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HCV Hepatitis C virus 
HBV Hepatitis B virus 
LCMV Lymphocytic Choriomeningitis Virus 
HIV Human immunodeficiency virus 
PBMC Peripheral blood mononuclear cell 
DC Dendritic cell 
pDC Plasmacytoid dendritic cell 
NK Natural killer cell 
Mφ macrophages 
KC Kupffer cells 
TLR Toll-like receptor 
R848 Resiquimod 
LPS Lipopolysaccharide 
RIG-I retinoic acid inducible gene I 
IFN Interferon 
IL-29 Interleukin-29 
IL-10 Interleukin-10 
IL-12 Interleukin-12 
IL-28A Interleukin-28A 
IL-28B Interleukin-28B 
IL-4 Interleukin-4 
TNF Tumor necrosis factors 
MCP-1 Monocyte chemotactic protein-1 
MIP-1β Macrophage inflammatory protein-1β 
JAK Janus kinase 
STAT Signal Transduction And transcription 
PD-L1 Programmed cell death 1 ligand 1 
IL-10R Interleukin-10 receptor 
IFNγR Interferon-γ receptor 
HLA-ABC Human leukocyte antigen-ABC 
HLA-DR Human leukocyte antigen-DR 
αIL-10R Anti-interleukin-10 receptor 
IL-28RA Interleukin-28 receptor alpha chain 
M-CSF Macrophage colony-stimulating factor 
GM-CSF Granulocyte-macrophage colony-stimulating factor 
RT-PCR Real-time polymerase chain reaction 
mRNA Messenger RNA 
cDNA Complementary DNA 
ICS Intracellular cytokine staining 
ELISA Enzyme-linked immunosorbent assay 
FACS Fluorescence-activated cell sorting 
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Hepatitis C virus and chronic infection 

Hepatitis C virus (HCV) establishes persistent infection in about 80% of the infected 
individuals [1-2]. The symptoms are initially mild in those persistently infected patients, and it 
may take decades before the serious consequences of chronic HCV infection become 
apparent. Up to 20% of infected individuals may develop complications, including cirrhosis, 
liver failure, or hepatocellular carcinoma [3]. HCV infection is now the leading indication for 
liver transplantation in the United States and Europe [4-5] 

HCV is an enveloped positive-stranded RNA virus in the family of Flavivirida [6-7]. The 
genome of HCV has a large-opening reading frame, which encodes a polyprotein precursor 
of approximately 3000 amino acids. The coding region is flanked by 5’ and 3’ noncoding 
regions, which are important for the regulation of genomic duplication as well as initiation of 
translation [8-9]. The single polyprotein is cleaved by host and viral proteases into individual 
structural and nonstructural (NS) proteins [8-13] (Figure 1). 

 
 

Figure 1. Genomic organization of wild-type HCV. The HCV RNA genome consists of a major 
open-reading frame, encoding a single polyprotein, and an alternative reading frame encoding F-
proteins with unknown function. The cleavage of the polyprotein by viral and host cell proteases 
gives rise to the mature structural (core, envelope proteins E1 and E2, and p7) and nonstructural 
(NS) viral proteins (NS2 through NS5B). The putative activities and function of viral proteins are 
indicated. The internal ribosomal entry site (IRES) located in the 5’ noncoding region initiates 
ribosome binding and translation. Both the 5’ and 3’ noncoding region are essential for viral RNA 
replication involving the RNA-dependent RNA polymerase NS5B. NTPase, nucleotide 
triphosphatase. 
 

The major site of HCV replication is human liver. Remarkably, although HCV has been 
extensively studied at the molecular level, it is still unclear how many cells in the liver are 
infected or how much viral RNA and protein is associated with infected cells [14]. On the 
basis of measurement of viral RNA during acute infection, one study estimates that up to 
10% of hepatocytes may support HCV replication [15].  

After entry of HCV into the cells via several membrane receptors [16-17], HCV 
nucleocapsids are delivered to the cytoplasm, where the viral RNA functions directly as an 
mRNA for translation of a long polyprotein. Following synthesis and maturation, non-
structural proteins and viral RNA form the membrane-associated replication complexes, 
which appear as a perinuclear membranous web [18]. These replication complexes then 
catalyse the transcription of negative-strand RNA intermediates from which, in turn, progeny 
positive-stranded RNA molecules are generated. Capsid proteins and genomic RNA 
assemble into a nucleocapsid and bud through intracellular membranes into cytoplasmic 
vesicles (Figure 2). With the recent development of an in vitro model of HCV virion 
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production and release [10, 19], the analysis of this final part of the viral life cycle is an 
exciting area for future research. 

 

 
 

Figure 2. The life cycle of HCV infection. After entry to the cell, HCV nucleocapsids are delivered to 

the cytoplasm, where the viral RNA functions directly as an mRNA for translation of a long 
polyprotein. Replication occurs within cytoplasmic, membrane-associated replication complexes in 
a perinuclear membranous web. Genomic RNA containing plasmids bud through intracellular 
membranes into cytoplasmic vesicles, which fuse with the plasma membrane. 
 

Viral production in the infected individuals is estimated at 1012 particles per day, and the 
half-life of HCV particles in serum is believed to be 3h [20-21]. There are six major HCV 
genotypes and HCV exists as a quasispecies, or swarm of several sequences, within the 
infected host [9]. HCV reaches high serum titres within 1 week of infection [22-23]. Both the 
adaptive cellular immune responses and the humoral immune responses are delayed by at 
least 1 month in both humans and chimpanzees, showing that virus replication ‘outpaces’ the 
adaptive immune response [12, 22, 24]. After the first week of infection, the increase in HCV 
viral titre slows down [23] (Figure 3). Serum ALT levels peak, whereas HCV RNA titres 
decline after 2-3 months of infection (Figure 3). Most patients develop chronic hepatitis with 
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relatively stable viral titres. Only a small proportion of patients recover and test negative for 
HCV RNA. 

 

 

 
 

Figure 3. Clinical and virological courses of acute infection with HCV. A schematic presentation of 

serum HCV RNA and ALT (alanine transaminase), which is released by injured or dead 
hepatocytes in acute and chronic HCV infection. 

 

Immunology of HCV infection  

A characteristic feature of the immune status in chronically infected patients is a weak HCV-
specific T cell response, which is short-lived, and targeted to a narrow range of epitopes [9, 
12, 25]. There is a trend toward a decline in the number of epitopes recognized and in the 
number and function of responding T cells in peripheral blood of chronic HCV patients [26]. 
In infections that progress to chronicity, T cell responses seen in the acute stage seem to be 
lost [27], and specific loss of CD4+ T cell responses predicts recurrence of viremia and 
established of chronic infection [11, 28]. Also, the function of HCV-specific CD8+ T cells is 
affected in that they have impaired ability to produce IFNγ, to proliferate, or to kill cells 
presenting HCV antigen [29-31]. To explain these observations, many mechanisms have 
been proposed on the basis of in vitro studies, including viral mutation escape [32-36], 
functional impairment of DC [37-40] and macrophages [41-42], increase of peripheral 
CD4+CD25+ regulatory T cells [43-44] and intrahepatic IL-10-producing  CD8+ T cells [45]. 
However, clinically, there is no global dysfunction of the immune system in patients 
chronically infected with HCV. The research on finding the mechanisms for chronic HCV 
infection is currently very active. 

Monocytes and persistent viral infections 

To explain the insufficient T cell responses, numerical and functional impairment of DC, 
natural killer (NK) cells and regulatory T cells have been reported in patients with chronic 
HCV [9, 37, 46]. However, monocytes have received relatively little attention in studies on the 
immune status of chronic HCV patients, despite the fact that monocytes comprise 
approximately 10% of circulating leukocytes, and play important roles in inflammatory 
responses. Furthermore, human monocytes are able to develop into DC or macrophages in 
the presence of certain cytokines (Figure 4). 
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Figure 4. Human monocytes can develop into DC or macrophages. In the presence of certain 
cytokines, human monocytes can be derived into DC (GM-CSF plus IL-4) or macrophages (M-
CSF). 

 
Monocytes are important players in the first-line of defense against numerous 

pathogens, as well as in initiating and controlling adaptive immunity [47]. Human blood 
contains two distinct subpopulations of circulating monocytes, which can be distinguished on 
the basis of membrane expression of CD14 and CD16: CD14+CD16- and CD16+CD14- 
monocytes [47-50]. The majority of monocytes are the classical CD14+CD16- monocytes. 
Compared to CD14+CD16- monocytes, CD16+CD14- monocytes are less frequent and 
comprise about 5~15% of the total monocytes. Functionally, both CD16+CD14- and 
CD14+CD16- monocytes express pathogen-recognition receptors, such as Toll-like receptors 
(TLR), which enable monocytes to respond to a broad range of bacterial and viral pathogens 
[51-52], resulting in the production of cytokines and chemokines [47, 53-55]. The 
responsiveness of both CD16+CD14- and CD14+CD16- monocytes to TLR4 agonists is well 
studied. Upon LPS stimulation, CD14+CD16- monocytes produce relatively high levels of pro-

inflammatory cytokines, TNF, IL-6 and IL-1β as well as the anti-inflammatory cytokine IL-10. 

Compared to CD14+CD16- monocytes, CD16+CD14- monocytes are thought to produce 

higher levels of pro-inflammatory cytokines, such as TNF and IL-1β in response to TLR 

stimulation [56], and lower levels of anti-inflammatory cytokines, such as IL-10 [56-57]. The 
differences of the two populations are further supported by a recent study, showing that the 
CD14+CD16- and CD16+CD14- monocytes have distinct gene expression profiles [58]. 
Interestingly, it was demonstrated that CD16+CD14- monocytes are able to sense viruses via 
TLR7 or TLR8, resulting in the initiation of a pro-inflammatory response [59]. Also, we have 
shown that both CD14+CD16- and CD16+CD14- monocytes strongly respond to TLR8 
agonists (Chapter 3 and Chapter 4). This is important, since HCV is a single-stranded RNA 
virus, which is a putative agonist for TLR8. The responsiveness of monocytes to the TLR4 
agonist LPS has been extensively documented, however, how monocytes respond to TLR8 
agonists is still much less known. Different from the TLR4 receptor, which is expressed on 
the membrane of monocytes, TLR8 is an intracellular receptor (Figure 5). While both 

MyD88-dependent and TRIF-dependent signaling pathways are activated via triggering 
TLR4, TLR8 agonist only induces MyD88-dependent signaling pathway [60]. Currently, it is 
not known whether there is a different response of the two monocyte subpopulation to the 
TLR8 agonist.  

The consequences of persistent infections on the functionality of monocytes have not 
been studied in detail. For HIV infections, it was shown that HIV-1 impairs innate immunity to 
bacteria by affecting the function of mononuclear phagocytic cells, and that HIV-infected 
individuals display an increased risk of bacterial infections [61]. For chronic HCV infections, 

Dendritic cells Monocytes 

GM-CSF+IL-4 M-CSF 

Macrophages 
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this is less clear, and conflicting data has been reported. It is generally accepted that 
CD14+CD16- monocytes from HCV patients are more activated than their counterparts in 
healthy individuals, as shown by higher production of TNF, IL-12p40 and IL-10 in the 
absence of activating stimuli [62-68]. At present it is not entirely clear how monocytes 
respond to pathogen-derived products in chronic HCV patients as compared to healthy 
individuals. Stimulation of purified CD14+CD16- monocytes from chronic HCV patients with 
the TLR4 ligand LPS resulted in higher TNF production as compared to healthy individuals 
by some groups  [66-67], whereas others showed no difference [65]. Moreover, CD14+CD16- 
monocyte-derived cytokine production induced by LPS was found to be reduced when 
assessing PBMC from HCV patients as compared to PBMC from healthy controls [69], but 
was enhanced when assessing the intracellular cytokine expression [62-63]. Furthermore, 
how CD14+CD16- monocytes from chronic HCV patients respond to TLR8 agonist is currently 
not reported, despite the fact that HCV is a RNA virus. Also, the function of CD16+CD14- 
monocytes in chronic HCV patients is still not clear, although it was demonstrated that 
CD16+CD14- monocytes are able to sense viruses via TLR7 or TLR8, resulting in the 
initiation of a pro-inflammatory response [59]. 

 

 
 

Figure 5. TLR4 and TLR8 signaling pathways. TLR4 is expressed on the cell membrane, whereas 
TLR8 is an intracellular receptor. Both MyD88-dependent and MyD88-independent pathways are 
induced by TLR4 triggering, whereas only the MyD88-dependent is induced by TLR8 agonists. 
 

 

IL-10 as an anti-inflammatory cytokine 
IL-10 is a well-studied immunosuppressive cytokine, which belongs to the IL-10 family of cytokines, 
including also IL-19, IL-20, IL-22, IL-24, IL-26, IL-28A, IL-28B and IL-29 [70-71]. It inhibits pro-
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inflammatory responses of both the innate and adaptive immunity, which prevents tissue lesions 

induced by otherwise over-reactivity of the host immune response, but also creates favourable 
conditions for the persistence of microbes and chronic infectious diseases. IL-10 is produced by 

numbrous cell types, including macrophages, monocytes, DC, B cells and CD4+ T cells [71-75]. Upon 

the recognition of pathogens, antigen-presenting cells (APC) are activated and cytokines, such as IL-

12p70, IL-10, etc, are secreted. While IL-12p70 is important for the Th1 cells, IL-10 suppresses the 
activation of APC and thus represses or quenches Th1 responses (Figure 6). 

 

 
Figure 6. The suppressive effects of IL-10 on the immune system. Upon the recognition of 
pathogens, APC are activated and cytokines, such as IL-12p70, IL-10, etc, are secreted. While IL-
12p70 is important for the Th1 cells, IL-10 suppresses the activation of APC and thus represses or 
quenches Th1 responses. 
 
The receptor of IL-10 consists of IL-10R1 and IL-10R2 [71-72] (Figure 7). IL-10R1 is 

expressed by most hemopoietic cells [72], whereas the expression of IL-10R2 is largely 
distributed [76-77]. The IL-10R complex is structurally analogous to the IFNγR complex. 
Moreover, the IL-10/IL-10R complex has similar quaternary structure to the IFNγ/IFNγR 
complex [78-79]. The best characterized IL-10 signaling pathway is the Jak/STAT system 
(Figure 7). Jak1 and Tyk2 are constitutively associated with IL-10R1 and IL-10R2 [71-72, 

80]. Macrophages from Jak-/- mice do not respond to IL-10 [81], indicating thatJak1 is 
involved in the IL-10 signalling. Upon ligation of IL-10, Jak1 and Tyk2 induce tyrosine 
phosphorylation and activation of STAT3, STAT1 and STAT5 [82-84]. STAT3 is recruited 
directly to the IL-10/IL-10R complex and is required for IL-10 signaling [85-87]. In contrast to 
STAT3, the roles of STAT1 and STAT5 in IL-10 biology and signal transduction remain 
unclear. STAT1 and STAT5 do not appear to interact directly with IL-10/IL-10R complex [72, 
84]. 

The activation of p-STAT3, while necessary for the anti-inflammatory effect of IL-10, is 
not sufficient [83, 86-87], indicating one or more additional pathway(s) must be involved in 
the anti-inflammatory action of IL-10. Although IL-10 activates PI-3-kinase and p70 S6 
kinase, these pathways are not required for the anti-inflammatory action of IL-10 and are 
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involved for the proliferative effect of IL-10 [88]. Interestingly, it is shown that HO-1 (Heme 
oxygenase-1), a stress-inducible protein, induced by IL-10 in murine macrophages via a p38 
MAP-kinase dependent pathway mediated the anti-inflammatory effect of IL-10 [89], 
indicating that the p38 MAP-kinase dependent pathway is also involved in the IL-10 signaling 
pathway (Figure 7). 

 

 

Figure 7. IL-10R complex and IL-10-induced signaling pathways. IL-10R comprises IL-10R1 and 
IL-10R2. Upon ligation of IL-10, JAK1 and TYK2 are activated. There are several signaling 
pathways induced by IL-10/IL-10R complex. The best characterized IL-10 signaling pathway is the 
Jak/STAT system [71-72]. In addition, PI3K and p38-MAPk pathways are also induced by IL-10 
[88-89]. JAK/STAT and p38-MAPk pathways, but not PI3K pathway, are involved for the anti-
inflammatory effect of IL-10 [72, 88-89]. 
 

Increased IL-10 expression and production have been associated with some chronic 
bacterial and viral infections [79]. The induction of IL-10 in APC represents a powerful 
mechanism of immune evasion used by various pathogens. It was shown that IL-10 itself 
impaired pathogen control and clearance in the infection models for lymphocytic 
choriomeningitis virus (LCMV) [90], Schistosoma mansoni [91], Mycobacterium tuberculosis 
[92], and Candida albicans [93]. An increase in systemic IL-10 production had been reported 
for several human chronic viral infections, such as HCV, HIV and EBV [45, 62, 94-97]. 
Patients with self-limiting HCV infection were reported with low levels of IL-10 production by 
monocytes [98]. Furthermore, Oleksyk et al. reported that single nucleotide polymorphisms in 
the IL-10 gene region were associated with natural clearance of HCV in some infected 
individuals [99]. 

Interferon and signal transduction 

Interferon (IFN) family cytokines, which have antiviral, antiproliferative and 
immunomodulatory effects, are recognized as the first line of defense against viral infection. 
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Three classes of IFN have been identified, designated type I, II and III, and are classified 
according to the receptor complex they signal through (Figure 8). Type I IFN, which 
comprise 13 IFNα subtypes and IFNβ, IFNκ, IFNε, IFNσ, IFNז, and IFNδ in human, engage 
the same and ubiquitously expressed IFNα receptor complex that is composed of IFNαR1 
and IFNαR2 chains. Type II IFN has only one cytokine, which utilizes the IFNγ receptor 
complex, a tetramer of two IFNγR1 and two IFNγR2. Type III IFN (also known as IFNλ) are 
comprised of IL-28A, IL-28B and IL-29, which signal through IL-28Rα and IL-10R2 complex. 
The receptor of type I IFN is expressed by most cell types, whereas the receptor of IFNγ is 
mainly expressed by APC, such as macrophages, DC and monocyte. The receptor of type III 
IFN is relatively restricted, and, in human, it is reported to be expressed by plasmacytoid DC 
(pDC), B cells, epithelial cells, and hepatocytes [100-104]. 
 

 

Figure 8. IFN family cytokines and IFN receptor signaling. IFN family cytokines are classified into 3 
types based on the receptors they signal through. The receptor of type I IFN is a heterodimer of 
IFNα receptor 1 (IFNαR1) and IFNα receptor 2 (IFNαR2); IL-10R2 and IL-28Rα are associated with 
type III IFN, which have 3 members: IL-28A, IL-28B and IL-29; and a tetramer consisting of two 
IFNγ receptor 1(IFNγR1) chains and two IFNγ receptor 2(IFNγR2) chains are utilized by IFNγ. 
Upon the binding of IFN, the receptors of type I IFN and type III IFN first activate JAK1 and Tyk2, 
which result in the phosphorylation of STAT1 and STAT2. The STAT1-STAT2-IRF9 complex, 
known as ISG3, is subsequently formed. ISG3 further translocates to the nucleus and binds to 
ISRE region to initiate gene transcription. The receptor of IFNγ only activates STAT1 and the 
homodimer of STAT1 further translocates to the nucleus and binds to the GAS region of targeted 
genes.  

The IFN receptors share a common manner of regulating gene expression by initiating 
JAK/STAT signal transduction (Figure 8). It has been shown that type I IFN and type III IFN 

share the same signalling transduction mechanisms [100, 105-106]. Upon the binding of IFN, 
the receptors of type I IFN and type III IFN first activate JAK1 and Tyk2, which result in the 
phosphorylation of STAT1 and STAT2. The STAT1-STAT2-IRF9 complex, known as ISG3, is 
subsequently formed. ISG3 further translocates to the nucleus and binds to the IFN-sensitive 
response element (ISRE) region to initiate gene transcription (Figure 8). Interestingly, other 
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STATs can also be recruited by the receptor of type I IFN [107], such as STAT3 and STAT5. 
However, currently, the roles of STAT3 and STAT5 induced by the receptor of type I IFN are 
still not completely understood. The receptor of IFNγ only activates STAT1 and the 
homodimer of STAT1 further translocates to the nucleus and binds to the GAS region of 
targeted genes (Figure 8). Importantly, the STAT1 homodimer can also be induced by 

signalling via the receptor of type I IFN [107].  
pDC are the main producer of both type I and III IFN [108], whereas NK cells and Th1 

cells are the main producers of type II IFN [109]. The prominent activity of type I IFN is to 
induce antiviral immunity [107, 109-113] via inducing ISG15, Mx GTPases, OAS and PKB 
antiviral pathways [110]. Type III IFN have been shown to possess potent antiviral activities 
via the same mechanisms as type I IFN [100, 105-106]. IFNγ, on the other hand, functions 
predominantly on macrophages to induce a microbicidal state against ingested intracellular, 
non-viral pathogens. However, the complete picture of the function of all the three types of 
IFN is complex and therefore it is over-simplified to clearly separate the three types of IFN as 
antiviral or antibacterial factors.  

Interferon as the immunoregulatory factor 

APC, such as monocytes, DC and macrophages are the first line of defense of bacterial and 
viral infections and play important roles in initiating the adaptive T cell response. Upon 
recognition of pathogens, APC are activated and cytokines, such as IL12p40, IL-12p70 and 
IL-10. will be secreted. The production of IL-12p70, comprising IL-12p40 and IL-12p35, by 
pathogen-challenged APC has been shown to be one of the most crucial steps to initiate Th1 
responses [114]. IL-10 will quench host immune responses after the clearance of pathogens 
[72].  

