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1 Introduction

Managers’ sales forecasts often include a subjective component (Sanders and Man-

rodt, 2003). This subjective component could be the source of biases or inefficiency

but could also improve the forecasts using information that a model could not in-

corporate. For this reason there is much literature on evaluating forecasts which are

not purely statistical, but partly or fully judgmental (for an early review, see Webby

and O’Connor (1996), while Lawrence, et al. (2006) provide a more recent review).

For sales forecasting, most attention has been given to judgmental adjustments of

statistical forecasts (Mathews and Diamantopoulos, 1986, 1989, 1990, 1992; Sanders

and Ritzman, 1995, 2001; Fildes et al. 2009; Franses and Legerstee, 2009, 2010;

Syntetos et al. 2009; Davydenko et al. 2010a, 2010b; and Eroglu and Croxton,

2010). The literature on judgmental forecasts has also addressed how to combine

them with statistical forecasts (Sanders and Ritzman, 2004; Franses and Legerstee,

2011, among others).

In this paper we will evaluate managers’ sales forecasts without knowing how

these forecasts were created. As we do not have statistical model-based forecasts,

evaluating deviations from statistical forecasts is not an option, and hence another

approach is needed. We propose various methods in this paper.

To illustrate, we examine the sales forecasts created by a manager of an inter-

national pharmaceutical company for hundreds of products for one country. These

forecasts are the responsibility of a single individual only and it is unknown whether

he has used a statistical model as a basis for these forecasts or whether these forecasts

are entirely judgmental. We investigate whether these forecasts can be considered

as rational, where rationality implies that the forecaster is able to optimally use

available information given a certain loss function.

The remainder of this paper is as follows. Section 2 contains a literature review.

Section 3 puts forward some theory of rational forecasts and of possible deviations

from rationality. In Section 4, we illustrate this theory for the sales forecasts of

the pharmaceutical company. Section 5 contains the conclusion, discussion and

suggestions for further research.
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2 Literature review

The forecasts that we evaluate are so-called fixed-event forecasts, that is, they con-

cern forecasts made at origins t − h to t − 1 for horizon t. Nordhaus (1987) intro-

duced a test for forecast rationality for fixed-events which is based on weak efficiency.

Clements (1997) considers the pooling of this test across multiple realization dates

and he documents substantial negative autocorrelation in series of revisions. This is

consistent with the negative first-order autocorrelations of the sales forecast revisions

found by Lawrence and O’Connor (2000).

One prominent reason for inefficient or irrational forecasts concerns the inclusion

of judgment. For several decades researchers have been interested in forecasts with

a judgmental component (see Adam and Ebert, 1976; Armstrong, 1983; Lawrence et

al. 1986; Lawrence and Makridakis, 1989; O’Connor et al. 1993; Lim and O’Connor,

1995; and Goodwin, 2002) For more complete reviews of the literature see Webby

and O’Connor (1996) and Lawrence et al. (2006).

Most recent literature has focused on subjective adjustments of statistical fore-

casts. For example, Franses and Legerstee (2009) discuss properties of managers’

adjustments of model forecasts and find that the adjustments are frequent and often

upwards. They also find that the adjustments are predictable using earlier adjust-

ments and earlier forecast errors, and that the adjustments are not independent

of current model-based forecasts. Franses and Legerstee (2010) find that expert-

adjusted forecasts of sales of stock-keeping units (SKU) are not better and often

worse than model-based forecasts. On the other hand, Fildes et al. (2009) report

that adjustments can improve forecasting performance, although errors are often

made when making small or upward adjustments.

Less attention has been given to the analysis of sales forecast revisions, which

are the changes of the forecasts for the same realization date when the forecast

horizon decreases. While there have been several studies on forecast revisions for

macroeconomic variables (Ashiya, 2003) and financial variables (Amir and Ganzach,

1998), we are aware of only one study that deals with SKU-level sales. Lawrence

and O’Connor (2000) find that the accuracy improves only little over time and that
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the revisions have negative first-order autocorrelations.

Additional to evaluating their actions directly using actual forecasts data, an-

other way to find out what managers drives in making their forecasts is by simply

asking what they do. This has led to many surveys concerning sales forecasts over

many decades (Modigliani and Weingartner, 1958; Cerullo and Avila, 1975; Dalrym-

ple, 1987; Sanders and Manrodt, 1994, 2003; Klassen and Flores, 2001; Boulaksil

and Franses, 2009). The general conclusion is that the managers feel that they

sometimes need to adjust or ignore statistical model forecasts in order to make a

proper forecast. This is despite the fact that there are many studies suggesting that

these actions can also have large negative effects on forecasting performance. This

suggests that judgment may lead to deviations from rationality.

The novelty of the present study is that we propose a methodology to elicit devia-

tions from rationality of managers’ forecasts in case only their forecasts are available.

For this purpose we construct artificial model-based forecasts, and with these we can

compute the adjustments (deviations). If the constructed model forecasts are similar

to the unknown factual model forecasts, the constructed adjustments should have

properties similar to the typical adjustments as found in judgmental adjustment

literature.

3 Theory

In this section we will discuss some theory on forecasts and on the evaluation of

forecasts. We will discuss properties that define a rational forecast in Section 3.1. In

practice, there might be a deviation from a rational forecast. Section 3.2 discusses

the models and methods that we will use to reconstruct this deviation in the case

the analyst, who should evaluate the quality of managers’ forecasts, does not have

access to statistical model-based forecasts.

3.1 What is a rational forecast?

Suppose the variable to be predicted is yt. At an earlier time, say h periods earlier,

a forecast is made. Denote this forecast as ŷt|t−h.
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Forecast errors

The forecast will in general not be equal to the realization at time t, and there

will be a forecast error ft|t−h = yt − ŷt|t−h. Ideally, one would like the forecast to

be unbiased, which is defined as the error having a mean equal to zero, that is,

E(ft|t−h) = 0.1. This is desirable in an unconditional sense (overall unbiasedness)

and in a conditional sense (unbiasedness in typical situations). Also, one wants the

variance σ2
ft|t−h

to be as small as possible. If the forecast is truly incorporating all

relevant information, this forecast error variance should preferably be smaller than

the forecast error variance of any other forecast. As one could always re-use the

forecast of one horizon earlier, the new forecast should also have a variance equal to

or smaller than the last forecast, that is, σ2
ft|t−h

≤ σ2
ft|t−h−1

. Another way to phrase

this is that forecasts should improve in accuracy over time.

