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Abstract
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1 Introduction

Managers’ sales forecasts often include a subjective component (Sanders and Man-
rodt, 2003). This subjective component could be the source of biases or inefficiency
but could also improve the forecasts using information that a model could not in-
corporate. For this reason there is much literature on evaluating forecasts which are
not purely statistical, but partly or fully judgmental (for an early review, see Webby
and O’Connor (1996), while Lawrence, et al. (2006) provide a more recent review).
For sales forecasting, most attention has been given to judgmental adjustments of
statistical forecasts (Mathews and Diamantopoulos, 1986, 1989, 1990, 1992; Sanders
and Ritzman, 1995, 2001; Fildes et al. 2009; Franses and Legerstee, 2009, 2010;
Syntetos et al. 2009; Davydenko et al. 2010a, 2010b; and Eroglu and Croxton,
2010). The literature on judgmental forecasts has also addressed how to combine
them with statistical forecasts (Sanders and Ritzman, 2004; Franses and Legerstee,
2011, among others).

In this paper we will evaluate managers’ sales forecasts without knowing how
these forecasts were created. As we do not have statistical model-based forecasts,
evaluating deviations from statistical forecasts is not an option, and hence another
approach is needed. We propose various methods in this paper.

To illustrate, we examine the sales forecasts created by a manager of an inter-
national pharmaceutical company for hundreds of products for one country. These
forecasts are the responsibility of a single individual only and it is unknown whether
he has used a statistical model as a basis for these forecasts or whether these forecasts
are entirely judgmental. We investigate whether these forecasts can be considered
as rational, where rationality implies that the forecaster is able to optimally use
available information given a certain loss function.

The remainder of this paper is as follows. Section 2 contains a literature review.
Section 3 puts forward some theory of rational forecasts and of possible deviations
from rationality. In Section 4, we illustrate this theory for the sales forecasts of
the pharmaceutical company. Section 5 contains the conclusion, discussion and

suggestions for further research.



2 Literature review

The forecasts that we evaluate are so-called fixed-event forecasts, that is, they con-
cern forecasts made at origins ¢ — h to t — 1 for horizon ¢. Nordhaus (1987) intro-
duced a test for forecast rationality for fixed-events which is based on weak efficiency.
Clements (1997) considers the pooling of this test across multiple realization dates
and he documents substantial negative autocorrelation in series of revisions. This is
consistent with the negative first-order autocorrelations of the sales forecast revisions
found by Lawrence and O’Connor (2000).

One prominent reason for inefficient or irrational forecasts concerns the inclusion
of judgment. For several decades researchers have been interested in forecasts with
a judgmental component (see Adam and Ebert, 1976; Armstrong, 1983; Lawrence et
al. 1986; Lawrence and Makridakis, 1989; O’Connor et al. 1993; Lim and O’Connor,
1995; and Goodwin, 2002) For more complete reviews of the literature see Webby
and O’Connor (1996) and Lawrence et al. (2006).

Most recent literature has focused on subjective adjustments of statistical fore-
casts. For example, Franses and Legerstee (2009) discuss properties of managers’
adjustments of model forecasts and find that the adjustments are frequent and often
upwards. They also find that the adjustments are predictable using earlier adjust-
ments and earlier forecast errors, and that the adjustments are not independent
of current model-based forecasts. Franses and Legerstee (2010) find that expert-
adjusted forecasts of sales of stock-keeping units (SKU) are not better and often
worse than model-based forecasts. On the other hand, Fildes et al. (2009) report
that adjustments can improve forecasting performance, although errors are often
made when making small or upward adjustments.

Less attention has been given to the analysis of sales forecast revisions, which
are the changes of the forecasts for the same realization date when the forecast
horizon decreases. While there have been several studies on forecast revisions for
macroeconomic variables (Ashiya, 2003) and financial variables (Amir and Ganzach,
1998), we are aware of only one study that deals with SKU-level sales. Lawrence

and O’Connor (2000) find that the accuracy improves only little over time and that



the revisions have negative first-order autocorrelations.

Additional to evaluating their actions directly using actual forecasts data, an-
other way to find out what managers drives in making their forecasts is by simply
asking what they do. This has led to many surveys concerning sales forecasts over
many decades (Modigliani and Weingartner, 1958; Cerullo and Avila, 1975; Dalrym-
ple, 1987; Sanders and Manrodt, 1994, 2003; Klassen and Flores, 2001; Boulaksil
and Franses, 2009). The general conclusion is that the managers feel that they
sometimes need to adjust or ignore statistical model forecasts in order to make a
proper forecast. This is despite the fact that there are many studies suggesting that
these actions can also have large negative effects on forecasting performance. This
suggests that judgment may lead to deviations from rationality.

The novelty of the present study is that we propose a methodology to elicit devia-
tions from rationality of managers’ forecasts in case only their forecasts are available.
For this purpose we construct artificial model-based forecasts, and with these we can
compute the adjustments (deviations). If the constructed model forecasts are similar
to the unknown factual model forecasts, the constructed adjustments should have
properties similar to the typical adjustments as found in judgmental adjustment

literature.

3 Theory

In this section we will discuss some theory on forecasts and on the evaluation of
forecasts. We will discuss properties that define a rational forecast in Section 3.1. In
practice, there might be a deviation from a rational forecast. Section 3.2 discusses
the models and methods that we will use to reconstruct this deviation in the case
the analyst, who should evaluate the quality of managers’ forecasts, does not have

access to statistical model-based forecasts.

3.1 What is a rational forecast?

Suppose the variable to be predicted is y;. At an earlier time, say h periods earlier,

a forecast is made. Denote this forecast as ;.



