknown 

however to what extent the organogenesis of islets in the fetal pancreas is a continuous process 

during fetal development, and whether each fetal pancreas presents islets at different stages 

of development. 

It is known that the proportion of all endocrine cells in the fetal pancreas (8-40 weeks gestation) 

and in the neonatal pancreas is higher than in adults (Stefan et aI., 1983, Rahier et aI., 1981) 

and that the frequency of endocrine cell types in islets in the caudal part of the head differs 

from that in the rest of the pancreas. The proportion of each of the major hormone containing 

cell types in the human fetal pancreas differs from that in the adult pancreas. 
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Figure 2. Haematoxylin/eosin staining of a 4 week old embryo (A) and a 6 week old embryo 

(B). In A a notch in the duodenum can be seen, indicating the initiation of pancreatic development 

(asterisk). In B primitive ductular structures can be observed. 
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Figure 3A. Light microscopic picture of a section of a 16 week human fetal pancreas, stained 

by the indirect peroxidase technique. Figure 3A and 3B represent consecutive sections using 

antibodies to insulin and to somatostatin respectively. In A the insulin positive core of the 

islets is evident, as well as several smaller endocrine cell clusters and single insulin positive 

cells. 
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Figure 3B. Light microscopic pictures of sections of a 16 week human fetal pancreas, stained 

by the indirect peroxidase technique. Figure 3A and 3B represent consecutive sections using 

antibodies to insulin and to somatostatin respectively. In B. somatostatin positive cells are 

located peripheral to the 6 cell core in the three central islets. Abundant (single) (, cells can 

be observed throughout this section, ex amplifying the higher relative amount of (, cells in the 

fetal pancreas compared with the adult pancreas. 
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Beta cells constitute 50-55 % of the endocrine cells, ct cells 15-20%, b cells 25-30 %, and PP 

cells 5-10 %. Thus 6 cells are less frequent, and b cells are more abundant than in the human 

adult pancreas. 

Could this difference be associated with a differing developmental timing of individual endocrine 

cell types? Experiments described in Chapters 3-5 address the anatomical islet development 

in the human fetal pancreas, taking into account the difference in distribution of endocrine 

cells between the caudal pancreatic head and the remaining part of the pancreas. The first 

aim was to study the presence and coexpression of islet hormones to gain insight in islet cell 

interrelationships. Second, 6 cell specific proteins are of interest, because in type-I diabetes 

6 cells are selectively destructed by an autoimmune mechanism (see Chapter 2). In the next 

section, expression of (6 cell specific) proteins related to the insulin machinery is reviewed, 

with special reference to expression during fetal development. 

* Functional activity of islet 11 cells. 

In this section the key function of adult 6 cells, the controlled production, storage, and release 

of insulin is reviewed, with a special focuss on the expression of 6 cell (specific) proteins. 

The precursor molecule of insulin, preproinsulin, is formed by the ribosomes on the rough 

endoplasmic reticulum. Its signal peptide is cleaved off and proinsulin is transported to the 

Golgi apparatus. Molecule-specific "sorting" domains are suggested in the trans-Golgi region, 

which direct proteins released through the so-called regulated pathway to secretory granules. 

Alternatively, constitutively released proteins are packed in other vesicles (Orci et al., 1987a, 

Halban, 1991). Proinsulin to insulillconversion takes place in c1athrin-coated secretory granules 

(Orci et aI., I 987b) , by the endopeptidases I and 11, also called prohormone convertases (PC), 

and carboxypeptidase H (Smeekens et aI., 1991, Guest et aI., 1989). This conversion yields 

insulin and C-peptide in equimolar concentrations. However, none of the enzymes involved 

in proinsulin conversion is specific for the pancreatic ij cell (Smeekens et aI., 1991, Guest 

et aI., 1991). In preliminary experiments, no reproducible staining pattern could be obtained 

in hnman fetal islet cells, using antibodies to prohormone convertases 2 and 3. 
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In addition to the abovementioned secretory granule membrane (c1athrin) and matrix proteins 

(conversion enzymes, proinsulin, insulin, and C-peptide) two more 13 cell secretory granule 

proteins, chromogranin-A and islet amyloid polypeptide (lAPP) were considered. In this thesis 

chromogranin-A and lAPP were selected as a neuroendocrine marker and a 3 cell marker respectively 

(Chapter 5) (FIGURE 4). 

Chromogranin-A is a protein of secretory granules in many neuroendocrine cell types (O'Connor 

et aI., 1983; Wilson and Lloyd, 1984), and is probably a precursor protein for regulatory peptides 

(Hutton et aI., 1987; Iacangelo et aI., 1988). It is processed by proteolytic cleavage to betagranin 

(Hutton et aI., 1985) or pancreastatin. Betagranin is expressed in a subpopulation of a and 

3 cells, pancreastatin is found in the majority of 3 and /j cells, but not in a cells (Jensen et 

aI., 1991). Pancreastatin is involved in the suppression of glucose-stimulated insulin release 

(Tatemoto et aI., 1986). The function of betagranin is yet unknown. 

Figure 4. Light microscopy of a 14 week old section of human fetal pancreas stained with 

an antibody to chromogranin-A, using dIe indirect peroxidase technique. A mixture of chromogranin-A 

positive and negative cells is observed in this islet. 
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lAPP is a 37 amino acid protein, colocalized with insulin in human adult and fetal fi cell secretory 

granules, not in other human islet cells (Lukinius et aI., 1989). It cau be isolated from amyloid 

deposits in type II (non-insulin dependent) diabetes mellitus patients (Cooper et aI., 1987, Westermark 

et aI., 1987). During human fetal development lAPP expression starts at 12 weeks gestation 

in a proportion of the fi cells, mainly those located in endocrine cell clusters (Rindi et aI., 

1991, In 't Veld et aI., 1992). The proportion of lAPP expressing fi cells increases to almost 

100% in human adult islets. Studies in transformed mouse and rat cell lines suggest differential 

regulation of gene expression for lAPP and insulin, because lAPP is also found in glucagon 

or somatostatin expressing cells (Madsen et aI., 1991). Using other cell lines, however, similar 

promotor elements have been found in both genes (German et aI., 1992). Thus, lAPP seems 

a fi cell specific marker, which is expressed relatively late during development. It is unknown 

whether the lAPP positive subpopulation of B cells differs functionally or developmentally 

from lAPP negative fi cells. 

Insulin is discharged from the 11 cell by exocytosis of secretory granules in response to an 

appropriate stimulus. More than 99% of all proinsulin is directed through this regulated secretory 

pathway in normal fi cells (Halban, 1991). The most important physiologic stimulus for secretory 

granule release in adult 6 cells is glucose. A biphasic insulin response occurs after in vitro 

or in vivo stimulation of adult human Of rodent islets. Many other factors are known to influence 

insulin granule release. Glucagon, leucine, arginine and the pharmacologic drug theophylline 

all stimulate insulin release (Samols et aI., 1965, Pipeleers et aI., 1985). Endocrine cell-to-cell 

contacts have a positive effect on secretory granule release (Halban et aI., 1982, Pipeleers 

et ai., 1982, Pipeleers, 1984). By contrast, somatostatin inhibits insulin release (Alberti et 

ai., 1973). 

Human fetal B cells do not show an adult insulin release pattern in response to glucose stimulation 

(Otonkoski et ai., 1991). However, glucagon, arginine, and theophylline cause an increase 

of fetal insulin release above basal levels regardless of glucose concentration (Otonkoski, 1988a). 

It seems necessary to culture fetal islets or islet-like cell clusters (Otonkoski et ai., 1988b) 

of 12 to 20 weeks gestation for several weeks to months or to transplant them into an intermediate 

host before they acquire an adult insulin release pattern (Tuch et ai., 1985, Korsgren et aI., 

1991). Addition of nicotinamide to the culture medium has resulted in biphasic insulin release 

from islet-like cell clusters aner 7 days of culture (Otonkoski et aI., 1993). Apparently, further 
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maturation of fetal 6 cells is needed to obtain glucose responsiveness. At present, it is unknown 

which molecules in the 6 cells are induced in these in vivo and in vitro experiments. One or 

both of the molecules described underneath may be involved. 

The coupling of glucose stimulation to secretory granule exocytosis is currently investigated 

(by others). Two isoforms (GLUT! and GLUT2) of a family of structurally related glucose 

transporters have been identified on the lateral surfaces of pancreatic 6 cells (Orci et al., 1989, 

Yasuda et ai., 1992). This may serve as the initial interface for glucose sensing by 6 cells 

(Weir and Bonner-Weir, 1990). The Km ofGLUT2 is 15-20 mM, resulting iua variable glucose 

effect in the physiologic range (3-9 mM). 

Glucokinase is a 6 cell specific rate limiting enzyme for the high Km conversion of glucose 

to glucose 6·phosphate (Meglasson and Matschinsky, 1986, Jetton and Magnuson, 1992). Increases 

of intracellular glucose, caused by GLUT2 mediated glucose uptake, are translated by glucokinase 

into an increased glucose usage. The resultant increase in intracellular [CaH] stimulates the 

release of insulin secretory granules. Heterogeneous glucokinase expression has been found 

in rat 6 cells, implicating functionally different 6 cell subpopulations (Jetton and Magnuson, 

1992). It is conceivable that the expression of either glucose transporter isoforms or glucokinase 

is lacking in human fetal 6 cells. Preliminary experiments with an antibody to glucokinase 

did not show its presence in human fetal 6 cells. However, this finding awaits further confirmation. 

In summary t many factors exert influence on the insul in molecule on its pathway from gene 

transcription to exocytosis into the bloodstream. The secretory granules for the storage and 

regulated release of insulin can be regarded as a micro-society of interacting matrix and membrane 

proteins, only some of which are known yet. Islet amyloid polypeptide is, in addition to insulin, 

one of few 6 cell specific proteins. The heterogeneity of its expression is also observed for 

molecules involved in stimulus-secretion coupling of insulin release: glucokinase and glucose 

transporters. The functional and immunological consequences of such heterogeneous expressions 

in fetal islet cells during midgestation may be important. 

The protein expression pattern of (fetal) islet (6) cells is also largely determined by tlle embryological 

origin of these cells. What is presently known about the embryological origin of islet cells? 

24 



* embryological origin of endocrine pancreatic cells and islet cell interrelationships. 

Two theories exist regarding the origin of endocrine pancreatic cells: the neuroectodermal 

hypothesis and the endodermal hypothesis. The first hypothesis, by Pearse (1977), was based 

upon his amine precursor uptake and decarboxylation concept (APUD concept). Cells sharing 

these characteristics would all be derived from the neural crest and migrate into the respective 

"target" organs at an early stage of differentiation. In his study Pearse showed that islet cells 

belong to the APUD cells. In support, numerous neuronal molecules have been detected in 

pancreatic islet cells (see table 1). Pancreatic 6 cells possess synaptic-like microvesicles (SLMV's), 

the endocrine cell counterpart of small synaptic vesicles (SSV's) in neurons (Navone et aI., 

1986). These recycling microvesicles share several membrane and matrix molecules with neuronal 

SSV's. Synaptophysin is found in the membrane of SLMV's and SSV's. It is present in all 

islet cell types, suggesting that" and b cells also contain SLMV's (Redecker et aI., 1991). 

In addition, synaptophysin has been found in a variety of neuroendocrine neoplasms, and is 

superior to chromogranin A as a marker of neuroendocrine tumors (Wiedenmann et al .• 1986, 

Chejfec et aI., 1987). GABA is found in SLMV's of 6 cells, not of other islet cells (Garry 

et aI., 1987, Reetz et ai, 1991). GABA is the major nonpeptide inhibitory neurotransmitter 

in the central nervous system. A paracrine role of GABA in the islets is suggested (Rorsman 

et aI., 1989, Reetz et aI., 1991). Production of GABA from glutamate in the central nervous 

system involves the enzyme glutamic acid decarboxylase (GAD), of which two isoforms, GAD65 

and GAD67, exist. In the human adult pancreas, GAD65, identified as a target of autoimmune 

destruction in type-I diabetes mellitus (see Chapter 2), is detectable in 6 cells (Vincent et aI., 

1983, Gilon et aI., 1988) and in few other islet cells (Petersen et aI., 1993). The functional 

and immunological significance of GAD expression in non-6 islet cells is yet unclear. In the 

human fetal pancreas, SLMV proteins have not been studied systematically. 

Neuronal cell adhesion molecules are also found in islet cells. These molecules are thought 

to be involved in (fetal) islet development, because of the non-random distribution of the different 

islet cell types within an islet. The 135 kD form of neural cell adhesion molecule (N-CAM) 

is expressed in neonatal and adult rat islet cells, with higher expression on non-6-cells than 

on 6 cells (Molleret al., 1992). An essential role for N-CAM has been proposed in the calcium

independent aggregation of islet cells. In addition, three cadherins, E-CAD, N-CAD, and R-CAD, 

have been detected on pancreatic islet cells (see general discussion). 
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Other neuronal proteins expressed in endocrine pancreatic cells of mouse, rat, and human include 

neuron-specific enolase (Polak et aI., 1984), HNK-I (Shioda et aI., 1984), neuropeptide Y 

(Teitehnan et aI., 1993), and tyrosine hydroxylase (Teitehnan and Lee, 1987, Teitelman et 

a!., 1988). In Chapter 4 and 5 we describe the use of synaptophysin and HNK-I as neuroendocrine 

markers in the analysis of islet cell interrelationships and in the detection of islet stem cells. 

Islet cells do not only express neuronal proteins, but also display functional neuronal characteristics 

(see table I). Single n cells kept in vitro form neurite-like processes, containing neurofilament, 

but they do not when cultured as larger cell aggregates (Teitel man, 1990). An insulin secreting 

n cell line (RINm5F) can be induced to form neuritic extensions (Polak et aI., 1993). 

The second hypothesis, the endodermal hypothesis, disagrees with Pearse's neuroectodermal 

hypothesis. Le Douarin (1978), using quail neural crest transplanted in chick embryos to produce 

chimeras, showed that quail cells could not be found in the endocrine pancreas. In agreement 

with this, Pictetet a!. (1976) removed Ole ectoderm from rat embryos at E9, and found undisturbed 

development of endocrine pancreatic cells in vitro. These experiments show that, unless migration 

occurs at a very early developmental stage, it seems unlikely that the neuroectoderm gives 

rise to endocrine pancreatic cells. Because hormone containing cells are frequently found near 

the pancreatic ducts (Pictet and Rutter, 1972), they probably derive from precursors in these 

ducts. Indeed, adult ductal epithelium can differentiate into insulin- and glucagon-producing 

cells if induced appropriately by fetal mesenchyme (Dudek et aI., 1991). In a 90% pancreatectomy 

rat model, sequential proliferation in ducts of decreasing size is found (Bonner-Weir et aI., 

1993). Near the smallest ductules new pancreatic islets and endocrine cells appeared. It must 

be noted that the latter model is one of forced regeneration and the mechanisms may not be 

comparable to those in the physiological proliferation/differentiation occurring during fetal 

development. 
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TABLE 1 

Common features (proteins and functional characteristics) of pancreatic islet cells and neurons. 

- glutamic acid decarboxylase (GAD65/GAD67)' 

- gamma-amino butyric acid (GABA) 

- synaptophysin+ 

- tyrosine hydroxylase (TH) 

- DOPA decarboxylase 

- neuronal cell adhesion molecule (N-CAM)' 

- neuron specific enolase (NSE) 

- HNK-I' 

- electric excitability 

- neurite extent ion 

Proteins marker with an asterisk C) are discussed in this thesis. 

In conclusion, despite a remarkably similar protein expression pattern in endocrine pancreatic 

cells and neuronal cells, no direct evidence in support of a neuroectodermal origin of endocrine 

pancreatic cells has been found. Islet cells probably derive from endodermal precursor cells 

in the pancreatic duct. The observed protein similarity may result from similar gene regulation 

in both cell types. 

The cell lineage relationship of the four major endocrine pancreatic cell types has been a matter 

of extensive investigation. Presently, IX, n, 0, and PP cells are thought to derive from a common 

pluripotent precursor cell. 

Evidence has come from different experiments. Firstly. hormone coexpression is found in 

fetal mouse, pig, and human pancreas (Alpert et aI., 1988, Lukinius et aI., 1992, De Krijger 

et aI., 1992). In the mouse embryo glucagon is the first hormone to appear at day ElO. At 

E12, insulin positive cells appear, all coexpressing glucagon. The percentage of insulin containing 
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cells dlat coexpress glucagon decreases to negligable levels after birth, at E20. Similarly, somatostatin 

containing cells coexpress insulin when dley first appear at El7. By immuno·electronmicroscopy 

the subcellular distribution of coexpression has been studied. In the human fetal pancreas one 

study found granules to contain more than one hormone (Lukinius et 01., 1992), whereas another 

study observed two or more morphologically and immunohistochemically distinct granule types 

in the same cell without intragranular coexpression (De Krijger et aI., 1992). A prominent 

role for pancreatic polypeptide is suggested by Herrera etal. (1991). 11ley detected PP expression 

by immunohistochemistry and by reverse transcriptase (RT)·PCR at day EIO.5 in the mouse 

embryo, concurrent and coexpressed with glucagon. Recently, it has been shown that the early 

detection of PP may have resulted from crossreactivity of the PP antibody with neuropeptide 

Y (Teitelman et aI., 1993). 

A second line of evidence for a common endocrine precursor cell comes from the observation 

that islet hormones are coexpressed in neuroendocrine tumors and in cell lines. The RIN cell 

line, stemming from a radiation induced islet cell tumor in NEDH rats, and several sublines 

coexpress insulin, glucagon and somatostatin (Chick et aI., 1977, Philippe et aI., 1987). The 

MSL cell line and its subelones, stemming from a liver metastasis of the same rat islet cell 

tumor, also have a heterogeneous and multihormonal phenotype. Successive subcutaneous 

transplantation of this pluripotent rat islet tumor cell line allowed segregation of an insulinoma 

causing hypoglycaemia from a glucagonoma producing anorexia (Madsen et aI., 1993). It was 

coneluded that both tumors can derive from the same pluripotent MSL cell, which supports 

the idea of a common origin for at least IX and B cells. 

Finally, neuroendocrine markers have been used to study islet cell interrelationships. Tyrosin 

hydroxylase (TH) was detected in mouse embryos in proliferating cells and in cells expressing 

either glucagon or insulin (Teitel man and Lee, 1987). In adult mouse islets, TH can still be 

found, but only in B cells, which do not proliferate. Thus, TH cells seem to give rise to IX 

and B cells in the mouse embryo. In a further study, using models for B cell hyperplasia, the 

adult TH containing B cells are suggested to be on a pathway to senescence. 

In contrast to insulin·only cells, the TH·insulin cells do not proliferate (Teitel man et aI., 1988). 

Recently, neuropeptide Y (NPY) has been reported to colocalize with insulin and glucagon 

from day E9.5 of mouse embryogenesis (Teitelman et aI., 1993). This peptide may playa 

role in the paracrine regulation of insulin secretion (Jamal et aI., 1991, Waeber et aI., 1993). 

TH and NPY are expressed not only in IX and B cells, but in /j and PP cells as well. They can 
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be taken as an indication of the neural character of pancreatic islet cells, and suggest derivation 

from a common progenitor cell of the four major islet cell types. As mentioned above, other 

neuroendocrine marker proteins have also been used succesfully to study islet cell interrelationships 

(Chapter 4). 

In summary, pluripotent stem cells probably give rise to all islet cell types. Islet cells may 

initially express multiple hormones. In such cells, a set of islet cell hormone and neural genes 

seems to be expressed simultaneously, although there may be a delay between transcription 

and translation (Herrera et aI., 1991, Gittes and Rutter, 1992, Teitelman, 1993, Teitelman 

et aI., 1993). Neuroendocrine marker proteins, such as TH and NPY, may aid to detect a 

common ancestry for islet cells. 

Multiple hormone expressing precursor cells, or precursor cells identified by other marker 

proteins do not necessarily represent pluripotent endocrine stem cells. What is currently known 

about replication of islet cells or islet precursor cells? 

* endocrine stem cells. 

Stem cells can be subdivided in pluripotent stem cells and committed stem cells. Pluripotent 

stem cells have the capability of self-renewal and can give rise to a broader range of differentiated 

cell types than committed stem cells. All stem cells have the capability to proliferate. Under 

basal conditions hormone expressing islet cells appear to have little or no proliferative capacity 

(De Vroede et aI., 1990; De Krijger et aI., 1992). However, if stimulated by growth factors, 

after pancreatectomy, or during pregnancy, hormone containing islet cells, including 6 celis, 

can be observed to proliferate, eiUler by bromodeoxyuridine (BrdU) uptake studies or by 'H-thymidine 

autoradiography (Billestrup and Nielsen, 1991, Parsons et aI., 1992, Bonner-Weir etal., 1993). 

In the fetal rat pancreas the proliferative compartment (PC) comprises 3 % of the islet cells 

(Swenne, 1982), and can be increased to maximally 10% of the islet cells by an increase in 

the glucose concentration. The majority of the islet cells seem to be in an irreversible Go phase. 

This assumption has been questioned recently in a quantitative analysis of proliferating cells 

after prolactin stimulation (Brelje et aI., 1994). At any rate, the proliferative fraction of islet 

cells, with an estimated cell cycle time of 14.9 hours (Swenne, 1982), cannot account for the 

increase in islet cells during fetal development. Neoformation of endocrine cells from unidentified 
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endocrine stem cells must therefore occur. So far no pluripotent stem cell markers are available, 

which indicates the importance of finding such markers (see Chapter 4 and general discussion). 

The factors involved in R cell replication and their mechanisms of action have been studied 

mainly in fetal rat islets, during pregnancy and in cell lines. The stimulatory effect of growth 

hormone (GH) on insulin production and 3 cell replication is well documented (Swenne et 

aI., 1987, Swenne and HilI, 1989, Nielsen et aI., 1989, Billestrup and Nielsen, 1991). In many 

tissues, GH mediates its effects through insulin-like growth factors (IGF's), which are produced 

locally and exert their effect via autocrine or paracrine mechanisms (D'Ercole et aI., 1984). 

IGF-I has been detected by immunohistochemistry in 3 cells of the human fetus and adult rat 

(Han et aI., 1987a, Hansson et aI., 1988, HilI et aI., 1987), but mRNA could not be found 

(Han et aI., 1987b, Beck et aI., 1988). In another study adult human and rat", and /j cells, 

but not B cells, contained IGF-I (Maake and Reinecke, 1993). These contradictory findings 

may be explained by uptake of IGF-I in B cells through IGF-I receptors, which have been 

shown on rat", and 3 cells (Van Schravendijk et aI., 1987). IGF-I mRNA is found to be increased 

in epithelial and connective tissue cells in focal areas of regeneration in a 90% rat pancreatectomy 

model, suggesting a role in growth andlor differentiation (Smith et el., 1991). IGF-I1 in adult 

rat and human B cells and in human fetal B cells may also be involved in the regulation of 

islet growth and differentiation (Maake and Reinecke, 1993, Miettinen et aI., 1993). It seems 

conceivable that GH acts at least partly trough IGF-I in the islet, because GH stimulates fetal 

and adult rat islet IGF-I release and an IGF-I antibody blocks GH stimulated islet cell replication. 

By contrast, other studies do not find an IGF-I mediated GH effect (Billestrup and Nielsen, 

1991). This may be explained by binding of IGF-I to IGF binding proteins (IGFBP's). GH, 

IGF's, and IGFBP's may form a complex network of interacting substances which influence 

islet cell replication. 

Other members of the growth hormone family, placental lactogen (PL), and prolactin (PRL), 

also stimulate the proliferation of fetal and newborn rat B cells (Nielsen, 1982). The physiological 

actiOIlOf PL and PRL occurs during pregnancy, which is highlighted by an increase of pancreatic 

B cells (Parsons et aI., 1992). GH and PRL receptors show both species and tissue differences 

and have been shown in human fetal and rat islets and islet cell lines (Polak et aI., 1990, HilI 

et aI., 1992, MOIdrup et aI., 1990, 1993). Species and receptor interactivity of members of 

the growth hormone family interferes with clear analysis of their effects. 
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Both the high- and low-affinity nerve growth factor receptor (NFGr) have been identified in 

fetal rat islets and 6-celilines (RINm5F and INS-I) (Scharfmann et aI., 1993). In R1Nm5F 

cells NGF can induce neurite formation, and NGF also increases c-fos mRNA expression, 

indicating that NGF receptors are functional. Recent information about the importance of NGF 

for the proliferation andlor differentiation of islet cells, in particular 6 cells, will be presented 

in the general discussion. 

Transforming growth factor-alpha (TGF-a) can be detected in the human fetal pancreas at 

15-20 weeks gestation in ducts and islet 6 cells (Miettinen et aI., 1992). A further suggestion 

for a role of TGF-a comes from a study by Wang et al. (1993). They observed metaplastic 

ductules in transgenic mice overexpressing TOF-a, but no increase in islet mass. Overexpression 

of gastrin, transiently expressed in islets during fetal development (Brand and Fuller, 1988), 

in double transgenic mice decreased the TGF-a-stimulated ductular metaplasia. Moreover, 

islet mass was significantly increased over control mice. Thus, the combination of TGF-a 

and gastrin is suggested in islet neogenesis from ductular epithelium in tile adult mouse pancreas. 