The speed of this improvement depends on the variable under consideration.

For example, consider an AR(1) process with parameter φ and unconditional mean

µ, that is, yt = µ + φ(yt−1 − µ) + εt. Assuming that φ and µ are known, the

error series ..., εt−1, εt is the only source of forecasting error, which means that the

smaller the forecast horizon, the more information is known to improve upon the

unconditional forecast µ. The development of this information over the forecast

horizon is introduced by Galbraith (2003) as forecast content, with an application in

for example Galbraith and Tkacz (2007). The main pattern is that the information

gain per horizon increases as the evaluation date approaches, which is due to the fact

that later forecast origins often contain more information. Finally, errors that do not

have an overlap between forecasting event and origin should be uncorrelated, such

as ft|t−h and ft−h−k|t−h−p for any 0 < k < p. Overlapping errors can be correlated,

as they do not include the same news, such as ft|t−2 and ft−1|t−3, which both do not

have the error (news) at t− 1.

1This is the case if one uses a symmetric and quadratic error function. There could be situations
where one could consider alternative loss functions, but this is not pursued here.
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Forecast revisions

Interesting for our application are the properties of the forecast revisions2 defined by

δt|t−h = ŷt|t−h− ŷt|t−h−1 made at t− h for event t. If the forecast ŷt|t−h−1 is assumed

to be unbiased, upward revisions should occur just as often as downward revisions,

given a symmetric loss function. This does not only hold for revisions made at

adjacent origins, but also for more separated origins. Moreover, the probability of

an upward revision should not depend on the last revision, and should always be the

same. The same holds for the size of the revision (irrespective of the sign), that is,

it should not depend on the sign or size of the earlier revisions3. This is similar to

the absence of correlation between the forecast updates.

Forecast errors and revisions combined

There are also some interesting properties of the cross-correlations of the errors and

the revisions in case of rational forecasts. The following discussion is summarized in

Table 1. First, in the case of a rational forecast, there should not be a correlation

between the revision δt|t−h and the error of its associated forecast ft|t−h, as in that

case the revision could have been improved. The same holds for the errors of all

forecasts on or after the revision date. Thus, δt|t−h is uncorrelated with ft−k|t−h+p for

all 0 ≤ k ≤ h−1 and 0 ≤ p ≤ h−k−1. Also, forecast errors concerning a realization

before the revision moment of the current revision should not correlate with the

current revision, which means that δt|t−h is also uncorrelated with ft−h−k|t−h−p for

all 0 < k < p. On the other hand, the errors that have just been known on t−h can

be rationally correlated with δt|t−h, as they can contain relevant information that has

not been used already. Thus, δt|t−h can be correlated with ft−h|t−h−p for all p > 0.

In Appendix A, we will give more details of the rationality properties along with

more formal statistical notation. The properties are illustrated for a stationary time

2Forecast revisions are also known as forecast updates. Both terms will be used in this paper.
3It could depend on the forecast horizon as more information is contained in the last origin

before realization. This could result in those revisions being larger in (absolute) size due to the
fact that they contain more information. The revisions could also be smaller as the cumulative
information until that moment also has increased, making the new information a smaller piece of
the total amount of available information.
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series model.

3.2 Reconstructing deviations from rational forecasts

Using managers’ sales forecasts only, we can calculate relevant sample statistics

and evaluate whether there is a deviation from rationality. However, we cannot

quantify the size of the deviation from rationality, as the rational (model-based)

forecasts are not available. Our solution is to create artificial statistical forecasts for

which the rational properties should hold. These artificial forecasts can be given the

interpretation of model forecasts, resulting in a bridge between the deviations from

these artificial forecasts (which will be given the interpretation of intuition later on)

and the judgmental adjustments of statistical forecasts discussed in the literature

review. When the artificial forecasts are similar to the statistical forecasts, intuition

should have similar properties as judgmental adjustment. It would then be plausible

that this is the approach that could have been taken by the manager, that is, first

to create model forecasts and then to adjust them.

Notation

Again, denote realizations and managers’ forecasts as yt and ŷt|t−h. Now suppose

there are also model forecasts zt|t−h and denote the difference as

νt|t−h = ŷt|t−h − zt|t−h, (1)

which can be interpreted as intuition. Rational forecasts imply that the updates

are unbiased and uncorrelated, which leads to α = 0 and β = 0 in the auxiliary

regression

δt|t−h = α + βδt|t−h−1 + wt,h. (2)

Suppose we assume that intuition νt|t−h obeys

νt|t−h = λνt|t−h−1 + ηt,h (3)

(with ηt,h iid with mean 0 and variance σ2
ν), then Appendix B shows that β = λ−1

2
,

or equivalently λ = 2β + 1. For β to be 0, λ must be 1. The λ can also take some
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other interesting values. First, if λ = 0 (equivalent with β = −1
2
), the intuition

is uncorrelated with past intuition, meaning that previous intuition is immediately

discarded. If λ = −1 (β = −1), the intuition of the previous update is reversed on

average, which would result in highly varying intuition over time.

Creating artificial forecasts

In the common case when there are not many data points, we would suggest the

following five alternative ways of defining or estimating either zt|t−h or νt|t−h. Ap-

proach A defines zt|t−h to be the fit of yt = αh + βhŷt|t−h + ut,h. Approach B simply

takes the Random Walk (RW) forecast and thus assumes zt|t−h = yt−h. The third

model forecast (C) is a slight variation, in which a possible temporary swing is in-

corporated into the model, that is, zt|t−h = πyt−h + h(1− π)(yt−h − yt−h−1). The π

parameter indicates how important the last realization is, as compared to the trend

information in the forecast. To avoid too much influence of temporary swings, this

parameter has to be close to 1. We will use π = 0.95 in our empirical work below.