Forecast errors

The forecast will in general not be equal to the realization at time ¢, and there
will be a forecast error fy,—n = ys — Ysji—n. Ideally, one would like the forecast to
be unbiased, which is defined as the error having a mean equal to zero, that is,
E(fyt—n) = 0.'. This is desirable in an unconditional sense (overall unbiasedness)
and in a conditional sense (unbiasedness in typical situations). Also, one wants the
variance O-.?.tﬁ—h to be as small as possible. If the forecast is truly incorporating all
relevant information, this forecast error variance should preferably be smaller than
the forecast error variance of any other forecast. As one could always re-use the
forecast of one horizon earlier, the new forecast should also have a variance equal to

or smaller than the last forecast, that is, oiltih < o2 . Another way to phrase

= Y fijt—n—1
this is that forecasts should improve in accuracy over time.

The speed of this improvement depends on the variable under consideration.
For example, consider an AR(1) process with parameter ¢ and unconditional mean
w, that is; vy = p+ ¢(y—1 — p) + €. Assuming that ¢ and p are known, the
error series ...,g;_1,&; is the only source of forecasting error, which means that the
smaller the forecast horizon, the more information is known to improve upon the
unconditional forecast p. The development of this information over the forecast
horizon is introduced by Galbraith (2003) as forecast content, with an application in
for example Galbraith and Tkacz (2007). The main pattern is that the information
gain per horizon increases as the evaluation date approaches, which is due to the fact
that later forecast origins often contain more information. Finally, errors that do not
have an overlap between forecasting event and origin should be uncorrelated, such
as fyu—n and fi_p_gji—n—p for any 0 < k < p. Overlapping errors can be correlated,
as they do not include the same news, such as fi;_» and f;_;;—3, which both do not

have the error (news) at ¢ — 1.

!This is the case if one uses a symmetric and quadratic error function. There could be situations
where one could consider alternative loss functions, but this is not pursued here.



Forecast revisions

Interesting for our application are the properties of the forecast revisions? defined by
Ott—h = Yt|t—h — Yejt—n—1 made at ¢ — h for event ¢. If the forecast g;_,—1 is assumed
to be unbiased, upward revisions should occur just as often as downward revisions,
given a symmetric loss function. This does not only hold for revisions made at
adjacent origins, but also for more separated origins. Moreover, the probability of
an upward revision should not depend on the last revision, and should always be the
same. The same holds for the size of the revision (irrespective of the sign), that is,
it should not depend on the sign or size of the earlier revisions®. This is similar to

the absence of correlation between the forecast updates.

Forecast errors and revisions combined

There are also some interesting properties of the cross-correlations of the errors and
the revisions in case of rational forecasts. The following discussion is summarized in
Table 1. First, in the case of a rational forecast, there should not be a correlation
between the revision d,;—, and the error of its associated forecast fi;_p, as in that
case the revision could have been improved. The same holds for the errors of all
forecasts on or after the revision date. Thus, dy;—j, is uncorrelated with f;_ ;- for
all0 < k< h—1land 0 <p < h—k—1. Also, forecast errors concerning a realization
before the revision moment of the current revision should not correlate with the
current revision, which means that d,,—; is also uncorrelated with f;_,_p—n—, for
all 0 < k < p. On the other hand, the errors that have just been known on ¢t — h can
be rationally correlated with d,,_p, as they can contain relevant information that has
not been used already. Thus, d,,—; can be correlated with f;_p;—,—, for all p > 0.
In Appendix A, we will give more details of the rationality properties along with

more formal statistical notation. The properties are illustrated for a stationary time

2Forecast revisions are also known as forecast updates. Both terms will be used in this paper.

3Tt could depend on the forecast horizon as more information is contained in the last origin
before realization. This could result in those revisions being larger in (absolute) size due to the
fact that they contain more information. The revisions could also be smaller as the cumulative
information until that moment also has increased, making the new information a smaller piece of
the total amount of available information.



series model.

3.2 Reconstructing deviations from rational forecasts

Using managers’ sales forecasts only, we can calculate relevant sample statistics
and evaluate whether there is a deviation from rationality. However, we cannot
quantify the size of the deviation from rationality, as the rational (model-based)
forecasts are not available. Our solution is to create artificial statistical forecasts for
which the rational properties should hold. These artificial forecasts can be given the
interpretation of model forecasts, resulting in a bridge between the deviations from
these artificial forecasts (which will be given the interpretation of intuition later on)
and the judgmental adjustments of statistical forecasts discussed in the literature
review. When the artificial forecasts are similar to the statistical forecasts, intuition
should have similar properties as judgmental adjustment. It would then be plausible
that this is the approach that could have been taken by the manager, that is, first

to create model forecasts and then to adjust them.

Notation

Again, denote realizations and managers’ forecasts as y;, and g;—,. Now suppose

there are also model forecasts z;,—;, and denote the difference as

Vijt—h = Qt\t—h — Zt|t—h;s (1)

which can be interpreted as intuition. Rational forecasts imply that the updates
are unbiased and uncorrelated, which leads to @ = 0 and § = 0 in the auxiliary

regression

Otjt—h = @ + BOyt—n—1 + Wi (2)
Suppose we assume that intuition v;_, obeys

Vijt—h = AVgji—h—1 + Neh (3)

(with 7, iid with mean 0 and variance ¢2), then Appendix B shows that § = %,

or equivalently A = 26 + 1. For 8 to be 0, A must be 1. The A can also take some
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other interesting values. First, if A = 0 (equivalent with § = —3), the intuition

1
2
is uncorrelated with past intuition, meaning that previous intuition is immediately
discarded. If A = —1 (§ = —1), the intuition of the previous update is reversed on

average, which would result in highly varying intuition over time.