In summary, pluripotent islet stem cells have remained elusive, due to tile lack of marker proteins. 

A series of growth factors appear to be involved in proliferation and differentiation of islet 

cells and islet precursor cells. 
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Chapter 2. Type I (insulin-dependent) diabetes meJlitns. 

• pathogenesis. 

Diabetes mellitus is a common chronic disorder I affecting 2-4 % of the population in Western 

countries. Two main types of diabetes mellitus are distinguished: type-! (insulin-dependent) 

diabetes (prevalence 0.2-0.4 %), and type-II (non-insulin-dependent) diabetes (prevalence 2-4 %). 

Both forms of diabetes mellitus are characterized by a disturbed carbohydrate metabolism. 

Type-I diabetes develops mainly in childhood, with an incidence peak around the onset of 

puberty. More than 65 % of the patients present with symptomps before the age of 18 (Vaandrager 

et aI., !984). 

When islets of Langerhans of recent onset type-I diabetic patients are studied, massive inflammatory 

infiltration is found (Foulis et aI., 1991). The inflammatory process, called insulitis, selectively 

destroys the islet n cells. Extensive evidence has been collected to support the notion that type-! 

diabetes is an autoimmune disorder. Macrophages and T-lymphocytes are known to be present 

in the cellular infiltrates in the islets of Langerhans (Botazzo et aI., 1985). In NOD mice and 

BB rats, animal models of type-! diabetes, disease can be prevented by the administration of 

silica particles which are known to be selectively toxic to macrophages (Oschilewski et aI., 

1985). This indicates that macrophages are required for the immunological destruction of n 
cells. The exact role of macrophages remains unknown. Evidence has accumulated for an essential 

role of cellular autoimmunity (both of CD4+ and CD8+ T-lymphocytes) in n cell destruction 

(Bendelac et aI., 1987, Miller et aI., 1988, Birk and Cohen, 1993, for review). First, 

immunosuppressive drugs, such as cyclosporin A, have a modulating effect on the development 

of type-I diabetes mellitus in NOD mice and BB rats as well as in patients (Laupacis et aI., 

1983, Stiller et aI., 1984). Second, diabetes may be prevented by treatment with antibodies 

to specific T-cell subsets (Boitard et aI., 1982). Third, type-I diabetes can be transferred from 

one animal to another (= adoptive transfer) by using splenocytes, purified T-lymphocytes, 

and T-cell clones (Bendelac et aI., 1987). T-lymphocyte-c1ones, reactive to 6 cell preparations 

can be isolated from the blood of recent-onset type-! diabetic patients. Features of cellular 

immunity also precede the onset of type-! diabetes (Harrison et aI., 1992). This indicates that 

type-! diabetes results from a longer period of immune destruction (FIGURE 5). The variation 

in age of onset of type I diabetes suggests that this period may have a variable length. The 
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factors influencing the destruction rate are unknown. Recently. the relevance of pre-existing 

6 cell mass and 6 cell repair mechanisms on the evolvement of type-I diabetes have attracted 

increasing attention (Hales et al., 1992, Eizirik et aI., 1993). In table 2 targets of cellular autoimmunity 

in type-I diabetes mellitus are indicated. 

Concurrent with cellular immunity, autoantibodies have been detected in the serum of recent 

onset diabetic patients (targets indicated in table 2). Autoantibodies found in type-I diabetes 

do not appear to have a pathogenic effect. Adoptive transfer experiments and in vitro culture 

of islets of Langerhans or 6 cells in the presence of diabetic sera does not result in diabetes 

or 6 cell dysfunction respectively (Koevary et aI., 1983, Wicker et aI., 1986, Mandrup-Poulsen 

et aI., 1990). After transplantation of pancreata between discordant identical twins the islets 

in the transplanted pancreas are destructed without appearance of autoantibodies in the serum 

(Sibley et aI., 1985). 

Insulin autoantibodies (IAA) are found in sera of untreated patients, excluding the possibility 

that they are formed after insulin administration (Palmer et aI., 1983, Wilkin et aI., 1985). 

Islet cell cytoplasmic antibodies (leA) are present in up to 80% of patient sera at diagnosis 

(Botazzo etal., 1974, Doniach et aI., 1985), and can be found up to 10 years before the clinical 

onset of type-I diabetes. They are detected by immunohistochemistry of pancreatic sections. 

leA-positive sera stain all islet cell types ("whole islet staining pattern"). The assay has been 

standardized through the use of reference sera (Greenbaum et aI., 1992). Thus, leA have been 

used for screening' of first degree relatives or populations for potential prediabetic patients 

and for prediction (Bingley et aI., 1989, 1993, Bruining et aI., 1989). Within the follow-up 

time of these studies not all leA positive persons go on to clinical type-I diabetes. This may 

depend on the age of the individual, leA levels, complement-fixing ability of the leA, and 

other unidentified parameters. There is probably more than one leA target molecule. A 

sialoglycoconjugate has been suggested as a target epitope (Nayak et aI., 1985). Absorption 

of leA sera with glutamic acid decarboxylase (GAD) partially but not completely blocked 

leA reactivity (Atkinson et aI., 1993), indicating that GAD is also an leA target. Apart from 

the whole islet staining pattern of leA-positive sera, a restricted pattern, in which only 6 cells 

stain, has been observed (Genovese et aI., 1992). The different patterns of leA reactivity may 

have implications for the risk to develop type-I diabetes (Gianani et aI., 1992). Information 

of leA reactivity in the human fetal pancreas is limited (Sundqvist et aI., 1991). 
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Autoantibodies to a 64kD protein were first described in 1982 by Baekkeskov et al. They are 

present in 80-90% of patients at the onset of disease, and can be found several years before 

onset (Atkinson et al., 1990). The 64kD protein has been identified as glutamic acid de<:arboxylase 

(GAD), a neuronal enzyme synthesizing GABA (Baekkeskovetal., 1990). Two forms, GAD65 

and GAD67, exist, coded for by two different genes. The two forms of GAD are present in 

neurons and rat 3 cells. Human 3 cells only contain GAD65 (Aanstoot, 1993). 

Similarly, antibodies to a 38kD protein were found in 20-30% of type-I diabetic patients at 

onset of disease (Baekkeskov et al., 1982), and in 15 % of prediabetic individuals. 

In summary, type-I diabetes is considered an autoimmune disease in which both humoral and 

cellular factors are involved. Cellular factors are presently thought to initiate and propagate 

the selective destruction of 6 cells. Autoantibodies may be used for screening and prediction. 

It is speculated that R cell mass and repair mechanisms may playa role in the outcome of autoimmune 

3 cell destmction, which takes place over an extended period of time. In the human fetal pancreas, 

few immunologically relevant molecules have been studied. For Ole understanding of Ole pathogenesis 

of type-I diabetes it is important to know whether I and if so, where and when, such relevant 

molecules are expressed during human fetal islet development. In Chapter 6, the findings on 

ICA reactivity in the human fetal pancreas are presented, and in the general discussion the 

preliminary results of GAD65 expression are mentioned. 

TABLE 2 

Targets of humoral and cellular autoimmunity in type-I diabetes mellitus 

HUMORAL CELLULAR 

- insulin - heat shock protein 65 (hsp65) 

- islet cell antibodies (lCA) - 38 kD protein 

- GAD65 - GAD65 

- 38 kD protein 

- carboxypeptidase H 

- islet cell autoantigen 69 (lCA69) 
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Figure 5. Schematic representation of the decrease in 6 cell mass in time, during the different 

phases of autoimmune destruction leading to type-I diabetes mellitus. This model was proposed 

by Bruining (1984). Iu Phase I no 6 cell destruction is evident; genetic predisposition, however, 

may be present. In Phase II, autoimmune destruction starts, triggered by environmental or 

other (unknown) factors. Phase II has a variable length and may last many years. During this 

phase, autoimmune destruction may stop (*) or 6 cell regeneration may occur (#). When 6 

cell destruction continues, and cannot be compensated for by R cell repair. clinical symptoms 

of type-I diabetes will become evident (@). This last decline in 6 cell mass may be relatively 

rapid, caused by a period of stress or by some viral or bacterial infection (0). 
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• etiology. 

In Ole etiology of type-I diabetes boOI genetic and environmental factors are important. demonstrated 

by a concordance rate for monozygotic twins of35-50% (Olmos etal .. 1988). The discordance 

has been explained in immunological studies. revealing a difference in T-cell receptor specificity 

in monozygotic twins. Identical twins differ in immunological response patterns, as a result 

of intrauterine germline rearrangement of T-cell receptor genes. HLA identical siblings of 

type-I diabetic patients have a 15-25 % risk of developing type-I diabetes Olemselves (Deschamps 

et a!.. 1984). This illustrates the importance of HLA genes in determining genetic predisposition. 

However. the exact gene(s) in the HLA complex which are involved in type-I diabetes are 

still a matter of investigation. 

The HLA complex is a large multigene complex, located on the short arm of chromosome 

6. It contains two clusters of highly polymorphic, multiallelic genes, named class I (HLA-A, 

Band C) and class II (HLA-DR, DQ and DP). In the class I and II gene regions, oOlCr, non-HLA 

genes are also found. Interspaced between the class I and II regions is a cluster of unrelated 

genes, referred to as the class III region (Trowsdale and Campbell, 1992). All HLA molecules 

are heterodimers composed of an Ci and a 8 chain. Class I molecules are expressed on most 

cells. Class II molecules are mainly expressed on macrophages, B-lymphocytes, activated T

lymphocytes, and dendritic cells. 

Susceptibility to type-I diabetes was first associated with the class I molecules B8 and B 15, 

later with the class 11 molecules DR3 and DR4 which are in linkage disequilibrium with B8 

and B15, respectively (Tiwari and Terasaki, 1985). Then, HLA-DR3/4 heterozygotes were 

found to be at high risk to develop type-I diabetes, leading to idea that haplotypes could interact 

to confer susceptibility or protection (Nerup et a!., 1987). Subsequently, a strong association 

between type-I diabetes and HLA-DQ has been found (Todd et aI.. 1987). The absence of 

aspartic acid at position 57 of the HLA-DQ n chain and the presence of arginine at position 

52 of the HLA-DQ " chain was suggested to confer strong susceptibility for type-I diabetes 

(Todd et aI., 1987, Khalil et a!., 1990, Trucco, 1992, for review). Other studies have shown 

that the relative risk associated with different DQ molecules varies considerably, particularly 

in Japanese subjects (Thomson et a!., 1988, Lundin et aI., 1989). 
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The functional link between class I and II MHC molecules and type-I diabetes mellitus may 

be understood from their function. Class I molecules bind and present peptide fragments to 

the T-cell receptors ofCD8+ (cytotoxic) T-cells, while class II molecules do the same to CD4+ 

(helper) T-cells (Rothbard and Gefter, 1991). The polymorphism of HLA molecules is mainly 

localized in the peptide binding clefts (Bjorkman et a!., 1987). The shape of the cleft determines 

which peptides can be bound. DQ molecules could exert their protective or susceptibility effects 

in each of two phases. Firstly, during tolerance induction, described below, DQ molecules 

are involved in the intra- or extrathymic presentation of B-cell peptides (Moller et a!., 1990). 

Second, they may present B-cell peptides in adult life, after B cell damage by environmental 

factors. 

Virus infections are the best studied environmental factor in relation to type-I diabetes. Serological 

studies and case histories have indicated that rubella, mnmps, Coxsackie B4, and cytomegalovirus 

may be involved in the development of type-l diabetes (Banatvala et a!., 1985, Yoon et a!., 

1976). Viruses can produce type-I diabetes after an interval of many years from the time of 

infection, exemplified by the congenital rubella syndrome (Menser et a!., 1978). Alternatively, 

repeated attacks by fi-cell tropic viruses, in combination with a susceptible genotype, may 

also lead to type I diabetes. Molecular mimicry is one of the mechanisms by which viruses 

may trigger autoimmunity against B cells (Bae et a!., 1990). Homology of viral antigens and 

host determinants has been suggested for the P2C protein of Coxsackie B4 virus and GAD65 

(Kaufman et a!., 1992, Bu et a!., I 992). Another model for virus-induced autoimmunity comes 

from a transgenic mouse study by Oldstone et aI. (1991). Expression of lymphoc)1ic choriomeningitis 

virus (LCMV) proteins under the control of the insulin promotor resulted in insulitis and diabetes 

after a challenge with LCMV. 

In summary, type-I diabetes etiology involves genetic and environmental determinants. Of 

tile genetic determinants, tile HLA region has been studied extensively. HLA-DQ gene polymorph isms 

seem to play an important role in type-I diabetes susceptibility. Other genetic factors remain 

to be determined. Environmental factors, especially viruses, are suspected in the etiology of 

type-I diabetes, but need further investigation. 
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* tolerance induction in relation to type-I diabetes mellitus. 

The function of the immune system is to mount a protective response against foreign invaders. 

At the same time it is crucial not to mount responses against antigens that belong to the own 

body. Thus, components of the immune system (f- and B-Iymphocytes) must learn to discriminate 

self from non-self antigens. This process occurs during fetal development and is called tolerance 

induction. Loss of tolerance Of failure of tolerance induction leads to autoimmune disease, 

such as type-I diabetes mellitus. Several causes of lack of tolerance are discussed below and 

summarized in table 3. 

The repertoire ofT- and B-Iymphocyte activity is formed and modulated in the thymus, early 

in development (Kappler et aI., 1987, Pullen et aI., 1988, Von Boehmer et aI., 1989). For 

tolerance induction to occur antigens must be processed and presented to thymic T -lymphocyte 

receptors in the context ofMHC class [and II molecules. A protective or susceptibility effect 

of HLA-DQ genes may influence tolerance induction. The cells involved in this processing 

and presentation may be thymic: macrophages, dendritic cells, and cortical epithelial cells, 

as well as extra thymic: splenic antigen presenting cells (Lorenz et aI., 1989, Swat et aI., 1991). 

A major focus of study has been the question how the body could discharge potentially harmful 

(= autoreactive) cells and at the same time retain potentially beneficial (= alloreactive) cells, 

to provide an adequate immune defence against foreign antigens. During development, immature 

T-cells arrive in the thymic cortex. Here, positive selection occurs when T-cells possess receptors 

to selfpeptide/MHC complexes. These complexes are presented by thymic epidermal stromal 

cells. T-cells that fail to recognize MHC become subject to apoptosis, or programmed cell 

death (Sha et aI., 1988). Negative selection against T-cells with high affinity receptors to self 

antigen/MHC complexes occurs in the thymic medulla. Presentation of self-antigens occurs 

by dendritic cells. Again, T-cells may be deleted physically by apoptosis (Jenkinson et aI., 

1989), or through functional deletion (clonal anergy) (Ramsdell et 01., 1989, 1990). A recent 

study describes that fetal mouse thymocytes are protected from deletion early in ontogeny. 

Thus, negative selection is a late ontogenic event (Finkel et aI., 1992). 

Despite thymic selection autoreactive T-cells have been detected in many normal individuals 

to many self proteins, suggesting that additional mechanisms prevent autoimmunity in those 

cases. It is conceivable that not all antigens are presented in the thymus. The time frame of 

presentation may be essential (see below). 
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Peripheral tolerance induction was considered (Rocha and Von Boehmer, 1991). Tolerance 

to Ole vast number of peripheral antigens may occur through down-regulation ofT-ceil receptors 

(Schancich et aI., 1991). Due to the inability of non-immune cells, such as islet 6 cells, to 

provide co-stimulatory signals necessary for T-cell activation, most T-cells are anergized or 

become ignorant (Schwartz, 1990, Zinkernagel et aI., 1991). The situation changes when 6 

cell peptides are presented in sufficient quantities by antigen presenting cells, which deliver 

the co-stimulatory signals. This may occur through molecular mimicry after viral infection. 

A number of studies indicates the importance of fetal tolerance development, in relation to 

type-I diabetes. 

First, in transgenic mice expressing the SV40 large T-antigen under control of the rat insulin 

II gene promotor, the occurrence of tolerance to large T-antigen depends on the timing of 

expression ofthe trans gene (Adams et aI., 1987). When this 6-cell specific protein is expressed 

during late embryological or early neonatal development, mice are normal. However, when 

expression appears later, autoantibodies are found and the islets are destroyed by lymphocytic 

infiltrates. T-cell reactivity to large-T antigen is also reported (Jolicoeur, personal communication). 

Second, myelin basic protein-specific (MBP-specific) autoreactive T-cells, playing a role in 

mul!iple sclerosis, have features in common with fetal T-cells (Zhang and Heber-Katz, 1992). 

The paucity of N-region additives of the T-cell receptors of MBP-specific T-cells is also found 

in fetal T-Iymphocytes. The authors suggest that the autoreactive T-cells have an early ontogenic 

origin and have left the thymus at an early developmental stage. Thus, they escape negative 

selection in the fetal thymus. 

Third, defective macrophage-like antigen presenting cells have been demonstrated in the thymus 

of diabetes prone BBlWor rats (Georgiou et aI., 1988). These cells are normally involved 

in tolerance development, which may be disturbed in these animals, resulting in type-I diabetes. 

Other experiments in the BB rat show that intrathymic transplantation of islets may induce 

unresponsiveness and thus prevention of diabetes (Possel! et aI., 1990, Koevary et ai, 1992). 

Finally, it was recently proposed that a mutation in one of the peptide transporter genes RING4 

or RING II, essential for proper assembly of class 1 MHC molecules may have an important 

effect on tolerance induction. Without class I MHC surface expression, no presentation of 

endogenous molecules to the immune system (T-Iymphocytes) can occur. This could resul! 

in an increased susceptibility for the development of autoimmune disorders. (Faustman et aI., 

1991). 
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In summary, tolerance induction is an incompletely understood process, in which potential 

autoreactive T-cells are deleted. Failure of deletion or a disturbance in the regulation of remaining 

autoreactive T-cells may result in autoimmune diseases such as type-I diabetes mellitus. 

Antigen presentation seems an essential component of tolerance induction. Therefore, antigens 

which may be relevant in type-I diabetes mellitus have been studied (Chapter 6). The results 

of collaborative work on the development of the T-cell repertoire in human fetal thymocytes 

is presented in Chapter 7. These experiments suggest that human fetal pancreas, spleen, and 

thymus should be studied together for the analysis of tolerance induction (see general discussion). 

TABLE 3 
Causes of lack of tolerance 

Lymphocyte related: 

- failure of positive selection 

- failure of negative selection 

- failure of suppression mechanisms 

- failure of peripheral tolerance (anergy/ignorance) 

Antigen related: 

- sequestration in place or time 

- molecular mimicry 

- alterations of self antigens (different processing or different post-translational 

modification) 

- combination of self antigens with a retroviral particle 

Antigen presenting cell related: 

- aberrant MHC class II expression 

- aberrant processing and presentation of antigen 
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Introduction to the experiments. 

The aims of the work presented in this thesis are: 1) identification of islet stem cells; and 2) 

investigating the importance of the fetal pancreas and the fetal immune system for tile develoment 

of type-I diabetes mellitus. For these experiments the human fetal pancreas was chosen because 

rodent pancreas development and rodent models for type-I diabetes mellitus differ essentially 

from human development and human type-I diabetes mellitus respectively. 

Embryonal mouse studies have shown that the four major islet cell types derive from a common 

precursor cell. In mouse embryonal pancreas hormone coexpression was found, suggesting 

that these cells might be precursor cells. As this had not been studied in the human fetal pancreas, 

double label immunohistochemistry and double label immuno-electronmicroscopy were performed 

to detect coexpression of insulin, glucagon and somatostatin. We were able to show that different 

combinations of hormone coexpression also occur in the human fetal pancreas, but such cells 

do not proliferate, or proliferate at a level below the delectionlimil of Ihe assay used (Chapter 

3). 

In a subsequent series of experiments, neuroendocrine marker molecules, which had been used 

in the detection of potential endocrine precursor cells in mice, were tested for the detection 

of islet 'stem cells. Two of these markers, NI and HNK-I, were found in proliferating cells 

as well as in hormone containing islet cells, suggesting them as precursor cell markers (Chapter 

4). Again, double label immunohistochemistry and BrdU incorporation were used. 

l1\ese findings, however, did not prove that marker-positive proliferating cells indeed differentiate 

into marker-positive hormone containing cells. In Chapter 5, the new monoclonal antibody 

N 1 was characterized and used for sorting human fetal pancreatic single cell suspensions by 

fluorescence activated cell sorting. These sorted cell suspensions should then be studied in 

vitro, adding growth factors or differentiation inducing factors. However, the culture conditions 

for these sorted cells were suboptimal, leading to cell death and fibroblast overgrowth. 

TIle patilOgenesis of type-I diabetes mellitus has been outlined in Chapter 2 as a selective autoinu11une 

deslruction of pancrealic B cells. Many pOlentialllUmorally or cellularly defined autoantigens 

have been found, but the cause of autoimmunity remains unknown. Transgenic mouse studies 

have suggested that tolerance induction of the immune system against antigens occurs during 

a critical period of felal development and failure may lead to autoimmunity. To investigate 

this hypothesis for type-I diabetes autoimmunity, two questions should be answered: I. Are 
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islet (6) cell antigens, relevant to type-I diabetes mellitus, expressed in fetal pancreatic islet 

cells at this stage of development? and 2. At what stage of development does tolerance induction 

occur in the human fctal pancreas? 

Using antisera from type-I diabetic patients islet cell antibody (ICA) reactivity was shown 

in human fetal islet cells (Chapter 6). In preliminary experiments (Chapter 8) GAD65 expression 

was also shown. 

The time course of tolerance development, as many other aspects of immune system development, 

is unknown in the human fetus. Therefore, as a start and in collaborative experiments, the 

formation of the T-cell repertoire was studied in human fetal immune system organs. These 

experiments did not allow any conclusions with regard to the time course of tolerance development 

but indicated that T-cell receptor rearrangements occur, involving the majority afTeR V gene 

families (Chapter 7). 
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SUMMARY 

In the fetal development of the mouse pancreas, endocrine cells have been found that express 

more than olle hormone simultaneously. OUf objective was to evaluate the existence of such 

cells in the human fetal pancreas. We found cells coexpressing two of the major pancreatic 

hormones (insulin, glucagon, and somatostatin) in sections of eight midgestational (12-18 weeks) 

pancreata and in 0-7% of cells in single-cell suspensions from midgestational pancreata. By 

electron microscopy, using granule morphology and immunoelectron microscopic techniques, 

we could confirm these findings and even detect cells containing three hormones. Morphologically 

different granules contained different immunoreactivities, suggesting paraliel regulation of 

hormone production and packaging. In six newborn pancreata (born after 22-40 weeks of gestation), 

we could not find any multiple-hormone-containing cells. Subsequently, we evaluated whether 

multiple-hormone-containing cells proliferate by using pancreatic fragments and single-cell 

preparations at the light and electron microscopic level (six pancreata). No endocrine hormone

containing cells incorporated bromodeoxyuridine during a I-hr culture period, indicating that 

these cells have lost the ability to proliferate under the conditions chosen. We conclude that, 

as in mice, the human fetal pancreas of 12-18 weeks of gestation contains endocrine cells that 

express multiple hormones simultaneously. These (multiple) hormone-containing cells do not 

seem to proliferate under basal conditions. 

INTRODUCTION 

Mature hormone-producing cells usually synthesize and secrete one type of hormone. In the 

adult islet of Langerhans, four endocrine cell types have been described: alpha cells produce 

and secrete glucagon, beta cells insulin, delta cells somatostatin, and PPcells pancreatic polypeptide 

(Larsson, 1978). Each cell type contains secretory granules with a specific ultrastructure. Recently 

it was shown that during mouse pancreatic development, endocrine cells could be found that 

express more than one of these hormones simultaneously (Alpert et aI., 1988). 

Our objective was to assess whether multiple-hormone-containing ceUs are present in the development 

of the human pancreas. Fetal pancreata of 12-40 weeks gestational age were studied. Also 

single-cell preparations of part of these samples were studied by immunohistochemistry and 
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immunoclectron microscopy. Finally, we studied the proliferation of multiple-hormone-containing 

cells under basal conditions, using the bromodeoxyuridine (BrdU) incorporation technique. 

MATERIALS AND METHODS 

Tissues and cells. Human fetal pancreata between 12 and 18 weeks of gestational age were 

obtained from abortions, after signed informed consent of the wOlllen concerned and with permission 

of the local ethical committee. Gestational age was assessed by echographic measurement of 

the biparietal diameter. Abortions were induced mechanically. resulting in a warm ischemia 

time of 15-25 min. Tail parts of the pancreas were immediately fixed in 4% buffered formalin 

or in 0.4 % glutaraldehyde and I % acrolein for light or electron microscopical processing respectively. 

