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Abstract
A profile π = (x1, ..., xk), of length k, in a finite connected graph G is a sequence

of vertices of G, with repetitions allowed. A median x of π is a vertex for which
the sum of the distances from x to the vertices in the profile is minimum. The
median function finds the set of all medians of a profile. Medians are important in
location theory and consensus theory. A median graph is a graph for which every
profile of length 3 has a unique median. Median graphs are well studied. They
arise in many arenas, and have many applications.

We establish a succinct axiomatic characterization of the median procedure on
median graphs. This is a simplification of the characterization given by McMorris,
Mulder and Roberts [17] in 1998. We show that the median procedure can be char-
acterized on the class of all median graphs with only three simple and intuitively
appealing axioms: anonymity, betweenness and consistency. We also extend a key
result of the same paper, characterizing the median function for profiles of even
length on median graphs.

Keywords: median graph, median, median function, location function, consensus func-
tion, consensus axiom
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1 Introduction

Facility location problems involve a set of ‘clients’ at various locations. One seeks a set of
locations acceptable for the provision of a given service. Graphs are a natural model for
the locations and interconnections. Hundreds of papers have been written about location
problems on graphs using the geodesic metric, see for example the reference lists in
[8, 20, 30]. Let G = (V, E) be a graph. Each client is represented by its preferred location
in the graph, so by a vertex. Thus the set of clients may be represented by a sequence,
or profile π = (x1, x2, . . . , xk). Note that π being a sequence, repetitions of vertices are
allowed, by which clients having the same preferred location can be represented. Let V ∗

be the set of all finite sequences of vertices. The location problem is then modelled by
a location function L : V ∗ → 2V − ∅, where 2V is the power set of V . An appropriate
objective function depends on the specific application. To locate a site for an emergency
service, one might seek to minimize the greatest distance to any client: hence the center
is a good choice. For a facility designed for the delivery of goods, one might want to
minimize the average distant to the clients. Here the median set is appropriate. Many
versions of ‘central’ subgraphs have been considered on various classes of graphs, see
[13, 37, 38, 32, 33, 31].

In consensus theory, a finite set, or profile, of voters (users, clients) provides a list
of preferences for the outcomes of a decision procedure. One seeks ‘consensus’, namely
a set of outcomes which best satisfy the voters. See the list of references in [36, 3, 4]
for surveys of such social choice functions. The theory of consensus is widely used in
e.g. social choice theory, voting theory, economic theory and biomathematics.

In both settings, that of consensus and that of location, numerous researchers have
addressed the issue of identifying an objective function via a succinct ‘wish list’ of de-
sired properties. The goal here is to identify functions for which this list, or something
close, gives a characterization. This method allows one to argue in favor of a particular
set of locations (or particular consensus) as being precisely that satisfying certain de-
sirable properties. Another perspective is that one requires that consensus be achieved
in a rational way, that is, the objective function should satisfy certain rational rules or
‘consensus axioms’. In 1951 Arrow [2] initiated this axiomatic approach for consensus
functions by showing that certain sets of axioms could not be satisfied. For a recent
survey of this axiomatic approach with an extensive list of references see [6].

Three location functions have been studied axiomatically: the center function, the
median function and the mean function. The latter two functions are special instances
of the `p-function, viz. for p = 1 and p = 2, respectively. This function was introduced

in [16]: here ‖π‖p = p

√∑k
i=1[d(x, xi)]p is minimized, where π = (x1, x2, . . . , xk). For the

center function [19, 27] and the mean function [11, 35, 15, 16], characterizations have
been obtained only on trees and tree networks. Characterizations beyond trees seem to
be very difficult for these functions.

The median function is more promising. This function satisfies three simple and basic
axioms, viz. (A) Anonymity: the clients are anonymous, (B) Betweenness: any location
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strictly between two clients minimizes the sum of the distances to these two clients, and
(C) Consistency: if two sets of clients both prefer location x, then the union of all these
clients also prefers location x. It is an easy and well-known result that (A), (B) and (C)
are satisfied by the median function for all graphs (in fact for all metric spaces). On
most graphs these axioms are not sufficient to characterize the median function. Hence
the question arises: On which graphs is the median function characterized by these three
basic axioms?

Recently it was proved that the median function is characterized by the three basic
axioms on hypercubes, see [26]. From results in [17] it follows that it is also characterized
by the three basic axioms on trees. In 1990 [24] the first author proposed a ‘meta-
conjecture’, which reads as follows:

Meta-conjecture [Mulder, 1990] Any ‘reasonable’ property shared by trees and hy-
percubes is shared by all median graphs.