Creating artificial forecasts

In the common case when there are not many data points, we would suggest the
following five alternative ways of defining or estimating either 2, or v4_p. Ap-
proach A defines z;_j to be the fit of y, = ay + ByJie—n + wn. Approach B simply
takes the Random Walk (RW) forecast and thus assumes z;—s = y;—p. The third
model forecast (C) is a slight variation, in which a possible temporary swing is in-
corporated into the model, that is, zy,—p = 79— + h(1 — 7)(Ye—n — Y4—p—1). The 7
parameter indicates how important the last realization is, as compared to the trend
information in the forecast. To avoid too much influence of temporary swings, this
parameter has to be close to 1. We will use 7 = 0.95 in our empirical work below.
Before defining the final two forecasts, we need a few derivations. As the 2z,
are supposed to be rational, changes in model forecasts should not be predictable

from earlier forecasts, that is,
Zjt—h = Ztjt—h—1 T Wi h

with w;j having white noise properties. Rewriting (1) to zyi—n = ejt—h — Veje—n gives
Utle—h — Vejt—h = Ut|t—h—1 — Vijt—h—1 T Weh,

or, after re-arranging
Utle—h — Ytjt—h—1 = Vijt—h — Vijt—h—1 T Weh-

The left hand side is equal to dy;—p. Adding (3) results in the following set of

equations:

Otj—h = Vijt—h — Vejt—h—1 + We,h (4)

Vijt—h = AVijt—h—1 + N,k



For the fourth model forecast (D) we will fix A at 23+ 1, where (3 is estimated using
(2). For the fifth and final model forecast (approach E), A is estimated along with
the rest of the model. In contrast to the earlier approaches, these last two methods
directly result in vy, of which then z,;_; can be calculated.

Both the actual managers’ forecasts and the constructed model forecasts can then
be evaluated on their rational properties. Also, the resulting A can be compared for
the different model forecasts. Finally, the deviations between actual forecasts and
the model forecasts can be further investigated. For example, it is interesting to
check whether these estimates of intuition have similar properties as the judgmen-
tal adjustments documented in the judgmental adjustment literature, such as for

example in Franses and Legerstee (2009, 2010).

4 Illustration

This section applies our methodology to a large and novel dataset of managers’ fore-
casts. First, we discuss the data and then we check rationality properties. After that,

we create artificial model forecasts and hold these against the managers’ forecasts.

4.1 Data

We use data from a large multinational Germany-based pharmaceutical company.
This company has a manager for each country who produces sales forecasts for
hundreds of products. We have data for a single country with forecasts up to one
year ahead. This results in data of the form of Table 2, with 88 forecasts and 11
realizations for each product (at the stock keeping unit SKU level). We will pool all
data after standardization.

One characteristic of the data set is that the sales volumes (and their forecasts)
vary per product. We therefore standardize the data as follows. We first calculate
per product the averages of the forecasts and of the realizations and take an equal-
weighted average of this as the standardized mean, such that forecast information
and realization information is equally important. We also calculate the standard

deviation of both sets and take the square root of the product of these as the stan-



dardization standard deviation. Finally, we calculate the standardized forecasts and

realizations by subtracting the standardized mean from each original value and by
1,1

dividing by the standardized standard deviation: y* = y;’;s =1 f/‘:ijz”f , with sub-

scripts S, r and f indicating the standardization, realization or forecast variables.

Standardization approaches based on only the forecast information or the realization
information yield similar results. In the following, we will use forecast and error to

denote standardized forecast and standardized error.

4.2 Rational properties

Table 3 shows descriptive statistics of the forecast errors for different horizons. For
each horizon, the mean error is significantly smaller than zero, which indicates that
the forecasts are on average too high and thus biased. The errors approach zero
as the time to the event decreases. The mean squared error (and similarly the
unreported variance) also declines as the forecast horizon decreases, indicating that
the forecasts become more accurate as the realization date gets nearby. We also
present the forecast content as defined by Galbraith (2003). This shows a different
pattern than what is usually found. Usually, the forecast content quickly drops when
forecast origin and event are more distant, but here, the decline only really occurs
for horizons larger than 10. This suggests that about half of the deviation from
the unconditional sales mean is already known by the forecaster about 10 months
before the sales have realized. After that, the forecast accuracy increases only a
little, which is consistent with the results of Lawrence and O’Connor (2000). The
short horizons have more observations, which is due to the data format displayed
in Table 2, but this does not seem to influence the results (as we have verified with
alternative samples, but in unreported tables).

Evaluating the correlation of the errors can be done in many different ways, as the
features that can be held as constant include forecast horizon, realization moment
and forecast moment. Table 4 shows the correlation between forecast errors for the
same realization date across the first eight horizons. It can be seen that the closer
the two events are to each other, the closer the correlation is to 1, which makes sense

under rationality as less distant forecasts share a larger part of their unknown error.
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Table 5 shows the correlation between forecast errors corresponding to the same
horizon for different realization dates. For example, the entry in the third column
and fourth row (0.216) gives the correlation between all 2-step-ahead forecast errors
with a difference of 3 months in realization dates. Hence, on average, a positive 2-
months-ahead forecast error is followed by a positive 2-months-ahead forecast error

3 months later.
Revision properties

From Table 6 it can be seen that the average forecast update is downward as (almost)
all mean revisions are negative. The shape of the mean revision over the horizons
is similar to a parabola. On average, the largest revisions occur for the middle
horizons, while the revisions one year before realization and the final revisions are
not significantly different from zero. A similar pattern can be seen in the variance
of the revision. There is hardly any final non-zero variance, while the revision at
horizon 7 has a variance of 0.322.

Table 7 contains statistics relating to the direction of the revision. It can be seen
that most revisions are downward. Table 8 contains the number of revisions in a
certain direction after a revision in any other direction has occurred. This shows
that positive updates are more often followed by negative updates (since 239 > 86),
while negative updates are more often followed by positive updates (249 > 95). This
means that the distribution of the sign of the revision seems dependent on the earlier
updates.