In addition to the potent antiviral activities, type I IFN are also known to have strong 
modulatory effects on APC (Figure 9). IFNα has been shown to possess an inhibitory effect 

on TLR-stimulated IL-12p40 production by both human and murine APC [115-116]. However, 
the production of the biologically active IL-12p70 by APC upon TLR triggering is enhanced by 
IFNα [117], which indicates that IFNα favors Th1 response upon bacterial and viral 
infections, since the level of IL-12p70, but not IL-12p40, is important in promoting the Th1 
response. IFNα is also able to regulate TLR-induced IL-10 by both human and mouse APC. 
However, conflicting data have been reported. Some groups [116] show that IFNα enhances 
IL-10 production by TLR-challenged macrophages, monocytes and DC, whereas these 
reports conflict with other publications showing that IFNα inhibits IL-10 production by APC 
[115, 118].  

Although, much is known on the antiviral activities of type III IFN, little is reported about 
its immunoregulatory effects on APC. We have recently shown that IL-29, one member of 
type III IFN, enhances IL-12p40 and IL-23 production by TLR-stimulated human 
macrophages [119] (Figure 9). Type III IFN have no effect on DC and monocytes, and also 

they have no direct effect on Th1 responses, yet it has been reported that IL-29 is able to 
reduce IL-13 production by ConA-driven Th2 cells [120] and inhibit GATA3 expression in 
human naïve and memory T cells [121].  

While the major producers of IFNγ are NK cells and Th1 cells, the main responders of 
type II IFN are APC. In contrast to IFNα, IFNγ potently enhances IL-12p40, IL-12p70 and IL-
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23 production by monocytes, DC and macrophages in responses to TLR stimulation [115, 
119, 122-123] (Figure 9). 
 

           

Figure 9. The regulatory effects of IFN on the production of IL-12 and IL-23 by APC. IFNα inhibits 

TLR-induced IL-12p40, IL-23 production by both human and murine APC, whereas it enhances 
TLR-induced IL-12p70 production. The knowledge of the immunoregulatory effect of IFNλ on APC 
is still largely unknown. IFNλ, in this thesis, is reported to enhance TLR-induced IL-12p40 and IL-23 
production by human monocyte-derived macrophages, while they have no effect on human 
monocytes and DC. IFNγ potently enhances IL-12p40, IL-12p70 and IL-23 production by both 
human and murine APC. 

IFNα-based therapy for chronic HCV patients 

IFNα, due to its potent antiviral activities, was used for the first time in 1986 to treat patients 
chronically infected with HCV [124]. Currently, the sustained virological responses (SVR) of 
the therapy for HCV infection is dramatically improved by using pegylated IFNα plus the 
guanosine analog ribavirin [125-126]. Pegylated IFNα greatly improves the stability and half-
life of non-pegylated IFNα, which therefore leads to the higher SVR [127-128]. The exact role 
of ribavirin in the therapy for chronic HCV patients is currently not clear, although, clinically, 
the addition of ribavirin alone with IFNα leads to the SVR rates far exceeded those obtained 
by IFNα monotherapy [125-126]. Currently, the standard therapy for chronic HCV patients, 
peyglated IFNα plus ribavirin, is able to achieve the SVR in about 80% of the treated patients 
with HCV genotype 1 or 3, however, in HCV genotype 1, only about 50% of the patients 
respond to IFNα-based therapy. Also, this combination therapy has many adverse effects. 
Thus, improved or alternative therapies are needed. Clinical studies are being conducted to 
examine the benefits of treatment with pegylated IL-29 [129], and importantly, 
polymorphisms close to the IL-28B gene that are associated with disease progression and 
the response to IFNα-based therapy have sparked interest in type III IFN [130-132]. In 
addition to the active research on different types of IFN, the roles of different TLR7/8 
agonists, which are potent inducers of endogenous IFNα by pDC, in the treatment of chronic 
HCV patients are also under investigation [133-134]. 
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Aims and outlines of the thesis 

The underlying mechanisms of developing chronic HCV infection are currently not fully 
understood. To explain the impaired T cells responses in chronic HCV patients, the immune 
status and function of innate immune cells, such as myeloid DC (mDC), pDC and monocyte-
derived DC from patients have been extensively studied, which is reviewed in Chapter 2. 

However, the function of monocytes in chronic HCV patients is still not clear. Human 
circulating monocytes are heterogeneous population, including at least CD14+CD16- and 
CD16+CD14- monocytes. Currently, conflicting data on the function of CD14+CD16- 
monocytes isolated from chronic HCV patients are reported. Furthermore, the immune status 
of CD16+CD14- monocytes is not known. Therefore, we examine the function CD14+CD16- 

monocytes (Chapter 3) and CD16+CD14- monocytes (Chapter 4) in response to bacterial- or 
viral-derived pathogens in vitro. We show in Chapter 3 that CD14+CD16- monocytes isolated 

from chronic HCV patients have impaired function of the TLR4 pathway, whereas an 
enhanced response to TLR8 agonists is observed in CD14+CD16- monocytes isolated from 
chronic HCV patients. In contrast to CD14+CD16- monocytes, the function of CD16+CD14- 

monocytes isolated from chronic HCV patients is only mildly affected when assessing 
stimulation of the TLR4 pathway (Chapter 4). 

The current standard care for chronic HCV patients is IFNα plus ribavirin, which can 
only cure about half of the treated patients. In addition to the potent antiviral activities, type I 
IFN are able to prime immune responses by modulating the function of various immune cells. 
However, type I IFN have also been shown to exert suppressive effects on monocytes and 
macrophages indirectly via the effect of interleukin-10 (IL-10). The interplay between type I 
IFN and IL-10 may dampen specific immunity to pathogens, which may result in failure to 
eliminate viral infection. In chronic HCV patients, systemic levels of IL-10 in serum are 
enhanced as compared with serum from healthy individuals (Chapter 3). It is therefore 

extremely interesting to study the effect of IFNα on the production and also the signalling 
pathway of IL-10. Since monocytes and macrophages are both important producers of IL-10 
upon TLR stimulation (Chapter 3 and Chapter 5), we are interested to examine the effects 
of type I IFN on IL-10 production as well as IL-10 signalling in these cell types. We report in 
Chapter 5 that despite IFNα-mediated inhibition of IL-10 production by human monocytes, 

TLR-induced IL-12p70 secretion by IFNα-primed cells is strongly controlled by IL-10. We 
observe that priming of monocytes with IFNα or IFNβ up-regulates membrane IL-10R1 
expression, which may –at least partly- be responsible for enhanced IL-10 induced 
phosphorylation of STAT3. Moreover, type I and III IFN potentiate IL-10 signaling in a 
comparable manner in macrophages, indicating a more general effect of IFN on modulating 
the activity of IL-10 in APC. In this chapter, we demonstrate that one of the consequences of 
priming of human APC with type I and III IFN is to promote the cells’ sensitivity to IL-10 rather 
than to promote IL-10 production. 

Studies to find alternative therapy for chronic HCV patients are currently active, due to 
the severe side-effects and the relatively low response rates of the standard IFN-based 
therapy in some patients. In addition to the IFNα-based therapy, different TLR7/8 agonists, 
which are potent inducers of endogenous IFNα, for the treatment of chronic HCV patients are 
also under investigation. The effect of an oral TLR7 agonist, ANA773, in chronic HCV 
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patients is studied in Chapter 6 in the thesis, which shows that the efficacy of viral load 

decline in chronic HCV patients treated with the TLR7 agonist ANA773 is likely due to 
intrinsic differences in the induction of endogenous IFN and ISG products (IFNα and IP-10) 
upon TLR7 ligation. 

Furthermore, polymorphisms close to the IL-28B gene that are associated with disease 
progression and the response to IFNα-based therapy have sparked interest in type III IFN. 
Clinical studies are being conducted to examine the benefit of treatment with pegylated-IL-29 
in chronic HCV patients. However, the immunoregulatory effect of type III IFN is currently not 
clear. Chapter 7 shows for the first time that IL-29 is able to enhance IL-12p40 and IL-23 by 

human macrophages in response to TLR stimulation. 
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SUMMARY 

Worldwide, chronic viral infections cause major health problems with severe morbidity and 
mortality. HIV and HCV both manifest themselves as persistent infections, but they are 
entirely distinct viruses with distinct replication mechanisms, tropism and kinetics. Co-
infections with HCV among people with HIV is emerging as a growing problem. Cellular 
immune responses play an important role in viral clearance and disease pathogenesis. 
However, cellular immunity to HIV and HCV is severely affected in chronic patients. Various 
hypotheses have been proposed to explain the dysfunctional T cell response, including viral 
escape mutations, exhaustion of the T cell compartment and the activity of regulatory T cells. 
Also, modulation of the function of DC has been suggested as one of the mechanisms used 
by persistent viruses to evade the immune system. In this review, we will focus on DC 
interactions with one murine persistent virus (LCMV clone 13) and two human persistent 
viruses (HIV-1 and HCV), intending to examine if general strategies are employed by 
persistent viruses to modulate the function of DC in order to improve our understanding of 
the mechanisms underlying the development and maintenance of viral persistence. 
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INTRODUCTION 

Viral infection initiates a series of events that may culminate in the generation of an effective 
immune response capable of eliminating the virus. The immune response to viral infection 
relies on the combined action of both the innate and adaptive immune system. The innate 
immune system, which involves dendritic cells (DC), natural killer cells, complement and 
cytokines, is the first response to various viral infections prior to the appearance of the 
adaptive or virus-specific immune response, mediated by T or B cells. Because of their 
extraordinary features, DC fulfill a special role in the immune system [1-3]. They originate 
from the bone marrow, and migrate through blood to secondary lymphoid organs and tissue. 
DC operate at the interface between the innate and adaptive immune response by their 
ability to sample their environment for pathogenic products, to process them, and to present 
viral antigens to T cells [4]. This results in T cell proliferation, and the induction of virus-
specific adaptive immune responses.  

T helper 1 (Th1) cells produce IFN-γ and play a central role in cell-mediated immunity 

[5-7]. The development of Th1 cells can be promoted through the activation of distinct 

populations of DC via the production of IL-12p70 and in some cases IFN-α [8-13]. The 

activation of DC relies on its expression of numerous pathogen recognition receptors, like C-
type lectins and Toll-like receptors (TLR) that recognize molecular patterns expressed by 
pathogens, such as lipopolysaccharides (LPS), RNA or DNA sequences [14-16]. These 
microbial stimuli induce significant morphological and biochemical changes in DC, such as 

enhanced secretion of TNF, IL-6, IL-12, IL-10 and IFN-α, and increased expression on DC of 

MHC and costimulators, including CD80, CD86 and CD40. This activation of DC is required 
for efficient priming of pathogen-specific T cells. 

 
Figure 1. Human myeloid DC and plasmacytoid DC express different TLR, and consequently 
respond to distinct microbial stimuli. IL-12 production by myeloid DC can be stimulated by a large 
range of microbial products and augmented by CD40 ligation, or cytokines such as IFN-γ, resulting 
in the development of Th1 cells. Cytokines, such as IL-10, negatively regulate the production of IL-
12.  Activated plasmacytoid DC produce large amounts of IFN-α, which has potent anti-viral 
activity. 
 

Human DC have been categorized into two major subsets, CD11c+ myeloid DC and 
CD11c- CD123+ plasmacytoid DC [17-20]. They have been shown to express different TLR, 
and consequently respond to distinct microbial products. For example, human myeloid DC 
express TLR3, and respond to the TLR ligand poly-I:C by producing IL-12p70, which 
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promotes Th1 cell development [21]. Myeloid DC are considered classical antigen-presenting 
cells, since they are able to initiate the activation of naïve and effector T cells. Because of the 
low numbers of myeloid DC in blood, DC generated from peripheral blood monocytes, in the 
presence of IL-4 and granulocyte-monocyte colony stimulating factor (GM-CSF), have been 
used extensively [22]. These cells share some, but not all features of blood myeloid DC. It is 
unclear whether a counterpart of monocyte-derived DC is circulating in the body, but it has 
been suggested that these cells represent inflammation-induced tissue mDC [23]. 
Plasmacytoid DC, on the other hand, are best known for their extraordinary ability to secrete 

high levels of IFN-α in response to ligation of TLR7 and TLR9, and by bacterial and viral 

RNA or DNA [21, 24]. Plasmacytoid DC exert strong antiviral effects mediated via IFN-α, as 

has been reported in a number of viral infections [24, 25]. However, they are poor inducers of 
T cell proliferation, due to their low efficiency in capturing, processing and loading antigen 
onto MHC molecules, and their weak expression of costimulators [26].  

The activation of DC and subsequent cytokine production, such as IL-12p70 and IFN-α, 

are highly regulated by both positive and negative feedback mechanisms. For instance, 

positive regulation is achieved by additional CD40 ligation and the presence of IFN-γ, which 

are signals normally provided by T cells [27]. On the other hand, anti-inflammatory cytokines, 

such as IL-10, strongly inhibit the expression of IL-12p70 and IFN-α, as well as suppress the 

production of other pro-inflammatory cytokines [27, 28]. This negative regulation may be 
important to prevent excessive DC and T cell activation, which might result in pathology, but 
at the same time may limit the efficacy of the ongoing immune response against pathogens, 
thereby allowing pathogen survival.  

When antiviral responses are insufficient, the host and the virus may establish some 
form of long-term relationship, i.e. viral persistence, as observed following infections with HIV 
and HCV. Since DC bridge innate and adaptive responses, exploitation of DC by the virus is 
an effective strategy to disrupt the host immune response by impairing DC function, and as a 
consequence achieve persistent infection. In this review, we will discuss if distinct persistent 
viruses indeed exploit DC to promote the development of chronic infections. Integration of 
our knowledge on the immune evasion mechanisms used by a murine persistent virus 
(LCMV variant clone 13) and two distinct human persistent viruses (HIV-1 and HCV) 
indicates that a number of similar strategies are employed by these unrelated viruses to 
modulate the function of DC.  

Lymphocytic choriomeningitis virus, a murine RNA virus 

Over the last decade, detailed insight has been obtained in the immunological mechanisms 
that are involved in the establishment and maintenance of various persistent viral infections. 
Most of this knowledge is derived from studies in mice, in which infections with lymphocytic 
choriomeningitis virus (LCMV), a murine, ambisense RNA virus, are considered the 
prototype for viral persistent infections [29]. The outcome of infection of mice with the LCMV 
Armstrong strain is resolution of the infection. Following inoculation, a sharp increase in viral 
levels is observed for 3-4 days, which declines soon afterwards until the virus is cleared 
completely. Clearance of the LCMV Armstrong strain is mediated by a strong adaptive 
immune response characterized by proliferation and activation of highly effective LCMV-
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specific CD4+ and CD8+ T cells [30-32]. In contrast, infection with LCMV variant clone 13 in 
mice displays all the features of a persistent viral disease, and high viral titers are observed 
months after inoculation [33, 34]. Importantly, in mice persistently infected with LCMV clone 
13, a generalized immunosuppression is observed characterized by ablation of specific T cell 
responses to multiple viruses, as well as antibody responses to many different antigens [34, 
35]. Immunosuppression in mice infected by LCMV clone 13 appears to result from a defect 
in antigen presentation, rather than from a direct effect on T cells and B cells as 
demonstrated by adoptive transfer experiments [34-36].  

Macrophages, stromal cells and DC can all be infected by LCMV. The receptor for 
LCMV is alpha-dystroglycan [37], which is a cellular receptor for extracellular matrix proteins. 
Importantly, it was found that persistent LCMV strains, such as LCMV clone 13, bind alpha-
dystroglycan with higher affinity than LCMV Armstrong [37]. A 2-3 log difference in binding 
affinity was observed for LCMV strains that caused a persistent infection as compared to 
strains that did not [38], which could be mapped to a single amino acid change in the viral 
glycolipid-1 ligand that binds alpha-dystroglycan [38]. The high dependency of persistent 
LCMV strains on alpha-dystroglycan most likely leads to their preferential infection of splenic 
CD11c+ and DEC205+ DC in the marginal zone and white pulp of the spleen [34, 38]. Three 
weeks following LCMV infection, the majority of splenic DC are infected. On the other hand, 
LCMV strains that do not cause persistent infections mainly infect macrophages and few DC 
in the red pulp, most likely because they are less dependent on alpha-dystroglycan for 
infection [34, 38, 39]. In addition, LCMV clone 13, but not LCMV Armstrong, can infect the 
majority of hematopoietic progenitors from bone marrow, rendering them unresponsive to 
Flt3-ligand and GM-CSF in vivo and in vitro. As a consequence of LCMV clone 13 infection 

of hematopoietic progenitors, the development of CD8α+ and CD8α- DC is impaired [40], 

which was found to require IFN-α/β, but was not via induction of apoptosis of DC [38]. 

Interestingly, it was previously reported that LCMV clone 13-infected DC, but not Armstrong-

infected DC, induced the secretion of IFN-α/β [41]. Thus, infection with LCMV clone 13, but 

not LCMV Armstrong, leads to reduced numbers of DC within the host, which may explain 
the difference in disease outcome. In addition, infection of DC with LCMV clone 13, but not 
LCMV Armstrong, renders LCMV clone 13 infected DC as targets for the cytotoxic activity of 
LCMV-specific CD8+ T lymphocytes resulting in a further reduction of DC numbers [34].  

Splenic CD11c+ DC isolated from mice infected with LCMV clone 13 demonstrated 
markedly inhibited expression of MHC class I, MHC class II, CD40, CD86, and CD80 
molecules, which was not observed for DC from LCMV Armstrong infected mice [40]. 
Interestingly, reduced expression of the costimulators MHC class II, CD80 and CD86 was 
still observed at day 120 when LCMV clone 13-infected mice had controlled the infection, 
whereas the expression of CD40 and MHC class I had recovered completely at that time. 
Therefore, control of the infection and the recovery of the costimulatory ability of DC do not 
correlate in time. At day 360 after infection, the expression of all costimulators had recovered 
completely. As a result of the reduced expression of costimulators during clone 13 infection, 
DC were unable to induce T cell proliferation efficiently in a primary allogeneic MLR [34, 38]. 
These results indicate that LCMV clone 13 specifically targets DC, which may render them 
ineffective to stimulate T cells, and ultimately lead to immunosuppression.  
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Besides an effect on the levels of costimulators, LCMV also modulates cytokine 
production by DC. IL-12, produced by DC, is a key factor in promoting the development of 

IFN-γ producing Th1 cells. However, in LCMV infections, the development of Th1 responses 

appears to be independent of IL-12, since the cytokine secretion profile of LCMV-specific 
CD4+ T cells in IL-12-deficient mice was identical to normal mice [42, 43]. Instead, under 

normal conditions, LCMV-specific IFN-γ responses by CD8+ T cells were mediated via IFN-

α/β, as demonstrated using IFN-α/β-receptor knock-out mice [42]. Lack of IFN-α/β resulted in 

enhanced IL-12 production, demonstrating negative feedback mechanisms controlling IL-12 
production. In this situation, the LCMV viral titers were increased, demonstrating the superior 

effect of type I IFN over IL-12 in inhibiting viral replication [42]. The source of IFN-α/β in 

response to LCMV remains controversial. Following LCMV Armstrong infection, a rapid 

increase of the numbers of plasmacytoid DC as well as upregulation of IFN-α expression 

were observed in the spleen [44]. Using IFN-α-GFP-reporter mice, it was recently reported 

that plasmacytoid DC are indeed responsible for high MyD88-dependent IFN-α production 

following infection [45]. However, depletion of plasmacytoid DC in vivo did not affect IFN-α/β 

levels in serum during LCMV Armstrong infection [46]. Moreover, non-plasmacytoid DC from 

mice infected with LCMV have also been shown to produce high IFN-α levels [41]. 

Distinct production of IFN-α/β has been implicated in the establishment of persistence 

to LCMV. Mice infected with LCMV clone 13 demonstrated sustained production of IFN-α/β 

by both immature and mature DC from the spleen and bone marrow for about 2 months, 
which was not observed in mice infected with LCMV Armstrong [47]. However, LCMV clone 

13 infections in mice were less sensitive to IFN-α/β and IFN-γ, as compared to LCMV 

Armstrong [48]. Studies with mice deficient in the IFN-α/β pathway revealed that a “resolving” 

LCMV variant (LCMV-WE) was able to initiate a persistent infection due to the absence of 
virus specific CD8+ T cells, while clearance of LCMV Armstrong proceeded but with slower 
kinetics [42, 49, 50]. Thus, these findings indicate that infection with persistent LCMV strains 
can subvert the antiviral effect of type I IFN to benefit its own survival, which was, at least in 
part, by inhibition of the development of the DC compartment in infected mice. 

Another important level of regulation of immune responses is mediated by 
immunosuppressive cytokines, such as IL-10. IL-10 suppresses the function of APC and T 
cells, mainly via inhibition of pro-inflammatory cytokine production, costimulation and MHC 
class II expression [28]. In recent years, it was reported that IL-10 production is dramatically 
increased in mice persistently infected with LCMV clone 13 as compared to LCMV Armstrong 
[51, 52]. Brooks et al. suggested that DC are the source of IL-10 in persistently infected mice, 
whereas Ejrnaes et al. demonstrated that modulation of the DC compartment results in 
enhanced IL-10 production by CD4+ T cells. Importantly, both studies showed that 
neutralization of the activity of IL-10 in mice chronically infected with LCMV clone 13, 
resulted in restoration of the impaired T cell response, and clearance of the virus. The 
induction of IL-10 by specific strains of the virus, or the tendency of the host to produce more 
IL-10 may contribute to the inability to clear the virus, and the development of viral 
persistence.  
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Thus, persistent strains of LCMV have evolved multiple strategies for suppressing 
and altering DC function, thereby reducing the host’s ability to induce adaptive immune 
responses. 

Human immunodeficiency virus, a retrovirus 

Infection with the HIV-1 virus continues to develop as a global pandemic with an estimated 
33 million infected individuals and 2.1 million people dying from AIDS in 2007 
[http://www.who.int/mediacentre/news/releases/2007/pr61/en/index.html]. The hallmark of 
HIV-1 pathogenesis is the gradual loss of CD4+ T cells throughout chronic disease, ultimately 
resulting in enhanced susceptibility to opportunistic infections. The progressive depletion of 
CD4+ T cell during the chronic stage of infection is most likely due to direct HIV infection and 
subsequent cell deletion, as well as activation induced cell death, as reviewed in [53].  

