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INTRODUCTION 

Deoxyribonucleic acid (DNA) forms the genetic code, 

v.;hich is unique for each species and in most cases for each 

individual. Together with mainly proteins, the DNA is packed 

in the chromosomes of each cell. The code is determined by 

the sequence of the four bases - thymine, cytosine, adenine 

and guanine - which are bound to the deoxyribose groups of 

the DNA chains (Fig.l) 

·~~, ... ITJ~ 

•-.-©··>"· <@>~ 

Alterations in the genetic 

code, for example by physical 

or chemical induction of· chain 

breaks or base damages, often 

lead to the death of the cell 

or become manifest as changed 

properties, i.e. mutations. 

The occurrence of mutations in 

proliferating somatic cells in 

tissues of higher organisms 

results in the formation of 

groups of deviating cells vJhich 

are often harmful to the orga

nism and may occasionally be 

follovJed by the formation of 

tumors. If a mutation occurs 

in the germ cells this mutat-

Fig.l The double helix structure of DNA. 

The four bases, thymine (T), cytosine 

(C), adenine (A) and guanine (G), are 

bound to deoxyribose-phosphate chains. 

The two complementary strands are held 

together by hydrogen bonds between the 

bases, which always form fixed pairs: 

A--T and G--c. 
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ion can be passed on to the following generations. Since 

most mutations are harmful or even lethal, the induction of 

mutations is dangerous not only for the indi.vidual organism 

but also for the genetic stability and consequently for the 

survival of the species. 

The genetic code is threatened by various external 

agents. Such agents are: 

(a) Ionizing radiation, e.g. cosmic rays, X-rays used for 

example for medical purposes and radiation occurring 

concomittant with the desintegration of radioactive 

isotopes which occur by nature or are produced for re

search purposes on behalf of biochemical laboratories, 

hospitals etc. and which are applied as well as produc

ed in nuclear power plants and in large quantities in 

tests of nuclear weapons. 

(b) Numerous chemical compounds \Ihich have in many cases 

been shown to be mutagenic or carcinogenic or both. The 

threat of these agents, like that of ionizing radiation, 

has increased strongly due to the enormous enlargement 

in recent years of the quantities and the variety of 

chemicals produced and applied for many purposes. 

(c) Ultra-violet (UV) light, occurring in sunlight. 

In the UV-s:r;ectrum (i.e. wavelengths shorter than 380 

nrn; visible light ranges from 380 to 780 nm) only light of 

wavelengths shorter than 310 nm can directly cause damage 

to the DNA, the main photoproducts being pyrimidine dimers 

(1.2;Fig.l-l). Em-,•ever, since all UV-irradiation occurring 

in sunlight of wavelenths shorter than 290 nm is absorbed 

in the atmosphere, due to the pr0sence of ozon at height:s 

between 15 and 35 km, only the narrm·l region between 290 

and 310 nm is of importance for the induction of DNP.. damage. 

It is also this range of vTavelengths that causes the high

est lethality to micro-organisms and in man sunburn and 

skin cancer. ~hesc observations suggest a causal relation

ship between on the one hand DNA damage and on the other 

hand cell death, or in man damage to skin cells and possib

ly skin carcinogenesis. Nevertheless micro--organisms and 
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also cultured mammalian cells do survive low doses of UV 

light and this suggests that cells can repair DNA-damage 

to a certain extent. 

Investigations of UV- and X-irradiated bacteria and of 

mutant bacterial strains, which are much more radiosensi

tive than the wild-type strains, have established that re

pair mechanisms operate in bacteria indeed. The rapid pro

gress made in the past decade in the elucidation of repair 

mechanisms in bacteria has strongly stimulated the study of 

repair processes in mammalian cells. Several lines of in

vestigation have provided evidence for the occurrence of 

DNA repair in mammalian cells. In 1968 it was discovered 

that a defect in a DNA repair mechanism is associated with 

the human inherited disease xeroderma pigmentosum (XP). 

Patients who suffer from this disease are extremely sensi

tive to UV light and develop severe skin lesions (e.g. skin 

tumors) after exposure to sunlight. Investigations of the 

cells cultured from XP patients have demonstrated that DNA 

repair is a biologically significant process in mammalian 

cells too. 

It seems likely that all living organisms are able to 

repair DNA that has been damaged by UV light, ionizing ra

diation, mutagenic and carcinogenic chemical compounds and 

other agents. Besides being of direct importance for the 

individual organism, this repair ability will minimize the 

occurrence of lethal or harmful mutations and chromosome 

aberrations and thereby help to maintain the genetic stabi

lity of the species. On the other hand, from an evolutiona

ry point of view, new mutations should occur to some extent, 

since evolution is only possible if there is a sufficient 

degree of genetic variability to select continuously the 

best adapted properties. Therefore the survival of the 

species presumably depends on a critical equilibrium be

tween the genetic variability and the genetic stability. 

DNA repair mechanisms may play a role in establishing this 

equilibrium by minimizing the mutation frequency but possi

bly also by introducing mutations by making errors during 
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repair. 

This thesis deals with DNA repair mechanisms in normal 

human cells and in the repair deficient cells of XP patients. 

In the first part of this thesis a review and a discussion 

is given of literature data, including our own contribut

ions, on the damage induced by UV light and ionizing irra

diation (chapter 1), DNA repair mechanisms in mammalian 

cells (chapter 2) and investigations of the defect in va

rious forms of XP (chapter 3). In the second part -the 

appendix- 5 papers are presented in which our investigat

ions of the above mentioned subjects are described and dis

cussed in more detail. 

12 



CHAPTER I 

RADIATION DAMAGE IN LIVING CELLS 

1.1 INTRODUCTION 

DNA is the most extensively studied target for the in

duction of radiation damage in micro-organisms as well as 

higher organisms. Much less knowledge is available about 

radiation damage to proteins and membranes and the contri

bution of such damage to cell death. Some evidence exists 

that damage to structural proteins, involved in the mainte

nance of the chromosome structure, may contribute signifi

cantly to the appearance of chromosome aberrations and con

sequently to cell death (Zirkle and Uretz, 1963; Chu, 1965). 

On the other hand Griggs and Bender (1973) have observed 

that UV-induced chromosome aberrations can be prevented by 

photoreactivation (see chapter 2.2) and concluded that DNA 

lesions are the major cause of UV-induced chromosome aber

rations. Without any doubt damage to the DNA structure is 

an important, if not the most important, cause of radiat

ion-induced mutations and cells death. 

1.2 DNA DAMAGE INDUCED BY ULTRA-VIOLET LIGHT 

In 1960 Beukers and Berends discovered that UV irra

diation of a solution of thymine caused the formation of 

photoproducts with a thymine dimer structure. Subsequently, 

it was shown that UV light induces also in DNA one of the 

possible stereoisomers, the cis-syn pyrimidine dimers 

(dithymine, dicytosine and thymine-cytosine) (Fig. 1-1). 

The efficiency of pyrimidine dimer formation in bacteria 

and cultured mammalian cells is of the same order: 1 - 5 

pyrimidine dimers per DNA molecule of 10 9 dalton at a UV 

dose of 1 erg/mm2 (micro-organisms: Howard-Flanders, 1968; 

mammalian cells: Setlow et al., 1969; Kleijer et al.,1973a: 
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Fig.l-1. Formation of a oia-ayn cyclobutane thymine dimer by ultra-violet 

irradiation. Two adjacent thymine bases in the DNA strand are linked by 

bonds between their respective C-5 and C-6 atoms. 

paper II). 

In experiments with UV-inactivated transforming bacte

rial DNA it has been shown that pyrimidine dimers are the 

main DNA-inactivating lesions. The inactivation could be 

significantly reduced by specifically splitting the dimers 

by' either irradiation with UV light of a shorter wavelength 

(the monomer~ dimer equilibrium is shifted then to the 

monomer side) or by treatment of the DNA with photoreacti

vating enzyme and visible light (photoreactivation; see 2. 2) 

(Setlow, 1966). The replication of bacterial DNA in ;Jitro 

(Bollum and Setlow, 1963) and in :;i~'O (Rupp and Howard

Flanders, 1968) is inhibited by the presence of pyrimidine 

dimers in the DNA. Also in mammalian cells the DNA synthe

sis is inhibited by UV irradiation, but it has not been es

tablished whether dimers are the only, or even the most im

portant cause of this effect (Painter, 1970a). It is assum

ed that the replication of DNA is delayed but not complet~ 

ly blocked by the dimers. 

Other DNA damages induced by UV irradiation are: pyrimi

dine hydrates (Miller and Cerutti, 1968); pyrimidine ad

ducts (Varghese and Day, 1970; Hauswirth and wang, 1973); 

single-strand breaks (Marmur et al., 1961; Kleijer et al., 
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1973a: paper II) and cross-links between DNA-strands (Marm~ 

and Grossman, 1961) or DNA and the surrounding protein mole

cules (Smith, 1962). Although these types of damage are 

less important than pyrimidine dimers in micro-organisms, 

to our knowledge there is no information available about 

their importance in mammalian cells. 

1.3 DNA DAMAGE INDUCED BY IONIZING IRRADIATION 

Ionizing radiation causes ionizations and the formation 

of reactive radicals in the DNA, either directly or indi

rectly by radical formation in the neighbourhood of the DNA. 

The most important result of these reactions is the format

ion of single- and double-strand breaks in the deoxyribose 

phosphate chains. Although double-strand breaks occur at a 

much lower frequency than single-strand breaks, (Freifelder, 

1966; v.d. Schans and Blok, 1970) the former are of greater 

importance for the inactivation of bacteriophages, bacteria 

and possibly also mammalian cells because it is much more 

difficult or perhaps not possible at all to repair double

strand breaks (Painter, 1970b and 2.5). 

Ionizing radiation can also induce damage to the pyri

midine and purine bases without the consequence of chain 

breaks (Setlow and Carrier, 1973). Only few data are avail

able on the relative contribution of the different types of 

DNA damage to the inactivation of micro-organisms, whereas 

for higher organisms such data are completely lacking. 
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CHAPTER 2 

DNA REPAIR MECHANISMS 

2. l INTRODUCTION 

In bacteria several mechanisms involved in DNA repair 

have been found and are known as: photoreactivation, excis

ion repair, post-replication repair and rejoining of sing~ 

strand breaks. These bacterial mechanisms have served as 

models for repair processes in mammalian cells. For that 

reason some attention will be paid in this chapter to the 

findings in bacteria. 

The isolation of a large number of radiosensitive bac

terial mutants and the genetic and biochemical analysis of 

these mutants have contributed strongly to the elucidation 

of repair mechanisms and their significance to the survival 

of irradiated bacteria. A similar approach for mammalian 

cells has been hampered by difficulties in the selection 

of radiosensitive or resistant mutants. The few cases of 

radiosensitive cell lines reported sofar were isolated 

from heteroploid mouse (Alexander and Mikulski, 1961), 

Chinese hamster (Cleaver, 1969a; Humphrey et al., 1970)and 

human cell lines (Randtke et al., 1972; Isomura et al. ,1973). 

It has not been established whether the radiosensitivity in 

these cell lines is due to point mutations or to chromosome 

rearrangements or changes in the chromosome number. This 

disadvantage is partially compensated by the natural occur

rence of UV-sensitive mutants in the human hereditary dis

ease xeroderma pigmentosurn (XP). The UV-sensitivity in this 

disease appeared to be associated with a defect in a DNA 

repair mechanism, i.e. excision repair. The study of repair 

mechanisms in mammalian cells, discussed in this chapter, 

has been stimulated strongly by the investigations on XP, 

which will be discussed separately in chapter 3. 

Very recently it has been reported that another human 
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disease -the Hutchinson-Gilford progeria syndrome- is asso

ciated with a defect in the rejoining of X-ray induced sin~ 

le-strand DNA breaks (see 2.5). 

2.2 PHOTOREACTIVATION 

Photoreactivation is an enzymatic process in which spe

cifically pyrimidine dimers are monomerized under the in

fluence of light in the range of 310 - 500 nm as an energy 

source. The DNA is thus repaired in a simple and efficient 

way without the necessity of DNA chain breakage and repla~ 

ment of damaged bases. Photoreactivation has been observed 

in: bacteria, protozoa, some higher plants, vertebrates 

such as: fish, amphibia, reptilia, birds and in the lower 

order of mammals: the marsupials (e.g. rat kangaroo) but 

not in placental mammals (Cook, 1970). 

Since photoreactivation acts specifically on pyrimidine 

dimers it is a valuable tool to study the involvement of 

pyrimidine dimers (relative to other UV-induced lesions) in 

the cause of cell death (Regan and cook, 1967) and chromo

some aberrations (Griggs and Bender, 1973) or to prove that 

dimers are the substrate for other repair processes (e.g. 

repair replication, Krishnan and Painter, 1973; or UV endo

nuclease, Bacchetti et al., 1972; Paterson et al., 1973). 

2.3 EXCISION REPAIR 

(a) The mechanism in bacteria as a model for higher 

organisms 

In contrast to photoreactivation, excision repair occ'.lrs 

in the dark; the less accurate term dark-repair has there

fore been used for this process. Setlow and Carrier (1964) 

and Boyce and Howard-Flanders (1964) found that UV-induced 

thymine dimers were excised from the DNA of wild type 

Escherichia coli cells but not from the DNA of certain UV

sensitive mutants. Pettijohn and Hanawalt (1964) showed 

that after UV irradiation .of E. coli small patches of DNA 
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Fig.2-l.Scheme showing the steps 

and the enzymes involved in the 

excision repair mechanism for 

bacteria and higher organisms. 

The lesion shown is a thymine di

mer; other base damages and sing

le-strand breaks might be repair

ed by the same mechanism except 

that for the repair of single

strand breaks the first step (in

cision) can be omitted. 

were synthesized and inserted dispersively in the pre-exis

ting DNA-strands. From these and other observations a me

chanism was proposed (Fig. 2-1) that repairs UV damaged DNA 

in four steps by the combined action of:an endonuclease, 

which incises the DNA strand adjacent to a pyrimidine dimer; 

an exonuclease, which excises the dimer; a DNA polymerase, 

which inserts complementary nucleotides using the opposite 

strand as a template; and a polynucleotide ligase, which cill

ses the DNA strand (Setlowt 1967). Enzymes for each step 

have been isolated from bacteria and characterized 

(Grossman, 1973), whereas Heijneker et al. (1971) have de

monstrated that the biological activity of uV-irradiated 
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Bacillus subtilis DNA can be restored by the combined act

ion of purified preparations of UV-endonuclease (i.e. an 

endonuclease that acts specifically on UV-damaged DNA) ,DNA

polymerase (which has an exonuclease function as well) and 

a DNA-ligase. 
Evidence that mammalian cells can repair their DNA by 

a similar excision repair mechanism (see Fig.2-1) has come 

from the demonstration of unscheduled DNA synthesis, repair 

replication and the removal of pyrimidine dimers. 

(b) DNA repair synthesis 

Unscheduled DNA synthesis and repair replication, first 

demonstrated in human (HeLa) cells by Rasmussen and Painter 

(1964, 1966), are assayed in quite different ways, but both 

phenomena reflect the same fundamental process (Painter and 

l 6 ) h f 
3 'd' h b C eaver, 19 9 . T e incorporation o H-thyml 1ne, s own y 

autoradiography, in UV-irradiated cells which are not in s

phase, has been called unscheduled DNA synthesis (Djordjevic 

and Tolmach, 1967) because under normal conditions non-S

phase cells do not incorporate any 3H-thymidine. Repair re

plication on the other hand is the synthesis and integrat

ion of short single-strand regions in the pre-existing DNA, 

measured nfter centrifugation of the DNA in density gra-

dients. Semiconservatively synthesized DNA is separated 

from repaired DNA on the basis of the higher density it ac

quires because of the extensive incorporation of bromodeox

yuridine (BUdR given before and after irradiation. The pro

cedure for this assay, developed by :?et.tijohn and Hanawalt 

(1964), is illustrated in Fig. 2-2, whereas a modified tech

nique is described in paper III of the appendix (Lohman et 

al., 1973). 

The necessity to separate semiconservatively synthesiz

ed DNA and repaired DNA can be avoided by using lymphocytes 

and an inhibitor (e.g. hydroxyurea) to suppress the semi

conservative replication in the low fraction of cells in S

phase (about 1%) to a negligible level. It is possible then 

to determine repair synthe.sis by direct measurement of UV-
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Fig.2-2. Protocol of the repair replication assay. Repair replication and 

serniconservative replication are measured by the incorporation of radioac

tive bromodeoxyuridine (3H-BUdR). Both forms of DNA synthesis are distin

guished by the different densities which repaired parental DNA and newly 

synthesized DNA acquire as a result of the different extents of BUdR in

corporation(•). Fluorodeoxyuridine promotes the BUdR incorporation by pre

venting the de novo synthesis of thymidine phosphates. Hydroxyurea minimi

zes semiconservative replication. 
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stimulated 3H-thymidine incorporation into the DNA (Evans 

and Norman, 1968; Burket al., 1971). The use of this simp

le and rapid method for cultured fibroblasts would require 

almost perfect measures to prevent S-phase DNA replication, 

which are not yet available. 

A fourth method to determine DNA repair synthesis, in

troduced by Regan et al. (1971a, b) utilizes the photolysis 

of BUdR. In this method repaired regions in the DNA, which 

have incorporated BUdR, are selectively broken by 313 nm 

radiation. The molecular weight of the resulting DNA mole

cules can be determined by alkaline sucrose gradient cen

trifugation and give a measure for the number of repaired 

regions. 

After the first demonstration by Rasmussen and Painter 

(1964, 1966) the occurrence of DNA repair synthesis in mam

malian cells has been confirmed in many reports. The amounts 

of repair synthesis performed in human cells are larger 

than in bovine cells (Cleaver et al., 1972) and in some 

Chinese hamster and mouse cell lines (Painter and Cleaver, 

1969; Cleaver, 1973a). These variations are probably due to 

differences in the number of repaired regions rather than 

differences in the size of the patches inserted into the 

DNA (Setlow et al., 1972). 

It has been estimated by several methods that the size 

of the patches i.nserted by excision repair in human cells 

is of the order of 30- 100 nucleotides (Regan et al.,1971G 

Edenberg and Hanawalt, 1972; Cleaver, 1973a). The synthesis 

of patches of this length requires the insertion of purines 

as well as pyrimidines. Failures to demonstrate repair syn

thesis by using 3H-deoxyadenosine as a precursor (Smets, 

1969; Lieberman et al., 1971), were probably caused by the 

conversion of this precursor to adenine and the predominant 

use of adenine for biochemical pathways other than DNA re

pair synthesis (e.g. RNA synthesis). Recently Cleaver 

(1973b) showed that purines (e.g. hypoxanthine, adenine) 

are used for repair synthesis. 

After UV-irradiation t.he repair process probably starts 
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immediately, as is suggested by the time courses of repair 

synthesis which shows no time lag (Cleaver et al., 1972; 

Kleijer et al., 1973b: paper V) and can be measured after 

short incubation periods (15-30 min), (Kleijer, De Weerd

Kastelein, unpublished results). Gautschi et al. (1973) and 

Gianelli et al. (1973) hnve shown normal repair synthesis 

activities under conditions in which protein synthesis was 

inhibited. It seems likely therefore that the repair enzym

es are continuously present in the cell and have long life 

times. 

The rate of repair replication is dose dependent up to 

a UV-dose of 100-200 erg/mm2 in human cells (Cleaver et al., 

1972; Lohman et al., 1973: paper III; Kleijer et al., 1973b: 

paper V) ; at higher 

saturated. Although 

doses the repair system seems to be 
2 after doses up to 100 erg/mm most of 

the repair synthesis occurs during the first few hours (2-

4h) (Cleaver, 1973a) this is not true for higher doses; 

after 200 and 500 erg;mm2 repair synthesis continues at an 

almost constant rate for 8 and more than 16 h respectively 

(Kleijer et al., 1973b: paper V). 

(a) Excision of photoproduats 

The second phenomenon which reflects the operation of 

an excision repair mechanism is the excision of pyrimidine 

dimers from the DNA of UV-irradiated human cells. Using 

chromatographic procedures to measure the dimer content of 
2 

the DNA,it was found that after UV-doses of 100-200 erg/mm 

about 50% of the induced dimers are removed within 24 h 

(Regan et al., 1968; Setlow et al., 1969; Cleaver and 

Trosko, 1970; Isornura et al., 1973; Kleijer et al., 1973b: 

paper V). Although the data are scarce, the time courses of 

excision suggest a similarity with those obtained for re

pair synthesis, which is consistent with the hypothesis 

that both phenomena are manifestations of steps in the same 

repair process (Cleaver et al., 1972; Kleijer et al.,1973b: 

paper V) . 

Two other methods have recently been developed with 
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which the presence of pyrimidine dimers in mammalian cell 

DNA and their excision has been demonstrated. The first is 

an immunological technique in which specific antibodies are 

used against dimers in UV-irradiated DNA (Seaman et al., 

1972; Lucas, 1972). The second technique makes use of a 

purified bacterial UV-endonuclease Micrococcus luteus which 

produces breaks specifically at dimer sites in the DNA iso

lated from the mammalian cells (Paterson et al., 1973). 

With both techniques it was observed that the susceptibili

ty of human cell DNA to the binding of antibodies or to the 

action of bncterial UV-endonuclease, decreased during post

irradiation incubation. The technique using bacterial UV

endonuclease and possibly also the immunological technique 

seem promising in giving more accurate results than the 

chromatographic method. 