Concerning the autocorrelation of the revisions, consider Table 9. This table
shows the autocorrelation and cross-correlation of the revisions and the squared
revisions for various lags. It can be seen that the first-order autocorrelation of the
revisions is negative, which is consistent with the results in Table 8. This thus
violates the rational assumption (see equation 13 in Appendix A) but is consistent
with the results of Lawrence and O’Connor (2000). There is also a large negative
contemporaneous correlation between revision and squared revisions, indicating that
if the updates are large in size, they are often downward.

A second way of evaluating the autocorrelation of the revisions results in the
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numbers in Table 10, where we display the correlations between forecast revisions
for various realization dates but the same forecast horizon. Under rationality, all cells
in this table should be zero, as none of the paired revisions are made simultaneously
and the revisions should not be predictable over time. It can be seen that the
one-step-horizon revisions contain substantial autocorrelation, averaging at 0.170,
which is in conflict with rationality. If the current one-step revision is known, future
one-step revisions can be predicted from it, and this should not be the case under

rationality.

The relationship between errors and revisions

Table 11 contains the cross-correlations between the revisions and the errors for
the same realization. It can be seen that the contemporaneous correlation is not
large, and this is also the case for the cross-correlation with a lagged error. They
are slightly negative for small horizons, and this suggests that a positive revision
now is paired with a negative error, not only for this forecast horizon, but also for
upcoming horizons. This makes sense as a positive revision makes the forecasts
larger as compared to the realization, and the forecast errors are defined as the
realization minus the forecast. The cross-correlations in which the error leads the
revision are far away from zero. This indicates that a current large error results in an
upward revision in the future, or vice versa. This is consistent with more information
gradually becoming more used, although this also means that the information is
smoothed and not used immediately when it is available.

Table 11 also contains estimates of ), as in (12), using the one-step-forecast
error f;_pi—n—1 as an approximation for the shock &,_j, (which is valid under the
assumption of rationality). As the estimate of 6, is not significantly different from
zero, the results suggest that the latest news before realization has no influence on
the realization of the sales. All other §’s are significantly different from 0 (at the
1% level), indicating that the shocks at these horizons have a significant effect on
current sales. The sum of these parameters is 0.811, which can only be interpreted
as a lower bound of the total future effect of a shock as for horizons above 10 the

0’s might also be significantly different from zero.
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In sum, of all the rational properties discussed in section 3.1 and Appendix A,
only (8) and (14) stand up tall in the data. We can thus safely conclude that the
manager’s forecasts are not rational (under a symmetric loss function). Now it is

interesting to study how deviations from rationality look like.

4.3 Artificial model forecasts and manager’s forecasts

Method A, in which we define zy,—;, to be the fit of ¥, = an + Balip—n + Usp, is
straightforward to apply. Using Ordinary Least Squares (OLS) to fit this model for
each h, we then calculate the vy, as the difference of 2z, and g¢—5. Interestingly,
most of the 3’s are estimated to be negative (and significantly different from zero),
indicating that positive forecasts correspond to negative realizations and vice versa.
We check if a few outliers are the culprit of these findings, but when we apply a
robust estimation method (Least Absolute Deviation or Iteratively Reweighed Least
Squares) we obtain negative (3’s of similar magnitude.

Methods B and C create artificial forecasts z,;—j, using actual sales data only and
ignore information in the manager’s forecasts. Note that both methods imply a loss
of information at the maximum horizon length. Indeed, we only have 11 realizations
per product, and hence the maximum horizon for these methods is 10.

Methods D and E are based on the two equations in (4). Method D assumes that
A can be fixed at 23+ 1, with [ estimated using (2), while approach E estimates A.
For the first forecast of each event, we do not have an earlier forecast and thus no
earlier intuition, so we will also estimate the first v, (with & the maximum forecast
horizon for that ¢). For that, we impose an identical unconditional distribution for all
products. The estimation process for these methods is done using OpenBUGS 3.2.1,
which allows for Bayesian estimation, as an alternative method would be difficult
due to the thousands of v;_y,,,, that have to be estimated. This Bayesian method
directly results in a distribution of all v, and, in the case of approach E, of A.
We have only used flat priors. The starting values for the precision have been varied
and that did not influence the results. For both methods, 10000 iterations have been
used, after discarding the first 1000 iterations for convergence. We have used the

means of the posterior distributions as estimation values, neglecting the rest of the
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distribution information. Methods D and E are different from the other three in

that they directly model v, instead of zy;_p,.

Results

The five methods (A to E) are applied to construct both model forecasts 2y,
and the intuition v4,_;. Table 12 shows the estimated A parameters. The first
three are based on the estimation of (3), the fourth on A = 25 4+ 1 with 3 as
in ¥ = an + Bple—n + urn and using the Delta method (Greene, 2002) for the
confidence intervals and the fifth on the posterior distribution of A after estimating
the set of equations (4). Clearly, all estimates are significantly different from both 0
and 1, implying that the manager’s past intuition is not immediately discarded and
that future intuition is predictable.

Figure 1 shows the mean forecast error for each approach, together with the
forecast error of the original forecasts as reported in Table 3. The errors for approach
A are all zero by construction, as that is a property of OLS. What can be seen is that
each modeling approach results in forecast errors that are smaller than those of the
original manager’s forecasts. For short horizons the RW forecasts have smaller errors
than the dynamic equations forecasts, but for more distant horizons the situation
is reversed. Approach B has smaller errors than approach C, and approach E has
smaller errors than approach D. But still, all errors are significantly different from
zero, meaning that even these forecasts violate a rationality property. Figure 2 shows
a similar picture for the variance of the forecast errors. Three methods (A, D and E)
result in a forecast error variance which is always smaller than the original manager’s
variance, although only for method A this difference is significant. Approaches B and
C sometimes have a larger variance and sometimes a significantly smaller variance.
Mostly, the variance seems to decline as the horizon gets close.