Pancreata between 22 and 40 weeks of gestational age were obtained from deceased patients 

of a neonatal intensive care unit after parental permission, during routine obductions. The 

neonates died of causes not related to pancreas pathology. Pancreata were fixed for light and 

electron microscopy at autopsy, less than 12 hr after death. 

From the fetal pancreata between 12 and 18 weeks of gestational age single-pancreatic-cell 

suspensions were prepared. These have the advantage of unequivocal detection of double-positive 

cells and are easily quantified. Pancreata were minced into small fragments, which were incubated 

with collagenase (SIGMA, SI. Louis, MO, I mg/ml) in Earle's balanced salt solution (BBSS, 

GIBCO, Paisley, UK) for two IO-min periods. In between, fresh collagenase was added and 

single cells were removed by centrifugation. Cells were centrifuged over a Percoll gradient 

with layers of 1.004 (EBSS), 1.030, and 1.063 g/ml density. The 1.030-1.063 g/ml interphase, 

containing 83% viable cells, was cultured overnight in RPMI 1640 (GIBCO) supplemented 

with 10% pooled, heat-inactivated human serum (Bloodbank, Academic Hospital Leiden, The 

Netherlands), 1.5 Uiml dispase I (Boehringer Mannheim, Mannheim, FRG), and 10 ug/ml 

DNase (SIGMA). 

Bromodeoxyuridine incorporation. Small tail fragments of the human fetal pancreas and 

single-cell preparations were cultured for I hr in the presence of lOuM 5-bromo-2-deoxyuridine 

(SIGMA) in RPMI 1640, supplemented with 10% human serum. Some fractions were cultured 

for 2,4,8, or 16 hours to observe the frequency of cells that incorporated BrdU. Since there 
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was no large variation in this frequency, we chose to incorporate for I hr (data not shown). 

The fragments were fixed in 4 % buffered formalin or in 0.4 % glutaraldehyde and I % acrolein 

for light or electron microscopy. 

ImmmlOldstocbemistry (sections). Paraffin sections of the tail parts of human fetal and newborn 

pancreata were deparaffinized using xylene and a graded alcohol series and washed in phosphate

buffered saline (PBS). TIley were tllen incubated for 30 min at room temperature Witll a combination 

of two primary antibodies (tlrree sections per pancreas for tllree possible combinations), washed, 

and incubated for 30 min with a combination of two secondary antibodies conjugated to either 

FITC or TRITe. After a final wash, sections were mounted and stored at -20"C. 

For BrdU immunohistochemistry the sections of a series of pancreata (n =20) were pretreated 

with 0.1 % pronase (SIGMA) for 5 min at 37'C and 2N HCI for 30 min at 37"C followed by 

neutralization with a borate buffer (pH S.5). These steps were done after deparaffination and 

before progressing to the application of the primary antibodies. 

We used monoclonal antibodies to insulin (HUI-OIS, cross-reactivity with proinsulin 100%, 

1:50, Novo, Bagsvaerd, Denmark), glucagon (GLU-OOI, cross-reactivity with glicentin 100%, 

I :30, Novo), somatostatin (SOM-OIS, I: 1000, Novo) and 5-bromo-2-deoxyuridine (I :50, Becton 

Dickinson, Mountain View, CAl. Each of tllese antibodies was combined witll polyclonal antibodies 

(Dako, Glostrup, Denmark) to insulin (I: 1000, guinea-pig origin), glucagon (I :300, rabbit 

origin), or somatostatin (I :SOO, rabbit origin). In addition, a polyclonal antibody to pancreatic 

polypeptide was used (1:20, rabbit origin, Dako). Second antibodies were goat-anti-mouse 

FITC and TRITC (I: 150 and 1:60), goat-anti-rabbit FITC and TRITC (I :200 and I :200) (Nordic 

Immunological Laboratories, Tilburg, The Netherlands), and goat-anti-guinea-pig FITC and 

TRITC (1:60 and 1:300) (Southern Biotechnology, Birmingham, UK). Control experiments 

consisted of replacement of each primary antiserum with a preimmune serum or with PBS/bovine 

serum albumin (BSA). Background staining was minimal and spectral overlap was not observed. 

Furthermore, the fact that both single- and double-positive cells could be observed, indicated 

that there was no cross-reactivity between the different hormone antibodies. 

Immunoeytochemistl'Y (single cells). Following cell culture for at least 18 hr, cytospins from 

pancreatic cell suspensions were prepared (n= 15 pancreatic suspensions; 2x 12. Ix13, 4x14, 

5x15, 2x16, and lxlS weeks of gestation). Staining and control experiments were similar to 
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that described for paraffin sections. Instead of deparaffination, cytospins were fixed in acetone 

and washed in PBS before applying the primary antibodies. For quantification of results, 100 

endocrine cells, recognizable by tileir fluorescence, were counted. Disrupted cells were excluded. 

Innllulloclectron microscopy, After fixation for 24-72 hr, pancreatic fragments were embedded 

in Lowicryl K4M (Roth et aI., 1981). Ultrathin sections were prepared on a Reichert Om U3 

(Reichert, Vielma, Austria), ultramicrotome and placed on Formvar-roated copper grids. Incubation 

times were 1-2 hr for the combinations of monoclonal and polyclonal primary antibodies [to 

insulin, glucagon, and somatostatin, see Immunohistochemistry] and I hr for the secondary 

antibodies. The latter were conjugated to colloidal gold of 10 or 15 nm (Aurion, Wageningen, 

The Netherlands). For BrdU immunoelectron microscopy we used the method described by 

Thiry and Dombrowicz (1988). Sections were floated on a 5 M HCI solution for 30 min and 

neutralized with a I M borax solution before mounting. The anti-BrdU antibody (l :50) was 

applied in combination with polyclonal antibodies to insulin, glucagon, or somatostatin [see 

Immunohistochemistry] for 3-4 hr. Finally, the sections were contrasted with uranyl acetate 

for 20 min and with lead citrate for 30 sec. Sections were analysed on a Philips EM400 electron 

microscope (Eindhoven, The Netherlands). 

In each section 100 cells, detectable by their endocrine granule content, were counted. Controls 

consisted of replacement of primary antibodies by preimmune serum or PBS. Background 

reactivity was less than 0.5 gold particle per secretory granule, whereas in the case of a positive 

signal an average of 5 gold particles per secretory granule was observed. Cross-reactivity of 

primary antibodies with each of the other two hormones was analyzed by single staining and 

observation of gold particles over morphologically different types of secretory granules. The 

use of Lowicryl embedding medium, necessary for immunoelectron microscopy. results in 

negative membrane contrasting which makes detection of intra- and intercellular membranes 

difficult. 

Statistics. 111e association between tile gestational age of tile pancreatic specimen and tile percentage 

of multiple-hormone-rontaining cells and tirnt between gestational age and percentage ofBrdU-positive 

cells in light microscopical analysis of single-cell suspensions and sections was evaluated according 

to Spearman's rank correlation test. 
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RESULTS 

Multiple-hOlmone expnS5ion in hmnan midges/ationa! and newoom pallo ... ta alld midges/ationa! 

endocrine pancreatic cells. 

Immunohistochemistry. Eight human fetal pancreata (12-18 weeks) and six newborn pancreata 

(22-40 weeks) were analyzed by fluorescence microscopy. In the fetal pancreata, endocrine 

cells reactive with antibodies to insulin, glucagon, somatostatin, or pancreatic polypeptide 

appeared as single cells, scattered in the pancreatic parenchyma, and as endocrine cell clusters 

of varying sizes (Figs, IA,B), This pattern was found at all gestational ages studied, although 

the number and size of the cell clusters increased with age. Single celis, containing one of 

tile hormones, were found in tile proximity of ducts (Figs. le,O). Pancreatic polypeptide-rontaining 

cells were observed very infrequently. as tail parts of the pancreas were used, and this hormone 

was omitted from the double-incubation studies. In all fetal pancreata studied we found one 

or more cells coexpressing two of the three hormones tested (insulin, glucagon, somatostatin) 

among a m:ljority of cells containing only a single hormone. Figures IE and IF show tile coexpression 

of insulin and glucagon. Newborn pancreata (22-40 weeks), which had no morphological signs 

of proteolysis, presented with numerous endocrine cell clusters and islets. In contrast to the 

midgestationai pancreata, we never observed cells containing more than one hormone. 

Immunocytochemistry. Single-cell preparations of fetal midgestational pancreata were used 

to assess the frequency of multiple-hormone-containing cells. Table 1 summarizes the data 

on 15 human fetal pancreatic single-cell suspensions (2x 12, Ix 13, 4x 14, Sx 15, 2x16, and Ixl8 

weeks of gestation). Predominantly, the combination of insulin and glucagon expression in 

one cell was found. However, the combination of insulin and somatostatin or glucagon and 

somatostatin could also be identified. One of the IS pancreatic suspensions (14 weeks of gestational 

age) did not contain any cells with two hormones. In two pancreatic cell suspensions all three 

hormone combinations could be found. No statistically significant association was observed 

between gestational age and the percentage of any hormone combination (P > 0.05). The frequency 

of pancreatic polypeptide-<:ontaining cells was too low ( < 0.1 % of all cells) to study its coexpression 

in other endocrine cells. 

62 



Fig. I. Sections ofa midgestational pancreas (A-F) stained for insulin (A,C,E) and glucagon (F). Insulin-positive 
cells can be present as endocrine cell clusters (A) or as single cells (e). They are often located in the proximity 
of ducts. which can be identified in the corresponding UV-filter exposures (B,D). Double labeling with insulin 
(E) and glucagon (F) shows a cell that displays both insulin and glucagon reactivity (arrow). Bar represents 5 

JUll in A to D. 5J! ill E, and 6 Jim in F. 
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Table I. Double hormone containing cells in the population of endocrine cells in the human 

fetal pancreas between 12 and 18 weeks of gestational age. 

hormone 

combination 

ins/glu 

ins/sins 

glu/sms 

number of pan-

creases with 

double+ cells 

11/!5 

9/!4 

4/!5 

ins = insulin; glu = glucagon; SinS = somatostatin 

percentage of cells 

co-expressing hormones 

ins+ glu+ sms+ 

2.5 8.6 

3.9 8.3 

5.1 1.6 

Electron microscopy. Four fetal pancreatic fragments and six newborn pancreatic fragments 

were processed for immunoelectron microscopy. In the midgestational fetal pancreata three 

different endocrine eel! types (alpha, beta and delta cells) could be distinguished by the presence 

of ultrastructurally typical secretory granules. Fragments of the pancreatic tail were taken to 

obtain a relatively high proportion of endocrine cells, in which pancreatic polypeptide-containing 

cells were not studied because of their low frequency in this area. The ultrastructure of the 

different granule types was identical to dlat in adult endocrine pancreatic cells and was confirmed 

by the presence of the corresponding immunoreactivity (Like and Orci, 1972; Dudek and Boyne 

1986). Alpha eel! granules were black, electron dense, sometimes with a dark grey outer rim; 

beta cell granules had crystallized black cores surrounded by a white halo or were uniformly 

black to grey; delta cell granules were the largest in size, relatively electron lucent, and light 

grey. 

In the fetal pancreata we were able to identify cells containing two or three different granule 

types within the same cell (Figs. 2A-C). These morphological findings could be confirmed 

by immunoreactivity over the secretory granUles, each granule labelled by a single hormone 

antibody. We found cells coexpressing glucagon and insulin in the corresponding granule types, 

and cells coexpressing glucagon and somatostatin. In addition cells containing all three hormones 
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Fig. 2. Electron micrograph showing endocrine cells of 15 weeks gestation. (A) Section stained for glucagon 
and somatostatin. (B) Section stained for insulin and somatostatin. (C) An overview of a cluster of endocrine 
cells, some of which contain more than one honuone. The use ofLowicryl embedding medium for immunoelectron 
microscopy results in a negative contrasting of the membranes, which are therefore not visible in these pictures. 
(A) Granules with alpha and delta morphology present inlhe same cell, containing glucagon (large, 15-nm gold 
particles) or somatostatin (small, lO-nm gold particles), respectively. Arrows show an area with cytoplasmic 
somatostatin immunoreactivity_ Bar represents 150 lID). (B) InID1WlOreactivity to insulin (small, lO-mn gold particles) 
and to somatostatin (large, 15-nm gold particles) can be found in one cell in granules with beta and delta morphology. 
Furthennore, unlabeled granules oftbe alpha type can be seen (arrow). Bar represents 110 IIDI. (C) Arrows and 
arrowheads indicate glucagon- and somatostatin-containing granules respeclively. They can be distinguished 
morphologically. At tIus magnification immunoreactivity call1lot be seen. Bar represents 680 nm. 
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in three distinct granule types were observed. A small number of cells contained granules with 

alpha cell morphology and both glucagon and insulin immunoreactivity. 

Reactivity over background levels was also found outside secretory granules in the endoplasmic 

reticulum and in the cytoplasm for insulin, glucagon, and somatostatin (figure 2a). Nuclei 

and mitochondria displayed minimal background staining, as did nonendocrine cells. In control 

experiments, omitting primary antibodies, only occasional gold particles were found over all 

cell types and subcellular organelles. Cross-reactivity of the primary antibodies was found 

to be absent. 

Newborn pancreatic fragments presented with poor morphological preservation. TIlis was probably 

the result ofthe interval between death ofthe infant and start of autopsy/fixation. Consequently, 

these fragments could not be used for ultrastructural studies. 

Assessment of proliferating cells in themidgestationaI lnunan fetal pancreas and endocrine 

pancreatic cells. 

In pancreatic fragments from 20 human fetal pancreata (12-18 weeks) processed for BrdU 

detection at the light microscopic level, a similar distribution pattern for insulin-, glucagon-, 

and somatostatin-positive cells was observed as in sections prccessed by routine immunohistochemistry. 

The frequency ofBrdU positive nuclei, occurring in 0.9% to 6.4% of all cells, was negatively 

correlated with the age of the tissue fragments (r, = -0.79, p<O.OOI). BrdU-positive cells 

might be found close to ductal structures as well as close to endocrine hormone-containing 

cells, but we never observed a BrdU-positive cell that contained insulin, glucagon, or somatostatin 

(Figs. 3A-C). 

Human fetal single-cell preparations (n=18) confirmed these findings. There was a negative 

correlation between age of the pancreatic specimen and the percentage of BrdU-positive cells 

(r, = -0.643, p=0.05). No BrdU-positive cells could be found to contain insulin, glucagon, 

or somatostatin. The percentages of the hormone-containing cell types in the cytospins prepared 

for BrdU innnunocytochemistry were not significantly different from non-BrdU cytospins (p >0.05). 

At the electron microscopical level we found that 2.8% to 5.8% of the cells had incorporated 

BrdU (12 grids from six pancreata), evidenced by heavy labeling over the nucleus. Many hormone

containing cells were identified, either by the specific ultrastructural granulation, or by specific 
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Fig. 3. Section of a 15-week pancreas stained for (A) bromodeoxyuridille and (B) insulin. Cells coexpressing 
BrdU and insulin could not be found. (C) A corresponding UV filter exposure, allowing the identification of 
pancreatic structures. Bars represents 10 111ll. 
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immunolabelHng against insulin, glucagon, or somatostatin. However, none of the BrdU-positive 

cells contained secretory granules nor cytoplasmic immunoreactivity to insulin, glucagon, or 

somatostatin. 

DISCUSSION 

The midgestatiollal human fetal pancreas contains endocrine cells expressing multiple 

hormones simultaneously. 

This study shows the presence of multiple-hormone-containing cells in the developing human 

pancreas between 12 and 18 weeks of gestation, but not in fetal/newborn pancreata between 

22 and 40 weeks. The onset of hormone expression at the protein level in the human fetalpancreas 

has been demonstrated at week? for glucagon (Assan et aI., 1973), and at week 8-10 for insulin 

and somatostatin (Stefan et aI., 1983). Pancreatic polypeptide expression has also been found 

at week 8-10, but was not evaluated electron microscopically in this study. Alpert et al. (1988) 

described features of the ontogeny of pancreatic hormone expression in transgenic mice and 

showed the existence of multiple-hormone-containing cells. Based on these findings, they proposed 

a developmental scheme, where glucagon is the first hormone to be expressed. These cells 

subsequently differentiated, tllrough multiple-hormone-expressing stages, into mature endocrine 

hormone cells that contained only one type of hormone. In our study, assessing three hormones, 

we found all three possible hormone combinations at the light microscopic level. At the electron 

microscopic level, however, we found glucagon expression at the protein level in all cells 

that expressed more than one hormone. This is in agreement with the developmental scheme 

of Alpert et al. (1988) where glucagon expression occurs as the first step in the differentiation 

of endocrine pancreatic cells. The multiple-hormone-expressing cells might then be the next 

stage before cells are committed to the production of a single hormone. 

Since in pancreata between 22 and 40 weeks of gestation and in adult human pancreata only 

endocrine cells expressing a single hormone were found, the differentiation process of endocrine 

pancreatic cells may be limited to the period at the end of the first and the beginning of the 

second trimester of pregnancy. However, we were not able to confirm the absence of multiple

hormone-containing cells electron microscopically in premature newborn pancreata. 
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111e electron microscopic data supported dIe light microscopic data on multiple hormone expression. 

Immunoreactivity for each hormone (insulin, glucagon, or somatostatin) was only found in 

granules with a corresponding morphology. The finding that in multiple-hormone-containing 

cells, two or three types of granules are morphologically and immunologically evident, shows 

that different hormones are produced and stored in parallel. Regulatory functions to produce 

and process only one hormone are apparently not yet functional at this stage of development. 

Some immunoreactivity over background levels for insul in, glucagon, and somatostatin was 

present over the cytoplasm and endoplasmic reticulum. The cytoplasmic labeling may result 

from synthesized hormone that has escaped packaging. 

MidgestationaI hnman fetal pancreatic ceUs expressing multiple hormones do not proliferate 

under basal conditions. 

OUf data showed that no bromodeoxyuridine was incorporated in hormone-containing cells 

after a I-hr culture period. Neither was such incorporation found after 48 hr of labeling or 

after 48 hr of follow-up of BrdU-labeled cell cultures (data not shown). In addition, it would 

not be possible to distinguish a cycling (BrdU-incorporating), hormone-containing cell from 

a cycling cell that incorporated BrdU, left the cell cycle, and started to differentiate and produce 

hormone. The method ofBrdU incorporation has a slightly lower sensitivity than 'H-thymidine 

incorporation. Furthermore, the ischemia time, although only 15-25 minutes, may interfere 

with the detection of proliferating hormonal cells. However, numerous BrdU-positive cells 

could be found in tissue sections. Also, the percentage of BrdU-positive cells is comparable 

in tissue sections and single-cell preparations. In one study (Nielsen et aI., 1989) 0.9% of 

a population of newborn rat beta cells incorporated SrdU under nonstimulating conditions. 

We should have been able to pick up such a low frequency in our study since each paraffin 

section contained 100-500 beta cells. Swenne (1982) estimated the S-phase and cell cycle time 

of fetal rat beta cells to be 6.4 and 14.9 hr, respectively, and suggested the proliferative compartment 

of beta cells to be 10%. If these data are comparable to the human situation, our labeling periods 

would allow detection of almost 50% of actively cycling cells, being 5-25 BrdU-positive beta 

cells in our sections. If the cell cycle of fetal endocrine pancreatic cells was longer, e.g. 50-60 

hours, 10% of the cycling cells could still be detected, i.e. 1-5 BrdU-positive beta cells per 

section. However, in this study we could not identify (multiple) hormone-containing cells that 
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showed proliferation by incorporating BrdU. 

Earlier studies (Nielsen etal., 1989; Popiela and Moore, 1989; Popie1a et aI., 1988; Davidson 

et aI., 1989; Swenne, 1982; Swenne, 1983; Swenne et aI., 1980, 1987, 1988) suggested that 

rodent endocrine hormone-containing cells (both fetal and adult) do proliferate, but only under 

stimulating conditions. 

TIle absence of proliferation in endocrine hormone-containing cells and thus in multiple-hormone

containing cells suggests that once hormone production has started, cells are committed and 

stop proliferating. This does not exclude that endocrine cells might be induced to proliferate 

in vitro by the addition of growth factors. However, pancreatectomy studies in adult mice 

indicated that newly formed endocrine cells may originate from precursors in the ductal epitilelium 

(Smith et aI., 1991). The present finding of BrdU·positive cells in or adjacent to ductal structures 

would be in keeping with this. 

We conclude that multiple-hormone-containing cells are present in the midgestional human 

fetal pancreas, but most likely not in premature newborn pancreata between 22 and 40 weeks 

of gestational age. Unfortunately, procurement of these older pancreata is hampered due to 

longer warm ischemia times. The abscllceofBrdU incorporation supports the idea that multiple

hormone-containing cells may be an intermediate stage toward full commitment to single hormone 

production and secretion. Thus. endocrine pancreatic cells in the human fetal pancreas would 

arise from precursor cells that do not express hormones. 
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SUMMARY 

Two monoclonal antibodies, NI and HNK-I, were used to identify potential endocrine precursor 

cells and to study their expression in hormone containing islet cells in the human fetal pancreas. 

Double label immunohistochemical experiments were performed using tissue sections and single 

cell preparations of human fetal pancreata of 12 to 18 weeks gestation and tissue sections of 

human adult control pancreata. In these experiments, neuroendocrine markers (N I and HNK-I) 

were combined with insulin, glucagon, and somatostatin. N I has been detected before on fetal 

and adult ", S, and bcells. To identify potential precursor cells, cell suspensions were incubated 

with 5-bromo-2-deoxyuridine (BrdU), a marker of cell proliferation. Both NI and HNK-I 

were expressed on (BrdU-positive) proliferating cells. HNK-I-positive but not NI-positive 

proliferating cells were present until 15 weeks gestation. HNK-I was exclusively present on 

islet b cells throughout development. These data suggest that two populations of potential endocrine 

precursor cells exist: NIlBrdU cells, giving rise to at least islet lX and S cells, and N IIHNK-IIBrdU 

cells, giving rise to islet b cells. 

In conclusion, two neuroendocrine markers, N I and HNK-I, identify two lineages of potential 

endocrine precursor cells and suggest phenotypic differentiation of b cells before hormone 

expression starts. 

INTRODUCTION 

The pancreas contains at least four endocrine cell types: lX, S, b, and PP-cells, producing and 

secreting glucagon (GLU), insulin (INS), somatostatin (SOM), and pancreatic polypeptide 

(PP). Endocrine islet cells share many features with neuronal cells, but are considered to be 

of endodermal origin [12,19]. Hormone expressing cells can be found from 6-8 weeks gestation 

onwards in human embryos [13,23]. Studies in the mouse indicate that islet hormone mRNA 

can be detected at day E9 (20 somite stage) of embryonic development [8]. It is unclear whether 

these cells represent precursor cells or early differentiated cells without any proliferative capacity. 

In fully differentiated islets, a single hormone is produced per islet cell type. During islet development, 

multiple hormone expressing cells are present in mice [l,24] and humans [5,14]. Multiple 

hormone containing cells may represent an intermediate phase between proliferating cells and 
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full islet cell differentiation. Previous experiments have shown that the proliferative capacity 

under basal conditions, measured by BrdU incorporation, in multiple and single hormone containing 

islet cells is either below the detection limit of this assay or absent [5,7]. Thus, hormone expression 

at the protein level cannot help in the identification of endocrine precursor cells. 

We therefore searched for other potential markers of early human islet cell development, aiming 

to detect endocrine precursor cells and analyzing the expression patterns of such markers in 

human fetal islet cells. Monoclonal antibodies N I (directed against an epitope present on human 

fetal islet cells), and HNK-I (directed against a glycolipid/glycoprotein moiety present on several 

cell types, including neural crest cells [10]), have been detected before in islet cells [6,22]. 

Expression of these markers in BrdU-positive proliferating cells and coexpression with hormones 

was studied in tissue sections and single cell preparations of human fetal pancreata and adult 

control pancreata. 

Recently, early expression of PP was suggested in mouse endocrine cells [9]. Subsequent studies 

indicated that this reactivity in fact may be caused by neuropeptide Yor by peptide YY [25,26]. 

In our study, PP was not analyzed becanse of tlle very low frequency of PP cells in tlle developmental 

period studied. 

MATERIALS AND METHODS 

Tissues and cells. Human fetal pancreata from 12-18 weeks gestational age (n=25) were obtained 

from abortions, after signed informed consent. Human adult pancreata were obtained from 

multiorgan donors and used as controls (n=2). The study was approved by the local ethical 

committee. Gestational age was assessed byechographic measurement ofthe biparietal diameter 

of the head. Abortions were induced mechanically resulting in warm ischemia times of 15-25 

minutes, and an improved viability compared to prostaglandin induced abortion [16]. For 

immunohistochemistry pancreata were snap frozen in liquid nitrogen (n =25). Pancreatic single 

cell suspensions were prepared as described [6]. 

BrdU incorporation. Single cell preparations (after 18 hours of culture) were cultured for 

I hour in the presence of lO I'M 5-bromo-2-deoxyuridine (BrdU) (Sigma Chemical Co., St. 

