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RECURSIVE APPROXIMATION OF THE
HIGH DIMENSIONAL max FUNCTION

Ş. İ. BİRBİL, S.-C. FANG, J.B.G. FRENK, AND S. ZHANG

Abstract. An alternative smoothing method for the high dimensional max
function has been studied. The proposed method is a recursive extension of
the two dimensional smoothing functions. In order to analyze the proposed
method, a theoretical framework related to smoothing methods has been dis-
cussed. Moreover, we support our discussion by considering some applica-
tion areas. This is followed by a comparison with an alternative well-known
smoothing method.
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1. Introduction

In various areas of mathematical programming, the max function plays an impor-
tant role. A straightforward application is the min−max optimization [13], which
often arises within economics and engineering [7, 11]. Although the max function
has desirable properties like convexity, monotonicity and Lipschitz continuity, it is
not differentiable everywhere. Therefore, powerful computational techniques, like
the Newton’s method of nonlinear optimization, can not be directly applied. In or-
der to overcome the nondifferentiability, many researchers have proposed different
smoothing approximation schemes. Particularly, when the max function has two
arguments, several successful approximations can be found in the literature [3, 12].
However, for the high dimensional max function the number of approximation al-
ternatives decreases drastically.

The max function is also used in reformulating the complementarity constraints
along with the nonnegativity constraints. Hence, a successful smoothing scheme
leads to the development of effective tools for solving nonlinear complementarity
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(NCP) problems, linear complementarity (LCP) problems, and vertical linear com-
plementarity (VLCP) problems [4, 9, 5, 11, 10]. Consequently, difficult optimiza-
tion problems, like mathematical programs with equilibrium constraints (MPEC)
[8], become more tractable.

The main purpose of this paper is to provide a generic approximation for the
high dimensional max function. In order to achieve this, we propose a new method,
which utilizes the approximation functions for the two dimensional max function
and extends them to higher dimensions via a recursive mechanism. We start with
preliminary results related to approximation functions. This is followed by the
fundamental section on the recursive smoothing method. In order to show the
value of the proposed method, we provide illustrative applications and compare the
performance of the proposed method with a well-known method from the literature.

A couple of words on notation: the n dimensional real vector space is denoted by
R

n, a vector x ∈ R
n is considered as a row vector (x1, · · · , xn), the partial ordering

≥ (or ≤) on R
n is viewed as component-wise comparison, i.e., for x, y ∈ R

n we say
x ≥ y if and only if xi ≥ yi for i = 1, · · · , n.

2. Preliminary Results on Smoothing Methods

We give an elementary exposition of the basic results of a smoothing technique
already discussed in [1]. These results are needed in a subsequent section on re-
cursive smoothing. Contrary to the proof of the main inequality in [1], based on
the Fenchel-Moreau theorem and on the dual representation of the so-called reces-
sion function, we only need an elementary observation about convex functions. To
start with our exposition, let f : R

n → R be a convex function and introduce the
function, F : R

n → [−∞,∞] given by

(2.1) F (x) := limt↓0 tf(t−1x).

As will be shown in Theorem 1, this limit always exists. In applications generally,
the function F is nonsmooth, while the convex function f is chosen to be differ-
entiable. Notice that by relation (2.1), it is immediately clear that the function
F is also positively homogeneous and convex. The next elementary lemma is now
crucial for the derivation of the main inequality.

Lemma 1. For a given function f : R
n → R, the following conditions are equiva-

lent:
(1) The function f is convex.
(2) For every x, y ∈ R

n, the function h : [0,∞) → R given by

h(t) := f(y + tx) − f(y)

is convex on [0,∞).
(3) For every x, y ∈ R

n, the function s : (0,∞) → R given by

s(t) := t−1(f(y + tx) − f(y))

is non-decreasing on (0,∞).