So, in view of the characterization of the median function on trees and hypercubes, this
meta-conjecture suggests that the median function should be characterized by the three
basic axioms on the class of median graphs. But the proof techniques in [26] were quite
specific for hypercubes and could not be generalized.

A median graph is a graph in which any profile of three vertices has a unique median
vertex. Median graphs were independently introduced by Avann [1], who called them
‘unique ternary distance graphs’, by Nebeský [29] and by Mulder and Schrijver [28].
Median graphs are now well studied: see [22, 14, 25, 9] for survey articles. They are im-
portant because of the role they play in ternary algebras, ordered sets, discrete lattices,
Helly hypergraphs, product graphs and so forth. They have been used in applications
in such diverse fields as dynamic search, location theory, social choice theory, biomathe-
matics, mathematical chemistry, computer science, mathematical economics and literary
history. Classical examples are trees, hypercubes, and grid graphs.

There is a rich structure theory for median graphs. Notably, in 1978, Mulder [21]
showed that every median graph can be obtained from K1 by a series of ‘convex expan-
sions’. Because we make extensive use of the ideas underlying this operation, we will
describe it in detail in the sequel. Trees and hypercubes arise as extreme cases of this
procedure.

McMorris et al. [17] characterized the median function, by means of (A), (B) and
(C), on ‘cube-free median’ graphs, which include trees. The obstacle in [17] to extend
this result to all median graphs were formed by the profiles of even length. By proving
some nice and surprising results on median sets of such profiles in median graphs, the
same authors [17] could extend the result to all median graphs: A fourth, less intuitively
appealing, ‘convexity’ axiom was needed to deal with the even profiles. This charac-
terization was not shown to be tight, however. It remained an open question whether
or not the basic axioms of anonymity, betweenness and consistency in fact imply the
more complicated axiom of convexity. In this paper we will settle this open question:
surprisingly, the three basic axioms suffice to characterize the median function on all
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median graphs. Our first approach was to prove some more nice and surprising results
for median sets of even profiles. We include these results in Section 4. But in the end we
found a direct proof that (A), (B) and (C) characterize the median function by making
extensive use of the structure theory developed in [22, 17, 25].

The paper is organized as follows: In Section 2 we present the background on con-
sensus functions on graphs. Section 3 focuses on median graphs, including necessary
notation and results. In Section 4 we present our results on median sets of even profiles,
which extend those of McMorris et al. [17]. In Section 5 we prove our main result.

2 Preliminaries

Throughout this paper G = (V, E) is a connected graph. All subgraphs considered are
induced. Therefore, we may use the same symbol to denote a subgraph as well as its
vertex set, equating subgraph H with its vertex set. For any u, v ∈ V , we denote the
distance between u and v by d(u, v). The interval between u and v in G is the set

I(u, v) = {w | d(u, w) + d(w, v) = d(u, v)},

in other words the set of all vertices ‘between’ u and v.
Let W be a subset of V . Then W is convex in G if it contains all shortest paths

between pairs of vertices, that is, I(u, v) is contained in W , for any two vertices u, v in
W . Trivially, the intersection of two convex subsets is again convex. If W is a subset of
V then the convex closure Con(W ) is the smallest convex set containing W . A subgraph
of G is convex if it is induced by a convex set in G.

Let v be a vertex of G. If there is a unique vertex x in W such that x lies in I(v, w)
for all w in W , then x is a gate for v in W . The concept of gate was introduced by
Dress [7], see also [8, 34]. Note that, if v has a gate in W , then it is the unique vertex
in W closest to v. The converse need not be true. Clearly, if v lies in W , then v is its
own gate. A subset W of V is called gated if each vertex v of G has a gate in W . A
subgraph is gated if it is induced by a gated set. A gated set is necessarily convex. For
arbitrary graphs the converse is not true. The following property for gated sets probably
belongs to folklore, and it is an easy exercise to prove: If W is a gated set, and v is a
vertex outside W , then x in W is the gate for v if and only if v is closer to x than to all
neighbors of x in W . We refer to this property as the neighbor-gate property.