Louis, MO, USA) in RPMI1640 (Gibco, Paisley, UK), supplemented with 10% pooled human 

serum (Bloodbank, Academic Hospital Leiden, The Netherlands), as described before [5]. 
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Immullocytochemistry. Cell surface labelling and cytospin preparation, after cell culture of 

total pancreatic cell suspensions for 18 hours, was performed as described previously [6]. For 

BrdU immunocytochemistry, cytospins were treated, after fixation, with 2 N HCI for 30 minutes 

at 37"C and neutralized with a borate buffer (pH 8.5). Subsequently, they were incubated with 

primary and secondary antibodies. Cytospins were incubated for 30 minutes at room temperature 

with one or two primary antibodies (single or double staining), washed in phosphate buffered 

saline (PBS), pH 7.4, and incubated for anodler 30 minutes with one or two secondary antibodies 

conjugated to fluorescein isothiocyanate (FITC) or tetramethyI rhodamine isothiocyanate (TRITC). 

After a final wash in PBS, sections were mounted and stored at -20"C until analysis. 

Primary antibodies are specified in table l. Secondary antibodies were goat-anti-mouse-FITC 

and -TRITC (I: ISO and 1:60), goat-anti-mouse IgG I-TRITC (l :50), goat-anti-mouse IgG2-FITC 

and -TRITC (bodll:25), and goat-anti-mouseIgM-FITC and -TRITC (both 1:25), goat-anti-rabbit

FITCand -TRITC (1:200 and 1:200) (Nordic Immunological Laboratories, Tilburg, The Nedlerlands), 

goat-anti-guinea-pig-FITC and -TRITC (1:60 and 1:300) (Southern Biotechnology, Birmingham, 

UK). For double label experiments primary antibodies from different species were used. If 

this was not possible, Ig subclass specific second antibodies were applied. In control cytospins 

the primary antisera were replaced by PBS/bovine serum albumin. Background staining was 

minimal, spectral overlap was not observed. To exclude staining differences due to fixation 

techniques all antibodies were tested in 4 % paraformaldehyde fixed and acetone fixed tissues. 

No differences in staining were found. For quantification of results, 250-500 cells were counted. 

Innnunobistocliemistry, Cryostat sections were fixed in acetone or 4 % para formaldehyde 

for IS minutes. and washed in PBS. Primary and secondary antibodies were applied as described 

above. Control preparations were similar as for cytospins. In some cases the indirectperoxidase 

technique was used instead of the indirect fluorescence technique. No differences in staining 

were found for either of the fixation techniques. 

Staining ohiable ceUs, Fluorescein diacetate (FDA, SIGMA) was used for the determination 

of cell viability [21]. A stock solution of I mg/ml FDA in acetone was made and stored at-

20"C. Cell suspensions were incubated with a I: 10,000 dilution of this stock for 5 minutes. 

at 3TC, followed by centrifugation and analysis on a FACScan (Becton Dickinson). 
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Table 1. Primary antibodies used in this study. 

ANTIGEN SOURCE DILUTION SUPPLIER REMARKS 

A. Polyclonal antibodies 

insulin guinea-pig 1: 1500 Dako 
glucagon rabbit 1:750 Dako 
somatostatin rabbit l:SOO Dako 
pancreatic polypeptide rabbit 1: 1000 Dako 
neurofilament rabbit 1:10 Sanbio clone 2Fll reacting to 70 and 200kD 

fragments 

B. Monoclonal antibodies 

insulin mouse 1:50 Novo/Nordisk HUI-OIS 
proinsulin crossreaction 100 % 

proinsulin mouse 1:10 Dr. Madsen GS4G9 
glucagon mouse 1:30 NovolNordisk GLU-OOI 

glicentin crossreaction 100% 
somatostatin mouse 1:1000 Novo/Nordisk SOM-OIS 
NI mouse 1:500 ascites 
HNK-I mouse 1:10 ATCC ascites 
BrdU mouse 1:100 BD 

ATCC = American Tissue Culture Collection; BD = Becton Dickinson 



Statistics, 111e association between gestational age of the pancreata and tile percentage of marker

positive cells was evaluated according to Spearman's rank correlation test. All data are presented 

as mean ± SD. 

RESULTS 

Detection of potential endocrine precursor cells using neuroendocrine markers. 

BrdU incorporation was assessed in total human fetal single cell preparations. Processing cytospins 

for BrdU detection did not affect the percentage of hormone and marker positive cells, compared 

to cytospins processed for detection of hormones and markers only [5]. An inverse relationship 

between gestational age (range: 12 to 18 weeks gestation) and the percentage of BrdU-positive 

cells was found (range: 0.4-6.9%, n=21, r,= -0.53, p<O.OI). BrdU was never present in 

hormone containing cells. In 4 ± I % of NI-positive cells BrdU incorporation was observed 

(n=7). The age of the specimens did not have an effect on the percentage of NlIBrdU double 

labeled cells. InS pancreata of 12-14 weeks gestation 8 ± 3% ofHNK-1 positive cells showed 

BrdU incorporation (Fig IA,B). Noneof5 pancreata of more than 14 weeks gestation contained 

HNK-lIBrdU double labeled cells. 

Thus, N I positive proliferating cells were observed at all gestational ages. Until IS weeks 

gestation, but not thereafter, proliferating cells expressing HNK-I on their surface were also 

present. Neither of these cells did coexpress pancreatic hormones. 

Expression of neuroendocrine markers in hormone-containing islet cells. 

Cells containing INS, GLU, SOM, and PP were present in all fetal and adult pancreata studied. 

The low frequency of PP-positive cells in human fetal pancreata (confirmed to be 0.1 ± 0.1 % 

(n=10) in single cell preparations) did not allow further analysis. The other three hormones 

were seen in single cells, small endocrine cell clusters, and larger islet-like cell clusters. Such 

islet-like cell clusters showed the typical cell distribution of islets, with a B cell core and a 

peripheral mantIe of IX and {j cells. 
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Figure l. Immunofluorescent double staining with HNK~l (A) and BrdU (B) of a cytospin preparation of a 15 
week human fetal pancreas. Cells were first incubated with bromodeoxyuridille for I hour in culture. HNK~ I 
was identified as membrane fluorescence, BrdU by nuclear fluorescence inlhe same cell (arrow). The indirect 
fluorescence technique was used. Bar represents 5 JlIll. 

Nl reactivity was similar as described [6]. The majority of INS, GLU, and SOM containing 

cells in tissue sections and single cell preparations reacted with N I. NI-positivecells constituted 

15.6 ± 5.7% of all fetal pancreatic cells, half of which contain either INS, GLU, or SOM. 

The majority of non-hormone containing N I-positive cells contained another neuroendocrine 

marker. There was a significant increase in the percentage ofN 1 positive cells with gestational 

age (n=29, r,=0.57, p<O.OI) [6]. 

HNK-l-positive cells were located around the insulin-positive cell core of small endocrine 

cell clusters and larger islet-like cell clusters (Fig. 2A,B) in fetal pancreata of all gestational 

ages. The majority of these HNK-I cells were SOM positive in double label experiments. No 

HNK-I reactivity was seen in INS or GLU cells. In adult islets HNK-I positive cells were 

generally located around the central B cell core of the islets and were always SOM positive. 

However, they were less abundant than HNK-I1S0M cells in fetal islets (Fig. 2C,D). Other 

HNK-I-positive, SOM negative cells in the human fetal pancreas were found in bundle-like 

structures. These cells were costained by antibodies to neurofilament (70 kD and 200 kD), 

suggesting that they were intrapancreatic nerve fibers. No neurofilament reactivity was seen 

within fetal or adult islet cells. 
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Figure 2. Double labeling of a pancreatic tissue section of 15 \veeks gestation with HNK-I (A) and proinsulin 
(B). No cells coexpressing HNK-l and proinsulin are seen. HNK-I-positive cells are located peripheral to the 
fi cell core. Staining was perfonned with the indirect fluorescence technique (A and B). Bar represents 10 Itm. 
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Figure 2. Tissue sections of a 14 week old fetal pancreas (C) and of an adult pancreas (D), respectively, stained 
with an antibody (0 somatostatin (SOM). Single cells and endocrine cell clusters with an abundant peripheral 
ring ofSOM cells can be observed in C. In the adult islet in D few SOM cells are found. Staining was perfonned 
witb tbe indirect peroxidase technique (C and D). Bar represents 30 jll11 in C, and 20 jll11 in D. 
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In human fetal single cell suspensions 11.2 ± 5.7% of the cells were HNK-I positive. There 

was a significant decrease in the percentage of HNK-I reactive cells with increasing age of 

the pancreata (n= IS, r,=-0.511, p <0.05). Dfthe'; cells 81 ± 12 % presented HNK-I surface 

reactivity, whereas none of the" or 6 cells were stained. 

Coexpression ofNI and HNK-I was shown: 9.4 ± 7.8% was also HNK-I positive, and 9.0 

± 6.6% of the HNK-I cells was NI positive. 

DISCUSSION 

Studies on growth and development of islet cells are important for the understanding and treatment 

of diseases where 6 cells are underrepresented, such as type-I diabetes mellitus, or overrepresented, 

such as nesidioblastosis. Adult endocrine pancreatic cells have little proliferative capacity under 

basal conditions, but may be stimulated to proliferation by partial pancreatectomy [2J. Few 

data exist about proliferation in human fetal islet cells. In human fetal hormone containing 

cells no BrdU uptake was detected in our previous studies, indicating a low proliferative capacity 

of such cells [5J. This is confirmed in the present study. 

Thus, other markers are needed to detect proliferating endocrine precursor cells. Such markers 

should be present in proliferating cells and should continue to be expressed in hormone containing 

cells. In tilis study we analyzed two neuroendocrine markers, N I and HNK-I, for their colocalization 

with BrdU. The use ofBrdU as an indicator for in vitro islet cell proliferation has been validated 

before [3,15J. 

NI/BrdU cells can be found at all gestational ages. This indicates that human fetal islet cell 

development is a repetitive event. N I is also expressed in adult islet cells as well as in cells 

that line the lumen of the human fetal stomach, duodenum, and bronchi. This NI expression 

pattern supports an endodermal origin of islet cells. In the developing pancreas, as opposed 

to the adult pancreas, proliferating (BrdU-positive) NI-positive cells exist, which indicates 

that N 1 expression precedes hormone expression. Coexpression ofN 1 and the endocrine hormones 

in the human fetal pancreas has been shown [61. NI-positive cells without BrdU and without 

hormone expression costain with the neuroendocrine markers synaptophysin and chromogranin-A. 

These markers are not present in proliferating cells (data not shown). We conclude that, during 

human development, a pool of hormone-negative N I expressing cells are able to proliferate 
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and represent an early endocrine precursor cell type, which gives rise to at least D1, fl, and 

a cells (Fig. 3). The finding of proliferating NI reactive cells is compatible with a significant 

increase of NI cells between 12 and 18 weeks gestation [6]. 

The absence of BrdU in hormone expressing cells contrasts with earlier in vivo and in vitro 

findings in the rat [2,15]. In human islet cells the high degree of specialization needed for 

hormone synthesis and secretion seems to be non-concomitant with proliferation. 

Proliferating HNK-I cells (HNK-1!BrdU) were exclusively found until 15 weeks gestation. 

Although triple labelling was not performed, it is conceivable that a pool of HNK -1!N IlBrdU 

cells exist. This is based on the presence ofN1!HNK-1 coexpressing cells as well as the finding 

of NI expression on a cells, both in the fetal and adult pancreas. The lack of HNK-1!BrdU 

cells after week 14 indicates the existence of two subsets of precursor cells: NIlBrdU cells 

and NI/HNK-IlBrdU cells (Fig. 3). Possibly, HNK-I expression is lost early and thus NIlBrdU 

cells may represent a later stage of development. The selective presence of HNK-I in islet 

a cells suggests that NI/HNK-1!BrdU cells are a separate lineage and HNK-I expression would 

indicate an early segregation of the a cell lineage. The amount of HNK-I positive a cells in 

islets of the fetal pancreas is far larger than in adult islels. This confirms previous sludies 

[4,6,20] in which a higher relalive amount of a cells was found during development, compared 

wilh adult pancreas. The physiological role of this high proportion of a cells in the felal pancreas 

is poorlyunderslood. We speculate thatsomalostatinexpression isaprerequisite for islet growth 

and development. An inhibitory effect of somalostatin on insulin release and an inability of 

glucose stimulated insulin release have been described in human fetal islels [17,18]. HNK-l 

expression may be important for Ihe three dimensional archilecture ofislets, since this molecule 

is also involved in the organization of neural crest cells [II]. HNK-I is an important neural 

crest cell marker. Some of the HNK-I cells in the pancreas are located in nerve-like bundles 

and coexpress neurofilament. Since these cells do not express SOM (data not shown), it is 

unlikely that they are endocrine cells. 

In conclusion, two monoclonal antibodies, NI and HNK-I, identify proliferaling cells in the 

human fetal pancreas. NI is found in hormone containing islet cells, including INS, GLU and 

SOM. HNK-I is exclusively expressed on SOM cells (Fig. 3). Further evidence of a relalionship 

between proliferating NI or HNK-I cells and hormone expressing islet cells may come from 

culture experiments with human fetal pancreatic cell suspensions enriched for N 1 positive cells 

by fluorescence aClivaled cell sorting [6]. 
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Figure 3. Proposed developmental scheme for human fetal islet cells. A pluripotent precursor cell gives rise to two lineages of proliferating precursor cells: NlIBrdU cells 

and NIIHNK-IlBrdU cells. Nl/BrdU cells give rise to a and.B cells. Nl/HNK-l/BrdU cells give rise to 0 cells. Multiple hormone expression may occur in an intermediate 

stage which is not indicated in this scheme. 
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SUMMARY 

The aim of this study was to produce an antibody reactive to the surface of endocrine pancreatic 

cells and use this antibody for the purification of endocrine cells from the human fetal pancreas 

by fluorescence activated cell sorting. We describe such an antibody, called NI, reacting with 

the surface and cytoplasm of endocrine cells in the adult and fetal human pancreas (12 to 18 

weeks gestational age). While unreactive to exocrine and mesenchymal celis, it was not specific 

for endocrine cells, as evidenced by its staining pattern in tissues other than pancreas. Almost 

40% of the Nl-positive pancreatic cells contained either insulin, glucagon or somatostatin. 

Conversely, more than 90 % of each of the hormone-containing cells was N 1 positive. An additional 

40% of Nl-positive celis, not containing other pancreatic hormones, was shown to contain 

islet amyloid polypeptide, synaptophysin, chromogranin, tyrosin hydroxylase or CA8l2. A 

two-step collagenase digestion protocol yielded 1.29 ± 0.17 x 10' cells per mg pancreatic 

tissue. After Percoll gradient centrifugation, the suspension contained 15.6 ± 5.7% (n~25, 

mean ± SD) cells reactive with N I. By fluorescence activated cell sorting using the antibody 

NI, the single-cell suspension was enriched from 3.0 ± 1.4% to 16.2 ± 4.8% (n~ 10, p <0.01) 

Beta cells. Alpha and Delta cells were also enriched significantly by this procedure. TIle percentage 

ofNI-positivecelis increased from 17 ± 4% to 83 ± 6%. This preparation enriched for endocrine 

cells allows future studies on possible endocrine precursor cells. 

INTRODUCTION 

Several antibodies have been reported to react with Beta cells or endocrine pancreatic cells 

[1-6]. Rat Beta cells or islets were usually the substrate when determining the specificity of 

these antibodies. Islets of Langerhans constitute 1-2 % of the adult human pancreas. Their recovery 

is based on enzymatic digestion of the pancreatic glands [7]. Recovery of single endocrine 

pancreatic cells has been described by physicochemical separation procedures [8]. In the human 

fetal pancreas, a large proportion of the endocrine cells is located outside islets, complicating 

islet isolation procedures [9]. 

The aim of the present study was to produce antibodies, which after reacting to the surface 

of human fetal endocrine pancreatic cells, could be used for selective enrichment of these cells 
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by fluorescence activated cell sorting. Such enriched cell preparations could be an important 

tool in the study of differentiation and proliferation of endocrine pancreatic cells. We describe 

the production and staining pattern of an antibody, Nt, reactive to the surface of Beta cells. 

Subsequently, a method for the production of single-cell suspensions from the human fetal 

pancreas is described. These were labelled with Nt and subjected to fluorescence activated 

cell sorting. We show a substantial enrichment of Beta cells, Alpha cells and Delta cells. 

MATERIALS AND METHODS 

Tissue pre-treatment for immunization. Human fetal and adult pancreata were obtained with 

permission of the local ethical committee. Abortions were performed mechanically, resulting 

in a warm ischaemia time of 10-20 min. TIle specimens were between 12 and 18 weeks gestational 

age. For immunization, fetal pancreata were cut into I mlll3 pieces and cultured for 14 days 

in serum-free medium HBI04 (Hana Biologics, Berkeley, Calif., USA) supplemented with 

20 mlnol/l HEPES, 100 JU/ml penicillin, 100 U/ml neomycin, 100 mglml streptomycin, 1 

mmolll sodium pyruvate and 20 mmolll L-glutamine. The tissue was cultured under 95 % 0, 

and 5% CO, at 37'C. Following culture, the tissue fragments were homogenized, centrifuged 

at 12,ooOx g for 5 min to remove nuclei and other particles, and stored at -20'C until use. 

Immuulization. C57BI/6J and SJLlJ mice were purchased from Jackson Laboratories (Bar 

Harbor, Me., USA). NZB/N mice were obtained from National Institutes of Health (NIH, 

Bethesda, Md., USA). The mice were injected intraperitoneally three times with 500 I<g (wet 

weight) of homogenized tissue in complete Freund's adjuvant, incomplete Freund's adjuvant 

and phosphate buffered saline (137 mmolll NaCl, 8 mlnolll Na,HPO,,2H,O, 2 mmolll KH,P04, 

3 mmolll KCI; PBS), pH 7.4, respectively. The mice received an intravenous boost of 50 

I<g homogenized tissue 3 days before spleen cell harvesting. 

Production and screening of antibodies, Spleen cells of immunized animals were fused with 

P3X63-AG8.653 myeloma cells according to Galfre and Milstein [10) and cultured in hypoxantiline

aminopterin-thymidine (HAT) medium with syngeneic peritoneal macrophages as feeders. After 

culture at 37'C inS % CO, for 14 days, hybridomas were screened by staining cryostat sections 
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of adult human pancreata with the indirect fluorescence technique mentioned below. using 

culture supernatants as the first antibody step. Positive clones were expanded, subcloned by 

limiting dilutions and re-tested on human fetal pancreatic sections. 

Dispersion. Human fetal pancreata were minced with scissors to fragments of 1 mm3
• The 

pieces were centrifuged at lOOx g for I min. A maximum of 0.4 ml tissue was resuspended 

per 4 ml Earle's balanced salt solution without Ca/Mg (EBSS; Gibco, Paisley, UK) containing 

collagenase type I (Sigma Chemical Co., St. Louis, Mo., USA, I mg/ml), and DNase (10 

I'g/ml, Sigma) and placed in a shaker bath (GFL, Burgwedel, FRG) at 37'C, for 10 min. The 

suspension was pipetted up and down for 1-2 min with a glass pipette and centrifuged at 100x 

g for I min. The pellet was re-incubated with a fresh collagenase solution for another 10 min 

and centrifuged again. All glassware was siliconized. The 100x g supernatants, containing 

single cells, were washed, passed through a 100 I'm nylon mesh (van Wijk, Santpoort, The 

Netherlands), resuspended and counted in a Burker-Turk counting chamber. Cell numbers 

were expressed as l(fi/mg tissue. 

Overnight culture. After dispersion cells were suspended in RPM I 1640 at a concentration 

of 1-2 x 10' cells/m!. The medium was supplemented with 2 mmol/l L-glutamine (Gibco), 

100 IU/ml penicillin, 100 I'g/ml streptomycin and 25 I'g/ml Fungizone (Gibco), 25 mmol/l 

HEPES (Merck, Darmstadt, FRG), 10% pooled, heat-inactivated human serum (Bloodbank, 

University Hospital Leiden, The Netherlands), 1.5 Dlml dispase I (Boehringer Mannheim, 

Mannheim, FRG) and 10 I'g/ml DNase (Sigma). The enzymes were added to prevent cell 

aggregation or cells attaching to tile bottom of the dish. The cells were cultured in a CO, incubator 

(Heraeus, Osterode, FRG) at 37'C and 5% CO, for 12-15 h. 

Gradient centrifugation. An iso-osmotic Percoll solution (SIP) was prepared by mixing 90 

parts of Percoll (Pharmacia, Uppsala, Sweden) with ten parts 10 times concentrated Hanks' 

balanced salt solution (HBSS; Gibco) and 10 mmolll HEPES. Working solutions for Percoll 

gradients were prepared by mixing fixed ratios of SIP and EBSS. A gradient with layers of 

1.004 (EBSS), 1.030 and 1.063 g/ml was constructed. Following the 12-15 h culture period, 

the cells were suspended in the 1.063 g/ml Percoll solution and subjected to floatation centrifugation 

for 25 min at 400x g at 2(),C in a Heraeus Varifuge RF (Heraeus) without braking. Subsequently, 
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cells were collected from the interphases and washed three times in EBSS, supplemented with 

2.5% pooled human serum. Finally, the cells were counted, viability and the percentage of 

insulin-positive cells was assessed. 

Immunohistochemistry. Pancreata from mouse, rat, monkey and men (adult and fetal) and 

control organs were snap-frozen through isopentane in liquid nitrogen and stored until use. 

Cryostat sections were prepared at 5i'm thickness and stained after fixation with 4 % buffered 

formalin or without fixation by an indirect labelling technique, using either fluorescence- or 

peroxidase-conjugated second antibodies [11,12]. N 1 was used at a dilution of 1 :2000 (ascites) 

or 1:10 (culture supernatant). Furthermore, an anti-insulin mouse monoclonal antibody [13] 

was used at a titre of 1 :300. Both antibodies were combined with a goat-anti-mouse fluorescein

or tetramethyl rhodamine--isotiliocyanate (FITC or TRITC) labelled antibody (Nordic Immunological 

Laboratories, Tilburg, The NetIlerlands) at a dilution of 1:60 and 1: 15 respectively or a rabbit-anti

mouse peroxidase conjugated second antibody (Dako, Glostrup, Denmark) at a dilution of 

1:100. 

Double-staining on sections was performed using tile fluorescence procedure. H37, an exocrine-specific 

rat monoclonal antibody [5] (a gift from Dr.O.D. Madsen, Gentofte, Denmark) was used at 

a dilution of 1: 10, and combined with Nt. As second antibody rabbit-anti-rat FITC (Dako) 

at a dilution of 1:80 was used. Both primary and secondary antibodies were applied together. 

Controls included replacement of the first antibody with either single- or double-staining using 

the corresponding animal serum or PBS. 

Immullocytochemistry. These experiments were carried out on cells after Pereall gradient 

centrifugation. For surface labelling cells were labelled in suspension with a primary antibody 

in PBS/bovine serum albumin for 30 min at 4'C at a concentration of I x 10' per m!. Then 

they were washed, centrifuged and incubated with a fluorescence-conjugated second antibody 

for 30 min at 4'C. Finally, they were washed once more, cytospins were prepared and fixed 

in acetone for 15 min at room temperature. Subsequently, for cytoplasmic labelling, primary 

and secondary antibodies were applied on the cytospins for 30 min at room temperature. In 

between, the cytospins were washed with PBS. 

The following surface monoclonal antibodies were used: Nl, dilution 1:2000, BE2 and IB2, 

against pancreatic acinar cells, dilutions I: 10 and 1: 1 respectively (a gift from Dr.H. Clausen, 
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Seattle, Wash., USA), ER-Pr7, against pancreatic ductal and acinar cells, 1:5 (a gift from 

Dr. Th.H. van der Kwast, Rotterdam, The Netherlands). All monoclonal antibodies were of 

mouse origin. Cytoplasmic antisera used were anti-somatostatin 1: 800, anti-vimentin 1 :50 and 

anti-glucagon 1:300 (Dako), and anti-islet amyloid polypeptide 1:90 (Peninsula, Belmont, Calif., 

USA), all were of rabbit origin. A guinea-pig anti-insulin antiserum (Dako) was used at a 

dilution of I: 1000. The following cytoplasmic monoclonal antibodies were used: mouse anti-synap

tophysin I: 10 and anti-tyrosin hydroxylase 1: 100 (Boehringer Mannheim), mouse anti-chromogranin 

A I :400 (a gift from Dr.J.R.D. Rahier, Brussels, Belgium) and CA8l2, a BB-rat monoclonal 

autoantibody, I: 100 (a gift from Dr. 0.0. Madsen) [5]. Second antibodies were goat-anti-mouse-FITC 

and TRITC (1:60and I: 15), goat-anti-rabbit-FITC and TRITC (1:80and 1:80) (Nordic), goat-anti

guinea-pig-FITC and TRITC (1:60 and 1: 15) (Southern Biotechnology, Birmingham, UK) 

and goat-anti-rat-FITC 1 :250. Control experiments were performed in single- and double-staining 

experiments. replacing the primary antiserum with a pre-immune serum or with PBS. No background 

staining or spectral overlap was observed. Typically 500 to 1000 cells were counted by fluorescence 

microscopy, excluding disrupted cells from the counting. 