Proof. The proof of the implication (1) ⇒ (2) is obvious. To show (2) ⇒ (3) we
observe for every 0 < α < 1 that

s(αt) =
h(αt)

αt
≤ αh(t) + (1 − α)h(0)

αt
=

αh(t)
αt

= s(t).
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To prove (3) ⇒ (1) we introduce for some x, y ∈ R
n the function s : (0,∞) → R

given by
s(t) = t−1(f(y + t(x − y)) − f(y)).

Since for every 0 < α < 1, we obtain by (3) that

f((1 − α)y + αx) − f(y) = αs(α) ≤ αs(1) = α(f(x) − f(y)),

the desired result in (1) follows. �
In the next result we show that the limit in relation (2.1) always exists, and at

the same time we provide an upper bound on the smoothing function x �−→ f(t−1x)
for every t > 0. This inequality is also shown in [1] by using the duality results from
convex analysis. However, we do not need these duality results, since the desired
inequality is an immediate consequence of the above elementary lemma.

Theorem 1. For a convex function f : R
n → R, the function F , given by relation

(2.1), is well defined. Moreover, for every x ∈ R
n and t > 0, the inequality

tf(t−1x) − F (x) ≤ tf(0)

holds.

Proof. Since f is a convex function, it follows by Lemma 1 that for every x ∈ R
n

the function t �−→ t(f(t−1x) − f(0)) is non-increasing on (0,∞). Hence, we obtain

supt>0 t(f(t−1x) − f(0)) = limt↓0 t(f(t−1x) − f(0))(2.2)

= limt↓0 tf(t−1x)

and this shows the result. �
Introduce for the convex function f : R

n → R, the set of functions f(·; t) : R
n →

R, t > 0, given by

(2.3) f(x; t) := tf(t−1x).

It is shown in the next result under some additional assumptions that the pointwise
convergence in relation (2.1) can be replaced by supnorm convergence. In the
sequel, for every compact set A ⊆ R

n we denote sup{|h(x)| : x ∈ A} by ‖h‖A .

Lemma 2. For a given convex function f : R
n → R, the following conditions are

equivalent:
(1) The function F , given by relation (2.1), is finite everywhere.
(2) For every compact set A ⊆ R

n, we have limt↓0 ‖F − f(·; t)‖A = 0.

Proof. The implication of (2) ⇒ (1) is obvious. To show (1) ⇒ (2), we observe
the following: Since F and f are finite convex functions, we obtain by Corollary
10.1.1 of [14] that they are both continuous. Moreover, if we introduce the functions
f(·; t) : R

n → R, t > 0 given by

f(x; t) := t(f(t−1x) − f(0)),

then by part (3) of Lemma 1 we have f(·; s) ≥ f(·; t) for every 0 < s < t. Also, by
relation (2.2), we know that limt↓0 f(x; t) = F (x). Hence the conditions of Dini’s
theorem (see Theorem 7.13 of [15]) hold and so for every compact set A, we obtain
limt↓0 ‖F − f(·; t)‖A = 0. Using now

‖F − f(·; t)‖A ≤ ‖F − f(·; t)‖A + t|f(0)|,
the desired result follows. �
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We want to remark that in the first condition of the above lemma, the finiteness
of F is implicitly satisfied whenever the function f is Lipschitz continuous on its
domain.

Let us now discuss two relations, which will be useful within the next section on
recursive smoothing. For any convex function f and function F given by relation
(2.1), we know for finite F that F is continuous. It is now an easy consequence of
Lemma 2 that for any sequence xt satisfying limt↓0 xt = x0, it holds that

(2.4) limt↓0 f(xt; t) = F (x0).

Moreover, since F is continuous, we have

β := max{F (x) : ‖x‖∞ = 1} < ∞,

where ‖.‖∞ denotes the Chebyshev norm on R
n and by Theorem 1 also

(2.5) f(x) − f(0) ≤ F (x) = ‖x‖∞F (‖x‖−1
∞ x) ≤ β‖x‖∞

for every x 
= 0. When we consider the max function in the next section, it is
important to note that β in the above relation is equal to 1.