A profile π on G of length k is a nonempty sequence π = (x1, x2, . . . , xk) of vertices of
V with repetitions allowed. We denote its length by k = |π|. When |π| is odd, we call π
an odd profile, otherwise an even profile. Let V ∗ be the set of all profiles of finite length.
The concatenation of profiles π1 and π2 is denoted by π1π2. We write the concatenation
of a profile π and a single element profile (v) as πv rather than π(v). We refer to a
profile π whose elements are contained in a subgraph H as a profile contained in H, and,
abusing notation slightly, we write π ⊆ H.
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A consensus function on G is a function L : V ∗ → 2V −∅. For convenience, we write
L(x1, x2, . . . , xk) instead of L((x1, x2, . . . , xk)) for any function L defined on profiles, but
will keep the brackets where needed.

A median of a profile π = (x1, x2, . . . , xk) is a vertex x in V minimizing the distance
sum

∑k
i=1 d(x, xi). The median set M(π) of π is the set of all medians of π. Note that,

since G is connected, this defines a consensus function, namely the median function
M : V ∗ → 2V − ∅. Trivially, we have M(x) = {x}, and M(x, y) = I(x, y). Moreover, if
I(u, v) ∩ I(v, w) ∩ I(w, u) 6= ∅, then M(u, v, w) = I(u, v) ∩ I(v, w) ∩ I(w, u).

The three basic axioms for our consensus functions are

(A) Anonymity: For any profile π = (x1, x2, . . . , xk) on V and any permutation σ of
{1, 2, . . . , k}, we have L(π) = L(πσ), where πσ = (xσ(1), xσ(2), . . . , xσ(k)).

(B) Betweenness: L(u, v) = I(u, v), for u, v ∈ V .

(C) Consistency: If L(π) ∩ L(ρ) 6= ∅ for profiles π and ρ, then

L(πρ) = L(π) ∩ L(ρ).

It is a simple exercise to prove that the median function satisfies these three basic
axioms, see e.g. [17, 25].

Let L be a consensus function satisfying (B) and (C). Take any vertex v in V . Since
L(v) 6= ∅, we have L(v) ∩ L(v) 6= ∅. Hence, by consistency and betweenness, we have
L(v) = L(v) ∩ L(v) = L(v, v) = I(v, v). So L(v) = {v}. This property is known as
Faithfulness. Then consistency and faithfulness imply that L(u, u, . . . , u) = {u}, where
(u, u, . . . , u) is the constant profile containing only u’s. This property is called Unanimity.

It belongs to folklore that (B) and (C) are independent. Here are two examples to
show independence. The consensus function L on V defined by L(π) = V , for all π,
clearly is anonymous and consistent, but does not satisfy betweenness unless G is K1

or K2. The consensus function L on V defined by L(x, y) = I(x, y) for any x and y,
and L(π) = V for all other π, satisfies anonymity and betweenness, but not consistency,
again, unless G is K1 or K2.

3 Median graphs

A median graph is a graph G for which |I(u, v) ∩ I(v, w) ∩ I(w, u)| = 1, for any three
vertices u, v, w in G. Clearly, median graphs are connected. It is easily seen that they
are bipartite. In median graphs convex sets are gated. This follows easily from the
definition of median graph, using results from [22]. Median graphs possess a beautiful
structure and elegant characterizations abound, see e.g. the surveys in [14, 25]. One such
characterization is that they are precisely the graphs in which every profile of length 3
has a unique median. The most useful and insightful characterization of median graphs
might be the Expansion Theorem in [21]: A graph G is a median graph if and only if
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G can be obtained from the one-vertex graph K1 by successive ‘convex expansions’. See
also [22, 24, 25].

At first sight one might think that median graphs are quite esoteric. But in [12] a
one-to-one correspondence was established between the class of connected triangle-free
graphs and a special subclass of the class of median graphs. Hence, median graphs being
triangle-free and connected, it was proved that “in the universe of all graphs, there are
as many median graphs as there are connected triangle-free graphs”.

To make full use of the Expansion Theorem and its consequences we require several
concepts and notations. For an illustration of the definitions and notations see Figure
1. We refer the reader to [21, 22, 24, 25] for details and for the proofs of all the results
that are summarized in this section.

For two graphs G1 = (V1, E1) and G2 = (V2, E2), the union G1 ∪ G2 is the graph
with vertex set V1 ∪ V2 and edge set E1 ∪E2 , and the intersection G1 ∩G2 is the graph
with vertex set V1 ∩ V2 and edge set E1 ∩ E2. We write G1 ∩G2 6= ∅ when V1 ∩ V2 6= ∅.
The graph G1 − G2 is the subgraph of G1 induced by the vertices in G1 but not in G2.
A proper cover of a connected graph G consists of two subgraphs G1 and G2 such that
G1 ∩G2 6= ∅ and G = G1 ∪G2. Note that this implies that there are no edges between
G1 − G2 and G2 − G1. If both G1 and G2 are convex, we say that G1, G2 is a convex
cover. Note that G1, G2 is a convex cover if and only if G1 ∩G2 is convex. Every graph
admits the trivial cover G1, G2 with G1 = G2 = G, which is of course convex. On the
other hand a cycle of length at least four does not have a convex cover with two proper
subgraphs.