In sum, the constructed model forecasts can also not be considered as fully
rational forecasts. This could be due to our simple intuition specification, due to
not allowing for enough flexibility to properly model the intuition process, or due to
excluding some of the intuition correlation in the artificial model forecasts.

It is evident that approach A results in the "best’ forecasts, but this is not sur-
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prising considering it makes direct use of information that is only available after the
realizations are available. This means that the results for approach A should be
interpreted as an upper bound (or lower bound, depending on the statistic that is
being discussed). Methods B and C are in general applicable, as they are only based
on available data. Their downside is that they do not directly model the behavior of
the forecaster. Methods D and E are also fairly applicable beforehand, assuming one
knows the A and has an idea of the initial bias. More importantly, they are directly
based on the behavior of the forecaster, as only the d’s are used in the process of
estimation. Of these two, approach E appears the most realistic as it estimates A
jointly with the intuition v;_j. This is why we will further analyze this approach

in what follows.

4.4 Interpretation of intuition as judgmental adjustment

In the judgmental adjustment literature, several properties of adjustments have been
documented. We will now compare the properties of the estimated intuition of
approach E with the adjustment properties as found by Franses and Legerstee (2009,
2010).

First, these authors document that managers often adjust statistical forecasts.
They report an overall adjustment percentage of 89.5%. In other words, the judg-
mental adjustment of statistical forecasts is often found to be non-zero. Here, with
method E this is also the case, but of course this is due to how intuition is estimated.
The probability that the simulated values of the intuition is on average exactly zero
is zero. When we use a threshold of 0.05, that is, only adjustments that are (in
an absolute sense) larger than this value are considered as non-zero adjustments,
we obtain an average adjustment percentage of 98.8%. Raising the threshold to 0.5
results in an overall adjustment percentage of 57.1%, meaning that more than half
of the adjustments have a size of at least as large as half the standard deviation of
the sales and the corresponding forecasts, which is due to the standardization pro-
cedure discussed in Section 4.1. Evidently, intuition is thus often a large component
of the manager’s final forecast. In order to get a similar adjustment percentage as in

Franses and Legerstee (2009), the threshold has to be put equal to 0.285, and this
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threshold will be used to study other statistics of intuition.

Franses and Legerstee (2009) report that for 53.5% of the forecasts, the manager
adjusts upwards. Correcting for non-zero adjustments, this percentage increases to
59.8%, showing that there are almost 50% more upward adjustments than downward
adjustments. Using the threshold 0.285, we find that intuition is positive in 88.8%
of the cases and for the non-zero adjustments this increases to 99.2%. Hence, the
manager under scrutiny has a strong tendency to have positive-valued intuition.

Franses and Legerstee (2009) also evaluated the predictability of adjustments
using the history of the adjustments and of the statistical forecasts. They found an
average R? of 44.3% in regressions using data until the 7th lag. Due to our short
history of forecasts we cannot replicate their findings. However, when we use one
lag as in vyu—p = Ao + Mvy—n—1 + /\gyﬁt_h_l we obtain an average R? of 68.5%,
indicating there is a strong predictability of intuition, which corresponds with the
results on A in Table 12.

Next, Franses and Legerstee (2009) report a negative correlation between ad-
justment and model-based forecast. In the regression §y—n = o + V2¢—n + Uge—n
they document that 7 is 0.424 on average, and that this is significantly differ-
ent from both 0 and 1. In our situation there are three ways to estimate ~: 1.
Uitli—h = Q + VZigji—n + Uigi—n, With a single « for all products ; 2. g —n =
Q+YiZigt—h + Ui gje—n, With a vy per product; 3. §; 4—n = a0+ Vi ¢ 2igjt—n + Ui ge—n, With
a v per product per forecast event. For the second approach we consider only the
one-step-ahead forecasts (h = 1). For all three approaches we find (the average)
to be around 1.05 to 1.09 and significantly different from 1 (and 0). This means that
YN vy = @ + Y Zge—n + Uge—p is around 0.05 to 0.09 and significantly different
from 0, indicating that if the statistical forecast is large and positive, the intuition
is upward, suggesting double-counting. This is in contrast with the result of Franses
and Legerstee (2009), for which the v* on average is around 0.424 — 1 = —0.576,
which for their data means that if the statistical forecasts are large and positive, the
adjustments are downward, thus dampening the forecast.

It is also interesting to study the effect of current intuition on future intuition.

Concerning forecast adjustments, Franses and Legerstee (2009) reported an average
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persistence of 0.773. In our case, persistence of intuition is measured by the value
of A, which for approach E is equal to 0.919, which is quite close to 0.773.

Finally, Franses and Legerstee (2010) reported p in v, = o + B2y—1 + p(Gye—1 —
Yziji—1) + ug1 to be 0.247, on average, which entails that there is significant forecast
information in the adjustments (where 7 is defined to be the correlation between
the model forecasts and the managers’ forecasts, as above). Here, using the results
for v as earlier, we find p to be equal to 0.898 and significantly different from zero
(but not from 1), indicating that the forecasting contribution of the information in
the intuition vy, is quite large. Interestingly, the 3 is found to be almost zero,
implying that the model forecasts do not provide extra information additional to the
intuition. The R? of the regression is 2.85%, while the R? of the regression without
the intuition is only 0.01%.

All above results are summarized in Table 13. We note that the constructed
intuition seems to have properties similar to the properties of judgmental adjust-
ments as reported by Franses and Legerstee (2009, 2010). Most percentages and
parameters deviate from the rational norm in the same direction, with + being the

only exception.