Typing and sUbtyping. For the determination of the antibody class of NI, goat-anti-mouse 

antibodies specific for IgM (1:20), IgGI (1:20), IgG2 (1:10), IgG3 (1:10) and IgG4 (1:20) 

were used (Nordic). Stainings were performed as described above. 

Staining of viable cells, Fluorescein diacetate (FDA) is a fluorogenic substrate for Ole determination 

of cell viability [14]. A stock solution of 1 mg/ml FDA in acetone was made and stored at-

20'C. Cell suspensions were incubated with a 1: 10,000 dilution of this stock for 5 min. Then, 

they were centrifuged and analysed on a FACScan (Becton Dickinson). 

Cell sOlling. Cell sorting experiments were performed on a FACS II cell sorter (Becton Dickinson), 

equipped with a 5 W argon laser (Spectra Physics, Mountain View, Calif., USA). Laser power 

was 250 mW during all experiments. Cells were labelled for sorting with NI (titre 1:500) 

as described. A goat-anti-mouse antibody conjugated to phycoerythrin (PE) at a dilution of 

1:20 (Caltag Laboratories, San Francisco, Calif., USA) was used as a second step, since the 

autofluorescence of the cells interfered with an FITC stain. With excitation at 488 nm, emission 

was recorded above 580 nm for PE. For sterile sorting the system was flushed with 70% ethanol 
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for 15 min, followed by a 15-min wash with sterile distilled water. 

The percentage of NI-positive cells, confirmed by immunocytochemistry, was used to set a 

window when sorting NI-positive cells. Dead cells, while potentially reactive with NI, could 

largely be eliminated on the basis of their different light scattering properties. This difference 

was confirmed by the FDA viability assay. 

Statistical analysis. The relationship between age and the percentage of cells of a certain type 

was evaluated according to Spearman's rank correlation. The significance of differences between 

viability assays before and after Percoll gradient centrifugation was determined by Wilcoxon's 

signed rank test. All data are given as mean ± SO. 

RESULTS 

Prodnction and screening of monoclonal antibody Nt. One of the hybridoma supernatants 

stained islets in human adult pancreatic sections. The supernatant was retested on human fctal 

pancreas and showed positive staining as well. The hybridoma was cloned by limiting dilutions 

and cloning was repeated to ensure the purity of the cell line. The resulting monoclonal antibody 

was named NI and identified as an IgOI antibody. 

Immunohistochemistry. NI immunoreactivity withstands fixation by 4 % buffered formalin, 

1% paraformaldehyde or acetone. Paraffin embedding deletes NI reactivity. Human and monkey 

pancreas showed a positive staining reaction, mouse and rat tissue did not. In adult human 

and monkey pancreas all islet cells were cytoplasmically stained by NI (Fig. la). This was 

confirmed by staining serial sections with N I and with insulin. Double-staining with NI and 

H37, a marker for exocrine pancreatic cells, showed no overlap between these markers in 

the human adult pancreas. In the human fetal pancreas groups of cells and single cells, dispersed 

throughout the parenchyma were stained by NI (Fig. Ib). Double-staining showed that some 

of these cells contained insulin. The reactivity of N I in other human fetal organs is summarized 

in Table I. 
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Fig. t. Sections of hwnan adult (a) or hwnau fetal (b) pancreas stained with Nl. In (a) the second antibody is 
peroxidase-linked and developed with diamino-benzidine. in (b) a fluorescein isotruocyanate-tOlljugated second 
antibody was used. In both sections Nl stains a cluster of cells representing the islet of Langerhans. 

98 



Table I. Staining pattern of the monoclonal antibody N 1 on several human fetal tissues. 

Tissue Cell type Reaction 

pancreas islet cells ++ 
kidney epithelial cells lining ++ 

proximal tubules 

parathyroid chief cells ++ 
duodenum all cells lining the lumen ++ 
stomach all cells lining the lumen + 
lung all cells lining the lumen of + 

bronchi 

liver hepatocytes + 
brain neuronal cells + 

A strongly positive reaction is indicated by + +. a positive reaction by +. 

Immunocytochemistry. Human fetal pancreatic cell suspensions showed N I reactivity on 

the surface of cells (Fig. 2a). No overlap was seen between Nl and vimentin, a marker of 

mesenchymal cells. There were no insulin-positive cells staining with exocrine cell monoclonal 

antibodies, specific for acinar as well as ductal cells. Double-staining for Nl and hormonal 

markers (insulin, glucagon, somatostatin) or for N I and eitiler synaptophysin, tyrosin hydroxylase, 

CA812, chromogranin A or islet amyloid polypeptide further characterized the population 

of Nl-positive cells (Table 2, Fig. 2a,b). In some cases two mouse monoclonal antibodies 

were used subsequently. Incubation Witil Nl and its conjugate was done in suspension, as described, 

followed by the preparation of cytospins and fixation. Because of this procedure, and the spatial 

difference of the staining pattern (surface labelling for Nl vs cytoplasmic labelling for the 

other antibody) cells could be recognized and scored without interference of cross-reactivity. 

Double-stainings performed with each of the five markers above combined with each of the 

three hormone antibodies showed that 40% ofsynaptophysin-positive cells, 50% of chromo gran in 

A-positive cells, 50% ofCA812-positive cells, 60% of islet amyloid polypeptide-positive cells 

and 100% of tyros in hydroxylase-positive cells did not contain one of tile tirree hormones (unpublished 

results). 
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Table 2. Simultaneous positivityofNl and exocrine, honnonal and other markers in hwnan fetal pancreatic cell 

preparations. 

Antibody marker n 

NI 25 

BEl 5 

1H2 5 

ER~Pr7 5 

vimelltin 5 

insulin' 25 

glucagon' 14 

somatostatin' 14 

synaptophysine" 12 

tyrosine hydrox. 6 

CA812' 5 

chromogramn' 7 

islet amyloid 9 

polypeptide' 

% positive cells 

15.6 ± 5.7 

21.2 ± 6.6 

11.0 ± 7.1 

8.2 ± 1.3 

45.1 ± 9.9 

3.0 ± 1.4 

1.2 ± 0.7 

1.9 ± 0.7 

4.1 ± 1.5 

0.3 ± 0.2 

2.0 ± 0.5 

1.4 ± 0.6 

4.0 ± 1.9 

% of Nl~positive cells, also 

positive for the marker indicated 

100.0 

ND 

ND 

ND 

0.0 

16.9 ± 4.9 

6.1 ± 3.1 

14.7 ± 6.0 

24.9 ± !l.8 

1.7 ± 1.7 

12.6 ± 2.7 

9.4 ± 3.7 

22.8 ± 12.2 

'these antibody markers react with a population of cells of which 80-95% is also reacting with Nt 

11 = number of fetal pancreata (12-18 weeks gestational age) 

Results are given as mean ± SD; ND = not done 

Hence, i1le five subpopulations added to characterize N I-positive cells. Together they contributed 

35-40% of the population of NI-positive cells. Overlap between the populations stained by 

each of the five markers remains possible, reducing this percentage. Between 12 and 18 weeks 

gestational age the percentage of NI-positive cells increased from 10 to 19% (n =29, r, =0.57, 

P <0.01). At the same time there was a similar increase of insulin-positive cells (n=21, r, =0.45, 

p <0.05), but not of Alpha and Delta cells. The proportion of hormone-containing cells in 

the NI population did not significantly change. 
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Fig. 2a,b. Pancreatic cell suspension double-stained with Nt (a) and insulin (b). Nt reactivity can be seen on 
the surface of cells, whereas insulin reactivity is cytoplasmic. 

Dispersion. Because pancreatic weight increased from 50 mg at 12 weeks gestational age to 

250 mg at 18 weeks. there was a considerable variation in the cell yield between pancreata 

(fable 3). The yield per amount of tissue was relatively constant throughout this age range: 

1.29 ± 0.17 x 10' cells per mg pancreatic tissue (n= 10, mean ± SD). There was virtually 

no tissue remaining after the second collagenase digestion step and the passage through the 

100 I'm nylon mesh. There was no correlation between cell yield per weight and the age of 

the processed specimen (r,=0.18). 

Table 3. Comparison between human fetal pancreatic cell suspensiOilS at various stages of the procedure for enrichment 

of single endocrine pancreatic cells: after dispersion and after a 16-h culture period in RPMI 1640 with 10% 

human serum. 

parameter II post-dispersion post-culture 

yield per pancreas 15 13.3 x IO~ cells 7.9x 101 cells 

[range} 15.6 - 24.7J 14.5 - 14.4J 

viable ceIJs (%) 15 47 ± 9 56 ± 13 

single cells (%) 18 64 ± 13 89 ± 10 

insulin cells (%) 18 2.2 ± 1.2 3.3 ± 1.3 

n = number of pancreata 

Data presented (mean ± SD) in Table 3,4 and 5 come from different series of experiments 
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p<O.02 

p<O.OI 

p<O.02 



Overnight culture. Recovery of the cell number following culture in RPM! 1640 plus 10% 

human serum and 1.5 Ulml dispase was 66 ± 28% (n= 15). At the same time the percentage 

of single cells and the percentage of insulin-positive cells increased (Table 3). Cells were not 

attached to the dishes, nor was there any clumping. Omission of dispase resulted in extensive 

clumping and cell attachment at the present cell concentration. 

Gradient centrifugation. Percoll gradient centrifugation resulted in two interphases and a 

pellet. The viability of the 1.004-1.030 glml interphase was 48 ± 22%. that of the 1.030-1.063 

glml interphase was 83 ± 5 % and that of the pellet was 20 ± 8 %, as compared with 53 ± 
8% in the initial cell suspension (n=7). There was a large number of erythrocytes present 

in the pellet. The difference in viability between the 1.030-1.063 glml interphase and the initial 

cell suspension was significant (p < 0.01) (Table 4). The recovery of cells in the viable interphase 

was 55 ± 12% (n=18). 

Table 4. Comparison between human fetal pancreatic cell suspensions at various stages of the procedure for enrichment 

of single endocrine pancreatic cells: after a 16·b culture period in RPMI 1640 with 10% human serum and after 

Percoll gradient centrifugation. 

parameter 11 

yield per pancreas 18 

[range} 

viable cells (%) 

insulin cells (%) 

n = number of pancreata 

t9 

t3 

post-culture post-Percoll 

13.4 x 101 cells 7.2 x 1O~ cells 

16.0 - 23.61 12.7 - 12.41 

54 ± 8 81 ± 4 

2.1 ± 0.6 2.8 ± t.t 

Data presented (mean ± SD) in Table 3,4 and 5 come from different series of experiments 

p-value 

p<O.OI 

NS 

Cell sOliing. Fluorescence activated cell sorting of N I-positive cells (Fig. 3) resulted in an 

increase of tile percentage of insulin-<:ontaining cells (Fig. 4). Also glucagon- and somatostatin-positive 

cells were enriched significantly (Table 5). After sorting. 6.2 ± 2.7% (n= 10) of the cells 

which were obtained after Percoll gradient centrifugation, were recovered in tile enriched snspension. 
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During the sorting procedure the viability decreased (Table 5). The final recovery of Beta 

cells after all the procedures (from dispersion to sorting) was 11.3 ± 3.6 % (n = 10) as compared 

to a recovery of 2.2 ± 1.1 % for all cells. 

Table 5. Comparison between human fetal pancreatic cell suspensions at various stages of the procedure for enrichment 

of single endocrine pancreatic cells: after Percoll gradient centrifugation and after fluorescence activated cell 

sorting of NI-Iabelled cells. 

parameter II 

yield per pancreas 10 

[range] 

viable cells (%) 5 

insulin cells (%) 10 

glucagon cells (%) 8 

somatostatin cells (%) 8 

Nl cells (%) 5 

vimentin cells (%) 6 

n = number of paucreata 

post-Percoll 

7.4 X 105 cells 

13.2 - 13.01 

80 ± 6 

3.0 ± 1.4 

1.2 ± 0.7 

1.9 ± 0.7 

17 ± 4 

47 ± 10 

post-sorting 

0.5 x 105 cells 

10.2 - 0.71 

63 ± 10 

16.2 ± 4.8 

5.7 ± 2.0 

6.8 ± 2.1 

83 ± 6 

26 ± 7 

p-value 

p<0.05 

p<O.OI 

p<O.OI 

p<O.Ot 

p<0.05 

p<0.02 

Data presented (mean ± SD) in Table 3,4 and 5 come from different series of experiments 

FLJ-H'Fluorescence One Heigh FL1-H\Fluorescence One Heigh 

Fig. 3. Dot plots showing the fluorescence distribution of a pancreatic cell suspension labelled with N 1 (left panel) 
and a pancreatic cell suspension labelled with an irrelevant antibody (right panel). TIlis picture was produced 
on a FACStar-plus cell sorter and attached software, courtesy of Beckton Dickinson, Erembodegem, Belgium. 
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Fig. 4. Fluorescent picture of a pallcreatic cell preparation following cell sorting. Numerous insulin-positive 
cells can be seen. 

DISCUSSION 

We describe the production of a monoclonal antibody, N I, reactive to the surface and cytoplasm 

of islet cells in the human fetal and adult pancreas. Apparently, its epitope is present early 

in development and persists throughout adulthood. NI does not react to exocrine or mesenchymal 

cells, confirming its endocrine specificity within the pancreas. Outside the pancreas, Nl reactivity 

was found in several other tissues and was not restricted to endocrine cells. 

Almost 40% of NI-positive cells in the fetal pancreas contained either insulin, glucagon or 

somatostatin. Since ceHs were cultured for at least 16 h before staining, it is unlikely that this 

binding pattern is influenced by Ole dispersion process. Five oOler markers (islet amyloid polypeptide, 

synaptophysin, chromogranin A, tyrosine hydroxylase and CA812) also constitute 35-40% 

of NI-positive cells. By combining these markers with antibodies to insulin, glucagon and 

somatostatin, overlapping populations were observed. Only hormone-negative subpopulations 

of cells positive with one of the five markers were used for further characterization of Nt-positive 

cells. Synaptophysin is present on the membrane of secretory granules of islet cells [16] or 

in synaptic-like microvesicles [171. Chromogranin A is converted to betagranin and co-secreted 

with insulin [18]. Islet amyloid polypeptide is co-localized with insulin in Beta-cell secretory 

granules [19]. 
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Recently, it has been suggested that islet amyloid polypeptide is present in more immature 

cells [20,21]. The expression of synaptophysin, chromogranin A and islet amyloid polypeptide 

in cells not containing insulin, glucagon or somatostatin is intriguing. Apparently, cells with 

(neuro)endocrine characteristics arc present which do not contain hormones. Alternatively, 

these cells may have lost their hormone or hormone production in vitro or through the various 

experimental procedures. 

The increase in the percentage of N I-positive cells from 10 to 19%, between 12 and 18 weeks 

gestational age might represent a period with rapid endocrine cell proliferation and/ordifferentiation 

relative to the rest of the pancreas. A concomitant increase in the percentage of insulin-positive 

cells resulted in an unaltered ratio of insulin- vs NI-positive cells. 

Many procedures exist for the recovery of islets from the adult pancreas [22-27]. The scattered 

distribution of endocrine cells in the human fetal pancreas excludes standard islet isolation 

procedures [9]. Instead we dispersed the whole pancreas into single cells allowing cell sorting. 

Our method resulted in considerable cell death, probably due to tile use of collagenase. Therefore, 

Percoll gradient ceutrifugation was performed to increase the percentage of viable cells before 

antibody labelling and cell sorting. The clumping tendency of the preparations results in a 

suboptimal percentage of viable cells. 

For the enrichment of Beta cells, van de Winkel et al. [28] were able to sort rat Beta cells 

from other endocrine pancreatic cells on the basis of flavin adenine dinucleotide (FAD) content 

[29] resulting in autofluorescence. We could not increase the percentage of fetal Beta cells 

using this method (unpublished results), or by using forward light scatter as a sorting parameter 

as previously described for rat islet cells [30,31]. The observed differences may be the result 

of the human or fetal character of these pancreatic cells. 

Therefore we labelled the surface of the cells with Nl, while in suspension. Enrichment is 

limited by the proportion of Beta cells in the Nl-positivecell population (16.9 ± 4.9%). Some 

contamination with mesenchymal cells is present. This may be caused by non-specific binding 

of label to these cells or the formation of doublets with N I-positive cells. The decrease in 

viability after sorting may result from dead cells with false positive N 1 reactivity, although 

care was taken to eliminate these on the basis of light scattering properties. Moreover, the 

stress of the sorting procedure might result in a decreased viability. 

Preliminary experiments have shown that the sorted cell suspension can be cultured for up 

to 1 week, without a decrease in viability or the percentage of endocrine cells (unpublished 
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results). The enriched suspensions may be used to further address questions about the exact 

development of endocrine pancreatic cells and the order of expression of relevant markers. 

In conclusion, an antibody was produced which reacts to the surface and cytoplasm of islet 

cells in the human fetal pancreas. With this antibody we have been able to enrich Beta cells 

and other endocrine cells from a total pancreatic cell preparation by fluorescence activated 

cell sorting. 
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SUMMARY 

The reactivity of ICA-positive and ICA-negative sera of recent onset type-I diabetic patients 

was studied in human fetal pancreata of 12-18 weeks gestation and compared with reactivity 

of these sera in adult human control pancreata. The aims of the study were: I) to observe 

the presence of ICA staining in human fetal islet cells; 2) to compare end-point titres (in JDF 

units) of ICA-positive patieut sera in fetal pancreata and adult human control pancreata. Ten 

ICA-positive sera and 8 ICA-negative sera from newly diagnosed diabetic patients, and 4 sera 

from healthy controls were tested on 3 human adult and 8 human fetal pancreata. As in the 

adult control pancreata, ICA-positive sera reacted to insulin-, glucagon-, and somatostatin-positive 

cells of fetal pancreata of all gestational ages. This was observed both in single cells and in 

cells in islet-like cell clusters. Dilution of a reference serum gave similar results in both adult 

and fetal pancreata. In contrast, the ICA-positive patient sera yielded a striking heterogeneity 

in fetal as well as in adult pancreata. However, end-point titres between adult and fetal pancreata 

did not differ significantly (p>O.05). In conclusion, ICA-positive sera from recent onset diabetic 

patients show that the expression of molecules to which ICA react is present in all islet cells 

and starts before week 12 of gestation. 

INTRODUCTION 

Humoral autoimmunity to pancreatic islet cells can be detected in sera of recent-onset type-I 

(insulin-dependent) diabetic patients and in sera of prediabetic individuals before clinical onset 

of type-I diabetes (I). Islet cell cytoplasmic antibodies (ICA) have been studied extensively. 

They are detected by indirect immunofluorescence of cryostat sections of blood group 0 human 

adult pancreata. ICA-positive sera usually stain ex, 6, and 5 cells in the islets of Langerhans 

("whole islet staining pattern") (2). TIle assay has been standardized tllfough the use of reference 

sera (3). Multiple islet cell antigens have been suggested as ICA targets including glutamic 

acid decarboxylase (GAD) (4-6). Apart from the whole islet staining pattern of ICA-positive 

sera, a restricted pattern, in which only 6 cells are stained, has been observed (7). 

In experimental studies it has been shown that the onset of autoimmunity will depend on the 

timing of antigen expression during fetal development (8). It is therefore of interest to study 
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human fetal antigen expression, using leA-positive patient sera. Limited information is available 

on the reactivity of ICA on human fetal pancreatic tissue (9). This tissue contains endocrine 

cells at various stages of development, being present as single cells or organized in smaller 

or larger endocrine cell clusters (10). In one study a single ICA-positive serum and a single 

ICA-negative serum were tested (9). Only insulinlICA double staining was evaluated. The 

other endocrine cell types were not analyzed. No comparison was made with adult pancreata. 

In the present study, the ICA staining pattern in all major islet cell types was investigated. 

End-point titres (in Juvenile Diabetes Foundation (JDF) units) of a series of ICA positive sera 

were determined in fetal and adult control panereata. 

MATERIALS AND METHODS 

Sera. Serum samples were obtained within 24 hours of the first insulin injection from 18 type-I 

diabetic patients (aged 8-20 years, mean: 14 years; four boys and six girls). The ICA-positive 

samples (n = 10) were selected to represent a range from weakly to strongly positive for ICA, 

as tested on adult pancreas. The cut-off point for the distinction between an ICA-positive from 

an ICA-negative patient serum was 0.63 JDF unit. All sera were ICA-IgG positive and 6 showed 

complement fixation ability (CF-ICA) (11). Insulin autoantibodies (lAA) in these samples were 

absent by RJA (12) as well as by ELISA (13). Control sera were obtained from four healthy 

individuals. No control had a first degree relative with insulin dependency. Serum samples 

were stored at -80'C. 

Human fetal panereata. Human fetal pancreata (bloodgroup 0) between 12 and 18 weeks 

gestation (n=8) were obtained from mechanical abortion, approved by the local ethical committee, 

and with signed informed consent. The warm ischemia time was less than 20 minutes. After 

collection, the pancreata were snap frozen in liquid nitrogen and stored at -80"C. Bloodgroup 

typing was performed on spleen cells. 

Hmnan adnlt panereata. Bloodgroup 0 pancreata were obtained from 3 organ donors. The 

pancreas was removed ftrst. TIle adult panereata were divided into pieces of 0.5 cm', snap frozen 

in liquid nitrogen and stored at -80'C. 
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Immullohistochemish·y. The methods used have been described previously (14,15). Briefly, 

cryostat sections were incubated for 18 hours with serum (diluted 1:2 to I: 1024) in phosphate 

buffered saline (PBS). Aprotinin (Trasylol, Sigma Chemical Co., St. Louis, MO, USA) 0.47 

mg/ml was added to prevent proteolytic degradation of pancreatic tissue. Incubations were 

performed in a dark-moist chamber at room temperature. Slides were washed in PBS and double 

staining was carried out with a mouse anti-human pro insulin monoclonal antibody (GS4G9, 

dilution I: 10, a gift of Dr. O.D. Madsen, Gentofte, Denmark) for 30 min. Slides were again 

washed in PBS and the sections were incubated with a TRITC-Iabelled rabbit anti-mouse IgG 

I: 100 (PBS) (Dako, Copenhagen, Denmark) for 30 min. Finally, fluorescein isothiocyanate 

(FITC) conjugated rabbit anti-human IgG (Dako) was added in a dilution of I: 100 for 30 min, 

to detect ICA. Antibodies to glucagon (GLU-OOI, 1:30, Novo, Bagsvaerd, Derunark) or somatostatin 

(SOM-018, I: 1000, Novo) were used for double staining instead of the proinsulin antibody 

to detect the other endocrine cell types. Both were mouse monoclonal antibodies. 

Sera were diluted stepwise, until reciprocal titers of 1024, generating 10 point titration curves. 

The reciprocal end-point titre was defined as the maximal dilution at which fluorescence could 

be detected by two independent observers. A reference serum (80 JDF units/ml) was used 

on all pancreata studied (3 adult, 8 fetal), by diluting to 4 different concentrations 1:2, 1:8, 

1:32, and I: 128 in normal ICA-negative serum (3). These four concentrations were further 

diluted to obtain final reciprocal titers between 1:4 and I: 16384. Linear titration curves were 

obtained. 

The limited amount of fetal tissue available and the unknown sensitivity of these pancreata 

for the ICA sera were reasons to deviate from ICA workshop recommendations. Transformation 

from end-point titre to JDF units was based on reciprocal end-point titre of the reference serum 

on each pancreas. 

StatisticaJ analysis. Differences in end-point titre between adult and fetal pancreata were analyzed 

by the Mann-Whitney U-test. 
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RESULTS 

We have previously described histologic features of the human midgestational pancreas using 

antibodies to insulin, glucagon, and somatostatin (10). In accordance with that study, positive 

single cells and cell clusters of varying sizes were observed for all three hormones tested and 

in all 8 fetal pancreata used for this study. 

Reciprocal end-point titres and corresponding JDF units ofiCA on the adult and fetal pancreata 

are indicated in table I. In three fetal pancreata (FI,n,F6) Ole limited amount of tissue prohibited 

the testing of some of the sera. In pancreata 1'2, 1'3, F7, and F8 one ICA-positive serum did 

not react, whereas in pancreas FI two sera did not react (see table I). In the adult pancreata, 

two sera did not react to pancreas A3, whereas all sera showed leA staining on the other two 

adult pancreata. 

Double staining of sections, combining leA sera with antibodies to insulin, glucagon, and 

somatostatin showed that all three cell types express ICA targets (fig. I). In addition to ICA 

reactive endocrine cell clusters, single hormone containing cells were also stained (fig. 2), 

In all pancreata and with alllCA-positive sera the "whole islet staining pattern" was observed 

(2), whereas 6 cell restricted leA staining was not seen in this study. No hormone negative 

cells reacted with ICA-positive sera in either fetal or adult pancreata. 