Up to now, we only focused on deriving an upper bound. To derive a lower
bound, we observe that in many applications one can choose the differentiable
convex function f satisfying f ≥ F . Since for every t > 0 and x ∈ R

n

0 ≤ tf(t−1x) − tF (t−1x) = f(x; t) − F (x),

we obtain in this case a trivial lower bound.
At this point a natural question, related to real life applications, arises: given

F , is it possible to find a function f satisfying equation (2.1)? Clearly, the answer
to this question depends on the function F . Moreover, depending on F , there may
exist different alternatives for the function f . Nevertheless, to our belief finding a
generic procedure to provide an answer to this question is quite difficult and it is a
kind of art rather than a mathematical skill.

3. Recursive Smoothing

There exist different approximation functions with stable convergence properties,
particularly for the two dimensional max function. However, an analytic form may
not be easily extended from two dimensions to n dimensions. Before providing a
solution to this problem, first notice that the n dimensional max function can be
written recursively as follows

max{x1, · · · , xn} = max{max{x1, · · · , xm}, max{xm+1, · · · , xn}},
where 1 < m < n. Following this simple observation, we propose a recursive
procedure to construct a high dimensional approximation for the max function
with more than two variables. In the sequel, f : R

2 → R refers to the function that
is used for approximating the two dimensional max function, i.e.,

limt↓0 tf(t−1x) = max{x1, x2}.
We start with defining the recursive functions fi,j : R

j−i+1 → R, 1 ≤ i < j ≤ n,
associated with the function f .

Definition 1. Let f : R
2 → R be a nondecreasing convex function, and define for

every 1 ≤ i ≤ n − 1 the function fi,i+1 : R
2 → R by

fi,i+1(x) := f(x).
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Moreover, for 1 ≤ i < j ≤ n and k = j − i + 1 > 2, let the function fi,j : R
k → R

be given by

(3.1) fi,j(xi, ..., xj) = f(fi,uk
(xi, ..., xuk

), flk,j(xlk , ..., xj)),

where

uk := i + �k

2
� − 1 and lk :=

{
uk if k is odd
uk + 1 if k is even.

To simplify the notation for the above recursive procedure, we introduce for
every 1 ≤ i < j ≤ n, the vectors

x(1) := (xi, ..., xuk
) and x(2) := (xlk , ....xj),

and the associated vector

x =
{

(xi, ..., xh, ..., xj) if k is odd
(xi, ..., xlk,xuk

, ..., xj) if k is even,

where xh = xuk
= xlk whenever k is odd. In other words, the vector x is the

proper concatenation of the vectors x(1) and x(2). The recursive procedure, defined
in relation (3.1), can now be rewritten as

(3.2) fi,j(x) = f(fi,uk
(x(1)), flk,j(x(2))), 1 ≤ j < i ≤ n.

Before considering the computational scheme of evaluating the above recursive func-
tion, we first focus on its theoretical properties. As shown by the next lemma, it
follows by induction that for every i < j, the function fi,j is an increasing convex
function.

Lemma 3. If f : R
2 → R is an increasing convex function then the function

fi,j : R
j−i+1 → R with 1 ≤ i < j is also an increasing convex function.

Proof. Clearly for k := j − i + 1 = 2 the function fi,j = f is an increasing convex
function. Suppose now the induction hypothesis holds for the functions fi,j satis-
fying k ≤ p and consider a function fi,j satisfying k = p + 1. Since up+1 ≤ j − 1
and lp+1 ≥ i + 1, we obtain up+1 − i + 1 ≤ p and j − lp+1 + 1 ≤ p. This shows by
our induction hypothesis that the functions fi,up+1 and flp+1,j are increasing and
convex. Hence by relation (3.2), the function

fi,j(x) = f(fi,up+1(x
(1)), flp+1,j(x(2)))

is increasing and convex. �

By Theorem 1 and Lemma 5, we immediately obtain for the increasing convex
function f the following results:

(1) For every 1 ≤ i < j ≤ n, the function Fi,j : R
k → (−∞,∞] given by

Fi,j(x) := limt↓0 tfi,j(t−1x)

exists, and it is positively homogeneous and convex. Observe that the
functions Fi,i+1, 1 < i < n − 1 refer to the same function, which is also
denoted by F .