5 Conclusion

We have proposed a methodology to analyze managers’ forecasts when only these
forecasts are given and it is unknown how managers created their forecasts. We
illustrated this methodology for a large range of forecasts for a single manager,
but for hundreds of products. Generally, we conclude that these sales forecasts
violate rationality. Deviations from model forecasts have been constructed using
five different methods and these variables seem to have properties similar to those
reported in the judgmental adjustment literature. Hence, we conjecture that it is
plausible that the manager’s forecasts have been constructed by adjusting available
model forecasts. Our artificial model forecasts turned to lead to smaller forecast
errors. So, also here we see that a manager’s adjustment of model forecasts does not

necessarily lead to better forecasts.
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Managers might have non-standard beliefs and might be confronted with non-
standard decision making situations, and this may lead to irrational forecasts. In
the future, more research on this topic can be done given the availability of larger
data sets containing more managers, more products per country and a longer time
span per product. This would allow a comparison of forecasting practices.

Our methodology cannot directly be used to improve managers’ forecasts. What
could be done is to inform managers about the properties of their forecasts, and
to prevent them from making systematic errors in their adjustments or revisions.
By simply showing the biases the managers appear to have, they might be able to
(partially) change their behavior. Another possibility is to use the information of
their forecasts in a different way and to incorporate the adjustments or revisions
of the forecasters into the model forecast. This combined forecast benefits from
the extra information that the forecasters might have and the unbiasedness of a

statistical model.
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A Properties of rational forecasts for a stationary
time series

We will illustrate the properties of rational forecasts for a stationary time series. As
rational expectations E7(.) are the same as statistical expectations E(.) based on
the true model, we will use statistical expectations. Assume that the data z; are
generated by a stationary time series model without a time trend. Also assume that
the relevant parameters are known or estimated very accurately. Denote the h-step
ahead forecast as Z;;_j, and the forecast error as fy;—, = oy — Zyp—. We will use the
result of Wold’s theorem (Wold, 1954), which states that it is possible to decompose
any covariance-stationary time series as the sum of an infinite moving average process
(MA(o0)) and a deterministic component. In the case of our stationary model the
deterministic component is only the unconditional mean, which we will denote as p.

This means that
Ty =+ Z Oici—i, (5)
i=0

where we will assume that g; ~ N(0, ¢21) (and thus linearly uncorrelated) and 6y = 1.

This means that fy;_; can be defined as

h—1
Jijg—n = Z Oict—i, (6)
i=0
as the errors at origin £ — h or older are known.

1. The forecast errors should be unbiased:
E(ft|t—h) = 0. (7>

Proof. Using Wold’s theorem: E(fy;—s) = E(Z?;()l O;ei—;) = 0, as the errors

all have expectation equal to zero.
2. The forecast accuracy should improve as the horizon decreases:
Var(ft2|t—h) < Va'r(ft2|t—k) (8)
for h < k.
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Var(fix) = Sorg 0202 As h < k, Var(fyr_r) — Var(fyn) = Sorp 0202 >
0, which means that Var(fi, ,) < Var(fi, ).

Proof.  Var(fyn) = Var(Xl)6iers) = Y1) 6202 and similarly

. Nonoverlapping forecast errors should be uncorrelated:

E(fii-nfe-n—kjt—n—p) =0 9)
for any 0 < k < p.

Proof. E(fuyi—nfi—n—kjt—n—p) = E(Z?;OI 0,50 Zg}f’% Oici—;) = 0, as all rele-

vant € are uncorrelated.

. The revisions should be as often upward as downward, irrespective of earlier

revisions:

P(0y—n > 0) = P(64t-n < 0) (10)
and

P(04¢—, > 0]t = h — k) = P(64¢—n > Ot — h —p) (11)

for any 0 < k < p.

Proof. P(0yi—n > 0) = P(Jye—n — Je-n-1 > 0) = P(Ohesn > 0) = %, as
et ~ N(0,021). Similarly, P(0y—p < 0) = % This derivation is the same
for any (earlier) information set, as for this model the information set that is
known does not affect the extra information that will be known at the moment
of the revision. Indeed, at ¢ — h + 1, the probability P(d;;—, > 0) would not
be equal to %, as at that moment the revision is already known. Before t — h

there is no information on the error at t — h, irrespective of how far in the

future t — h is.
Corollary.
Otft—n = OnEi—n, (12)

which means that the 6’s of a Wold’s decomposition can be extracted from
the data using the revisions and the one-step-ahead forecast errors concerning

realizations at t —h (which are proportional to the corresponding shocks &, ).
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5. The revisions should have no autocorrelation:
E(5t\t—h5t|t—h—p) =0 (13)

for any p > 0.

Proof.  E(St-n0tjt-n—p) = El(Gi-n — Jtjt—n—1)Gejt—h—p — Jtjt—n—p-1)] =

E(0h0h—pet—net—n—p) = 0, as the € are independent.

6. The cross-correlations between errors and revisions should be zero for all errors
with the time span from forecast origin to event entirely before or after the

revision moment:

E(yt—nfe—h—kft—h—p) =0 (14)

for any 0 < k < p and

E(Stt—nSfi—ntplt—hsr) =0 (15)

for any 0 < k < p.

Proof.  E(Sye—nfi—n—kjt—n—p) = E(Orer_p E?:,f;kl Oic;—;) = 0, as the &’s all
occur before the ¢,_; and the ¢ are uncorrelated. E(Sy¢—nfi—hiplt—h+r) =
E(Onei—p Z;:,f:; O;er—;) = 0 since the €’s all occur after the &;_j, and the ¢

are uncorrelated.
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B Proof of 5 = %

The first step is to derive the unconditional variance and first-order autocovariance
of the intuition. The second step is to use those to derive the variance and first-order
autocovariance of the intuition update. The final step is to use that to calculate the
first-order autocorrelation. This can then be linked to 3.

First, the unconditional variance of the intuition is
Var(vye—n) = N*Var(vye—n—1) + Var(n)

and as the first two variances are equal (unconditionally) it follows that

0.2

Var(vg—p) = ——=
( tlt h) 1 _ )\27
with o2 the variance of the error term.