Before defining the final two forecasts, we need a few derivations. As the zt|t−h

are supposed to be rational, changes in model forecasts should not be predictable

from earlier forecasts, that is,

zt|t−h = zt|t−h−1 + ωt,h

with ωt,h having white noise properties. Rewriting (1) to zt|t−h = ŷt|t−h− νt|t−h gives

ŷt|t−h − νt|t−h = ŷt|t−h−1 − νt|t−h−1 + ωt,h,

or, after re-arranging

ŷt|t−h − ŷt|t−h−1 = νt|t−h − νt|t−h−1 + ωt,h.

The left hand side is equal to δt|t−h. Adding (3) results in the following set of

equations:

δt|t−h = νt|t−h − νt|t−h−1 + ωt,h (4)

νt|t−h = λνt|t−h−1 + ηt,h
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For the fourth model forecast (D) we will fix λ at 2β+ 1, where β is estimated using

(2). For the fifth and final model forecast (approach E), λ is estimated along with

the rest of the model. In contrast to the earlier approaches, these last two methods

directly result in νt|t−h, of which then zt|t−h can be calculated.

Both the actual managers’ forecasts and the constructed model forecasts can then

be evaluated on their rational properties. Also, the resulting λ can be compared for

the different model forecasts. Finally, the deviations between actual forecasts and

the model forecasts can be further investigated. For example, it is interesting to

check whether these estimates of intuition have similar properties as the judgmen-

tal adjustments documented in the judgmental adjustment literature, such as for

example in Franses and Legerstee (2009, 2010).

4 Illustration

This section applies our methodology to a large and novel dataset of managers’ fore-

casts. First, we discuss the data and then we check rationality properties. After that,

we create artificial model forecasts and hold these against the managers’ forecasts.

4.1 Data

We use data from a large multinational Germany-based pharmaceutical company.

This company has a manager for each country who produces sales forecasts for

hundreds of products. We have data for a single country with forecasts up to one

year ahead. This results in data of the form of Table 2, with 88 forecasts and 11

realizations for each product (at the stock keeping unit SKU level). We will pool all

data after standardization.

One characteristic of the data set is that the sales volumes (and their forecasts)

vary per product. We therefore standardize the data as follows. We first calculate

per product the averages of the forecasts and of the realizations and take an equal-

weighted average of this as the standardized mean, such that forecast information

and realization information is equally important. We also calculate the standard

deviation of both sets and take the square root of the product of these as the stan-
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dardization standard deviation. Finally, we calculate the standardized forecasts and

realizations by subtracting the standardized mean from each original value and by

dividing by the standardized standard deviation: y∗ = y−µS

σS
=

y− 1
2
µr− 1

2
µf√

σrσf
, with sub-

scripts S, r and f indicating the standardization, realization or forecast variables.

Standardization approaches based on only the forecast information or the realization

information yield similar results. In the following, we will use forecast and error to

denote standardized forecast and standardized error.

4.2 Rational properties

Table 3 shows descriptive statistics of the forecast errors for different horizons. For

each horizon, the mean error is significantly smaller than zero, which indicates that

the forecasts are on average too high and thus biased. The errors approach zero

as the time to the event decreases. The mean squared error (and similarly the

unreported variance) also declines as the forecast horizon decreases, indicating that

the forecasts become more accurate as the realization date gets nearby. We also

present the forecast content as defined by Galbraith (2003). This shows a different

pattern than what is usually found. Usually, the forecast content quickly drops when

forecast origin and event are more distant, but here, the decline only really occurs

for horizons larger than 10. This suggests that about half of the deviation from

the unconditional sales mean is already known by the forecaster about 10 months

before the sales have realized. After that, the forecast accuracy increases only a

little, which is consistent with the results of Lawrence and O’Connor (2000). The

short horizons have more observations, which is due to the data format displayed

in Table 2, but this does not seem to influence the results (as we have verified with

alternative samples, but in unreported tables).

Evaluating the correlation of the errors can be done in many different ways, as the

features that can be held as constant include forecast horizon, realization moment

and forecast moment. Table 4 shows the correlation between forecast errors for the

same realization date across the first eight horizons. It can be seen that the closer

the two events are to each other, the closer the correlation is to 1, which makes sense

under rationality as less distant forecasts share a larger part of their unknown error.
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Table 5 shows the correlation between forecast errors corresponding to the same

horizon for different realization dates. For example, the entry in the third column

and fourth row (0.216) gives the correlation between all 2-step-ahead forecast errors

with a difference of 3 months in realization dates. Hence, on average, a positive 2-

months-ahead forecast error is followed by a positive 2-months-ahead forecast error

3 months later.

Revision properties

From Table 6 it can be seen that the average forecast update is downward as (almost)

all mean revisions are negative. The shape of the mean revision over the horizons

is similar to a parabola. On average, the largest revisions occur for the middle

horizons, while the revisions one year before realization and the final revisions are

not significantly different from zero. A similar pattern can be seen in the variance

of the revision. There is hardly any final non-zero variance, while the revision at

horizon 7 has a variance of 0.322.

Table 7 contains statistics relating to the direction of the revision. It can be seen

that most revisions are downward. Table 8 contains the number of revisions in a

certain direction after a revision in any other direction has occurred. This shows

that positive updates are more often followed by negative updates (since 239 > 86),

while negative updates are more often followed by positive updates (249 > 95). This

means that the distribution of the sign of the revision seems dependent on the earlier

updates.

Concerning the autocorrelation of the revisions, consider Table 9. This table

shows the autocorrelation and cross-correlation of the revisions and the squared

revisions for various lags. It can be seen that the first-order autocorrelation of the

revisions is negative, which is consistent with the results in Table 8. This thus

violates the rational assumption (see equation 13 in Appendix A) but is consistent

with the results of Lawrence and O’Connor (2000). There is also a large negative

contemporaneous correlation between revision and squared revisions, indicating that

if the updates are large in size, they are often downward.