Although these studies have clearly demonstrated the 

occurrence of excision in human and in bovine cells there 

are two problems to be taken into consideration: the first 

being the high fraction of the dimers which remains in the 

DNA at a time when repair replication no longer occurs and 

the second being the fact that excision of dimers was not 

observed in mouse and Chinese hamster cells (Klimek, 1965; 

Trosko and Kasschau, 1967) although the UV-sensitivity of 

these cells is not significantly different from that in 

human and bovin~ cells. It has been suggested that dimers 

can be excised as oligonucleotides which would coprecipi

tate with the high molecular weight DNA in the usual chro

matographic technique. However a similar remaining dimer 

fraction was found by Paterson et al. (1973) who used a 

UV-endonuclease from Micrococcus luteus to detect the di

mers. The results obtained with this technique indicate 

that the remaining dimers are in the DNA and not in oligo

nucleotides. The imcompleteness of dimer excision can also 

not be attributed to an early inactivation of the repair 

system, or even of the whole cell, by the uV-doses 

applied {100-200 erg/rnrn2 ), since it has been shown 

even at higher doses (e.g .. 500 erg/mm2 ) the repair 
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(i.e. repair replication) can continue for longer times 

(Kleijer et al., 1973b: paper V). Therefore it is suggested 

that part of the dimer sites is less accessible to the ex

cision repair system. The cells might bypass the remaining 

dimers by the post-replication repair process described in 

section 2.4. Excision repair in rodent cells occurs at a 

slower rate than in human cells as is also shown by the re

pair replication levels, which are in most rodent cell lines 

significantly lower but not absent. Because of the relative 

insensitivity of the method a slow excision rate could not 

be excluded and recently Setlow et al. (1972) have reported 

a slight rate of excision of dimers in Chinese hamster and 

mouse cells after low UV-doses. The relative contributions 

of excision repair and post-replication repair to the sur

vival of cells of various organisms is still obscure and 

has to be established in future experimental work. 

(d) Incision and rejoining 

The excision repair process involves the formation of 

incisions in the DNA molecules -preceding repair synthesis 

and excision- and the rejoining of the interrupted single 

strands afterwards (Fig. 2-1). Experiments have been carried 

out to demonstrate these steps directly by the detection of 

breaks in the DNA using sedimentation analysis in alkaline 

sucrose gradients. Before centrifugation whole cells are 

lysed and the DNA is extracted in a layer on top of the gra

dient in order to minimize shearing of the DNA (Me Grath 

and Williams, 1966). The lysis layer consists of NaOH (pH:> 

12), usually EDTA and NaCl and occasionally a detergent or 

sucrose. A quantitative determination of molecular weights 

from the sedimentation profiles requires freely sedimenting 

single-stranded DNA molecules of a size which may probably 

not exceed 2.10 8 - S.1o 8 daltons (120 - 180 S particles). 

The release of such molecules from the original fast-sedi

menting complex material takes relatively long lysis periods 

in alkali ( 1- 20 hours, depending on the temperature) but 

is strongly accelerated by the use of detergents in the 
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lysis layer or by prior irradiation with lm·l doses of X

rays or uv light. More details about the alkaline sucrose 

gradient method, including the problems associated with the 

interpretation of the release of freely sedirnenting single
stranded DNA from a complex DNA structure will be discussed 

in section 2.5. 

Setlow et al. (1969) first described the demonstration 

of DNA breaks as a result of incision in UV-irradiated hu

man cells. However the variable sedimentation profiles pre

sented in their paper do probably not justify a definite 

conclusion. Experiments of Ben-Hur and Ben-Ishai (1971) 

have suggested that during post-irradiation incubation of 

HeLa cells breaks appear and subsequently disappear again. 

The profiles in some of their gradients showed fast-sedi

menting DNA and did not enable the determination of the 

number of breaks. However the low molecular weight (M = 

0.32 x 10 8D) observed 1.5 h after UV-irradiation (250nerg/ 
2 

mm) suggested a relatively large number of breaks. In con-

trast Kleijer et al. ( 1971, 1973a: paper II), using a deter

gent for lysis, found no change in the molecular weight 

(M = 10 8n) of DNA from human cells after UV-doses of 100 -
n 2 

500 erg/rnm and various incubation intervals. Taking into 

account the sensitivity limitation of the technique, this 

indicated that the number of UV-induced breaks, if present, 

did not exceed 0.2 breaks/10 8 ~. Cleaver et al. (1972) found 

in bovine cells a UV-induced acceleration of the degradat

ion of complex DNA comparable to earlier observations after 

low X-ray doses (see section 2.5). After lysis times long 

enough to obtain relatively stable DNA, Cleaver et al. ob

served a UV-induced shift of the sedimentation profile cor-

responding to 
8 

4 X 10 to 2 X 

a change of the molecular weight (H ) of 
8 " 8 10 D, or to the induction of 0.25 breaks/10 U 

This number of breaks was present immediately after irradiat

ion even when the cells were kept at 0°C and, in contrast 

to the results of Ben-Hur and Ben-Ishai (1971) with H~La, 

cells, no further degradation occurred during post-irradiat

ion incubation at 37°C. Therefore it might be questioned 
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whether the accelerated degradation of complex DNA and the 

presence of breaks were caused by an enzymatic incision pro

cess. A direct effect of UV-irradiation, resulting in the 

formation of breaks or alkali-labile lesions (Kleijer et al. 

1973a: paper II) might also account for an accelerated de

gradation of complex DNA, although it is probably too small 

to cause a number of breaks as estimated by Cleaver et al. 

(1972). This type of investigations has rece!1tly bAen ex

tended to normal human and xeroderma pigmentosum fibroblasts 

(Cleaver, 1973c). For the conversion of double-stranded DNA 

from unirradiated human cells a lysis period of at least 1h 

appeared necessary, whereas this process required only 5 -

10 min., or less, if normal human cells were irradiated 

with UV-doses of 13 erg/mm2 and higher immediately before 

lysis and centrifugation. In contrast such a rapid convers

ion during brief lysis periods was not observed for DNA 

from UV-exposed xeroderma cells. The latter observations, 

which will be discussed further in chapter 3, are in agree

ment with the hypothesis that xeroderma cells are unable to 

make incisions in the DNA at pyrimidine dimer sites. More

over these observations support Cleaver 1 s interpretation 

that the accelerated release of single-stranded DNA from 

complex DNA after UV-irradiation is caused by single-strand 

breaks occurring during excision repair rather than by di

rect physical induction of breaks or alkali-labile bonds in 

the DNA. 

It can be concluded from the reported data, discussed 

above, that soon after irradiation a steady state between 

incision and rejoining is established with a relatively 

small number of breaks present. In this concept the appli

cation of specific inhibitors of one or more of the later 

steps in the repair mechanism would lead to an accumulation 

of breaks. Therefore experiments have been performed to in

crease the number of breaks by blocking their rejoining by 

the use of compounds which were shown to inhibit the rejoin

ing of X-ray induced breaks (Kleijer et al., 1971, 1973a: 

paper II). However the inhibitors of the rejoining process 
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used in these experiments (e.g. potassium cyanide, dinitro

phenol, ethylenediaminotetracetate, iodoacetate and crystal 

violet) could not effect an accumulation of breaks after 

UV-irradiation. Similar results were obtained when some in

hibitors of semiconservative DNA replication were tested, 

e.g. hydroxyurea, fluorodeoxyuridinc, and dideoxythymidine 

(Kleijer and Bootsma, 1971). In contrast Ben-Hur and Ben

Ishai (1971) found an inhibiting effect of hydroxyurea on 

the return of the DNA to fast sedimenting, complex DNA if 

this compound was present during incubation after UV-irra

diation. These results of Ben-Hur and Ben-Ishai were not 

confirmed in comparable experiments with bovine cells by 

Cleaver et al. (1972). Thus it seems to be impossible to 

accumulate breaks by changing the steady state equilibrium 

between incision and rejoining. Although it cannot be ruled 

out that the inhibitors used are not adequate for this pur

pose, there might be a more fundamental reason for the ab

sence of break accumulation; this will be discussed in the 

next section. 

(e) The excision repair mechanism and its biological signi

ficance 

The investigations with living cells, discussed above, 

support the repair model consisting of the four steps shown 

in Fig. 2-1: incision, excision, repair replication and 

strand rejoining. The enzymes involved in this mechanism 

have not yet been characterized. A uv-specific endonuclease 

activity (Bacchetti et al., 1972; Brent, 1972), exonuclea

ses (Lindahl, 1971), DNA-polymerases (Weissbach et al., 

1971)and a polynucleotide ligase (Lindahl and Edelman,1968; 

Spadari et al., 1971) have been isolated from mammalian 

cells but it has not yet been established whether they play 

a role in DNA repair. 

Although the steps in excision repair are known, at 

least two questions about the mechanism remain: First, what 

is the order of excision and repair replication? There is 

at present no evidence available to choose between a "cut 
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and patch mechanism 11 (excision followed by repair replicat

ion) and a "patch and cut mechanism" (repair replication 

followed by excision). Secondly, do the repair enzymes ope

rate independently or does the repair of each lesion take 

place by a concerted action of the enzymes such as has been 

proposed for bacteria by Hanawalt and Haynes (1967)? Our 

observation in mammalian cells that incision breaks were 

not accumulated under conditions which exclude the rejoin

ing might indicate a concerted mechanism. It was postulated 

{Kleijer et al. 1971, 1973a: paper II) that repair enzyme 

complexes systematically scan the DNA strands and repair 

the DNA at each lesion before moving further along the DNA 

to the next lesion. Such a mechanism would restrict the 

number of breaks at any time to at most the number of en

zyme complexes involved in the repair process even under 

conditions where repair replication and rejoining are inhi

bited. Similarly Cleaver et al. (1972) suggested that the 

repair might occur by enzyme complexes because of the close 

corr~lation of the time courses of various repair phenomena 

in bovine cells. ~aking into consideration the complexity 

of the chromosome structure in mammalian cells, a systema

tic scanning of the DNA and a co-ordinated repair of les

ions by enzyme complexes seems an attractive model to gua

rantee an efficient repair process. Moreover the accumulat

ion of dangerous intermediate phases during repair, such as 

breaks or gaps, will be avoided. 

The biological significance of the excision repair pro

cess became clear after the discovery that excision repair 

is deficient in the disease xeroderma pigmentosum (XP) 

(Cleaver, 1968). This repair deficiency appeared to be as

sociated with an increased UV-sensitivity of XP cells and 

a reduced ability to reactivate UV-inactivated viruses, in

dicating that excision repair is a functional process in 

human cells (3.1). 
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2.4 POST-REPLICATION REPAIR 

A third repair mechanism, called recombination- or post

replication repair, was first demonstrated in 1968 by Rupp 

and Howard-Flanders in an Escherichia coli mutant v1hi ch was 

unable to excise thymine dirners but could nevertheless sur

vive low UV-doses. These authors as well as others observed 

that during DNA replication in UV-irradiated E. coli cells, 

gaps (of 10 3 nucleotides long; Iyer and Rupp, 1971) were 

left in the newly synthesized strands opposite to dimers in 

the parental strands. These gaps were filled in upon con

tinued incubation by a process involving recombination with 

parental strands (Rupp et al., 1971) but probably also by 

some exogenous base insertion. (Ley and Setlow, 1972). 

For mammalian cells similar observations, i.e. synthe

sis of relatively short segments of DNA during semiconser

vative replication after UV-irradiation and subsequent gap

filling have been described (Cleaver and Thomas, 1969; Meyn 

and Humphrey, 1971; Lehmann, 1972a, bi Fujiwara, 1972 and 

Buhl et al., 1972a, b). The gap size was estimated to be, 

like in bacteria,about 1000 nucleotides (Lehmann, l972a; 

Buhl et al., 1972a). 

Despite the similarities between the observations in 

bacteria and in mammalian cells the processes involved may 

differ in at least one important respect. Recornbinational 

events, involving exchanges of parental DNA-regions, such 

as found in E. coli, have not been observed in mammalian 

cells. The gaps appeared to be filled in completely(Lehmann, 

1972a) or at least partially (Buhl et al., 1972a) by -de 

novo DNA syn~hesis. 

The biological function of the gap-filling process is 

still obscure. The inhibitory action of caffeine on the re

covery of UV7irradiated cells, especially during S-phase 

(Damon and Rauth, 1969) and its inhibitory effect on gap

filling (Cleaver and Thomas, 1969; Lehmann, 1972c) may be 

correlated and considered as an indirect indication for a 

functional role of this mechanism. Mutant cells, which can-
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not perform post-replication repair, have as yet not been 

found. Nevertheless it is tempting to speculate that post

replication repair is an important mechanism that can ope

rate in concert with excision repair. Since excision repair 

requires an undamaged complementary strand, any gap left in 

the newly synthesized strand opposite a dimer site, would 

make this site irreparable. Apparently the function of post

replication repair is to overcome the gaps in the newly syn

thesized DNA and to keep the dimer sites in the old strands 

susceptible to excision repair. 

2.5 REPAIR OF DAMAGE INDUCED BY IONIZING RADIATION 

The induction and rejoining of single-strand breaks in 

cellular DNA has been studied mainly with the alkaline su

crose gradient technique devised by HcGrath and Williams 

(1966). This technique is based on the gentle lysis of 

cells in an alkaline layer on top of the gradient to obtain 

single-stranded DNA with a minimal number of breaks intro

duced during isolation (see also 2.3.d). The molecular 

weights of the DNA molecules can be derived from the deter

mination of sedimentation coefficients (Svedberg and 

Pederson, 1940; Burgi and Hershey, 1963) and the use of the 

relation of Studier (1965) between the sedimentation coeffi

cient (S) and the molecular weight (M) in the sucrose gra

dients: 

S ~ 0.0528 M0 · 40 

After the determination of the average molecular weights 

of unirradiated (M ) and irradiated DNA (M ) , the number of o r 
induced breaks (P) is calculated from the equation: 

p ~ 

M 
r 

- l 

(Lohman, 1968,1969; v.d. Schans, 1969; Ehmann and Lett,1973) 

Me Grath and Williams (1966) demonstrated that the mole

cular weight of the DNA in bacteria was lower immediately 

after X-irradiation but increased during incubation. They 
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attributed these effects to the induction and subsequent 

rejoining of breaks. Similar observations have since been 

made for mammalian cells, although some modifications of 

the lysis procedure were necessary to obtain reproducible 

sedimentation profiles from unirradiated cells. The induct

ion of single-strand breaks after doses of 5 - 30 krad, and 

the rejoining of breaks, was shovm in mouse cells (Lett et 

al., 1967), Chinese hamster cells (Humphrey et al., 1968), 

human cells (Lohman, 1968) and has later been confirmed in 

many other reports. 

Most of the breaks are rejoined very rapidly during 

post-irradiation incubation at 37° (e.g. within 30 min. 

after 20 krad, Kleijer et al., 1970, :paper I) but the 

process is inhibited strongly at lower temperatures sug

gesting the enzymatic nature of the process (Kleijer et al., 

1971, 1973a: paper II; Ormerod and Stevens, 1971; Donlon 

and Norman, 1971). The rejoining can also be inhibited 

by several chemical compounds, such as potassium cyanide, 

ethylenediaminotetracetate, iodoacetate, crystal violet 

(Kleijer et al., 1971, 1973a: paper II), and dinitrophenol 

(Ormerod and Stevens, 1971; Moss et al., 1971; Kleijer et 

al., 1971, 1973a: paper II). 

The biological relevance of strand rejoining has re

mained questionable because of the supralethal x-ray doses 

(5 - 30 krad) . At lower doses (1 - 5 krad) the lower limit 

of detection of breaks is reached. A higher sensitivity 

would be achieved 

higher than 2 - 5 

if molecular weights could be measured 
8 x 10 daltons, which is the range of 

values usually found when lysis procedures are used which 

give rise to stable single-stranded DNA molecules. In the 

last few years modified conditions of lysis, gradient com

position and centrifugation have been described with which 

much higher sedimentation coefficients were measured (Lett 

et al., 1970; Elkind and Kamper, 1970; Horoson and Furlan, 

1970; Me Burney et al., 1971, 1972; Elkind, 1971; Me Burney 

and Whitmore, 1972). Using such methods several groups have 

observed significant changes in the sedimentation profiles 
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after low doses of X-rays (100 - 1500 krad) (Lett and Sun, 

1970; Moroson and Furlan, 1970). After post-irradiation in

cubation of the cells, the profiles returned to the origin

al position (Elkind and Kamper, 1970; Elkind and Chang-Liu, 

1972; Me Burney et al., 1972). However it is difficult to 

interprete unequivocally the varying sedimentation profiles 

obtained by the different groups. In some reports bimodal 

sedimentation patterns were shown, suggesting the gradual 

release of slower sedimenting DNA molecules at the expense 

of fast sedimenting material {Elkind and Kamper, 1970; Lett 

et al., 1970; Elkind and Chang-Liu, 1972). Other reports 

showed shifts of very narrow DNA bands occurring after ir

radiation (Me Burney et al., 1972). Such observations are 

not consistent with the profiles which would be expected 

after random fragmentation of freely sedimenting single

stranded DNA molecules. The changes in the profiles at 

these high sedimentation coefficients {:>200S) observed 

after X-irradiation rather seem to reflect the release of 

single-strands from a complex DNA structure or changes in 

the conformation of a DNA complex (Elkind and Kamper, 1970; 

Lett et al., 1970; Me Burney et al., 1972). 

Several suggestions about the possible composition of 

the fast sedimenting, probably complex, material have been 

put forward: association of proteins and lipids to DNA 

(Elkind and Chang-Liu, 1972); binding of DNA to membranes 

(Ormerod and Lehmann, 1971a, b); composition of long DNA 

strands of subunits linked by labile components (Lett et 

al., 1970); and incomplete denaturation of double-stranded 

DNA (Me Burney et al., 1972). 

Elkind and Kamper (1970) suggested that there might be 

two types of damage and also two distinct repair processes: 

first the induction and the rejoining of strand breaks at 

high doses and secondly the resolution and subsequent re

association of a functional DNA/lipid/protein complex at 

lower doses. However it seems possible that the accelerabrl 

resolution of the complex results exclusively from strand 

breakage and that therefore the two repair processes are 
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not fundamentally different. 

DNA repair synthesis has been observed as a second re

pair phenomenon after ionizing irradiation in addition to 

strand rejoining. Unscheduled DNA synthesis and repair re

plication (see 2.3.b) have been demonstrated in cells of 

various origins after supralethal doses of 5 - 30 krad by 

Rasmussen and Painter (1966), Painter and Cleaver (1967), 

Spiegler and Norman (1969), Kleijer et al. (1970: paper I), 

Schaeffer and Nerz (1971) and Painter and Young (1972). 

The detection of repair synthesis is difficult to achieve 

at lower doses (500 - 5000 rad) but seems possible in lym

phocytes (Spiegler and Norman, 1970) or in synchronous G1 -

phase cells (Brent and Wheatley, 1971) where repair synthe

sis is not masked by semiconservative DNA replication. 

Spiegler and Norman (1970) and Painter and Young (1972) 

have estimated that an average of 1 - 3 nucleotides is in

serted per DNA lesion. Apparently much less nucleotides are 

inserted per X-ray lesion than per UV-lesion ( 30 - 100 nu

cleotides: see 2.3.b) but it remains to be established 

whether this difference is determined by the probably larger 

DNA distortion at a pyrimidine dimer site or by the involve

ment of different enzyme systems in the repair of X-ray and 

UV-lesions. 

Owing to the high,supralethal doses required to demon

strate strand rejoining and repair synthesis, their contri

bution to the s"urvival of the cell is still obscure. Double

strand DNA breaks might contribute much more to the killing 

effect of ionizing radiation, although they occur in a much 

lower frequency than single-strand breaks (see 1.3). Very 

little information is available on the repair of double

strand breaks. Sedimentation experiments, using neutral su

crose gradients, have sofar not indicated the repair of 

double-strand breaks (Veatch and Okada, 1969; Lehmann and 

Omerod, 1970), but because of the high X-ray doses (;>20 

krad) used, these experiments did not rule out the possibili

ty that double strand breaks can be rejoined at lower doses. 

Some of the questions concerning the mechanism of the 
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repair of ionizing radiation damage and the significance to 

cell survival might be answered if mammalian mutant cells 

were available. Very recently such a mutant has probably 

been found in a human genetic disorder, the Hutchinson

Gilford progeria syndrome which is characterized by precoc

ious aging of the patients. Epstein et al. (1973) observed 

that cultured skin fibroblasts of a progeria patient failed 

to show normal DNA strand rejoining after exposure to y-ir

radiation. It was shown earlier that progeria cells perform 

a normal amount of repair synthesis after UV-irradiation 

(Cleaver, 1970b). Further investigations are necessary to 

demonstrate the general occurrence of an association be

tween the DNA repair deficiency and precocious aging in the 

progeria syndrome. If so, then this discovery will undou~

ly be of great value for future studies on DNA repair me

chanisms. 
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CHAPTER 3 

XERODERMA PIGMENTOSUM 

3 • 1 INTRODUCTION 

Xeroderma pigrnentosum (XP) is a rare disease, which is 

characterized by sensitivity to sunlight and an autosomal 

recessive inheritance. Two clinically distinct forms have 

been recognized: the classic form of XP, which was first 

described by Hebra and Kaposi (1874), and the De Sanctis

Cacchione syndrome (DSC) {De Sanctis and Cacchione, 1932). 

Patients of both types show an extreme skin sensitivity to 

UV-light, probably with wavelengths of 290 - 310 nm, occurr

ing in sunlight. In sun-exposed regions of the body, the 

skin undergoes pigmentary changes with freckling, a thicken

iny of the epidermis by hyperkeratosis and acanthosis and 

often, already starting in the first years of life, a con

tinuous development of skin cancers of ectodermal as well 

as mesodermal origin (Reed et al., 1969). These malignan

cies often lead to the early death of the patients. In ad

dition to the skin lesions the DSC-syndrome is characteriz

ed by neurological complications such as microcephaly with 

mental deficiency, premature 'closure of epiphyses ·and cran

ial sutures, retarded growth and sexual development, cho

reoathetosis and cerebellar ataxia (Reed et al., 1969). 

The two forms of the disease have never been observed with

in the same family. 