To derive the first-order autocovariance of the intuition, we will need

COUCLT(Vﬂtfh? Vt\tfhfl) = E(Vt|t7th\t7hfl) - E(Vt|t7h)E(Vt|tfhfl) =
Ao
1— A2

)‘E(Vt2|t—h—1) + E(Vijt—h—1Mep) =
and

OOUW’(Vﬂtfh, Vt|t7h72) = E<Vt|t7h7/t|t7h72) - E(Vt\tfh)E(Vt\tfth)
No?

= AU (Vgjt—h—1Vijt—n—2) + E(Vipt—n—1Mep) = )‘QE(VtQIt—h—Q) 1

The variance of the intuition update:

Va?"(l/ﬂtfh - Vt\tfhfl) = E[(Vt|t7h - Vt|t7h71)(7/t|t7h - Vt|t7h71)] =

202 2\
2Var (Vy—n) — 2Covar(Vy—p, Vejt—h—1) = s vink ey
2(1 — \)o? 2,

I-NI+N 1A

The first-order autocovariance of the intuition update is

COU@T(Vt\tfh = Vtjt—h—1, Vtjt—h—1 — Vt|t7h72) = E[(Vth‘,fh - Vt\tfhfl)(yﬂtfhfl - Vt|t7h72)] =
ZCOUC”‘(Vt\tfha Vt\tfhfl) - Var(l/ﬂtfhfl) - COU@T(VthFh» Vt\t7h72) = 1_—)\2% =
—(A-1* 5, A-1,

TS
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Finally, the first-order autocorrelation of the intuition update is thus given by

COT’F(Vﬂt—h — Vijt—h—1, Vt|t—h—1 — Vt\t—h—Q) =
A=1_2
COU@?"(Vﬂt—h — Vilt—h—1, Vtjt—h—1 — Vt|t—h—2) 1% A—1
— T2 52
VCLT(Vﬂt,h Vt|t7h71) 1+)\0-I/ 2

For an « equal to zero, which is the case for (unconditionally) unbiased forecasts

(and even more so for rational forecasts), this correlation is equal to (3, thereby

proving (3 = %
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C Tables and figures

Table 1: In this table the fys_j (with event s and forecast horizon k) which are
allowed to correlate with ¢, under the assumption of rationality are marked

with O and the rest is marked with X. The correlation does not depend on the
forecast horizon k of the forecast error, but only on the moment of the error.

k: 1 2 3 4 5 6
s=th-1 X X X X X X
s =t-h O O O O O O
s=th+l1 X X X X X X
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Table 2: The data format for a single variable. Across the columns the timing of
the event changes, and across the rows the forecast origin changes. F1 means a
1-step-ahead forecast, F2 a 2-step-ahead forecast, and so on. The bottom row
shows the realizations (R).

Realization 4 5 6 7 8 9 10 11 12 13 14

1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13
2 F2 F3 F4 F5 F6 F7 F8 F9 FI10 F11 F12
3 F1 F2 F3 F4 F5 F6 F7r F8 F9 FI10 Fl11
4 F1 F2 F3 F4 F5 F6 F7 F8 F9 FI10
5 F1 F2 F3 F4 F5 F6 F7 F8 F9
6 F1 F2 F3 F4 F5 F6 F7 F8
Forecast origin 7 F1 F2 F3 F4 F5 F6 F7
8 F1 F2 F3 F4 F5 F6
9 F1 F2 F3 F4 F5
10 F1 F2 F3 F4
11 F1  F2 F3
12 F1  F2
13 F1

R R R R R R R R R R R R

Table 3: The number of observations, the mean forecast error (with the standard
error of the mean in parentheses), the mean squared forecast error and the forecast
content for the first 13 horizons for the standardized forecasts.

Horizon N Mean Error (SE) Mean Squared Error Forecast content

1 3729  -0.720 (0.023) 2.456 0.730
2 3729 -0.720 (0.023) 2.478 0.728
3 3729 -0.757 (0.023) 2.620 0.713
4 3390 -0.736 (0.025) 2.642 0.710
5 3051 -0.775 (0.027) 2.821 0.690
6 2712 -0.891 (0.029) 3.149 0.654
7 2373 -0.949 (0.033) 3.451 0.621
8 2034  -0.986 (0.037) 3.770 0.586
9 1695  -1.041 (0.042) 4.099 0.550
10 1356 -1.147 (0.049) 4.569 0.499
11 1017 -1.482 (0.056) 5.408 0.407
12 678  -1.817 (0.069) 6.522 0.284
13 339 -2.538 (0.089) 9.112 0.000
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Table 4: The correlation between forecast errors corresponding to different forecast
horizons for the same event.

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8
1.000

0.990 1.000

0.875 0.883 1.000

0.730 0.738 0.864 1.000

0.593 0.602 0.729 0.861 1.000

0.528 0.534 0.589 0.724 0.844 1.000

0.449 0.455 0.493 0.574 0.702 0.845 1.000
0.331 0.336 0.368 0.441 0.527 0.691 0.843 1.000

EEE%EEEE
0~ TR W N

Table 5: The correlation between forecast errors corresponding to the same
horizons for the different events. A row beginning with At = k indicates that the
time span between events, for which the correlation is calculated, is equal to k.

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8
At=1 ]0.267 0.262 0.311 0.328 0.337 0.333 0.317 0.278
At=2 [0.259 0.258 0.325 0.318 0.322 0.308 0.275 0.238
At=3 |0.222 0.216 0.236 0.240 0.263 0.248 0.209 0.162
At=4 10.131 0.130 0.151 0.146 0.173 0.172 0.141 0.106
At=15 |0.181 0.174 0.161 0.125 0.129 0.119 0.090 0.051
At=6 |0.182 0.179 0.191 0.120 0.090 0.073 0.034
At=17 |0.088 0.084 0.124 0.081 0.031 0.022

At=8 |0.121 0.121 0.123 0.092 0.034

At=9 |0.135 0.128 0.150 0.044

At =101 0.036 0.041 0.055
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Table 6: The number of observations, the mean forecast revision (with the
standard error of the mean in parentheses) and the variance of the revision.