(2) For every 1 ≤ i < j ≤ n, t > 0, and x ∈ R
j−i+1

(3.3) tfi,j(t−1x) − Fi,j(x) ≤ tfi,j(0).
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(3) If additionally f ≥ F , then as a result of the monotonicity and by induction
on every 1 ≤ i < j ≤ n and x ∈ R

k we have

tfi,j(t−1x) ≥ Fi,j(x).

Lemma 4. If f is an increasing convex function and the function F, given by
relation (2.1), is finite everywhere, then for every 1 ≤ i < j, the function Fi,j is
finite everywhere. Moreover, the recursion

Fi,j(x) = F (Fi,uk
(x(1)), Flk,j(x(2)))

holds.

Proof. Clearly for k := j − i + 1 = 2 the function Fi,i+1 = F is finite everywhere.
Suppose now that the result holds for the functions Fi,j satisfying k ≤ p and
consider some function Fi,j with k = p + 1. By relations (2.1) and (3.2), it follows
with xt := (tfi,up+1(t−1x(1)), tflk+1(t

−1x(2))) that

(3.4) Fi,j(x) = limt↓0 tf(t−1xt).

Also by relation (3.2), we obtain limt↓0 xt = x0 where

x0 = (Fi,up+1(x
(1)), Flp+1,j(x(2))).

This shows by our induction hypothesis that the vector x0 belongs to R
2 and, since

the function F is finite everywhere, this implies by relations (2.4) and (3.4) that

Fi,j(x) = F (Fi,up+1(x
(1)), Flp+1,j(x(2))).

�

We are ready to give an upper bound for the relation (3.3). This upper bound
can be constructed by using relation (2.5) and induction.

Lemma 5. Let f : R
2 → R be an increasing convex function and for every 1 ≤ i <

j ≤ n, Fi,j be finite. Then,

tfi,j(t−1x) − Fi,j(x) ≤ t(log2(k − 1) + 1)f(0)

where k = j − i + 1.

Proof. Clearly, for k := j − i + 1 = 2 the function fi,j(0) = f(0). So the result is
true for k = 2. Suppose by induction that the result is true for k ≤ p and consider
some fi,j(0) with k = p + 1. By relation (2.5), we obtain

fi,j(0) = f(fi,up+1(0), flp+1,j(0)) ≤ max(fi,up+1(0), flp+1,j(0)) + f(0).

Since for every k ≥ 3, 2(uk − i + 1) ≤ k + 1 and hence 2(up+1 − i) ≤ p, we obtain
by our induction hypothesis that

fi,j(0) ≤ (log2(up+1 − i) + 1)f(0) + f(0)

≤ (log2(p)f(0) + f(0)

= (log2(p) + 1)f(0).

Combining this by relation (3.3), we have the desired result

tfi,j(t−1x) − Fi,j(x) ≤ tfi,j(0) ≤ t(log2(k − 1) + 1)f(0).

�
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It is desirable to have a fast computation scheme for the recursive approximation
and its higher order information. Before we show the computational complexity of
these evaluations, notice that the recursive function fi,j(x) is a composition of
several f(x) functions. Therefore, for t > 0 if we define the smooth approximation
of f(x) by

f(x; t) := tf(t−1x),

then the approximation function defined as

fi,j(x; t) := tfi,j(t−1x)

also becomes differentiable. Furthermore, we assume that there exists an oracle,
which provides one of the following outputs with an appropriate call:

(1) The function value, f(x; t) at point x for t > 0.
(2) The gradient vector, ∇f(x; t) at point x for t > 0.
(3) The hessian matrix, ∇2f(x; t) at point x for t > 0.

Proposition 1. Given k > 2 and the vector x ∈ R
k, for every i < j it requires

O(k) calls to the oracle to compute the value of fi,j(x; t).