Since the first report of Hebra and Kaposi in 1874 many 

studies on XP have appeared but the basic cause of the dis

order -a defect in the DNA-excision repair mechanism- was 

discovered only in 1968 by Cleaver (1968). Later, the re

lationship between the defect at the molecular level and 

cell survival was demonstrated by the increased UV-sensiti

vity of XP cells (Cleaver, 1970a; Goldstein, 1971). Also 

the reduced ability of XP cells, in comparison to normal 
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cells, to reactivate UV-inactivated herpes simplex virus 

(host-cell reactivation), indicated that the excision repair 

mechanism, which is deficient in XP-cells, plays a function

al role in normal human cells (Rabson et al., 1969; .P~aronsor. 

and Lytle, 1970; Lytle et al., 1972; Bootsma et al., 1972) 

The study of XP does not only contribute to a better 

understanding of DNA repair mechanisms in mammalian cells, 

but might also deepen our insight in the mechanisms leading 

to cancer. XP is unique in sofar that in this condition a 

relatively well defined biochemical defect is associated 

with the development of tumor cells. Recently Cleaver (1973 

d) has speculated about the possible relationship between 

defective DNA repair and carcinogenis (e.g. via an increas

ed mutation rate or the involvement of oncogenic viruses). 

3.2 DEFECTIVE EXCISION REPAIR IN XERODERHA PIGHENTOSUH 

(a) DNA repair synthesis and rejoining of breaks 

The first indication for a defect in excision repair in 

XP was obtained by Cleaver (1968) who found that DNA repair 

synthesis (chapter 2.3.b) was strongly reduced in the cells 

cultured from XP patients. This observation has since been 

confirmed by several groups, using different techniques, in 

cultured skin fibroblasts (Cleaver, 1969b, 1970a, 1972; 

Bootsma et al., 1970; Regan et al., 1971a, b, Kleijer et 

al., 1973b: paper V), in lymphocytes (Burket al., 1971; 

Robbins and Kraemer, 1972) 1 in excised skin fragments (Jung, 

1971) and in vivo in the skin of patients (Epstein et al., 

1970) • 

In the previous chapter (2.5) it has been described 

that the repair of X-ray damage involves repair replicat

ion and rejoining of single-strand breaks. Both phenomena 

occurred at a normal rate in XP cells of the classic form 

as well as the DSC-syndrome (Cleaver, 1969b; Kleijer et al., 

1970, 1973b: papers I and V). These results indicate that 

in XP cells, the capacities to perform repair replication 

and rejoining of breaks are not deficient. Therefore it was 

concluded that in XP cells an initial step of the excision 
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of pyrimidine dimers, probably the incision step/ is defect

ive. The hypothesis of a defective initial step in XP is 

supported by studies on the repair of damage induced by a 

number of chemical compounds which are carcinogenic in many 

cases. 

Two groups of compounds can now be recognized: 

1. Compounds which 1 like UV-irradiation 1 induce repair re

plication in normal human cells but not in XP cells. Exam

ples of such compounds are: 4-nitroquinoline-1-oxide (Stich 

and San 1 1971), N-acetoxy-2-acetyl-aminofluorene (Setlow 

and Regan 1 1972; Stich et al. 1 1972), 8-methoxypsoralen + 

irradiation with 360 nm UV-light (Baden et al. 1 1972), 3-

methyl-4-nitropyridine-1-oxide (Sticb et al., 1973), benz 

(a) anthracene epoxide (Stich and San, 1973), ?-bromobenzyl 

(a) anthracene (Slor, 1973) and 1, 3-bis (2-chloroethyl)-1-

nitrosourea (Cleaver, 1973b). These compounds bind to the 

pyrimidine or purine bases, whereas some of them can form 

intra- and inter-strand cross-links. These damages do not 

lead to breaks in the DNA-strands, unless a specific endo

nuclease is present to initiate excision repair. 

2. Compounds which, like ionizing irradiation, induce a 

normal amount of repair replication in XP cells. Examples 

of such compounds are: Bromodeoxyuridine, which is incorpo

rated into the DNA and causes strand-breakage upon irradiat

ion with visible or UV-light (Cleaver, 1969b) and the alky

lating agents: methyl methanesulphonate and N-methyl-«-nitro

N-nitrosoguanidine (Cleaver, 1971). The DNA is alkylated by 

these compounds and subsequentlY depurination and strand 

breakage can occur without the interference of a specific 

repair-endonuclease. Excision repair might therefore be per

formed without the endonucleolytic function which might be 

defective in XP cells. 

However two remarks should be made here: first, the 

spontaneous depurination and strand-breakage after alkylat

ion damage are rather slow processes under physiological 

conditions (Craddock, 1973) and secondly ionizing irradiat

ion produces base damages in addition to strand-breaks. 
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Therefore it cannot be excluded than an endonuclease, per

haps specific for base damages of the type produced by X

rays, is still required. In bacteria such endonuclease ac

tivities, specific for x-ray damage {Setlow and Carrier, 

1973) or alkylation damage (Strauss and Robbins, 1968) have 

been reported. Another question which has not yet been ans

wered is whether the large difference between the number 

of new bases which are inserted during the repair of UV

damage {30 - 100 bases; see 2.3.b) and X-ray damage (1 - 3 

bases; see 2.5) is caused only by the different nature of 

the lesions (and distortions of the double helix) or by the 

involvement of different exonucleases and repair polymer

ases. 

The conclusion, mentioned above, that the incision step 

in excision repair is deficient in XP was, and is still, 

based mainly on the observations that XP cells are able to 

perform repair replication and rejoining of breaks after 

X-irradiation. It is obvious that this conclusion would 

not be justified if different UV-specific and X-ray speci

fic exonucleases and polymerases would exist. 

{b) Incision and Excision 

Since excision repair at a DNA-lesion is thought to be 

initiated by incision, and the rejoining of the strand must 

be the last step, breaks should be present transiently 

during the repair process. If the incision step is deficiett 

in XP cells the number of breaks should be lower than in 

normal cells. On the other hand a higher number might be 

expected if one of the steps following incision is deficient 

Therefore attempts have been made to measure the production 

of breaks after UV-irradiation of normal and XP-cells by 

sedimentation analysis of the DNA in alkaline sucrose gra

dients. 

In one report (Setlow et al., 1969) it was claimed that 

incision breaks could be observed indeed in normal cells 

but not in XP cells. However the reported sedimentation pr~ 

files showed large variations and did probably not support 
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this conclusion (see 2.3.d). 

The results obtained by Kleijer et al. (1971, 1973a: 

paper II) indicated that incision-breaks did not accumulate 

to a detectable level in UV-irradiated normal as well as XP 

cells. Because of the absence of accumulated breaks in XP 

cells, the negative conclusion might be drawn that these 

cells are not deficient in one of the steps following incis

ion. However this interpretation is not valid if the repair 

process proceeds by a sequence of concerted steps as was 

suggested before (2.3.e). 

Very recently Cleaver (1973c) has used a modified met~ 

already mentioned in the previous chapter (2.3.d), which 

permits the qualitative detection of probably a very low 

number of breaks. Changes of the sedimentation rate of DNA, 

observed after UV-irradiation, were attributed to the occur

rence of small numbers of breaks which act as sites for 

strand separation during brief lysis in alkali (conversion 

of double-stranded into single-stranded DNA) . Large diffe

rences were revealed between the sedimentation properties 

of DNA from UV-irradiated normal and XP cells. The results 

suggested that immediately after UV-irradiation of normal 

cells, breaks appeared and disappeared after a certain in

cubation interval depending on the UV-dose used. In contxast, 

the results for XP-cells (a DSC-cell strain) suggested that 
2 breaks did not occur after a low dose (13 erg/mm ) whereas 

after higher doses breaks seemed to accumulate slowly, but 

did not disappear. Despite these clear differences between 

normal and XP (DSC) - cells, an unequivocal conclusion with 

respect to the defect in XP can as yet not be drawn. The 

accumulation of breaks in the DSC-cells might indicate, as 

Cleaver suggested, that a UV-specific exonuclease is defect

ive, but other interpretations are possible; particularly 

the slow appearance of breaks in DSC-cells relative to norm

al cells might rather indicate a defect in the incision 

step. 

Studies on the excision of pyrimidine dirners, by using 

the chromatographic procedure to determine the dimer cont~ 
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of DNA, have shown that classic XP and DSC cells do not 

excise dimers (Setlow et al., 1969; Cleaver and Trosko, 

1971; Kleijer and Bootsma 1971). 

Paterson et al. (1973) (see 2.3.c) have demonstrated, 

by using a UV-specific endonuclease isolated from Micrococ

cus luteus~ that the endonuclease susceptible sites, in

duced by UV light do not disappear from the DNA of classic 

XP and DSC cells. This implies that incision at dimer sites 

did not occur in these cells. Nevertheless these observat

ions do not prove that the incision function is defective, 

because if the repair process is co-ordinated all steps 

might be blocked by a defect in any other step. 

The preferential way to determine which of the proposed 

repair enzymes is defective in XP would be a direct enzyme 

assay. Following this approach Bacchetti et al. (1972) have 

demonstrated a UV-specific endonucleolytic activity in ex

tracts of normal as well as XP cells. However this enzyme 

shows a rather peculiar substrate specificity, since it 

also acts on UV-irradiated and subsequently photoreactivat

ed DNA. This suggests that the enzyme did not recognize py

rimidine dimers but either other UV-lesions or possibly DNA 

distortions which might remain in the DNA after the dimer 

is monomerized by the in vitro photoreactivation procedure. 

Although some of the data discussed in this section are 

tempting to assume that an endonuclease involved in the 

initiation of excision repair is defective in XP cells 

(Cleaver, 1969b; Setlow et al., 1969; Kleijer et al., 1970: 

paper I), there is as yet no direct proof for this hypothe

sis. A defect in a UV-specific exonuclease, suggested by 

Cleaver (1973c) for OSC-cells, remains possible and even a 

defect in the polymerase cannot be excluded. 

3.3 GENETIC HETEROGENEITY IN XERODERMA PIGMENTOSUM 

The distinct clinical symptoms of the classic form of 

XP and the DSC-syndrome and also the various genetically 

determined levels of repair activity in a series of classic 
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XP patients suggests that different mutations may be in

volved in XP (Bootsma et al., 1970; Kleijer et al., l973b: 

paper V) . 

The existence of different forms of XP has been examin

ed by the study of repair synthesis which would occur as a 

result of complementation in heterokaryons obtained by fus

ion of cells originating from different repair deficient 

XP-patients. Three groups of cell strains which complement 

each other have been demonstrated by De Weerd-Kastelein et 

al. (1972, l973a, b,: paper IV) and Kleijer et al (l973c) 

using autoradiographic as well as density gradient methods 

to determine repair synthesis in the fused cell population& 

These three complementation groups represented also three 

distinct classes of cell strains with respect to their re

pair capacities. The first group (6 DSC strains) had no re

pair capacity at all whereas the second group of cell 

strains (from 7 severe classic XP patients) showed a repair 

rate of 5 - 15% of that in normal cells and the third group 

(from 2 genetically related, less severe classic XP patien~ 

showed intermediate and dose-dependent relative repair rates 

(30% at 100 erg/mm2 to 80% at 1000 erg/mm2 ) (Kleijer et al. 

1973b: paper V). Similarly Kraemer et al. (1973) have re

cently reported briefly the presence of at least three com

plementation groups in a series of 7 patients, each group 

representing a distinct class of repair rates. 

The demonstration of several complementation groups im

plies that different mutations are responsible for the re

pair deficiency in different forms of XP. The distinct 

classes of repair capacities which seem to coincide with 

the complementation groups, probably reflect the different 

enzyme defects in each group. 

As discussed in the previous section the defective step 

in excision repair has not yet been established precis~ly. 

Several possible causes of the decreased catalytic function 

have to be considered, such as defects in the reaction ca

talyzing function, a lowered substrate-affinity or a lower 

amount of any of the enzymes involved. In a co-ordinated 
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repair model, as discussed before, one can moreover envis

age a defect that affects the rate at which the repair com

plexes move along the DNA from one lesion to the next. The 

precise location of the defect may be difficult to reveal 

with the present techniques 1 especially if the repair pro

cess is co-ordinated indeed 1 since in that case any possib

le defect will block or delay all repair steps. Further 

evidence to support some of the possible defects or to re

ject others may be achieved by careful kinetic studies of 

repair phenomena such as repair synthesis (Kleijer et al., 

1973b: paper V) and excision as well as incision by using 

the sensitive techniques which have recently been developed 

to detect in the DNA small numbers of dimers (Paterson et 

al. 1 1973 1 Lucas, 1972) and single-strand breaks (Cleaver, 

l973c). 

The definite and precise elucidation of the defect in 

the different forms of XP will probably require the devel

opment of methods to purify and characterize the excision 

repair enzymes in vitro. 

A variant form of XP has been found in patients who 

were clinically diagnosed as classic XP cases, but who ex

hibit normal cellular DNA repair capacities. In some cases 

the clinical symptoms were similar to those seen in the 

common form with respect to the severity and the age of on

set (Burket al., 1971; Cleaver 1 1972; Kleijer et al., 1973 

b: paper V), whereas in other cases the patterns of skin 

lesions observed were less severe or arose at a later age 

than in the common form of XP (Jung, 1971; Bootsma et al., 

1970; Kleijer et al., 1973b: paper V). The involvement of 

defects in a post-replication mechanism (Jung, 1971) or of 

defects leading to errors in the genetic code (misrepair) 

cannot a priori be excluded for all cases. However, because 

of the observations of a normal UV-sensitivity (Cleaver, 

1972) and a normal gap-filling capacity (Buhl et al., 1973 

b) 1 it seems more likely that there is no defect associated 

with any DNA-repair mechanism in these patients. 
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3. 4 BIOCHEIHCAL DIAGNOSIS OF XERODERMA PIGMENTOSUM 

Several methods, already mentioned before, are now 

available to establish a biochemical diagnosis of XP. Such 

a diagnosis by analysis of skin fibroblasts or lymphocytes, 

makes adequate measures possible either for patients who 

have been diagnosed clinically or in the case of birth of 

a child from presumed heterozygous parents. Prenatal diag

nosis can probably succesfully be performed in pregnancies 

at risk by examination of foetal cells obtained by amnio

centesis, preferably in the 12th - 16th week of pregnancy. 

Especially for prenatal diagnosis the method of choice will 

be the autoradiographic technique to measure UV-induced 

DNA repair synthesis because of the low number of cells 

needed. The assay conditions, such as UV-doses and length 

of labelling periods, should be chosen with some care be-. 

cause the cells of some XP patients have shown relatively 

high residual repair activities which may at high doses 

approach the normal level (Kleijer et al., 1973b: paper V), 

whereas also after long labelling periods normal amounts 

of repair synthesis can be found (Robbins and Kraemer, 

1972; Kleijer et al., 1973b: paper V). It is evident that 

the variant form of XP with a normal DNA repair capacity 

cannot be detected. 

Studies of cell strains from the heterozygous parents 

of XP patients have shown a significantly reduced repair 

activity in only a few cases, whereas in most cases a norm

al rate of repair was found (Bootsma et al., 1970; Cleaver, 

1972; Kleijer et al., 1973b: paper V). The latter observat

ions are in agreement with the recessive character of the 

disease and suggest that the enzyme or enzyme complex 

which is defective in XP cells is present in excessive 

amounts in normal and heterozygous cells. The direct de

termination of repair synthesis levels is therefore not a 

reliable method to detect the heterozygous condition. 

Theoretically it seems possible to solve this problem by 

"dilution 11 of the unaffected enzyme by fusion of either 
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heterozygous or normal cells with XP cells to produce multi

karyotic cells (Gianelli et al., 1973). At certain ratios 

of the numbers of parental nuclei in the multikaryons (he

terozygous/XP or normal/XP) the amount of unaffected enzyme 

might no longer be excessive and a difference between the 

repair levels in the heterozygous/XP and the normal/XP fus

ions might be revealed. 
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SUMMARY 

Most organisms, including man, are capable of repairing 

their DNA when it has been damaged by either ultra-violet 

light (UV), ionizing radiation or several other, physical 

or chemical, agents. In one of the repair mechanisms -excis

ion repair- the damage (e.g. UV-induced pyrimidine dirners; 

Fig. 1-1, p.l4) is removed from the DNA by an incision and 

an excision step, and the DNA strand is repaired by the in

sertion of new nucleotides, in which the opposite comple

mentary strand serves as a template (repair replication) 

and finally by the rejoining of the strand (Fig. 2-1; p.l9~ 

The biological significance of excision repair to man 

is probably demonstrated in the inherited disease xeroderma 

pigmentosum (XP). In this disease a hypersensitivity of the 

skin to sunlight, leading to severe skin lesions (e.g. skin 

tumors) is associated with a deficient excision repair of 

UV-damaged DNA. 

In the first part of this thesis a review is given of 

the data and the conclusions obtained from experiments des

cribed in the literature and from our own investigations 

on the types of DNA-damage induced by UV light and ionizing 

radiation {chap·ter 1); on the DNA repair mechanisms occurr

ing in micro-organisms and higher organisms (chapter 2); 

and on DNA repair in XP (chapter 3). 

In the second part -the appendix- five papers are pre

sented describing our investigations which were designed: 

a) to obtain more insight into the excision repair mecha-

nism; 

b) to locate the defective step in the repair process in 

XP; and 

c) to examine whether a different genetic and biochemical 

basis of the deficiency exists in different forms of 

the disease such as in the two clinically distinct for~ 
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:classic XP and the De Sanctis-Cacchione syndrome (DSC). 

In paper I of the appendix the repair of X-ray induced 

DNA damage is studied by using the technique of centrifugat

ion in alkaline sucrose gradients to detect single-strand 

breaks in the DNA and the autoradiographic technique to 

measure repair replication. Cultured cells from several 

classic XP patients (and DSC patients; paper V} were able 

to rejoin single-strand breaks at the same rate as cells 

from healthy individuals. Moreover these XP strains, which 

exhibit a strongly reduced capability to perform repair re

plication after UV-irradiation, showed normal amounts of 

repair replication after X-irradiation. These observations 

suggest that in XP cells the deficient excision repair of 

UV-damage is not due to a defect in either the repair re

plication step or in the rejoining of breaks but rather in 

an earlier step, e.g. the incision. This hypothesis was 

supported by experiments which showed that pyrimidine di

mers are excised from the DNA in normal cells (paper V) but 

not in XP cells (see 3.2.b). 

The experiments described in paper II were designed to 

obtain direct evidence for a defective incision step in XP 

cells by comparing the number of breaks appearing after UV

exposure of normal and XP cells. Although breaks were de

monstrated in normal as well as XP cells after high UV

doses ( > 1000 erg/rnm2 ) these breaks were probably caused 

by a direct induction rather than by the enzymatic incis

ion action. After lower doses (100 - 500 erg/rnm2 ) no signi

ficant changes were observed in the sedimentation patterns 

in alkaline sucrose gradients of DNA from normal and XP 

cells. The number of transiently present breaks did not ex

ceed the minimum number which was required for their detec~ 

ion (0.2 breaks/10 8 daltons} possibly because of the rapid 

rejoining of the breaks. Therefore it was not possible to 

demonstrate directly a deficient incision function in XP. 

In further investigations of the rejoining of X-ray in

duced breaks it was found that this process was inhibited 

by lowered temperatures (<:22°} and by chemical compounds 
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such as: potassium cyanide, 2,4-dinitro-phenol, ethylene

diaminotetracetate, iodoacetate and crystal violet. These 

inhibitors of rejoining were applied to UV-exposed normal 

cells but an accumulation of breaks was not observed. The 
hypothesis was postulated that excision repair at each DNA 

lesion takes place by the concerted action of the repair 

enzymes which may operate as an enzyme complex. 

In paper IV and V the possible existence of a genetic 

and biochemical heterogeneity in XP is examined. Two dis

tinct techniques to measure DNA repair synthesis have been 

used: the autoradiographic method and the method of iso

pycnic centrifugation of DNA in density gradients (2.3.b 

and Fig. 2-2: p.21). For the latter method a modified pro

cedure, in which Nai is used for the density gradients and 

a fluorirnetric method to measure the amount of DNA in the 

gradient fractions, is introduced in paper III. 

In paper IV repair replication is studied in the uv

irradiated cell population obtained after fusion of classic 

XP and DSC cells. In the multinucleate heterokaryons, which 

occurred at a high frequency, the capacity to perform re

pair replication appeared to be restored completely. The 

occurrence of complementation between the classic XP and 

the DSC cells indicates that the defect in the two forms 

of the disease is caused by different mutations. 

In paper V investigations are described on the DNA re

pair capacities' of cell strains from a large number of XP 

patients. On the basis of the kinetics of DNA repair syn

thesis after UV-irradiation four distinct groups of XP 

patients can be recognized: the DSC patients with a com

plete deficiency of the repair capacity in all cases which 

we investigated, and three groups of classic XP patients 

with a low, an intermediate and a normal repair capacity 

respectively. In the latter group the disease is presumably 

not caused by a repair defect. In the other two groups of 

classic XP patients a correlation was indicated between 

the degree of repair deficiency and the severity of the 

clinical symptoms. Genetically related patients always be-
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longed to the same group. Complementation studies reported 

in paper IV and elsewhere (see 3.3) have shown that at 

least three different mutations are responsible for the re

pair deficiency in the DSC patients and the two groups of 

classic XP patients. These observations suggest that the 

different rates of repair synthesis in cells of XP patients 

are genetically determined and are based on different mutat

ions. 

Most of the cell strains derived from heterozygotes 

have shown normal repair activities; however some cases 

with a significantly reduced level of repair synthesis have 

been found. 
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SAMENVATTING 

DNA, de chernische struktuur die de erfelijke informatie 

bevat, kan door verscheidene fysische en chemische agentia 

worden beschadigd. Tot de fysische agentia behoren ultra

violette (UV) straling die pyrimidinedimeren in de DNA

streng veroorzaakt (Fig. 1-1; blz.l4) en rOntgenstraling 

die enkelstrengbreuken induceert. Een overzicht van de 

types DNA-schade veroorzaakt door UV-licht en rOntgenstra

ling wordt gegeven in hoofdstuk 1. 