At the mucosal site, DC may capture HIV, and promote spreading and transmission of 
the virus. This may lead to delivery of the virus to the lymph nodes, where infection of CD4+ T 
cells may occur [54-56]. HIV also infects DC via specific receptors on DC, such as CC-
chemokine receptor 5 (CCR5), and CXC-chemokine receptor 4 (CXCR4) [57-59]. However, 
compared to CD4+ T cells, HIV replication in DC is less productive, and the frequency of HIV-
infected DC is very low due to the low level of CXCR4 and CCR5 expression, and the activity 
of fusion restriction factors in DC [60, 61]. Mucosal DC are among the first cellular targets for 
HIV-1 during sexual transmission [62-67]. In vitro, Langerhans cells from the skin, vaginal 
DC, blood myeloid DC, and DC generated from monocytes or CD34+ progenitors can all be 
infected with HIV [58, 68-76]. The maturation status of DC is thought to affect the 
susceptibility of DC to become infected with HIV. Immature DC are more susceptible to 
infection, whereas mature DC are more difficult or even resistant to become infected [77, 78].  

Numerous studies have examined the role of blood myeloid and plasmacytoid DC in 
HIV-1 immunopathogenesis. A decrease in the absolute numbers of both myeloid DC and 
plasmacytoid DC in blood of HIV-1 infected donors is observed in most studies [79-84]. It 
was suggested that loss of DC in HIV infection may contribute to disease progression, since 
the depletion is progressive and correlates with HIV-1 plasma viral load [80, 85]. Importantly, 
asymptomatic long-term survivors had increased numbers of plasmacytoid DC relative to 
individuals with progressive disease or uninfected controls, suggesting that plasmacytoid DC 
can protect against disease progression, although the increased numbers can also be the 
consequence of lower levels of viral replication [85]. Moreover, patients undergoing anti-
retroviral therapy show a recovery of the numbers of plasmacytoid DC [86], further 
suggesting a role for plasmacytoid DC in HIV pathogenesis. There are no indications that 
HIV-1 inhibits DC progenitor expansion, but depletion of plasmacytoid DC via apoptosis and 
necrosis in vitro has been reported [87]. In addition, disappearance of DC from the circulation 
has been suggested to be due to recruitment of cells to lymphoid tissue, as demonstrated on 
the basis of expression of the CCR7 and CXCR3 migration markers [84, 88-90]. In addition, 
reduced numbers of plasmacytoid DC as observed in AIDS patients might also be the 
consequence of opportunistic infections [85].   

Functionally, less efficient stimulation by DC of allogeneic T cells was observed when 
comparing peripheral blood DC of HIV-infected individuals at different stages of infection with 
DC from healthy donors [82, 91, 92]. Interestingly, DC infected with HIV-1 in vitro induced IL-
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10 secretion by T cells, which may explain, at least in part, the reduced T cell response [93]. 
Whereas viruses can generally activate DC by inducing HLA-DR and costimulators, such as 
CD80, CD86 and CD40, HIV infection of DC does neither lead to activation of immature 
monocyte-derived DC [93] nor plasmacytoid DC in vitro [94], except when large amounts of 
virus are added [74, 93, 95]. Also when exposed to different maturation stimuli, DC infected 
with HIV-1 failed to become activated. In contrast, HIV viral protein R (vpr) and Nef protein 
expressed in DC using vaccinia or adenovirus have been found to reduce the levels of CD86, 
CD80 and HLA-DR on monocyte-derived DC in vitro [96-99]. Coinciding with this reduced 
expression of co-stimulators, these DC were impaired in their ability to activate CD8+ T cells.  

Modulation of DC-derived cytokine production by HIV, which was observed in most 
studies, may further contribute to evasion of host immune responses by HIV. Stimulation of 
PBMC or whole blood from HIV infected individuals showed reduced production of IL-12 as 
compared to controls [100-103]. In agreement with this, upon stimulation with a HIV-1 isolate, 
p24-expressing DC failed to produce IL-12p70 in response to CD40 ligation [104]. This may 
be mediated via the HIV vpr protein as inhibition of the production of IL-12 and upregulation 
IL-10 production was observed in monocyte-derived DC stimulated in the presence of vpr 

protein, whereas IL-6 and IL-1β levels were not affected [96]. However, adenoviral encoded 

Nef in immature DC induced IL-6, IL-12 and TNF production [99, 105], and monocyte-derived 
DC stimulated in vitro with gp120 from the HIV-1 strain JR-FL induced IL-10 secretion in the 
majority of donors [106]. These distinct, and in some cases, opposing effects on modulation 
of DC-derived cytokine production by HIV, are likely due to the use of distinct HIV isolates or 
HIV components, and the use of different sources of DC.  

In addition to the reduced numbers of plasmacytoid DC during chronic HIV infection, 

also the capacity to produce IFN-α was found to be reduced by plasmacytoid DC of these 

patients [83, 85, 86, 103]. This is important since HIV-induced IFN-α contributes, at least in 

part, to the restriction of viral replication in plasmacytoid DC [107, 108] and CD4+ T cells [87, 
109], as well as to bystander activation of myeloid DC [89]. Plasmacytoid DC directly 
recognize and respond to HIV-1 infection by inducing maturation, and the production of large 

quantities of IFN-α [74, 89, 107, 109-111]. This is in contrast to myeloid DC, which do not 

mature upon incubation with HIV. There is general consensus that gp120 is required for IFN-

α induction by plasmacytoid DC, which is mediated through its interaction with CD4 [89, 109, 

111, 112]. However, recently it was shown that gp120 suppresses CpG-induced activation of 

plasmacytoid DC, including the production of IFN-α. This effect was only observed when 

plasmacytoid DC were stimulated via TLR9, but not via TLR7 [113]. On the other hand, it 

was found that IFN-α produced by plasmacytoid DC after HIV-1 exposure regulates the 

expression of TRAIL on CD4+ T cells, resulting in apoptosis of these T cells [114].  
Similar to persistent LCMV, HIV-1 also inhibits DC activation and modulates the 

cytokine expression by DC, thereby evading the host immune response. Both HIV and LCMV 
have evolved strategies to subvert the function of type I IFN for their own benefits. 

The hepatitis C virus, an RNA virus 

Worldwide, another viral pathogen that causes major health problems is the hepatitis C virus 
(HCV). The HCV virus is not a retrovirus, but an enveloped, positive single-stranded RNA 
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virus. It is estimated that 80-90% of individuals infected with HCV become chronically 
infected, and these patients are at increased risk of developing cirrhosis and hepatocellular 
carcinoma, which may take decades to develop. At present it is still unclear why some 
individuals are able to clear the infection spontaneously whereas others do not. Weak and 
functionally impaired HCV-specific T cells responses are a characteristic feature of chronic 
HCV infection, in common with persistent HBV and LCMV infections [115-117].  

Binding of HCV to hepatocytes involves many receptors that were identified by 
screening for surface markers that bind the envelope proteins E1 and E2. In this way, CD81, 
scavenger receptor class B, DC-SIGN, L-SIGN and the asialoglycoprotein receptor were 
identified [118-121]. In addition, the LDL receptor, by binding HCV particles associated with 
lipoprotein, and claudin-1, a tight-junction component highly expressed in the liver, are 
involved in viral binding and/or entry [122]. The involvement of these diverse proteins in HCV 
cell entry either suggests multiple pathways, or a complex series of sequential steps for viral 
entry. The primary site of infection of HCV is the liver, and replication can take place in 
hepatocytes. However, HCV RNA has also been detected in extrahepatic locations, including 
cells of the lymphatic system (PBMC), bone marrow and the central nervous system [123, 
124]. Although there is still debate, numerous studies have reported the presence of positive-
strand HCV RNA, and importantly its replicative intermediate- negative strand HCV RNA, in 
peripheral blood DC following infection in vitro or directly ex vivo [125-129]. However, the 
frequency of DC containing HCV RNA, and the levels of the virus in DC are extremely low 
[125, 126]. The scavenger receptor B1 has recently been show to be required for not only 
binding, but also the uptake of HCV and cross-presentation by human DC [130]. At present, 
no information is available whether other receptors on DC can perform similar activities.  

Similar to LCMV and HIV-1 infection, in patients with chronic HCV infections decreased 
frequencies of peripheral myeloid DC and plasmacytoid DC have been demonstrated in the 
majority of studies [127, 131-139]. However, similar as described for HIV, it is possible that 
altered frequencies of peripheral DC may be a consequence of migration towards the site of 
infection, and therefore peripheral numbers do not necessarily mirror the capacity of the DC 
compartment in chronic HCV patients. For this it is preferable to monitor DC numbers and 
their function in the liver, but to date only few studies have examined intrahepatic DC in HCV 
infections [139]. Using immunohistochemistry it was shown that the numbers of myeloid and 
plasmacytoid DC in the livers of patients with chronic HCV were markedly increased, as 
compared to normal control specimens [139]. However, it is difficult to determine if 
accumulation of DC in the liver is causally related to the decrease of DC numbers in 
peripheral blood. Another possibility is that HCV targets DC precursors as reported by 
Sansonno et al [140], or that HCV directly targets DC to reduce their numbers. In this regard, 
it has been shown that HCV core, NS3 and NS5 proteins all induce apoptosis in mature DC 
in vitro [141].  

Besides reduced numbers of myeloid DC, it was found that myeloid DC from chronic 
HCV patients showed a decrease in their capacity to stimulate allogeneic T cells [131, 142, 
143]. Also, with respect to the levels of co-stimulators expressed on peripheral blood myeloid 
DC from chronic HCV patients as compared to healthy controls, reduced expression of HLA-
DR and CD86 was observed by some [142], but not all studies [134, 144]. Interestingly, 

Tsubouchi et al found that successful therapy with IFN-α and ribavirin increased the 
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expression of costimulators on myeloid DC, and increased their allostimulatory capacity 
when DC were examined before and 4 weeks after therapy [127]. Clearly, more studies with 
larger cohorts of patients need to be performed to resolve this issue. 

In chronic HCV patients, myeloid DC were found to produce less IL-12 in response to 
stimuli, such as poly-I:C or CD40-ligand, whereas the production of the anti-inflammatory 
cytokine IL-10 was enhanced [103, 131, 142, 143, 145-147]. The reduced IL-12p70 
production by DC could be restored following successful antiviral therapy of chronic HCV 
patients, suggesting that the presence of HCV specifically inhibits the activity of DC [127]. 
Although Longman et al. reported normal phenotypic characteristics and allogeneic functions 
in monocyte-derived DC [148], the majority of researchers found that monocyte-derived DC 
of patients with chronic HCV infections displayed a less mature phenotype and had an 
impaired allostimulatory capacity [125, 135, 149, 150].  

To date, the mechanisms whereby HCV affects DC function remain largely elusive. It is 
possible that HCV proteins play a role in suppressing protective immunity through 
interactions with host immune cells, such as DC. Indeed, the HCV core protein has been 
reported to impair the function of DC [151-155]. Mouse myeloid DC treated with HCV core-
expressing plasmid had a reduced surface expression of MHC I, MHC II, CD80, CD86 and 
PD-L1, and associated with this was an impaired in vitro priming of CD4+ T cells [155]. HCV 
core protein was also able to selectively inhibit TLR4-induced IL-12 production after 
interacting with the gC1q-receptor on the surface of monocyte-derived DC by activating the 
PI3K pathway, leading to reduced Th1 cell development [151, 154]. Besides the HCV core 
protein, also suppressed T cell responses were described due to the effect of NS3 and NS4 
on monocytes or DC [156, 157].  

Further indications that HCV directly affects DC function came from studies using the 
recently described cell-culture grown HCV (HCVcc). Culture with HCVcc demonstrated 

inhibition of maturation of monocyte-derived DC induced by a cocktail of cytokines (IL-1β, 

TNF, IL-6, prostaglandin-E2), while enhancing the production of IL-10. In addition, DC 
exposed to HCVcc were impaired in their ability to stimulate antigen-specific T cell responses 
[158]. In contrast, similar experiments performed by Shiina et al., found no inhibition of 
maturation induced by LPS or poly-I:C, nor affected cytokine production of blood myeloid DC 
and monocyte-derived DC, or T cell proliferation in an MLR response [159]. The distinct 
maturation stimuli used, different doses of HCVcc, or differences in the HCVcc itself might 
explain the conflicting findings reported by these studies. Thus, although individual HCV 
proteins have been shown to modulate the function of DC in vitro, more studies need to be 
conducted to determine the immunomodulatory effect of the complete HCV virus on DC 
function.  

Numerous studies have also reported on an impairment of the function of plasmacytoid 
DC from blood of HCV patients as compared to healthy controls, as demonstrated by 

reduced production of IFN-α upon stimulation with herpes simplex virus or TLR ligands [103, 

131, 132, 137, 142, 159-161]. Importantly, patients who spontaneously resolved their HCV 
infection, and patients who responded to therapy showed similar numbers of plasmacytoid 

DC and IFN-α production as healthy control individuals [132, 138]. Interestingly, Dolganiuc et 

al. demonstrated in vitro that in response to HCV core protein, monocyte-derived TNF and 

IL-10 were responsible for the reduction of IFN-α production by plasmacytoid DC [138]. The 
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limited number of studies that examined the consequence of HCV infection on the ability of 
plasmacytoid DC to stimulate T cells found reduced activation of CD4+ T cells [131, 161]. 
Although the majority of studies support the observations that the plasmacytoid DC are 

impaired, others demonstrated that on a per-cell basis, IFN-α production by pDC is similar to 

healthy controls [132, 134]. Also, the effect of exposure of plasmacytoid DC to cell culture-

produced HCVcc is still unclear, since inhibition of IFN-α production in a dose-dependent 

manner was reported [159], as well as no effect on plasmacytoid DC as determined by a 
broad array of cytokines and chemokines (Decalf, 2007}.  

In recent years it has been shown that HCV is very efficient in interfering with the IFN 
signaling at multiple levels. Multiple HCV proteins were capable of selectively degrading 
STAT-1 and to reduce accumulation of phosphorylated STAT-1 in the nucleus [162], 
resulting in a reduced capacity to stimulate IFN-target genes. In addition, specific molecules 
of signaling pathways activated upon recognition of viral RNA, such as TRIF and Cardif are 
targeted by the HCV NS3 and NS4 proteins (reviewed in [163]).  Disruption of these signaling 
pathways may be a critical mechanism of HCV to reduce type I IFN responses, and thus 
potently disrupt the antiviral response.  
Together, the reduced frequency of both myeloid DC and plasmacytoid DC, reduced IL-12, 

IFN-α and increased IL-10 production, accompanied by an impaired capacity to prime naïve 

T cells, may contribute to the insufficient immune response to HCV in chronic HCV patients. 
Different from infections with LCMV or HIV-1, viral proteins seem to play a more important 
role in evading the host immune response to HCV. 
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CONCLUDING REMARKS 

LCMV, HIV and HCV are highly distinct viruses. From a clinical point of view, the only feature 
these viruses have in common is their ability to establish persistent infections in the host. 
Infections with LCMV, HIV and HCV all demonstrate that DC can not stimulate T cell 
responses as efficiently as DC from healthy control individuals. As described in this review, 
there are many indications that these viruses modulate DC frequencies or function, but the 
molecular and viral factors responsible are still poorly defined. Although difficult to prove, 
especially for human viruses, it is highly likely that reduced numbers of DC, or altered DC 
function, contributes to the development of weaker antiviral T cell responses. Moreover, to 
determine if this in turn leads to viral persistence is even more difficult to prove. Reversal of 
virus-induced modulation of the DC compartment by therapeutic intervention is the only way 
to determine a causal role for DC in the induction and maintenance of viral persistence. 
However, at present no such approaches have been tested in patients.  

LCMV clone 13 infection in mice leads to infection and subsequent deletion of DC 
progenitors, resulting in reduced number of peripheral DC. For HIV and HCV infection, also 
reduced numbers of peripheral DC have been described, but this is most likely due to altered 
migration of DC from peripheral blood to lymphoid organs, as has been described for 
plasmacytoid DC during HIV infection [84, 89, 90], or tissue. 

Most studies demonstrate that infection with LCMV, HCV and HIV in vivo “produces” a 
DC with a diminished capacity to activate T cells. Besides affecting activation and maturation 
of DC, also altered cytokine production might underlie the limited ability to stimulate the 
adaptive immune response. In this, all three viruses have evolved ways to undermine the 
potent anti-viral type I IFN response, either by disturbing intracellular signaling downstream 
of the IFN-receptor and pattern recognition receptors, or by affecting survival of DC and 
CD8+ T cells.  In addition, the recent finding that neutralization of DC-derived IL-10 was able 
to resolve persistent LCMV infection, leading to complete cure of the infected mice [51, 52] 
demonstrates another important role for DC-derived cytokines in the establishment of 
persistence. Although enhanced IL-10 production has been described by DC stimulated with 
viral products from HIV and HCV, and blockade of IL-10/IL-10-receptor pathway in vitro 
enhanced CD4+ T cell responses in samples from chronic HIV or HCV patients [164, 165], no 
in vivo trials to block the activity of IL-10 have been conducted in human.  
These findings showing that the DC compartment is functionally affected in chronic viral 
infections, as discussed in this review, support the rationale for the development of DC-
based strategies for the prevention and treatment of chronic virus infections. In a preliminary 
study, therapeutic DC vaccination for chronic HIV-1 infection using monocyte-derived DC 
loaded with inactivated HIV-1 has been shown to reduce the viral load, while enhancing the 
HIV-specific T cell response [166]. Also, numerous groups are currently exploring the use of 
therapeutic manipulation of the innate immune system using TLR agonists for treatment of 
chronic HIV and HCV infections (reviewed in [167]). Restoring the impaired DC compartment 
may represent a powerful strategy for the treatment of chronic HIV and HCV infection. 
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SUMMARY 

The consequences of chronic infection with the hepatitis C virus (HCV) on immunity to 
distinct pathogens are not fully appreciated despite the potent modulatory effects of HCV on 
the immune system. We observed that upon TLR4 ligation, monocytes from chronic HCV 
patients demonstrated 3-5 times lower TNF and IL-12p40 production as compared to healthy 
individuals. However, augmented production of TNF, IL-12p40 and IL-12p70 by monocytes 
was observed upon stimulation with R848. Importantly, we observed that the levels of IL-10 
in chronic HCV patients are higher in serum and that more IL-10 is produced by monocytes 
as compared to healthy individuals. The inhibitory effect of IL-10 on the production of pro-
inflammatory cytokines by monocytes was only observed upon LPS stimulation, but not upon 
R848 stimulation, showing that only the TLR4 pathway in monocytes is sensitive to the 
suppressive effects of IL-10. And interestingly, monocytes stimulated with the TLR4 agonist, 
but not TLR8 agonist, produced higher levels of IL-10, when exposed to patient serum as 
compared to serum from healthy individuals. Our results indicate that, by differentially 
affecting TLR4 and TLR8 pathways, IL-10 may mediate highly selective modulation of the 
function of monocytes observed in chronic HCV patients. This suggests that there is no 
overall increased susceptibility to pathogens, but a specific suppression of the functionality of 
TLR4 signaling pathway in monocytes, which is, at least partly, mediated via IL-10. 
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INTRODUCTION 

The majority of individuals infected with the hepatitis C virus (HCV) develop a chronic 
infection. A characteristic feature of the immune status in these chronically infected patients 
is a weak HCV-specific T cell response, which is short-lived, and targeted to a narrow range 
of epitopes [1-3]. To explain the insufficient T cell responses, numerical and functional 
impairment of dendritic cells (DC), natural killer (NK) cells and regulatory T cells have been 
reported in patients with chronic HCV patients [3-5]. Monocytes have received relatively little 
attention in studies on the immune status of chronic HCV patients, despite the fact that 
monocytes comprise approximately 10% of circulating leukocytes, and play important roles in 
inflammatory responses. Monocytes express a specific panel of receptors for diverse 
pathogen-derived products, including Toll-like receptors (TLR), which enable them to 
respond to a broad range of bacterial and viral pathogens [6-7]. In response to TLR ligation, 
monocytes can produce large quantities of pro-inflammatory and anti-inflammatory cytokines, 
which are important in the eradication of the pathogen, but may also lead to 
immunopathology [8-10]. As important producers of IL-10 in the periphery, monocytes can 
also act as important negative immune regulators, to limit the excessive immune response to 
pathogens and thereby preventing damage to the host [11-12].  
The consequences of persistent infections on the functionality of monocytes have not been 
studied in detail. For HIV infections, it was shown that HIV-1 impairs innate immunity to 
bacteria by affecting the function of mononuclear phagocytic cells, and that HIV-infected 
individuals display an increased risk of bacterial infections [13]. For chronic HCV infections, 
this is less clear, and conflicting data has been reported. It is generally accepted that 
monocytes from HCV patients are more activated than their counterparts in healthy 
individuals, as shown by higher production of TNF, IL-12p40 and IL-10 in the absence of 
activating stimuli [14-20]. The mechanisms underlying this enhanced activation state of 

monocytes in chronic HCV patients are not clear, but IFN-γ, IFN-α, as well as HCV core 

protein have been detected in  serum of chronic HCV patients, and may prime circulating 
monocytes [18, 21-23]. At present it is not entirely clear how monocytes respond to 
pathogen-derived products in chronic HCV patients as compared to healthy individuals. 
Stimulation of purified monocytes from chronic HCV patients with the TLR4 ligand LPS 
resulted in higher TNF production as compared to healthy individuals by some groups [18-
19], whereas others showed no difference [17]. Moreover, monocyte-derived cytokine 
production induced by LPS was found to be reduced when assessing PBMC from HCV 
patients as compared to PBMC from healthy controls [24], but was enhanced when 
assessing the intracellular cytokine expression [14-15]. 

