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In this article we consider combining forecasts generated from the same model but over different esti-
mation windows. We develop theoretical results for random walks with breaks in the drift and volatility
and for a linear regression model with a break in the slope parameter. Averaging forecasts over different
estimation windows leads to a lower bias and root mean square forecast error (RMSFE) compared with
forecasts based on a single estimation window for all but the smallest breaks. An application to weekly
returns on 20 equity index futures shows that averaging forecasts over estimation windows leads to a
smaller RMSFE than some competing methods.
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1. INTRODUCTION

There is a sizeable literature on the merits of combining
forecasts obtained from different models, reviewed by Clemen
(1989), Stock and Watson (2004), and, more recently, by
Timmermann (2006). Bayesian and equal-weighted forecast
combinations are being increasingly used in macroeconomics
and finance to good effect. In this literature, the different fore-
casts are typically obtained by estimating a number of alterna-
tive models over the same sample period. Pesaran and Timmer-
mann (2007) argued that the forecast averaging procedure can
be extended to deal with other types of model uncertainty, such
as the uncertainty over the size of the estimation window, and
proposed the idea of averaging forecasts from the same model
but computed over different estimation windows. Using Monte
Carlo experiments these authors show that this type of forecast
averaging reduces the mean squared forecast error (MSFE) in
many cases when the underlying economic relations are subject
to structural breaks.

The idea of forecast averaging over estimation windows
has been fruitfully applied in macroeconomic forecasting.
Assenmacher-Wesche and Pesaran (2008) used average fore-
casts based on different vector autoregressive models with
weakly exogenous regressors (VARX*) of the Swiss economy
estimated over different estimation windows and found that
averaging forecasts across windows resulted in improvements
over averaging of forecasts across models. Similar results were
obtained by Pesaran, Schuermann, and Smith (2009), who ap-
plied the forecast averaging ideas to global VARs composed
of 26 individual country/region VARX* models. Schrimpf and
Wang (2010) applied averaging over estimation windows to
forecasts of GDP growth based on the yield curve. Therefore, it
is of interest to see if some theoretical insights can be gained to
support these empirical findings.

In this article we derive theoretical results for the average
windows (AveW) forecasting procedure. First, we consider a

random walk model. The most interesting case is when the
break occurs in the drift term but we also allow for simulta-
neous breaks in the drift and volatility of the random walk. We
consider single and multiple breaks. We then extend the analy-
sis to a linear regression model where the slope coefficient is
subject to a break, and show that the results from the random
walk model carry over to the linear regression model.

We compare the AveW forecasting procedure with an al-
ternative method sometimes used in the literature where the
past observations are down-weighted exponentially such that
the most recent observations carry the greatest weight in the
estimation. Gardner (2006) provided a recent review. We refer
to this as the exponential smoothing (ExpS) forecast. In prac-
tice, the performance of this approach depends crucially on the
choice of the parameter to downweight the past observations.

Initially focusing on a random walk model we show that, in
the presence of breaks, the AveW and ExpS forecasting meth-
ods always have a lower bias than forecasts from a single esti-
mation window. Whereas the MSFE depends on the time and
the size of the breaks, the MSFE of the AveW and ExpS fore-
casts are smaller than those of the single-window forecasts for
all but the smallest break sizes.

An attractive feature of these methods is that no exact in-
formation about the structural break is needed. This contrasts
with the conventional approach of estimating the break points
using such methods as those of Bai and Perron (1998, 2003),
and then basing the forecasts on the post-break observations.
However, as pointed out by Pesaran and Timmermann (2007),
it is not always optimal to base forecasts only on the post-break
data. Using pre-break data biases the forecast, but also reduces
the forecast error variance. The overall effect of using pre-break

© 2011 American Statistical Association
Journal of Business & Economic Statistics

April 2011, Vol. 29, No. 2
DOI: 10.1198/jbes.2010.09018

307

mailto:andreas.pick@cantab.net
http://www.amstat.org
http://pubs.amstat.org/loi/jbes
http://dx.doi.org/10.1198/jbes.2010.09018


308 Journal of Business & Economic Statistics, April 2011

data on the MSFE is ambiguous and depends on the size and
the point of the break. To optimally exploit information con-
cerning parameter breaks in forecasting requires knowing the
point and the size of the latest break. Even if the point of the
last break can be estimated with some degree of confidence, it
is unlikely that the size of the break can be estimated accurately,
because it involves estimating the model over the pre-break and
post-break periods. If the distance to break (measured from the
date on which forecasts are made) is short, then the post-break
parameters are likely to be poorly estimated relative to those
obtained using pre-break data. In contrast, if the pre-break and
post-break samples are both relatively large, then it might be
possible to estimate the size of the break reasonably accurately,
but in such cases the break information might not be that im-
portant. Results from Monte Carlo experiments and from the
application to financial time series confirm this intuition.

Closely related to our approach is the suggestion by Clark
and McCracken (2009) that averaging expanding and rolling
windows can be useful for forecasting in the presence of struc-
tural breaks. This can be seen as a limited version of AveW
forecasts where forecasts from only two different windows are
combined.

Another reason for considering the random walk model with
drift and volatility instability is that it is generally thought to
describe the stochastic properties of many macroeconomic and
financial time series. In this article we apply the AveW pro-
cedure to forecasting weekly returns on futures contracts for
20 world equity markets. Compared with a range of competing
approaches, such as forecasts from rolling windows, expanding
windows, ExpS forecasts, and forecasts based on post-break ob-
servations with breaks estimated by the sequential procedure of
Bai and Perron (1998, 2003), the AveW forecast has the lowest
RMSFE on average. However, in many cases the differences
were not statistically significant, largely reflecting the highly
volatile nature of weekly returns.

The rest of the article is organized as follows. Section 2 sets
out the model, and Section 3 develops the AveW forecasting
procedure and establishes its properties. Section 4 considers the
ExpS forecast procedure. Section 5 reports the results of the
applications to weekly returns on equity futures, and Section 6
concludes. Mathematical details are provided in Appendix A.

2. BASIC MODEL AND NOTATIONS

Consider the following time-varying regression model:

(yt − μy) = βt(xt − μx) + σtεt, εt ∼ iid (0,1), (1)

which is defined over the sample period t = 1,2, . . . ,T + 1 and
where the exogenous variable, xt, is assumed to follow a co-
variance stationary process with mean μx and autocovariances,
γx(s), that are absolute summable,

∑∞
s=0 |γx(s)| < K < ∞. Fur-

ther assume that the slope parameter, βt, and the standard devi-
ation, σt, are subject to a break at time t = Tb (1 < Tb < T),

βt =
{

β(1) ∀t ≤ Tb

β(2) ∀t > Tb,
σt =

{
σ (1) ∀t ≤ Tb

σ (2) ∀t > Tb.

The aim is to forecast yT+1 based on the observations
(y1, y2, . . . , yT) and (x1, x2, . . . , xT , xT+1). When it is known
with certainty that the parameters have not been subject to

breaks, the forecast based on the ordinary least squares (OLS)
estimates using all of the available observations is most effi-
cient in the mean squared error sense. However, when the para-
meters are subject to breaks, more efficient forecasts can be ob-
tained. As pointed out earlier, Pesaran and Timmermann (2007)
showed that there is typically a trade-off between bias and vari-
ance of forecast errors. For example, when there is a break in
the slope parameter, the use of the full sample will yield a bi-
ased forecast but will continue to have the least variance. On
the other hand, a forecast using parameter estimates based on
the post-break sample, {yt, xt}T

t=Tb+1, is unbiased but for recent
breaks could be inefficient due to a higher variance compared
with the full-sample estimate. A third option is to use the opti-
mal window length as suggested by Pesaran and Timmermann
(2007). But calculating the optimal window relies on the time
and size of the last break. If the break is close to the point of
forecast, then reliable estimates of the size of the break cannot
be obtained even if the time of the break can be determined
accurately. Thus the estimated window length is likely to be
suboptimal.