Evenals mikro-organismen beschikken hogere organismen 

over het vermogen beschadigd DNA te herstellen. In hoofd

stuk 2 worden de verschillende DNA-herstelmechanismen be

sproken gebruik makend van gegevens uit de literatuur en 

uit het eigen onderzoek dat is beschreven in de appendix 

van dit proefschrift. In het voor zoogdiercellen rneest on

derzochte rnechanisrne -excisie herstel- wordt de schade 

door rniddel van een incisie- en een excisiestap uit de DNA 

streng verwijderd. De DNA-streng wordt hersteld door de in

bouw van nieuwe nucleotiden, waarbij de tegenoverliggende 

kornplernentaire streng als rnatrijs wordt gebruikt (herstel

synthese) en tenslotte sluiting van de DNA-keten (herstel 

van breuken) (z~e Fig. 2-1; blz.l9). 

Een aanwijzing voor de biologische betekenis van dit 

herstelrnechanisrne is de overgevoeligheid voor UV-straling 

bij patienten die lijden aan de erfelijke ziekte xeroderma 

pigrnentosum (XP). De ernstige huidaandoeningen, waaronder 

frekwent optredende huidtumoren, bij blootstelling van deze 

pati@nten aan zonlicht zijn waarschijnlijk het gevolg van 

een defekt in het rnechanisme van excisieherstel. In hoofd

stuk 3 wordt een beschouwing gegeven van de resultaten en 

konklusies uit onderzoekingen over het DNA-herstelverrnogen 

van XP-cellen die in de literatuur en in de appendix zijn 

beschreven. 
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Het in de appendix beschreven onderzoek was gericht op: 

a) het verkrijgen van nader inzicht in het rnechanisrne van 

excisieherstel; 

b) de vraag welke stap in het herstelproces is gestoord in 

XP; en 

c) de vraag of de genetische en biochernische achtergrond 

van de deficientie verschilt in verschillende vorrnen van 

de ziekte, zoals de twee klinisch onderscheiden vormen: 

-klassieke XP en het De Sanctis-Cacchione syndroorn (DSC) 

In artikel I van de appendix worden experirnenten be

schreven waarin het herstel werd bestudeerd van DNA-schade 

die door rOntgenstraling wordt veroorzaakt. Enkelstreng

breuken die het gevolg zijn van deze straling werden aange

toond door de bepaling van de sedimentatiesnelheid van het 

DNA in alkalische sucrosegradienten. Gekweekte cellen die 

werden verkregen uit huidbiopsieen van verscheidene klas~ 

sieke XP-patienten (en DSC-patienten; artikel V) bleken 

breuken even snel te herstellen als de cellen van gezonde 

personen. Bovendien waren de XP-cellen, die een sterk ge

reduceerd vermogen tot herstelsynthese vertonen na UV-be

straling (artikel V) , in staat een norrnale hoeveelheid her

stelsynthese uit te voeren na rOntgenbestraling. Deze waar

nemingen suggereren dat in XP cellen het defekt in het her

stelproces na UV-bestraling niet ligt in de herstelsynthese 

stap of het herstel van breuken maar in een eerdere stap, 

bijvoorbeeld de incisie. Deze veronderstelling wordt ge

steund door experimenteD die hebben aangetoond dat pyrimi

dinedimeren wel uit het DNA van normale cellen kunnen wor

den verwijderd (artikel V) maar niet uit het DNA van XP

cellen (3.2.b). 

Met de in artikel II beschreven experimenten werd be

oogd op direkte wijze het optreden van de incisiestap in 

het herstelproces in norrnale en XP-cellen te vergelijken. 

Bij een storing van de incisie in XP-cellen zou men na UV

bestraling een geringer aantal tijdelijk aanwezige DNA

breuken mogen verwachten in XP-cellen dan in norrnale cellen. 
2 Hoewel na hoge UV-doses (:>1000 erg/rom) breuken konden 
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worden aangetoond in zowel normale als XP-cellen, waren 

deze breuken waarschijnlijk het gevolg van een direkte in

duktie en niet van de aktie van een incisieenzym. Na lagere 

doses werden in de alkalische sucrosegradi§nten geen ver

anderingen in het sedimentatiepatroon van DNA van zowel 

normale als XP-cellen waargenomen. Het aantal breuken dat 

tegelijkertijd aanwezig is blijft beneden het niveau dat 
8 voor hun detektie vereist is (0.2 breuken/10 dalton), mo-

gelijk doordat de breuken zeer snel na hun ontstaan weer 

worden hersteld. Hierdoor was het niet mogelijk om op di

rekte wijze een deficiente incisiefunktie in XP aan te 

tonen. 

In een nader onderzoek van het herstel van door rOntgen

straling gelnduceerde enkelstrengbreuken werd gevonden dat 

dit herstel geheel of gedeeltelijk werd geremd door een 

verlaagde temperatuur en door verscheidene verbindingen ze

als kaliumcyanide, 2,4-dinitrophenol, ethyleendiaminotetra

acetaat, joodacetaat en kristalvioLet. Deze remmers werden 

vervolgens toegepast na UV-bestraling om het evenwicht tus

sen de vorming van breuken (incisie) en het herstel van 

breuken te wijzigen ten gunste van de incisie. Echter ook 

onder deze omstandigheden werd geen akkumulatie van breuken 

in normale UV-bestraalde cellen gevonden. Op grond van deze 

resultaten werd de hypothese opgesteld dat de stappen in 

het herstelproces zodanig gekoOrdineerd zijn dat het gehele 

proces tot stilstand komt zodra een van de stappen is ge

blokkeerd. Een gekoOrdineerd herstelmechanisme zou tot 

stand kunnen komen doordat de herstelenzymen, eventueel als 

een enzymkomplex, zich systematisch langs het DNA bewegen 

en het herstel van elke afzonderlijke DNA-schade volledig 

uitvoeren alvorens verder te gaan naar een volgende schade. 

In de artikelen IV en V werd de aandacht vooral gericht 

op een mogelijke genetische en biochemische heterogeniteit 

in XP (zie bovengenoemd punt c). Voor de bepaling van DNA

herstelsynthese werden twee verschillende methoden toege

past: de autoradiografische methode en de methode van even

wichtssedirnentatie van DNA in dichtheidsgradienten (2.3.b 
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en Fig. 2-2; blz.2l). In laatstgenoemde methode werden en

kele wijzigingen aangebracht (met name het gebruik van na

triumjodide voor de dichtheidsgradi8nten en een fluorime

trische bepaling van DNA in de gradi~ntfrakties), waarvan 

de voordelen ten opzichte van de tot dusverre gebruikelijke 

procedure in artikel III worden beschreven. 

In artikel IV werd onderzocht of komplementatie kan op

treden tussen de cellen van pati€nten met de twee verschil

lende vormen van XP -de klassieke vorm en het DSC-syndroom. 

De twee types hersteldefici€nte cellen werden gefuseerd on

der zodanige omstandigheden dat meerkernige cellen in een 

hoge frekwentie werden gevormd. Het vermogen tot het ver

richten van herstelsynthese na UV-bestraling bleek in de 

cellen, die kernen van beide types oudercellen bevatten, 

volledig te zijn teruggekeerd tot het niveau van normale 

cellen. Het optreden van komplementatie tussen de klassieke 

XP-cellen en de DSC-cellen toont aan dat de hersteldefici€~ 

tie in de twee vormen van de ziekte het gevolg zijn van 

verschillende mutaties. 

In artikel V wordt een onderzoek naar het DNA-herstel

vermogen in de cellen van een groat aantal XP-pati€nten be

schreven. Op grand van de kinetiek van DNA-herstelsynthese 

na UV-bestraling kunnen vier groepen XP-patienten worden 

onderscheiden nl.: de DSC-pati€nten die in alle door ons 

onderzochte gevallen het herstelvermogen geheel missen en 

drie groepen klassieke XP-pati€nten met resp. een lage, 

een intermediaire en een normale herstelaktiviteit. In de 

laatstgenoemde groep is de ziekte vermoedelijk niet het ge

volg van een gestoord herstelvermogen. In de andere twee 

groepen klassieke XP-pati€nten is een korrelatie aanwijs

baar tussen de mate van defici€ntie van het DNA-herstelver

mogen en de ernst van de klinische symptomen. Pati€nten uit 

dezelfde families behoorden steeds tot dezelfde groep. In 

komplementatiestudies werd aangetoond dat tenminste drie 

verschillende mutaties betrokken zijn bij de hersteldefi

ci€ntie in resp. de groep DSC-patienten en de twee eerst

genoemde groepen klassieke XP-pati€nten (artikel IV en el-
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ders; zie 3.3). Het lijkt daarom waarschijnlijk dat de ver

schillende herstelsyntheseniveaus in de cellen van XP-patie~ 

ten genetisch bepaald zijn en berusten op verschillende mu

taties. 

Cellen van de heterozygote ouders van XP-patienten ver

tonen in de meeste gevallen een normale aktiviteit van DNA

herstelsynthese; slechts in enkele gevallen werd een aan

merkelijk verlaagd herstelsyntheseniveau gevonden. 
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NAWOORD 

Op verzoek van de faculteit der Geneeskunde volgen hier 

enkele persoonlijke gegevens. 

Na het afleggen van het eindexarnen h.b.s.B aan de Kon. 

h.b.s. te Apeldoorn began ik in 1960 de studie in de schei

kunde aan de Rijksuniversiteit te Utrecht. Het kandidaats

exarnen (g) legde ik af in 1964; het doctoraalexarnen, met 

het hoofdvak biochemie en het bijvak microbiologie, in 1967. 

In 1964 en 1965 was ik als student-assistent verbonden aan 

het Analytisch Chernisch Laboratorium van de Rijksuniversi

teit te Utrecht. Voor het vervullen van de militaire dienst

plicht werd ik gedetacheerd in het Medisch Biologisch Labo

ratorium TNO te Rijswijk. 

In dit laboratorium werd vanaf 1969 het beschreven on

derzoek grotendeels verricht. In mei 1969 trad ik in dienst 

van de Medische Faculteit te Rotterdam als wetenschappelijk 

medewerker aan de afdeling Celbiologie II. 

Graag wil ik rnijn dank betuigen aan allen die op enigerlei 

wijze hebben bijgedragen aan het tot stand komen van dit 

proefschrift. In het bijzonder dank ik mijn promotor Prof. 

Dr. D. Bootsrna voor de wijze waarop hij heeft bijgedragen 

tot mijn wetenschappelijke vorrning; zijn stimulerende bege

leiding tijdens het onderzoek en bij het schrijven van het 

manuskript zijn voor mij van grote waarde geweest. De be

langstelling van Prof. Dr. 0. Vos gedurende het onderzoek 

en de wijze waarop hij en Prof. Dr. w.c. Hlilsmann dit proef

schrift als co-referenten hebben willen beoordelen heb ik 

zeer op prijs gesteld. 

Van vele medewerkers van het MBL en van de afdeling 

Celbiologie en Genetica heb ik steun ondervonden. Met name 

ben ik dank verschuldigd aan Dr. R.A. Oosterbaan en Dr. G. 

Veldhuisen voor hun kritische oprnerkingen bij het schrijven 
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van de publikaties waarop dit proefschrift berust; aan Dr. 

P.H.M. Lohman van wiens deskundigheid ik veel heb mogen pro

fiteren bij de toepassing van biochemische technieken en 

bij de verwerking van de experimentele gegevens met de com

puter en voorts aan hem evenals aan Drs. E.A. de Weerd

Kastelein voor hun samenwerking bij de voorbereiding van 

enkele gezamenlijke publikaties die in dit proefschrift 

zijn opgenomen; aan Mej. M.L. Sluyter en Mej. H.L. Hoeksema 

voor het belangrijke aandeel dat zij bij de uitvoering van 

de experimenten met enthousiasme en kundigheid hebben ge

leverd en evenzo aan Mevr. E.C. Mulier-Groos voor haar hulp 

in de beginfase van het onderzoek; aan Mej. M. van Duuren, 

de heren T.M. van Os en J.G.H. Fengler van de afdeling cel

biologie en de heren H.E. Groot Bramel en M.J. Boermans van 

het MBL voor de verzorging van de figuren en aan de mede

werkers van de sekretariaten van beide instituten waarvan 

vooral Mevr. R.J. van den Hoek-Boucke veel voortreffelijk 

typewerk heeft verricht voor het definitieve rnanuskript. 

De direktie van het Medisch Biologisch Laboratorium en 

het hoofd van de afdeling Celbiologie II ben ik zeer erken

telijk voor de gelegenheid die zij rnij hebben geboden het 

onderzoek in het MBL te voltooien. 

Op deze plaats wil ik eveneens mijn dank betuigen aan 

de betrokken patienten, hun ouders en hun artsen, evenals 

aan de gezonde donoren van huidbiopsieen, die door hun be

reidwillige medewerking het onderzoek mogelijk hebben ge

maakt. 

Tenslotte dank ik mijn ouders voor hun steun en belang

stellingr die rnij in staat hebben gesteld deze weg te val~ 

en mijn vrouw voor haar vele initiatieven om mijn belang

stelling voor andere hoofd- en zijwegen levend te houden. 
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SUMMARY 

Repair replication and rejoining of single-strand breaks after X-irradiation in 
human-skin fibroblasts from normal donors and several patients with xeroderma pig
mentosum have been compared. The xeroderma strains showed different levels of 
repair replication following UV exposure. Repair replication and rejoining of breaks, 
which are considered to be part of the repair mechanism after damage due to X
irradiation and UV -irradiation, appeared to be performed in all xeroderma pigmen
tosum strains tested to the same level as in control strains. 

These results, and the observation that in the same xeroderma pigmentosum 
strains repair replication after UV irra9-iation was considerably reduced, suggest that 
the· xeroderma strains investigated were deficient in the enzyme(s) involved in the 
excision of pyrimidine dimers from the DNA. 

INTRODUCTION 

In the preceding paper1 experiments. are described that show a defective repair 
replication after UV irradiation in cultured cells from patients having xeroderma pig
mentosum. The results are in agreement with CLEAVER's2 suggestion that xeroderma 
pigmentosurri cells lack the ability to repair radiation damage. It cannot yet be con
cluded that the repair-replication process itself has been disturbed, because defects 
in any step of the repair process may be responsible for the failure of repair replication. 

The major biological damage in bacteria after UV irradiation is attributed to 
pyrimidine dimer formation in the DNA13

• The excision-repair model which is based 
on experiments with different radiosensitive bacterial mutants12 involves at least the 
following four steps14 : incision in the DNA chain adjacent to a dimer, excision of the 
dimer and further degradation of the DNA in the dimer region) -repair replication and 
finally rejoining of the single-strand break. 

In mammalian cells, evidence for this kind of repair"has aiso been found. Re
pair replication following UV irradiation occurs in various mammalian cell types10, 

and dimer excision has possibly been shown in some human celllines11 • X-Rays induce 
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single-strand breaks in the DNA which can be repaired in mammalian cells. The repair 
process following X-irradiation involves repair replication9 and rejoining of the 
broken DNA strand 5-7 . It seems reasonable to assume that after UV and after X-irra
diation the repair replication and the rejoining step are catalyzed by the same two 
enzymes, a DNA polymerase and a polynucleotide ligase respectively. 

The present communication deals with studies on the repair replication and 
the rejoining of single-strand breaks in the DNA of the normal human and xeroderma 
pigmentosum skin fibroblasts after exposure to X-rays. Repair replication was shown 
by autoradiographic methods following irradiation and pulse labeling of cells with 
tritiated thymidine. Rejoining of single-strand breaks was studied by alkaline sucrose
gradient sedimentation of the labeled DNA. 

The results show that xeroderma pigmentosum cells can perform repair repli
cation and rejoining of single-strand breaks after X-irradiation. This is in agreement 
with similar observations on repair replication in xeroderma pigmentosum cells that 
were published by CLEAVER3 during the preparation of this manuscript. 

MATERIALS AND METHODS 

Cells and culture techniqttes 
The cell strains used in the experiments were XP2, XP 4 and XP9 primary 

fibroblasts originating from xeroderma pigmentosum patients, XP4SV 40 an XP4 
strain transformed by SV 40 virus, and two strains that were considered to be control 
cells (Rand LN). These strains are described in more detail in the preceding paper1• 

For the experiments ISO ooo cells were ·seeded in culture dishes (4 em diameter) 
with a Mylar bottom in 4 ml Fr2 medium supplemented with 5% fetal calf serum 
and s% newborn calf serum. These cultures were incubated at 37° in air containing 
So/o C02 • For the autoradiographic experiments the dishes were provided with a cover
slip before the cell suspension was added. 

Irradiation 
Monolayers of the cells were irradiated in medium by a 25o-kV X-ray machine 

at room temperature. Radiation constants were 250 kV (constant potential), IS rnA, 
no filtration, distance to target 22.s em, dose rate rooo Rjmin. 

A utoradiographic experiments 
After 2-4 days growth the cultures were irradiated af 37°. Immediately after 

irradiation the medium was replaced by fresh medium containing ro I'Cijml tritiated 
thymidine (spec. act. 2 Cijmmole, The Radiochemical Centre, Amersham, Great 
Britain). After 3 h, cells were fixed in acetic acid-ethanol (r :3, vjv). Autoradiography 
was performed with Kodak AR-ro stripping film after treatment with z% perchloric 
acid to remove acid-soluble radioactive precursors. The preparations were then stained 
with hematoxylin-eosin. The exposure time was 21 days. The average number of 
grains per cell was obtained by counting 50 labeled cells per slide. 

Sucrose-gradient experiments 
Two days after seeding, the medium was replaced by fresh medium containing 

tritiated thymidine (2.5 I'Cijml, spec. act. 2 Cijmmole), and the cultures were grown 
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for r8 h at 37' and irradiated. After various intervals (o-go min) the cells were sus
pended in the medium by scraping with a rubber policeman. The suspension was 
cooled and centrifuged at 300 g for ro min at 0-3', and the pellet washed in o.rs M 
NaCL Finally a suspension of z·ro' cells/ml in cold o.rs M NaCl was prepared. !so
kinetic sucrose gradients were made in polypropylene centrifuge tubes as will be de
scribed elsewhere". On top of each gradient was pipetted successively: r.s ml 0.5 M 
NaOH, 0.5 ml of an aqueous solution containing 6% butan-2-ol (by volume) and 2% 
4-aminosalicylic acid and 2% triisopropylnaphthalenesulfonic acid (both by weight) 
and 0.5 ml of the cell suspension (ro' cells}. The gradients were centrifuged at 22 500 
rev.fmin for 3·5 h at 20' in a SW-27 swinging bucket rotor of a Spinco model L 
centrifuge. 

Fractionation of the gradients and radioactivity assay were performed as 
described elsewhere7

• 

RESULTS 

Repair replication studied by autoradiography 
Fibroblast cultures were irradiated with r-20 krad doses of X-rays followed 

by incubation in tritiated-thyrmidine-containing medium for 3 h. Autoradiographs 
of such cultures showed that all cells were radioactive. Cells in the S-phase could be 
recognized by their heavy labeling which resulted from continued semi-conservative 
DNA replication. Cells in the G, or in the G, phase were lightly labeled as a result of 
repair replication. 

The results of grain countings from an experiment with a xeroderma pigmeh
tosum cell strain (XP4) and a control cell strain (R) are shown in Fig. r. Both cell 
strains showed the same amount of [3H]thymidine incorporation after X-irradiation. 
Identical results were obtained with all other xeroderma and control cell strains 
(XPz, XPg, LN and XP5, XP6, XP7, DB, MM, mentioned in the preceding paper') . 

. 
~ 20 
:;, 

" 

10 zo 
X -ray dose (krad) 

Fig. r. Average grain number over lightly labeled cells in xeroderma pigmentosum and control 
cultures after X-irradiation. Autoradiographic exposure time, 2I days. 
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Fig. 2. Sedimentation patterns in alkaline sucrose gradients of DNA from xeroderm't pigmentosum 
(XPz) cells. Unirradiated {e); zo krad (o); zo krad incubated at 37° for r h (X). 

Rejoining of breaks studied by alkaline sucrose gradients 
Xeroderma pigmentosum cell cultures (XPz, XP4, XPg, XP4-SV 40) and con

trol cultures (LN and R) were irradiated with X-rays at a dose of zo krad. The cells 
were collected immediately or I h after irradiation. Fig. 2 shows the sedimentation 
patterns obtained with XP2 cells. Similar patterns were obtained with the other cell 
strains tested. The induction of breaks is indicated by the shift of the curve to lower 
fraction numbers, corresponding to lower molecular weights. After r h incubation 
following irradiation the bulk of the DNA bands at higher fraction numbers indicating 
repair of breaks. This was found in control as well as in xeroderma cells. In Table I 
the weight average molecular weights, calculated by use of the relation of STUDIER" 
for DNA on alkaline gradients and the number of breaks (for calculations see refs. 4, 
7, 8) have been summarized. In all cell types an appreciable number of breaks appears 
to have been rejoined after r h incubation. Although there is some variation in the 
percentages of rejoined breaks, these results suggest that there is no significant 
difference in rejoining capacity between xeroderma and control cell strains. 

REJOINING OF X-RAY-INDUCED SINGLE-STRAND BREAKS I"' THE DNA OF SEVERAL XERODERMA PIGMENTOSUM 

AND CONTROL CELL STRAINS 

Cell strain Mol. wt. Mol. wt Mol. wt. Breaks per Breaks per Rejoining 
(X Io- 6 dalton) (X Io- 6 dalton) ( x Io- 6 krad) IOs dalton zoB dalton (%) 
o krad 20 krad 20 krad and 20 krad 20 krad and 

6o min at 37° 6o min at 37° 

R 132 67 97 I.44 0 ·55 62 
LN 135 70 92 I.36 o.68 50 
XPz I 17 65 86 1.36 0.62 54 
XP4 147 83 105 I.03 0 ·53 49 
XP4-SV4o 221 96 168 I.I7 0.28 76 
XP9 184 66 II9 1.95 0.59 70 
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Fig. 3· Sedimentation patterns in alkaline sucrose gradients of DNA from cells incubated for 
various times (o-30 min) after irradiation (zo krad): o min (0); 5 min (6); ro min (A); 20 min (X) 
and 30 min(;:); unirradiated control (8). (a) Xeroderma pigmentosum cells (XP4). (b) Control 
cells (R). 