A second way of evaluating the autocorrelation of the revisions results in the
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numbers in Table 10, where we display the correlations between forecast revisions

for various realization dates but the same forecast horizon. Under rationality, all cells

in this table should be zero, as none of the paired revisions are made simultaneously

and the revisions should not be predictable over time. It can be seen that the

one-step-horizon revisions contain substantial autocorrelation, averaging at 0.170,

which is in conflict with rationality. If the current one-step revision is known, future

one-step revisions can be predicted from it, and this should not be the case under

rationality.

The relationship between errors and revisions

Table 11 contains the cross-correlations between the revisions and the errors for

the same realization. It can be seen that the contemporaneous correlation is not

large, and this is also the case for the cross-correlation with a lagged error. They

are slightly negative for small horizons, and this suggests that a positive revision

now is paired with a negative error, not only for this forecast horizon, but also for

upcoming horizons. This makes sense as a positive revision makes the forecasts

larger as compared to the realization, and the forecast errors are defined as the

realization minus the forecast. The cross-correlations in which the error leads the

revision are far away from zero. This indicates that a current large error results in an

upward revision in the future, or vice versa. This is consistent with more information

gradually becoming more used, although this also means that the information is

smoothed and not used immediately when it is available.

Table 11 also contains estimates of θh as in (12), using the one-step-forecast

error ft−h|t−h−1 as an approximation for the shock εt−h (which is valid under the

assumption of rationality). As the estimate of θ1 is not significantly different from

zero, the results suggest that the latest news before realization has no influence on

the realization of the sales. All other θ’s are significantly different from 0 (at the

1% level), indicating that the shocks at these horizons have a significant effect on

current sales. The sum of these parameters is 0.811, which can only be interpreted

as a lower bound of the total future effect of a shock as for horizons above 10 the

θ’s might also be significantly different from zero.
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In sum, of all the rational properties discussed in section 3.1 and Appendix A,

only (8) and (14) stand up tall in the data. We can thus safely conclude that the

manager’s forecasts are not rational (under a symmetric loss function). Now it is

interesting to study how deviations from rationality look like.

4.3 Artificial model forecasts and manager’s forecasts

Method A, in which we define zt|t−h to be the fit of yt = αh + βhŷt|t−h + ut,h, is

straightforward to apply. Using Ordinary Least Squares (OLS) to fit this model for

each h, we then calculate the νt|t−h as the difference of zt|t−h and ŷt|t−h. Interestingly,

most of the β’s are estimated to be negative (and significantly different from zero),

indicating that positive forecasts correspond to negative realizations and vice versa.

We check if a few outliers are the culprit of these findings, but when we apply a

robust estimation method (Least Absolute Deviation or Iteratively Reweighed Least

Squares) we obtain negative β’s of similar magnitude.

Methods B and C create artificial forecasts zt|t−h using actual sales data only and

ignore information in the manager’s forecasts. Note that both methods imply a loss

of information at the maximum horizon length. Indeed, we only have 11 realizations

per product, and hence the maximum horizon for these methods is 10.

Methods D and E are based on the two equations in (4). Method D assumes that

λ can be fixed at 2β + 1, with β estimated using (2), while approach E estimates λ.

For the first forecast of each event, we do not have an earlier forecast and thus no

earlier intuition, so we will also estimate the first νt|t−k (with k the maximum forecast

horizon for that t). For that, we impose an identical unconditional distribution for all

products. The estimation process for these methods is done using OpenBUGS 3.2.1,

which allows for Bayesian estimation, as an alternative method would be difficult

due to the thousands of νt|t−hmax that have to be estimated. This Bayesian method

directly results in a distribution of all νt|t−h and, in the case of approach E, of λ.

We have only used flat priors. The starting values for the precision have been varied

and that did not influence the results. For both methods, 10000 iterations have been

used, after discarding the first 1000 iterations for convergence. We have used the

means of the posterior distributions as estimation values, neglecting the rest of the
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distribution information. Methods D and E are different from the other three in

that they directly model νt|t−h instead of zt|t−h.

Results

The five methods (A to E) are applied to construct both model forecasts zt|t−h

and the intuition νt|t−h. Table 12 shows the estimated λ parameters. The first

three are based on the estimation of (3), the fourth on λ = 2β + 1 with β as

in yt = αh + βhŷt|t−h + ut,h and using the Delta method (Greene, 2002) for the

confidence intervals and the fifth on the posterior distribution of λ after estimating

the set of equations (4). Clearly, all estimates are significantly different from both 0

and 1, implying that the manager’s past intuition is not immediately discarded and

that future intuition is predictable.

Figure 1 shows the mean forecast error for each approach, together with the

forecast error of the original forecasts as reported in Table 3. The errors for approach

A are all zero by construction, as that is a property of OLS. What can be seen is that

each modeling approach results in forecast errors that are smaller than those of the

original manager’s forecasts. For short horizons the RW forecasts have smaller errors

than the dynamic equations forecasts, but for more distant horizons the situation

is reversed. Approach B has smaller errors than approach C, and approach E has

smaller errors than approach D. But still, all errors are significantly different from

zero, meaning that even these forecasts violate a rationality property. Figure 2 shows

a similar picture for the variance of the forecast errors. Three methods (A, D and E)

result in a forecast error variance which is always smaller than the original manager’s

variance, although only for method A this difference is significant. Approaches B and

C sometimes have a larger variance and sometimes a significantly smaller variance.

Mostly, the variance seems to decline as the horizon gets close.

In sum, the constructed model forecasts can also not be considered as fully

rational forecasts. This could be due to our simple intuition specification, due to

not allowing for enough flexibility to properly model the intuition process, or due to

excluding some of the intuition correlation in the artificial model forecasts.