In the absence of reliable information on the point and size of
the break(s) in βt and σt, a forecasting procedure that is reason-
ably robust to such breaks will be of interest. In similar fashion
to model averaging, which improves forecasts when the opti-
mal model is uncertain, Pesaran and Timmermann (2007) con-
sidered the use of different sub-windows to forecast and then to
average the outcomes, either by using cross-validated weights
or simply using equal weights.

Toward this end, consider the sample {yt, xt}T
t=Ti+1, with

0 ≤ Ti < T , which yields an observation window of size Wi =
T − Ti. It is convenient to denote the fraction of observa-
tions in the single window (from the time when the forecast
is formed) by wi = (T − Ti)/T . The estimation process could
start with a minimum window, {yt, xt}T

t=Tmin+1, of size wmin =
(T − Tmin)/T . From wmin, other, larger windows can be consid-
ered with Ti = Tmin,Tmin − j, . . . ,Tmin − j(m−1), thus yielding
m separate estimation windows with j observations apart. More
specifically, we have

wi = wmin +
(

i − 1

m − 1

)
(1 − wmin) for i = 1,2, . . . ,m, (2)

so that wi ∈ [wmin,1]. Clearly, wm = 1 corresponds to using the
full sample. The number of estimation windows, m, can be kept
fixed as T changes or can be allowed to increase with T . In
both cases we must have m ≤ T(1 − wmin) + 1. The maximum
number of possible windows is set by m = T(1−wmin)+1. For
this choice of m, we have

wi = wmin + i − 1

T
, i = 1,2, . . . ,T(1 − wmin) + 1. (3)

Similar to the window size, define the distance to the break
by b = (T − Tb)/T , with b ∈ (0,1). The forecast outcomes de-
pend on whether b is a fixed fraction or changes with T . In the
former case, Wb = T − Tb → ∞ as T → ∞; that is, the number
of post-break observations is large when T is large. In this case,
the point and size of the break can be estimated consistently,
as was shown by Bai (1997). Under the latter, we consider the
case where b → 0 as T → ∞, such that Wb = T − Tb is small
even when T is large. In this case, which is the focus of this
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article, the small number of post-break data is likely to lead to
imprecise estimates of the point and size of the break.

Given that we consider one-step-ahead forecasts, we assume
that no structural breaks occur in the forecast period. (For fore-
casting with structural breaks over the forecast period see Pe-
saran, Pettenuzzo and Timmermann 2006 and Maheu and Gor-
don 2008.)

3. AVERAGE WINDOW FORECAST

The AveW forecast is defined by the simple forecast combi-
nation rule

ŷm,T+1 = 1

m

m∑
i=1

ŷT+1(wi), (4)

where ŷT+1(wi) is the forecast from a given estimation window
wi, and forecasts from all windows are given equal weight.

The first object of interest in this article is comparing the
single-window forecast, ŷT+1(w), and the AveW forecasts,
ŷm,T+1, in the mean squared error sense. In the case of the
single-window forecast, we focus on the most frequently en-
countered case where all observations in a given sample are
used. In recursive estimation, the single window can be an ex-
panding window or a rolling window, and AveW forecasts can
be obtained by averaging over sub-windows within the given
expanding or rolling window. Therefore, the AveW procedure
is not an alternative to rolling forecasts and can be used irre-
spective of whether rolling or expanding windows are used in
recursive forecasting.

3.1 Random Walk With Drift

Initially, we focus on a simple version of (1), where μy =
μx = 0, xt = 1,∀t, and βt = μt is subject to a single break at
time Tb, that is,

yt = μt + σtεt, εt ∼ iid (0,1), (5)

where

μt =
{

μ(1) ∀t ≤ Tb

μ(2) ∀t > Tb
and

σt =
{

σ (1) ∀t ≤ Tb

σ (2) ∀t > Tb.

The simplicity of this model allows us to obtain exact finite-
sample results for a single break in mean, multiple breaks in
mean, and joint breaks in mean and error variance. However,
the model is also a forecasting tool for a random walk with drift
instability, zt = zt−1 + μt + εt, so that yt = �zt, and ẑT+1 =
zT + ŷT+1(w), where

ŷT+1(w) = 1

Tw

T∑
t=T(1−w)+1

yt. (6)

3.1.1 Single Break in Drift and Volatility. In the first in-
stance assume that a single break occurs at date Tb, 1 < Tb < T ,
and suppose that only the mean of the process is subject to the
break, namely μ(1) �= μ(2), and σ (1) = σ (2) = σ . In this sim-
ple case, the one-step-ahead forecast of yT+1 based on a given

window of size wT (from t = T) is given by

ŷT+1(w) = μ(2)[1 − I(w − b)] + I(w − b)

×
[

bμ(2) + (w − b)μ(1)

w

]
+ 1

Tw

T∑
t=T(1−w)+1

σεt,

where I(c) is an indicator function that is unity if c > 0 and 0
otherwise. Clearly, if w ≤ b, then the forecast will have mean
μ(2) and will be unbiased. There is, however, a bias when
w > b > 0. The associated forecast error, ξT+1(w) = yT+1 −
ŷT+1(w), is

ξT+1(w) = (
μ(2) − μ(1)

)(w − b

w

)
I(w − b)

+ σεT+1 − 1

Tw

T∑
t=T(1−w)+1

σεt. (7)

Thus the forecast bias is E[ξT+1(w)] = (μ(2) − μ(1))[(w −
b)/w]I(w − d). Because (w − b)I(w − b) > 0, the direction of
the bias depends on the sign of (μ(2) − μ(1)). Scaling the fore-
cast error by σ , we have the decomposition

σ−1ξT+1(w) = εT+1 + BT+1(w) − 1

Tw

T∑
t=T(1−w)+1

εt, (8)

where BT+1(w) = λ[(w − b)/w]I(w − b) and λ = (μ(2) −
μ(1))/σ . The first term, εT+1, represents the future uncertainty,
which is given and unavoidable; the second term is the “bias”
that depends on the size of the break, λ, and the distance to
break, b; and the last term represents the estimation uncertainty
that depends on Tw. The (scaled) MSFE for a window of size w
is given by

MSFE(w) = 1 + B2
T+1(w) + 1

Tw
. (9)

Now consider the forecast from averaging over estimation
windows based on m successive windows of sizes from the
smallest window fraction wmin to the largest possible one, wm,
where each forecast is of the form given in (6). The (scaled)
one-step-ahead forecast error associated with the average fore-
cast is

σ−1ξm,T+1 = εT+1 + λ

m

m∑
i=1

(
wi − b

wi

)
I(wi − b)

− 1

m

m∑
i=1

1

Twi

T∑
t=T(1−wi)+1

εt.

Thus the bias of the AveW forecast is given by

Bm,T+1 = λ

m

m∑
i=1

(
wi − b

wi

)
I(wi − b), (10)

and, as before, the sign of the bias depends on the sign
of (μ(2) − μ(1)). In this case the computation of the vari-
ance of the forecast error is complicated due to the cross-
correlation of forecasts from different windows. Let νT(wi) =
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(1/(Twi))
∑T

t=T(1−wi)+1 εt, then Cov[νT(wi), νT(wj)] =
min(wi,wj)/(Twiwj), for all i, j = 1,2, . . . ,m, and thus

σ−2 Var(ŷm,T+1) = 1

Tm2

[
m∑

i=1

1

wi
+ 2

m∑
i=1

i − 1

wi

]
. (11)

Thus in this case, the scaled MSFE is given by

MSFE(m,wmin;λ,b) = 1 + B2
m,T+1 + σ−2 Var(ŷm,T+1), (12)

with Bm,T+1 and Var(ŷm,T+1) as defined earlier.
The difference between the scaled MSFE of the single-

window forecast (9) and that of the AveW forecast (12) is

MSFE(wa;λ,b) − MSFE(m,wmin;λ,b)

= λ2
(

wa − b

wa

)2

I(wa − b) + 1

Twa

−
[

λ

m

m∑
i=1

wi − b

wi
I(wi − b)

]2

− 1

m2

m∑
i=1

1 + 2(i − 1)

Twi
. (13)

This depends on a number of parameters, including the size of
the single window, wa. Consider two cases: wa = b and wa > b.
When wa = b, the forecast from the single window is unbiased,
whereas the AveW forecast with wm > b is biased. The variance
of the single-window forecast, σ 2/(Tb), will be very large when
Tb is small, and forecasting from a postbeak sample might not
be desirable.