Currently, the functionality of monocytes from chronic HCV patients is not fully 
understood. This is important since an altered monocyte function may compromise the 
immune status of the patient and consequently their susceptibility to pathogens. In this study 
we show that monocytes from chronic HCV patients show an impaired response to TLR4 
ligation, but not TLR8 ligation. The selective impairment of the TLR4 –but not the TLR8- 
signalling pathway, appears to be the consequence of a higher sensitivity of the TLR4 
signalling pathway to suppression by IL-10, which is present at relatively high levels during 
persistence of HCV infections. 
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MATERIALS AND METHODS 

Patients  
Blood samples were obtained from patients with chronic HCV infection visiting our outpatient 
clinic and from healthy individuals. Patients co-infected with human immunodeficiency virus, 
hepatitis A virus, hepatitis B virus or hepatitis D viruses were excluded from the study. 
Monocytes were isolated from 23 naïve chronic HCV patients (male=15, female=8; 
age=51±10; ALT=105±90) and 23 healthy individuals (male=12, female=11; age=36±11). 
The HCV genotype was determined in all 23 patients: genotype 1=13; genotype 2=4; 
genotype 3=4; genotype 4=2 patients. In 9 out 23 patients, the fibrosis grade was lower than 
F2, and cirrhosis was diagnosed in 3 patients. The levels of fibrosis or cirrhosis are unknown 
in 11 patients. Serum was obtained from a different cohort consisting of 58 chronic HCV 
patients (male=41, female=17; age=47±7; ALT=88±57) and 20 healthy individuals (male=14, 
female=6; age=49±6). The protocol conformed with ethical guidelines of the Erasmus 
Medical Center, and all patients gave their informed consent. 
 
Intracellular cytokine staining  
PBMC were isolated from peripheral blood by gradient-density centrifugation. PBMC were 

stimulated with ultrapure LPS S. minnesota (100 ng/ml; InvivoGen) or R848 (1 µg/ml; Alexis) 

in serum-free X-VIVO15 medium (BioWhittaker) for 5h, with brefeldin-A (10 µg/ml; Sigma) 

present for the last 3h. Samples were then fixed, permeabilized and stained with antibodies 
against CD14-Pacific Blue (M5E2, BD Pharmingen), TNF-PE-Cy7 (MAb11, eBioscience) and 
IL-10-APC (JES3-9D7, BD Pharmingen). Cytokine producing monocytes were detected by 
flow cytometry (Canto-II, BD). In some experiments, frozen PBMC from both chronic HCV 
patients and healthy individuals were used. 
 
Monocyte purification and stimulation  
Monocytes were purified from PBMC using magnetic CD14-microbeads (Miltenyi Biotec; 
purity: 95-99%), and stimulated in X-VIVO15 medium in 96-well plates (5x105 cells/ml, 200 

µl/well) for 24h with  ultrapure LPS S. minnesota (100 ng/ml, TLR4), Pam3CSK4 (100 ng/ml, 

TLR2), polyIC (25 µg/ml, TLR3/mda-5), flagellin (50 ng/ml, TLR5), loxoribine (0.4 µM, TLR7), 

R848 (1 µg/ml, TLR7/8; Alexis) and CpG2216 (5 µg/ml, TLR9; Coley-Pharma). In order to 

compare the response of monocytes to different LPS preparations, LPS E. coli 055:B5 
(Sigma-Aldrich) and LPS S. minnesota (Sigma-Aldrich) were compared to ultrapure LPS S. 
minnesota (InvivoGen). All TLR agonists used for stimulations were from InvivoGen, unless 
indicated otherwise. To determine how IL-10 modulates TLR4 and TLR8 signaling pathways, 
monocytes from healthy individuals were challenged with various concentration of IL-10 
(R&D) in the presence of TLR ligands for 24h.  
 
Serum IL-10 concentration determination and monocyte stimulation  
The concentrations of IL-10 in serum were measured using the IL-10 Quantikine ELISA Kit 
(R&D). To determine the effects of serum on cytokine production, monocytes were isolated 
from buffycoats and cultured in X-VIVO15 medium supplemented with 20% serum from 
chronic HCV patients or from healthy individuals in the presence or absence of ultrapure LPS 
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S. minnesota or R848 for 24h. To determine a role for IL-10, 10 µg/ml anti-IL-10 receptor 

antibody (3F9, Biolegend) was added in some experiments.  
 
Quantification of TLR mRNA expression in monocytes  
Total RNA from monocytes was extracted using the RNeasy kit (Qiagen), and cDNA 
prepared using the iScript cDNA Synthesis Kit (Bio-Rad). All real-time PCR reactions were 
performed using a MyIQ5 detection system (Bio-Rad). Primers for GAPDH (forward 5’-
TGCACCACCAACTGCTTAGC-3’ and reverse 5’-GGCATGGACTGTGGTCATGAG-3’) and 
TLR4 (forward 5’-TCTACAAAATCCCCGACA-3’ and reverse 5’-AGGTGGCTTAGGCTCTGA-
3’) were used. Furthermore, primer-probes for GAPDH (Hs00266705_g1), TLR8 
(Hs00152972_m1), and IL-10 (Hs00174086_m1) were purchased from Applied Biosystems. 
The expression of target genes was normalized to GAPDH using the formula: 2-∆Ct, ∆Ct=Ct 
TLR - Ct GAPDH. 
 
Immunoassay for detection of cytokines in supernatant  
The concentration of cytokines in supernatant were determined using sandwich ELISA 
specific for IL-10 (eBioscience), IL-12p40 (C8.6 and C8.3 antibody pairs, Biolegend), IL-
12p70 (eBioscience) and TNF (eBioscience). The detection limits for IL-10, IL-12p70 and 
TNF were 15 pg/ml and for IL-12p40 30 pg/ml. 
 
Statistics 
Values are expressed as mean values, unless indicated otherwise. Data was analyzed using 
the Mann-Whitney t-test to compare variables between two independent groups. Two-tailed 
p-values of less than 0.05 were considered statistically significant. 
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Results 

Serum IL-10 levels are enhanced in chronic HCV patients as compared to healthy 
individuals. 
Since HCV only infects liver hepatocytes, the putative effects of chronic HCV infection on the 
peripheral immune system are likely via an indirect way. We postulated that components 
present in serum from chronic HCV patients, but not in serum from healthy individuals, may 
be able to modulate the activity of the peripheral immune system. To examine this, we 
focused on the involvement of IL-10 as a possible candidate because of its potent 
immunomodulatory activities [11-12]. As shown in Figure 1A, serum from chronic HCV 
patients has a significant higher level of IL-10 as compared to serum from healthy 
individuals, which was not associated with age, ALT or viral load of chronic HCV patients 
(data not shown). Next, we determined whether monocytes obtained from patients differed 
from healthy individuals with respect to their ability to express IL-10 mRNA and to produce 
IL-10 protein without stimulation. Indeed, we observed that monocytes from chronic HCV 
patients have significantly higher levels of IL-10 mRNA expression (Figure 1B) as well as 
enhanced IL-10 production ex vivo when compared to monocytes from healthy individuals 
(Figure 1C). 
 

 
Figure 1. Higher serum IL-10 levels and higher spontaneous monocyte-derived IL-10 production in 
chronic HCV patients as compared to healthy individuals. (A) Serum levels of IL-10 were 
determined in patients (n=58) and healthy individuals (n=20). Threshold level is 0.4pg/ml. (B) 
Levels of IL-10 mRNA expression (C) and spontaneous IL-10 production by monocytes from 
chronic HCV patients and healthy individuals were measured. 

 

Serum from chronic HCV patients increased higher LPS-induced IL-10 production by 
healthy monocytes when compared to serum from healthy individuals.  
To determine the production of IL-10 by monocytes in response to distinct TLR ligands, 
purified monocytes from healthy individuals were purified and stimulated with various TLR 
agonists. As shown in Figure 2A, LPS, Pam3CSK4 and R848 are more potent to induce IL-
10 and/or TNF by monocytes than flagellin, PolyIC, loxoribin and CpG. The level of IL-10 was 
highest upon stimulation of monocytes with LPS. Furthermore, upon LPS stimulation 
monocytes were shown to be an important source of IL-10 in the peripheral leukocytes as 
demonstrated by intracellular cytokine staining (Figure 2B). Since we previously observed 
that the function of monocytes was strongly affected by the choice of serum used for cell 
culture, we examined whether serum from chronic HCV patients has the ability to modulate 
the activity of monocytes. As shown in Figure 2C, purified monocytes from healthy 
individuals stimulated with LPS produced higher levels of IL-10, but not TNF and IL-12p40 
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(Figure 2D), when exposed to patient serum as compared to serum from healthy individuals 
(average IL-10 levels of 1507 pg/ml and 408 pg/ml, respectively). To gain insight into the role 
of IL-10 produced by LPS-stimulated monocytes from healthy individuals exposed to chronic 
HCV serum, we blocked the IL-10 receptor using an anti-IL10R antibody. In the absence of 
TLR ligation, cultures with medium alone and with anti-IL-10R antibody did not induce TNF or 
IL-12p40 production by monocytes exposed to either patient serum or serum from healthy 
individuals (data not shown). In the absence of anti-IL-10R antibodies, LPS stimulated 
monocytes exposed to patient serum or healthy serum produced similar amounts of TNF and 
IL-12p40 (Figure 2D). Importantly, blocking of the IL-10R enhanced the production of LPS-
induced pro-inflammatory cytokines when monocytes were exposed to patient serum, while 
IL-10R blockade only weakly enhanced cytokine production when monocytes were cultured 
in serum from healthy individuals (Figure 2D). These findings suggest that serum from 
chronic HCV patients enhances LPS-induced IL-10 production by monocytes, which in turn 
strongly inhibits TNF and IL-12p40 production. 

     

 
 

Figure 2. Serum from chronic HCV patients enhances IL-10 production by monocytes upon LPS 
stimulation when compared to serum from healthy individuals. (A) Monocytes from healthy 

individuals were stimulated with various TLR agonists to determine the IL-10 and TNF production. 
(B) PBMC were stimulated with LPS or medium, and intracellular cytokine production gated on 

CD14 positive monocytes were analyzed. Representative dot plots show the intracellular TNF and 
IL-10 upon stimulation of CD14 positive monocytes. (C) Monocytes purified from buffycoats (“●” 

and “ ” represents two different donors) were incubated in serum-free medium supplemented with 
20% serum from different chronic HCV patients (n=11) or healthy individuals (n=11) in the 
presence of LPS for 24h. (D) Using anti-IL-10 receptor antibody (aIL10R), TNF and IL-12p40 

production by LPS stimulated monocytes, which were exposed to serum from chronic HCV patients 
or healthy individuals were examined. Medium and antiIL-10R antibody alone did not induce TNF 
or IL-12p40 production by monocytes exposed to either patient serum or serum from healthy 
individuals (data not shown). 
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TLR4 signaling pathway is highly sensitive to the suppressive effects of IL-10.  
In order to further address the sensitivity of the TLR4 pathway to IL-10, we stimulated 
monocytes from healthy individuals with LPS in the presence of different concentrations of 
IL-10. As expected, the levels of TNF and IL-12p40 produced by monocytes were 
suppressed by IL-10, which occurred at relatively low concentrations (0.1-1 ng/ml; Figure 
3A), whereas blocking of IL-10 signaling restored the production of TNF and IL-12p40 to 
normal levels. The inhibitory effect of IL-10 on the TLR4 pathway was also observed when 
different doses of LPS were examined (Supplementary Figure S1A). Importantly, the 
inhibitory effect of IL-10 on TNF and IL-12p40 production was not via down regulation of 
TLR4 levels, since no reduction of TLR4 mRNA was detected (Figure 3B) and also no down-
regulation of TLR4 protein levels on the surface of monocytes were observed 
(Supplementary Figure S2).  

 
Figure 3. The TLR4 signaling pathway is very sensitive to the suppressive effects of IL-10. (A) 
Monocytes from healthy individuals were stimulated for 24h with different concentrations of IL-10 in 
the presence of LPS, and TNF and IL-12p40 levels were measured by ELISA. Anti-IL-10 receptor 
antibody (aIL10R) was used to block IL-10 signaling. (B) Monocytes from healthy individuals (n=3) 
were stimulated with medium and IL-10 (10 ng/ml) for 5h and TLR4 mRNA expression was 
measured. 

 
 

Monocytes purified from chronic HCV patients exhibit impaired TNF and IL-12p40 in 
response to TLR4 ligation, but with normal TLR4 mRNA expression. 
Since the response to LPS can be easily inhibited by IL-10, and also monocytes exposed to patient 
serum produce relatively high levels of IL-10 in response to TLR4 stimulation, we hypothesized that 

monocytes isolated from chronic HCV patients exhibit an impaired response to LPS. As shown in 

Figure 4A, stimulation of highly purified monocytes with LPS resulted in 3-5 times lower levels of TNF 

and IL-12p40 in chronic HCV patients as compared to healthy individuals, whereas similar levels of IL-

10 were detected by LPS-stimulated monocytes from patients and healthy individuals (average: 373 
and 375 pg/ml), indicating that IL-10 is regulated via a distinct mechanism in monocytes as compared 

with TNF and IL-12p40. Despite lower production, the percentage of TNF-producing monocytes was 

similar as shown by intracellular TNF staining (p=0.169; Figure 4B and 4C). This indicates that 

monocytes from chronic HCV patients produce less TNF and IL-12p40 per cell, as compared to cells 
from healthy individuals. We further observed that the level of TLR4 mRNA expression in monocytes 

was similar for patients and controls (Figure 4D), which suggest that the impaired TNF and IL-12p40 

production by LPS stimulated monocytes from chronic HCV patients is likely due to alterations in TLR4 

signaling pathways.  
Previous studies have reported that LPS induced higher TNF production by monocytes from 

chronic HCV patients than from healthy individuals [18, 20]. To examine if different LPS preparations 
could explain these conflicting findings, monocytes were stimulated with ultrapure LPS S. minnesota, 

LPS E. coli 055:B5 and “regular” LPS S. minnesota (purchased from Sigma-Aldrich) for cytokine 

production. Ultrapure LPS S. minnesota, as used in our study, induced 2-3 times lower levels of TNF 
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in purified monocytes (Table 1), whereas 2-3 times higher levels of IL-12p40 were observed when 
compared to activation with LPS E.coli 055:B5 and LPS S. minnesota (data not shown). In line with 

previous reports, we found that LPS E.coli 055:B5 and LPS S. minnesota, but not ultrapure LPS, 

induced higher levels of TNF secretion by monocytes from chronic HCV patients than from healthy 

individuals (Table 1).  

 

 
Figure 4. LPS challenged monocytes from chronic HCV patients exhibited impaired TNF and IL-
12p40 production as compared to healthy individuals. (A) Monocytes isolated from HCV patients 
(n=23) and healthy individuals (n=23) were stimulated with LPS for 24h. (B) PBMC from chronic 
HCV patients (n=21) and healthy individuals (n=19) were stimulated with LPS and intracellular TNF 
production by monocytes was determined. (C) Representative dot plots showing TNF-positive 
monocytes upon stimulation of PBMC from a chronic HCV patient. (D) TLR4 mRNA expression in 
monocytes isolated from HCV patients (n=17) and healthy individuals (n=14) was quantified by 
real-time PCR. TLR4 mRNA expression in B cells, monocyte-derived macrophages and monocyte-
derived dendritic cells were included as controls. 

 
Table 1. Analysis of TNF production by monocytes isolated from chronic HCV patients and 
healthy individuals (n=4/group) in response to different LPS preparations 

LPS preparations HCV patients Healthy individuals 

S.minnesota 
ultrapure LPS 

1822 (902-2476)* 3786 (3091-4204)* 

E.coli 055:B5 
      LPS 17480 (15243-21996) 9630 (5159-13765) 

S.minnesota 
      LPS 16352 (12870-25007) 8967 (3735-11066) 

           * the range of TNF production is shown in brackets. 
 

Monocytes isolated from chronic HCV patients demonstrate elevated responses to 
R848.  
To examine whether the impairment of monocyte responsiveness in patients with chronic 
HCV infections is limited to TLR4 ligation, we performed similar experiments in the presence 
of the TLR7/8 agonist R848. In contrast to LPS stimulation, R848-stimulated monocytes from 
chronic HCV patients secreted significantly higher levels of TNF and IL-12p40 as compared 
to healthy individuals (average values: 11.8 to 2.7 ng/ml TNF, and 3.7 vs 2.0 ng/ml IL-12p40, 
respectively; Figure 5A). R848-induced IL-12p70 production by monocytes was detected in 
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the majority of patients (average: 254 pg/ml), whereas IL-12p70 by monocytes was 
undetectable in 15 out of 23 healthy individuals (average: 90 pg/ml). Again, the percentage of 
TNF-producing monocytes in R848-stimulated PBMC was similar between patients and 
healthy individuals (p=0.5; Figure 5B and 5C). This indicates that individual monocytes from 
chronic HCV patients produce more TNF and IL-12p40 as compared to healthy individuals. 
The increased TLR8-induced TNF and IL-12p40 production by monocytes from chronic HCV 
patients could not be fully explained by an up-regulation of TLR8 mRNA expression, since 
we observed a weak, but not significant, up-regulation of TLR8 mRNA expression in chronic 
HCV patients (Figure 5D). These data suggest that activation via TLR8 leads to more potent 
signaling downstream of TLR8 in monocytes from chronic HCV patients as compared to 
healthy individuals. 
 

 
Figure 5. Monocytes from chronic HCV patients demonstrate elevated responses to R848. (A) 
Monocytes isolated from HCV patients (n=23) and healthy individuals (n=23) were stimulated with 
R848 for 24h. (B) PBMC from chronic HCV patients (n=21) and healthy individuals (n=19) were 
stimulated with LPS and intracellular TNF production by monocytes was determined. (C) 
Representative dot plots showing TNF-positive monocytes upon stimulation of PBMC from a 
chronic HCV patient. (D) TLR8 mRNA expression in monocytes isolated from both HCV patients 

(n=17) and healthy individuals (n=14) was quantified by real-time PCR. TLR8 mRNA expression 
in B cells, monocyte-derived macrophages and monocyte-derived dendritic cells were included as 
controls. 

 

Compared to the response to LPS, the TLR8 signaling pathway is less sensitive to the 
suppressive effects of IL-10. 
We next determined whether the response to TLR8 ligation of monocytes is also suppressed 
by IL-10, as was observed for the response to LPS. To our surprise, we observed that in 
contrast to TLR4 responses, the TLR8 signaling pathway is considerably less sensitive to the 
suppressive effects of IL-10 (Figure 6A). Even at relatively high IL-10 concentrations (10 
ng/ml), the production of TNF and IL-12p40 was only weakly inhibited. Furthermore, upon 
R848 stimulation, monocytes exposed to chronic HCV serum produce similar levels of IL-10 
as monocytes exposed to healthy serum (Figure 6B). Combined, these findings indicate that 
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chronic HCV serum has no suppressive effect on cytokine responses induced by TLR8 
ligation as was observed upon TLR4 ligation. 