Let G′ be a connected graph and let G′
1, G

′
2 be a convex cover of G′ with G′

0 = G′
1∩G′

2.
For i = 1, 2, let Gi be an isomorphic copy of G′

i, and let λi be an isomorphism from G′
i

to Gi. We write G0i = λi[G
′
0] and ui = λi(u

′), for u′ in G′
0. The convex expansion of

G′ with respect to the convex cover G′
1, G

′
2 is the graph G obtained from the disjoint

union of G1 and G2 by inserting an edge between u1 in G01 and u2 in G02, for each u′ in
G′

0. We denote the set of edges between G01 and G02 by F12. Note that F12 induces an
isomorphism between G01 and G02.

It is straightforward to prove that the expansion of a median graph with respect to
a convex cover is again a median graph. The hard part of the proof of the Expansion
Theorem is to show that a median graph is always the convex expansion of a smaller
one. We need some of the ideas and notations from this proof for the sequel.

Let G be a median graph, and let v1v2 be an edge in G. Let G1 be the subgraph
induced by all vertices closer to v1 than to v2 and let G2 be the subgraph induced by
all vertices closer to v2 than to v1. Since G is bipartite, it follows that G1, G2 is a
vertex-partition of G. Let F12 be the set of edges between G1 and G2, and let G0i be
the subgraph induced by the ends of F12 in Gi, for i = 1, 2. Then it is proved in [21]
(although not exactly in that order) that the following facts hold:

(i) F12 is a matching as well as a cutset (minimal disconnecting edge-set),

(ii) the subgraphs G1, G2, G01, G02 are convex subgraphs of G,
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Figure 1: Expansion

(iii) the obvious mapping of G01 onto G02 defined by F12 (i.e. u1 → u2, for any edge
u1u2 in F12 with u0i in G0i) is an isomorphism,

(iv) for every edge u1u2 in F12 with ui in G0i, the subgraph G1 consists of all vertices
of G closer to u1 than u2, and the subgraph G2 consists of all vertices of G closer
to u2 than u1.

We call such a partition G1, G2 of G a split. Note that any edge in F12 defines the
same split. The subgraphs G1 and G2 are the sides of the split. If we are in u1 of an
edge u1u2 of F12, then G1 is the side of u1 and G2 is the opposide of u1, see [25] for the
reason why opposide is spelled this way. We call u1 and u2 mates of each other.

The converse of expansion is contraction: for a split G1, G2 contract each edge in F12

so that mates are being identified. Then the resulting graph G′ is again a median graph
and the split G1, G2 is ‘contracted’ to a convex cover of G′. Moreover, the expansion
with respect to that cover reproduces G. Thus the proof of the Expansion Theorem is
complete. To obtain the median graph G from K1, the expansions are order independent.
The edge set E of G is the disjoint union of the resulting matchings. This provides us
with a very strong tool: we can use induction on the number of splits. This is needed in
the proof Theorem 1 and various other properties mentioned here.

If, at each expansion, one of the two parts in the cover is a single vertex, so that the
other part is the whole graph, then a tree results. If at each expansion, each part of the
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cover is the entire graph, an n-dimensional hypercube results, where n is the number of
expansions.

We need some more consequences of the structural characterization of median graphs
in the sequel. As observed above, convex subgraphs of a median graph are gated. So the
subgraphs G1, G2, G01 and G02 are all gated. Let v be a vertex in, say, G1. Let u1 be
its gate in G01. Then it follows from the above structural properties of a split that the
mate u2 of u1 is the gate for v in G02 as well as G2. Moreover, for any w in G2, it follows
that u1, u2 ∈ I(v, w). We use this property of gates and mates in the next sections, and
refer to it as the mate-gate property.

Let π be a profile on G, and let G1, G2 be a split of G. We denote the subprofile of
π contained in Gi by πi, for i = 1, 2. If |π1| > |π2|, then we call G1 the majority side of
the split. If |π1| = |π2|, then we call π balanced on the split G1, G2.

In the sequel we will use all the notation developed here for split G1, G2, edge u1u2,
subprofiles π1 and π2, and so forth, and so forth, without further mention.