Now assume that wa > b. In this case we can set wm = wa;
that is, the AveW forecast is constructed from sub-windows
within the expanding or rolling window.

Proposition 1. For DGP (5) with given T and b, the single-
window forecast with wa > b has a larger absolute bias than
the AveW forecast with wi, i = 1,2, . . . ,T and wm = wa. In
particular,(

wa − b

wa

)
I(wa − b) >

1

m

m∑
i=1

(
wi − b

wi

)
I(wi − b), (14)

if wi < wa for at least one i.

In contrast, the difference between the variance terms is am-
biguous. Thus there may be a trade-off between a reduction in
the bias and an increase in the variance. Whether or not the
AveW forecast has a lower MSFE depends on the length of the
single-window forecast, wa, and the minimum window, wmin,
which are chosen by the forecaster, and the break parameters,
namely the size and the distance to the break, λ and b.

Table 1 illustrates the trade-off numerically. It reports
MSFE(wa;λ,b) − MSFE(m,wmin;λ,b) computed for T =
100, wm = 1, and different values of wa, wmin, m, λ, and b.
The top two panels report the results when the single window
uses all 100 observations, wa = 1. In the lower two panels, the
single window equals the minimum window, wa = wmin. The
first and third panels give the results when the windows in the
AveW forecast are one observation apart, the AveW forecasts
in the second and fourth panels use 10 equally spaced windows.

First, consider the top two panels. The first line in each panel
shows the difference between the MSFE of the single window
and that of the AveW window for λ = 0, that is, in the absence
of a break. In this case, as expected, the single window outper-
forms the AveW forecasts. However, as λ increases, the bias
reduction implied by averaging over estimation windows leads
to a decrease in the MSFE of the AveW forecast relative to that
of the single-window forecast. The improvement is modest for
small breaks, but the difference in MSFEs increases to about a
third of the variance of the innovation when the break is equal
to the standard deviation of the innovation.

For the range of b considered, the benefit of averaging fore-
casts over estimation windows for a given wmin increases with
b, because a larger number of sub-windows over the post-break
sample are used. For the same reason, the difference in the
MSFEs decreases in wmin when λ > 0. When λ = 0, a smaller
wmin increases the variance of the AveW forecast due to the
larger number of correlated forecasts included. The results re-
ported in the first line of the first panel for m = T(1 − min) + 1
and those in the first line of the second panel for m = 10 sug-
gest that the variance term of the AveW forecast decreases in m.
When λincreases, the reduction in the bias leads to a larger re-
duction in the MSFE for a smaller m. However, the size of this
effect depends on b and wmin. Overall, the numerical examples
in the first two panels show that the effects of b, wmin, and m
are of second-order importance compared with the gains from
averaging forecasts over estimation windows.

The bottom two panels, which compare the AveW forecast
using all T = 100 observations and the single window of length
wmin, show that for small breaks, the forecast from the short
single window has a much larger MSFE than the AveW fore-
cast due to the large estimation uncertainty associated with the
small single window. Even for larger λ, a single window that is
too small leads to an inferior forecast due to the large estima-
tion uncertainty. However, when λ is large and the single win-
dow is not too small, using only post-break data can improve
the forecast. But this procedure still requires a priori knowl-
edge of the break point or its estimation by means of statistical
techniques.

To investigate the implications of estimating the break point
for the relative performance of the two forecast procedures, we
carried out a Monte Carlo experiment that compares the AveW
forecast with wmin = 0.02 to forecasts obtained from using data
after the break date estimated by the sequential procedure pro-
posed by Bai and Perron (1998, 2003). We searched for up to
three break points and used the observations after the last sta-
tistically significant break date to generate one-step-ahead fore-
casts. We set the trimming parameter to 0.05 and the signifi-
cance level to 5%, and allowed for heterogeneous covariance
matrices across segments. The results were robust to varying
these settings. The data were generated using model (5) with
T = 100 and σt = 1,∀t, for 10,000 replications.

The results in Table 2 show that the MSFE of the AveW fore-
casts is smaller than that of the forecasts based on post-break
observations when λ < 1, but when λ = 1, the post-break data
forecasts have a lower MSFE. This contrasts with the results
in the bottom two panels of Table 1 where the post-break data
forecast has a lower MSFE for λ = 0.75. The uncertainty of the
time of the break leads to deterioration of the forecast precision
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Table 1. MSFE(wa;λ,b) − MSFE(m,wmin;λ,b): Exact results for a single break in drift

b: 0.05 0.1 0.2

λ wmin: 0.02 0.05 0.02 0.05 0.1 0.02 0.05 0.1 0.15 0.2

wa = 1, m = T(1 − wmin) + 1
0 −0.009 −0.008 −0.009 −0.008 −0.007 −0.009 −0.008 −0.007 −0.006 −0.005
0.1 −0.007 −0.006 −0.006 −0.005 −0.004 −0.005 −0.004 −0.003 −0.002 −0.002
0.2 0.001 0.000 0.005 0.005 0.004 0.007 0.008 0.008 0.007 0.007
0.4 0.030 0.024 0.047 0.043 0.035 0.056 0.054 0.051 0.047 0.041
0.75 0.127 0.105 0.186 0.170 0.140 0.218 0.210 0.196 0.178 0.156
1 0.233 0.192 0.337 0.309 0.255 0.394 0.380 0.353 0.320 0.281

wa = 1, m = 10
0 −0.013 −0.009 −0.013 −0.009 −0.007 −0.013 −0.009 −0.007 −0.006 −0.005
0.1 −0.010 −0.007 −0.010 −0.006 −0.004 −0.009 −0.005 −0.003 −0.003 −0.002
0.2 −0.001 0.002 0.002 0.005 0.005 0.003 0.007 0.008 0.008 0.007
0.4 0.034 0.035 0.048 0.046 0.043 0.053 0.054 0.053 0.049 0.045
0.75 0.154 0.148 0.201 0.187 0.167 0.219 0.214 0.204 0.188 0.172
1 0.285 0.269 0.368 0.339 0.303 0.400 0.388 0.369 0.338 0.310

wa = wmin, m = T(1 − wmin) + 1
0 0.481 0.182 0.481 0.182 0.083 0.481 0.182 0.083 0.051 0.035
0.1 0.475 0.175 0.476 0.177 0.078 0.479 0.180 0.081 0.048 0.032
0.2 0.455 0.154 0.463 0.163 0.062 0.472 0.172 0.072 0.038 0.021
0.4 0.375 0.070 0.407 0.103 −0.004 0.443 0.142 0.039 0.001 −0.022
0.75 0.109 −0.213 0.220 −0.095 −0.225 0.348 0.040 −0.074 −0.126 −0.164
1 −0.180 −0.521 0.017 −0.311 −0.465 0.244 −0.070 −0.197 −0.263 −0.319

wa = wmin, m = 10
0 0.477 0.181 0.477 0.181 0.083 0.477 0.181 0.083 0.051 0.035
0.1 0.471 0.174 0.472 0.176 0.078 0.474 0.178 0.080 0.048 0.032
0.2 0.453 0.156 0.460 0.162 0.063 0.468 0.171 0.072 0.039 0.022
0.4 0.380 0.081 0.408 0.107 0.003 0.440 0.142 0.041 0.003 −0.017
0.75 0.137 −0.170 0.236 −0.079 −0.198 0.349 0.044 −0.066 −0.116 −0.148
1 −0.128 −0.443 0.048 −0.281 −0.417 0.250 −0.062 −0.181 −0.245 −0.290

NOTE: This table reports the difference in the exact MSFE of the single-window forecast for a given wa , and the AveW forecast with wm = 1 given in (13), namely MSFE(wa;λ,b)−
MSFE(m,wmin;λ,b), when T = 100 for different numbers of estimation windows, m, break sizes as a proportion of the standard deviation of the disturbance term, λ, distance to break,
b, and different minimum window sizes, wmin.

and favors the AveW forecast, which does not use estimates of
the break dates.