 
Figure 6. In contrast to the TLR4 signaling pathway, TLR8 signaling is not sensitive to the 
suppressive effects of IL-10. (A) Monocytes from healthy individuals were stimulated with different 

concentrations of IL-10 in the presence of LPS or R848, and the levels of TNF and IL-12p40 were 
measured by ELISA. (B) Monocytes purified from buffycoats (“●” and “ ” represents two different 

donors) were incubated in serum-free medium supplemented with 20% serum from different 
chronic HCV patients (n=11) or healthy individuals (n=11) in the presence of R848 for 24h. 
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Discussion 

In this study we examined whether persistent infections with HCV influences the functionality 
of monocytes in patients. We demonstrate that the response of highly purified, circulating 
monocytes to distinct TLR agonists is differentially affected between chronic HCV patients 
and healthy individuals. Reduced production of pro-inflammatory cytokines in response to 
TLR4 ligation, and augmented production upon TLR8 ligation of monocytes from chronic 
HCV patients demonstrates specific modulation of the function of monocytes in patients with 
chronic HCV infection. We further show that the differences in suppression of TLR4- and 
TLR8-induced activation as observed in chronically infected HCV patients, was likely due to 
differential responsiveness to IL-10.  
Monocytes are important players in the first-line of defense against numerous pathogens, as 
well as in initiating and controlling adaptive immunity [25]. Indeed, in HIV-1 infection, reduced 
function of mononuclear phagocytic cells results in the weaker innate immunity to bacterial 
infection [13]. In persistent HCV infections the numbers of studies examining this issue are 
limited, and the conclusions on the functionality of monocytes in patients are conflicting. 
We demonstrate that, in contrast to TLR8 ligation, triggering of monocytes from chronic HCV 
patients with TLR4 ligands resulted in lower levels of the pro-inflammatory cytokines TNF 
and IL-12p40. Interestingly, exposure of human monocytes to recombinant HIV Tat or Vpr 
proteins lead to defective responses to LPS as shown by TNF and IL-12p40 production [26-
27], whereas no information is available on the effect of exposure to these antigens upon 
TLR8 ligation. The reduced TLR4-induced responses were not simply due to lower TLR4 
levels, since TLR4 mRNA levels in monocytes were similar in chronic HCV patients as 
compared to control individuals. Importantly, our data further shows that monocytes from 
chronic HCV patients spontaneously produce higher level of IL-10 as compared with 
monocytes from healthy controls, and that serum from chronic HCV patients contains higher 
IL-10 levels than control serum. Furthermore, since also cytokine production of monocytes 
induced by TLR4 ligation is suppressed by IL-10 very efficiently, whereas this is more 
modest upon TLR8 ligation, IL-10 is a likely candidate to explain the reduced LPS responses 
of monocytes from chronic HCV patients. At present, the cell types responsible for the 
relatively high serum IL-10 levels in these patients are not known. However, some studies 
have shown that HCV encoded proteins, such as HCV core, NS3 and NS4 proteins have the 
ability to induce IL-10 production by monocytes isolated from both patients and healthy 
individuals [19, 28-33]. The importance of monocyte-derived IL-10 was further highlighted in 
a study that demonstrated that patients with self-limiting HCV infections produced 
significantly less IL-10 than chronic HCV patients [28]. Moreover, in the chronic LCMV model 
in mice, the role for IL-10 in preventing viral clearance was demonstrated in which 
therapeutic administration of an antibody that blocks the IL-10R restored T-cell function and 
eliminated LCMV infection [34]. 
In contrast to activation via TLR4, we demonstrated that monocytes from chronic HCV 
patients are more responsive to TLR8 ligation than monocytes from healthy individuals by 
producing cytokines. Similar to healthy individuals, also monocytes from chronic HCV 
patients were unresponsive to pure TLR7 ligands (data not shown). The enhanced response 
to TLR8 ligation could not be fully explained by elevated TLR8 mRNA expression in 
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monocytes from chronic HCV patients in our patient group, as has been reported before [35-
36]. Interestingly IL-10 has less effect on TLR8 signalling in suppressing TNF and IL-12p40 
production, since the TLR8 pathway is only weakly sensitive to the suppressive effects of IL-
10, even at high concentrations. Also, serum from chronic HCV patients has no effect in 
increasing IL-10 production by monocytes after triggering of TLR8 signalling pathway. At 
present, it is unknown why IL-10 is able to inhibit the TLR4, but not the TLR8-induced 
responses. One possibility is that IL-10 signalling events may differentially affect the MyD88 
and TRIF signalling pathways, since the MyD88-independent TRIF pathway, is activated 
upon TLR4 ligation, but not TLR8 ligation [37]. To further add to the complexity, we observed 
that upon combined triggering of TLR4 and TLR8, TLR8 ligation was able to overcome the 
inhibitory effect of IL-10 on TLR4 stimulation (Supplementary Figure S1B). Detailed signalling 
studies need to be conducted in order to delineate the underlying mechanisms.  However, 
the specific inhibition by IL-10 of responses induced by LPS, but not R848 in vitro, is 
reflected by the selective inhibition of the TLR4 pathway as observed in chronic HCV 
patients. 
In contrast to our findings, enhanced LPS-induced TNF production by monocytes from 
chronic HCV patients was observed by some groups [14, 18, 20], whereas others - similar to 
our findings - did not [17, 24]. Besides the method of purification, the choice of medium and 
serum, and the read-out assay, also the specific LPS preparation used to stimulate 
monocytes is important as we demonstrate in this study. Great differences in TNF and IL-
12p40 production by healthy monocytes stimulated with ultrapure LPS and the commonly 
used LPS preparations suggest that contaminants present in some LPS preparations 
activate monocytes, which may explain, at least in part, the opposing findings in literature. 
Although it is well-known that many preparations of LPS contain low amounts of TLR2 
ligands [38], we observed that stimulation with Pam3CSK4 resulted in similar levels of TNF 
produced by monocytes from patients and healthy controls (data not shown). However, 
triggering by a different TLR2 ligand present in the LPS preparations, or synergistic triggering 
of the TLR2 and TLR4 pathways may be important in this. 
Together, our results indicate that, by differentially affecting TLR4 and TLR8 pathways, IL-10 
may mediate highly selective modulation of the function of monocytes observed in chronic 
HCV patients. This suggests that there is no overall increased susceptibility to pathogens, 
but a specific inhibition of the functionality of TLR4 signaling pathway in monocytes, which is 
likely mediated by IL-10. 
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Supplementary Figures 
Supplementary Figure S1. TLR4 signaling is sensitive 
to the suppressive effect of IL-10, but TLR8 signaling 
appears to overcome the effect of IL-10 on TLR4 
signaling. (A) Highly purified monocytes from healthy 
individuals were stimulated with IL-10 and LPS at the 
indicated concentrations for 24h. The level of TNF in 
supernatant was determined by ELISA. Note that 1000 
ng/ml LPS yields lower TNF levels than 100 ng/ml LPS. 
The values depicted show representative data from 3 
independent experiments. (B) Highly purified 
monocytes from healthy individuals were stimulated 
with LPS (100 ng/ml), R848 (1 ug/ml) or LPS plus 
R848 for 24h. The level of TNF in supernatant was 
determined by ELISA. The values depicted show 
representative data from 3 independent experiments. 

 

 

 

 

 
 
 
Supplementary Figure S2. IL-10 does not down-regulate TLR4 
protein levels on the surface of human monocytes. Highly purified 
monocytes from healthy individuals were stimulated IL-10 (1 
ng/ml), LPS (100 ng/ml) or LPS plus IL-10 for 5h. Samples were 
then stained with TLR4-PE (HTA125, Biolegend) or proper 
isotype control antibody. The TLR4 protein expression on 
monocytes was examined by flow cytometry (Canto-II, BD). The 
values depicted show representative data from 5 independent 
experiments. 
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SUMMARY 

Little is known about the frequency and function of CD16+CD14- monocytes from chronic 
HCV patients. We observed that the absolute numbers and ratio of CD16+CD14- to 
CD14+CD16- monocytes were similar between chronic HCV patients and healthy individuals. 
Functionally, we found that CD16+CD14- monocytes are more responsive to TLR8-ligation 
and only weakly responsive to LPS stimulation in producing TNF as compared to 
CD14+CD16- monocytes. We found no overt impairment of the function of CD16+CD14- 
monocytes from patients, except for an augmented induction of MIP-1β-producing 
CD16+CD14- monocytes upon TLR4-ligation. However, the increased frequency of MIP-1β-
producing CD16+CD14- monocytes was not associated with viral load, ALT or fibrosis level. 
Our findings indicate that, different from other infectious diseases, the frequency and function 
of CD16+CD14- monocytes are only minimally altered as a consequence of the persistent 
state of HCV infections, and our findings therefore do not suggest a role for CD16+CD14- 
monocytes in HCV pathogenesis.  
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INTRODUCTION 
The hepatitis C virus (HCV) is a major cause of chronic liver disease that can result in 
cirrhosis of the liver and hepatocellular carcinoma. In the majority of infected individuals, the 
immune response against HCV is insufficient to eradicate the virus. A weak HCV-specific T 
cell response is generally observed in patients chronically infected HCV. In addition, 
numerical or functional impairment of dendritic cells (DC), natural killer (NK) cells, regulatory 
T cells have been reported in patients with chronic HCV [1-4]. Although monocytes are 
important cells in initiating and maintaining immune responses, and comprise about 10% of 
circulating leukocytes, relatively little is known on the effect of chronic HCV infection on the 
functionality of monocytes.  
Human blood contains two distinct subpopulations of circulating monocytes, which can be 
distinguished on the basis of membrane expression of CD16 and CD14: CD16+CD14- and 
CD14+CD16- monocytes [5-8]. Compared to CD14+CD16- monocytes, CD16+CD14- 
monocytes are less frequent and comprise about 5~15% of the total monocytes. 
Furthermore, CD16+CD14- monocytes are thought to produce higher levels of pro-

inflammatory cytokines, such as TNF and IL-1β in response to TLR stimulation [9], and lower 

levels of anti-inflammatory cytokines, such as IL-10 [9-10]. Recently, it was demonstrated 
that CD16+CD14- monocytes are able to sense viruses via TLR7 or TLR8, resulting in the 
initiation of a pro-inflammatory response [11]. Several studies have reported that patients 
with various infections have increased numbers of CD16+CD14- monocytes in blood [12-18]. 
Also, in a heterogeneous patient cohort of individuals with chronic liver disease (as a result of 
autoimmunity, alcohol toxicity, viral infections or unspecified etiology) increased numbers of 
circulating CD16+CD14- monocytes were observed [19]. The importance of CD16+CD14- 
monocytes in the pathology of liver diseases was suggested since increased numbers of 
CD16+ cells were observed in the liver at areas of inflammation [19-20].  
Previously, we showed that CD14+CD16- monocytes from chronic HCV patients produce 
lower level of TNF and IL-12p40 as compare to healthy individuals upon TLR4 ligation and 
augmented production of TNF, IL-12p40 and IL-12p70 was observed upon stimulation via 
TLR8 [21]. Since at present no information is available whether the function of CD16+CD14- 
monocytes is affected as a consequence of chronic infection with HCV, we examined in 
detail the frequency and function of circulating CD16+CD14- monocytes in patients with 
chronic HCV infections. 
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MATERIALS AND METHODS 
Patients 
Peripheral blood was collected from patients with chronic HCV infection visiting our 
outpatient clinic and from healthy individuals. Patients co-infected with human 
immunodeficiency virus, hepatitis A virus, hepatitis B virus or hepatitis D viruses were 
excluded from the study. All characteristics of HCV patients are presented in Table 1. In 
addition, blood from 19 healthy individuals was examined in this study (age=33±8; 
Male/Female: 11/8). The institutional review board of the Erasmus MC approved the 
protocols, and informed consent was obtained from all individuals.  
 
Table 1. Characteristics of chronic HCV patients 

Chronic HCV patients 
 
Age 
(years) 

Gender ALT Genotype Viral loads 
(IU/ml) 

Fibrosis 

48 (32-61) 
* 

Male=11 
Female=8 

125 (10-
375) * 

genotype 1: 15 
genotype 3:  3 
genotype 4:  1 

2.0x106  
(3.3x104-
7.0x106)* 
 

F0: 3 
F1: 1 
F2: 5 
F3: 3 
F4: 1 

* the range is shown in brackets 
 
Enumeration of monocytes and leukocytes in whole blood 
Absolute numbers of monocytes and leukocytes in whole blood were determined by an 
automated impedance hematology analyzer (ABX Micros-60, Horiba Medical). To determine 
the frequency of distinct monocyte subpopulations, whole blood was stained with antibodies 
against CD14-PE-Cy7 (61D3, eBioscience) and CD16-PerCP-Cy5.5 (3G8, BD Biosciences), 
and evaluated by flow cytometry (Canto-II, BD). The data was analyzed using BD FACS Diva 
software.  
 
Stimulation of CD16+CD14- and CD14+CD16- monocytes  
PBMC of healthy volunteers or patients with chronic HCV infections were isolated from fresh 
blood by Ficoll-Paque gradient centrifugation. PBMC were incubated with CD3-PE (UCHT1, 
Biolegend) and CD3+ cells were magnetically depleted with anti-PE microbeads (Miltenyi 
Biotec) following the manufacturer’s instructions. The CD3-depleted PBMC were further 
incubated with antibodies against CD14-Pacific Blue (M5E2, BD Pharmingen), CD16-PerCP-
Cy5.5 (3G8, BD Biosciences) and CD56-APC (N901, Beckman). CD16+CD14- and 
CD14+CD16- monocytes were sorted on a BD FACS Aria SORP. The purity of sorted 
CD16+CD14- and CD14+CD16- monocytes was 98.3 ± 0.6%, 97.2 ±2.4%, respectively. 
CD16+CD14- and CD14+CD16- monocytes sorted from both HCV patients and healthy 
individuals were cultured with serum-free X-VIVO15 medium (BioWhittaker) at 2.5x105 

cells/ml in 96-well flat bottom plates (200 µl/well) for 24h stimulated with ultra pure LPS 

S.minnesota (100 ng/ml, TLR4 agonist) or R848 (1 µg/ml, TLR7/8 agonist; Alexis). In some 

experiments, CD16+CD14- and CD14+CD16- monocytes sorted from healthy individuals were 

stimulated with Pam3CSK4 (100 ng/ml, TLR2 agonist), polyIC (25 µg/ml, TLR3/Mda-5 

agonist), flagellin (50 ng/ml, TLR5 agonist), CL264 (2.5 µg/ml, TLR7 agonist) and CpG-2216 

(5 µg/ml, TLR9 agonist, type A; Coley Pharma). Supernatants from cultures were collected 
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and stored at -20℃. All TLR agonists used for stimulations were from InvivoGen, unless 
indicated otherwise. 
 
Intracellular detection of cytokine production  
PBMC from HCV infected patients or healthy individuals were stimulated with ultra pure LPS 

S.minnesota (100 ng/ml; InvivoGen) or R848 (1 µg/ml; Alexis) in serum-free X-VIVO15 

medium (BioWhittaker) for 5h, with brefeldin-A (10 µg/ml; Sigma) present for the last 3h. 

Samples were fixed with 2% formaldehyde, permeabilized with 0.5% saponin, and stained 
with antibodies against CD14-Pacific Blue (M5E2, BD Phamingen), HLA-DR-PerCP-Cy5.5  
(LN3, ebioscience), TNF-PE-cy7 (MAb11, eBioscience), CD3-AmCyan (SK7, BD 
Biosciences), CD19-APC-H7 (SJ25C1, BD Biosciences), IL-8-FITC (6217, R&D), MCP-1-
APC (5D3-F7, eBioscience) and MIP-1β-PE (D21-1351, BD Pharmingen). The frequency of 
cytokine producing cells was determined by flow cytometry (Canto-II, BD).   
 
Immunoassay for detection of cytokines 
The levels of TNF in supernatant were determined using sandwich ELISA (eBioscience) 
according to the manufacturer’s instructions. The detection limit for TNF was 15 pg/ml.   
 
Statistics 
Continuous variables were represented as mean ± standard deviation, unless indicated 
otherwise. Mann-Whitney t-test was used to compare variables between two independent 
groups. In all analyses, a two-tailed p-value of less than 0.05 (confidence internal 95%) was 
considered statistically significant. GraphPad Prism V5.0 (GraphPad Software Inc, San 
Diego, CA, USA) was used to perform all analyses. 
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Results 
The frequency of total monocytes and the ratio of CD16+CD14- monocytes in total 
monocytes were not altered in chronic HCV patients 
We first examined whether the contribution of monocytes in peripheral blood of chronic HCV 
patients differs from healthy individuals. We observed that the absolute numbers of 
peripheral leukocytes and monocytes were similar between patients and healthy individuals 
(Figure 1A). Total monocytes were further divided into CD16+CD14-, CD14+CD16- and 
CD16+CD14+ monocytes using antibodies against CD14 and CD16 [9-12, 28]. As shown in 
Figure 1B, within the monocyte compartment, no differences were observed in the ratio of 
CD16+CD14-, CD14+CD16- and CD16+CD14+ subpopulations when comparing blood from 
chronic HCV patients with healthy individuals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The numbers and composition of the circulating 
monocyte compartment were not affected by chronic HCV 
infection. (A) The absolute number of leukocytes and monocytes in 
peripheral blood of chronic HCV patients and healthy individuals is 
shown. (B) Monocytes were identified on the basis of their 
FSC/SSC profile, and further characterized by flowcytometry using 
CD14 and CD16 specific antibodies. The contribution of the 
specific subpopulation within the total monocyte pool is shown.  
 
 

In contrast to CD14+CD16- monocytes, CD16+CD14- monocytes isolated from healthy 
individuals highly respond to R848 but only weakly respond to LPS in producing TNF 
Having demonstrated that the number of CD16+CD14- monocytes was not affected in 
chronic HCV patients, we examined if functional differences exist between patients and 
healthy individuals.  

CD16+CD14- and CD14+CD16- monocytes were sorted by flow cytometry from PBMC 
on the basis of FSC/SSC profile, and exclusion of CD3+ and CD56+ cells (Figure 2A).  
Morphological evaluation of CD16+CD14- and CD14+CD16- monocytes after cell sorting 
demonstrated that both subpopulations showed a typical monocytic morphology (data not 
shown). Functionally, however, the TLR7/8 agonist R848 induced about 8-10 times higher 
levels of TNF by CD16+CD14- monocytes than by CD14+CD16- monocytes, whereas LPS-
challenged CD16+CD14- monocytes produced around 8-10 times lower levels of TNF when 
compared with CD14+CD16- monocytes in response to LPS (Figure 2B and 2C).  
Both CD16+CD14- and CD14+CD16- monocytes did not respond to the TLR7 agonist CL264 
(Figure 2B), indicating that in human monocytes R848 triggers TLR8, but not TLR7. At the 
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concentrations tested, Pam3CSK4 (TLR2 agonist), polyIC (Mda5/TLR3 agonist), flagellin 
(TLR5 agonist) and CpG (TLR9 agonist) induced relatively low or undetectable cytokines by 
bothCD16+CD14- and CD14+CD16- monocytes (Figure 2B). Together, CD16+CD14- and 
CD14+CD16- monocytes differ in their response to TLR4 and TLR8 stimulation. 

 
Figure 2. CD16+CD14- and CD14+CD16- monocytes sorted from healthy individuals differ in their 
response to LPS and R848 stimulation in producing TNF. (A) CD3+ T cells were first depleted from 
PBMC of healthy individuals, followed by identification of total monocytes on the basis of their 
FSC/SSC profile. Monocytes were sorted using antibodies against CD14 and CD16.  (B) Sorted 
monocytes were stimulated with various TLR agonists for 24h and TNF production was evaluated. 
The values depicted show representative data of 2 independent experiments. (C) CD16+CD14- and 
CD14+CD16- monocytes obtained from 14 healthy individuals were stimulated with LPS or R848 
and TNF production was determined.  

 

TLR-induced TNF production by CD16+CD14- monocytes from chronic HCV patients is 
not affected as compared to healthy individuals 
Previously, we showed that the function of CD14+ monocytes from chronic HCV patients was 
modulated in response to TLR stimulation as compared to healthy individuals. Yet, the 
response of CD16+CD14- monocytes from chronic HCV patients to TLR agonists is still not 
clear. To examine this we stimulated CD16+CD14- monocytes from PBMC of chronic HCV 
patients and healthy individuals, which were purified by cell sorting. As shown in Figure 3, no 
differences were observed in the levels of TNF produced by LPS- or R848-challenged 
CD16+CD14- monocytes from chronic HCV patients versus healthy individuals.  
 
 

Figure 3. TLR-induced TNF production is 
comparable between CD16+CD14- monocytes 
from chronic HCV patients and from healthy 
individuals. CD16+CD14- and CD14+CD16- 
monocytes purified from chronic HCV patients 
(n=4) and healthy individuals (n=5) were 
stimulated with medium, LPS or R848 for 24h. 
TNF production was measured by ELISA. 
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The percentage of MIP-1β producing CD16+CD14- monocytes induced by LPS is 
increased in chronic HCV patients as compared to healthy individuals 
Next, we determined TLR-induced cytokine responses by CD16+CD14- monocytes in a 
larger cohort of chronic patients versus healthy individuals. For this, flow cytometric analysis 
of cytokine producing cells is preferred due to the low percentages of CD16+CD14- 
monocytes in peripheral blood. Antibodies against HLA-DR and CD14 were used to identify 
CD16+CD14- and CD14+CD16- monocytes, since the CD16 molecule on monocytes is 
down-regulated upon stimulation (Supplementary Figure S1). As shown in Figure 4 and 5, 
CD16+CD14- monocytes from healthy individuals cultured without specific stimuli have lower 
percentages of spontaneous MCP-1- and MIP-1β-producing cells as compared to 
CD14+CD16- monocytes from healthy individuals. Without stimulation, both monocyte 
subpopulations from healthy individuals exhibit a low percentage of TNF-producing cells 
(Figure 4 and 5).  Comparison of CD16+CD14- monocytes from chronic HCV patients and 
healthy individuals showed similar percentages of cells producing TNF, MCP-1, or MIP-1β in 
the absence of stimuli (Figure 5).   

 
Figure 4. The intracellular cytokine profiles by PBMC from healthy individuals.  PBMC were 
stimulated with medium, LPS or R848 for 5h, and intracellular cytokine production was determined 
by flow cytometry. Representative dot plots show CD16+CD14- and CD14+CD16- monocytes 
(identified on the basis of HLA-DR and CD14 expression) producing TNF and MIP-1β (left), or TNF and MCP-1 
(right). 

 

As expected, stimulation with LPS or R848 led to augmented percentages of TNF-, 
MCP-1- or MIP-1β-producing CD16+CD14- and CD14+CD16- monocytes obtained from 
patients and healthy individuals (Figure 4 and 5). Upon LPS or R848 stimulation of PBMC 
from healthy individuals we observed that CD16+CD14- and CD14+CD16- monocytes did 
not differ in the frequency of cells producing TNF. However, the percentages of TLR-induced 
MCP-1- and MIP-1β-producing monocytes are significantly lower in CD16+CD14- monocytes 
as compared to CD14+CD16- populations (Figure 5), which is in line with previous reports 
[22]. 

Compared to healthy individuals, TLR-challenged CD16+CD14- monocytes from 
chronic HCV patients show a similar frequency of cells producing TNF or MCP-1 (Figure 5). 
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However, the number of LPS-induced MIP-1β-producing CD16+CD14- monocytes is higher 
in PBMC from chronic HCV patients; with an average of 70% in healthy CD16+CD14- 
monocytes and 84% in CD16+CD14- monocytes from chronic HCV patients (Figure 5). 
Importantly, no differences were observed in the level of LPS-induced MIP-1β production by 
sorted CD16+CD14- monocytes from chronic HCV patients and healthy individuals (data not 
shown), suggesting that on a per-cell basis the MIP-1β levels are reduced, whereas their 
frequency is increased. Upon LPS stimulation, increased percentages of MIP-1β-producing 
cells are only observed for CD16+CD14- monocytes from chronic HCV patients, but not for 
CD14+CD16- monocytes (Figure 5). Also, there is no difference in the percentages of MIP-
1β-producing CD14+CD16- monocytes in response to R848 between chronic HCV patients 
and healthy individuals (Figure 5), indicating that the modulation of MIP-1β by CD16+CD14- 
monocytes from chronic HCV patients is TLR4 pathway dependent. The elevated MIP-1β 
producing CD16+CD14- monocytes from chronic HCV patients in response to LPS were not 
associated with age, viral load, ALT or fibrosis level of chronic HCV patients studied (data not 
shown). Interestingly, TLR4-induced TNF-, MCP-1- and IL-8-producing CD16+CD14- 
monocytes were not altered in chronic HCV patients when compared with healthy individuals 
(Figure 5 and data not shown). Together, our findings show CD16+CD14- monocytes from 
chronic HCV patients are affected in their ability to induce MIP-1β upon TLR4 ligation, 
whereas the production of MCP-1 and TNF is not affected. The mild but specific changes in 
the functionality of CD16+CD14- monocytes from chronic HCV patients may play a role in 
HCV disease or pathogenesis.  