For any edge uv in G we denote by Guv the subgraph of G induced by all vertices
closer to u than to v. Then Guv, Gvu is a split. Note that, for any edge u1u2 in F12, we
could write G1 also as Gu1u2 , and G2 as Gu2u1 , see Figure 1.

An important consequence of the Expansion Theorem was proved in [23] and [17].
The median set of a profile is always contained in the majority side of an unbalanced
split, and it intersects both sides of a balanced split. This is made more precise in the
following theorem, which is basic for almost all the proofs in this paper.

Theorem 1 Let G be a median graph and let π be a profile on G. Then

M(π) =
⋂

G1,G2 split with |π1|>|π2| G1.

Note that, split sides being convex, this means that median sets are necessarily convex.
It is a well-known fact that odd profiles have a unique median in median graphs. It
also follows easily from this theorem. Let π be an odd profile. Then there are no
balanced splits for π. So, if u is a median vertex and v is a neighbor of u, then Guv is a
majority side and Gvu is a minority side in the split Guv, Gvu. So v is not in M(π). Since
M(π) is convex, it consist only of u. A special case of this theorem concerns intervals.
Note that the next corollary was already proved in [28] without any reference to profiles
and the median function. But now it is a simple corollary of Theorem 1. Recall that
I(x, y) = M(x, y) on any connected graph.

Corollary 2 Let G be a median graph and let x and y be vertices of G. Then

I(x, y) =
⋂

G1,G2 split with x,y∈G1
G1.

Hence intervals in median graphs are convex. We get this property for free here, but it
can also be easily proved using the definition of a median graph. Another noteworthy
corollary of this theorem is also needed. Note that, for any edge uv, we have the following
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fact. Edge uv has an end in each side of the split Guv, Gvu, but for any other split G1, G2,
the edge is contained in one of the two sides. In a way, split Guv, Gvu distinguishes edge
uv. Now, if u is a vertex in M(π), for some profile π and v is a neighbor of u outside
M(π), then Guv contains a majority of π, and necessarily M(π) ⊆ Guv. We call this the
edge-distinguishing property.

A ‘counterpart’ for Theorem 1 was also proved in [17].

Theorem 3 Let G be a median graph, and let π be a profile on G that is balanced on
all splits. Then M(π) = G.

Note that we could merge Theorems 1 and 3 into one statement using the convention
∩∅ = G.

4 Medians of even profiles on median graphs

In this Section we extend the results from [17] on median sets of even profiles. In 1998,
McMorris et al. [17] showed that axioms (A), (B) and (C) characterize the median
function on ‘cube-free median’ graphs, where cube-free means that the 3-cube Q3 does
not occur as a subgraph. The surprising key result in [17] for cube-free median graphs
was the following: any even profile π on a cube-free median graph admits a permutation
such that it can be written as (y1, y2, . . . y2m−1, y2m) with

M(π) = ∩1≤i≤mI(y2i−1, y2i).

So the median set of an even profile is the intersection of intervals between its elements.
A simple example on the 3-cube showed that this is not true on arbitrary median graphs:
take the profile of length four of the black vertices in Figure 2.

 

Figure 2: The 3-cube Q3 with a profile

To extend the characterization in [17] to arbitrary median graphs, a fourth axiom
was added in [17]: the less intuitively appealing ‘convexity’ axiom. For a profile π =
(x1, x2, . . . , xk), this axiom involves the vertex-deleted profiles π−xi for 1 ≤ i ≤ k. This
is the profile of length |π| − 1, where only the element xi is removed.
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(K) Convexity: Let π = (x1, x2, . . . , xk) be a profile in G with k ≥ 2. If
∩k

i=1L(π − xi) = ∅, then L(π) = Con
(
∪k

i=1 L(π − xi)
)
.

It is easy to check that for L = M , axiom (K) holds vacuously when π is an odd profile.
The fact that (K) holds for the median function when π is an even profile on a median
graph, is a key result in the above mentioned paper.

Theorem 4 [17] Let π = (x1, . . . , xk) be an even profile on the median graph G. Then
M(π) = Con

(
∪k

i=1 M(π − xi)
)
.

We present an extension of this result. Note that, if π = (x1, . . . , xk) is an even profile,
then the vertex-deleted profile π − xi is odd, so it has a unique median.

Theorem 5 Let G be a median graph, and let π = (x1, . . . , xk) be an even profile on
G. For i = 1, . . . , k, let yi be the median of the vertex-deleted profile π − xi, and let
π′ = (y1, . . . , yk). Then π′ ⊆ M(π) = M(π′).