Now also consider a break in the error variance. For sim-
plicity of exposition, assume that drift and volatility break at
the same time. The one-step-ahead forecast error for a win-
dow of size w is given by ξT+1(w) = σ (2)εT+1 + BT+1(w) −
1

Tw

∑T
t=T(1−w)+1 σtεt. The scaled MSFE for the single-window

Table 2. MSFE(ŵa(BP);λ,b) − MSFE(m,wmin;λ,b): Monte Carlo
results for a single break in drift

λ\b 0.05 0.1 0.2

0.1 0.156 0.155 0.134
0.2 0.157 0.158 0.140
0.4 0.164 0.162 0.164
0.75 0.123 0.121 0.109
1 −0.040 −0.242 −0.014

NOTE: This table reports the difference between the MSFE of the forecast based on
post-break data, where the break date is estimated using the sequential procedure proposed
by Bai and Perron (1998, 2003), MSFE(ŵa(BP);λ,b), and that of the AveW forecast,
namely MSFE(m,wmin;λ,b). The MSFEs are computed using Monte Carlo experiments
with 10,000 replications. Data were generated using DGP (5) with σt = 1,∀t, and T = 100.
The Bai and Perron test procedure was conducted with up to three breaks, trimming of
0.05, and a 5% significance level. Forecasts were then based on observations after the last
detected break. The AveW forecast used wmin = 0.02, windows separated by one observa-
tion, and wm = 1.

forecast is

MSFE(wa;λ,κ,b) = 1 + B2
T+1(w) + κ2

(
wa − b

Tw2
a

)

× I(wa − b) + min(wa,b)

Tw2
a

, (15)

where λ = (μ(2) − μ(1))/σ (2) and κ = σ (1)/σ (2). Similarly,
for the AveW forecasts over m estimation windows, the scaled
MSFE is

MSFE(m,wmin;λ,κ,b)

= 1 + B2
m,T+1

+ 1

m2

{
κ2

[
m∑

i=1

wi − b

Twi
I(wi − b)

(
1

wi
+ 2

m∑
j=i+1

1

wj

)]

+
m∑

i=1

min(wi,b)

Twi

(
1

wi
+ 2

m∑
j=i+1

1

wj

)}
. (16)

Table 3 gives numerical examples of the difference in MSFEs
when the DGP contains a break in the mean and the error vari-
ance, that is, the difference of (15) and (16). Here we concen-
trate on forecasts with wa = 1 and m = T(1 − wmin) + 1. The
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Table 3. MSFE(wa;λ,κ,b) − MSFE(m,wmin;λ,κ,b): Exact results for a single break in drift and volatility

κ = σ (1)/σ (2) = 0.1 κ = σ (1)/σ (2) = 10

b: 0.1 0.2 0.1 0.2

λ wmin: 0.05 0.1 0.05 0.1 0.2 0.05 0.1 0.05 0.1 0.2

0.1 −0.005 −0.003 −0.007 −0.006 −0.003 0.010 −0.088 0.312 0.260 0.122
0.2 0.005 0.005 0.005 0.005 0.005 0.020 −0.080 0.324 0.270 0.130
0.4 0.043 0.036 0.051 0.048 0.040 0.058 −0.049 0.371 0.314 0.165
0.75 0.170 0.141 0.207 0.193 0.155 0.185 0.056 0.527 0.458 0.280
1 0.309 0.255 0.377 0.350 0.280 0.324 0.170 0.696 0.615 0.405

NOTE: This table reports the difference in the exact MSFE of the single-window forecast with wa = 1 given in (15) and the AveW forecast with wm = 1 given
in (16), namely MSFE(wa;λ,κ,b) − MSFE(m,wmin;λ,κ,b), when T = 100, and m = T(1 − wmin) + 1, for different break sizes, λ, in the drift term measured in
terms of σ (2) , break sizes in the error variances, κ , the distance to the break, b, and different minimum window sizes, wmin.

results depend on whether the error variance increases or de-
creases after the break. In the former case, the MSFEs are not
much affected by the break in volatility. But the outcome is
very different when the error variance decreases after the break.
When the distance to the break, b, is small, many of the esti-
mation windows in the AveW procedure cover periods of high
variance, resulting in large MSFEs. However, as b increases,
more of the estimation windows in the AveW procedure fall in
the low-variance part of the sample, and AveW offers signifi-
cant improvements over the single-window forecast.

3.1.2 Multiple Breaks in Drift. Consider a random walk
model where the drift term is subject to n different breaks. De-
note the break points by bi, i = 1,2, . . . ,n, such that b1 > b2 >

· · · > bn, and let the means of the process over these segments
be μ(1),μ(2), . . . ,μ(n+1). Specifically,

yt = μt + σεt for t = 1,2, . . . ,T, (17)

such that if the sample period is mapped to the unit interval,
then the mean from t = 1 to t = b1T is given by μ(1), the mean
from t = b1T + 1 to t = b2T is μ(2), and so forth.

To simplify the analysis, first assume that n = 2 and note that
the one-step-ahead forecast of yT+1 based on the window of
size wT (from t = T) is given by

ŷT+1(w)

= 1

wT

T∑
t=T−wT+1

σεt

+ I(w − b2)[1 − I(w − b1)]
[

b2μ
(3) + (w − b2)μ

(2)

w

]

+ [1 − I(w − b2)]μ(3)

+ I(w − b1)

[
b2μ

(3) + (b1 − b2)μ
(2) + (w − b1)μ

(1)

w

]
.

The one-step-ahead forecast error is ξT+1(w) = yT+1 −
ŷT+1(w) = μ(3) + σεT+1 − ŷT+1(w), which, after some alge-
bra, and noting that I(w − b1)I(w − b2) = I(w − b1), can be
written as

ξT+1(w)/σ = BT+1(w) + εT+1 − 1

wT

T∑
t=T−wT+1

εt,

where BT+1(w) = λ(1)I(w − b1)(
w−b1

w ) + λ(2)I(w − b2)(
w−b2

w ),

λ(1) = (μ(2) − μ(1))/σ, and λ(2) = (μ(3) − μ(2))/σ.

From the foregoing results, it is clear that for the case of n
breaks, we have

BT+1(w) =
n∑

i=1

λ(i)I(w − bi)

(
w − bi

w

)
,

where λ(i) = (μ(i+1) − μ(i))/σ, and n−1 ∑n
i=1 λ(i) = (μ(n+1) −

μ(1))/(nσ). For a single-window estimation with w = 1, the
forecast bias per break will be

B̄T+1(1) = BT+1(1)

n
= 1

n

n∑
i=1

λ(i)I(1 − bi)(1 − bi)

= 1

n

n∑
i=1

λ(i)(1 − bi).

In contrast, the bias of the AveW forecast is

B̄m,T+1 = 1

m

m∑
i=1

1

n

n∑
j=1

λ(j)
(

wi − bj

wi

)
I(wi − bj). (18)

The variance term is unaffected by the possibility of multiple
breaks in the mean.

In the case where λ(1), λ(2), . . . , λ(n) are distributed inde-
pendently of the break points, b1,b2, . . . ,bn, with expectations
E(λ(i)) = λ̄ and E(bi) = b̄, the expected bias terms are

E[B̄T+1(1)] = λ̄(1 − b̄) and

E(B̄m,T+1) = λ̄

m

m∑
j=1

E[I(wj − bi)]wj − b̄

wj
.