 
Figure 5. The frequency of MIP-1β-producing CD16+CD14- monocytes upon TLR4 stimulation is 
enhanced in chronic HCV patients as compared to healthy individuals. The frequencies of the 
monocyte subpopulations producing TNF, MCP-1 or MIP-1β are presented upon stimulation with 
LPS or R848. The data show the results from 17 chronic HCV patients and 14 healthy individuals. 
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Discussion 

In this study, we evaluated the responses of CD16+CD14- monocytes to several TLR 
agonists as well as the function of CD16+CD14- monocytes from chronic HCV patients. We 
report here that CD16+CD14- monocytes isolated from healthy individuals are more 
responsive to TLR8 ligation by their production of TNF as compared to CD14+CD16- 
monocytes. In contrast, CD16+CD14- monocytes are less responsive to TLR4 ligation than 
CD14+CD16- monocytes. Comparison of chronic HCV patients and healthy individuals 
showed that the absolute numbers of monocytes and the ratio of CD16+CD14- cells to other 
monocyte populations in peripheral blood were similar. A detailed analysis of the functionality 
of CD16+CD14- monocytes in blood from chronic HCV patients showed no overt modulation 
as compared to healthy individuals, except for an augmented induction of MIP-1β producing 
CD16+CD14- monocytes upon TLR4 ligation in monocytes from chronic HCV patients as 
compared to healthy individuals.  
In our patient cohort, we observed no differences between the absolute numbers of 
monocytes in peripheral blood from chronic HCV patients and healthy individuals.  Also, the 
relative contribution of CD16+CD14- and CD14+CD16- monocytes in the circulation was 
similar in chronic HCV patients as compared with healthy individuals in our cohort. Our 
observations are in line with a recent study in chronic HCV patients in which the ratio of 
CD16+CD14- and CD14+CD16- monocytes was comparable with healthy subjects [23]. 
Although the composition of monocyte subpopulations does not change in as a consequence 
of infection with HCV, CD16+CD14- monocytes have been reported to be recruited to 
diseased human liver mediated via vascular adhesion protein-1 and CX3CL1 [20]. The 
preferential recruitment of the CD16+ monocyte population may induce differentiation into 
dendritic cells or Kupffer cells in the liver, thereby leading to augmented intrahepatic 
inflammation. However, in this study no livers from chronic HCV patients were examined for 
infiltration of monocytes, and we now show that the frequency of CD16+CD14- monocytes in 
blood of chronic HCV patients is not affected.  
Although the frequency of CD16+CD14- monocytes is not affected as a consequence of 
chronic HCV infection, the function of this populated may be altered. In this study, we first 
examine the function of CD16+CD14- monocytes isolated from healthy subjects. We report 
here that CD16+CD14- monocytes stimulated with the TLR7/8 agonist R848 produce 
significantly higher levels of TNF as compared to CD14+CD16- monocytes from healthy 
individuals. It has been reported that TLR8 mRNA expression in CD16+CD14- and 
CD14+CD16- monocytes is similar [11, 24], which makes it plausible that the number of 
R848-responsive monocytes is comparable between CD16+CD14- and CD14+CD16- 
monocytes, This is confirmed by our findings that the percentages of TNF-producing 
CD16+CD14- and CD14+CD16- monocytes are similar (Figure 5B). The fact that 
CD16+CD14- monocytes produced higher levels of TNF than CD14+CD16- monocytes on a 
per-cell basis suggests that the signaling pathways downstream of TLR8 may differ in these 
two monocyte subpopulations. Indeed, in line with our findings, it was recently found that 
signaling cascades differ between both monocyte populations [11].  
 Using intracellular cytokine staining, we observed that the frequency of MIP-1β 
producing CD16+CD14- monocytes was significantly increased upon TLR4 ligation in chronic 
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HCV patients. MIP-1β is an important chemokine in the pathogenesis of some inflammatory 
conditions and diseases [25]. For example, MIP-1β is one of the predictors for the severity of 
dengue patients [26] and induces inflammatory responses against pathogens such as 
influenza or parasites [27]. However, we find that the increased percentage of MIP-1β 
producing CD16+CD14- monocytes is not associated with age, viral load, and ALT and 
fibrosis level (data not shown). The immunomodulatory effects of MIP-1β are currently not 
completely known. Interestingly, it has been suggested that CD14+CD16- monocytes from 
HCV patients spontaneously secrete higher levels of MIP-1β, and that MIP-1β modulates the 
differentiation of monocyte-derived dendritic cells, resulting in reduced IFN-gamma 
production by allogeneic T cells [28]. Moreover, A number of studies have demonstrated 

higher MIP-1β levels in serum of chronic HCV patients as compared to healthy individuals, 

and importantly, MIP-1β levels are reduced upon therapy-induced viral load reduction in 

chronic HCV patients. Additionally, liver tissue obtained from chronic HCV patients also 

exhibit enhanced MIP-1β mRNA expression as compared to control liver tissue (Larrubia et 

al., 2008). 
In summary, our findings show that CD16+CD14- monocytes are highly responsive to TLR8 
ligation. We demonstrate that the frequency and function of CD16+CD14- monocytes are 
only minimally altered as a consequence of the persistent state of HCV infections, and our 
findings therefore do not suggest a role for CD16+CD14- monocytes in HCV pathogenesis.  
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Supplementary Figures 

 

 

 

Supplementary Figure S1. CD16+CD14- and CD14+CD16- monocytes can be identified following in vitro 
stimulation by distinctive HLA-DR and CD14 expression. (A) The surface expression of CD16 and CD14 
molecules was compared between freshly isolated monocytes (total monocytes, CD16+CD14- and CD14+CD16- 
monocytes) before and after culture with LPS for 5h. (B) Monocytes were identified on the basis of their FSC/SSC 
and the expression of HLA-DR, while antibodies against CD3, CD56 and CD19 were used to exclude 
contaminating cells.  HLA-DR+CD14- monocytes correspond to CD16+CD14- monocytes, while HLA-DR+CD16- 
monocytes correspond to CD14+CD16- monocytes. (C) In vitro stimulation with LPS for 5h retained HLA-DR 
expression on monocytes, allowing identification of distinctive CD16+CD14- and CD14+CD16- monocytes using 
antibodies against HLA-DR and CD14 after in vitro stimulation. 
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SUMMARY 

Type I interferons (IFN) form the backbone of current therapy for chronic HCV patients, and 
to a lesser extent for chronic HBV infection. However, only about 30-50% of chronic HCV 
and HBV patients respond to IFN-based therapy. It has been suggested that the activity of 
type I IFN on antigen-presenting cells (APC) is weakened via modulation of the 
immunosuppressive cytokine interleukin-10 (IL-10). However, the effect of type I IFN on IL-10 
production by immune cells is still under debate, and how IL-10 signaling is affected by type I 
IFN is not clear. Here we report that upon priming of human monocytes with type I IFN, the 
production of IL-10 is inhibited, whereas, unexpectedly, IL-10 still strongly controls TLR-
induced IL-12p70 secretion. Furthermore, type I IFN pretreatment increases the sensitivity of 
monocytes to exogenous IL-10. These observations are explained by our findings that 
priming of monocytes with type I IFN augments membrane IL-10 receptor 1 expression, 
which may –at least partly- be responsible for enhanced IL-10-induced p-STAT3. Moreover, 
type I IFN as well as IL29, a member of the type III IFN family, comparably potentiate IL-10 
signaling in macrophages, indicating a more general effect of IFN on modulating the activity 
of IL-10 in APC. In summary, we demonstrated that one of the consequences of priming of 
human APC with type I and III IFN is to promote the cells’ sensitivity to IL-10. These findings 
are highly relevant to further improve IFN-based therapy for patients with multiple sclerosis or 
viral hepatitis. 
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INTRODUCTION 
The human immune system is highly efficient to fight viral infections. However, a number of 
viruses, including human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis 
C virus (HCV), have evolved mechanisms to escape eradication by the immune system. In 
these chronic viral infections, the functionality of both innate and adaptive immunity is 
compromised, including the antiviral interferon (IFN) pathways as well as the activity of 
dendritic cells (DC), NK cells and virus-specific T cells (1-3). Furthermore, during persistent 
viral infections elevated levels in serum of the immunosuppressive cytokine IL-10 and 
enhanced production of IL-10 by immune cells have been reported (4-7). The inhibitory effect 
of IL-10 on the development of an effective antiviral immune response and the maintenance 
of persistence has been demonstrated in mice where chronic LCMV infection was resolved 
by blockade of the IL-10 receptor (IL-10R) (7-8). 

IL-10 inhibits pro-inflammatory responses by strongly suppressing a broad spectrum of 
activities of the innate immune system, which indirectly affects adaptive immunity. As a 
consequence of the IL-10 mediated suppression, IL-10 may prevent immunopathology, 
whereas it creates favorable conditions for the persistence of pathogens.  IL-10 can be 
produced by a wide variety of cells (9-12). and the receptor for IL-10 is a heterodimeric 
complex composed of IL-10R1 and IL-10R2. (9-10). The IL-10R1 chain is unique for IL-10, 
and has a more restricted expression than IL-10R2, which is also part of the receptor for IL-
22 and IL-26 (9, 13). Upon ligation of IL-10 to the IL-10R, Jak1 and Tyk2 induce tyrosine 
phosphorylation and activation of STAT3, STAT1 and STAT5 (14-16). While STAT1 and 
STAT5 do not appear to interact directly with IL-10/IL-10R complex (9), STAT3 is recruited 
directly to the IL-10/IL-10R complex and is required for IL-10 signaling (17-19). 

Type I IFN play a crucial role in the defense against viral infections via the induction of 
the expression of IFN-stimulated genes (ISG), such as 2,5-OAS and MxA (20). In addition, 
type I IFN are also known to regulate the production of IL-12: IFNα has an inhibitory effect on 
IL-12p40 production by both mice and human monocytes, DC and macrophages (21-22). In 
contrast to the effect on IL-12p40, the production of IL-12p70 is enhanced by exposure to 
IFNα in monocytes and DC (23). Less is known on the interaction of type I IFN and IL-10, 
although this is highly relevant with respect to the outcome of infection with potentially 
persistent viruses as well as to further improve the efficacy of treatment with type I IFN in for 
instance patients chronically infected with HCV. It has been reported that IFNα or IFNβ 
present during the differentiation or activation of human monocyte-derived DC and 
macrophages enhance the production of IL-10 (21-25). However, the effects of type I IFN on 
IL-10 production by human monocytes are still under debate. While some studies showed 
that either pretreatment or direct stimulation of IFNα enhanced IL-10 production by 
monocytes in response to TLR stimulation (26-27), other groups showed the contrary (28-
29). 

In this study, we investigate in detail the effect of type I IFN on TLR-induced IL-10 
production by monocytes as well as the effect of type I IFN on IL-10 signaling events. We 
demonstrate that IFNα pretreatment inhibits TLR-induced IL-10 production by human 
monocytes. Despite a significant decrease in production, IL-10 is still able to potently control 
TLR-induced IL-12p70 secretion by IFNα-primed monocytes. Furthermore, we observed that 
type I IFN exposure resulted in up-regulation of IL-10R1 expression on the surface of 
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monocytes, and consequently an increased IL-10-induced p-STAT3. Interestingly, 
potentiation of IL-10 signaling in IFNα-pretreated monocytes was also observed following 
IFNβ priming. Type I IFN and type III IFN (IL-29) similarly enhanced IL-10-induced p-STAT3 
in human monocytes and macrophages, suggesting a general function of type I and III IFN 
on IL-10 signaling in APC. 
 

MATERIALS AND METHODS 
Cell culture and purification 
PBMC were isolated from peripheral blood of buffycoats (Sanquin) by gradient-density 
centrifugation. Monocytes were purified from PBMC with magnetic CD14-microbeads 
(Miltenyi Biotec) following the manufacturer’s instructions. The purity of the monocytes used 
in the study was always above 97%. Macrophages were generated from purified monocytes 
with 10 ng/ml M-CSF (R&D) in 6-well plates (Costar) at a density of 1.5x106 cells/well in 2 ml 
RPMI1640 supplemented with 8% FCS. On day 2 and day 5, half of the medium was 
refreshed and on day 6 monocyte-derived macrophages were harvested, and used for 
various purposes.  
 
PBMC stimulation and intracellular cytokine staining 
PBMC were cultured with serum-free X-VIVO15 medium (BioWhittaker) in 24-well plates 
(Greiner Bio-one BV), and stimulated overnight with LPS (100 ng/ml, InvivoGen) or R848 (1 

µg/ml, Alexis), with brefeldin A (10 µg/ml; Sigma) added 2h after the addition of TLR 

agonists. In some experiments, PBMC were pretreated with IFNα (10 ng/ml, Intron; Schering 
Plough) for 5h and then further with medium, LPS or R848 overnight, and brefeldin A added 
together with TLR agonists. Samples were then fixed, permeabilized and stained with IL-10-
APC (JES3-9D7, BD Pharmingen) and TNF-PE-Cy7 (MAb11, eBioscience). Cytokine 
producing cells were detected by flow cytometry (Canto-II, BD). 
 
Stimulation of monocytes and monocyte-derived macrophages 
Monocytes were pretreated with IFNα (10 ng/ml) for 5h and then further cultured with 
medium, LPS, R848 or LPS plus R848 for another 24h at a density of 0.2x106 cells/well in a 
volume of 200 µl. Monocyte-derived macrophages were pretreated with IFNα (10 ng/ml), 
IFNβ (10 ng/ml, PeproTech), or IL-29 (100 ng/ml, PeproTech) for 5h and then further cultured 
with medium, LPS, R848 or LPS plus R848 for another 24h at a density of 0.2x106 cells/well 
in 200 µl medium. In order to investigate the role of IL-10 in IFN-pretreated cells, anti-IL-10R 
antibody (αIL-10R, 10 µg/ml, 3F9, Biolegend) was added to some cultures. In addition, IFNα-
pretreated monocytes were exposed to exogenous IL-10 (R&D) at different concentrations in 
some experiments. Cytokine levels were  determined by ELISA.   
 
Flow cytometric analysis of the expression of IL-10R1 and IL-10R2 
Monocytes were pretreated with IFNα (10 ng/ml) for 5h. Monocytes were then stained with 
antibodies against IL-10R1-PE (3F9, Biolegend) and IL-10R2-Biotin (R&D). Streptavidin-
PerCP (BD Pharmingen) was used to visualize the IL-10R2. The specificity of the stainings 
was controlled with appropriate isotype antibodies. 
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Flow cytometric analysis of p-STAT3 staining  
Monocytes were pretreated with IFNα (10 ng/ml) for 5h and monocyte-derived macrophages 
were pretreated with IFNα (10 ng/ml), IFNβ (10 ng/ml), or IL-29 (100 ng/ml) for 5h, with the 
last hour on ice. Monocytes and monocyte-derived macrophages were then incubated with 
IL-6 (10 ng/ml, R&D), IL-27 (10 ng/ml, R&D) or IL-10 (R&D) at the indicated concentrations 
for the indicated periods. Stimulated cells were immediately fixed with BD Phosflow Lyse/Fix 
(BD Bioscience) and then permeabilized with BD Phosflow Perm Buffy III (BD Bioscience). 
Cells were then incubated with anti-p-STAT3-PE (pY705, 4/P-STAT3, BD Bioscience) and 
the phosphorylation state of STAT3 was measured by flow cytometry (Canto-II, BD). 
 
Immunoassay for detection of cytokines in supernatant 
The concentrations of cytokines in supernatant were determined using sandwich ELISA 
specific for IL-12p40 (C8.6 and C8.3 antibody pairs, Biolegend), and Ready-Set-Go kits for 
IL-12p70, IL-23, IL-10 and TNF (all from eBioscience). The detection limits for IL-10, IL-
12p70, IL-23 and TNF were 15 pg/ml and for IL-12p40 30 pg/ml. 
 
Statistics 
Data was analyzed with Prism 5.0 (Graphpad software) using the Mann-Whitney t-test to 
compare variables between two paired groups. In all analyses, a two-tailed p-value of less 
than 0.05 was considered statistically significant. 
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Results 
IFNα priming decreases the percentage of IL-10-producing monocytes in response to 

LPS or R848 stimulation 

TLR stimulation of monocytes leads to relatively high production of IL-10 and TNF as 

compared to other blood leukocytes (data not shown). To examine the immunomodulatory 

effects of IFNα on cytokine production by monocytes, PBMC were pretreated with IFNα and 

further stimulated with TLR agonists. As shown in Figure 1A, IFNα pretreatment decreased 

the percentage of IL-10-producing monocytes in response to LPS stimulation from 11.9% to 

4.4%, and from 13.2% to 3.9% in response to TLR8 ligation using R848 (Figure 1A). The 

inhibitory effect of IFNα on TLR-induced IL-10-producing monocytes was observed in the 

majority of individuals, whereas the percentages of TNF-producing monocytes upon TLR 

ligation were not or only mildly affected by IFNα (Figure 1B). The observed effect of IFNα on 

TNF production indicates that the inhibitory effect on IL-10 is not the consequence of 

reduced monocyte viability.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. IFNα priming 
decreases the percentage 
of IL-10-producing 
monocytes in response to 
LPS or R848. PBMC were 
pretreated with IFNα for 5h 
and further stimulated 
overnight with medium, 
LPS (100 ng/ml) or R848 
(1 µg/ml), and brefeldin A 
was added together with 
TLR agonists. 
Representative plots (A) 
and the results of 11 
independent experiments 
are presented (B) showing 
IL-10- and TNF-producing 
cells gated on total 
monocytes. 
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IFNα pretreatment inhibits IL-10, whereas it enhances IL-12p70 production by purified 

monocytes upon R848 ligation 

To further examine whether IFNα pretreatment has a direct inhibitory effect on IL-10 

production by monocytes in response to TLR triggering, we examined the effect of IFNα on 

highly purified human monocytes. As shown in Figure 2A and 2B, IFNα pretreatment 

significantly inhibited LPS- and R848-induced IL-10 production by purified monocytes in the 

majority of healthy individuals, whereas LPS- and R848-induced TNF production by 

monocytes was not affected by IFNα (Figure 2B). IFNα only has a mild or no effect on TLR4 

or TLR8 mRNA expression in monocytes (Figure S1A), indicating that the inhibitory effect of 

IFNα on TLR-induced IL-10 production by monocytes is not likely due to modulation of TLR 

mRNA expression. Importantly, IFNβ, which uses the same receptor as IFNα, also inhibits 

TLR-induced IL-10 production by human monocytes (Figure S1B).  

 
Figure 2. IFNα pretreatment inhibits IL-10 whereas it enhances IL-12p70 production by monocytes 

upon R848 ligation. Human purified monocytes were pretreated with IFNα for 5h and then further 

stimulated for 24h with medium, LPS (100 ng/ml) or R848 (1 µg/ml). IL-10 (A, B), TNF (B), IL-

12p40, IL-23 and IL-12p70 (C) production were measured by ELISA. The values depicted in (B, C) 

show the mean +/- SEM of 27 independent experiments. LPS-induced IL-12p70 production by 

monocytes was detected in 3 out of 27 independent experiments and the levels of IL-12p70 was 

not higher than 50 pg/ml. 
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Consistent with previous reports (21, 27, 29), we found that IFNα inhibits IL-12p40 

production by monocytes in response to TLR stimulation, which was accompanied by 

reduced IL-23 levels (Figure 2C). However in contrast to IL-23, IFNα increased IL-12p70 

production by monocytes upon R848 stimulation (Figure 2C). In the majority of the 

individuals, no IL-12p70 production by LPS-challenged monocytes was observed. Together 

these findings indicate that IFNα inhibits the production of IL-10, IL-12p40 and IL-23 by TLR-

stimulated monocytes, while IFNα pretreatment promotes the production of IL-12p70. 

 

Despite reduced IL-10 levels, R848-induced IL-12p70 secretion by IFNα-pretreated 

monocytes is still controlled by IL-10  

To examine whether enhanced TLR-induced IL-12p70 production by IFNα-pretreated 

monocytes can be explained by the effect of IFNα on IL-10 production, we performed 

experiments in which IL-10 signaling was blocked using antibodies to the IL-10R. Similar as 

presented in Figure 2C, we observed that stimulation of monocytes with LPS induced no or 

low levels of IL-12p70, which was only weakly enhanced by blocking the IL-10R or by 

pretreatment with IFNα (Figure 3A). In contrast, although R848 induced low levels of IL-

12p70 by monocytes, blocking the IL-10R resulted in increased IL-12p70 production upon 

R848 stimulation (Figure 3A; from 51 pg/ml to 370 pg/ml). As shown before, pretreatment of 

monocytes with IFNα resulted in enhanced R848-induced IL-12p70 production (Figure 2C 

and 3A). However, in these cultures, additional blocking of the IL-10R during R848 

stimulation potently enhanced the production of IL-12p70 (Figure 3A; from 385 pg/ml to 1365 

pg/ml). Regulation by IL-10 of R848-induced IL-12p70 production by IFNα-pretreated 

monocytes was observed in the majority of individuals examined (Figure 3B). In contrast to 

IL-12p70 production, R848-induced IL-12p40 and IL-23 production by both untreated 

monocytes and IFNα-pretreated monocytes were only minimally affected by IL-10 (Figure 

3A). Moreover, although IL-10 suppressed LPS-induced IL-12p40 and IL-23 production by 

untreated monocytes, the inhibitory effect of IFNα on LPS-induced IL-12p40, IL-23 and TNF 

levels were independent on IL-10 signaling (Figure 3A and data not shown).  

Our findings indicate that, despite IFNα-mediated inhibition of IL-10 levels, IL-12p70 

production by IFNα pretreated monocytes is IL-10-dependent, which suggests that IFNα-

pretreated monocytes have enhanced responsiveness to IL-10. To further investigate this, 

we examined the sensitivity of IFNα-pretreated monocytes to exogenous IL-10. As shown in 

Figure 3C and 3D, upon exposure to IL-10, the production of IL-12p70 by monocytes in 

response to R848, or LPS plus R848 was suppressed by exogenous IL-10 at concentrations 

higher than 0.1 ng/ml. Interestingly, TLR-induced IL-12p70 levels by IFNα-pretreated 

monocytes were suppressed by exogenous IL-10 at concentrations lower than 0.1 ng/ml 

(Figure 3C and 3D). In summary, these data suggest that IFNα priming of monocytes alters 
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the responsiveness of monocytes to IL-10, which controls their TLR8-induced IL-12p70 

production. 