To obtain information about the time course of the rejoining process, cultures of 
XP4 and cells R were incubated after X-irradiation for different times before the cells 
were collected. In Figs. 3a and 3b the sedimentation patterns from these experiments 
are shown, and the numbers of breaks per ro 8 mol. wt. are given in Fig. 4· For both 
cell strains the rejoining process appears to start rapidly, and after 10 min most of the 
breaks hq_ve been rejoined. 

Usually the molecular weight of DNA from unirradiated cells varied in inde
pendent experiments. Since these control values are used for the calculations of the 
number of breaks4 after irradiation, these variations will lead to a systematic differ
ence when the data of two experiments are compared (Fig. 4). Extension of the incu-
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Fig. 4· The time course of the rejoining of single-strand D~A breaks during incubation at 37~ after 
a 20 krad X-ray dose. 0, xeroderma pigmentosum cells (XP4); e, control cells (R). 
Fig. 5. Sedimentation patterns in alkaline sucrose gradients of DNA from R cells incubated for 
various times (a-go min) after irradiation (:zo krad): omin (0); I5 min (6); 3omin (..;.); 6o min ( x); 
and go min (D); unirradiated control (e). 

bation period to more than 30 min after irrad1.3.tion did not result in a further increase 
of molecular weight; this is shown in Fig. 5 for R cells; the same result was obtained 
with XP4 cells. 

DISCL"SSION 

The sucrose-gradient experiments described here show that cells from different 
patients having xeroderma pigmentosum are able to rejoin single-strand breaks in 
DNA caused by X-irradiation at the same rate and to the same level as normal human 
fibroblasts. In the autoradiographic experiments we found that the cells of six patients 
who suffered in different degrees from xeroderma pigmentosum and four, in this 
respect normal persons, showed equal levels of repair replication after X-irradiation. 
This. :is in contrast with our previous finding1 that after UV irradiation each of these 
xerOderma pigmentosum strains showed a significant and characteristic reduction 
in repair replication when compared with normal cells. From these results it can be 
concluded that the six different xeroderma cell strains should all be defective in the 
exision of pyrimidine dimers or even in the first step of the process, the incision ad
jacent to a dimer hy an endonuclease. 

Our results on the rejoining of breaks in xeroderma cells present additional 
evidence for this conclusion. Therefore, our cell strains seem not to be different from 
the ·strain studied by CLEAVER3 who also found a defective early step of the repair 
process. However, these results do not yet explain the characteristic differences in 
repair-replication level~ among the xeroderma strains after UV exposure. 

These differences could originate from mutations in different ·genes (e.g. genes 
coding for enzymes involved in different early steps, or regulatory genes) or also from 
different mutations in a single gene coding for the same enzyme in all cases. 
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At the present time we are studying the reduction of dimer excision11 in S\'40-
transformed xeroderma cells. The study of break induction after UV-irradiation 
might offer further evidence for the incision deficiency in xeroderma pigmentosum 
cells. However, we found no breaks in the DNA of T cells (an established normal 
human-kidney cell line) or in SV 40-transformed xeroderma pigmentosum cells after 
a UV dose of roo ergjmm2 and incubation up to 4 hat 37° or at 0-4°. These results can 
be explained by supposing that incision is the rate-limiting step. In order to accu
mulate incision breaks in the DNA of UV irradiated cells various agents are being 
tested that might inhibit the repair replication or the rejoining. 
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SUMMARY 

Experiments were carried out to obtain direct evidence for the hypothesis that 
in human cells the repair of UV-damaged DNA is initiated by an incision step, and 
that this step is defective in cells from patients having Xeroderma pigmentosum (XP). 
The alkaline sucrose gradient centrifugation technique was used to detect breaks in the 
DNA. 

A decreased sedimentation velocity of the DNA was found after exposure of 
normal and XP cells to high doses of UV (5000 erg/mm'). Breaks were induced in the 
DNA by the UV irradiation without the action of an enzyme. After exposure of both 
types of cell to UV doses of roo-500 erg/mm', breaks that might occur by enzymic 
incision were not observed, possibly because of immediate rejoining. 

After single-strand breaks had been induced by X-rays, rejoining did not occur 
at temperatures lower than 22°. Rejoining was inhibited by KCN, 2,4-dinitrophenol, 
EDTA, iodoacetate and crystal violet. Actinomycin D, acriflavine and phleomycin, 
also tested as potential inhibitors of the repair process, induced breaks or conforma
tional changes in the DNA of unirradiated normal and XP cells. 

Application to UV-exposed cells of conditions that inhibit the rejoining of 
breaks did not cause accumulation of breaks in the DNA. The results suggest a co
ordinated and sequential performance of the st~ps in the repair of each UV lesion by 
repair enzymes which may act as a complex. 

INTRODUCTION 

In human cells the DNA that has been damaged by exposure of the cells to UV 
or X-irradiation can be effectively restored by enzymic repair processes. Cells from 
patients suffering from XP show an increased sensitivity to UV irradiation13, and 
appear to be defective in the excision of pyrimidine dimers12 • 20 •31 and in repair replica
tion after exposure to UV6 , 9 • After X-irradiation, repair replication10 • 21 and rejoining 

Abbreviations: DXP, 2,4-dinitrophenol; XP, Xeroderma pigmentosum. 
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of single-strand breaks21 were normal in these cells. These observations suggest that 
the first step in the repair process after UV irradiation, the incision next to a pyrimidine 
dimer in the DNA, is defective in XP cells10• 21•31 . In normal cells one would expect to 
find single-strand brea~s after exposure to UV as a result of the incision of the damaged 
strand by an endonuclease. Evidence for the formation of DNA breaks after exposure 
to uv has been presented by SETLOW et az.:n and by BEN-HUR AND BEN-ISHAI 2 • 

However, in both reports and also in the present study it is suggested that most of the 
breaks produced escape detection owing to their rapid rejoining in the subsequent 
steps in the repair process. One would expect to observe an accumulation of breaks 
under conditions in which rejoining is inhibited. 

In the present study the effects of two groups of compounds on the rejoining of 
breaks were investigated after the induction of breaks by X-irradiation: (I) compounds 
that might inhibit the action of the enzyme(s) involved in the repair either directly 
(iodoacetate) or by depletion of the cell from necessary cofactors (DNP, KCN, EDTA); 
and (II) compounds that bind to the DNA (actinomycin D', acriflavine', crystal 
violet, phleomycin17 and caffeine15). (LEA VERn showed that iodoacetate, actinomycin 
D, acriflavine and crystal violet inhibit repair replication after irradiation by UV. 
Recently, the inhibition of the rejoining of X-ray-induced breaks in mammalian cells 
has been reported by Moss et al. 25 and ORMEROD AND STEVENS28 for DNP and byTsUBOI 
AND TERASIMA32 for proflavine. 

The results obtained when inhibitors of the rejoining of breaks were applied 
after UV irradiation of human cells will be described. 

MATERIALS AND METHODS 

(a) Cells and culture techniq1tes 
The cell lines used in the experiments were: two heteroploid human cell lines, 

the T-cell line (originating from human kidney') and the He La cell line; a diploid 
fibroblast strain from a normal donor (R) 6 ; a diploid Xeroderma strain from a patient 
having severe symptoms of the disease (XP 4) 6 ; and four strains6 transformed with 
SV40 virus, namely RSV40, XProSV4o (XPro, heterozygous for XP), XP4SV4o and 
XPgSV4o (XPg, severe XP case). 

The T cells were grown in Dulbecco's salt solution containing 0.5 °/0 lactal
bumin hydrolysate, penicillin (roo I.U.jml), streptomycin (o.r mg/ml) and 6% new
born calf serum. Frz medium was supplemented with penicillin, streptomycin and 
15 ~/0 foetal calf serum for primary fibroblast cultures or with ro~/0 newborn calf serum 
for the SV 40-transformed strains and for the HeLa cells. For each experiment 
rsoooo-200000 CC"lls were seeded in plastic culture dishes (5 em diameter). The cul
tures were incubated at 37o in a controlled atmosphere of 95% air and 5 °/0 C02. 

(b) Labelling of the DNA 
r or 2 days after seeding of the cells, when the cultures were in logarithmic 

growth, the medium in the dishes was replaced hy medium containing (methyl) tri
tiated thymidine (z.s,uCijml, 2 Ci/mmole from the Radiochemical Centre, Amersham). 
The cultures were grown for at least zo hat 37°. Fresh unlabelled medium was supplied 
to the cells 30 min before irradiation. 
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(c) Irradiation 
I-<~or UV -irradiation the medium was removed, and the cultures were washed 

\vith a balanced salt solution and drained. Relatively low does of UV irradiation 
(roo-soo erg/mm') were generated from a Philips TL:V lamp (r5 W) at a rate of 8 
ergjmm'jsecpredominantlyat254nm). Exposure to 5000 erg/mm' was obtained with 
a Philips TUV lamp (30 WI at a rate of 56 ergjmm'jsec. 

X-Irradiation was performed at room temperature with a 250-kV X-ray machine. 
Radiation constants were: 250 kV (constant potential), 15 rnA, distance to target 
22.5 em, dose rate rooo radjmin. Immediately after irradiation with X-rays or UV the 
cultures were either incubated in medimn at 37o or scraped from the dishes in medium 
at 0°. 

(d) Alkaline sucrose gradient sedimentation 
Immediately after irradiation or after the incubation period the cells \Vere sus

pended in cold medium by scraping with a rubber policeman. The suspension was 
centrifuged at 3000 g for ro min at 0-3' and the pellet washed in o.rs M NaCl. The 
cells were finally suspended in 0.15 M NaCl at a concentration of 2 · ro5 cellsjml. 
ro 5 cells were layered gently ove1 a layer of 0.5 ml of an aqueous solution containing 
r2% vjv butanol-2 and sodium 4-aminosalicylate (z% wjw), sodium triisopropyl
naphthalenesulphonate (z% w/w) and I.5 ml 0.5 M KaOH on top of a 5-23% alkaline 
(pH 12.2) sucrose gradient of constant velocity type 27 • 20 min after layering the cells, 
the gradients were centrifuged in a S\V27 rotor in a Spinco l\Iodel L2 12ltracentrifuge 
for 3·5 hat 22 500 rev.jmin at 20°. Fractionation, radioactivity assay and calculation 
of molecular weights and number of breaks were carried out as described by LOHMAN 

(ref. 24). 

RESL""LTS 

(a) Sedimentation of DNA after exposure to UV 
A UV dose of 500 ergjmm2. or lower did not change the sedimentation properties 

of the DNA immediately after exposure. Fig. rA shows that, after exposure of primary 
human skin fibroblasts (R cells) to rso ergjmm' and incubation at 37o foro, 20 and 

Fig. rA. Sedimentation patterns of DXA from primary human fibroblasts (R). e, unirradiated. 
Irradiated with 150 erg/mm 2 and incubated at 37° during: c, o min; .A, 20 min; L, 120 min. 

Fig. rB. Sedimentation patterns of DNA from primary human fibroblasts (R). e, unirradiated; 
0, sooo erg/mm 2 and no incubation: t-., sooo ergjmm2 and r hat 37'". 
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120 min, no shift of the DNA peak in the gradient occurred. The molecular weight of 
the DNA calculated for each profile was 2 · ro8 dalton. Similar experiments were per
formed with heteroploid T cells (roo ergfmm' and o, ro, 30, go, rzo and 240 min 
incubation; 500 ergjmm2 and o, 15, 6o and 120 min incubation), HeLa cells (250 

ergfmm' and o, IS, go, r8o and 360 min incubation) and XP4SV 40 cells (roo erg/mm' 
and o, 120 and 240 min incubation). In these experiments no clear shift or change in 
the shape of the profile was observed when compared with the profile of the un
irradiated control. 

Immediately after exposure of primary human cells to a high dose of UV 
(5000 erg/mm2) at 0°, a decrease in sedimentation velocity was observed (Fig. rB). 
The shift and the skewing of the DNA peak did not change when the ceJls were in
cubated in medium at 37o for r h. The same change in sedimentation properties of the 
DNA, as shown for normal cells in Fig. rB, was found in Xeroderma cells (XP4-cell 
strain). 

(b) Inhibitors of rejoining of X-ray-induced breaks in the DNA 
In this series of experiments conditions were tested that might inhibit the re

joining of breaks after X-irradiation. Irradiation with a dose of 20 krad caused a de
crease of the (weight-average) molecular weight of the DNA in human cells (primary 
fibroblasts 21) and T cells24 from 2.0 · ro8 to 0.7 · ro8 dalton. As described previously, in 
primary fibroblasts21 and heteroploid T cells 23 , 50-75% of the breaks were 1epaired 
during an incubation period of 6o min at 37° after irradiation. 

® 

20 JO 
temperature I"Cl 

Fig. 2. Numbers of breaks rejoined after 20 krad X-rays and incubation during 45 min at Yarious 
temperatures. 

First, the influence of temperature on the rejoining activity was investigated. 
Fig. 2 shows the temperature dependency of the rejoining activity in T cells. The 
number of rejoined breaks per ro 8 dalton was calculated from the sedimentation 
profiles of the DNA and plotted against temperature. The rejoining activity appears 
to be almost absent below 22° and optimal at abont 37°. 

Among the chemical agents tested for inhibition of rejoining, four compounds 
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-iodoacetate, DNP, KCN and EDT A-were chosen because they might inhibit the 
enzyme(s) involved, either directly or by depleting the cell of ATP or MgH ions. 
Control experiments showed that treatment with DNP, KCN or EDTA had no effect 
on the sedimentation of DNA from unirradiated cells (Table I), whereas iodoacetate 
induced a small number of breaks in the DNA ofT cells. DNP and KCN were added 
30 min before irradiation; EDTA was added just before, and iodoacetate immediately 
after, irradiation. The presence of DNP, KCN or EDTA during irradiation did not in
fluence the number of breaks present immediately after irradiation. As an example, 
Fig. 3 shows the comparable sedimentation profiles after irradiation in the presence 
or absence of DNP. The profile of the irradiated DNA shifted towards the position of 

TABLE I 

THE EFFECTS OF INHIBITORS 0::-< REPAIR OF X-RAY- OR UV-DAMAGED DNA 

Compound Concentration Breaks induced by Relative Breaks after 
(M) the compound& rejoiningb UV +compound& 

EDTA ro-1 

} <.oz 

3 

} <o 2 
KCN ro- 3 I2 

DNP ro- 4 ro 
ro- 2 0 

Iodoacetate ro- 2 0.2-0.4 5 o.s 

a Numbers of breaks per ro8 dalton in the DNA of inhibitor-treated or UV-irradiated and inhi
bitor-treated cells relative to DNA from unirradiated and untreated cells. 
b The figures give the number of breaks rejoined after zo krad and 6o min in the presence of the 
inhibitor as a percentage of the number of breaks rejoined in mediuin without the inhibitor. 

20 

~ 
10 

0 
1op 

10 20 30 L.O 

lrdct1or> number 

Fig. 3· Effect of DNP on induction and rejoining of single-strand breaks. Sedimentation patterns 
of DNA from T cell!'l. e, unirradiated; A, irradiated (zo krad X-rays) and no incubation; Ll.,irradi
ated, no incUbation, DNP (ro- 2 M) present 20 min before and during irradiation; x, irradiated, 
incubated at 37° during 6o min; o. irradiated, incubated at 37° during 6o min in 10-t 1l1 DNP. 

unirradiated DNA when the cells after irradiation had been incubated in the absence 
of DNP. However, such a shift was not observed \vhen the cells had been incubated 
in the presence of DNP. This indicates that DXP abolishes the repair activity in the 
cells. The same result was obtained with KOl, EDTA and iodoacetate (Table I). 

· The second group of compounds--actinomycin D, acriflavine, crystal violet, 
phleomycin and caffeine~were chosen because of their binding to DNA, which might 
impair the rejoining of single-strand breaks. The influence of incubation for I h in the 
presence of these drugs on the sedimentation properties of the DNA from unirradiated 
cells is presented in the second column of Table II. Crystal violet and caffeine at the 
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TABLE II 

THE EFFECTS OF DNA-BINDING COMPOUNDS ON REPAIR OF X-RAY- OR UV-DAMAGED DNA, AND 

ON DNA IN UNIRRADlATED CELLS 

Compound Concentration Breaks induced by _.Relative Breaks after 
(!'gfml) the compounda. rejoiningb UV -t:co"mpounda 

Caffeine 400 <o.z 105 
Crystal violet 40 0.2 0 0.2 

Actinomycin D 2 <o.z gS 
20 2.0 0 

Acriflavine IO l.4 0 

Phleomycin IO non:-random 95 
degradation 

a and b, see Table L 

concentrations used and actinomycin D at the lower concentration (2 pgjml) had no 
effect on the sedimentation of DNA from unirradiated cells. Both actinomycin D and 
acriflavine, at 20 and IO pgjml respectively, strongly influenced the sedimentation of 
the DNA from the unirradiated cells. This effect, which suggests the induction of 
breaks by these drugs, was similar in normal human and XP cells, as is shown for 
acriflavine in Fig. 4A. Phleomycin reacted in a more peculiar way: treatment of T 
cells with this compound at zo pgfml for rs min resulted in the formation of material 
with a lower molecular weight, leaving part of the original DNA unchanged; this 
indicates a nonrandom breakdown of the DNA. From the profiles in Fig. 4 Bit appears 

M 20 

' 0 

~ -
10 

top froctioro roumber <op froctioro number 

Fig. 4A. Effect of acriflavine on the sedimentation of DNA from (SV 40-transformed) human 
fibroblasts: e, untreated RSV4o and in the same position XP4SV4o. Cells incubated in medium 
containing acriflavine (ro ,ugfml) during 15 min: 6., RSV4o; .&., XPSV4o. 

Fig. 4B. Effect of phleomycin on the sedimentation of DNA from (SV 40-transformed) human 
fibroblasts: 0, untreated XPgSV 40 (XP patient) and in the same position XProSV 40 (not affected, 
heterozygote for XP). Cells incubated in medium containing phleomycin (20 ,ug{ml) during 15 
min: A.. XPgSV4o; 6., XProSV4o. 

that similar reactions occurred in (SV 40-transformed) normal and XP cells. The data 
on the influence of the drugs on the rejoining activity of the cells are tabulated in the 
third column of Table II. Caffeine (oA mgfml), actinomycin D (z pg/ml) and phleo
mycin (zo pgfml) did not inhibit the rejoining of breaks when added after X-irradia
tion. Rejoining of breaks was inhibited completely by crystal violet (40 pgfml). In 
the presence of actinomycin D (zo pg/ml) or acriflavine (ro pgfml) repair of breaks 
after a zo-krad dose was not seen, but this observation was complicated by the addi
tional effect of the drug alone. 
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(c) Inhibitors of rejoining used after irradiation by UV 
T n the previous section several conditions are described that inhibited the re

joining of X-ray-induced breaks and that had no or only slight influence on the sedi
mentation of DNA from unirradiated cells. These conditions were applied after UV 
irradiation in order to accumulate breaks which might occur as a result of incision at 
pyrimidine dimers in the DNA. After incubation of UV-irradiated T cells for 45 min 
at temperatures that were inhibitory for rejoining, the same DNA sedimentation 
profiles as in Fig. rA were found, showing no shift to lower molecular weight values. 
Similar results were obtained when T cells, after exposure to roo-zoo erg/mm2, were 
incubated in the presence of KCN (ro-' M), DNP (ro-' and ro-•M), EDTA(ro-'M), 
Table I, and crystal violet (40 ,ug/ml), Table II. Fig. 5 shows the sedimentation pro-

Fig. 5· Effects of EDT A and KCN on the sedimentation of ON A from T cells after exposure to UV: 
•· unirradiated, untreated cells; irradiated (2oo ergjmin2) and incubated during go min at 37° in· 
o, ro-1 M EDTA; 6., ro- 3 M KCN. 

files obtained after incubation of UV-exposed cells with EDTA and KCN. Iodoacetate 
treatment caused DNA breaks in UV-irradiated T cells, but, as mentioned in the pre
\-'ious section, also in unirradiated T cells. However, in similar experiments with 
primary and SV 40-transformed normal and XP cells, iodoacetate did not effect breaks 
in the DNA of either UV-exposed or unirradiated cells of these strains. 

DISCUSSION 

The experiments were designed to find direct evidence for incision as the first 
step in the repair of UV-damaged DNA in human cells. In the cell lines R, T and HeLa, 
used in our experiments, unscheduled DNA synthesis6 and excision of thymine dimers 
(ref. zo) occurs whereas these activities were absent 20 from the two strains from severe 
XP patients (XP4 and XPg). It has been suggested"·"·" that the incision step is 
defective in XP cel!s;DNA breaks are therefore not expected after UV irradiation of 
these cells. In the present experiments breaks were only found after extremely high 
doses of UV (5ooo erg jmm '), but then even at o' and in both normal and XP cells. The 
results suggest that these breaks are not caused by an enzymic action but probably 
by the direct induction of breaks or alkali-labile lesions by the UV irradiation. This 
hypothesis is supported by studies on the effect of high doses of UV on isolated double
stranded, circular DNA from bacteriophage PM2 performed in our laboratory33

• 

These studies have shown that UV irradiation induces single-strand breaks and alkali
labile lesions in the DNA; the sum of both types of lesion was about the same as the 
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number of breaks we found in the DNA of human cells (r break fro" dalton after 5000 
erg/mm'). After exposure to relatively low doses (roo-5oo erg/mm') the number of 
breaks did not exceed 0.2 per I08 dalton, which is the lower limit of detection in our 
studies on the induction of breaks by X-irradiation using the same technique. These 
results seem to disagree with earlier papers of SETLOW et al. 31 and of BEN-HUR 
AND BEN-IsHAI' in which the production of breaks after low doses of UV is reported. 
In BeLa cells, after a dose of 250 erg/mm' and 1.5 h incubation, BEN-HUR AND BEN
ISHAI2 found a molecular weight of the DNA of 0.32 · ro8 dalton, indicating a large, 
but unknown, number of breaks. However, in our experiments using the same cell line 
and identical irradiation and incubation conditions the results of BEN-HUR AND BEN
IsHAI2 could not be reproduced. It cannot be excluded that the discrepancy between 
our results and those of BEN-HUR AND BEN-ISHAI is caused by the differences in 
lysing and DNA denaturation procedures. The apparent variability in the profiles 
shov."'ll in SETLow's paper, possibly due to the low amount of radioactivity in the 
gradients, makes the interpretation of their results difficult. 