If we further assume that the break points are uniformly dis-
tributed over the sample [i.e., bi ∼ U(0,1)], then we have
that E[I(wj − bi)] = Pr(bi < wj) = wj, and E(B̄m,T+1) =
(λ̄/m)

∑m
j=1(wj − b̄). Using (2), it is easy to show that (1/m) ×∑m

j=1 wj = (1 + wmin)/2, and under uniform distribution of bi,

we also have b̄ = 1/2. Thus the difference between the ab-
solute expected bias of the single-window forecast and that of
the AveW forecast is |E[B̄T+1(1)]| − |E(B̄m,T+1)| = |λ̄|(1 −
wmin)/2 ≥ 0, which increases in the absolute average break
size, |λ̄|, and decreases in the minimum window size, wmin.
Equality holds only when |λ̄| = 0.
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3.2 Break in the Slope Parameter

Now consider the more general model (1) and assume that
a single break occurs in the slope parameter of the process at
date, Tb, 1 < Tb < T , whereas the error variance is constant,
namely β(1) �= β(2), and σ (1) = σ (2) = σ . In this case, the con-
ditional (on xT+1) one-step-ahead forecast of yT+1 based on a
given window of size wT is

ŷT+1(w) = ȳ(w) + β̂(w)[xT+1 − x̄(w)], (19)

where ȳ(w) = 1
Tw

∑T
t=T(1−w)+1 yt, and x̄(w) = (1/(Tw)) ×∑T

t=T(1−w)+1 xt, and

β̂(w) =
∑T

t=T(1−w)+1[yt − ȳ(w)][xt − x̄(w)]∑T
t=T(1−w)+1[xt − x̄(w)]2

.

Under the assumption that xt is a covariance stationary
process with mean μx and absolute summable autocovariances,∑∞

s=0 |γx(s)| < K < ∞, we have

x̄(w) − μx = Op

(
1√
Tw

)
. (20)

Similarly,

ȳ(w) − μy = Op

(
1√
Tw

)
, (21)

see Appendix A. The estimate of the slope coefficient can be
written as

β̂(w) =
∑T

t=T(1−w)+1 βt(xt − μx)
2∑T

t=T(1−w)+1(xt − μx)2
+

∑T
t=T(1−w)+1(xt − μx)εt∑T
t=T(1−w)+1(xt − μx)2

+ Op

(
1√
Tw

)
, (22)

where the first term on the right side of (22) can be rewritten as∑T
t=T(1−w)+1 βt(xt − μx)

2∑T
t=T(1−w)+1(xt − μx)2

= β(2) + (
β(1) − β(2)

)(w − b

w

)
I(w − b)θ(x,w,b),

where

θ(x,w,b) = [T(w − b)]−1 ∑T(1−b)
t=T(1−w)+1(xt − μx)

2

(Tw)−1
∑T

t=T(1−w)+1(xt − μx)2
> 0 (23)

and x = (x1, x2, . . . , xT)′. Conditional on x and xT+1 the bias
in estimating β(2) by β̂(w) using the estimation window, w, is
given by

BT+1(w) = (
β(1) − β(2)

)(w − b

w

)
I(w − b)θ(x,w,b). (24)

In general, θ(x,w,b) varies with the particular set of the re-
gressors realized over the estimation window. To simplify the
analysis, we can replace θ(x,w,b) by its mean computed with
respect to the assumed distribution of the regressors. When
xt ∼ iid N(0, σ 2

x ), using the results of Pesaran and Timmer-
mann (2007, app. C), we have that E[θ(x,w,b)] = 1. Simu-
lations not reported here but available from the authors show

that this is true for a range of distributions for xt. In what fol-
lows, we work with θ(x,w,b) ≈ 1. In this case, it can be seen
from (24) that the bias is proportional to the size of the break,
(β(1) − β(2)), and the proportion of pre-break observations in
the sample, (w − b)/w.

Lemma 1. Denote the forecast error based on a single fixed
estimation window, w ∈ [wmin,1], and a given break point b ∈
(0,1), by ξT+1(w) = yT+1 − ŷT+1(w), where yT+1 is defined
by the DGP in model (1) and ŷT+1(w) is given by (19). Define
λ = (β(2) −β(1))/σ . Then, conditional on xT+1, for fixed w and
b, the (scaled) forecast error is

σ−1ξT+1(w) = εT+1 +
(

w − b

w

)
I(w − b)λ2(xT+1 − μx)

+ Op

(
1√
Tw

)
. (25)

Using the foregoing result, we also note that σ−1ξT+1(b) =
εT+1 + Op(1/

√
Tb). Now consider the forecast based on aver-

aging the forecasts over the different windows, w1,w2, . . . ,wm,

ŷm,T+1 = 1

m

m∑
i=1

ŷT+1(wi). (26)

It follows that the error of the AveW forecast is ξm,T+1 =
1
m

∑m
i=1 ξT+1(wi).

Lemma 2. Suppose that the DGP in (1) holds with βt subject
to a single break. Consider the forecast error of the AveW fore-
casts based on m estimation windows, defined by (26) and (19).
Let ζ(wi) = [(wi − b)/wi]I(wi − b), and λ = (β(2) − β(1))/σ .
Then, conditional on xT+1, for fixed m, wmin and given b as
T → ∞, the scaled AveW forecast error is

σ−1ξm,T+1 = εT+1 + Bm,T+1 + Op

(
1√
T

)
, (27)

where

Bm,T+1 = λ(xT+1 − μx)

[
1

m

m∑
i=1

ζ(wi)

]
. (28)

We are now in a position to compare the MSFE of the stan-
dard forecasts based on a single window with the AveW fore-
casts. First, consider the case where b is fixed as T → ∞.

Proposition 2. Consider the DGP given by (1) with a single
break in βt. For large T but a fixed b such that Wb → ∞, the
MSFE of the forecast from a single window of length b will be
unbiased and will have the lowest MSFE.

This follows directly from the arguments of Bai (1997).
Clearly, under such circumstances, averaging over estimation
windows will not improve the forecast accuracy.

However, our focus is on the case where Wb remains small
as T → ∞. In this case, the forecast using only post-break data
will still be unbiased, but the terms of order Op(

1√
Wb

) will be
large when Wb is small, and the variance of the forecast error
might be quite high. As shown by Pesaran and Timmermann
(2007), in such circumstances a larger estimation window might
be more appropriate. Accordingly, in what follows we compare
a single-window forecast with window size wa > b to the AveW
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forecast based on m windows starting with w1 and ending with
wm = wa. In this setup, we have

σ−1(ξT+1(1) − ξm,T+1
)

= λ(xT+1 − μx)

[
ζ(wa) − 1

m

m∑
i=1

ζ(wi)

]
+ Op

(
1√
T

)
. (29)

Proposition 3. Suppose that the DGP in (1) holds and is sub-
ject to a single break in βt at b. For large T but a small Wb, the
MSFE of the forecast from a single window of length wa > b
will be larger than that of the AveW forecast with wm = wa and
a fixed number of windows, m > 1.

This follows because the difference in square brackets in (29)
is positive, which follows from Proposition 1.

4. FORECASTS FROM TIME–VARYING
PARAMETER MODELS

As an alternative to averaging forecasts over estimation win-
dows, we consider time-varying parameter models. Recently,
Branch and Evans (2006) considered a number of variations on
this class of models and showed that a particularly simple form,
known as the “constant gain least squares,” works reasonably
well in forecasting U.S. inflation and GDP growth.