Proof. Since π is even, a majority side for π of a split remains a majority side for
π− xi. So yi lies in M(π). Hence we have π′ ⊆ M(π). By Theorem 1, any majority side
for π of a split contains π′, hence trivially is a majority side for π′. So M(π′) ⊆ M(π).

Take any balanced split G1, G2 for π. So exactly half of π is in G1 and the other half
of π is in G2. Now, if xi is in G1, then the majority of π−xi is in G2, so that yi is in G2.
So, for i = 1, . . . , k, the vertices xi and yi are always on opposite sides of G1, G2. Hence
this split is also balanced for π′. Thus we have shown that the majority sides for π are
precisely the majority sides for π′. By Theorem 1, we have M(π) = M(π′).

The example in Figure 2 shows that, for even π = (x1, . . . , xk), we can not always
write M(π) as the intersection of intervals between profile-elements as in the cube-free
case. But it turns out that M(π) is the interval between two well-chosen vertices that
are determined by the profile. Take any profile element xi. Then these two vertices
are, loosely speaking, the vertex in M(π) closest to xi and the vertex in M(π) farthest
away from xi. Clearly, the first vertex is the gate zi in M(π) for xi. The vertex that is
intuitively ‘farthest away’ is the median yi of the vertex-deleted profile π − xi. Another
way of looking at these two vertices is: for the closest vertex we maximize the influence
of xi by taking the median of the vertex-added profile πxi, for the vertex ‘farthest away’
we minimize the influence of xi by taking the median of the vertex-deleted profile π−xi.

Lemma 6 Let G be a median graph, and let π = (x1, x2, . . . , xk) be an even profile on
G. Then, for i = 1, . . . , k, the median zi of the vertex-added profile πxi is the gate for
xi in M(π).

Proof. By Theorem 1, the median set M(π) of π is the intersection of the majority
sides of the splits in G. Since π is even, these sides remain majority sides for the profile
πxi. So M(πxi) ⊆ M(π). For the splits that are balanced with respect to π, adding xi
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to the profile means that the balance is tipped towards the side containing xi. So the
majority sides of the vertex-added profile πxi are the majority sides of the unbalanced
splits for π and the sides containing xi of the balanced splits for π. Since πxi is odd, it
has no balanced splits. As in the statement of the Lemma, we define zi to be the unique
vertex in M(πxi). Take any neighbor v of zi in M(π). Consider the split Gziv, Gvzi

. By
the edge-distinguishing property, Gziv is a majority side for πxi. Both sides contain a
vertex of M(π), so π is balanced on this split. Since xi tips the balance, it follows that
xi lies in Gziv. Hence xi is closer to zi than to v. By the neighbor-gate property, zi is
the gate for xi in the gated set M(π).

Theorem 7 Let G be a median graph, and let π = (x1, x2, . . . , xk) be an even profile on
G. For i = 1, . . . , k, let yi be the median of the vertex-deleted profile π− xi and zi be the
median of the vertex-added profile πxi. Then M(π) = I(yi, zi).

Proof. Since k is even, a majority side of a split for π remains a majority side when
we add or delete a vertex from π. So, by Theorem 1, we have M(πxi) ⊆ M(π) as well
as M(π − xi) ⊆ M(π).

Let G1, G2 be any balanced split for π with, say, xi in G1. Then G1 is a majority
side for the vertex-added profile πxi and so zi is in G1. Moreover G2 is a majority side
for the vertex-deleted profile π − xi and yi is in G2. By Lemma 6, zi is the gate for xi

in M(π), so, trivially, zi lies in M(π). By Theorem 5, yi lies in M(π). Hence, by the
convexity of M(π), we have I(yi, zi) ⊆ M(π).

Take any vertex w outside I(yi, zi). Recall that an interval in a median graph is
convex, hence gated. Let u be the gate for w in I(yi, zi), and let v be a neighbor of u
with d(w, v) = d(w, u) − 1. Then v is not in I(yi, zi). Now w being closer to v than to
u, we have, by definition, that w is in Gvu. Since v is not in (I(yi, zi), both yi and zi

are closer to u than to v, so they are both in Guv. Now zi being in Guv means that Guv

contains at least half of πxi, and yi being in Guv means that Guv contains at least half
of π − xi. Hence Guv must contain a majority of π. So w is not in M(π). Thus we have
shown that M(π) ⊆ I(yi, zi), which completes the proof.