From experiments on the excision of thymine dimers12 • 20 • 29 ,n the number of 
incisions, which have to· be made during_ the repair process, can be calculated. After 
a UV dose of zoo erg/mrn2 we found 20 a dimer percentage (X0 fjT%)) of o.o6o, which is 
equivalent to at least 30 dimers per IG 8-dalton DNA31• Since, in the cells used (T cells 
and primary fibroblasts), about 25% of the dimers is excised within the first 8 h 
(unpublished results), we estimate that about r dimer jro8 dalton is excised per h. If 
incision were to proceed while the repair of breaks is blocked completely during in
cubation for r h after a dose of zoo erg/mm', a clear shift of the DNA peak in the 
gradient would be expected. To find conditions that might inhibit one of the steps in 
the repair process after incision, we studied the effects of various agents on the re
joining of breaks induced in T cells by X-irrad.iation. 

The enzymic nature of the rejoining process following X-irradiation is indicated 
by the temperature dependency found in the present experiments and in those of 
ORMEROD AND STEVENS 28 and DONLON AKD NORMAN16 • It is a reasonable assumption 
that the same enzyme, a polynucleotide ligase, is involved in the rejoining of breaks in 
the repair of both X-ray and UV damage. The first group of compounds tested for in
hibition of rejoining inhibits enzymes either directly (iodoacetate) or by an effect on 
the supply of necessary cofactors (KCN, DNP and EDTA). lodoacetate inhibits repair 
replication after UV irradiation 11 • It might be expected that the ATP- and MgH
dependent ligase" is inhibited by KCN, DNP and EDTA. Inhibition of rejoining has 
been reported earlier for EDTA in M. radiodurans 14 and for DNP in mammalian cells 
by Moss et al. 25 and ORMEROD AKD STEVENS 28 • 

In the second group of compounds that bind to DNA, actinomycin D (zo ,ug/ml) 
and acriflavine (ro ,ug/ml) were completely inhibitory although the rejoining of a small 
number of breaks could have been masked by the simultaneous induction of breaks or 
alternatively by conformational changes in the DNA induced by these compounds. 
The effects on DNA observed after treatment of unirradiated cells with phleomycin, 
actinomycin D and acriflavine are still unexplained. GRIGG18 has postulated that in 
E. coli the UV-specific endonuclease may be responsible for the initiation of the degra
dation of DNA that he observe0 in phleomycin-treated UV-resistant, but not in 
UV-sensitive, E. coli mutants. Normal human and XP cells, however, responded 
similarly to exposure to phleomycin and also to actinomycin D and acriflavine. If in 
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XP cells a UV-specific endonuclease is defective, this enzyme seems not to be involved 
in the changes found in the DNA structure in human cells after application of these 
drugs. Crystal violet inhibited the rejoining without influencing the sedimentation of 
DNA from unirradiated cells, but like the compounds in the first group (KCN, DNP, 
EDTA and iodoacetate) it did not effect accumulation of breaks after UV irradiation. 
The absence of breaks after exposure to UV under conditions where rejoining of breaks 
was inhibited indicates that incision did not occur. These fi_ndings do not necessarily 
argue against the hypothesis that an incision step is involved in the repair process, 
because at least two explanations may fit the results in the excision-repair model. 
(I) The endonuclease function per se might be inhibited by each of the conditions used 
in our studies. (2) The different steps in the repair process might be perf~rmed in a 
sequential and coordinated way, which does not permit the functioning of the endo
nuclease when one or more of the other repair enzymes are blocked. 

In the microorganisms M. lysodeikt£cus26 and M.luteuss,u a UV-specilic endo
nuclease is present that does not require ATP and Mg2-!- ions and is not inhibited by 
EDTA; on the other hand the enzyme is inhibited in vivo and in vitro by KCN". In 
mammalian cells a UV-specific endonuclease has not been characterized. Recently 
BACCHETTI et al.l and BRENT7 have demonstrated in human cell extracts an endo
nuclease activity that specifically attacks UV-irradiated DNA; its possible role in the 
proposed excision repair process, however, has not yet been established. The' endo
nucleolytic activity did not require the addition of ATP or divalent ions and was not 
inhibited by EDTA. These data do not support the first-mentioned interpretation of 
our results. The coordinated action of the repair enzymes, as postulated in the second 
explanation, will be achieved if (a) the endonuclease is part of a complex also con
taining the enzymes necessary for the subsequent repair steps, or (b) the endonuclease 
systematically screens the DNA making an incision as soon as a pyrimidine dimer is 
recognized but is blocked in its progress until the dimer is excised and .the gap is closed. 
In this model not more than one break per incision enzyme molecule will be present 
per cell at the same time. A similar model for the action of the excision system in 
E. coli has been proposed by SETLow AND CARRI_ER30

• Confirmation of the coordinated 
repair model requites more specific inhibitors of repair replication or rejoining of 
breaks that do not inhibit the proposed endonuclease function per se. 
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SUMMARY 

A sensitive and quantitative method is described for 

direct measurement of repair replication in UV-irradiated 

human cells in tissue culture. The method is based on iso

pycnic centrifugation of repaired DNA in sodium iodide 

gradients in fixed angle rotors and determination of the 

amount of DNA by the fluorescence of a DNA-ethydiurn bromide 

complex. 

INTRODUCTION 

Repair replication is considered to be a step in the 

repair of damaged DNA. This involves the insertion of a 

small number of new nucleotides into gaps in single strands 

resulting from the excision of DNA-regions containing the 

damage. 

Safar equilibrium centrifugation in linear density 

gradients of cesium chloride has proven to be a suitable 

method for studying repair replication in DNA. This method, 

devised by Pettijohn and Hanawalt 9 , 10 for bacteria was 

*Analytical Biochemistry, 54 (1973) 178-187. 
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modified by Cleaver 2 ' 3 ' 4 ' 5for use in mammalian cells. 

According to Cleaver 3 accurate quantitative analysis 

of repair replication with CsCl density gradients is less 

than satisfactory. The relatively small separation between 

the radioactivity peaks of semiconservatively-synthesized 

DNA and repaired DNA makes it often necessary to reband the 

repaired DNA in a separate CsCl gradient. To calculate the 

specific radioactivity of repaired DNA, the DNA concentra

tion in the gradient has to be measured. However, the re

latively low UV absorbancy in the gradient seems to be not 

proportional to the DNA concentration 4 . 

A net e t a l.1 and De Kloet e t a z.? have shown that the 

separation power for DNA molecules is enhanced with densi

ty gradients containing sodium iodide in comparison to CsCl 

gradients at the same centrifugal field. Furthermore it has 

been shown that under suitable conditions in high salt 

solutions the increase in fluorescence arising from the 

addition of a given concentration of ethydium bromidea) 

(EB) is proportional to the concentration of DNA7 ' 8 

In view of the above considerations we have attempted 

to develop a simple and sensitive method for detecting 

repair replication in the DNA of mammalian cells by means 

of Nai density gradients supplemented with an optimal 

concentration of ethydium bromide. 

MATERIALS AND METHODS 

Cells and culture techniques 

T-cells, heteroploid cells of human origin with a 

generation time of 24-26 h, were cultivated routinely in 

F12 medium without thymidine. The medium was supplemented 

with 6% inactivated newborn calf serum and 100 IU penicil

lin and 0.1 mg streptomycin per ml. 

To study repair replication of DNA, 10 6 cells were 

a) (ethydium bromide= 2,7-diamino, 9-phenylphenanthridi-

nium 10-ethyl bromide) 
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inoculated in 10 ml of medium in plastic petri dishes 

(inner diarneter:90 rnm) and incubated at 37°. Experiments 
were conducted with cells in the exponential growth phase. 

Labelling of DNA and Irradiation 

Cultures were grown in F12 medium containing 1.5 

wg/ml 5-bromodeoxyuridine (BUdR) and 10-G M 5-fluorodeoxy

uridine (FUdR) for 2 h. Just before exposure to ultravio

let light, the medium was drained carefully from the 

cultures and the cells were irradiated with ultraviolet 

light (254 niD). The light source was a Philips TUV lamp 

(15 Watt), which emitted 9 erg;mm2;sec at the exposure 

distance. 

After irradiation the cultures were incubated for 3 h 

in medium containing 3H-BUdR (10 wCi/ml; specific activity: 
-6 -3 15.3 Ci/mmol), 10 M FUdR and 10 M hydroxyurea (HU). HU 

was added to suppress semiconservative repl·ication of DNA. 

Then the cells were removed from the petri dishes by 

trypsinisation, washed twice with cold saline, centrifuged 

and stored as a cell pellet at -90°. 

DNA extraction 

The frozen cells (app. 2.10 6 ) were resuspended in 1 rnl 

buffer (0.15 M NaCl, 0.01 M EDTA, C.01 M Tris, pH 9.5, 0.1% 

sarkosyl (Geigy)) and incubated for 30 min at 60°. 

The cell lysate was deproteinized by mixing with an 

equal vallme of chloroform-isoamylalcohol (24:1). 

The extraction mixture was centrifuged at 10,000 x g 

for 10 min at 5° in a Spinco J21 centrifuge and the aqueous 

layer containing nucleic acids was recovered. 

Isopycnic Centrifugation 

(a) Sodium Iodide gradients 

The nucleic acid extr?ct was made 0.01 M to sodium 

bisulfite and ethydiumbrornide was added to a final concen

tration of 20 wg/ml. When equilibrium density centrifu
gation was performed in the Spinco fixed angle rotor 40, 
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5 ml of the nucleic 

Nai (final density, 

acid solution was 
3 1.5300 g/cm). 

added to 4.650 g 

Equilibrium density centrifugation in a swinging 

bucket rotor was performed in the Spinco 50.1 rotor. Each 

tube contained 2.5 ml nucleic acid solution and 2.325 g 
3 Nai (final density, 1.5300 g/cm ), 

Before centrifugation the tubes were filled to the 

top with mineral oil. The gradients were 

33,000 rpm and 20° in rotor 40 

and 20° in the SW 50.1 rotor. 

(b) Cesium Chloride gradients 

and 36 h 

spun for 60 h at 

at 38,000 rpm 

Five ml nucleic acid extract, without sodium bisulfite 

and ethidiumbromide, was added to 6.426 g CsCl (final 

density 1.7000 gjcm3 ) when centrifugation was performed in 

the Spinco rotor 40. For centrifugation in the Spinco·sw 

50.1 rotor at the same final density 2.5 ml of the nucleic 
acid extract was added to 3.213 g CsCl. Centrifugation was 

performed as mentioned above for Nai gradients. 

Gradient fractionation and radioactivity assay 

After centrifugation the tubes were covered with 

bored-through Lucite caps. The tube inside each cap was 

connected to a 20 ml syringe filled with mineral oil. The 

tubes were punctured at the bottom and equal size fractions 

were collected by puShingthe syringe at a constant speed 

(l ml/min) with a Braun infusion pump. Immediately after 

fractionation the refractive index was measured at room 

temperature by means of an Abbe refractometer. For Nai 

gradients, densities were calculated from these data 

according to the empirical computerized relationship: 

o20 = 0.473487E+Ol x n 20 - 0.525000E+Ol between the density 

o 20 and the refractive index n 20 . 

The amount of DNA in each fraction was determined by 

measuring the fluorescence in a Baird-Atomic Spectrofluoro

meter. The wavelength used for excitation was 520 nm and 

the fluorescence was measured at 590 nrn. Fractions from Nai 

gradients could be measured directly. However, fractions 
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from CsCl gradients first have to be supplemented with 

ethydiurn bromide (final concentration, 20 ~g/rnl). 

After the fluorescence assay 5 rnl 10% trichloroacetic 

acid (TCA) (0°) and 0.01 M sodium pyrophosphate were added 

to each fraction. The samples were collected on Whatman 

GF/C glass fibre paper ( diarneter:24 mm), washed thoroughly 

with cold 5% TCA (0°) containing 0.01 M sodium pyrophos

phate and then 96% alcohol; the filters were dried for 30 

min at 90°. Liquid scintillation fluor (3 rnl; 6 g 2,5-

diphenyloxazol (PPO) and 0.1 g 2,2' p-phenyleen-bis-(4-

rnethyl-5-phenyl-oxazolyl)-benzene (dimethyl POPOP) per 

liter toluene) was added to the dried filters and the ra

dioactivity in the samples was measured in a Nuclear 

Chicago mark1 or mark2 liquid scintillation counter. 

RESULTS 

Determination of the DNA concentration 

When solutions of DNA and EB are mixed, a complex is 

formed with a very marked increase in fluorescence. Both 

the width and the maximum of the fluorescence emission 

spectra (\ern = 590 nrn) are identical for the free and the 

bound dye and EB binding occurs at any salt concentration 

without a change in the number of binding sites 8 . To test 

the usefullness of the fluorescence of the D~A-EB complex 

for measuring a' given DNA concentration in sodium iodide 

solutions different amounts of calf thymus DNA were dissol

ved in either buffer solutions, used for the extraction of 

T-cell DNA (0.15 M NaCl, 0.01 M EDTA, 0.01 M Tris - pH 9.5), 

or in the same buffer solution supplemented with 1 g/rnl Nai. 

After excitation at 520 nrn the fluorescence intensity at 

590 nrn of the pure EB solution (I
0

; 20 ~g/rnl) and of the 

same EB solution supplemented with DNA {Irn) was measured 

and plotted against the DNA concentration. (Fig. 1). Nearly 

linear dependence of the fluorescence on DNA concentration 

was found. The presence of the high concentration of Nai 

did not influence the fluorescence measurements. 
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Fig. l. The fluorescence intensity at 590 nm of the DNA-ethydiurnbrornide 

complex as a function of the DNA concentration. Excitation wavelength is 

520 nm. { 8 } , DNA dissolved in extraction buffer; { X } , DNA dissolved 

in extraction buffer supplemented with 1 g Nai/ml. 

When DNA concentrations in gradient fractions were 

determined,fluorescence measurements of both gradient and 

standard DNA solutions were made under identical conditions. 

The concentration in each gradient fraction was calculated 

by interpolating a standard curve as shown in Fig.l. 

Repair replication after irradiation with ultraviolet light 

To study repair replication T-cells were labelled and 

irradiated with ultraviolet light as described in Materials 

and Methods. After incubation the cells were harvested and 

the DNA was extracted. The DNA solution was analysed on Nai 

density gradients. After fractionation,density, fluores

cence and radioactivity measurements were performed. 

As shown in Fig. 2. the gradients have an ~lrnost 

linear density over most of the working range 6 . The densi

ty of normal DNA in Nai gradients is indicated by the posi

tion of the fluorescenGe ~eak at approximately l.S25 g/cm3 . 

T-cell DNA with one strand substituted with BUdR has a 
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Fig. 2. Relative distribution of the radioactivity and the DNA content 

after fractionation of T-cell-DNA in Nai isopycnic gradients. Centri

fugation 33,000 rpm, 60 h, 20° - Spinco rotor 40. 

A: 0 erg/mm2
; B: 100 erg/mrn2 , C: sao erg;mm2 . 
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density of approximately 1.565 g/cm
3

. 

The radioactivity and fluorescence profiles in Fig. 2 

show the relative distribution of the radioactivity and 

the DNA content. In samples of unirradiated T-cells prac

tically no radioactivity is found under the fluorescence 

peak (Fig. 2A). Most of the radioactivity is found in a 

heavy DNA peak representing DNA formed during semi

conservative replication of DNA in the presence of 3 H-BUdR, 

despite the presence of 10- 3 M HU. Irradiation with 100 

erg/mrn2 (Fig. 2B) and 500 erg/rnm2 (Fig. 2C) gives rise 

to an increase in the amount of radioactivity in a position 

coinciding with the fluorescence peak. This increased 

amount of radioactivity in DNA of normal density can be 

attributed to the occunence of reoair replication in UV

irradiated human cells. 

Fractionation of DNA using sodium iodide and cesium 

chloride gradients 

The separation of two types of T-cell DNA, one repre

senting semiconservatively replicated DNA and the other 

repaired DNA, in Nai gradients was compared with the se

paration of the same DNA's in CsCl gradients. Also gradients 

generated in a fixed angle rotor were compared with those 

formed in a swinging bucket rotor. The Nai gradients 

and CsCl gradients were collected from the same centrifu

gation experiment. 

The amount of DNA in fractions of both types of gra

dients was determined by measurement of the fluorescence 

of the DNA-EB complex (see Materials and Methods). The 

fluorescence, radioactivity and density profiles of the 

DNA of T-cells irradiated with 200 erg/mrn2 are shown in Fig. 

3A and Fig. 3B for Nai and in Fig. 3C and Fig. 3 D for 

CsCl gradients. The density of repaired DNA, found in the 

same position as the fluorescence peak, was 1.525 g/cm3 in 

Nai gradients and 1.700 g/cm3 in CsCl gradients. 

The DNA labelled by semiconservative replication is iden

tified by the radioactivity peak which does not coincide 
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Fig. 3. Fluorescence, radioactivity and density profiles of DNA from T-cells irradiated with 200 erg;mm
2 

and 

fractionated in isopycnic gradients. A: Nai gradient, Spinco rotor 40. B: Nal gradient, Spinco SW 50.1. 

C: CsCl gradient, Spinco rotor 40. D: CsCl gradient, Spinco 50.1. Centrifugation Spinco rotor 40: 33,000 rpm, 

60 h, 20°. Centrifugation Spinco SW 50.1: 36,000 rpm, 36 h, 20°. 



with the fluorescence peak. The density of this DNA was 

1.565 g/cm3 in Nai and 1.740 g/cm3 in CsCl gradients. From 

the results it can be concluded that for both Nai and CsCl 

gradients the resolution is better in the gradients centri

fuged in the fixed angle rotor (Fig. 3A and 3C). The best 

resolution was found in the Nai gradient centrifuged in the 

fixed angle rotor (Fig. 3A). In this gradient the contri

bution of the DNA peak, labelled by semiconservative re

plication, to the radioactivity coinciding with the fluores

cence peak is minimal. 

Speeifie radioactivity measurements 

In Fig. 2 and Fig. 3A, 3B, the distribution of radio

active DNA and of the fluorescent DNA-EB complexes over the 

Nai gradients is given in arbitrary units. As a quantitative 

measure of the amount of repair replication in T-cells the 

specific radioactivity of the DNA in the fluorescence peak 

was used. The amount of DNA in each fraction was found by 

mterpolating the relative fluorescence to a standard curve 

as shown in Fig. 1. The radioactivity of each fraction was 

determined as described in Materials and Methods. According 

to Cleaver 4 ' 5 in CsCl gradients the specific activity of 

repaired DNA cannot be determined directly from the radio

activity and transmittance profiles (see Introduction). To 

demonstrate that the determination of the specific activity 

of repaired DNA is independent of the amount of DNA present 

in the Nai gradient, several gradients containing different 

concentrations of the same DNA preparations were centri

fuged. This DNA was extracted from T-cells which have been 

irradiated with 200 erg/mm2 and incubated as described in 

Materials and Methods. The total amount of DNA in the solu

tion was determined by fluorometry. Four gradients with 

different amounts of DNA were centrifuged in a fixed angle 

rotor.After fractionation the amount of DNA and the radio

activity in each fraction was measured. The specific radio

activity of the three fractions of the fluorescence peak 

with maximum radioactivity was calculated. The mean specific 
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TABLE I 

SPECIFIC RADIOACTIVITY OF REPAIRED DNA FROM UV-IRRADIATED T-CELLS 

AS A FUNCTION OF THE DNA CONCENTRATION IN SODIUM IODIDE DENSITY 

GRADIENTS 

TOTAL AMOUNT OF DNA NUMBER OF MEAN SPECIFICb) SEMa) 

PER GRADIENT FRACTIONS RADIOACTIVITY 

(~g) apm/~g DNA 

18.4 3 6251 330 

12.3 3 6346 308 

5.2 3 6417 271 

1.8 3 6379 216 

a) Standard error of the mean 

b) The correlation coeffictent between the total amount of DNA and 

the specific radioactivity of three major fractions in the fluores

cent peak does not differ from zero significantly. 

activity as a function of the total DNA content in each 

gradient is shown in Table l. 

From the results it can be concluded that the specific 

radioactivity is independent of the DNA concentration; 

therefore it is possible to calculate directly the specific 

radioactivity of repaired DNA from the radioactivity and 

fluorescence profiles in Nai gradients. 

Repair replication after various UV-doses 

Measurements of the amount of repair replication in 

UV-irradiated T-cells in relation to radiation dose were 

made by calculating the specific radioactivity of the DNA 

in the fluorescence peak in density gradients centrifuged 

in the fixed angle rotor 40. In Fig. 4 the results of two 

separate experiments with UV-irradiated T-cells are shown. 

For comparison in one of the experiments DNA preparations 
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Fig. 4. Specific radioactivity of T-cell-DNA in the fluorescent peak in 

Nai and CsCl isopycnic gradients as a function of the ultraviolet light 

dose. 

( e ) , ( CJ l Nai gradients; ( 0 ) CsCl gradients. Centrifugation: Spinco 

rotor 40, 33,000 rpm, 60 h, 20°. 

were centrifuged simultaneously in Nai and in CsCl gradients. 