It is evident that approach A results in the ’best’ forecasts, but this is not sur-
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prising considering it makes direct use of information that is only available after the

realizations are available. This means that the results for approach A should be

interpreted as an upper bound (or lower bound, depending on the statistic that is

being discussed). Methods B and C are in general applicable, as they are only based

on available data. Their downside is that they do not directly model the behavior of

the forecaster. Methods D and E are also fairly applicable beforehand, assuming one

knows the λ and has an idea of the initial bias. More importantly, they are directly

based on the behavior of the forecaster, as only the δ’s are used in the process of

estimation. Of these two, approach E appears the most realistic as it estimates λ

jointly with the intuition νt|t−h. This is why we will further analyze this approach

in what follows.

4.4 Interpretation of intuition as judgmental adjustment

In the judgmental adjustment literature, several properties of adjustments have been

documented. We will now compare the properties of the estimated intuition of

approach E with the adjustment properties as found by Franses and Legerstee (2009,

2010).

First, these authors document that managers often adjust statistical forecasts.

They report an overall adjustment percentage of 89.5%. In other words, the judg-

mental adjustment of statistical forecasts is often found to be non-zero. Here, with

method E this is also the case, but of course this is due to how intuition is estimated.

The probability that the simulated values of the intuition is on average exactly zero

is zero. When we use a threshold of 0.05, that is, only adjustments that are (in

an absolute sense) larger than this value are considered as non-zero adjustments,

we obtain an average adjustment percentage of 98.8%. Raising the threshold to 0.5

results in an overall adjustment percentage of 57.1%, meaning that more than half

of the adjustments have a size of at least as large as half the standard deviation of

the sales and the corresponding forecasts, which is due to the standardization pro-

cedure discussed in Section 4.1. Evidently, intuition is thus often a large component

of the manager’s final forecast. In order to get a similar adjustment percentage as in

Franses and Legerstee (2009), the threshold has to be put equal to 0.285, and this
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threshold will be used to study other statistics of intuition.

Franses and Legerstee (2009) report that for 53.5% of the forecasts, the manager

adjusts upwards. Correcting for non-zero adjustments, this percentage increases to

59.8%, showing that there are almost 50% more upward adjustments than downward

adjustments. Using the threshold 0.285, we find that intuition is positive in 88.8%

of the cases and for the non-zero adjustments this increases to 99.2%. Hence, the

manager under scrutiny has a strong tendency to have positive-valued intuition.

Franses and Legerstee (2009) also evaluated the predictability of adjustments

using the history of the adjustments and of the statistical forecasts. They found an

average R2 of 44.3% in regressions using data until the 7th lag. Due to our short

history of forecasts we cannot replicate their findings. However, when we use one

lag as in νt|t−h = λ0 + λ1νt|t−h−1 + λ2ν
2
t|t−h−1 we obtain an average R2 of 68.5%,

indicating there is a strong predictability of intuition, which corresponds with the

results on λ in Table 12.

Next, Franses and Legerstee (2009) report a negative correlation between ad-

justment and model-based forecast. In the regression ŷt|t−h = α + γzt|t−h + ut|t−h

they document that γ is 0.424 on average, and that this is significantly differ-

ent from both 0 and 1. In our situation there are three ways to estimate γ: 1.

ŷi,t|t−h = α + γzi,t|t−h + ui,t|t−h, with a single γ for all products i; 2. ŷi,t|t−h =

α+γizi,t|t−h +ui,t|t−h, with a γ per product; 3. ŷi,t|t−h = α+γi,tzi,t|t−h +ui,t|t−h, with

a γ per product per forecast event. For the second approach we consider only the

one-step-ahead forecasts (h = 1). For all three approaches we find (the average) γ

to be around 1.05 to 1.09 and significantly different from 1 (and 0). This means that

γ∗ in νt|t−h = α + γ∗zt|t−h + ut|t−h is around 0.05 to 0.09 and significantly different

from 0, indicating that if the statistical forecast is large and positive, the intuition

is upward, suggesting double-counting. This is in contrast with the result of Franses

and Legerstee (2009), for which the γ∗ on average is around 0.424 − 1 = −0.576,

which for their data means that if the statistical forecasts are large and positive, the

adjustments are downward, thus dampening the forecast.

It is also interesting to study the effect of current intuition on future intuition.

Concerning forecast adjustments, Franses and Legerstee (2009) reported an average
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persistence of 0.773. In our case, persistence of intuition is measured by the value

of λ, which for approach E is equal to 0.919, which is quite close to 0.773.

Finally, Franses and Legerstee (2010) reported ρ in yt = α + βzt|t−1 + ρ(ŷt|t−1 −

γzt|t−1) + ut,1 to be 0.247, on average, which entails that there is significant forecast

information in the adjustments (where γ is defined to be the correlation between

the model forecasts and the managers’ forecasts, as above). Here, using the results

for γ as earlier, we find ρ to be equal to 0.898 and significantly different from zero

(but not from 1), indicating that the forecasting contribution of the information in

the intuition νt|t−h is quite large. Interestingly, the β is found to be almost zero,

implying that the model forecasts do not provide extra information additional to the

intuition. The R2 of the regression is 2.85%, while the R2 of the regression without

the intuition is only 0.01%.

All above results are summarized in Table 13. We note that the constructed

intuition seems to have properties similar to the properties of judgmental adjust-

ments as reported by Franses and Legerstee (2009, 2010). Most percentages and

parameters deviate from the rational norm in the same direction, with γ being the

only exception.

5 Conclusion

We have proposed a methodology to analyze managers’ forecasts when only these

forecasts are given and it is unknown how managers created their forecasts. We

illustrated this methodology for a large range of forecasts for a single manager,

but for hundreds of products. Generally, we conclude that these sales forecasts

violate rationality. Deviations from model forecasts have been constructed using

five different methods and these variables seem to have properties similar to those

reported in the judgmental adjustment literature. Hence, we conjecture that it is

plausible that the manager’s forecasts have been constructed by adjusting available

model forecasts. Our artificial model forecasts turned to lead to smaller forecast

errors. So, also here we see that a manager’s adjustment of model forecasts does not

necessarily lead to better forecasts.
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Managers might have non-standard beliefs and might be confronted with non-

standard decision making situations, and this may lead to irrational forecasts. In

the future, more research on this topic can be done given the availability of larger

data sets containing more managers, more products per country and a longer time

span per product. This would allow a comparison of forecasting practices.