5 Consensus Functions satisfying (A), (B) and (C)

In this section we prove that axioms (A), (B) and (C) suffice for the consensus function
to make it the median function.

Median sets in a median graph always reside at the majority side of a split. Our first
lemma states that in fact this ‘majority’ property holds for any consensus function L on
a median graph G provided it satisfies (A), (B) and (C). We will refer to this as our
‘Majority Lemma’. We use the ‘standard’ notation developed above for the split G1, G2.
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Lemma 8 (Majority Lemma) Let G = (V, E) be a median graph, let G1, G2 be a split
of G, and let π be a profile on G with |π1| > |π2|. If L : V ∗ → 2V − ∅ is a consensus
function satisfying the axioms (A), (B) and (C), then L(π) ⊆ G1.

Proof. Assume to the contrary that there exists a vertex v in L(π) ∩ G2. Let π2 =
(x1, x2, . . . , x`) and let π1 = (x`+1, x`+2, . . . , xk), where 2` < k. Let g2 be the gate for v
in G02. Let g1 be the mate of g2 in G01, so that g1 is the gate for v in G1,

By betweenness, we have v ∈ I(v, g1) = L(v, g1). Thus, our assumption that v lies in
L(π), together with consistency implies that

v ∈ L(v, g1) ∩ · · · ∩ L(v, g1) ∩ L(π) = L((v, g1)(v, g1) . . . (v, g1) π),

where the intersection is taken over ` terms L(v, g1) and the pair (v, g1) occurs ` times
in the right hand side. Since 2` < k and L(v, v, . . . , v) = {v} we obtain

L((v, . . . , v)(v, g1) . . . (v, g1) π) = {v}, (1)

where the v’s are repeated k − 2` times and the pair (v, g1) is repeated ` times.
Since the mate g2 of g1 is the gate for g1 in G2, we have g2 ∈ I(g1, x), for any x ∈ G2.

Hence
{g1, g2} ⊆ ∩`

i=1 I(g1, xi). (2)

An immediate consequence of the mate-gate property is that, for any x ∈ G1, the interval
I(v, x) contains both g1 and g2. Hence

{g1, g2} ⊆ ∩k
i=`+1 I(v, xi). (3)

Now let us reorganize the left-hand side of Equation (1) into the nonempty intersection
of a collection of intervals. Note that by Equation (1) together with anonymity, we have

{v} = L((v, . . . , v)(v, g1) . . . (v, g1) π1π2)

= L((g1, x1)(g1, x2) . . . (g1, x`)(v, x`+1)(v, x`+2) . . . (v, xk))

= [∩k
i=1 I(g1, xi) ] ∩ [∩k

i=`+1 I(v, xi) ].

But this intersection of intervals contains both g1 and g2, by Equations (2) and (3). This
impossibility settles the proof.

An immediate, but surprisingly strong consequence of the Majority Lemma and Theorem
1 is the following.

Corollary 9 Let G = (V, E) be a median graph and let L : V ∗ → 2V −∅ be a consensus
function satisfying the axioms (A), (B) and (C). Then L(π) ⊆ M(π), for any profile π.
In particular, L(π) = M(π), when |π| is odd.
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For the balanced case we need the following lemma. It might be considered as
an extension of the edge-distinguishing property to the consensus function L. In the
terminology of [14] we prove that L is 1

2
-condorcet, see that paper for details.

Lemma 10 Let G be a median graph, and let π be a profile on G. If G1, G2 is a balanced
split for π, then, for any edge u1u2 in F12, either both u1 and u2 are in L(π) or neither
u1 nor u2 is in L(π).

Proof. Let u1u2 be an edge in F12. Note that I(u1, u2) = {u1, u2}. Assume to the con-
trary that u1 ∈ L(π) and u2 /∈ L(π). Let π1 = (x1, x2, ..., xk) and let π2 = (y1, y2, ..., yk).
Let (u1, u2)

k denote the profile (u1, u2) repeated k times. Then, by consistency and be-
tweenness, we have L((u1, u2)

k) = I(u1, u2) = {u1, u2}. Hence, by consistency, we have
u1 ∈ L(π) ∩ L((u1, u2)

k) = L(π(u1, u2)
k). So L(π(u1, u2)

k) = L(π) ∩ {u1, u2} = {u1}.
Recall that u2 is the gate for u1 in G2, and u1 is the gate for u2 in G1. So both u1 and

u2 are in I(u1, yi) as well as in I(u2, xi), for i = 1, . . . , k. By betweenness, consistency
and anonymity, we have

{u1, u2} ⊆ [∩k
i=1I(u1, yk)] ∩ [∩k

i−1I(u2, xi)]

= [∩k
i=1L(u1, yk)] ∩ [∩k

i−1L(u2, xi)]

= L((u1, y1)(u1, y2)...(u1, yk)(u2, x1)(u2, x2)...(u2, xk))

= L(π(u1, u2)
k).