The data in Fig.4 are the mean specific radioactivity of 

the three fractions of the fluorescence peak with maximum 

radioactivity. 

The dose-response curves derived from the Nai gradients 

and the CsCl gradients have the same shape and demonstrate 

that under the conditions of the experiment the repair 

system operates at its maximal capacity after irradiation 

with about 100 erg;mm 2 . 
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DISCUSSION 

Anet et az! first used Nai density gradients to sepa

rate DNA molecules of different densities and showed that 

the resolution was better than in CsCl gradients. The ex

periments described in this paper show that the use of Nai 

density gradients for the study of repair replication in 

UV-irradiated human cells provides several advantages over 

the use of CsCl gradients. The separation of semiconserva

tively replicated DNA, of hybrid density, and repaired DNA 

of normal density was much better in Nai than in cscl gra

dients. In agreement with Falm et al~ we found the resolu

tion in the fixed-angle rotor superior to that in the 

swinging-bucket rotor. The higher resolution led to a mark

ed reduction of the contribution of radioactivity in the 

peak, representing semiconservatively replicated DNA, to 

the radioactivity present in the peak of repaired DNA. 

Advantages additional to the optimal resolution in Nai gra-
• 

dients centrifuged in fixed-angle rotors are the low cost 

of Nai and the larger tube capacities of these rotors in 

comparison to swinging-bucket rotors. The latter advantage 

compensates for the longer centrifugation time necessary to 

attain equilibrium in the fixed-angle rotor. 

Another improvement for the quantitative determination 

of repair replication was the direct measurement of the 

amount of DNA in the fractions of the gradient, based on 

the fluorescence properties of DNA-ethidium bromide com

plex. 
8 

LePecq et al. have shown that the fluorescence in-

crease, caused by the specific binding of EB to double

stranded regions of DNA, is proportional to the concentra

tion of native DNA. This method to determine DNA concentra

tions could be applied directly to the fractions of Nai 

gradients, because the fluorescence was not affected by the 

high Nai concentration. The presence of EB in the Nai 

gradient (in contrast to CsCl gradients) does not influence 

the boyant density of the DNA 1 ; therefore EB could be added 
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to the Nai solution before centrifugation. It was demon

strated that the quantitative measurement of fluorescence 

provided an adequate and sensitive method to determine the 

amount of DNA in each fraction. The specific activity of 

repaired DNA, calculated from fluorescence and radioacti

vity data, appeared to be independent of the to.tal amount 

of DNA present in the gradient. 

The increased resolution in Nai gradients in combi

nation with the sensitive fluorimetric DNA determination 

provided an accurate method to quantitate repair replica

tion in human cells, without the need of rebanding the 

repaired DNA in an additional gradient, as is often neces

sary with CsCl gradients. 
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PAPER IV 

REPAIR REPLICATION IN HETEROKARYONS DERIVED FRO!! DIFFERENT 

REPAIR-DEFICIENT XERODERMA PIGMENTOSUM STRAINS* 

a a b E.A. DE WEERD-KASTELEIN , W.J. KLEIJER , M.L. SLUYTER AND 

W. KEIJZERa 

aDepartment of Cell Biology and Genetics~ Erasmus Univer

sity~ P.O. Box 1?38~ Rotterdam and bMedical Biological 

Laboratory~ TNO, Rijswijk (Z.H.J (The Netherlands). 

SUMHARY 

Repair replication was studied in UV-irradiated cell 

populations obtained after fusion of cell strains originat

ing from different xeroderma pigmentosum (XP) patients. The 

capacity to perform repair replication appeared to be 

restored completely in multinucleate heterokaryons result

ing from fusion between a classic XP-strain and a de 

Sanctis-Cacchione (DSC) strain. In cell populatidns ob

tained by fusion of either two different classic XP-strains 

or two different DSC-strains no repair replication was ob

served. 

These results, obtained with the technique of density 

labelling and isopycnic centrifugation of DNA, confirm our 

previously reported results of autoradiographic studies of 

unscheduled DNA synthesis. The occurrence of complementat

ion beb·reen a classic XP-strain and a DSC-strain indicates 

that the defect in the two forms of the disease is caused 

by different mutations. 

Abbreviations: BUd~, 5-bromodeoxyuridine; osc, oe Sanctis-cacchione; 

FUdR, 5-fluorodeoxyuridine; TCA, trichloroacetic acid; XP, xeroderma 

pigmentosum; HAU, hemagglutinating units. 

* Mutation Research, 19 (1973) 237-243. 
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INTRODUCTION 

Two clinically different forms of the hereditary di

sease xeroderma pigrnentosum (XP) have been recognized: the 

classic form of XP and the De Sanctis-Cacchione (DSC} syn

drorne9. Both forms of XP are characterized by hypersensiti

vity of the skin to sunlight, leading to the development of 

severe skin lesions. DSC-patients are distinguished from 

patients with the classic form of XP by the involvement of 

neurological complications. 

Studies on skin fibroblasts 1 ' 3 and lymphocytes 2 from 

patients of each XP-type have indicated an impaired ability 

of these cells to perform repair DNA synthesis after UV

irradiation, probably due to a defective initial step in 
. 4 7 10 

excision repalr ' ' . In cell strains from different' pa--

tients various levels of repair DNA synthesis ranging from 

0-100% of that in normal human cells were found 1 . Cell 

strains from genetically related patients performed similar 

amounts of repair DNA synthesis 1 . These findings demonstrat

ed that the degree of reduction of the repair activity is 

genetically determined. 

The different characteristic levels of repair activity 

in the XP-strains and the occurrence of two clinically dis

tinct forms of XP suggest a genetic heterogeneity in this 

disease. This hypothesis was supported by autoradiographic 

studies of repair DNA synthesis in heterokaryons obtained 

by fusion of different XP-strains, described in a previous 

paper11 . In binucleate heterokaryons derived from two re

pair-deficient XP-strains, one of the classic type and the 

other of the DSC type, the capacity to perform unscheduled 

DNA synthesis appeared to be restored. In this report the 

complementation between a classic XP~ and a DSC-strain is 

confirmed by the demonstration of repair replication in the 

fused cells, using the technique of BUdR density labelling 

and isopycnic centrifugation of DNA8 . 
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r<ATERIALS AND METHODS 

Cell strains and culture techniques 

The cell strains used ivere the following primary fi

broblast strains: AH, originating from a normal individual; 

XPiand XP!6 11 , from two severe classic XP-patients; and 

t1~ro strain~ from DSC-patients, XP24 (provided by Dr. Cleaver 

and designed by him XP17) and XP25 (the biopsy was provided 

by Dr. Der Kaloustian). cultures were grown in Fl2 medium 

supplemented with penicillin (100 I.U./rnl), streptomycin 

(0.1 mg/ml} and 15% foetal calf serum. 

Fusion procedure 

The fusions were performed according to the procedure 

of Harris et al. 5 . Cells of hvo different XP-strains were 

mixed in a ratio of 1:1 at a final concentration o£2 x 10
6 

cells per rnl. s-Propiolactone inactivated Sendai virus6 was 

added (final titer 500 HAU per ml). This mixture was kept 

during 4 min at 4° and after shaking at room temperature 

incubated for 20 min at 37°. After fusion the cells were 

diluted and plated in plastic petri dishes (Greiner, dia

meter 9 or 14 em for density gradient experiments or Falcon, 

diameter 3.5 ern, containing a coverslip for autoradiography). 

Irradiation and .Labelling of the DNA 

UV-irradiation (254 nm,) of •Nashed and dra.ined cul

tures was performed with a Philips TUV lamp (15 W) at 7.5 

erg/rnrn2;sec, two days after fusion. 

The cultures to be analysed in density gradients were 

incubated in medium containing BUdR (1.5 ~g/ml) and FUdR 

(10- 6M) for 2 h before irradiation,and 3 H-BUd~ (10 vCi/ml; 

spec.act. 15.3 Ci/rnrnole), FUdR (10- 6 M) and hydroxyurea 

(10- 3M) for 2 h after irradiation. The cultures to be pro

cessed for autoradiography were incubated during 1 h before 

and 2 h after irradiation in medium containing 3 H-thymidine 

(10 vCi/ml;spec.act. 2 Cijrnrnole). 
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Extraction and isopycnic centrifugation of DNA 

Approximately 2x10 6 control cells and cells of the 

fused XP-populations (a number equivalent to 2x10 6 cells in 

the mononucleate situation before fusion) v.1ere collected by 

scraping them from the dishes 1 washed tv.Jice in cold saline 1 

centrifuged and stored as cell pellets at -70°. The frozen 

cells were resuspended in 1 ml buffer (0.15 ~ NaCl 1 0.01 

H EDTA 1 0.01 ~1 Tris, pH 9.5 1 0 .. 1% sarkosyl (Geigy)) and in

cubated for 30 min at 60°. The DNA was extracted by shaking 

with an equal volume of chloroform/isoamylalcohol (24:1). 

Five ml of a solution containing the DNA extract, 0.01 

~ sodiumbisulfite and 20 ~g/ml ethidiumbromide was added to 

4.650 g Nai (final density 1.5300 g/cm3 ) in tubes which 

were then filled to the top with mineral oil. The tubes 

were centrifuged in a Spinco fixed angle rotor (40) for 

60 hat 33 1 000 rpm and 20°. 

The technique of isopycnic centrifugation of DNA in 

Nai gradients has been described and discussed in more de-
8 tail in a separate paper . 

Fractionation~ DNA concentration and radioactivity assays 

The gradients were sampled from the bottom in 15-17 

fractions of 0.3 ml. Fluorescence at 590 nm (excitation 

wavelength : 520 nm) >•ras measured in each fraction using 

a Baird Atomic spectrofluororneter. The amount of DNA was 

determined by comparison with a calibration curve made with 

a solution containing Nai, sodiumbisulfite and ethidium

bromide in the same concentrations as in the gradients and 

with various known concentrations of DNA8 . The DNA in each 

fraction was precipitated with 10% TCA/0.01 M sodium pyro

phosphate (0°) 1 collected on Whatman GF/C glass fibre paper 

and washed with respectively 5% TCA/0.01 M sodium pyrophos

phate and 96% ethyl alcohol. The radioactivity in the dried 

filters was counted in toluene/PPO (6g/l)/POPOP (0.1 g/1) 

in a liquid scintillation counter (Nuclear Chicago, mark 2). 
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Autoradiography 

Autoradiographs of the cultures grown on coverslips 

were made as described earlier1 . 

RESULTS AND DISCUSSION 

Repair replication was studied in cell populations 

resulting from fusions between a classic XP-strain and a 

DSC-strain (XP4/XP25), between two genetically unrelated 

classic XP-strains (XP4/XP16) and between two unrelated 

DSC-strains (XP24/XP25). 

In the population of cells obtained after fusion of 

two different strains three main classes of cells may be 

expected, namely: unfused parental cells, fused cells con

taining nuclei of only one of the parental strains (homo

karyons) and fused cells with nuclei of both parental 

strains (heterokaryons). Complementation and therefore also 

repair replication may be expected only in heterokaryons. 

In order to promote a maximal amount of repair replication 1 

fusion conditions were applied that gave a high percentage 

of multinucleate cells and consequently also a high percen

tage of heterokaryons. 
Fig.! shows a detail of an autoradiographic preparat

ion of an XP4/XP25 population after UV-irradiation and la

belling with 3H-thymidine. Part of the binucleate cells and 

most of the multinucleate cells were weakly labelled 1 where

as a very small number of grains was found over all rnononu

cleate cells (except for heavily labelled S-phase cells). 

In three experiments 50-70% of all nucleic were weakly la

belled (i.e. 8-50 grains per nucleus). 

Cell populations from the same fusions as used for 

autoradiography were analysed for repair replication. The 

profiles in Fig. 2 show the distribution in the Nai gra

dient of DNA from unirradiated and irradiated cell popul

ations after fusion (XP4/XP25). The distribution of DNA, 

as measured by the fluorescence of the ethidiumbromide-DNA 
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Fig. 1. Autoradiograph of a cell population after fusion (XP4/XP25). Two 

days after fusion the cells were irradiated with 100 erg/mm2 UV-light. 
3H-thymidine labelling was performed h before and 2 h after UV-irradiat

ion. Autoradiographic exposure time: week. The large multinucleate cell, 

the trinucleate and the binucleat~ cell shown are labelled. The unfused 

XP-cells are not labelled except one heavily labelled S-phase cell. 
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Fig. 2. Nai isopycnic gradients of DNA from cells of an XP4/XP25 pcpulat

ion. Two days after fusion the cells were grown for 2 h in BUdR, irradiat

ed with 100 erg/mm2 UV-light ( 8 ) or not irradiated { 0 ) , and labelled 

with 3H-BUdR, The DNA-distribution as measured by fluorescence (- - -) is 

shown only for irradiated cells because the profile for unirradiated cells 

was similar, The total amount of radioactivity in the gradient for irrad

iated cells was 44,000 cpm. 

complex shows one peak at the normal density for DNA (app. 

1.522 g/cm3 in Nai). The radioactivity profiles obtained 

for both unirradiated and irradiated cells show a peak at 

a higher density (1.565 g/crn 3 ) representing serniconservati

vely replicated DNA that has acquired a hybrid density by 

BUdR substitution in one of the strands. In the case of ir

radiated cells there is an additional peak coinciding with 

the peak in the distribution of the total amount of DNA. 

The radioactivity in this peak at the normal density of DNA 

demonstrates that 3H-BUdR has been incorporated in the DNA 

dispersively and indicates repair replication. A quantita

tive measure for repair replication is given by the speci

fic radioactivity {cpm/~g DNA) of the DNA of normal density. 

The average specific radioactivity was calculated from the 

three top fractions of the peak of repaired DNA. The stand

ard deviation of the specific radioactivity was 10% in cont-
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Fig. 3. Repair replication as a function of UV-dose, expressed as specific 

radioactivity (cpm/~g DNA) of a normal human cell strain (AH) { e ) and 

cell populations obtained after fusion; (a) XP4/XP25 ( 0 ) , XP4/XP4 ( !:::.. ) 
and XP25/XP25 ( .6. ) ; (b) XP4/XP16 ( 0 ) and XP24/XP25 ( II ) . 

rol experiments 

were irradiated 

in which separate normal human cell cultures 
2 (100 erg/rnm ), labelled and analysed simul~ 

aneously and under identical conditions. 

Fig. 3a presents the results of an experiment in which 

repair replication in the XP4/XP25 population was compared 

with that in a normal human strain (AH) and two populations 

of fused parental cells (XP4/XP4 and XP25/XP25) which served 

as controls. The level of repair replication in the XP4/XP 

25 population appeared to be 61% of the level in normal 

cells, whereas in the XP4/XP4 and XP25/XP25 populations 

only very low levels were found. In the populations obtain

ed after fusion of either two classic XP-strains (XP4/XP16) 

or two DSC-strains (XP24/XP25) no repair activity was de

tected (Fig. 3b). 

It is evident from these results that the repair capa

city has been restored by complementation in the XP4/XP25 

population. Since only a fraction of all nuclei, namely 

those in heterokaryons XP4/XP25, will have contributed to 

the measured amount of repair replication, the repair acti

vity in these nuclei relative to normal (AH) nuclei will be 

higher than the 61% found for the whole population. The 
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fraction of repair-positive nuclei in the present experiment 

was obtained by addition of two distinct fractions of nuc~, 

counted in the autoradiographic preparation: a) a large 

fraction 61 ± 2%) consisting of the repair-positive nucla 

in G1 or G
2 

- phase, recognized as weakly labelled nuclei, 

and b) a small fraction (2%) consisting of the probably 

repair-positive S-phase nuclei, situated in multinucleate 

cells (12% of all nuclei were in S-phase; 18% of these 

heavily labelled nuclei were found in multinucleate cells). 

The level of repair replication in repair-positive nuclei 

relative to that in normal cells (AH) is obtained by divid

ing the level found for the whole population (61%) by the 

fraction of repair-positive nuclei (a+b), i.e. 61/63 x 100% 

= 97%. It is suggested therefore that in those cells where 

complementation occurs, the repair capacity is restored to 

the normal human cell level. 

The restoration of the repair replication capacity afrer 

fusion of a classic XP- and a DSC-cell strain indicates thtt 

in the two forms of XP, different mutations are responsible 

for the defect. These results are in agreement with our 

earlier findings on UV-induced 3H-thymidine incorporation 
11 occurring in classic XP/DSC heterokaryons The dispersive 

character of the UV-induced DNA synthesis in these hetero

karyons, shown in the present report, confirms that the in

corporation of 3H-thymidine represents repair DNA synthesis. 
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SUMMARY 

UV-induced DNA repair synthesis, as measured by auto

radiography as well as by isopycnic centrifugation methods, 

was studied in a large number of cell strains from patients 

with the classic form of xeroderma pigrnentosum (XP) or the 

De Sanctis-Cacchione syndrome (DSC) and several of their 

heterozygous parents. On the basis of the kinetics of re

pair synthesis in the cultured skin fibroblasts we can re

cognize four distinct groups of XP patients: (1) Classic XP 

patients with low residual repair capacities, (2) Classic 

XP patients with intermediate, but dose-dependent, levels 

of repair synthesis relative to the normal level, (3) Pa

tients, diagnosed as having classic XP, with a normal or 

only slightly reduced repair capacity, (4) DSC patients 

with a complete deficiency of repair synthesis. Complementa

tion studies reported elsewhere have shown that different 

mutations are responsible for the defect in at least three 

of these groups. Cell strains of each of the four XP types 

were able to rejoin single-strand DNA-breaks induced by 

*submitted for publication in Hutation Research. 
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X-rays. Most of the cell strains derived from heterozygotes 

showed normal repair activities; however in some cases (the 

parents of DSC patients) a significant reduction of the 

level of repair synthesis was found. 

INTRODUCTION 

The biological significance of an excision repair 

process in mammalian cells has been demonstrated in studies 

of DNA repair in cells from patients having the autosomal 

recessive disease xeroderma pigmentosum (XP) . The UV-sens

itive cells 7 ' 12 , originating from XP patients have are

duced capacity to perform DNA repair synthesis after UV

irradiation 5 ' 1 ' 4 and are unable to excise pyrimidine dimers 

from their DNA 26 ' 10 ' 15 . 

Several observations have indicated that the genetic 

basis of XP is not similar in all patients. Two clinically 

distinct forms of this disease are known: the classic type 

of XP and the De Sanctis-Cacchione syndrome (DSC) 23 . Both 

forms are characterized by hypersensitivity of the skin of 

the patients to UV-light, leading to severe skin lesions in 

sun-exposed regions of the body; DSC patients in addition 

suffer from neurological complications. In previous auto

radiographic studies Bootsma et a1. 1 found various levels 

of unscheduled DNA synthesis (UDS) in a number of classic 

XP strains but similar levels in genetically related pa

tients. Genetic evidence for the involvement of different 

mutations was obtained from complementation studies by 
27 28 18 . De Weerd-Kastelein et al. ' ' . Complementatlon, lead-

ing to the restoration of the capacity to perform DNA re

pair synthesis, was demonstrated first in heterokaryons 

obtained after fusion of classic XP and DSC cells. Similar

ly we have recently found evidence for the presence of two 

Abbreviations: XP, xeroderma pigmentosum; DSC, De Sanctis-Cacchione; 

UDS, unscheduled DNA synthesis; BUd~, 5-bromodeoxyuridine; FUdR, 5-
fluorodeoxyuridine. 
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complementation groups in classic XP (De Weerd-Kastelein, 

unpublished results). 

From biochemical data it has been suggested that 

classic XP as well as DSC cells do not perform an initial 

step of the repair process 6126 ' 17 A further biochemical 

characterization of XP cell strains is required to reveal 

the defective enzyme function in each of the distinct XP 

forms. For that purpose we have compared the kinetics of 

UDS (by autoradiography) and repair replication (by density 

gradient analysis) in normal human cells and in cell 

strains from a large number of XP patients and several of 

their heterozygous parents. The group of patients includes 

cases of classic XP with clinical symptoms varying from 

mild to severe and cases of the DSC syndrome. 

MATERIALS 

(a) Cell strains and culture techniques 

Fibroblast cultures were started from skin biopsies in 

Carrel flasks using Fl2 medium supplemented with 20% foetal 

calf serum. Before subculturing in tissue culture bottles 1 

the serum concentration was changed to 15% foetal calf 

serum. HeLa cells and T cells (established human kidney 

cell line) used in the excision experiments were grown in 

Fl2 medium with 10% newborn calf serum. For UDS experiments 

cells were seeded in small petri dishes (Falcon, diameter: 

3.5 em) containing a coverslip, whereas for repair replica

tion and excision experiments large petri dishes (Greiner, 

diameter: 9 em) were used. 

DetailS on the XP cell strains are presented in Table I, 

II and III. The designations used in this paper for XP 

cell strains anticipate on a proposal by Cleaver and 

Bootsma for the standardization of the nomenclature for XP 

cell strains. All strains from individuals who are clinical

ly diagnosed as XP patients are called XP (including 

classic XP, DSC and variant patients with a normal repair 

ability). The cell strains from heterozygotes are called 
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XPH. The strains are further characterized by a serial 

number or by two letters {e.g. the initials of the patient) 

given in the institute where the cells have been brought 

into culture and by two letters which denote the city where 

this institute is situated (e.g. RO for Rotterdam, SF for 

San Francisco, etc.). 

(b) Irradiation 

UV-irradiation (254 nm) of the washed and drained cul

tures was performed with a Philips TUV lamp (15 W) at 

either 7.5 or 9 erg/mm2/sec. X-irradiation conditions were 

as described previously 17 

(c) Unscheduled DNA synthesis 

The cultures were labelled with 
3
H-thymidine (10 ~Ci/ 

ml; 2.0 Ci/mmole) for 1 h before UV-irradiation in order 

to label cells in S-phase and for 2 h after irradiation. 