Constant gain least squares is equivalent to discounting past
observations at a geometric rate, γ (Branch and Evans 2006,
p. 160). To analyze this forecasting method, we return to the
simple model (5) with a break in mean. We denote the constant
gain least squares or exponential smoothing (ExpS) forecast by

ŷT+1(γ ) =
(

1 − γ

1 − γ T

) T∑
j=1

γ T−jyj. (30)

Now consider the case where the mean of yt is subject to a
single break at date Tb, 1 < Tb < T , with μ(1) �= μ(2) and
σ (1) = σ (2) = σ . The bias of the one-step-ahead forecast er-

ror is Bias[ŷT+1(γ )] = (μ(2) −μ(1))(
γ T−Tb+1−γ T

1−γ T ) (Pesaran and
Pick 2008). Because 0 < γ < 1, the sign of the forecast bias is
the same as the sign of (μ(2) − μ(1)). The forecast error vari-

ance is given by Var[ξT+1(γ )] = σ 2[1 + (
1−γ

1−γ T )2(
1−γ 2T

1−γ 2 )]. It is
interesting to note that for all values of γ ∈ (0,1), the sampling
variance of the forecast error (the second part in square brack-
ets) does not vanish even for T sufficiently large. Therefore, the

exponential down-weighting of the past observations can work
only through bias reduction.

The scaled one-step-ahead MSFE in then given by

MSFE(γ ;λ,b) = 1 + λ2
(

γ 1+Tb − γ T

1 − γ T

)2

+
(

1 − γ

1 − γ T

)2(1 − γ 2T

1 − γ 2

)
, (31)

where λ = |μ(2) − μ(1)|/σ . It can be shown that for a suffi-
ciently large T , there is a unique γ that minimizes the MSFE.
However, choosing the optimal down-weighting parameter γ

will depend on λ and b, which typically are unknown.
Table 4 gives a numerical illustration of the difference in

the MSFE of the ExpS forecast and that of the AveW fore-
cast, where the AveW forecast uses estimation windows one
observation apart. The ExpS forecasts are based on two differ-
ent choices of the down-weighting parameter, namely γ = 0.95
and 0.99. The results suggest that whereas b and wmin have
some influence on the final outcomes, the choice of the down-
weighting parameter dominates the results. When γ = 0.95, the
AveW forecast has a lower MSFE for small breaks, whereas the
ExpS forecast has a lower MSFE for larger breaks. This com-
parison is reversed when γ = 0.99.

To understand these numerical results, we can express the
AveW model as a “forgetting factor” model. Forgetting factor
models weigh observations {yt}T

t=1 by factors {kT−t}T
t=1 (Han-

nan and Deistler 1988; Brailsford, Penm, and Terrell 2002). The
ExpS model fits naturally into this framework. Using (3) and
(4), the AveW forecast can be expressed as

ŷm,T+1 = 1

T(1 − wmin) + 1

×
T(1−wmin)+1∑

i=1

1

Twmin + i − 1

T∑
t=T(1−wmin)−i+2

yt,

where we use the AveW forecast with windows increasing by
one observation. Thus each observation yt, t = 1,2, . . . ,T , re-
ceives the weight

k(T, t,wmin) = 1

T(1 − wmin) + 1

×
t∑

i=1

1

T + 1 − i
I[T(1 − wmin) + 1 − i]. (32)

Table 4. MSFE(γ ;λ,b) − MSFE(m,wmin;λ,b): Exact results for a single break in drift

γ = 0.95 γ = 0.99

b: 0.1 0.2 0.1 0.2

λ wmin: 0.05 0.1 0.05 0.1 0.2 0.05 0.1 0.05 0.1 0.2

0.1 0.006 0.007 0.007 0.008 0.009 −0.005 −0.004 −0.005 −0.004 −0.003
0.2 0.001 0.000 0.003 0.003 0.001 0.001 0.000 0.003 0.003 0.001
0.4 −0.020 −0.027 −0.014 −0.017 −0.028 0.026 0.018 0.031 0.028 0.018
0.75 −0.089 −0.119 −0.070 −0.085 −0.125 0.108 0.078 0.127 0.112 0.072
1 −0.164 −0.219 −0.131 −0.158 −0.230 0.197 0.143 0.231 0.203 0.132

NOTE: This table reports the difference in the exact MSFE of the ExpS forecast given in (31) and the AveW forecast with wm = 1 given in (12), namely
MSFE(γ ;λ,b) − MSFE(m,wmin;λ,b), when T = 100, m = T(1 − wmin) + 1, for different break sizes, λ, defined as a proportion of the standard deviation
of the disturbance term, the proportion of post-break data, b, the minimum window sizes, wmin, and the down-weighting parameter, γ .
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Figure 1. Weights attached to observations in AveW and ExpS fore-
casts for T = 100. This figure plots the weights attached to each ob-
servation in a sample of size T = 100. The numbers in brackets are
the minimum window, wmin, in the case of the AveW weights and the
down-weighting parameter, γ , in the case of the ExpS weights.

Figure 1 plots the weights attached to each observation in
AveW and ExpS forecasts using the minimum windows and
down-weighting parameters used in the foregoing numerical
example. We consider two different choices of the minimum
windows, wmin = 0.1 and 0.2, in constructing the weights for
the AveW forecast. The weights implied by the AveW forecasts
vary much less than the weights implied by the ExpS forecasts.
When γ = 0.99, the observations are weighted more evenly
than the weights of AveW for both minimum windows, but
when γ = 0.95, past observations are discounted much more
heavily. This largely explains the results in Table 4.

5. APPLICATIONS TO FINANCIAL TIME SERIES

We now consider the application of the AveW forecasting
procedure to weekly returns on futures contracts for 20 eq-
uity indices. Our sample ends on November 24, 2008, and thus
covers the highly volatile episodes associated with the credit
crunch. Details of the data are given in Appendix B.

We recursively compute one-week-ahead forecasts using var-
ious forecasting methods for the mean model (5). The baseline
forecast uses the observations after the last break identified by
the sequential procedure of Bai and Perron (1998, 2003), desig-
nated BP, where we search for up to eight breaks and set the
trimming parameter to 0.1 and the significance level to 5%.
Whereas Pesaran and Timmermann (2007) showed that fore-
cast accuracy can be improved by using some pre-break obser-
vations, we use only post-break observations because this is the
more common procedure followed in practice, and exploiting
the bias-variance trade-off requires knowledge of the break size,
which would introduce further complications into the compar-
ative forecasting exercise.

We compare the BP post-break forecasts with two versions
of the AveW forecasts. The first version averages forecasts from
sub-windows within a rolling window of 156 weeks (equal to
three years) using wmin = 0.1. This yields Wmin = 15. The sec-
ond AveW forecast averages forecasts from sub-windows in an

expanding window using the same number of minimum ob-
servations, Wmin = 15. We use m = 10 windows. The results
are qualitatively similar when a larger number of estimation
windows is used. We also included forecasts from expanding
and rolling windows in our comparisons. For the rolling win-
dows, we considered a rolling window of size Wa = 156 and
a minimum rolling window of size Wmin = 15. Also, as it
could be argued that the AveW forecasts are performing bet-
ter because they are effectively based on a smaller average
window (compared with Wa), we considered a third rolling-
window forecast based on an (average) effective window size
of W = 85, computed as the integer part of Wa(1/10 + 2/10 +
· · · + 10/10)/10. Finally, we computed ExpS forecasts using
two down-weighting parameters, γ = 0.95 and 0.99.

For each series, we calculate the absolute bias, the RMSFE,
and tests for predictive performance of Diebold and Mari-
ano (1995). More precisely, RMSFE = ( 1

n

∑n
t=1 ξ2

t )1/2, where
ξt = yt+1 − ŷt+1|t, the one-week-ahead forecast, ŷt+1|t, is
based on the observations up to t, and n is the number
of forecasts. We also report the RMSFE and the relative
RMSFE; that is for, say, the AveW(Wmin) forecast, we report
RMSFE[AveW(Wmin)]/RMSFE(BP), where BP denotes the
forecast from the baseline forecast using the observations af-
ter the break date estimated by the Bai and Perron procedure.
Values smaller than 1 indicate that the baseline forecast has a
larger RMSFE than the AveW forecast. The Diebold–Mariano
test statistics for predictive ability are calculated for the loss dif-
ferential lt(A,B) = ξ2

tA − ξ2
tB, where ξtA and ξtB are the forecast

errors for two forecast methods, A and B.
The results are reported in Table 5. The first line reports the

(absolute) average bias (×100) across the 20 time series, the
second line gives the results for the average RMSFE (×100),
and the third line presents RMSFE as a ratio of the RMSFE
from the forecasts based on the post-break observations. The
lower panel of Table 5 shows the fraction of series where the
test of Diebold and Mariano (1995) rejects equal predictive ac-
curacy and the forecast method in the respective column has the
lower RMSFE.