Thus we get a contradiction, which completes the proof.

We are now ready to prove our main result.

Theorem 11 Let L be a consensus function on a median graph G. Then L satisfies
(A), (B) and (C) if and only if L = M .

Proof. Recall that the median function M satisfies (A), (B) and (C) on any connected
graph.

To prove the converse, let G = (V, E) be a median graph and let L : V ∗ → 2V − ∅
be a consensus function on G satisfying the axioms (A), (B) and (C). Assume by way
of contradiction that L is not identical to the median function M . Let π = (x1, . . . , xk)
be a profile on G for which L(π) 6= M(π). By Corollary 9, we have L(π) ⊆ M(π) and π
must be even. Since M(π) is connected, being convex, there is an edge uv in M(π) such
that u is in L(π) and v is not. Consider the split Guv, Gvu. Since both sides contain a
vertex of M(π), this split must be balanced by Theorem 1. Hence Lemma 10 tells us
that either both u and v are in L(π) or neither is in L(π). This contradicts the choice
of uv, which completes the proof.
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6 Concluding Remarks

In [17] the median function on cube-free median graphs has been characterized as the
unique consensus function satisfying the three simple and appealing axioms Anonymity,
Betweenness and Consistency. To prove this, a nice characterization of the median sets of
even profiles was used: such a median set can be written as the intersection of intervals
between profile elements. To characterize the median function on arbitrary median
graphs an extra ‘heavy duty’ axiom Convexity was needed to deal with the case of even
profiles. In [14] the Convexity axiom was replaced by another ‘heavy duty’ axiom: the
1
2
-condorcet axiom. In this paper we have shown that the three basic axioms suffice to

characterize the median function on arbitrary median graphs. Moreover the results in
[17] on median sets of even profiles have been extended in Section 4. Specifically, an
elegant characterization of M(π) for even π = (x1, x2, . . . , xk) is that, for any xi, the
set M(π) is the interval between the median of the vertex-deleted profile π− xi and the
median of the vertex-added profile πxi.

Loosely speaking, a network is a graph in which the edges are assigned a length
(positive real number) and interior points of edges are also allowed as location for the
facility. In [18] the case for cube-free median graphs from [17] was extended to cube-
free median networks. Basically this was done by proving that the important properties
of splits is carried over to the network case. Then the characterization of the median
function defined on profiles of vertices on the network followed easily from the result in
[17]. This can also be done in our case. So on median networks the median function
is characterized by the three basic axioms (A), (B) and (C) as well. The results and
proofs in [18] are straightforward but they need a lot of technical details. Therefore we
omit these and just refer the reader to [18] and leave the proof of the general case as an
exercise.

So far the only location functions that have been characterized axiomatically are
the center function and the `p-functions with p a positive integer, and the antimedian
function, see [19, 27, 17, 35, 11, 18, 15, 16, 5]. The antimedian function has been
characterized on paths only. All the other functions have been characterized on trees
only, except for the median function M = `1. The reason for this exception is that the
median function behaves nicely on median graphs and that a rich structure theory on
median graphs is available.

There are still many intriguing questions. For instance, is there any other class of
graphs on which the median function is characterized by axioms (A), (B) and (C)? Can
the median function be characterized on other classes by adding extra axioms? And of
course one would like to have axiomatic characterizations of the other location functions
on graphs other then trees, or of other consensus functions.
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[25] H.M. Mulder, Median graphs. A structure theory, in H. Kaul and H.M. Mulder, eds,
Advances in interdisciplinary discrete applied mathematcis, Interdisplinary Mathe-
matical Sciences, Vol. 11, World Scientific, Singapore, 2010, pp. 93–125.

[26] H.M. Mulder, B. Novick, An axiomatization of the median procedure on the n-cube,
Discrete App. Math. 159 (2011) 939–944.

[27] H.M. Mulder, K.B. Reid, M.J. Pelsmajer, Axiomization of the center function on
trees, Australasian J. Combin. 41 (2008) 223–226.

[28] H.M. Mulder, A. Schrijver, Median graphs and Helly hypergraphs, Discrete Math.
25 (1979) 41–50.
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