The results of testing and titrating the reference serum and its dilutions are shown in table 

2. All three adult pancreata had identical reciprocal end-point titres. The end-point titre of 

the reference serum in fetal pancreas FI, F4, and F5 was one dilution step lower, whereas 

the difference was two steps in pancreata 1'7 and F8. 

The results of the 10 patient sera were highly heterogeneous, on the three adult as well as 

on the 8 fetal pancreata. With sera 6, 7, and 10, pancreas Al showed titres which were 5, 

4, and 4 dilution steps lower than for the same sera with pancreas A2, respectively. With sera 

3, 4, 8, and 9, however, titres were similar or even I or 2 dilution steps higher. Serum 9 

gave a 5 dilution steps lower titre in pancreas F2 than in pancreas F3, whereas with serum 

7 pancreas F2 had a two step higher titre. No significant differences in end-point titre between 

adult and fetal pancreata could be detected (p > 0.05). 

Of the 8 sera of recent onset diabetic patients, which tested ICA-negative on adult pancreata, 

2 were found reactive to pancreas 1'3 and F5, I other serum reacted to pancreas F6, all at 

a dilution of 1:2 (0.63 JDF units). None of the four healthy control sera reacted to either adult 

or fetal pancreata. 
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Table 1. Reciprocal end-point titres and transformation into JDF units (indicated in brackets) of 10 sera of recent onset diabetic patients on 3 adult and 8 fetal human pancreata 

pancreas serum number 

2 3 4 5 6 7 8 9 10 

Al 4(1.25) 4 (1.25) 8 (2.5) 16 (5) 4 (1.25) 32 (10) 8 (2.5) 32 (10) 256 (80) 8 (2.5) 

A2 16 (5) 16 (5) 4 (1.25) 64 (20) 16 (5) 1024 (320) 128 (40) 32 (10) 256 (80) 128 (40) 

A3 o (0) 0(0) 2 (0.63) 64 (20) 8 (2.5) 512 (160) 128 (40) 8 (2.5) 32 (10) 32 (10) 

Fl (12) 0(0) 0(0) NT 8 (2.5) 8 (2.5) NT 8 (10) NT NT NT 

F2 (13) 0(0) NT 4 (1.25) 16 (5) NT 256 (80) 16 (5) 2 (0.63) 4 (1.25) 16 (5) 

F3 (13) 2 (0.63) 2 (0.63) 8 (2.5) 16 (5) 16 (5) 256 (80) 4 (1.25) 8 (2.5) 128 (40) 0(0) 

F4 (13) 8 (2.5) 8 (2.5) 8 (2.5) 32 (10) 8 (2.5) 128 (40) 16 (5) 4 (1.25) 64 (20) 32 (10) 

F5 (14) 4 (1.25) 8 (2.5) 8 (2.5) 64 (20) 4 (1.25) 128 (40) 64 (20) 32 (10) 128 (40) 16 (5) 

F6 (14) 8 (2.5) 8 (2.5) 16 (5) 32 (10) 16 (5) NT NT NT NT NT 

F7 (15) 0(0) 8 (2.5) 4 (1.25) 16 (5) 8 (2.5) 128 (40) 32 (10) 4 (1.25) 64 (20) 2 (0.63) 

F8 (17) 8 (2.5) 8 (2.5) 4 (1.25) 32 (10) 8 (2.5) 128 (40) 32 (10) 16 (5) 64 (20) 0(0) 

o = negative: NT = not teSted: A = adult pancreas; F = fetal pancreas (gestational age in weeks indicated in brackets) 



Figure 1. Immunofluorescence photographs of an identical area in a human fetal pancreatic section double stainec 
with an leA-positive serum (upper panel), and with a monoclonal proinsulin antibody (lower panel). Note lila 
leA reactivity is present in cells surrounding the proinsulin positive cell core. 
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Figure 2. Immunofluorescence photographs of an identical area in a hUIlIan fetal pancreatic section double stained 
with an ICA-positiveserum (upper panel), and with a monoclonal proinsulinantibody(lower panel). Coexpression 
of proinsulin and ICA reactivity can be observed in a single endocrine cell. 
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Table 2. Reciprocal end-point titres of the reference senun on adult (A) and fetal (F) pancreata. 

reference serum dilution 

Pancreas reference 1:2 1:8 1:32 1:128 
(weeks serum 
gestation) 

Al 256 128 32 8 2 
A2 256 128 32 8 2 
A3 256 128 32 8 2 

Fl (12) 64 32 8 2 0 
F2 (13) 256 128 32 32 8 
F3 (13) 256 128 32 8 2 
F4 (13) 64 32 8 2 2 
F5 (14) 64 32 8 2 2 
F6 (14) 256 128 32 2 2 
F7 (15) 16 8 2 2 0 
F8 (17) 16 8 2 2 0 

DISCUSSION 

We confirm the observation of Sundkvist et al. (9) that ICA reactivity is present in the human 

fetal pancreas. ICA-reactivity is found in all fetal pancreata between 12 and 18 weeks gestation, 

indicating that expression of molecules to which ICA react starts before week 12 of gestation. 

The ICA reactivity includes all insulin, glucagon, as well as somatostatin positive cells, consistent 

with findings in the adult pancreas (16). In this study no 3-cell restricted ICA reactivity pattern 

is found. In human fetal pancreata, leA reactivity is seen in endocrine cell clusters and in 

single hormone containing cells. Thus, ICA reactivity does not mark the different stages of 

endocrine cell development during the 12-18 week period. This is supported by the finding 

that the staining pattern is quite similar in the different fetal pancreata. We have not examined 

hormone co-expressing cells, in which two or three hormones are present simultaneously. as 

we have shown to be present during endocrine cell ontogeny (10). Triple labelling studies 

should be used to analyze if the mUltiple hormone expressing cells also contain ICA reactivity. 

Analysis of reference serum reactivity on adult pancreata gives an identical result at each dilution 
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in each of tile tilfee pancreata. When our 10 diabetic patient sera are applied, however, heterogeneous 

end-point titres and corresponding JDF units are obtained. This variability in adult pancreata 

has been described before (17). 

In the fetal pancreata dilution of the reference serum yields end-point titres comparable to 

those of the adult pancreata. Heterogeneous results are obtained in the fetal pancreata with 

the patient sera. This does not lead to significant differences in end-point titres between adult 

and fetal pancreata. The differences in reactivity of ICA positive sera between fetal pancreata 

may be explained by the fact that ICA react to multiple target molecules, which are not present 

in equal amounts during development (7,18). During fetal development islet cells are present 

at differing developmental stages, which may affect the antigenic profile qualitatively and 

quantitatively. In addition, the metabolic state of endocrine cells, which is unknown in our 

fetal islet celis, has been shown to influence antigen expression (19). No conclusions can be 

drawn with regard to the effect of antigenic heterogeneity in fetal pancreata on ICA titre, because 

this study does not address ICA reactivity to defined antigens. Further molecular identification 

of ICA epitopes in the human fetal pancreas is essential. 
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ABSTRACT 

We have investigated fetal and adult T-cell receptor (TCR) A and B V-gene repertoires both 

by FACS analysis with the available TCR V region-specific mAbs and by the polymerase chain 

reaction (PCR) with TCR V gene family-specific oligonucleotides. Among the low number 

of CD3+ T cells. most of the TCR V regions tested for could be detected by FACS analysis 

in liver, bone marrow and spleen derived from a 14-week-old fetus and two 15-week-old fetuses. 

Similarly, the PCR analysis showed that the majority of the TCRA Vand TCRBV families were 

expressed in the peripheral organs of the 13-week-old fetus, although an apparent absence 

of particular TCR V families was found in liver and bone marrow. This was most probably 

the consequence of the low number of CD3+ T cells in these organs. In 17-week-oId fetal 

thymi the level of expression of some TCRA V and TCRRV gene families, in particular those 

that contain a single member, was lower compared to post-partum thymi and adult peripheral 

blood mononuclear cells. The combined data of FACS and PCR analysis demonstrate that 

TCR V genes belonging to the majority of TCR V gene families can be used in TCR Oi and 

6 chain J:earrangements during early human fetal life. Our data also suggest that the expression 

levels of some of Ole single member TCR V gene families may be influenced by Ole developmental 

stage. 

INTRODUCTION 

T-lymphocytes specifically recognize processed peptide antigens, presented by major histooompatibility 

complex molecules, via the T-cell receptor (TCR; reviewed in Strominger 1989). TCRs can 

be divided into two classes: the 0i{3 TCR, expressed on the majority of peripheral T-lymphocytes, 

and the 'YO TCR (Bremler et ai. 1986, 1987; Strominger 1989). BOOl chains of these heterodimeric 

TCRs are composed of variable and constant regions. Variable regions are assembled from 

germ-line encoded variable (Y), diversity (D; only present in 3 chains) and joining (1) elements 

through a process called V(D)J recombination (reviewed in Schatz et ai. 1992). The currently 

known human TCR V elements have been grouped into 29 TCRA V families and 24 TCRRV 

families; the majority of these contain only a single member (Concannon et ai. 1986; Kimura 

etai. 1987; Wilson et ai. 1988; Ferradinietai. 1991; Piazaetai. 1991; Robinson 1991; Roman-
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Roman et al. 1991). 

Cells committed to the T-cell lineage are detectable in human fetal liver as early as the eighth 

week of gestation, although at this stage offetallife rearrangement ofUle TCR genes is undetectable 

(Asma et al. 1983; Sanchez et al. 1993). From 12 weeks of gestation onwards the bone marrow 

is the primary site of lymphopoiesis (Asma et al. 1983, 1984; Gale 1987; Abe 1989). The 

thym~s is colonized by (pre) T cells, generated in the hematopoietic organs, at 8 or 9 weeks 

of gestation and remains the major site for T-cell differentiation and selection of the TCR repertoire 

(Asma et al. 1983, 1984; Gale 1987; Haynes et al. 1988; Abe 1989; Sanchez et al. 1993). 

TCRA and TCRB gene rearrangements have been detected in the human fetal thymus as early 

as 15 weeks of gestation (Campana et al. 1989) but are likely to be initiated at an earlier stage. 

Rearrangement of TCR gene elements is an ordered process. For instance, studies of mouse 

and human T-cell development (Born et al. 1985; Samelson et al. 1985) and analysis of human 

CD3- T-cell acute lymphoblastic leukemias (Furley et al. 1986; van Dongen et al. 1987) have 

shown that the TCRB and TCRG loci rearrange before the TCRA and TCRD loci. Previously, 

we and others have demonstrated that the employment of the various TCR V gene elements 

in mouse and human TCR 5chain rearrangements is under developmental control. Furthermore, 

the overall usage of TCRDV elements is influenced by post-thymic peripheral modification 

(Elliot et al. 1988; Ito et al. 1989; Lafaille et al. 1989; Krangel et al. 1990; van der Stoep 

et al. 1990). The usage of TCRGVand TCRGJ gene elements was found to be tissue-specific 

during mouse fetal life (Lafaille et al. 1989). Some of these observations have also been made 

regarding the usage pattern of TCRAJ elements during mouse development (Roth et al. 1991). 

To gain an insight into Um generation of the repertoire of "P chain TCRs and possible developmental 

influences on the usage of TCR V gene families during the establishment of the human TCR 

A .and B repertoire, we have investigated the usage of TCRA V and TCRBV families in TCR 

rearrangements derived from fetal liver, bone marrow and spleen obtained at 14 (n= I) and 

15 weeks (n=2) of gestation using fluorescence-activated cell sorter (FACS) analysis. As the 

number of monoclonal antibodies specific for human TCR V-regions is limited and fetal liver 

and bone marrow contain extremely low numbers of T cells, we have also determined TCRA V 

and TCRBV gene family expression in adult peripheral blood mononuclear cells (PBMC), two 

human post-partum thymi, two human fetal thymi at 17 weeks of gestation and in human fetal 

liver, bone marrow, spleen, gut and cord blood at 13 weeks of gestation using the polymerase 

chain reaction (PCR). 
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MATERIALS AND METHODS 

Human organs. Human fetal tissue was acquired by interruption of pregnancy on non-medical 

grounds and used for the experiments after informed consent. 111e gestational age was determined 

by measurement of the foot length (Moore 1988). As a consequence of the suction procedure 

we were unable to locate the thymi of the younger fetuses. The use of this material for research 

purposes was approved by the Ethical Research Committees of the University Hospitals of 

Leiden and Rotterdam under strict conditions. 

To obtain fetal bone marrow, long bones were flushed with phosphate buffered saline containing 

5% bovine serum albumin (BSA) and 0.25 % Na-ethylenediaminetetraacetate (EDTA) and the 

cells were pelleted. Bone marrow oftlle II-week-old fetus was not investigated, as lymphopoiesis 

is marginal at this point of gestation. For PCR analysis, pelleted bone marrow and the other 

fetal organs were immediately frozen in liquid nitrogen and stored at -80" C. For FACS analysis, 

single-cell suspensions were prepared from liver, bone marrow and spleen as previously described 

(Asma et al. 1983, 1984). Mononuclear cells were isolated by Ficolillsopaque density gradient 

centrifugation. Post-partum thymi were obtained from pediatric patients undergoing cardiac 

surgery. Adult peripheral blood was obtained by venepuncture from a healthy donor; PBMC 

were isolated by Ficolillsopaque density gradient centrifugation. 

Characterization of fetal T ceUs hy immunological staining. TCR V region usage of fetal 

T cells was analyzed by double staining for CD3 with Leu4-PE (Becton Dickinson, Mountain 

View, CAl or OKT3-PE (Or tho Diagnostic Systems, Raritan, NJ) combined with VB2-, VB3-, 

VB8-, VB17- and VBl9-specific monoclonal antibodies (mAbs; Immunotech, Marseille, France) 

and VB5a-, VB5b-, VB5c-, VB6-, VB8b-, VBI2-, Va2- and Val2-specific mAbs (T cell Sciences, 

Cambridge, MA), respectively. After washing tlle cells, we detected membrane-bound unconjugated 

TCR V region-specific mAbs with the FITC-Iabelled IgG fraction of goat antisera (Nordic 

Immunological Laboratories, Tilburg, the Netllerlands) against tlle IgG subclass of tlle particular 

mAb. 

FACS analysis. Stained cells were analyzed with a FACS (FACStar, Becton Dickinson) equipped 

with an argon ion laser tuned at 300 mW of 488 nm excitation light. The forward light scatter 

was detected Witll a photodiode, whereas tlle orthogonal light scatter and red and green fluorescence 
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emission signals were detected by photomultiplier tubes. The green and red emission were 

measured with band-pass type interference filters (530/30; type no. 19-62774-00, and 585142; 

type no. 19-62774-03, Becton Dickinson. respectively). A 560 nm dichroic mirror (type no. 

19-62772-00, Becton Dickinson) was used to separate spectrally the FITC and the PE emission. 

All signals were recorded as 256 chalUlel histograms and stored into list-mode using a consort-30 

computer program (Becton Dickinson) on a HP-300 computer system (Hewlett Packard). In 

samples from liver and bone marrow at least 150,000 nucleated cells were analyzed because 

of the low percentages of CD3+ cells; for the spleen this figure was at least 50,000 nucleated 

cells. The data obtained using the unconjugated TCR Vregion-specific mAbs followed by mouse 

IgG subclass-specific conjugate were corrected for background staining by application of the 

latter antibody only. 

Optimal setting of the lymphocyte (and blast) gate for cell suspensions of the different organs 

was based on the fluorescence pattern obtained after staining of the cells with a cocktail of 

mAbs against CD45 (Becton Dickinson), CD33 (Becton Dickinson) and Glycophorin A (immunotech). 

Method validation, As the amount ofT cells in fetal liver and bone marrow was extremely 

low, we assessed whether the percentage of T cells expressing Ole TCRBV3 family as determined 

by our assay was influenced by the number of CD3+ T cells in a given sample. We therefore 

mixed adult PBMC with a CD3- CD 10+ pre-B leukemic cell line in several ratios (100:0, 75:25, 

50:50, 25:75). The results demonstrated Omt, irrespective of the ratio, Ole percentage of TCRBVr 

T cells within the CD3+ population remained constant. Therefore, detection of this TCRBV 

family was not influenced by Ole amount of CD3+ T cells present in the sample (data not shown). 

RNA extl'action, eDNA synthesis, PCR analysis and Sonthel'11 blotting, RNA was extracted 

with guanidinium salts using standard laboratory methods (Sambrook et al. 1989) and dissolved 

into 40 1'1 of DE PC-treated water. Five I'g of RNA was used for oligo dT-primed cDNA synthesis 

using reverse transcriptase (Riboclone cDNA synthesis system, Promega Corp., Madison, 

WI). Following phenol extraction, the double-stranded cDNA was dissolved in 1001'1 TE. 

The expression of TCRAVand TCRBV gene families was analyzed using PCR amplification 

as previously described by our laboratory (Lambert et al. 1992; van Eggermond et al. 1993; 

Hawes et al. 1993; Struyk et al. 1993) with minor modifications. Briefly, 0.51'1 cDNA was 

amplified using 20 pmol TCRAVand TCRBV specific 5' sense primers, 20 pmol 3' antisense 

t29 



TCRACprimer or a TCRRCprimer specific for both TCRRCl and TCRRC210ci, and 2.5 units 

Taq DNA polymerase (Boehringer, Mannheim, Germany) in the presence of 50 mM KCI, 

10 mM Tris-HCI (pH 8.4), 4 mM MgCI2 , 0.5 mM of each dNTP, and 0.06 mg/ml BSA in 

a final volume of 100 ~l. PCR cycles consisted of 1 min denaturation at 97' C, 1 miu annealing 

at 54' C and I min extension at 74' C in a Bio-Med Thermocycler 60. As the amount of TCR 

message within an organ (liver, bone marrow, gut and cord blood as opposed to thymus and 

spleen) varied greatly, an internal control reaction for the total amount of TCR product detected 

in each cDNA preparation was included in the experiments. To this end, a PCR reaction was 

performed using the 3' antisense TCR C primer mentioned above and a sense primer specific 

for the 5' region of the constant gene element. PCR reactions were also performed without 

templatecDNA as a negative control. In order to assess the efficiency of the TCRA Vand TCRRV 

primers, adult PBMC were included in all experiments. The analysis of the TCRA Vand TCRRV 

repertoires was repeated at least three times for each organ. 111e possibility of maternal peripheral 

blood contamination was excluded by the lack of detection of IgG-encoding transcripts in RNA 

obtained from the fetal organs (Raaphorst et al. 1992). 

In order to maximize the chance of detecting TCR rearrangements that might be present at 

trace levels, the PCR reactions were performed for up to 40 cycles. 111e sequences of Ole primers 

have been described before (Choi et al. 1989; Oksenberg et al. 1990; Lambert et al. 1992; 

Hawes et al. 1993; Struyk et al. 1993). 

Ten ~I of the PCR reactions and serial dilutions (undiluted, 5 times and 25 times diluted) of 

the internal control amplifications were fractionated on a 1 % agarose gel in 0.5x tris-borate, 

blotted onto nylon membranes (Biotrace HP, Gelman Sciences, Ann Arbor, MI) and screened 

with 3lP-Iabelled probes specific for the TCRAC or TCRRC region, according to protocols 

supplied by the manufacturer of the membranes. Autoradiography was performed using Kodak 

XAR films (Rochester, NY). 

RESULTS 

FACS analysis ofTCR V gene expression in fetal liver, bone marrow and spleen. In Table 

I the results of the FACS analysis of TCR V gene usage by human fetal T cells, obtained at 

14 (n= I)and 15 weeks (n=2; fetus 1 and 2) of gestation, are shown. A representative example 
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of the FACS profiles obtained for detection of TCR V gene expression within various fetal 

tissues is presented in Figure I. CD3+ T cells expressing the various TCRAVand TCRBV gene 

elements were detectable in all fetal tissues analyzed but were, in contrast to spleen, present 

at extremely low numbers in liver and bone marrow. For instance, in the liver and bone marrow 

of 14- and 15-week-old fetuses approximately 0.35% to 2.5% of the gated nucleated cells 

were CD3 + (data not shown). Most TCRA Vand TCRBV gene families tested for were expressed 

in these fetal organs, albeit at different levels. As shown in Table I, the degree of expression 

of these TCRA V and TCRBV gene families appeared to be subject to individual differences. 

This is exemplified by the expression level of the TCRBV2 element, which differed when 

the liver and spleen obtained from two age-matched fetuses (fetus 1 and 2) were compared. 

Variable patterns of TCR V-gene usage could be discerned for other V elements analyzed as 

well. 

PCR analysis of TCR V gene expression in thymi. To expand our studies with mAbs, we 

subsequently determined the expression of TCRBV and TCRA V elements by PCR. In Figures 

2 and 3 the Southern analyses of the expression of TCRBV and TCRAV families in two human 

fetal thymi at 17 weeks of gestation (FT! and FT2) and two post-partum thymi (AT! and A T2) 

in comparison to adult PBMC are shown. The majority of the TCRBVand the TCRA V families 

were detectable in the post-partum thymi and adult PBMC. The expression level of TCRBV 

and TCRAV families in the fetal thymi was subject to more variation: although the frequency 

of usage of the majority of tile multi-member families (TCRBVI-TCRBV8 and TCRBVIO-TCRBVI3) 

was comparable in FTI, FT2, AT! and AT2, the majority of the single-member families (for 

instance tile TCRBVI5-TCRBVI8 and tile recently identified TCRA V24-TCRA V29 gene families) 

appeared to be expressed at a lower level in both fetal thymi. 
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Table 1. FACS analysis of membrane-expressed TCR V gene elements 

V-chain 14 wk fetus 15 wk fetus (1) 15 wk fetus (2) 

L Vfi2 5.3 7.5 1.9 
Vfi3 4.5 4.3 1.8 
Vfi5a 4.3 2.8 2.0 
Vfi5b 4.6 2.7 0.8 
Vfi5c 6.7 5.3 2.7 
Vfi6 5.0 1.8 2.1 
Vfi8 7.0 2.7 
Vfi8b 5.5 2.0 
Vfil2 7.6 2.5 2.7 
Vfil7 0.7 0.4 
Vfil9 6.5 4.8 1.5 
Va2 2.5 6.1 1.8 
Val2 4.1 1.4 

BM Vfi2 10.9 8.0 7.7 
Vfi3 0.0 4.0 7.4 
Vfi5a 2.0 2.0 
Vfi5b 0.7 4.0 5.7 
Vfi5c 1.8 8.6 5.0 
Vfi6 4.2 4.3 4.0 
VfiB 7.9 4.B 
VfiBb 4.5 5.5 
Vfil2 5.4 6.2 
Vfil7 0.0 5.2 
Vfil9 7.2 7.4 
Va2 0.8 2.9 
Val2 3.3 5.0 

S Vfi2 4.2 5.7 10.2 
Vfi) 9.2 3.6 1.1 
Vfi5a 3.1 2.6 
Vfi5b 2.6 0.8 0.9 
Vfi5c 6.7 3.5 
Vfi6 2.5 1.3 
VfiB 7.5 3.4 
VfiBb 3.2 2.3 
Vfil2 5.2 4.6 
Vfil7 0.0 0.3 
Vfil9 3.4 2.B 
Va2 2.8 I.B 
Val2 4.0 I.B 

FACS analysis of membrane-expressed TCR V gene elements by CD3+ T cells isolated from liver (L), bone 
marrow (DM) and spleen (S) of a 14-week-old human fetus and two 15-week-old fetuses (Fetus I and Fetus 2). 
Values are expressed as the percentage of CD3+ T cells expressing the indicated V chain. - = not done. 
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PCR analysis of TCR V gene expression in fetal liver, bone marrow, spleen, gut and cord 

blood. Determination of the TCRBV repertoire in the 13-week-old fetus showed that almost 

all of the TCRBV families were detectable in cord blood, gut and spleen, whereas TCRBV 

gene usage appeared to be restricted in liver and bone marrow (Fig. 4). Similarly, most of 

the TCRA V families tested for were readily detectable in the peripheral organs of the l3-week-old 

fetus with the exception of the TCRAV24-TCRAV29 single member gene families (Fig. 5). 

As found in the analysis of TCRBV gene families, the level of expression of the various TCRA V 

gene families differed markedly in 13-week-old fetal liver and bone marrow compared to the 

expression ofthese TCRA V gene families in the periphery. In the ll-week-old fetus, the TCRBV 

gene family usage profiles exhibited a restricted pattern in both hematopoietic and peripheral 

organs which was most likely related to the low percentage of CD3+ T cells in fetal organs 

at dlis gestational age. In addition, TCRA V rearrangements were barely detectable in dIe investigated 

organs of this fetus (data not shown). 
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Fig. 4. TeRRV repertoire analyzed by peR in human fetal liver (35 cycles), bone marrow (35 cycles), gut (30 
cycles), spleen (30 cycles) and cord blood (35 cycles) obtained from a human fetus at 13 weeks of gestation. 
Note: TCRBV5 rearrangements were detected ill two separate PCR reactions, using two different primers (TCRBV5a 
and TCRBV5b). 
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DISCUSSION 

PCR analysis of the usage patterns of TCRAVand TCRBV families by T cells in adult PBMC 

and post-partum thymi indicated that all families identified to date were detectable in these 

tissues. In the oldest fetal samples analyzed, the 17-week-old thymi, the majority of the TCR 

V gene families were detectable as well, although some families appeared to be underrepresented 

in comparison to post-partum thymi and adult peripheral blood. This was mostciearly illustrated 

by considering the single-member TCRA Vand TCRBV gene families. The employment of the 

various TCRAVand TCRBV families as detected by PCR in the 13-week-old peripheral fetal 

tissues (gut, spleen and cord blood) was extensive, and more diverse than the repertoire of 

the T cells in the corresponding primary hematopoietic organs (liver and bone marrow). 