Our methodology cannot directly be used to improve managers’ forecasts. What

could be done is to inform managers about the properties of their forecasts, and

to prevent them from making systematic errors in their adjustments or revisions.

By simply showing the biases the managers appear to have, they might be able to

(partially) change their behavior. Another possibility is to use the information of

their forecasts in a different way and to incorporate the adjustments or revisions

of the forecasters into the model forecast. This combined forecast benefits from

the extra information that the forecasters might have and the unbiasedness of a

statistical model.
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A Properties of rational forecasts for a stationary

time series

We will illustrate the properties of rational forecasts for a stationary time series. As

rational expectations Er(.) are the same as statistical expectations E(.) based on

the true model, we will use statistical expectations. Assume that the data xt are

generated by a stationary time series model without a time trend. Also assume that

the relevant parameters are known or estimated very accurately. Denote the h-step

ahead forecast as x̂t|t−h and the forecast error as ft|t−h = xt− x̂t|t−h. We will use the

result of Wold’s theorem (Wold, 1954), which states that it is possible to decompose

any covariance-stationary time series as the sum of an infinite moving average process

(MA(∞)) and a deterministic component. In the case of our stationary model the

deterministic component is only the unconditional mean, which we will denote as µ.

This means that

xt = µ+
∞∑
i=0

θiεt−i, (5)

where we will assume that εt ∼ N(0, σ2
εI) (and thus linearly uncorrelated) and θ0 = 1.

This means that ft|t−h can be defined as

ft|t−h =
h−1∑
i=0

θiεt−i, (6)

as the errors at origin t− h or older are known.

1. The forecast errors should be unbiased:

E(ft|t−h) = 0. (7)

Proof. Using Wold’s theorem: E(ft|t−h) = E(
∑h−1

i=0 θiεt−i) = 0, as the errors

all have expectation equal to zero.

2. The forecast accuracy should improve as the horizon decreases:

V ar(f 2
t|t−h) < V ar(f 2

t|t−k) (8)

for h < k.
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Proof. V ar(ft|t−h) = V ar(
∑h−1

i=0 θiεt−i) =
∑h−1

i=0 θ
2
i σ

2
ε and similarly

V ar(ft|t−k) =
∑k−1

i=0 θ
2
i σ

2
ε . As h < k, V ar(ft|t−k)− V ar(ft|t−h) =

∑k−1
i=h θ

2
i σ

2
ε >

0, which means that V ar(f 2
t|t−h) < V ar(f 2

t|t−k).

3. Nonoverlapping forecast errors should be uncorrelated:

E(ft|t−hft−h−k|t−h−p) = 0 (9)

for any 0 < k < p.

Proof. E(ft|t−hft−h−k|t−h−p) = E(
∑h−1

i=0 θiεt−i
∑h+p

i=h+k θiεt−i) = 0, as all rele-

vant ε are uncorrelated.

4. The revisions should be as often upward as downward, irrespective of earlier

revisions:

P (δt|t−h > 0) = P (δt|t−h < 0) (10)

and

P (δt|t−h > 0|t− h− k) = P (δt|t−h > 0|t− h− p) (11)

for any 0 < k < p.

Proof. P (δt|t−h > 0) = P (ŷt|t−h − ŷt|t−h−1 > 0) = P (θhεt−h > 0) =
1

2
, as

εt ∼ N(0, σ2
εI). Similarly, P (δt|t−h < 0) =

1

2
. This derivation is the same

for any (earlier) information set, as for this model the information set that is

known does not affect the extra information that will be known at the moment

of the revision. Indeed, at t − h + 1, the probability P (δt|t−h > 0) would not

be equal to
1

2
, as at that moment the revision is already known. Before t− h

there is no information on the error at t − h, irrespective of how far in the

future t− h is.

Corollary.

δt|t−h = θhεt−h, (12)

which means that the θ’s of a Wold’s decomposition can be extracted from

the data using the revisions and the one-step-ahead forecast errors concerning

realizations at t−h (which are proportional to the corresponding shocks εt−h).

24



5. The revisions should have no autocorrelation:

E(δt|t−hδt|t−h−p) = 0 (13)

for any p > 0.

Proof. E(δt|t−hδt|t−h−p) = E[(ŷt|t−h − ŷt|t−h−1)(ŷt|t−h−p − ŷt|t−h−p−1)] =

E(θhθh−pεt−hεt−h−p) = 0, as the ε are independent.

6. The cross-correlations between errors and revisions should be zero for all errors

with the time span from forecast origin to event entirely before or after the

revision moment:

E(δt|t−hft−h−k|t−h−p) = 0 (14)

for any 0 < k < p and

E(δt|t−hft−h+p|t−h+k) = 0 (15)

for any 0 < k < p.

Proof. E(δt|t−hft−h−k|t−h−p) = E(θhεt−h
∑h+p−1

i=h+k θiεt−i) = 0, as the ε’s all

occur before the εt−h and the ε are uncorrelated. E(δt|t−hft−h+p|t−h+k) =

E(θhεt−h
∑h−k−1

i=h−p θiεt−i) = 0 since the ε’s all occur after the εt−h and the ε

are uncorrelated.
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B Proof of β = λ−1
2 .

The first step is to derive the unconditional variance and first-order autocovariance

of the intuition. The second step is to use those to derive the variance and first-order

autocovariance of the intuition update. The final step is to use that to calculate the

first-order autocorrelation. This can then be linked to β.

First, the unconditional variance of the intuition is

V ar(νt|t−h) = λ2V ar(νt|t−h−1) + V ar(ηt,h)

and as the first two variances are equal (unconditionally) it follows that

V ar(νt|t−h) =
σ2
ν

1− λ2
,

with σ2
ν the variance of the error term.