 
Figure 3. Despite a significant decrease in production, IL-10 strongly controls R848-induced IL-
12p70 secretion by IFNα-pretreated monocytes. (A, B) Purified monocytes were pretreated with 
IFNα for 5h and then further stimulated for 24h with medium, LPS (100 ng/ml) or R848 (1 µg/ml) in 
the presence or absence of αIL-10R. IL-12p70, IL-12p40 and IL-23 production were measured by 
ELISA. The values of IL-23 and IL-12p40 depicted in (A) show representative data from (B) 4 
independent experiments. (C, D) Monocytes were pretreated with IFNα for 5h and then further 
stimulated for 24h with medium, LPS (100 ng/ml), R848 (1 µg/ml) or the combination of LPS and 
R848 in the presence of indicated concentrations of IL-10. 
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IFNα up-regulates IL-10R1 expression on the surface of human monocytes 

Since IFNα-primed monocytes show enhanced responsiveness to exogenous IL-10 as 

indicated by R848-induced IL-12p70 production, we examined the effect of IFNα on IL-10R 

expression on the surface of monocytes. As shown in Figure 4, both IL-10R1 and IL-10R2 

are expressed on the surface of monocytes. Upon exposure of monocytes to IFNα, we 

observed that the IL-10R1 was up-regulated on the surface of monocytes in 10 out of 14 

independent experiments, whereas IL-10R2 was not affected.  

 
Figure 4. IFNα up-regulates IL-10R1 expression on the surface of monocytes. Monocytes were 
pretreated with IFNα for 5h and IL-10R1 and IL-10R2 expression on the surface of monocytes were 
assessed by flow cytometry. The histograms depict representative data from 14 independent 
experiments. 

 

IFNα treatment enhances IL-10-induced STAT3 phosphorylation in human monocytes 

To further examine whether IL-10 signaling in monocytes is enhanced by pretreatment with 

IFNα, we evaluated the effect of IFNα on the levels of phosphorylated STAT3 in monocytes 

upon IL-10 challenge. As expected, IL-10 induced phosphorylation of STAT3 in monocytes: 

the percentage of p-STAT3 positive monocytes increased from 2.1% to 23.1% (Figure 5A). 

Interestingly, IL-10-induced p-STAT3 in monocytes was further enhanced by pretreatment of 

IFNα, which was observed in the majority of individuals (Figure 5B). The levels of p-STAT3 

by IFNα-treated monocytes increased in a dose-dependent manner with increasing 

concentrations of IL-10 (Figure S2A and S2B). Next, we investigated whether the augmented 

IL-10/p-STAT3 signaling was sustained in IFNα-primed monocytes as compared to untreated 

monocytes. As shown in Figure S2C and S2D, p-STAT3 induced by IL-10 in unprimed 

monocytes peaked at 30min and decreased to base-line levels at 120min. Although higher p-

STAT3 levels were observed in IFNα-primed monocytes, the kinetics of STAT3 

phosphorylation was similar between IFNα-primed and untreated monocytes, indicating that 

IL-10 signaling is not sustained in monocytes upon IFNα priming. To determine whether the 

effects of IFNα on the JAK/STAT3 signaling are IL-10 specific or more general, we examined 

the response to IL-6 and IL-27, which also signal via JAK/STAT3. We observed that in 

contrast to the effect of IFNα on IL-10 signaling, pretreatment of IFNα resulted in inhibition of 

IL-6- or IL-27-induced p-STAT3 in monocytes (Figure 5C and 5D). Therefore, IFNα 

pretreatment enhances IL-10-derived STAT3 phosphorylation in human monocytes, which 

provides an explanation of the above findings that IFNα priming renders monocytes more 

sensitive to the suppressive effect of IL-10 on TLR-induced IL-12p70 production. 
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Figure 5. IFNα treatment enhances IL-10-induced STAT3 phosphorylation in human monocytes. 
Monocytes were pretreated with IFNα for 5h, with the last 1h on ice. Monocytes were then 
incubated with IL-10 (100 ng/ml) for 30min (A, B), or with IL-6 (10 ng/ml) or IL-27 (10 ng/ml) for 
30min (C, D). STAT3 phosphorylation (p-STAT3) was evaluated by flow cytometry. 
 

IFNβ and IL-29, similar as IFNα, increase IL-10-induced p-STAT3 in human monocytes 

and macrophages 

To examine whether the augmented IL-10-induced p-STAT3 in monocytes is unique for 

IFNα, we investigated whether pretreatment of monocytes with IFNβ resulted in comparable 

effects. Similar to IFNα, IFNβ up-regulated surface expression of IL-10R1 on monocytes 

(Figure S3A). In addition, as shown in Figure 6A and Figure S4A, higher IL-10-induced 

percentages of p-STAT3 positive monocytes were observed following priming with IFNβ, as 

compared with unprimed monocytes. These findings indicate that IFNβ and IFNα regulate IL-

10/STAT3 signaling events in a similar manner in monocytes. 

Besides monocytes, also macrophages are major IL-10 producers, and are also 

responsive to IL-10 (9, 30) as well as to IFNα and IFNβ. Moreover, we recently showed that a 

member of the type III IFN family, IL-29, modulates cytokine production of human 

macrophages (21). Therefore, we decided to examine the effect of type I and III IFN on IL-

10-induced p-STAT3 in human monocyte-derived macrophages. As shown in Figure 6B and 
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Figure S4B, similar to monocytes, high levels of p-STAT3 were induced in macrophages by 

IL-10. Importantly, in the majority of individuals, priming of macrophages with IFNα, IFNβ and 

IL-29 resulted in enhanced IL-10-induced p-STAT3. In line with the findings presented for 

monocytes, also priming of macrophages with IFNα, IFNβ and IL-29 resulted in up-regulation 

of the surface expression of IL-10R1 on human monocyte-derived macrophages (Figure 

S3B), which indicates that type I and III IFN are able to enhance IL-10 signaling events in 

macrophages. To further examine IL-12p70 production by TLR-challenged macrophages, we 

blocked the IL-10R using antibodies. Relatively high levels of IL-12p70 were only found in 

LPS plus R848 stimulated macrophages, but not in LPS- or R848-stimulated macrophages, 

and the production of IL-12p70 was only moderately enhanced by IFN priming or by blocking 

the IL-10R (Figure 6C). However, the levels of IL-12p70 were substantially increased only 

when macrophages were primed with type I IFN and stimulated in the absence of IL-10 

signaling, indicating that, upon IFNα or IFNβ pretreatment, IL-10 strongly controls TLR-

induced IL-12p70 production by human macrophages. However, interestingly, in the absence 

of IL-10 signaling, IL-29 priming did not enhance IL-12p70 production by macrophages in 

response to LPS plus R848 when compared to pretreatment of IFNα or IFNβ (Figure 6C). 

These data show that upon pretreatment with type I and III IFN, IL-10-induced STAT3 

phosphorylation is enhanced in human monocytes and macrophages, demonstrating that IL-

10 signaling in these cells is potentiated by IFN priming, most likely as a consequence of 

enhanced IL-10R expression. 

 
 
Figure 6. Similar to IFNα, IFNβ and IL-29 pretreatment enhance IL-10-induced STAT3 
phosphorylation in monocytes and macrophages. (A) Human monocytes were pretreated with IFNβ 
for 5h with the last 1h on ice. Monocytes were then incubated with IL-10 (100 ng/ml) for 30min. p-
STAT3 levels were examined by flow cytometry. (B) Monocyte-derived macrophages were 
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pretreated with IFNα, IFNβ and IL-29 for 5h, with the last 1h on ice. Macrophages were then 
stimulated by IL-10 (100 ng/ml) for 30min. (C) Monocyte-derived macrophages were pretreated 
with IFNα, IFNβ and IL-29 for 5h and then further stimulated for 24h with medium, LPS (100 ng/ml), 
R848 (1 µg/ml) or LPS plus R848 in the presence or absence of αIL-10R. IL-12p70 levels were 
measured by ELISA. The values depicted in (C) show the mean +/- SEM from 3 independent 
experiments. 
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Discussion 

In this paper, we examine the effect of type I IFN on TLR-induced IL-10 production by human 

monocytes as well as the effect of type I IFN on IL-10-induced signal events. We find that 

type I IFN inhibit IL-10 production by human monocytes in response to TLR ligation. 

However, despite a significant decrease in production, IL-10 is still able to potently control 

TLR-induced IL-12p70 secretion by type I IFN-primed monocytes. This is explained by our 

finding that type I IFN priming strengthens IL-10 signaling in monocytes as demonstrated by 

up-regulation of IL-10R1 on type I IFN-primed monocytes, which results in enhanced IL-10-

induced phosphorylation of STAT3. Interestingly, type I IFN and type III IFN (IL-29) similarly 

enhance IL-10-induced p-STAT3 in human monocytes and macrophages, whereas IL-6- and 

IL-27-induced p-STAT3 in monocytes are decreased upon treatment with type I IFN. 

Type I IFN are known to prime immune response by modulating the function of immune 

cells. In this study, we show that type I IFN inhibit TLR-induced IL-10, IL-12p40, IL-23 and 

MIP-1β production by human monocytes (Figure 2 and data not shown), which is in line with 

previous reports showing that type I IFN inhibit TLR-induced IL-10 (28-29), IL-12p40 (21, 27, 

29), and IL-8 (31-32) production by APC. Currently, the mechanism by which TLR-induced 

cytokines are inhibited by type I IFN is not understood. The inhibitory effect of IFNα on TLR-

induced cytokine production by monocytes is unlikely due to the regulation of TLR mRNA 

expression, since we only observed a mild effect of IFNα on TLR mRNA expression in 

monocytes. Furthermore, TNF production by IFNα-primed monocytes was not affected and 

IL-12p70 production was enhanced, indicating that the inhibitory effect of IFNα is not the 

consequence of reduced cell viability. Interestingly, interferon-stimulated responsive 

elements (ISREs) are reported to be present in the promotors of the IL-8, IL-12p40 and IL-

23p19 genes (27, 31-33) and ISRE in the promotor region of the IL-8 gene are required for 

type I IFN-mediated inhibition of IL-8 production (31-32). Therefore, it is possible that type I 

IFN inhibit TLR-induced IL-10 production by monocytes via similar mechanisms. With two 

different methods, we observed an inhibitory effect of IFNα on TLR-induced IL-10 production. 

Previously, Byrnes et al. reported that IFNα priming up-regulated IL-10 mRNA expression in 

human monocytes in response to Staphylococcus aureus Cowan strain (SAC) combined with 

IFNγ (27). However, in that study, the multiple TLR signaling pathways induced by SAC 

stimulation as well as the combined effect of IFNα and IFNγ on IL-10 production by 

monocytes make it difficult to make a direct comparison with the current study.  

Despite a significant inhibition of IL-10, TLR-induced IL-12p70 production is potently 

controlled by IL-10 in IFNα-pretreated monocytes. Surprisingly, IFNα priming renders 

monocytes more sensitive to IL-10 as evidenced by the inhibition of TLR-induced IL-12p70 

secretion. Indeed, we find that both IFNα and IFNβ up-regulate membrane IL-10R1 
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expression on monocytes. It is reported that up-regulation of IL-10R1 is crucial for human 

neutrophils to become fully responsive to IL-10 (34). Also, it has been suggested that any 

stimulus activating IL-10R1 expression renders the targeted cells responsive to IL-10 (9). 

These reports suggest that the up-regulation of the membrane expression of IL-10R1 is an 

important mechanism to modulate IL-10 signaling pathway. In line with IL-10R1 expression, 

we further observe that IL-10 induces a higher level of p-STAT3 in type I IFN-primed 

monocytes from the majority of individuals examined, while the kinetics of IL-10-induced p-

STAT3 is not affected. The enhanced IL-10-induced p-STAT3 by type I IFN could be 

explained by the up-regulation of IL-10R1 on the membrane of monocytes, but it is also 

possible that type I IFN directly affects downstream IL-10 signaling, since we and others 

found an induction of p-STAT1 by IL-10 in IFNα-primed monocytes (35). Previously, it was 

reported that IFNα priming has no effect on IL-10 induced p-STAT3 but results in STAT1 

phosphorylation by IL-10 in monocytes (35). However, in that study, human monocytes were 

primed with IFNα in the presence of M-CSF for 2 days allowing the cells to differentiate, while 

in our study, the cells were primed with type I IFN for 5h in the absence of M-CSF. It is 

important to mention that it has been suggested that M-CSF is able to enhance LPS-induced 

p-STAT1 in murine bone marrow-derived macrophages and also affects IFN signaling in 

these cells (36). 

The effect of type I IFN on IL-10 signaling is a general effect on APC, since, similar to 

monocytes, type I IFN pretreatment also strengthens IL-10 signaling in human macrophages 

via up-regulating membrane IL-10R1 expression, and enhancing IL-10-induced p-STAT3 in 

macrophages, which results in a potent inhibition of TLR-induced IL-12p70 production by IL-

10 in those macrophages. Moreover, pretreatment of IL-29, a member of type III IFN, also 

results in enhanced IL-10 signaling in macrophages, indicating that the effects of type I IFN 

on IL-10 signaling seem to be a common activity of type I and III IFN. However, type I IFN 

appear to have different effects on TLR-induced cytokine profiles by APC. We report here 

that type I IFN inhibit TLR-induced IL-10 production by monocytes, whereas its production is 

increased by monocyte-derived DC and macrophages (21-25), as well as by mouse bone 

marrow-derived macrophages (37). In line with this, we also observed that IFNα has a 

different effect in human monocytes, monocyte-derived DC and macrophages when TLR-

induced TNF, IL-12p40 and IL-23 production are evaluated (data not shown). Furthermore, 

TLR mRNA expression in monocytes and monocyte-derived macrophages are also 

differentially regulated by type I IFN. IFNα has no or only mild effects on TLR8 mRNA 

expression in monocytes, whereas it potently up-regulates TLR8 mRNA expression in 

monocyte-derived macrophages (21). Combined, these findings suggest that type I IFN 

stimulate distinct signaling pathways in monocytes as compared to DC or macrophages. It 

was reported that the concentration of type I IFN affects the biological outcome of triggering 
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of the receptor on specific leukocyte populations. Low levels of IFNα promote the cellular 

responses to IFNγ, whereas relatively high levels inhibit these responses (21, 38-39). It is 

possible that the effective doses for type I IFN differ among distinct APC due to variations in 

receptor density, and consequently the signaling upon type I IFN is not identical in these 

cells. 

Our findings are relevant in light of the use of type I IFN in the standard of care therapy 

to treat chronic HCV patients as well as in patients suffering from multiple sclerosis (40-41). It 

will be important to examine whether enhanced IL-10R expression and consequently 

augmented responsiveness to IL-10 following exposure to type I IFN is also observed in 

patients during the course of therapy. Furthermore, our findings warrant further studies to 

examine if enhanced IL-10 sensitivity of leukocytes can explain the limited clinical benefit of 

IFN-based treatment in a large number of patients.  

In summary, we find that type I IFN inhibit TLR-induced IL-10 production but 

strengthen IL-10 signaling in monocytes via up-regulating membrane IL-10R1 expression 

and enhancing IL-10-induced p-STAT3 in human monocytes. We further demonstrate that 

the effect of type I IFN on IL-10 signaling among APC is a general function of type I and III 

IFN. The findings of this study have uncovered an important indirect suppressive effect of 

type I and III IFN on APC via strengthening IL-10 signaling, and are thus important for the 

understanding and improvement of type I or III IFN-based therapies in patients suffering from 

multiple sclerosis or viral hepatitis. 

 

Supplementary Figures 

 

 

Figure S1. The effect of type I interferon on TLR mRNA expression and IL-10 production by human monocytes. 
(A) Human monocytes were purified from healthy individuals (n=6), with purity above 97%, and then stimulated 
with IFNα (10 ng/ml) for 5h. Total RNA from monocytes was extracted using NucleoSpin RNA II kit (Macherey-

A B 
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Nagel) according to the manufacturer’s instructions. RNA was quantified using a Nanodrop ND-1000 (Thermo). 
cDNA was prepared using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories). All real-time PCR reactions 
were performed in Bio-Rad optical 96-well plates using a MyIQ5 detection system (Bio-Rad Laboratories). SYBR-
Green present in the MasterMix Plus (Eurogentec) was used for quantification in real-time PCR reactions for 
TLR4 and TLR7. Primers for GAPDH (forward 5’-TGCACCACCAACTGCTTAGC-3’ and reverse 5’-
GGCATGGACTGTGGTCATGAG-3’), TLR4 (forward 5’-TCTACAAAATCCCCGACA-3’ and reverse 5’-
AGGTGGCTTAGGCTCTGA-3’) and TLR7 (forward 5’-AATGTCACAGCCGTCCCTAC-3’ and reverse 5’-
GCGCATCAAAAGCATTTACA-3’) were designed to determine the TLR4 and TLR7 mRNA expression. 
Furthermore, primer-probes for GAPDH (Hs00266705_g1) and TLR8 (Hs00152972_m1) were purchased from 
Applied Biosystems. The expression of target genes was normalized to GAPDH using the formula: 2-∆Ct, ∆Ct=Ct 
TLR - Ct GAPDH. (B) Human purified monocytes were pretreated with IFNα (10 ng/ml) or IFNβ (10 ng/ml) for 5h and 
then further stimulated with LPS (100 ng/ml), R848 (1 ug/ml) or LPS plus R848 for another 24h. IL-10 production 
was measured by ELISA. The values depicted in (B) show the representative data from 3 independent 
experiments. 

 

Figure S2. The levels of p-STAT3 by IFNα-treated monocytes increased in the IL-10 dose-dependent while the 
kinetics of IL-10-induced p-STAT3 is not affected. Monocytes were pretreated with IFNα for 5h, with the last 1h on 
ice. Monocytes were then incubated with various concentrations of IL-10 for 30min (A, B) or with IL-10 (100 
ng/ml) at the indicated time-points (C, D). STAT3 phosphorylation (p-STAT3) was evaluated by flow cytometry. 
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Figure S3. Type I and III IFN up-regulate IL-10R1 expression on human monocytes and macrophages. 
Monocytes or monocyte-derived macrophages were pretreated with IFNα, IFNβ or IL-29 for 5h and IL-10R1 
expression on the surface of monocytes (A) and macrophages (B) was assessed by flow cytometry. The 
histograms depict representative data from 3 independent experiments. 

 

 

Figure S5. Type I and III IFN enhance IL-10-indiced pSTAT3 in human monocytes and macrophages. (A) Human 
monocytes were pretreated with IFNα or IFNβ for 5h with the last 1h on ice. Monocytes were then incubated with 
IL-10 (100 ng/ml) for 30min. (B) Monocyte-derived macrophages were pretreated with IFNα, IFNβ and IL-29 for 
5h, with the last 1h on ice. Macrophages were then stimulated by IL-10 (100 ng/ml) for 30min. The levels of p-
STAT3 levels examined by flow cytometry. 
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SUMMARY 

Background  ANA773, an oral prodrug of a small-molecule TLR7 agonist, induces a dose-

related decrease in serum HCV RNA levels in chronic hepatitis C patients. 
Methods The prodrug ANA773 was administered to healthy individuals and chronic 
hepatitis C patients. At different time-points during the course of treatment, modulation of the 
phenotype and function of peripheral leukocytes were evaluated to determine the role of 
distinct immune cells on the clinical outcome of therapy.  
Results Early after administration of the TLR7 agonist, a mild, transient reduction of 
the number of lymphocytes was observed in both healthy individuals and chronic hepatitis C 
patients. Moreover, repeated administration of ANA773 resulted in transiently reduced 
numbers of myeloid and plasmacytoid dendritic cells (DC) in blood. Interestingly, reduced 

plasmacytoid DC numbers as well as increased serum IFN-α and IP-10 levels were observed 

only in virological responders (≥1 log10 IU/mL reduction of HCV RNA levels upon ANA773 
treatment), but were absent in virological non-responders. In vitro stimulation of peripheral 

blood mononuclear cells from virologic responders showed a high frequency of IFN-α-

producing plasmacytoid DC upon stimulation in vitro with ANA773, whereas no IFN-α was 

induced in non-responders. 
Conclusions These findings indicate that the viral load decline in chronic hepatitis C 

patients treated with the TLR7 agonist ANA773 is likely due to intrinsic differences in the 

induction of endogenous interferons and interferon-stimulated gene products (IFN-α and IP-

10) upon TLR7 ligation. 
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INTRODUCTION 

The hepatitis C virus (HCV) is a major cause of chronic liver disease, affecting more than 
170 million individuals globally. In about 80% of individuals infected with HCV, the infection 
does not resolve spontaneously, resulting in persistent infection. Chronic HCV infected 
patients are at increased risk for developing liver fibrosis, cirrhosis and/or hepatocellular 
carcinoma, which may take decades to become apparent.  The long-term complications of 
liver failure, as a result of chronic HCV infection, are worldwide the most common causes for 
liver transplantation [1, 2]. At present, no vaccine to prevent persistent HCV infection is 

available. The standard treatment for chronic HCV infection is pegylated IFN-α plus ribavirin. 

This combination therapy has many adverse effects, and a sustained viral response is only 
observed in about 50% of HCV genotype 1 infected patients. Thus, improved therapies are 
urgently needed. 

Patients who eventually develop chronic hepatitis C, initially have a strong T cell 
response, but this response is not sustained. In fact, during chronic infections HCV-specific 
CD4+ and CD8+ T cell responses are difficult to detect in blood and liver, and are functionally 
impaired, which may be a direct consequence of high viral load, viral escape mutations, or 
due to active suppression mediated by immunoregulatory mechanisms [3-6].  