Proof. A simple counting reveals that the procedure requires at most �log2(k − 1)�
number of recursive steps to complete the computation. At each step, say s + 1,
twice step s calls are made. Hence, the overall complexity is bounded by a constant
times 2�log2(k−1)� ≤ 2(k − 1). Therefore, computing the value of fi,j(x; t) requires
at most 2(k − 1) calls to the oracle. �

The next proposition shows that the higher order information of fi,j(x; t) can
also be computed in polynomial time.

Proposition 2. Given k > 2 and the vector x ∈ R
k, for every i < j it requires O(k)

calls to the oracle to compute the value of the gradient, ∇fi,j(x; t) and similarly,
O(k) calls to compute the value of the Hessian, ∇2fi,j(x; t).

Proof. Since

(3.5) fi,j(x; t) = f(fi,uk
(x(1); t), flk,j(x(2); t); t),

by using the chain rule, we obtain
(3.6)

∇fi,j(x; t) =
∂f(fi,uk

(x(1); t); t)
∂fi,uk

(x(1); t)
∇fi,uk

(x(1); t) +
∂f(flk,j(x(2); t); t)

∂flk,j(x(2); t)
∇flk,j(x(2); t)

and similarly,

∇2fi,j(x; t) = ∂f(fi,uk
(x(1);t);t)

∂fi,uk
(x(1);t)

∇2fi,uk
(x(1); t) + ∂f(flk,j(x

(2);t);t)

∂flk,j(x(2);t)
∇2flk,j(x(2); t)

+∂2f(fi,uk
(x(1);t);t)

∂2fi,uk
(x(1);t)

∇fi,uk
(x(1); t)(∇fi,uk

(x(1); t))T

+∂2f(flk,j(x
(2);t);t)

∂2flk,j(x(2);t)
∇flk,j(x(2); t)(∇flk,j(x(2); t))T

+ ∂2f(fi,uk
(x(1);t);t)

∂fi,uk
(x(1);t)∂flk,j(x(2);t)

∇fi,uk
(x(1); t)(∇fi,uk

(x(1); t))T

+ ∂2f(flk,j(x
(2);t);t)

∂fi,uk
(x(1);t)∂flk,j(x(2);t)

∇flk,j(x(2); t)(∇flk,j(x(2); t))T

The complexity result follows from the same arguments as in the proof of Propo-
sition 1. �
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4. Numerical Examples

As was pointed out in the introduction section, the recursive smoothing method
can be applied to diverse problems modelled by a high dimensional max function.
For instance, two important applications are min−max optimization and vertical
linear complementarity (VLCP) problems.

In min−max optimization the smooth approximation is directly used to replace
the max function, and so that the resulting model becomes a regular nonlinear
programming problem [2]. On the other hand, in VLCP problems the system of
equalities and nonnegativity constraints is equivalently modelled as a system of
equalities composed of high dimensional max functions. After replacing the max
functions with their approximations, a system of nonlinear inequalities are formed.
Then different methods, like Newton’s method, are utilized to solve this system [10].
In the remaining part of this section we will give two elementary examples that will
focus on the main idea of these applications. Also, we will discuss the solution
approach with the recursive approximation method and compare its performance
with another approximation function of the high dimensional max function.

Before we consider the examples, let us introduce the following entropy-type
function g : R

n → R, which is the most frequently used approximation in the
literature:

(4.1) g(x) = log

(
n∑

i=1

exi

)
.

This function shows the following convergence property

limt↓0 tg(t−1x) = limt↓0 t log

(
n∑

i=1

e
xi
t

)
= max{x1, · · · , xn}.

Therefore, (4.1) is successfully utilized in solving both min−max optimization and
VLCP problems [2, 10].

Notice that an overflow easily occurs when the exponential function in (4.1) is
computed with a very large argument. A well-known trick to handle this potential
problem is introducing a constant z ≥ max{x1, · · · , xn} and then computing

(4.2) gz(x; t) := t log

(
n∑

i=1

e
xi−z

t

)
+ z.