In analogy widl mouse fetal T -<:ell development (Rodl et aI. 1991) and human fetal B-<:ell development 

(Schroeder and Wang 1990; Raaphorst et a!. 1992), the apparent restrictions in human TCRA V 

and TCRBV family expression could reflect actual preferential usage of TCR V gene elements 

in T-cell precursors derived from liver and bone marrow at early fetal ages. However, considering 

the more diverse TCR repertoire in the periphery of these fetuses, the low number of immature 
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and mature CD3+ T cells, especially in the hematopoietic tissues, probably lies at the heart 

of the apparent restricted phenotype of TCR V family usage. This was reflected by the number 

of cycles of PCR required to obtain a comparable level of detection in the various tissues (Figs. 

2-5). Also, FACS analysis of the expression of TCRAVand TCRBV gene products of CD3+ 

T-cells in 14-and 15-week-old fetal liver, bone marrow and spleen (Fig. 1; Table 1) indicated 

that the majority of the TCR V regions tested for were detectable, although sometimes at an 

extremely low level. The percentage of staining of CD3+ T cells in fetal tissue for each individnal 

mAb was in a range similar to the staining patterns in PBMC, as previously reported by our 

group (Lambert et al. 1992; Hawes et al. 1993). The mAb staining profiles suggested that 

the patterns of expression ofTCR Vfamilies were subject to individual-specific variation, which 

has recently also been described in several other studies of TCR V gene expression in unrelated 

individuals (Akolkar et al. 1992; Robinson 1992; Rosenberg et al. 1992; Hawes et al. 1993) 

and T cell subsets (Davey et al. 1991; Grunewald et al. 1992). It is of note that TCR V gene 

family-specific PCR reactions were designed to detect all known members of a given family. 

Consequently, this may explain why tlle FACS and PCR analyses were not completely overlapping, 

because the mAbs used are specific for a single member only. 

As the peripheral fetal TCR V gene repertoire was extensive both in PCR and FACS analysis, 

our data show that in early human fetal TCR rearrangements Velements belonging to the mqjority 

of TCR V gene families were used by fetal T cells. Recently reported data obtained by other 

groups support this conclusion: studies of TCRRV expression in human fetal thymus and spleen 

at 15 to 22 weeks of gestation also demonstrated that all of the 20 tested TCRRV gene families 

can be used in TCR rearrangements at this stage of fetal development (Doherty et al. 1991; 

Bonati et al. 1992). In addition, transplantation of 18- to 20-week-old human fetal thymus 

and liver in SCID-hu mice demonstrated that all investigated TCRRVelements were expressed 

by the repopulating T cells (VandeKerckhove et al. 1992). Furthermore, the relative expression 

levels of TCRBVelements expressed by T cells in the SCID-Im fetal thymus differed in comparison 

to the TCRRV usage patterns of T cells in human post-partum thymi (Doherty et al. 1991; 

VandeKerckhove et al. 1992), which is compatible with our results. 

Taken together, our data indicate that there are no apparent major limitations in the usage 

of TCRA V and TCRBV gene families in the fetal and adult tissues analyzed. 
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Chapter 8. General discussion and future perspectives. 

This thesis aims at increasing the understanding of endocrine cell development in the human 

fetal pancreas. Firstly. identification of islet stem cells allows attempts for in vitro replication 

and multiplication of islet cells. Eventually. this could lead to transplantation of cells in type-I 

diabetic patients. Secondly, 3 cell (auto)antigen expression during fetal development seems 

important in the pathogenesis of type-I diabetes mellitus, in which these cells are selectively 

destroyed by the immune system, possibly resulting from defective (fetal) tolerance development. 

Coexpression of insulin, glucagon, and somatostatin within one cell occurs between 12 and 

18 weeks gestation but not between 22 and 40 weeks gestation. Different combinations of these 

hormones are present in ultrastructurally distinct secretory granules (Chapter 3). Hormone 

containing cells do not proliferate. Subsequently I neuroendocrine markers have been analyzed 

for their presence in replicating cells. Two markers, NI and HNK-I, are expressed on DNA

synthesizing cells, indicating that these cells may be endocrine precursor cells. In addition, 

early phenotypic differentiation of islet Ii cells is suggested by tlle presence of HNK-I on proliferating 

cells and on Ii cells (Chapter 4). N I is described in Chapter 5 as a new monoclonal antibody 

to an unknown surface determinant of islet cells. Because of its surface expression, Nt was 

used in the separation of endocrine from non-endocrine celJs in pancreatic single cell suspensions, 

prepared by a collagenase digestion technique. 

Islet cell antibody (ICA) reactivity was investigated in the human fetal pancreas. Targets of 

type-I diabetes mellitus related humoral autoimmunity were found to be present in midgestational 

human fetal islet cells. The heterogeneous findings obtained with these polyclonal autoantibodies 

suggest that interpancreatic differences exist in fetal antigen expression (Chapter 6). In the 

following sections, the results presented in this thesis will be discussed. Future perspectives 

will be concentrated on two topics: I) futUler analysis of islet cell interrelationships and identification 

of islet stem cells; 2) the immunological relevance of fetal islet antigen expression for type-I 

diabetes. 
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* islet cell interrelationships. 

The present finding of all combinations of coexpression of insulin, glucagon, and somatostatin, 

even triple expression, suggests a common ancestry for islet a, Il, and 0 cells. 11tis is in accordance 

with earlier findings in the embryonal mouse pancreas, in which sequential activation of glucagon, 

insulin, somatostatin, and pancreatic polypeptide (PP) protein expression respectively was suggested 

(Alpert et al., 1988). Another study found that PP was the earliest expressed hormone during 

mouse development (Herrera et aI., 1991). This has been shown, however, to result from antibody 

crossreactivity between PP and neuropeptide Y (NPY) (Teitel man et aI., 1993). However, 

peptide YY, an intestinal hormone which has been localized to Oi cells, was recently detected 

in all four islet cell types as they emerge during mouse embryogenesis (Upchurch et aI., 1994). 

Peptide YY shares 50% and 70% amino acid identity with PP and NPY respectively. By absorption 

sfudies of antisera with relevant or irrelevant antigens it was shown that the PP and NPY reactivity 

observed in the earlier studies in fact was peptide YY reactivity. TIlese data contain two important 

implications: I) the occurrence of peptide YY in all islet cell types supports Ule idea of a common 

ancestor cell. which may express peptide YY; 2) the presence of an intestinal hormone, peptide 

YY, in islet cells suggests studies to further investigate similarities between islet cells and 

other cells of the gastrointestinal tract. 

The abovementioned studies have all been performed by double immunohistochemistry (IHC). 

Such studies have their limitations: I) a sufficient amount of protein must be present in order 

to be detected; 2) antibody crossreactivity must be carefully checked by absorption studies 

and may not always be eliminated. Detection of mRNA by reverse transcriptase-PCR (RT-PCR) 

is superior with regard to sensitivity and specificity, but does not allow conclusions about the 

localization of expression. Using this technique, hormone gene expression of insulin and glucagon 

appeared simultaneously (Gittes and Rutter, 1992). In situ hybridization (ISH) for the detection 

of mRNA, though less sensitive than RT-PCR, does allow the analysis of positive or negative 

cells in their histological context, and may be combined with !HC. We performed double ISH 

and a combination of ISH and !HC for insulin, glucagon, and somatostatin. The preliminary 

results show that hormone coexpression also occurs at the mRNA level, confirming a presumed 

common ancestry for iX, 6, and" cells (FIGURE 6). Hormone mRNA expression may be 

found without (probably prior to) protein expression. To observe if translation to Ule corresponding 

protein occurs ISH for the detection of mRNA should always be combined with !HC for the 

detection of proteins. 
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Figure 6. Double in situ hybridization, using biotin and digoxygenin-Iabeled probes against insulin (left panel) 
and gJucagon(right panel). Thearrows pointat cells that contain bothinsulinalld glucagonmRNA. Cells containing 
insulin only can also be observed. 

In Chapter 4 islet cell interrelationships were analyzed using neuroendocrine proteins as markers. 

The concept of using neuroendocrine markers has been applied before (Teitel man et al. 1987, 

1993, Upchurch et aI., 1994). Tyrosine hydroxylase (TH), NPY, and peptide YY were detected 

in all islet cell types. This suggested that islet cells may arise from a common progenitor, 

which expresses one or more of these neuroendocrine marker proteins. Because all islet cells 

were stained, no conclusions could be drawn about the phenotypic differentiation of the islet 

cell types. Similarly, Nl, present in IX, 6, and 5 cells, may be a candidate islet progenitor 

cell protein. The selective presence of HNK-l in proliferating cells and 5 cells in the human 

fetal pancreas suggests a partial 5 cell differentiation early in ontogeny. The HNK-l epitope 

has been described on several nervous system specific molecules, including isoforms of neural 

cell adhesion molecules (NCAMs), a matrix protein of neurosecretory granules, and an acidic 

glycolipid in human peripheral nerves (Kruse et aI., 1984, Tischler et aI., 1986, Chou et aI., 

1985). It also staius a subpopulation ofGABAergic neurons in the rat cerebral cortex (Kosaka 

et aI., 1990). Both adhesion molecules and GABA production have been shown in islet cells. 

It will be of interest to identify which protein(s) is (are) the HNK-l-target on 5 cells. In FIGURE 

7 a developmental scheme is proposed, based on the findings described in Chapters 3 and 4. 

In conclusion, neuroendocrine and gastrointestinal marker proteins allow detection of islet 

cell interrelationships. Protein or mRNA expression of such markers in all islet cell types supports 
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the idea of a common ancestry for all islet cells. Thus, these markers may also be present 

in proliferating islet progenitor cells. To prove a relationship between proliferating progenitor 

cells and islet celis, both expressing neuroendocrine or gastrointestinal marker proteins, culture 

experiments and in vivo analyses are needed (see next section: "islet precursor cells"). Differential 

expression of markers in islet cells indicates differentiation to a specialized islet cell phenotype 

(a, a, 0, or PP cell). The occurrence of differentially expressed markers may be taken as a 

sign of phenotypic differentiation of a cell to one of the islet cell types. The onset of expression 

of such markers in relation to proliferation or to the onset of hormone expression may reveal 

how early in ontogeny these events occur. Again, culture experiments and in vivo analyses 

(in transgenic mice) are needed. 

In the following paragraphs, two groups of marker molecules, transcription regulation factors 

and adhesion molecules, are described that may aid in Ule elucidation of islet cell interrelationships, 

both in terms of a common ancestry and in terms of phenotypic differentiation. For both groups 

of molecules, studies have indicated their common and/or differential and early expression 

in islet cells. 

For the control of cell type specific hormone expression, specific trartscription regulatory proteins 

and corresponding regulatory sequences are needed. A region of 350 base pairs of 5' flanking 

DNA of the rat insulin I gene has been shown to contain several regulatory sequences which 

influence insulin gene transcription in cell lines and transgenic mice (Edlund et aI., 1985, Walker 

et aI., 1983, Alpert et aI., 1988). More recently, islet cell type specific transcription regulation 

factors have been identified. An insulin enhancer binding factor (IEF2) and an insulin promotor 

binding factor (IPF1) are present in nuclear extracts of fiTCI cells, a transgenically derived 

insulin-producing a-cell line (Efrat et aI., 1988a), and of other insulin-producing cell lines 

(Ohlsson et aI., 1991), but not in nuclear extracts of aTCl cells, a transgenically derived glucagon

producing cell line (Efrat et aI., 1988b). IPF 1 is also expressed in adult mouse a cells (Ohlsson 

et aI., 1993). Thus, IEF2 and IPFI may be regarded a cell specific, in contrast to another 

insulin enhancer binding factor (lEF1), which is also expressed in aTCI cells (Ohlsson et 

aI., 1991). The homeodomain-containing LIM protein Isl-l (Karlsson et aI., 1990) is found 

in all four islet cell types, in endocrine pancreatic tumors, and some other rat tissues (Dong 

et aI., 1991). All results derive from the study of rodent a cells or cell lines. 
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Figure 7. Proposed developmental pathway of human fetal islet cells. based on the findings presented in Chapters 3 and 4. At the very left of the scheme a common stem 
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Apparently, both general and islet cell type specific factors exist. It is likely that the cellular 

profile of transcription regulation factors will determine the phenotype of a cell. This hypothesis 

may be tested by using the available probes and antisera to general and specific islet transcription 

regulation factors in human fetal islet cells. It is conceivable that these experiments will allow 

further insight into the events of phenotypic islet cell development and differentiation of islet 

cell types. For example, IPF I is found in the ventral and dorsal wall of the primitive foregut 

of 13 somite mouse embryos (around day E8.5). This suggests 6 cell commitment of precursor 

cells before pancreas morphogenesis occurs. The detection of peptide sequences of unknown 

transcription regulation factors, which are present in low copy numbers, may be facilitated 

by ultrasensitive microsequencing techniques, which are currently developed (Hood, 1994). 

By this technique 5 femtomoles of peptide are sufficient to analyze its amino acid sequence. 

This enables the identification of factors involved in early developmental stages. 

The simultaneous regulation of gene sets may be studied by the analysis of similar or identical 

DNA sequences. In the rat insulin-I, glucagon, and somatostatin genes, a common enhancer 

region binding islet cell-type specific transcription factors has been described (Knepel et aI., 

1991). By combining regulatory sequence information of a series of genes and target sequences 

of transcription regulation factors, the hypothesis that certain genes are co-regulated may be 

tested. Clearly, this will be a very complex area of investigation. 

Cell adhesion molecules are thought to be involved in (fetal) islet development, because of 

the non-random distribution of the different islet cell types within an islet. When adult rat 

islets are dispersed into single cells, they spontaneously form aggregates with an identical three

dimensional architecture as the original islets (Halban et aI., 1987). From this study it was 

concluded that even adult islet cells possess the information necessary to obtain an appropriate 

spatial orientation. The 135 kD form of the neural cell adhesion molecule (N-CAM) is expressed 

in neonatal and adult rat islet cells, with higher expression on non-6-cells than on 6 cells (Moller 

et aI., 1992). The differential expression ofN-CAM suggests a role in the calcium-independent 

aggregation of islet cells and in the formation of a mantle of non-6-cells (Rouiller et aI., 1990, 

1991). Cadherins are a family of calcium dependent cell adhesion molecules tilat play an important 

role in cellular differentiation and organ morphogenesis. Three cadherins, E-CAD, N-CAD, 

and R-CAD, have been detected on pancreatic islet cells. E-CAD is found on all islet cells 

as well as on exocrine cells and it is tims less likely to playa role in tile formation or morphological 
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arrangement of islet cells (Moller et a!., 1992). The islet specificity of N·CAD and R·CAD 

suggests a role in the interaction and communication of the different islet cell types (Hutton 

et a!., 1993). It has been hypothesized that N·CAD and R·CAD, expressed both in the retina 

and in pancreatic islets, are required for the organization of a heterogeneous mass of cells 

into a highly ordered structure (Inuzuka et a!., 1991). In mice, the onset of mRNA expression 

of N·CAD and R·CAD is around day E13, while the onset of hormone mRNA expression 

in mouse embryos is at day E9 (Gittes and Rutter, 1992). 11lUS, tllese molecules may be involved 

in the formation of islets or in the terminal differentiation of islet precursor cells. In humans, 

fetal cell adhesion molecule expression has not been studied. The expression of these molecules 

may provide evidence for islet cell precursors or for differentiation into phenotypically different 

islet cells. By the introduction of genes for adhesion factors under control of hormone gene 

promotors in transgenic mice, the importance of each adhesion molecule on three-dimensional 

islet development may be studied. 

* endocrine stem cells. 

A second issue of the studies in Chapters 3 and 4 is the identification of potential endocrine 

precursor cells. The rapid increase of islet cells during human fetal development indicates 

that endocrine stem cells and precursor cells are present in this tissue. Recognition of such 

cells allows attempts to regulate their reproduction in vitro. This, in turn, offers therapeutic 

possibilities in cases where 6 cells are over- or underrepresented. 

Proliferation was not detected in human fetal endocrine hormone containing cells, whether 

they express a single or multiple hormones (Chapter 3). This is in accordance with studies 

in adult rat 6 cells (De Vroede et a!., 1990), but not with studies in newborn rat 6 cells, in 

which a low percentage of replicating cells is found under basal conditions (Nielsen et a!., 

1989). In midgestational fetal pig islets 0.4·6 per thousand cells proliferate (Andersson, personal 

communication). At least, 6 cell replicatory potential is severely limited after the onset of hormone 

expression, and can only be stimulated by the appropriate growth factors (see Chapter I). For 

example, normal mouse islets, devoid of stem cells, show a 4·fold increase in cell number 

when transplanted in obese hyperglycaemic hyperinsulinaemic mice. This occurs only when 

both hyperinsulinaemia and hyperglycaemia are present and is also dependent on the genetic 
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background of the obese mouse (Andersson, personal communication). 

In the human fetal pancreas, multiple hormone expression does not result in the identification 

of potential endocrine precursor cells. However, two neuroendocrine markers, Nl and HNKl, 

colocalize with BrdU, a marker of cell replication. We suggest that these cells are candidate 

endocrine precursor cells, since N 1 and HNK 1 continue to be expressed on hormone containing 

cells. Another neuroendocrine marker, TH, is also found in proliferating cells in mouse embryos, 

but adult TH cells did not proliferate (Teitelman and Lee, 1987, Teitel man et aI., 1988). The 

similarities in protein expression pattern between neuronal cells and islet cells indicate that 

other neuroendocrine marker proteins may be succesfully employed in the analysis of islet 

stem cells. Other potential islet stem cell markers may derive from the ductal origin of islet 

cells and from the similarities with gastrointestinal hormone producing cells. An adult rat ductal 

epithelial marker, cytokeratin 20 (CK20), identifies proliferating cells in the periphery of fetal 

rat islets. In addition, CK20 is present in fetal rat 01, 3, and'; cells, suggesting that proliferating 

CK20 cells give rise to hormone expressing islet cells. Thus, CK20 may identify islet precursor 

cells in the fetal rat pancreas (Bouwens, personal communication). 

Transcription regulating proteins may also be of help in the identification of precursor cells, 

because they are among the earliest proteins that determine cell type specific differentiation 

(see above). However, such cells may have limited proliferative potential, because they are 

committed to become an endocrine cell. 

Identification of stem cells is a first step. For the in vitro maintenance of endocrine stem cells, 

knowledge of growth factors and growth factor receptors dlat govern cell type specific proliferation 

and differentiation is essential. Only limited immunohistochemical information is available 

about growth factors and their receptors in the human fetal pancreas (Chapter 1). They may 

be important in the formation of individual islets and in the determination of the B cell reserve. 

Influence on growth factor promoted endocrine cell growth may be exerted by genetic and 

environmental factors. A link between malnutrition during pregnancy and 3 cell mass (Van 

Assche and Aerts, 1979) and between birth weight and glucose intolerance (Hales et aI., 1991) 

has been established in clinical studies. Knowledge of fetal endocrine growth factors and their 

receptors allows testing of these factors in culture experiments. In preliminary experiments, 

cytoplasmic TGF" reactivity is seen in human fetal pancreatic cell suspensions. TGF" is coexpressed 

in glucagon containing cells. EGF and TGF3-3 are not found in human fetal islet cells. EGF 
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and NGF receptors (NGFr) are found on a proportion of human fetal pancreatic cells. NGFr 

positive cells are located peripheral to the insulin positive core of endocrine cell clusters. This 

localization shows similarities with the pattern of HNKI positive cells and suggests coexpression 

of NGFr, HNKI and somatostatin. The low affinity NGFr is shown to be involved in apoptosis 

(Rabizadeh et ai., 1993). llJerefore, part of the abundant fetal b cells may be subject to apoptosis 

during fetal development. From these preliminary findings it seems likely that several growth 

factors (TGFa, NGF) and their respective receptors (EGF, NGF) playa role in midgestational 

islet cell development (De Krijger et ai., unpublished observations). Recently, it has been reported 

that fetal rat islets and 6 cell lines express the high affinity NGF receptor (TRK·A) on their 

surface (Seharfmann et ai., 1993). In 16 and 21 day old fetal rat islets, none of the a or 6 

cells express this receptor, but around the islets and in the wall of duetules numerous TRK·A 

positive cells were observed. Also, such peripheral cells expressed NGF. During a 6 day culture 

period of fetal rat islets an increasing proportion of the cells became insulin and TRK·A positive. 

This apparent maturation could be blocked by the addition of a tyrosine kinase inhibitor that 

blocked the TRK·A receptor but not by an anti·NGF antibody (Kanaka and Scharfmann, personal 

communication). These findings confirm that NGF and its receptor may play an important 

role in the development of islet stem cells to differentiated islet cells. 

In conclusion, the protein and mRNA expression of factors involved in fetal cell growth and 

differentiation must be studied by immunohistochemistry and in situ hybridization. Subsequently. 

growth factors should be added in cell culture to test their effect in a dynamic system. In vitro 

culture experiments can prove the capability of endocrine stem cells in fetal pancreatic cell 

suspensions to self-renewal and to differentiation into islet cells. Neuroendocrine and gastrointestinal 

marker proteins are candidates to monitor these events. 

In Chapter 5, a dispersion protocol is described to obtain human fetal pancreatic single cell 

suspensions. Any marker protein expressed on the surface afislet cells or of potential progenitor 

cells (e.g. NI) can be used to select this cell population by fluorescence activated cell sorting 

(see Chapter 5). Preliminary culture experiments of Nl positive cell suspensions have been 

performed, but fibroblast overgrowth constituted a major problem in culturing fetal endocrine 

cells. Cells were cultured in DMEM or medium 199, supplemented with 10% FCS at a density 

of 1·1.5 x 10' cells/weU in weUscoated with bovine cornea endothelial ceU matrix. The viability 

decreased in both cases from 66 + 10% immediately after ceU sorting (= day 0), to 45 ± 
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12% on day I, and 32 ± 6% on day 2 (n=5). Cell coating did not have a beneficial effect. 

When DMEM was diluted I: 1 with medium conditioned by 6TC3 cells, viability at day 2 increased. 

Recently, HIT cell (a transformed hamster 6 cell line) culture medium was succesfully used 

for the culture of6TCI cells. In conclusion, further efforts are needed to obtain a culture system 

for sorted human fetal cell suspensions. As outlined above and in the previous section, islet 

cell interrelationships, including islet progenitor cells, must be investigated in a dynamic cell 

culture system. Two obstacles should be overcome. First, fibroblast overgrowth should be 

slowed down by fibroblast-selective drugs, such as 2-deoxyglucose. Second, cell viability should 

be increased by the addition of conditioned media of 6 cell lines, or by the addition of relevant 

growth factors. Cell suspensions labelled with surface monoclonal antibodies (such as NI or 

HNK-I) may then be cultured after fluorescence activated cell sorting. The effect of differing 

concentrations of growth factors on the proliferative fraction, on islet cell phenotype and on 

expression of genes may then be evaluated. 

Data from the literature and the work presented in this thesis allow several conclusions to be 

drawn for the future study of endocrine pancreatic growth and differentiation. First, the tissue 

substrate used is important. Results obtained with 6 (or ex) cell lines must be interpreted with 

caution, because of the effect of transformation on the 6 cell specific machinery and resulting 

protein expression. For tile study of growtll and differentiation fetal pancreatic tissue is indispensable. 

Fetal mouse, raland pig islets are available in sufficient quantities. In relation to human disease, 

such as type-I diabetes mellitus, human fetal tissue is preferable, but not always available. 

It is important to note that rat and mouse are born after 19 and 21 days respectively in a much 

more immature condition than humans. In addition, in rodents islet cell development seems 

to occur in a limited period of time, whereas in tile human fetal pancreas repetitive differentiation 

from precursor cells can be observed throughout the entire 12-18 week period. This must be 

taken into account when comparing data from rodents with tllose from human studies. Transgenic 

and knock-out mouse studies (e.g. the introduction of transcription regulation factor or growth 

factor (receptor) transgenes under control of endocrine hormone promotors or the deletion 

of such genes on islet cell development) may yield important results. In the past, however, 

such studies sometimes had unexpected outcomes, possibly through unknown compensation 

mechanisms, and left the investigators with more questions than answers. 
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Second, the picture emerging for islet cell development is one of a complex interaction of 

growth factors and tileir receptors. 111e effects of growth factors may depend on their concentration, 

but also on the concentration of tileir receptors (Nielsen, personal communication). Thus, carefully 

controlled experiments, introducing not more than one variable, are needed to dissect the exact 

role of each component in islet growth. 