To derive the first-order autocovariance of the intuition, we will need

Covar(νt|t−h, νt|t−h−1) = E(νt|t−hνt|t−h−1)− E(νt|t−h)E(νt|t−h−1) =

λE(ν2
t|t−h−1) + E(νt|t−h−1ηt,h) =

λσ2
ν

1− λ2

and

Covar(νt|t−h, νt|t−h−2) = E(νt|t−hνt|t−h−2)− E(νt|t−h)E(νt|t−h−2)

= λE(νt|t−h−1νt|t−h−2) + E(νt|t−h−1ηt,h) = λ2E(ν2
t|t−h−2) =

λ2σ2
ν

1− λ2
.

The variance of the intuition update:

V ar(νt|t−h − νt|t−h−1) = E[(νt|t−h − νt|t−h−1)(νt|t−h − νt|t−h−1)] =

2V ar(νt|t−h)− 2Covar(νt|t−h, νt|t−h−1) =
2σ2

ν

1− λ2
− 2λσ2

ν

1− λ2
=

2(1− λ)σ2
ν

(1− λ)(1 + λ)
=

2

1 + λ
σ2
ν .

The first-order autocovariance of the intuition update is

Covar(νt|t−h − νt|t−h−1, νt|t−h−1 − νt|t−h−2) = E[(νt|t−h − νt|t−h−1)(νt|t−h−1 − νt|t−h−2)] =

2Covar(νt|t−h, νt|t−h−1)− V ar(νt|t−h−1)− Covar(νt|t−h, νt|t−h−2) =
2λ− 1− λ2

1− λ2
σ2
ν =

−(λ− 1)2

(1− λ)(1 + λ)
σ2
ν =

λ− 1

1− λ
σ2
ν .
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Finally, the first-order autocorrelation of the intuition update is thus given by

Corr(νt|t−h − νt|t−h−1, νt|t−h−1 − νt|t−h−2) =

Covar(νt|t−h − νt|t−h−1, νt|t−h−1 − νt|t−h−2)

V ar(νt|t−h − νt|t−h−1)
=

λ−1
1−λσ

2
ν

2
1+λ

σ2
ν

=
λ− 1

2
.

For an α equal to zero, which is the case for (unconditionally) unbiased forecasts

(and even more so for rational forecasts), this correlation is equal to β, thereby

proving β = λ−1
2

.
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C Tables and figures

Table 1: In this table the fs|s−k (with event s and forecast horizon k) which are
allowed to correlate with δt|t−h under the assumption of rationality are marked
with O and the rest is marked with X. The correlation does not depend on the
forecast horizon k of the forecast error, but only on the moment of the error.

k: 1 2 3 4 5 6 ...
...
s = t-h-1 X X X X X X
s = t-h O O O O O O
s = t-h+1 X X X X X X
...
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Table 2: The data format for a single variable. Across the columns the timing of
the event changes, and across the rows the forecast origin changes. F1 means a
1-step-ahead forecast, F2 a 2-step-ahead forecast, and so on. The bottom row

shows the realizations (R).

Realization 4 5 6 7 8 9 10 11 12 13 14
1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13
2 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
3 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
4 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
5 F1 F2 F3 F4 F5 F6 F7 F8 F9
6 F1 F2 F3 F4 F5 F6 F7 F8

Forecast origin 7 F1 F2 F3 F4 F5 F6 F7
8 F1 F2 F3 F4 F5 F6
9 F1 F2 F3 F4 F5

10 F1 F2 F3 F4
11 F1 F2 F3
12 F1 F2
13 F1
R R R R R R R R R R R R

Table 3: The number of observations, the mean forecast error (with the standard
error of the mean in parentheses), the mean squared forecast error and the forecast

content for the first 13 horizons for the standardized forecasts.

Horizon N Mean Error (SE) Mean Squared Error Forecast content
1 3729 -0.720 (0.023) 2.456 0.730
2 3729 -0.720 (0.023) 2.478 0.728
3 3729 -0.757 (0.023) 2.620 0.713
4 3390 -0.736 (0.025) 2.642 0.710
5 3051 -0.775 (0.027) 2.821 0.690
6 2712 -0.891 (0.029) 3.149 0.654
7 2373 -0.949 (0.033) 3.451 0.621
8 2034 -0.986 (0.037) 3.770 0.586
9 1695 -1.041 (0.042) 4.099 0.550
10 1356 -1.147 (0.049) 4.569 0.499
11 1017 -1.482 (0.056) 5.408 0.407
12 678 -1.817 (0.069) 6.522 0.284
13 339 -2.538 (0.089) 9.112 0.000
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Table 4: The correlation between forecast errors corresponding to different forecast
horizons for the same event.

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8
H=1 1.000
H=2 0.990 1.000
H=3 0.875 0.883 1.000
H=4 0.730 0.738 0.864 1.000
H=5 0.593 0.602 0.729 0.861 1.000
H=6 0.528 0.534 0.589 0.724 0.844 1.000
H=7 0.449 0.455 0.493 0.574 0.702 0.845 1.000
H=8 0.331 0.336 0.368 0.441 0.527 0.691 0.843 1.000

Table 5: The correlation between forecast errors corresponding to the same
horizons for the different events. A row beginning with ∆t = k indicates that the
time span between events, for which the correlation is calculated, is equal to k.

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8
∆t = 1 0.267 0.262 0.311 0.328 0.337 0.333 0.317 0.278
∆t = 2 0.259 0.258 0.325 0.318 0.322 0.308 0.275 0.238
∆t = 3 0.222 0.216 0.236 0.240 0.263 0.248 0.209 0.162
∆t = 4 0.131 0.130 0.151 0.146 0.173 0.172 0.141 0.106
∆t = 5 0.181 0.174 0.161 0.125 0.129 0.119 0.090 0.051
∆t = 6 0.182 0.179 0.191 0.120 0.090 0.073 0.034
∆t = 7 0.088 0.084 0.124 0.081 0.031 0.022
∆t = 8 0.121 0.121 0.123 0.092 0.034
∆t = 9 0.135 0.128 0.150 0.044
∆t = 10 0.036 0.041 0.055
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Table 6: The number of observations, the mean forecast revision (with the
standard error of the mean in parentheses) and the variance of the revision.