In order to apply the recursive approximation method, we choose the following
nondecreasing convex function f : R

2 → R

f(x) =

√
(x1 − x2)2 + 1 + x1 + x2

2
.

which leads to the following approximation function

(4.3) f(x; t) := tf(t−1x) =

√
(x1 − x2)2 + t2 + x1 + x2

2
.

The right hand side of the equation (4.3) is the well-known Chen-Harker-Kanzow-
Smale function [3]. This function has been extensively used for approximating the
two dimensional max function, it is known to be more stable than (4.1).

Although the trick in (4.2) effectively overcomes the difficulty of computing
(4.1), another overflow problem occurs whenever the gradient or the Jacobian is
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computed. However, with the recursive approximation function using (4.3), the
computation of the higher order information does not cause any overflow problems.
The following elementary examples demonstrate this result.

Example 1. Suppose we want to solve the following optimization problem

min
x∈R3

max{2x1, 3x2 − 4, 10x2
3}.

The arguments of the max function in Example 1 are differentiable. Hence, if
we replace the max function with its smooth approximation, the resulting problem
becomes a smooth unconstrained nonlinear programming problem. By using (4.2),
the approximation becomes

(4.4) gz(x; t) = t log(et−1(2x1−z) + et−1(3x2−4−z) + et−1(10x2
3−z)) + z,

where z ≥ max{2x1, 3x2 − 4, 10x2
3}. On the other hand by using (4.3), we have the

following recursive approximation

(4.5) f1,3(x; t) := f(f(2x1, 3x2 − 4; t), f(3x2 − 4, 10x2
3; t); t).

Then for t > 0, we are interested in comparing the computational aspects of solving

min
x∈R3

gz(x; t)

and
min
x∈R3

f1,3(x; t).

A straightforward approach to solve these optimization problems is the gradient
method [2]. In this approach, for t > 0 we need to compute the gradients of both
(4.4) and (4.5) denoted by

(4.6) �gz(x; t) = (�g(1)
z (x; t),�g(2)

z (x; t),�g(3)
z (x; t))T

and

(4.7) �f1,3(x; t) = (�f
(1)
1,3 (x; t),�f

(2)
1,3 (x; t),�f

(3)
1,3 (x; t))T ,

respectively. Consider the computation of the first component of (4.6)

�g(1)
z (x; t) =

2(et−1(2x1−z))
et−1(2x1−z) + et−1(3x2−4−z) + et−1(10x2

3)
.

Notice that the numerator converges fast to zero when the difference between z and
the arguments of the max function is big. Therefore, if one uses (4.6), the first order
information required for the gradient method diminishes. On the other hand, the
computation of the gradient by (4.7) is more stable as a direct consequence of using
(4.3). In order to support these statements, we have applied the unconstrained op-
timization procedure fminunc in MATLAB. We have the selected the vector (1, 1, 1)
for our starting point, and we have used the equations (4.4-4.7) as the function and
the gradient pointers. As we expected, even with parameter t set to 1.0e-4, the first
approximation (4.4) using (4.6) has led to an overflow problem but the recursive
approximation (4.5) using (4.7) has converged to the point, (−9,−1, 0) .

Example 2. Suppose we want to find a solution x ∈ R
3 such that

H(x) :=


 max{2x1, 3x2 − 4, 10x2

3}
max{x2

1, x2 + 11, x3 − 1}
max{x1, x2 − 0.4, 2x2

3}


 = 0.
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In this example we are interested in solving a system of nonlinear equations.
We first replace the max functions with their smooth approximations. Let z1 ≥
max{2x1, 3x2 − 4, 10x2

3}, z2 ≥ max{x2
1, x2 + 11, x3 − 1}, and z3 ≥ max{x1, x2 −

0.4, 2x2
3} then by using (4.2) and (4.3), we can write the approximation functions

g(1)
z1

(x; t) : = t log(et−1(2x1−z1) + et−1(3x2−4−z1) + et−1(10x2
3−z1)) + z1,

g(2)
z2

(x; t) : = t log(et−1(x2
1−z2) + et−1(x2+11−z2) + et−1(x3−1−z2)) + z2,

g(3)
z3

(x; t) : = t log(et−1(x1−z3) + et−1(x2−0.4−z3) + et−1(2x2
3−z3)) + z3,

and

f
(1)
1,3 (x; t) : = f(f(2x1, 3x2 − 4; t), f(3x2 − 4, 10x2

3; t); t),

f
(2)
1,3 (x; t) : = f(f(x2

1, x2 + 11; t), f(x2 + 11, x3 − 1; t); t),

f
(3)
1,3 (x; t) : = f(f(x1, x2 − 0.4; t), f(x2 − 0.4, 2x2

3; t); t).