The results indicate that the forecasts based on the post-break
sample have a smaller average bias than the AveW forecasts but
that the average RMSFE is larger than that of the AveW fore-
casts. Using DM tests, we find that the AveW forecasts are sta-
tistically significantly more accurate in 40% of the series when
the AveW forecasts are computed within rolling windows and
in 45% of the series if the AveW forecasts are based on expand-
ing windows.

Comparing the AveW forecasts with the forecasts based on
the corresponding single windows, we find that the AveW fore-
casts have a lower bias and RMSFE, as predicted by our the-
ory. In contrast, the forecasts from the single rolling window of
length Wmin have a lower bias than the AveW forecasts, because
they are less likely to include breaks in the estimation window.
However, due to the small number of observations used in the
estimation, the RMSFE is larger that that of the AveW fore-
casts. The AveW forecasts are significantly more accurate in
about half of the series, whereas the short single rolling win-
dow is never significantly more accurate than the AveW fore-
casts. Comparing the AveW forecasts with the forecasts based
on rolling windows of size W shows that averaging over the
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Table 5. Predictive accuracy for alternative forecasts of returns of 20 equity index futures

BP
AveW(Wmin) Rolling windows ExpS(γ )

Expanding
post-break Rolling Expanding windows Wmin = 15 W = 85 Wa = 156 γ = 0.95 0.99

Averages
Bias 1.668 1.874 1.896 2.108 1.065 2.103 2.054 1.460 1.887
RMSFE 63.546 61.483 61.531 61.602 62.661 61.512 61.707 61.765 61.530
Rel. RMSFE 1 0.968 0.969 0.970 0.987 0.968 0.971 0.972 0.969

Diebold–Mariano tests
Post-break – 0.40 0.45 0.35 0.00 0.30 0.25 0.15 0.50
AveW: rolling 0.00 – 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AveW: expand. 0.00 0.00 – 0.00 0.00 0.00 0.00 0.00 0.00
Expanding 0.00 0.00 0.00 – 0.00 0.00 0.00 0.00 0.00
Rolling Wmin 0.00 0.50 0.40 0.20 – 0.45 0.20 0.70 0.40
Rolling W̄ 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 0.15
Rolling Wa 0.00 0.00 0.10 0.05 0.00 0.05 – 0.00 0.00
ExpS(γ = 0.95) 0.00 0.10 0.05 0.00 0.00 0.05 0.05 – 0.05
ExpS(γ = 0.99) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –

NOTE: The forecast methods are (i) using the observations after the last break point estimated by the procedure of Bai and Perron (1998, 2003); AveW forecasts with the minimum
number of observations Wmin = 15 weeks and m = 10 sub-windows within (ii) a rolling window of length Wa = 156 weeks and (iii) an expanding window; (iv) an expanding window;
single rolling windows of size (v) Wmin = 15, (vi) W = 85, (vii) Wa = 156 weeks; ExpS forecasts with (viii) γ = 0.95 and (ix) γ = 0.99. The results in the top panel are the absolute
average of the bias across the 20 time series, those in the second row are the average of the RMSFE, and those in the third row are the average of the RMSFE as a ratio of the average
RMSFE of the post-break window forecast. The results are multiplied by 100. The lower panel reports the proportion of rejection of predictive accuracy using the test of Diebold and
Mariano (1995) across the 20 series. We report the fraction of the series where equal forecast accuracy was rejected and the forecasting method in the respective column had the lower
RMSFE than the forecasting method in the respective row. Details of the data are given in Appendix B.

different sub-windows leads to a reduction in bias beyond the
implied reduction in sample size. The average RMSFE is re-
duced even if this difference is not statistically significant.

The ExpS forecast with γ = 0.95, which discounts past ob-
servations at a faster rate compared with the ExpS forecasts
with γ = 0.99, has a lower average bias than the AveW fore-
casts and—with the exception of the shortest rolling window—
all other forecast procedures. However, the rapid discounting
leads to a larger RMSFE than the AveW forecasts and all other
forecasting procedures with the exception of the shortest rolling
window and the post-break window forecast. The ExpS forecast
with γ = 0.99 has a smaller average bias than the AveW fore-
cast within the expanding window and most of the other fore-
cast methods but a larger bias than the AveW forecast within
the rolling window. Although the RMSFE is larger than that of
the AveW forecasts within the rolling window, it is smaller than
that of most other forecast methods.

Overall, it appears that the large variances of the series rel-
ative to the size of possible breaks implies that break points
are difficult to estimate and forecasts based on such estimates
are less precise. Equally, using only short rolling windows in-
creases the estimation uncertainty, which eliminates the benefits
from the reduction in forecast bias. The same is true of down-
weighting observations when the weights decay too rapidly. Us-
ing more slowly decaying weights tends to improve forecast ac-
curacy in the MSFE sense. Overall, for the data considered here,
the best results are obtained from averaging forecasts over esti-
mation windows within a rolling window.

6. CONCLUSION

We have shown that averaging forecasts over estimation win-
dows reduces the forecast bias and, despite a potential increase
in the variance, reduces the MSFE for all but the smallest

breaks. We have also compared it with the forecast obtained
from exponential down-weighting of past observations. Both
can be cast in the framework of forgetting factor models. How-
ever, the exponential smoothing forecast is more sensitive to the
down-weighting parameter than the averaged forecast is to the
choice of the minimum estimation window. Monte Carlo results
and the application to time series of returns on equity futures
show that averaging forecasts over estimation windows can im-
prove forecast accuracy compared with forecasts from post-
break samples when the variance of the process is relatively
large compared with the break size. Averaging of forecasts over
different estimation windows offers a simple approach to gener-
ating forecasts that are reasonably robust to structural breaks of
unknown break dates and sizes. It is likely to be particularly ef-
fective when the last break date is relatively close to the point of
the forecast and the break is of moderate magnitude. Although
our theoretical analysis has been confined to point forecasts for
random walk and linear regression models, averaging forecasts
over estimation windows is likely to improve forecast accuracy
in many settings, such as richer models or density forecasts, but
we leave these topics for future research.

APPENDIX A: MATHEMATICAL APPENDIX

Proof of Proposition 1

Denote ζ(wi) = [(wi −b)/wi]I(wi −b), and note that ζ(wi) ≥
0,∀wi. Furthermore, because ζ(wi) is increasing in wi, ζ(wa) ≥
ζ(wi),∀wi ≤ wa. Therefore ζ(wa) = 1

m

∑m
i=1 ζ(wa) ≥ (1/m) ×∑m

i=1 ζ(wi). Strict equality holds if one element of the last term
contains at least one window for which wi < wa.
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Asymptotic Equivalence of x̄(w) and μx

Under the assumptions regarding xt in Section 3.2,
limT→∞{Tw[x̄(w) − μx]2} = ∑∞

s=−∞ γx(s), and for a given
w ∈ (wmin,1), wmin > 0, limT→∞{T[x̄(w) − μx]2} =
[∑∞

s=−∞ γx(s)]/w = [2π fx(0)]/w, where fx(0) is the spec-
tral density of {xt} evaluated at zero frequency. Using the re-
sults of propositions 7.5 and 7.11 of Hamilton (1994), then√

T[x̄(w) − μx] L→ N(0,
2π fx(0)

w ), where
L→ denotes conver-

gence in distribution. Thus x̄ − μx = Op(1/
√

Tw).