Horizon N Mean Revision (SE) Variance of Revision

1 3729  -0.001 (0.002) 0.017
2 3729  -0.037 (0.008) 0.210
33390 -0.051 (0.009) 0.252
4 3051  -0.054 (0.009) 0.274
5 2712 -0.068 (0.010) 0.281
6 2373  -0.065 (0.011) 0.289
7 2034 -0.087 (0.013) 0.322
8 1695  -0.058 (0.012) 0.264
9 1356  -0.066 (0.014) 0.265
10 1017 -0.055 (0.015) 0.235
11 678 -0.027 (0.014) 0.142
12 339 0.000 (0.019) 0.118

Table 7: The number of upward, downward and no-change revisions, along with
the percentage of revisions that result in a change (either upward or downward)

and the percentage of upward revisions given that there is a change.

Horizon N Up No Change Down % Changed % Up | Change
1 3729 852 1910 967 48.8 % 46.8 %
2 3729 472 2708 549 27.4 % 46.2 %
3 3390 380 2455 555 27.6 % 40.6 %
4 3051 437 2006 608 34.3 % 41.8 %
5 2712 425 1702 585 37.2 % 42.1 %
6 2373 374 1517 482 36.1 % 43.7 %
7 2034 271 1284 479 36.9 % 36.1 %
8 1695 257 1114 324 34.3 % 44.2 %
9 1356 176 891 289 34.3 % 37.8 %
10 1017 157 572 288 43.8 % 35.3 %
11 678 196 367 115 45.9 % 63.0 %
12 339 156 109 74 67.8 % 67.8 %

Table 8: The number of positive, no-change or negative updates after a positive,
no-change or negative recent update.

Update;_o >0 Update;_o =0 Update;_o < 0 | Sum

Update;_1 > 0 86 517 249 852
Update;_1 =0 147 1558 205 1910
Update,_1 < 0 239 633 95 967
Sum 472 2708 549 3729
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Table 9: The second column concerns the k — th order autocorrelation of the
forecast revisions and the third column contains the autocorrelation of the squared
revisions. The fourth and fifth column contain the cross-correlations of both, in
which the squared revision either leads (+) or lags (-) the revision.

Lag | Revision Squared Revision Revision,Sq.Revision(+) Revision,Sq.Revision(-)
1 -0.111 0.095 -0.222 -0.222
2 0.058 0.049 -0.054 0.080
3 -0.010 0.018 -0.046 -0.042
4 -0.033 -0.006 -0.032 0.027
5 -0.020 0.002 0.012 0.011
6 -0.051 0.023 -0.010 0.015
7 -0.035 -0.009 0.012 0.017
8 0.010 0.005 0.038 0.014
9 0.024 -0.003 0.029 0.018
10 -0.074 0.036 -0.020 0.018

Table 10: The correlation between forecast revisions concerning the same horizons
for varying realization dates. A row beginning with At = k indicates that the time
between events, for which the correlation is calculated, is equal to k.

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8
At=1 ]0.250 0.010 0.079 0.001 -0.026 -0.009 -0.013 -0.036
At=2 10.190 0.012 0.063 0.028 0.037 0.052 0.049 0.028
At=3 | 0.153 0.028 0.096 0.008 0.017 -0.001 0.001 -0.004
At=4 10.106 -0.020 0.045 -0.009 -0.010 -0.007 -0.003 -0.004
At =15 | 0.145 -0.056 0.017 0.035 0.024 0.003 -0.006

At=6 |0.201 -0.021 -0.036 0.013 -0.015 -0.007

At=7 10.234 -0.031 0.022 0.002 -0.005

At=8 | 0.175 0.029 -0.061 -0.017

At=9 |0.080 0.085 -0.011

At =10 | 0.167 -0.083
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Table 11: The cross-correlation between forecast revisions and forecast errors for
the same realization, in which the forecast error either leads (+) or lags (-) the
revision with the horizon difference given in the first column. The final column
contains the estimates of 6, as in (12), except for the first entry, which is 1 by

definition.

Horizon Revision,Error(+) Revision,Error(-) 6
0 -0.051 -0.051 1
1 0.286 -0.028 0.000
2 0.270 -0.048 0.076
3 0.242 -0.043 0.072
4 0.239 -0.032 0.086
5 0.199 -0.025 0.104
6 0.126 -0.007 0.104
7 0.096 0.011 0.118
8 0.062 0.016 0.085
9 0.057 0.003 0.076
10 0.123 0.030 0.090

Table 12: The A estimates, along with upperbounds and lowerbounds, for each of
the five methods.

95 % LB 95 % UB

Approach A
A 0.843
B 0.441
C 0.288
D 0.861
E 0.919

0.839
0.432
0.274
0.848
0.904

0.847
0.458
0.303
0.873
0.932

Table 13: The percentages and parameter estimates on the judgmental
adjustments of Franses and Legerstee (2009,2010) compared with the same
percentages and parameter estimates for the constructed intuition of method E.

Franses and Legerstee (2009,2010) Method E
Percentage adjustments # 0 89.5 % 89.5 %
Perc. upward adj. 53.5 % 88.8 %
Perc. upward adj. given nonzero 59.8 % 99.2 %
R? of adjustments 44.3 % 67.7 %
Y 0.424 1.051
Persistence 0.773 0.919
p 0.247 0.898
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Figure 1: Mean forecast error of the five approaches to construct rational forecasts,
together with the mean forecast error of the original forecasts, for all horizons.
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Figure 2: Variance of the forecast error of the five approaches to construct rational
forecasts, together with the variance of the forecast error of the original forecasts,
for all horizons.
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