Finally, similarities of islet cells with neuronal cells and with other gastrointestinal cells should 

be kept in mind in the design of experiments. For example, expression of the hepatocyte growth 

factor (HGF) has been shown in adult rat ex cells and in mouse embryos (Svensson, personal 

communication). Also, islets transplanted in the liver or under the kidney capsule proliferate 

after partial hepatectomy or nephrectomy, along with hepatocytes and renal cells respectively. 

Native pancreatic islets do not proliferate under these conditions. This indicates that islet cells 

respond to local factors which induce adaptive proliferation. 

• human fetal development in relation to type-I diabetes mellitus. 

In Chapter 2 a number of studies has been presented which indicate that the development of 

the fetal immune system and the fetal pancreas may be important for the pathogenesis of type-I 

diabetes mellitus. The first question to be answered for the human fetal pancreas is: are targets 

of autoimmune destruction, few of which have been characterized at tile molecular level, present 

at this stage of development? This question may be answered by analyzing the reactivity of 

autoantibodies of type-I diabetic patients (or the reactivity of monoclonal antibodies in the 

case of GAD) and of autoreactive T cells to fetal islet cells. 

In Chapter 6, the reactivity of ICA to islet cells in the human fetal pancreas is shown. It is 

suggested that multiple target molecules are found during fetal development and that there 

may be autoantigenic differences between fetal pancreata. However, leA positive sera are 

polyclonal, and only one ICA target (glutamic acid decarboxylase (GAD), see below) has been 

characterized at the molecular level. Two things can be learned from this study: I) targets 

of humoral autoimmunity in type-I diabetes are found at this stage offetal islet cell development; 

2) it is important to work with molecularly defined antigens and with monoclonal antibodies 

instead of with polyclonal patient sera responding to a diverse array of proteins. 

The best example of a molecularly defined antigen is GAD, a target of autoimmune destruction 
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in type-I diabetes, of which protein and DNA sequences are known (Baekkeskov et aI., 1990). 

GAD is encoded for by two non-allelic genes, resulting in Ule production of GAD65 and GAD67 

(Erlander et aI., 1991). Both isoforms are involved in the production of gamma-amino butyric 

acid (GABA), a major inhibitory neurotransmitter. Autoantibodies to GAD65 are found in 

the majority of recent onset diabetic patients (Atkinson et aI., 1990). T-cell autoimmunity against 

GAD has been detected in NOD mice (Kaufman et al. , 1993, Tisch et aI., 1993). This indicates 

that GAD may be a pathogenetically relevant target, because 6 cell destruction is thought to 

be caused by cellular autoimmunity. In human adult islets only GAD65 is found (Petersen 

et aI., 1993, Kim etal., 1993). Preliminary experiments in human fetal islets confirm the presence 

of GAD65 between 12 and 18 weeks gestation. The majority of Ii cells and approximately 

half of the ct and 6 cells show GAD reactivity, in contrast to adult islets, in which the majority 

of 6 cells and few oU,er islet cells are GAD-reactive (De Krijger et aI., unpublished observations). 

In future experiments, which may also be applied to otiler molecularly defmed targets of autoimmunity 

in type-I diabetes, it will be important to determine: 1) the distribution of protein and mRNA 

expression in fetal pancreatic (islet) cells; 2) the subcellular siteof expression and the molecular 

configuration of proteins, which will determine the possibility and nature of immunological 

recognition. In this context it must be noted that truncated forms of the GAD protein occur 

in the embryonic rat brain (Bond et aI., 1990); 3) the onset of expression in relation to the 

major endocrine hormones and to other islet (precursor) cell markers. 

The analysis of targets of autoreactive T-cells has been described before (Van Vliet et aI., 

1989, Roep et aI., 1990). In these studies, insulinoma cells or their subfractions, which are 

abundantly available, were the substrate. Human fetal pancreatic cell suspensions contain many 

irrelevant cells, which may even inhibit T-cell proliferation. Cells selected by fluorescence 

activated cell sorting with Nl are probably the best subpopulation of human fetal pancreatic 

cells to be analysed, because within the pancreas Nl is selectively expressed on endocrine 

cells (Chapter 5). Available diabetes-related T-cell clones may be tested in a stimulation assay 

with the corresponding antigen presenting cells to detect their reactivity against fetal pancreatic 

sUbpopulations. Subfractionation of these cells may be hampered, however, by the limited 

amount of such cells (maximally 1-2 million per fetal pancreas). 
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The fact that relevant antigens are expressed during fetal islet cell development merely indicates 

that autoimmunity might start at this stage, but might start at any later timepoint, if triggered 

appropriately. As mentioned before (Chapter 2), fetal tolerance induction might be decisive 

for later autoimmune disease (Adams et ai., 1987). When does tolerance development occur 

during human embryology? To answer this question human fetal thymic tissue must be studied 

(the majority of research on tolerance development so far has been done with fetal mouse tllymus). 

Thus, the formation of the T-cell repertoire of the fetal immune system has been studied in 

the human fetal thymus between 12 and 18 weeks gestation (as this tissue was available) in 

collaborative experiments (Chapter 7). In this study, which analyzed both thymic and peripheral 

T-cells (in liver, bone marrow and spleen), T-cell receptor (TCR) rearrangements were observed 

using the majority of TCR V gene families. The expression level of TCR V gene families 

may depend on the developmental stage. However, these findings do not yet allow conclusions 

with regard to the onset and duration of tolerance induction in human fetal development. 

A second question is whether tolerance induction to 6 cell antigens occurs in the thymus or 

in the periphery. 

The presence of 6 cell antigens, GAD being an interesting candidate antigen, in the human 

fetal thymus should be investigated. It must be noted that the molecules in the thymus may 

not present in their native configuration, which may abolish regular antibody reactivity. 

Present knowledge, however, suggests that peripheral antigens may induce tolerance peripherally. 

At least for CD8+ T cell tolerance this isstrongly suggested (Heath et ai., 1993). Histologically, 

large organized lymphoid cell infiltrates, containing T-cell zones, interdigitatingdendriticcells 

and macrophages, have been found in the periphery of the midgestational human fetal pancreas 

(Jansen et ai., 1993, De Krijger, unpublished). Within the pancreas small clusters oflymphatic 

cells are found. These authors speculate that the lymphoid infiltrates may serve peripheral 

tolerance induction. Phenotypic characterization of pancreatic T cells and antigen presenting 

cells may be done by using the available series of CD marker antibodies. 

Subsequently, functional in vitro experiments should be directed at the interaction between 

pancreatic (or thymic) immunecompetent cells and islet (6) cell antigens. By fluorescence activated 

cell sorting (using the abovementioned CD marker antibodies) subpopulations ofT-lymphocytes 

and antigen presenting cells can be obtained. Purified target antigens of diabetic autoimmune 

destruction or human fetal pancreatic subpopulations sorted with NI (see above) could serve 

as substrates. These experiments may be done with tissues of different gestational ages, and 
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thus at differing developmental stages. Theconditions for such experiments have been described 

before (Van Vliet et at., 1989, Roep et at., 1990). In this context it is important to mention 

that fetal thymus and pancreas can be obtaiued from the same fetus and that HLA typing can 

be performed ou fetal splenocytes (De Krijger et aI., unpublished). TIlUS, Ule outcome of stimulation 

experiments with susceptible vs. resistant HLA types may be compared. Recent experiments 

have suggested that, in addition to MHC, other unknown genetic polymorph isms may determine 

the differentiation ofT-lymphocyte phenotypes. This resuited in pathogenic or non-pathogenic 

effector cells (Scott et ai., 1994). 

Finally, to extend the in vitro findings to an in vivo situation, SCID mice may be repopulated 

with human fetal thymic or peripheral T-cells or subpopulations. It will be of interest to see 

ifautoreactive T-cells, determined in in vitro assays indeed cause 8 cell destruction and type-I 

diabetes in these animals, and if non-autoreactive T-cells do not. 
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SUMMARY 

The aim ofthis thesis was to study the development of pancreatic islet cells in the midgestational 

human fetal pancreas and to assess the importance of islet cell development for type-I diabetes 

mellitus. The difference between human and rodent development was a major reason to study 

the human fetal pancreas. At Ole start of Olese studies little was known about human fetal endocrine 

cell development, except a number of morphological studies. 

In Chapter 1 an overview is given of adult and fetal islet anatomy and physiology and fetal 

islet development. Islets of Langerhans are clusters of endocrine cells, dispersed in the exocrine 

pancreatic parenchyma. The four major endocrine cell types are ", G, b, and PP cells, producing 

and secreting glucagon, insulin, somatostatin and pancreatic polypeptide, respectively. During 

fetal development endocrine cells appear from 7 weeks gestation onwards. The first mature 

islets are found at 15 weeks gestation. All islet cells are thought to originate from a common 

endodermal precursor cell. This precursor cell, however. remains elusive. Hormonecontaining 

islet cells have a limited proliferative potential under baseline conditions, but may be stimulated 

to proliferation by growth factors. Recently, the presence of these factors and their receptors 

has been studied extensively in fetal and adult islet cells. 

Another important reason to study the development of the human fetal pancreas is the notion 

that tolerance development probably occurs during fetal development. The mechanisms of 

tolerance induction are reviewed in Chapter 2. Autoimmune diseases, such as type-I (illSulin~ependent) 

diabetes mellitus, are thought to result from defective tolerance development. In such diseases 

the immune system attacks self-antigens. In type-I diabetes the pancreatic G cells are selectively 

destructed, but the target antigen(s) is (are) unknown. Histologically, a cellular infiltrate, consisting 

of macro phages and T-Iymphocytes, can be identified in the islets of Langerhans. Both CD4+ 

and CD8+ autoreactive T-Iymphocytes are required for the development of type-I diabetes. 

Autoantibodies have been found in sera of type-I diabetic patients. Islet cell antibodies (lCA) 

and antibodies to glutamic acid decarboxylase (GAD) are present in 80% of the patients. The 

cause of the G cell destruction in type-I diabetes is unknown. Susceptibility to the disease is 

genetically determined, but environmental factors have also been implicated. 

[n Chapter 3 the coexpression of islet hormones in human fetal endocrine cells is described. 

Two or three hormones are found in morphologically distinct granule types within one cell. 

Cells containing hormones do not proliferate. 
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Therefore, proliferating precursor cells cannot be identified using hormones as markers. No 

conclusions can be drawn with regard to islet cell interrelationships, because all combinations 

of coexpression occur. Hormone coexpression at the mRNA level was confirmed by in situ 

hybridization. Combination of in situ hybridization with immunohistochemistry showed that 

cells may contain mRNA without the corresponding hormone protein. 

In Chapter 4, potential islet precursor cells are identified using two neuroendocrine markers, 

NI and HNK-l. Early phenotypical differentiation of 5 cells is suggested by expression of 

HNK-I on islet 5 cells and on proliferating cells. Such proliferating cells, as well as multiple 

hormone containing cells, are observed in all fetal pancreata between 12 and 18 weeks gestation, 

indicating that islet cell development is a continuously repeating event. 

In Chapter 5, the characterization of the monoclonal antibody N I is described. Fetal endocrine 

cells can be separated from exocrine cells, using N I, with the aim of culturing the endocrine 

cells. However, preliminary culture experiments have shown that this is hampered by fibroblast 

overgrowth and suboptimal culture medium conditions. 

In Chapter 6, the reactivity of islet cell antibody (ICA) positive sera of recent onset diabetic 

patients to fetal islet cells is studied. All sera reacted to all fetal pancreata, but quantitatively 

the results are heterogeneous. This is probably due to the polyclonal nature of ICA and the 

fetal interpancreatic differences in expression ofICA target antigens. Preliminary experiments 

show expression of GAD65, a target of autoimmune destruction in type-I diabetes, in 01, B, 

and 5 cells in the human fetal pancreas. In Chapter 7, the ontogeny of the T-cell repertoire 

is studied, by analyzing T-cell receptor rearrangements in the thymus and in peripheral lymphatic 

organs (liver, spleen, and bone marrow). It is suggested that the expression ofT-cell receptor 

V gene families depends on d,e developmental stage. These f",dings may have important implications 

for the occurrence of tolerance development. 

Finally, in Chapter 8 the results are discussed and suggestions for further experiments are 

given. It can be concluded d,at the human fetal pancreas can be used to study islet cell development, 

in particular for the detection of endocrine precursor cells. The presence of targets of autoimmune 

destruction in type-I diabetes makes the human fetal pancreas suitable for studies on the ontogeny 

of these molecules. Fetal thymic tissue may be used to study the development of the fetal immune 

system, including tolerance induction. 
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SAMENV A TIINO 

Het doel van dit proefschrift was het bestuderen van de ontwikkeling van eilandjescellen in 

het humane foetale pancreas (alvleesklier) tussen 12 en 18 weken gestatieduur (de eerste helft 

van het tweede trimester van de zwangerschap) en het bepalen van het belang van de ontwikkeling 

van deze cellen voor type-I (insuline afll3nkelijke) diabetes mellitus (suikerziekte). Het verschil 

tussen de ontwikkeling in de mens en in knaagdieren was cen beJangrijke ceden om dit week 

met behulp van humaan foetaal pancreasweefsel uit te voeren. Aan het begin van het onderzoek 

was er weinig bekend over de ontwikkeling van endocricnc eilandjescellen in het humane faetale 

pancreas, behalve een aantal beschrijvende, morfologische studies. 

In Hoofdstuk 1 wordt cen overzicht gegeven van de anatomic en fysiologie van volwassen 

en foetale eilandjes en van de foetale ontwikkeling van eilandjes. Dezeeilandjes van Langeril3llS 

zijn groepjes endocriene cellen. die verspreid in het exocriene, spijsverteringsenzymen prooucerende, 

pancreasweefsel voorkomen. De vier belangrijkste endocriene celtypen zijn a, 6, b, en PP 

celien, die respectievelijk glucagon, insuline, somatostatine, en pancreatisch polypeptide produceren 

en afgeven aan de bloedbaan. Tijdens de humane foetale ontwikkeling komen vanaf 7 weken 

gestatieduur endocriene cellen vaar. De eerste morfologisch volwassen eilandjes zijn vanaf 

15 weken aanwezig. Aile eilandjescellen zijn waarschijnlijk afkomstig uit een gemeenschappelijke 

endodermale voorlopercel. De kenmerken van deze voorlopercel(len) zijn vooralsnog onbekend. 

Hormoon producerende eilandjescellen zijn sterk beperkt in de mogelijkheid zich te delen onder 

nonnale omstandigheden, maar kunnen hiertoe wei aangezet worden door bijvoorbeeld groeifactoren. 

In het reeente verledcll is de aanwezigheid van groeifactoren en hun receptoren uitgebreid 

bestudeerd in foetale en volwassen eilandjescellen. 

Een andere belangrijke reden om de ontwikkeling van het humane foetale pancreas te bestuderen 

is de wetenschap dat tolerantie ontwikkeling waarschijnlijk ook tijdens de foetale onwikkeling 

gebeur!. De mechanismen die een rol spelen bij tolerantie ontwikkeling worden in Hoofdstuk 

2 besproken. Autoimmuunziekten, zoals type-I (insuline-afhankelijke) diabetes mellitus, ontstaan 

mogeJijk door een stoornis in de tolerantie ontwikkeling. In dat geval worden lichaamseigen 

cellen aangevallen. Bij type-I diabetes gaat het om de 6 cellen in de eilandjes van Langerhans. 

Het precieze doelwit (of doelwitten) van de aanval is (zijn) nog onbekend. Histologisch is er 

een cellulair infiltraat, bestaande uit macrofagen en T-Iymfocyten (bepaalde witte bloedcellen), , 
aanwezig in de eilandjes van Langerhans. 
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Zowel CD4- ais CD8-positieve T-Iymfocyten zijn nodig voor het ontstaan van type-I diabetes. 

Autoantilichamen zijn aangetoond in het serum van patienten met type-I diabetes. Antistoffen 

tegen eilandjescellen (ICA) en antistoffen tegen glutaminezuur decarboxylase (GAD) worden 

aangetroffen bij 80% van de patienten. Ondanks deze kennis is de oorzaak van het vernietigen 

van de B cellen bij type-I diabetes nog steeds onbekend. De gevoeligheid voor de ziekte is 

genetisch bepaald, maar oak omgevingsfactoren spelen cen rol. 

In hoofdstuk 3 wordt aangetoond dat in humane foetale eilandjescellen meer dan I hormoon 

tegelijk aallwezig kan zijn, iets wat in volwassen eilandjescellen Iliet voorkomt. Twee, en SOInS 

drie, honnonen worden aangetroffen in morfologisch verschillende blaasjes in de eilandjescellen. 

Geen van de hormoonbevattende cellen vertoonde nog deiingsactiviteit. Hieruit kan worden 

afgeleid dat delende voorlopercellen niet met behulp van deze hormonen kunnen worden opgespoord. 

Bovendien kuunen geen conclusies worden getrokken over de onderlillge relaties van de verschillende 

endocriene celtypen, omdat aile combinaties van 2 hormonen in 1 eel voorkomen. Het gezamenlijk 

voorkomen van meerdere hormonen in 1 eel werd oak aangetoond met in situ hybridizatie, 

een techniek die Iaat zien dat in een eel mRNA (een afschrift van het DNA), wordt gemaakt, 

dat als "mal" dienst doet om eiwitten te maken. Bij het gelijktijdig aantonen van mRNA en 

eiwit (betrekking hebbend op hetzelfde hormoon) werd duidelijk dat mRNA aanwezig kan 

zijn, zonder dat er al eiwit gevormd was. 

In Hoofdstuk 4 worden potentiele voorlopercellen van eilandjescellen geidentificeerd met behulp 

van 2 merker antistoffen, NI en HNK-l. Vroege uitrijping van Ii cellen wordt verondersteld 

door de aanwezigheid van HNK-I in zowel voorlopercellen ais in de Ii cellen in eilandjes. 

De rijping van eilandjescellen uit voorlopercellen komt gedurende deze periode van ontwikkeling 

continu, getuige het feit dat in aIle pancreata in de periode tussen 12 en 18 weken gestatieduur 

zowel prolifererende cellen, gemerkt met Nl of HNK-I, ais cellen met meer dan I hormoon 

voorkomen. 

In Hoofdstuk5 wordthet monoclonaleantilichaam NI gekarakteriseerd. Foetaleeilandjescellen 

kUl1nen worden gescheiden van andere, exocriene, pancreascellen door ze te mer ken met N 1 

en dan daaraan een fluorescerende stof te verbinden. Met behulp van een apparaat dat reageert 

op f1uorescentie kunnen de met Nl gemerkte cellen apart worden opgevangen. Het kweken 

van deze cellen is nog erg moeilijk omdat bindweefselcellen de endocriene cellen in weefselkweek 

overgroeien en doordat de kweekomstandigheden voor deelldocriene cellen niet optimaal zijn. 
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In Hoofdstuk 6 wordt de reactiviteit van patientensera met daarin eilandcel-antistoffen (leA) 

tegen foetale eilandjescellen bestudeerd. Oeze experimentenlaten zien dat de doelwitten waartegen 

deze antistaffen gericht zijn, reeds in deze fase van ontwikkeling aanwezig zijn. Voorts blijken 

de resultaten quantitatiefheterogeen, waarschijnlijk omdat eilandcel-antistoffen niet tegen Mn, 

maar tegen meerdere doelwitten reageren. Eell tweedereden yoor de heterogeniteit kan veroorzaakt 

worden door een verschil in de aanwezigheid van de doelwit antigenen in de foetale eilandjescellen. 

In voorlopige experimenten werd de aanwezigheid van GAD, een doelwit van autoimmuniteit 

in type-I diabetes, in humane foetale ex, 6, en Ii cellen aangetoond. 

In Hoofdstuk 7 wordl het ontstaan van T-Iymfocyten repertoire bestudeerd, door te kijken 

naar herschikking van T-cel receptoren in de thymus en in perifere Iymfatische organen (lever, 

milt, en beenmerg). Doordit proces is het lichaam later in staat te reageren tegen allerleisoorten 

indringers. Het is waarschijnlijk dat het voorkomen van genfamilies, die coderen voor bepaaJde 

delen van de T-cel receptor, afhangt van het foetale ontwikkelingsstadium. Oeze bevindiug 

kan van groat belang zijn voar de tolerantie ontwikkeling. 

Tenslotte worden in Hoofdstuk 8 de resultaten bediscussieerd en worden voorstellen voor toekomstige 

experimenten gedaan. Er kan worden geconcludeerd dat het humane foetale pancreas kan worden 

gebruikt voor het bestuderen van eilandcel ontwikkeling, vooral voor het opsporen van endocriene 

vooriopercellen. Deaanwezigheid van doelwitten van autoimmuundestructie in type-I diabetes 

maakt humaan foetaal pancreasweefsel geschikt vQor het bestuderen van de ontogenie van deze 

eiwillen. Foetaal thymusweefsel kan gebruikt worden voor de foetale ontwikkeling van het 

immuunsysteem, inclusief tolerantie inductie. 
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DANKWOORD 

Aan dit proefschrift hebben velen op uiteelllopende manieren bijgedragen. III dell beginne was 

er Mu Bruining. Mu, ik herinner me nog de middag dat ik je vroeg om "wat onderzoek n te 

mogell doell, enjouw bevestigende alltwoord daarop. Je bellt al diejaren eell zeer stimulerende 

factor geweest, tevens zorgde je voor aile randvoorwaarden van het onderzoek. Daarvoor wil 

ikje buitengewoon hartelijk danken. Overigens hoop ik dat we in de toekomst nog vaak plannetjes 

zullen bespreken. 

Henk-Jan, oak jij dient op deze plaats genoemd. Toen ik nag niet zo lang bezig was, wist 

Mu een kinderarts-in-opleiding met een typische naam, die in diabetes geinteresseerd was, 

Vanaf dat moment liepen onze wegen min of meer parallel. Ik yond en vind je gezelschap 

altijd buitengewQon inspirerend. Noait was het je teveel moeite om een manuscript nog eens 

als advocaat van de duivel door te nemen. Bedanktl 

Oreetje, mijn lievelingsanaliste. Ruim 2'11 jaar hebben we onafscheidelijk gewerkt aan al onze 

foetale pancreasproefjes. Je stond altijd klaar, was nooit te beroerd om wat langer te blijven, 

had altijd het laatste woord, kortom: je was (bijna) perfect. 

Mijn twee promotoren, Professor Visser en Professor Oaljaard wil ik danken voor de mogelijkheid 

die ze mij geboden hebben am dit onderzoek uit te voeren, voor hun beiangstelling. en vooe 

hun snelle beoordeling van het manuscript. Tevens wil ik Professor Bosman, mijn huidige 

opleider, en Professor Lamberts bedanken voar het beoordelen van dit manuscript. 

Bij het doen van onderzoek en met name bij de afronding in de vonn van een proefschrift 

speelt het thuisfront een zeer belangrijke rol. Hiervoor wil ik Annet en mijn cuders dan oak 

danken. Zij zorgden ervoor dat ik vele avonden en weekenden "naar boven" ken, en dat bevendien 

zender morren. 

Dit onderzoek had niet kUllnen plaatsvinden zonder geschikt materiaal. Oedurende vele jaren 

heeft Dr. D. Schipper van de Bloemenhovekliniek in Heemstede, evenals aile andere artsen 

en medewerkers vear dit superieure materiaal en vear een uitstekende sfeer gezargd. 

Het is onmogelijk om op deze plaats iedereen te noemen, die mij tijdens het in dit proefschrift 

beschreven onderzoek met raad en daad terzijde heeft gestaan. Toch wil ik al die mellsen, 

met name op de Klinische Oenetica ell de Celbiologie, maar ook op eell behoorlijk aantal andere 

afdelingen, die altijd weI 5 minuten of dat ontbrekende stofje hadden, bij deze hartelijk danken. 
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Tenslotte wiI ik nog twee personen expliciet bedanken. Ten eerste Ton Verkerk, de onvermoeibare 

"troubleshooter" van de FACS-II, hetoude beestie, dat we gebruikten voor decel-sorteer-proeven. 

Geen moeite was je te veel, als wij er weer eens niet uitkwamen; en zelfs als ik het apparaat 

had laten "droogkoken" werd je niet (althans niet zichtbaar) kwaad. 

Ten tweede Frans, die er menigmaal voor heeft gezorgd dat wp-dokumenten, die door eigen 

of computerstommiteiten door mij reeds verloren waren gewaand, toch weer tevoorschijn werden 

getoverd uit de krochten van de harde schijf. Chapeau! 
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het arts-examen werd behaald op 17 december 1993. Van 1 januari tim 30 juni 1994 werkte 

hij voor de afdeling Plastische Chirurgie bij mw. Dr. Chr. Vermeij-Keers aan een project 
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