Horizon N Mean Revision (SE) Variance of Revision
1 3729 -0.001 (0.002) 0.017
2 3729 -0.037 (0.008) 0.210
3 3390 -0.051 (0.009) 0.252
4 3051 -0.054 (0.009) 0.274
5 2712 -0.068 (0.010) 0.281
6 2373 -0.065 (0.011) 0.289
7 2034 -0.087 (0.013) 0.322
8 1695 -0.058 (0.012) 0.264
9 1356 -0.066 (0.014) 0.265
10 1017 -0.055 (0.015) 0.235
11 678 -0.027 (0.014) 0.142
12 339 0.000 (0.019) 0.118

Table 7: The number of upward, downward and no-change revisions, along with
the percentage of revisions that result in a change (either upward or downward)

and the percentage of upward revisions given that there is a change.

Horizon N Up No Change Down % Changed % Up | Change
1 3729 852 1910 967 48.8 % 46.8 %
2 3729 472 2708 549 27.4 % 46.2 %
3 3390 380 2455 555 27.6 % 40.6 %
4 3051 437 2006 608 34.3 % 41.8 %
5 2712 425 1702 585 37.2 % 42.1 %
6 2373 374 1517 482 36.1 % 43.7 %
7 2034 271 1284 479 36.9 % 36.1 %
8 1695 257 1114 324 34.3 % 44.2 %
9 1356 176 891 289 34.3 % 37.8 %
10 1017 157 572 288 43.8 % 35.3 %
11 678 196 367 115 45.9 % 63.0 %
12 339 156 109 74 67.8 % 67.8 %

Table 8: The number of positive, no-change or negative updates after a positive,
no-change or negative recent update.

Updatet−2 > 0 Updatet−2 = 0 Updatet−2 < 0 Sum
Updatet−1 > 0 86 517 249 852
Updatet−1 = 0 147 1558 205 1910
Updatet−1 < 0 239 633 95 967

Sum 472 2708 549 3729
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Table 9: The second column concerns the k − th order autocorrelation of the
forecast revisions and the third column contains the autocorrelation of the squared

revisions. The fourth and fifth column contain the cross-correlations of both, in
which the squared revision either leads (+) or lags (-) the revision.

Lag Revision Squared Revision Revision,Sq.Revision(+) Revision,Sq.Revision(-)
1 -0.111 0.095 -0.222 -0.222
2 0.058 0.049 -0.054 0.080
3 -0.010 0.018 -0.046 -0.042
4 -0.033 -0.006 -0.032 0.027
5 -0.020 0.002 0.012 0.011
6 -0.051 0.023 -0.010 0.015
7 -0.035 -0.009 0.012 0.017
8 0.010 0.005 0.038 0.014
9 0.024 -0.003 0.029 0.018
10 -0.074 0.036 -0.020 0.018

Table 10: The correlation between forecast revisions concerning the same horizons
for varying realization dates. A row beginning with ∆t = k indicates that the time

between events, for which the correlation is calculated, is equal to k.

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8
∆t = 1 0.250 0.010 0.079 0.001 -0.026 -0.009 -0.013 -0.036
∆t = 2 0.190 0.012 0.063 0.028 0.037 0.052 0.049 0.028
∆t = 3 0.153 0.028 0.096 0.008 0.017 -0.001 0.001 -0.004
∆t = 4 0.106 -0.020 0.045 -0.009 -0.010 -0.007 -0.003 -0.004
∆t = 5 0.145 -0.056 0.017 0.035 0.024 0.003 -0.006
∆t = 6 0.201 -0.021 -0.036 0.013 -0.015 -0.007
∆t = 7 0.234 -0.031 0.022 0.002 -0.005
∆t = 8 0.175 0.029 -0.061 -0.017
∆t = 9 0.080 0.085 -0.011
∆t = 10 0.167 -0.083
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Table 11: The cross-correlation between forecast revisions and forecast errors for
the same realization, in which the forecast error either leads (+) or lags (-) the
revision with the horizon difference given in the first column. The final column
contains the estimates of θh as in (12), except for the first entry, which is 1 by

definition.

Horizon Revision,Error(+) Revision,Error(-) θh
0 -0.051 -0.051 1
1 0.286 -0.028 0.000
2 0.270 -0.048 0.076
3 0.242 -0.043 0.072
4 0.239 -0.032 0.086
5 0.199 -0.025 0.104
6 0.126 -0.007 0.104
7 0.096 0.011 0.118
8 0.062 0.016 0.085
9 0.057 0.003 0.076
10 0.123 0.030 0.090

Table 12: The λ estimates, along with upperbounds and lowerbounds, for each of
the five methods.

Approach λ 95 % LB 95 % UB
A 0.843 0.839 0.847
B 0.441 0.432 0.458
C 0.288 0.274 0.303
D 0.861 0.848 0.873
E 0.919 0.904 0.932

Table 13: The percentages and parameter estimates on the judgmental
adjustments of Franses and Legerstee (2009,2010) compared with the same

percentages and parameter estimates for the constructed intuition of method E.

Franses and Legerstee (2009,2010) Method E
Percentage adjustments 6= 0 89.5 % 89.5 %

Perc. upward adj. 53.5 % 88.8 %
Perc. upward adj. given nonzero 59.8 % 99.2 %

R2 of adjustments 44.3 % 67.7 %
γ 0.424 1.051

Persistence 0.773 0.919
ρ 0.247 0.898
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Figure 1: Mean forecast error of the five approaches to construct rational forecasts,
together with the mean forecast error of the original forecasts, for all horizons.

Figure 2: Variance of the forecast error of the five approaches to construct rational
forecasts, together with the variance of the forecast error of the original forecasts,

for all horizons.
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