Suppose we define

Gz(x; t) := (g(1)
z1

(x; t), g(2)
z2

(x; t), g(3)
z3

(x; t))T ,

where z := (z1, z2, z3) and

F1,3(x; t) := (f (1)
1,3 (x; t), f (2)

1,3 (x; t), f (3)
1,3 (x; t))T .

Then for t > 0, we want to compare the solution efforts invested in solving

(4.8) Gz(x; t) = 0,

and

(4.9) F1,3(x; t) = 0.

Different methods to solve a system of nonlinear equations require the compu-
tation of the first order information. Therefore, we need to compute the Jacobians
of the functions Gz(x; t) and F1,3(x; t). Similar to the computation of the gradient
(4.6), the computation of the Jacobian of Gz(x; t) creates overflow problems. More
importantly, the Jacobian becomes almost singular. In other words the reciprocal
condition of the Jacobian approaches to 0 fast [6]. On the other hand, the recursive
computation of the Jacobian of F1,3(x; t) is more stable and leads to a nonsingular
Jacobian. To solve (4.8) and (4.9), we have used the MATLAB procedure fsolve,
which is designed to solve a system of nonlinear equations. In both problems, we
have provided the function and Jacobian pointers as an input to the fsolve proce-
dure, and as before we have selected the vector (1, 1, 1) as our starting point.

Table 1 shows the results with both approximations. The column 1 shows dif-
ferent t values. For each t value, the approximations (4.8) and (4.9) are solved by
fsolve, and the respective results, denoted by H∗, are reported in columns 2 and 3.
Clearly, decreasing the t value leads to better solutions. However, it also causes the
Jacobian of Gz(x; t) converge to a singular matrix rapidly. Therefore, as the figures
in the second column suggest, overflow problems occur with the first approxima-
tion. On the other hand, the third column shows that the recursive approximation
behaves more stable than the first approximation, and gives improving solutions
with decreasing t.
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t Approximation (4.8) Approximation (4.9)
1.0e-1 H∗ = (4.1e-3, 3.6e-2, 7.0e-4)T H∗ = (3.2e-6, 1.1e-2, 6.0e-6)T

1.0e-2 No Solution H∗ = (1.3e-8, 6.0e-4, 2.0e-9)T

1.0e-4 No Solution H∗ = (7.0e-15, 2.1e-5, 1.3e-15)T

1.0e-6 No Solution H∗ = (4.1e-14, 3.0e-8, 8.0e-16)T

Table 1. Comparison of the results of the two approximation
schemes for Example 2.

5. Conclusion

We have discussed an alternative smoothing method for the high dimensional
max function. The novelty of the method comes from the fact that the high dimen-
sional max function can be written as a recursive composition of the two dimensional
max functions. After noticing this fact, we have used smooth approximation func-
tions of the two dimensional max function to approximate the high dimensional
case. We have given a mathematical treatment of the proposed method. It is also
shown that the proposed method has more desirable properties than the well-known
entropy function.

There exist many applications of the high dimensional max function. As a con-
tinuation of this research, the performance of the proposed method may be studied
on these problems. Another interesting research area could be in nonlinear opti-
mization, where there exists a set of difficult constraints. These constraints can
be replaced with a single constraint after aggregating them by the max function.
Again a high dimensional approximation would be required for smoothing the max
function. In all these applications a rigorous analysis is required, since the argu-
ments of the max function will be nontrivial functions. Overall we believe that a
further research along these lines is fruitful and promising.
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