Fixation of the coverslip cultures, autoradiography, stain

ing and the analysis of the autoradiograms were performed 
l as described previously 

(d) Repair replication 

The cells were incubated in medium containing BUdR 

(1.5 ~g/ml) and FUdR (10- 6M) for 2 h before UV-irradiation. 

After irradiation incubation was continued in medium con

taining 3H-thymidine (10 ~Ci/ml; 20 Ci/mmole, BUdR (1.5 ~g/ 
ml), FUdR (10- 6M) and hydroxyurea (10- 3M) for 2 h (or other 

periods indicated under Results). After the cells were har

vested, (1.10 6-2.10
6 

for each experimental point), the DNA 

was isolated and analysed by sodium iodide density gradient 

centrifugation as previously described 
20 

(e) Excision of pyrimidine dimers 

Cells, grown in petri dishes, were labelled for 20 h 

with 3H-thymidine (2.5 "Ci/ml; 26 Ci/mmole). After post

UV-incubation periods of 0,8 and 24 h the cells were col

lected and washed. DNA preparations, free of protein and 
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containing relatively low amounts of RNA, were obtained by 

the phenol extraction procedure described by Kirby and 
14 

Cook . The DNA was hydrolysed in formic acid and the 

radioactive products, thymine and thymine-containing 

pyrimidine dimers were separated by two-dimensional paper 

chromatography as described by Setlow and carrier 25 

The pyrimidine dimer content of the DNA was determined by 

counting the radioactivity in the thymine and the dimer 

regions of the chromatogram, and was expressed as the per 

cent radioactivity in dimers of the total radioactivity 

(XT/T%) . The amount of radioactivity recovered from the 

dimer regions of each chromatogram was 400-1200 cpm. 

(f) Rejoining of X-ray induced single-strand breaks 

The numbers of single-strand breaks in the DNA of 

X-irradiated cells were calculated from the molecular 

weights of the DNA as determined by sedimentation in alka

line sucrose gradients. The conditions used for cell-lysis 

and centrifugation of the DNA were as described earlier 
17 

RESULTS 

(a) The time course of repair replication in UV-irradiated 

normal human cells 

Fig. 1 shows an example of the separation in NaT-densi

ty gradients of repaired DNA with a normal density (Fig. 

lb; fractions 10-15) from semi-conservatively synthesized 

DNA with a higher density (fractions 1-5). The peak re

presenting repaired DNA is found after UV-irradiation and 

labelling of normal cells as described in Materials and 

Methods, but is absent if the cells used are not irradiated 

(Fig. 1a). A quantitative measure for the amount of repair 

replication is given by the specific radioactivity of re

paired DNA (cpm/~g DNA); this value was calculated from the 

radioactivity and the amount of DNA (as measured by fluor

escence of the ethidiumbromide-DNA complex 
20

) in the three 

top fractions of the peak containing the repaired DNA. 
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Fig. 1. Repair replication in human cells demonstrated with the 

Nai isopycnic centrifugation technique. The cells were grown for 

2 h in medium containing BUdR and FUdR before IJV-irradiation. 

After irradiation incubation was continued for 2 h in medium 

containing 3H-thymidine, BUdR, FUdR and hydroxyurea. Distributions 

in Nal isopycnic gradients of the total amount of DNA (0) and of 

tritium-labelled DNA (G) from normal human cells (AH). Total amount 

of radioactivity per gradient: 2 - 3 x 10 4cpm. (a) 0 erg/nun2 ; (b) 

100 erg/mm2 . 

The standard deviation of specific radioactivity measure

ments was 10% in control experiments in which different 

cell-samples were irradiated, labelled and analysed simulta

neously under identical conditions. 

The amounts of repair replication occurring in normal 
2 cells following UV-doses of 100, 200 and 500 erg/mm are 

presented in Fig. 2. The repair process seems to be complet

ed at about 8 h following a dose of 100 erg/mm
2

, whereas 
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15 
500 

AH 

0 4 8 16 

hours after UV 

Fig. 2. The amount of repair replication as a function of time 

after uV-irradiation in normal human cells (AH) determined by Nai 

isopycnic gradient analysiso 

2 
after 200 erg/mrn a considerable amount of repair takes 

place between 8 and 16 h. After 500 erg/mm2 the amount of 

repair replication increases almost linearly with time and 

suggests that the repair replication rate remains constant 

for at least 16 h. 

(b) Excision of pyrimidine dimers 

The excision of pyrimidine dimers from the DNA was 

studied by the de.termination of the radioactivity in dimers 

(Tt and ~) as a percentage of the total radioactivity in 

the DNA of cells at various time-intervals after UV-irra

diation (200 erg;mm2 ). A decrease in the dimer content 

{~/T%) of DNA of about 25% after 8 h and 50% after 24 h 

post-irradiation incubation was found in experiments with 

T cells, HeLa cells and normal human skin fibroblasts 

(Fig. 3). 
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Fig. 3. Excision of pyrimidine dimers in normal human primary 

fibroblasts (AH) (O), T-cells (e) and BeLa-cells (A) during incu

bation after UV-irradiation (200 erg/mm2 ). The pyrimidine dimer 

content (XT/T%) of the DNA was determined by measuring the radio

activity in the dimers (fT + CTJ and thymine (T) after chromato

graphy. 

(c) Unscheduled DNA synthesis and repair replication in XP 

cells 

The amounts of UDS and repair replication performed 

during 2 h following various UV-doses have been measured in 

a series of classic XP and DSC cell strains. In Table I 

UDS and repair replication (at 100 erg/rnm2 ) in the classic 

XP strains are presented as a percentage of the levels in 

normal human cells, which were measured simultaneously as 

controls in each experiment. In a group of 7 cell strains, 

all originating from severe cases of classic XP ( the first 

group in Table I), low residual repair activities were ob

served. Cell strains from patients in 2 unrelated families 

(the second group in Table I) showed intermediate repair 
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TABLE I 

D N A R E P A I R CAPAC IT I E s 0 F c E L L s F R 0 M 

c L A S S I C X E R 0 0 E R M A p I G H E N T 0 s u M p A T I E N T S 

CELL CASE UNSCHEDULED REPAIR REJOI:HING 

STRAIN a 
SEX AGE CLIN.SYHP. DNA- REPLIC- OF DNA-

(SEVERITY) SYNTHESIS b AT ION b BREAKS 

XP4RO d FEMALE 16 SEVERE 10-15 5-10 n 

XP9RO MALE 9 SEVERE 10-15 n 

XP16RO HALE 9 SEVERE 5-10 5-10 

XP19HO e FEMALE 14 SEVERE 10-15 

XP20RO MALE 3 SEVERE 10-15 

XP21RO d 
MALE 15 SEVERE 10-15 

XP12SF 
f 

FEMALE 12 SEVERE 10-15 

XP2RO g FEMALE 34 MODERATE 40 35 n 

XP3RO g 
FEMALE 29 LIGHT/MOO. 45 

XPSRO 
h 

FEMALE 25 LIGHT/MOD. 25 22 n 

XP6RO h 
FEMALE 18 LIGHT 31 

XP7RO h 
FEMALE 18 LIGHT 28 

XP!RO MALE 48 VERY LIGHT 75 70-100 n 

XPllRO FEMALE 45 VERY LIGHT 100 

XP7TA i 
FEMALE 20 SEVERE 99 

XP30RO 
j 

MALE 30 LIGHT/MOD. 88 110 n 

a 
A new nomenclature for XP-cell strains is used, see under Materials 

and Methods. 
b 

c 

d 

e 

f 

g 

h 

i 

j 

Expressed as a percentage of the levels found in normal cells after 

a UV-dose of 100.ergjmm2. 

n (normal), means that more than 70% of the breaks were rejoined 

within 20 min after X-irradiation (20 krad), which was also found 

in normal cells. 

XP4RO and XP21RO are siblings. 

XP19HO provided via Dr. R.M. Humphrey, Houston. 

XP12SF, provided by Dr. J.E. Cleaver, San Francisco. 

XP2RO and XP3RO are second cousins. 

XPSRO, XP6RO and XP7RO are siblings. 

XP7TA, provided by or. H. Slor, Tel Aviv. 

XP30RO, skin biopsy provided by Dr. V. oer Kaloustian, Beirut. 
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activities. In 4 cases the levels of DNA repair synthesis 

were normal or only slightly reduced (the third group in 

Table I). Data on UDS obtained for the strains XP (1-7)RO 

and XP9RO have been described earlier 1 . 

Autoradiography and density gradient data obtained with 

the strains XP2RO and XP4RO, are presented in more detail 

in Fig. 4. The amount of repair replication observed in 

XP2RO cells was strongly reduced at low UV-doses, but in

creased with the dose up to at least 1000 erg/mm2 and ap

proached the level in normal cells, which reached a maximum 
2 already at 100-200 erg/mm (Fig. 4b). A corresponding in-

crease in the relative repair level was apparent from the 

dose response curves for UDS in XP2RO (Fig. 4a) and XP3RO 

cells (see ref. 1) and possibly also for XPSRO cells. 

In other cases (e.g. XP4RO, Fig. 4) the level of repair 

synthesis relative to that in normal cells was not dose

dependent. 

In order to investigate whether XP cells with appreci-

30 a 

XP2RO 

XP4RO 

100 500 1000 

erg/mm2 

~ 

' ., 
.3 

"' z 
" " .:: 
E 
"-u 

b 

0 100 500 

erg /mm 2 

Fig. 4. DNA repair synthesis as a function of UV-dose in normal 

human fibroblasts (DB and AH), cells from a moderately severe 

classic XP-patient (XP2RO) and cells from a severe classic XP

patient (XP4RO) . 

XP4RO 

(a) Unscheduled DNA synthesis; 3H-thymidine labelling for 3 h after 

UV; autoradiographic exposure time: 3 days. (b) repair replication; 
3
H-thymidine labelling {in the pr~sence of BUdR, FUdR and hydroxyurea 

for 2 h after UV; Nai isopycnic gradient analysis. 

1000 
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Fig. 5. The amount of repair replication as a function of time 

after UV-irradiation (100 erg;mm2 ) in normal cells (AH) and two cell 

strains from moderately severe classic XP patients (XP2RO and XPSRO), 

determined by Nai isopycnic gradient analysis. 

able residual repair capacities might be able to perform 

ultimately as much repair as normal cells, the repair pro

cess was followed for extended periods in XP2RO and XPSRO 

cells. Fig. 5 shows that the repair process in these cells 

after a dose of 100 erg/mm2 continued for at least 24 h, 

whereas in normal cells the repair was almost completed 

after 8 h. 

Table II summarizes the results of eXperiments on UDS 

in 6 DSC strains and repair replication in 2 of these 

strains. In all cases the amounts of repair synthesis at 

various UV-doses up to l000erg/mm2 did not exceed signifi

cantly the background level observed in unirradiated cells. 

{d) DNA repair synthesis in cells from XP-heterozygotes 

Repair synthesis was studied in 7 cell strains derived 

from the parents of classic XP and DSC patients. In 2 hete

rozygous strains (XPH14RO and XPHlSRO) from both parents 

of a DSC patient (XP12RO) a significant reduction of the 

repair synthesis level was found with the autoradiographic 
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TABLE II 

D N A R E p A I R C A P A C I T I E S 0 F c E L L s F R 0 M 

D E s A N C T I S - C A C C H I 0 N E P A T I E N T s 

CELL CASE UNSCHEDULED REPAIR REJOINING 

STRAIN a SEX AGE CLIN.SYMP. DNA- REPLIC- OF DNA-

SYNTHESIS b AT ION b BREAKS c 

XP12RO 

XP4LO 

XP17SF 

XP25RO 

XP26RO 

XPPKSF 

a,b,c 

d 

e 

f 

d MALE 13 SEVERE (5 <5 n 
e MALE 6 SKIN LESIONS (5 
f FEMALE 9 AND (5 
d MALE 1 NEUROLOGICAL (5 <5 n 
d FEMALE 7 COMPLICAT- (5 <S 
f FEMALE 9 IONS <5 

See footnotes a, b, c TABLE I· 

XP12RO is genetically related to the siblings XP25RO and 

XP26RO,skin biopsies provided by Dr. V. Kaloustian, Beirut· 

XP4LO ,provided by Dr. J.M. Farrington, London. 

XP17SF and XPPKSF, provided by Dr. J.E. Cleaver, San Francisco. 

technique (Table III and ref. 2) as well as with the densi

ty gradient technique (Table III) . The same mutation is 

probably present in the heterozygotes XPH27RO and XPH28RO 

because of family relationships. However the cells of these 

individuals did not show a consistent decrease of the re

pair level, although a slight decrease is indicated in the 

UDS data. The cell strains derived from parents of classic 

XP patients performed normal amounts of repair after doses 
2 

up to 1000 erg/rnm (Table III). 

(e) Rejoining of X-ray induced single-strand DNA breaks 

Following X-irradiation (20 krad) normal and XP cells 

were incubated for 0, 10, 20, 40 and 60 min. The molecular 

weight of the DNA at the various post-irradiation periods 

was determined by sedimentation in alkaline sucrose gra~ 

dients as described previously 17 and the number of breaks 

relative to DNA from unirradiated cells was calculated. 

The time courses of rejoining for all cell strains studied 
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TABLE III 

DNA REPAIR CAPACITIES OF CELLS FROH HETEROZYGOTE PARENTS OF CLASSIC 

XERODERMA PIGMENTOSUM AND DE SANCTIS-CACCHIONE PATIENTS 

CELL 

STRAIN 

XPH8RO 

XPH!ORO 

a 

XPH14RO c 

XPHlS'R.O C 

XPH17RO 

XPH27ROc 

XPH28RO 

CASE 

MOTHER OF XPSRO 

XP6RO, XP7RO 

(CLASSIC XP) 

MOTHER OF XP9RO 

(CLASSIC XP) 

MOTHER OF XP12RO 

(DSC) 

FATHER OF XP12RO 

(DSC) 

MOTHER OF XP16RO 

(CLASSIC XP) 

MOTHER OF XP25RO 

XP26RO (DSC) 

FATHER OF XP25RO 

XP26RO (DSC) 

See footnotes a, b TABLE I. 

UNSCHEDULED 

DNA SYNTHESIS b 
REPAIR 

REPLICATION b 

100 500 1000 100 500 1000 

-erg/mm2 UV-light -

100 100 100 

100 100 100 

81 71 83 51 60 56 

74 67 72 76 73 61 

100 100 100 127 98 78 

86 83 81 

95 88 94 128 88 97 

a,b 
c Skin biopsies were provided by or. V. Der Kaloustian, Beirut. 

(normal and XP, Table I and II) were similar to those pu-
17 

blished earlier for XP4RO and a normal strain 

DISCUSSION 

Repair replication (Fig. 2) and excision of pyrimidine 

dimers (Fig. 3 and refs. 22,26) in UV-irradiated human 

cells follow time courses which are consistent with the 

hypothesis that the two phenomena represent steps in the 

same repair process. A considerable fraction of the dimers 

is still found in the DNA at a time when the cell ceases 
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repair replication. Similar observations of Paterson et al. 
21 , who used UV-endonuclease purified from Mieroe!occus 

luteus to detect dimer sites, show that the remaining 

dimers are situated in the DNA indeed and not in large, ex

cised oligonucleotides, as might be supposed in the chroma

tographic method which we used. The incompleteness of dimer 

excision can also not be attributed to an early inactivat

ion of the repair system, or even of the whole cell, by the 

UV-dose used (200 erg/rnm2 ), because at higher doses (e.g. 

sao erg;mm2 ) the repair process appeared to continue for 

longer times. Therefore it is suggested that part of the 

dimer sites is less accessible to the excision repair sys

tem; the cell might cope with these dimers by a post-repli

cation repair mechanism 
19 '~ 

The amount of repair replication, performed in norffial 

cells during incubation for 2 h as a function of the UV-
2 

dose, reached a maximum between 100 and 200 erg/rom (Fig. 

4b). This can be ascribed to saturation of the repair sys

tem in this dose range, rather than to completion of the 

repair at the lower doses, because the rate of repair re

plication after 100 erg/mm2 remains constant for a longer 

time than the 2 h labelling period (Fig. 2). For the same 

reason the amount of repair synthesis measured in UV-irra

diated normal and XP cells after labelling periods of 2 h 

are proportional to the initial rates of repair synthesis. 

The XP patients involved in this study belong to two 

main groups according to their clinical symptoms: classic 

XP and the DSC syndrome. Among t·he classic XP patients 

there are differences in the severity of the clinical symp

toms. As described by Bootsma et a1. 1 and confirmed by the 

present extended investigations, the severity of the clini

cal symptoms of the patients and the levels of repair syn

thesis in the cells seemed to be inversely correlated. 

The various patients can be divided into four groups accord

ing to the different kinetics of the UV-induced DNA repair 

synthesis in their cells: 

1. Cases of classic XP with low, but detectable, 
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resldual repair capacities (Table I, first group; 5-15% of 

the control). 

2. Cases of classlc XP with intermedlate levels of re

pair synthesis. (Table I, the second cousins XP2RO and XP3 

RO: 35-50%; the siblings XP5RO, XP6RO and XP7RO: 20-30%). 

However, in XP2RO cells we observed a remarkable increase 

with dose in the relative repair replication rate from 29% 
2 2 of the control rate at 100 erg/mrn to 85% at 1000 erg/rnrn 

{Fig. 4b). Like the XP lymphocytes investigated by Burk et 
4 24 al. and Robbins and Kraemer , XP2RO and XP5RO cells con-

tinued the repair process for a longer time than normal 

cells did (Fig. 5); so eventually these XP cells may per

form as much repair as normal cells. 

3. Cases of classic XP with normal or only slightly 

reduced repair capacities (Table I, third grou~). Patients 

having symptoms comparable to those of XP but with normal 

DNA repair synthesis have also been reported by Jung 13 

Burket al. 4 and Cleaver 8 . The defect involved in these 

patients is probably not associated with any DNA repair 
3 system, including post-replication repair as was sug-

gested by Cleaver 8 because of his finding that cells of 

such patients have a normal UV-sensitivity. 

4. DSC patients with a complete deficiency of the re

pair capacity (Table II, 6 cases from 4 unrelated families). 

This complete deficiency is probably not characteristic for 

the DSC syndrome since DSC patients with residual repair 

capacities have been reported ?,l 2 , 24 

In the study of cell strains from the heterozygous 

parents of XP patients a reduced repair activity is indi

cated in the parents of the DSC patients in our series. 

In contrast, the only two cases of heterozyqotes having a 
8 reduced repair level reported by Cleaver were the parents 

of a patient with the classic form of XP. In most cases so

far investigated normal repair levels have been observed, 

which is consistent with the recessive nature of the di

sease. Apparently the enzyme which is defective in the XP 

cells, is present in excessive rather than in rate-limiting 
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amounts in normal cells. These results indicate that the 

detection of heterozygotes by means of the present techni

ques is not reliable. 

We have previously demonstrated that classic XP and 
27 28 18 DSC cells can complement each other ' ' . Recently we 

have found complementation between the XP2RO cells (group 2) 

and either DSC cells or classic XP cells of group 1 (un

published results). These observations indicate that diffe

rent mutations are involved in the three forms of the di

sease. As discussed above three of the four groups of XP 

patients are defective in excision repair. These three 

groups (1, 2 and 4), whiCh were distinguished by their 

distinct kinetics of repair synthesis, coincide with the 

three complementation groups. The data do not indicate 

whether the mutations are located within one gene or in 

different genes coding for polypeptides of either the same 

enzyme or different enzymes. 

Thusfar four arguments have been presented for the hypo

thesis that classic XP as well as DSC cells are defective 

in an initial step of excision repair, probably incision: 

(1) The normal repair replication 6 ' 17 and rejoining of 
17 single-strand breaks (Table I and II) after x-irradiat-

ion in XP cells. 

(2) The inability of XP cells to excise pyrimidine 
dimers 26,10,15. 

(3) The demonstration that dimer sites in the DNA, 

which are susceptible to attack by UV-endonuclease from 

Micrococcus luteus~ remain in XP cells, whereas they dis

appear from normal cells 21 . 

(4) The absence of accumulated breaks, which might be 

expected in the DNA of UV-irradiated XP cells as a result 

of incision if one of the steps following incision would be 

defective 16 . 

However neither of these data is conclusive for the 

hypothesis of a defective incision function in XP cells. 

The first argument only holds if the same enzymes are in

volved in the repair replication and rejoining steps in the 
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repair of UV and X-ray damage. The other three arguments 

are no longer valid if the repair enzymes operate in a co

ordinated way 15 ' 9 ' 16 (e.g. by a systematic scanning of the 

DNA by an enzyme complex) , since in that case a defect in 

any step would block the whole repair process. If the co

ordinated repair hypothesis is correct it cannot be exclud

ed that other steps in excision repair than the incision 

step can be defective in XP. Moreover in a complex model 

one can also envisage a mutation that affects the rate at 

which the complex advances along the DNA-strands from one 

lesion to the next; such a defect might cause a deviating 

dose-response curve for repair replication similar to that 

found for the XP2RO-strain (Fig. 4b). 

As described earlier, normal levels of repair synthesis 

per nucleus were found in most of the heterozygous (XP) 

strains and also in the heterokaryons obtained by fusion of 

normal cells with XP cells 
11 

or by fusion of different XP 

strains 
27

'
28

. These observations can be explained in the 

complex model if we assume that repair complexes can start 

the scanning and repair process only at a limited number of 

sites on the DNA. Only one complex would then operate effec

tively in a DNA region belonging to one "initiation" site; 

subsequent complexes entering the same region would be re

dundant because the DNA has already been repaired. A reduct

ion of the normal concentration of repair complexes would 

not affect the repair capacity as long as the concentration 

remains high enough to bind one complex to each initiation 

site. A co-ordinated repair mechanism, as proposed here, 

seems to permit an efficient repair of the DNA in the com

plicated chromosome structure and would avoid the presence 

of single-strand DNA regions or breaks for relatively long 

periods during the repair process. 
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