Asymptotic Equivalence of ȳ (w) and μy

Using (1) with σ (1) = σ (2) = σ we have

ȳ(w) = μy + 1

Tw

T∑
t=T(1−w)+1

βt(xt − μx) + 1

Tw

T∑
t=T(1−w)+1

σεt

= μy + 1

Tw
I(w − b)

T(1−b)∑
t=T(1−w)+1

β(1)(xt − μx)

+ 1

Tw

T∑
t=T(1−b)+1

β(2)(xt − μx) + 1

Tw

T∑
t=T(1−w)+1

σεt

= μy + β(1)I(w − b)

(
w − b

w

)
ū(w − b)

+ β(2) b

w
ū(b) + σ ε̄(w),

where ū(w − b) = [T(w − b)]−1 ∑T(1−b)
t=T(1−w)+1 ut, ū(b) =

(Tb)−1 ∑T
t=T(1−b)+1 ut, ut = xt − μx, and ε̄(w) = (Tw)−1 ×∑T

t=T(1−w)+1 εt. Therefore, using the results for xt above, we

have that [(w−b)/w]ū(w−b) = Op(1/
√

Tw), and (b/w)ū(b) =
Op(1/

√
Tw), and similarly (because εt is serially uncorrelated

with a finite variance) ε̄(w) = Op(1/
√

Tw), which yields the
result in (21).

Derivation of β̂(w) in (22)

Consider first the denominator of β̂(w),

1

Tw

T∑
T(1−w)+1

[xt − x̄(w)]2

= 1

Tw

T∑
T(1−w)+1

(xt − μx)
2 − [μx − x̄(w)]2

= 1

Tw

T∑
T(1−w)+1

(xt − μx)
2 + Op

(
1

Tw

)
,

where the last equality follows from the foregoing argu-
ments. Therefore, by Slutsky’s theorem, { 1

Tw

∑T
T(1−w)+1[xt −

x̄(w)]2}−1 = [ 1
Tw

∑T
T(1−w)+1(xt −μx)

2]−1 +Op(1/Tw). For the
numerator,

T∑
T(1−w)+1

yt[xt − x̄(w)]

=
T∑

T(1−w)+1

[μy + β(xt − μx) + σεt]

× {
(xt − μx) + [μx − x̄(w)]}

=
T∑

T(1−w)+1

βt(xt − μx)
2

+ [μx − x̄(w)]
T∑

T(1−w)+1

βt(xt + μx)

+ [μx − x̄(w)]
T∑

T(1−w)+1

σεt +
T∑

T(1−w)+1

σεt(xt − μx).

Let ut = xt − μx, and note that xt is assumed to be exogenous
with respect to εt′ for all t and t′, and the break point of βt

is also exogenously given, and thus given independently of εt
and xt. Then Var[1/(Tw)

∑T
T(1−w)+1(σεt +βtut)] = σ 2/(Tw)+

1/(Tw)Var(
∑T

T(1−w)+1 βtut). Given that ut is stationary, and

because |βt| < K < ∞, we have (Tw)−1 ∑T
T(1−w)+1(σεt +

βtut) = Op(1/
√

Tw), and the result in (22) follows.

Proof of Lemma 1

Rewrite (19) as ŷT+1(w) = ȳ(w) + β̂(w)(xT+1 − μx) +
β̂(w)[μx − x̄(w)] then, using the results in (20), (21), (22), and
(24), the forecast error can be written as

ξT+1(w)

= σεT+1 + [
β(2) − β̂(w)

]
(xT+1 − μx) + Op

(
1√
Tw

)

= σεT+1 + w − b

w
I(w − b)σλ(xT+1 − μx)

+ σ

∑T
t=T(1−w)+1 utεt∑T
t=T(1−w)+1 u2

t

(xT+1 − μx) + Op

(
1√
Tw

)
(A.1)

With xt being exogeneous, ut and εt are uncorrelated and
(25) follows, noting that

∑T
t=T(1−w)+1 utεt/

∑T
t=T(1−w)+1 u2

t =
Op(1/

√
Tw). Using (A.1), the squared forecast error is

ξ2
T+1(w) = [σεT+1 + w−b

w I(w − b)σλ(xT+1 − μx)]2 + Op(1/√
Tw).

Proof of Lemma 2

ξm,T+1 = 1

m

m∑
i=1

{
μy + ȳ(wi) + [

β(2) − β̂(wi)
]
(xT+1 − μx)

+ β̂(wi)[μx − x̄(wi)] + σεT+1
}

= σεT+1 + σλ
xT+1 − μx

m

m∑
i=1

I(wi − b)
wi − b

wi

+ 1

m

m∑
i=1

{
μy − ȳ(wi) + β̂(wi)[μx − x̄(wi)]

}
.

The first term does not vary with m. The second term relates
to the forecast bias and is bounded in m. Now consider the last



318 Journal of Business & Economic Statistics, April 2011

term as T → ∞, for either a fixed m or as m → ∞. Using (20),
(21), and (22), and after some algebra (noting that w1 = wmin <

b), we have∣∣∣∣∣ 1

m

m∑
i=1

{
μy − ȳ(wi) + β̂(wi)[μx − x̄(wi)]

}∣∣∣∣∣
<

K1

m
√

T

m∑
i=1

1√
wi

+ K2

m
√

T

m∑
i=1

1√
wi

(
wi − b

wi

)
I(wi − b),

where K1 and K2 are positive constants. Also, m−1 ×∑m
i=1 w−1/2

i < w−1/2
min , and, noting that w−3/2(w − b) is max-

imized at w∗ = 3b, m−1 ∑m
i=1 w−1/2

i ((wi − b)/wi)I(wi − b) <

2/(3
√

3b). Therefore, for wmin > 0, ξm,T+1 is bounded in m
irrespective of whether m is fixed as T → ∞, or if m → ∞ as
T → ∞.

APPENDIX B: EQUITY INDEX FUTURES AND
SAMPLE PERIODS

The equity series refer to futures contracts obtained from
Datastream and cover the different periods as set out below. The
start of the samples generally coincides with the start dates of
the futures markets in question. The last number in the brackets
is the number of forecasts.

AEX, Amsterdam exchange index, Netherlands (01-Jun-1989
to 24-Nov-2008; 864); ASX, Australian securities exchange in-
dex (06-Dec-2000 to 19-Nov-2008; 279); BEL, BEL 20 index,
Belgium (07-Jun-1994 to 24-Nov-2008; 603); CAC, CAC 40
index, France (24-Mar-1989 to 24-Nov-2008; 868); DAX, DAX
30 index, Germany (02-Jul-1991 to 24-Nov-2008; 753); DJE,
DJ EURO STOXX 50, DJ euro index (27-Jan-1999 to 25-Nov-
2008; 375); FTSE, FTSE 100, U.K. (09-Aug-1985 to 19-Nov-
2008; 1054); FOX, FOX index, Finland (02-May-2000 to 19-
Nov-2008; 283); IBE, IBEX 35, Spain (25-Nov-1992 to 24-
Nov-2008; 672); KFX, KFX index, Denmark (14-Aug-2001 to
25-Nov-2008; 233); MIB, Milan index, Italy (04-Jul-1995 to
20-Nov-2008; 551); ND, NASDAQ 100 index, U.S.A. (14-Nov-
1996 to 21-Nov-2008; 480); NK, NIKKEI 225, Japan (30-Apr-
1987 to 20-Nov-2008; 938); OBX, OBX index, Norway (26-
Aug-1999 to 24-Nov-2008; 326); OMX, OMX index, Sweden
(17-Sep-1990 to 19-Nov-2008; 783); PSI, PSI 20 index, Portu-
gal (27-Jan-1997 to 24-Nov-2008; 463); SP, S&P COMP index,
U.S.A. (09-Aug-1985 to 19-Nov-2008; 1050); SMI, SWISS MI
index, Switzerland (18-Jun-1991 to 20-Nov-2008; 766); TPX,
Topix stock price index, Japan (06-Sep-1988 to 19-Nov-2008;
846); TSX, Toronto stock exchange index, Canada (12-Apr-
2000 to 20-Nov-2008; 308).
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