Stimulation of the immune system in order to boost antiviral immunity is the basis for 
research in search of effective T cell vaccines against HCV [7]. However, an alternative 
approach is to activate the innate immune system making use of its ability to respond to 
pathogen-derived products. Activation of DC and macrophages by pathogens can be 
achieved by the specific interaction between pattern recognition receptors, such as the 
members of the TLR family, and pathogen-derived products [8, 9]. Distinct leukocyte 
populations in both mice and humans have been shown to express different TLRs, and 
consequently to respond to distinct microbial products [10, 11]. For example, human 
plasmacytoid DC express TLR7 mRNA, and respond to specific TLR7 agonists, such as 
single-stranded RNA and R848, to produce type I interferons [12].  

Activation of the innate immune system by intravenous administration of a TLR7 

agonist isatoribine [13] and oral administration of the TLR7/8 agonist resiquimod [14] have 

been previously described for the treatment of chronic hepatitis C patients. However, the 

latter compound interacts with TLR7 and TLR8 and therefore activates not only plasmacytoid 

DC but also other leukocytes such as monocytes [15], leading to more severe adverse 

effects. We recently reported the first results of the clinical study in which the TLR7 agonist 

ANA773 was administered to chronic HCV infected patients via oral administration [16]. In 

this trial, we observed a significant treatment-induced viral decline of serum HCV RNA levels 

(range 0.14 to -3.10 log at the highest dosing group receiving 2000 mg), which was observed 

in some, but not all patients.  In the current study, we examined the immunological effects 

following oral administration of the TLR7 agonist ANA773 in patients, and evaluated the 

immunological differences between responders and non-responders. 
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MATERIALS AND METHODS 

Study design  
The characteristics of the chronic hepatitis C patients and healthy individuals who 
participated in this study have been described in detail before [16]. This study was a phase 1 
study, which was conducted at the Erasmus Medical Center (Rotterdam), Academic Medical 
Center (Amsterdam) and PRA International (Zuidlaren), the Netherlands, in accordance with 
Good Clinical Practice and the World Medical Association Declaration of Helsinki, after 
approval by the institutional review board. All patients and healthy individuals provided 
written informed consent before participating in any study-related activity. For the ancillary 
study the cohorts of chronic HCV infected patients receiving a dose of 1600 mg or 2000 mg 
ANA773 were evaluated for immune status, as well as a cohort of healthy controls receiving 
1600 mg ANA773. The highest dose cohorts were examined since considerable reductions 
of serum HCV RNA load were observed in these cohorts. In the 1600 mg group, 6 chronic 
HCV infected patients received oral ANA773 and 2 received placebo. In the 2000 mg group, 
8 patients received ANA773 and 2 received placebo. Blood samples of the 1600 mg group 
were drawn on day 0, 5, 13, 27, and 41; the blood samples of the 2000 mg group were 
drawn on day 0, 5, 9 and 18. No blood was collected from one patient in each dosing group, 
and therefore immunological assays were performed on PBMC from 5 patients in the 1600 
mg group and from 7 patients in the 2000 mg group. The patient details are described before 
[16]. In addition, the IL28B SNP rs12979860 was determined for all patients using 
competitive allele-specific PCR (KASP; KBioscience, Hoddesdon, UK). In the 1600 mg 
group, the patients unresponsive to ANA773 had the TC, TC and CC genotype, while the 
responsive patients both had the CC genotype. In the 2000 mg group, both non-responders 
to ANA773 were TC, while in patients responding to ANA773 2 individuals had the CC 
genotype and 3 individuals the TC genotype. Patients were dosed with oral ANA773 every-
other-day for either 28 days (1600 mg group) or 10 days (2000 mg group). Study medication 
(100 mg capsules) and placebo capsules were supplied by Anadys Pharmaceuticals, Inc., 
San Diego, USA.  
 
Patients 
Key inclusion criteria included male and female chronic HCV patients between 18 to 65 
years, with body mass indexes of 18 to 35 kg/m2, treatment-naive or relapse from prior IFN-
based therapies (defined as recurrence of HCV RNA following a full course of treatment and 
having achieved an undetectable HCV RNA during treatment), and an HCV RNA level ≥ 75 x 
103 IU/mL. Key exclusion criteria included decompensated liver disease, findings consistent 
with Child Pugh B/C liver cirrhosis, and co-infection with HIV or HBV.  Patients receiving 
antiviral therapy or immunomodulatory therapy within 90 days prior to administration of the 
first dose of ANA773 were excluded.  
 
Enumeration of monocytes and leukocytes in whole blood, and quantitation of 
lymphocyte subpopulations 
Absolute numbers of leukocytes, lymphocytes, monocytes and granulocytes in whole blood 
were measured by an automated impedance hematology analyzer (ABX Micros-60, Horiba 



Chapter 6 

116 

Medical). To determine the frequency of distinct leukocyte subpopulations, whole blood was 
lysed using ammoniumchloride, stained with antibodies against CD4 (SK3, BD), CD8 (RPA-
T8, BD), CD56 (MY31, BD), CD19 (SJ25C1, BD), CD14 (61D3, eBioscience), BDCA1 and 
BDCA4 (both from Miltenyi Biotech). NK cells were defined as CD3-negative lymphocytes 
that expressed CD56. This population included both CD56dim and CD56bright NK cells. In 
addition, the expression of CD69 on NK cells was assessed using CD56-PE (MY31, BD) and 
CD69-APC (L78, BD). All events were evaluated by flow cytometry (Canto-II, BD), and the 
data was analyzed using BD FACS Diva software. All assays were performed on the day of 
blood collection.  
 
Intracellular cytokine staining 
PBMC were isolated from peripheral blood of patients prior to treatment with ANA773 (2000 
mg-group only). Cells were isolated from peripheral blood by density centrifugation on Ficoll-
Hypaque (GE healthcare). PBMC were stimulated on the day of blood collection with 

medium, ANA773 (300 µM) or R848 (1 µg/ml; Alexis) in RPMI-1640 medium (BioWhittaker) 

supplemented with 10% human serum for 5h, with brefeldin-A (10 µg/ml; Sigma) present for 

the last 4h. Samples were then fixed with 2% formaldehyde, permeabilized with 0.5% 
saponin and stained with antibodies against CD14-Pacific Blue (M5E2, BD Pharmingen), 

BDCA4-APC (AD5-17F6, Miltenyi Biotech), TNF-PE-Cy7 (MAb11, eBioscience), and IFN-α-

FITC (MMHA-1, PBL). Cytokine-producing plasmacytoid DC and monocytes were detected 
by flow cytometry (Canto-II, BD).  
 
Immunoassay for detection of cytokines 

The levels in serum of IFN-α and IP-10 during the course of treatment with ANA773 were 

detected by enzyme-linked immunosorbent assays by Alta Analytical Laboratory, San Diego, 
USA. 2,5-OAS was analyzed by radio-immunoassay at PRA International, Assen, The 
Netherlands. 
 
Statistics 
Values are expressed as mean values, unless indicated otherwise. Data was analyzed with 
Prism 5.0 (Graphpad software) using the Mann-Whitney t-test to compare variables between 
two independent groups. In all analyses, a two-tailed p-value of less than 0.05 (confidence 
internal 95%) was considered statistically significant. 
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Results 

Administration of TLR7 agonist ANA773 leads to a transient reduction of the absolute 
number of lymphocytes in blood of healthy individuals and HCV infected patients 
To examine the consequence of administration of the TLR7 agonist ANA773 on immune 
parameters, we first assessed the effect of treatment on the absolute numbers of various 
leukocyte subpopulations prior to treatment and 6 hours after the first administration by 
comparing paired blood samples. As shown in Figure 1, treatment of healthy individuals with 
a dose of 1600 mg ANA773 every other day did not affect the absolute numbers of peripheral 
leukocytes, monocytes or neutrophils. Comparable findings were observed when chronic 
HCV infected patients were treated with a dose of 1600 mg or 2000 mg ANA773 every other 
day, except for the number of monocytes, which declined within 6 hours following 
administration of 2000 mg TLR7 agonist. The absolute numbers of lymphocytes was 
significantly reduced 6 hours after start of treatment in both healthy individuals (dose 1600 
mg) and chronic HCV patients (dose 1600 and 2000 mg).  
 

 
 

 
Figure 1. The effect of ANA773 on the numbers of blood leukocytes early after administration. 
Healthy individuals and chronic hepatitis C patients were administered a single dose of 1600 mg 
or 2000 mg ANA773. Blood was collected before and 6h after administration. The absolute 
numbers of cells were determined and shown for individual patients.  

 

The reduction in the number of lymphocytes 6 hours after administration of ANA773 
was transient, since the number of leukocytes, lymphocytes and monocytes was similar as 
their pre-treatment numbers after day 5 (Figure 2A). Further phenotyping of the lymphocytes 
in CD4+ T cells, CD8+ T cells, CD3-CD56+ NK cells and CD19+ B cells did not demonstrate 
any significant shifts in cell numbers during the treatment period. 

 
Administration of ANA773 leads to a transient reduction of the number of 
plasmacytoid DC only in virologic responders 
Since ANA773 interacts with the TLR7, which is expressed at high levels by plasmacytoid 
DC, we determined the numbers of plasmacytoid DC and myeloid DC, in blood of chronic 
hepatitis C patients during treatment. As shown in Figure 2B, repeated administration of 
1600 mg ANA773 showed a reduction of plasmacytoid DC numbers in blood and myeloid DC 
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which was most prominent on day 13 (1.5x106 to 0.8x106 cells/l and 9.4x106 to 3x106 cells/l, 
respectively), and returned to baseline levels thereafter. Similar to the 1600 mg group, 
multiple dosing of 2000 mg ANA773 showed the same trend with respect to the decline of 
the numbers of DC, which was not significant.  

 

 
Figure 2. Repeated administration of ANA773 does not influence the number of leukocyte 
subpopulations over a period of 4 weeks. (A) Chronic hepatitis C patients were treated with ANA773 
every 48h for a period of 28 days (1600 mg), and blood was collected at the indicated time-points. 
Leukocyte subpopulations were determined in whole blood by automated analyses and 
flowcytometry as described in the material and methods.  (B) The effect of ANA773 on DC 
populations was determined in whole blood of patients treated with 1600 mg ANA773 (as described 
in above) or 2000 mg, which was administered every 48h for 10 days. 
 

 

 
Figure 3. Reduced plasmacytoid DC numbers in chronic HCV infected patients with a decline of 

HCV RNA levels upon treatment with ANA773, but not in non-responders. Chronic HCV patients 
were treated with ANA773 at a dose of 2000 mg. The absolute numbers of plasmacytoid DC and 
myeloid DC are presented at different time points after start of treatment, and displayed separately 
for patients with a viral decline of more than one log (responders) or less than one log (non-
responders). 
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Administration with 2000 mg ANA773 resulted in a viral load reduction of more than 
one log in 5 out of 7 patients. We determined whether the differential clinical responsiveness 
was reflected by a differential effect on the numbers of plasmacytoid DC. Indeed, as shown 
in Figure 3, all patients who were considered responders to treatment with TLR7 agonists 
showed a significant reduction of circulating plasmacytoid DC and myeloid DC numbers at 
day 9, which was not observed in patients who did not respond to TLR7 ligation. Shortly after 
ending treatment at day 10, plasmacytoid DC numbers recovered in responders, whereas 
the number of myeloid DC were still reduced in some, but not all, patients. It is interesting to 
note that the baseline plasmacytoid DC frequency is lower in the 2 non-responder patients as 
compared to the responder patients, which was also observed when examining the non-
responder patients of the 1600 mg group (Supplementary Figure S1). 
 
Differential effects of TLR7-induced responses in virologic responders versus non-
responders 
To explore the differences between the observed effects of TLR7 ligation in chronic hepatitis 
C patients who responded and patients who were non-responders, we examined the serum 

levels of interferon stimulated genes IFN-α, IFN-induced protein IP-10 and mRNA levels for 

2,5-OAS. As presented in Figure 4A, IFN-α and IP-10 were detectable in serum from most 

responders, but undetectable in patients who did not respond to ANA773 as defined by no 
reduction of serum HCV RNA levels. However, in both responder and non-responders to 
TLR7 ligation, the levels of 2,5-OAS mRNA in serum were induced 6 hours after start of 
treatment.  

In addition, we examined the activation status of NK cells in treated patients. By performing flow-

cytometry, we observed that 6h after the first administration, the expression of the early activation 
marker CD69 was increased on the majority of CD3-CD56dim NK cells in responding patients, but not 

non-responding patients (Figure 4B). We did not observe TLR7-induced changes of activation markers 

expressed on plasmacytoid DC or myeloid DC, such as CD80, CD86 or CD40, at different time-points 

following ANA773 administration (data not shown).  
Finally, we compared the in vitro response of PBMC to ANA773 and R848 (a TLR7/8 agonist) 

with the patient’s subsequent virologic response to ANA773 treatment. As shown in Figure 5, a high 

frequency of IFN-α-producing plasmacytoid DC upon stimulation in vitro was detected in PBMC from 

patients who were subsequently virologic responders, whereas no IFN-α was induced in cells from 

non-responders. As a control experiment, we observed that monocytes were unresponsive to 

ANA773, whereas activation by R848 induced a high frequency of TNF-producing monocytes. These 
findings suggest that the in vitro assay may be used as a screening tool for the expected efficacy of 

antiviral activity of TLR agonists such as ANA773, and that intrinsic properties of plasmacytoid DC 
may determine the efficacy of treatment with TLR7 agonist of patients with chronic HCV infections.   
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Figure 4. Ex vivo analysis demonstrates stronger activation of immunity in virologic responders to 
ANA773 as compared to non-responders. (A). The serum levels of IFN-α and IP-10 were 
determined by ELISA, and the 2,5-OAS levels in serum by RIA before and 6h after start of 
treatment.  (B). The expression of CD69 on CD56-expressing cells is determined in whole blood 
before and 6h after start of treatment. 
 
 

 
Figure 5. The frequency of IFN-α-producing plasmacytoid DC in vitro was higher in PBMCs from patients that 
were subsequently virologic responders, whereas no IFN-α was induced in non-responders. PBMC, collected 
prior to treatment with 2000mg ANA773, were stimulated in vitro with medium, ANA773 or R848. The percentage 
of cytokine producing plasmacytoid DC and monocytes was determined by intracellular cytokine staining for IFN-
α and TNF. 
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Discussion 

At present, TLR7 agonists to treat HCV infection are not used in clinical practice. These 
compounds act by specifically inducing antiviral activity initiated by the induction of 

endogenous IFN-α as well as by specific TLR7-induced activation of various leukocyte 

populations, such as plasmacytoid DC.  Direct stimulation of the immune system may be an 
important advantage over the use of exogenous IFN-based antiviral therapy, which does not 
lead to activation of leukocyte populations. Previously, intravenous administration of a TLR7 
agonist isatoribine [13] and oral administration of the TLR7/8 agonist resiquimod [14] has 
been described in the treatment of chronic hepatitis C patients. The disadvantage of the 
combined TLR7/8 agonist resiquimod over specific TLR7 agonists is that TLR8 is also 

expressed on monocytes, and will thus induce pro-inflammatory cytokines other than IFN-α 

(Figure 5). The consequence of this is a higher chance of adverse effects [17], and this was 
indeed observed in the clinical study with resiquimod [14].  

The present study demonstrates that treatment of chronic hepatitis C patients with the 

TLR7 agonist ANA773 activates the immune system by the release of IFN-α and IFN-α-

induced molecules as well as the NK cell compartment. We demonstrate that oral 
administration of TLR7 agonists leads to a mild and transient reduction of circulating 
lymphocytes, plasmacytoid DC and myeloid DC in viral responders to ANA773 treatment. As 

a direct consequence of TLR7 ligation, or indirectly as a result of enhanced IFN-α activity, 

viral responders exhibited increased IP-10 and 2’,5’-OAS. Together with activated NK cell 
activity, this illustrated that important components of the antiviral immune responses were 

activated upon ANA773 administration. In addition, elevated levels of circulating IFN-α and 

IP-10, as well as TLR7-induced activation of NK cells, were only demonstrated in patients 
with a significant drop in HCV RNA levels upon treatment with TLR7 agonists. Differential 
responsiveness to TLR7 ligation upon treatment could be reproduced in vitro, suggesting that 
intrinsic differences between patients accounted for the different efficacy of ANA773.  
Interestingly, also evaluation of the effect of ANA773 on PBMC from healthy individuals 

showed induction of IFN-α by plasmacytoid DC in the majority of individuals (8 out of 10 

individuals; data not shown). 
Despite activation of various components of the innate antiviral immune response, the 

decline of serum HCV RNA levels was mild. To explain this, we can not exclude that the 
highest dose of ANA773 administered in this study was still suboptimal with respect to viral 
decline. As an alternative explanation, it has been described that the TLR7 signaling pathway 
is selectively impaired in plasmacytoid DC [18] and monocyte-derived DC [19] from chronic 
HCV infected patients, as well as in hepatoma cell lines [20]. However, we show that upon 
oral administration of ANA773, no differences were observed between healthy individuals 
and chronic hepatitis C patients in the immune parameters examined, which were mainly 
focused on shifts in leukocyte populations and the expression of activation markers. 
Moreover, functionally, plasmacytoid DC from chronic HCV infected patients were still 
capable of responding to TLR7 ligation using either ANA773 or R848, indicating that 
plasmacytoid DC were not completely inert to stimulation via TLR7. Another possible 
explanation for the modest viral decline observed after ANA773 administration is the 
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reduction of the number of circulating plasmacytoid DC, which may affect the IFN-α levels 

that are induced during therapy. TLR ligation as well as exogenous administration of IFN-α in 

mice also showed a transient lymphopenia which was the result of redistribution rather than 
deletion of lymphocytes [21]. At present, the transient nature of the response is not clear. 
However, tight regulation of TLR7 expression may lead to lower responsiveness of cells to 
TLR ligation upon repeated exposure to the ANA773.   

We observed that not all patients responded to ANA773 administration with regard to a 
decline in viral load. Interestingly, we showed that the responsiveness to ANA773 during the 
course of treatment was determined by intrinsic characteristics of the individual’s leukocytes, 
since the ability to respond in vivo was paralleled by the in vitro stimulation of the cells with 
ANA773 prior to treatment. These differences in responsiveness may be influenced by TLR7 
polymorphisms which were found to correlate with the response to interferon-based therapy 
in chronic HCV infected patients [22], and also gender differences are known to influence the 

levels of IFN-α produced upon TLR7 ligation [23]. Furthermore, although the clinical outcome 

of IFN-based therapy is strongly dependent on specific IL-28B gene polymorphisms, our 
study cohort was too small to draw firm conclusions on the importance of the IL28B SNP in 
the response to ANA773. Among individuals responsive to ANA773, both the CC and TC 
rs12979860 genotypes were found (see Methods section). Another mechanism that may limit 
the efficacy of treatment with TLR agonists is elicitation of compensatory mechanisms that 
regulate and prevent excessive inflammation [24, 25]. In mice, it was shown that 
CD4+CD25+FoxP3+ regulatory T cells were induced upon topical administration of imiquimod 
in a model of human breast cancer, and also serum levels of the immunosuppressive 
cytokine IL-10 were elevated following treatment with imiquimod [26]. In our study, we did not 
find any shifts in the number of CD4+CD25+FoxP3+ regulatory T cells during the course of 
treatment with ANA773 (data not shown), thereby limiting the possibility that the induction of 
FoxP3+ regulatory T cells underlies the weak antiviral activity.  

The effect of TLR7 agonist therapy on the immune system of patients with chronic HCV 
infections was evaluated in this phase 1 study. The conclusions drawn from this study have 
to be considered in light of the limited number of patients per dosing group. Despite the small 
group size, our findings demonstrate that the treatment of chronic hepatitis C patients with 
the TLR7 agonist ANA773 resulted in a decrease of serum HCV RNA levels, and that this 
treatment strategy activates parts of the innate immune system. Importantly, those patients 
that display potent induction of endogenous interferons and interferon-stimulated gene 
products, most likely via an effect on plasmacytoid DC, also show a therapy-induced decline 
of viral load. To further improve strategies to develop ANA773 as an approach for HCV 
treatment, it will be important to examine the mechanism underlying the observation that 
certain patients are responsive and others are unresponsive to treatment.  

In conclusion, the fact that administration of TLR7 agonists lead to a significant viral 
load reduction in chronic hepatitis C patients, combined with clearly detectable activation of 
the components of the anti-viral immune response, make these novel immunomodulatory 
compounds promising for further development. Combined or sequential treatment regimens 
of direct antiviral agents or standard of care to reduce the viral load with the use of TLR7 
agonists, as immunomodulators to stimulate the immune system, may well be efficient to 
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eradicate the virus, and simultaneously allow the development of effective HCV-specific T 
cell memory responses to prevent relapses and re-infection. 
 
 
 
 

Acknowledgements 
 
We would like to thank the patients who agreed to participate in the clinical study. We also 
acknowledge the contribution of Cokki van der Ent and Irene Brings (Clinical Research 
Bureau, Erasmus MC) and Martine Peters (AMC, Amsterdam). Furthermore, we would like to 
thank B. Eam, M.V. Sergeeva, and T.W. Harding with their help during various stages of this 
project. 
 

 

Supplementary Figure S1 

 

 

 

Figure S1. Chronic HCV patients were treated with ANA773 at a dose of 1600 mg. The absolute 

numbers of plasmacytoid DC and myeloid DC are presented at different time points after start of 
treatment, and displayed for patients who were categorized as non-responders. 
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SUMMARY 

The interferon-lambda (IFNλ) family of cytokines, consisting of IL-28A, IL-28B and IL-29, has 
been extensively studied for their antiviral activities. However, little is known about the effect 
of IFNλ on antigen-presenting cells. Here, we show for the first time that IL-29 can increase 
TLR-induced IL-12p40 production by human monocyte-derived macrophages. In contrast, IL-
29 did not affect monocytes or monocyte-derived DC due to the restricted IL-28RA 
expression by macrophages. Furthermore, IL-29-treated macrophages were more 
responsive to IFNγ, since IL-29 enhanced IFNγ-induced IL-12p40 and TNF production by 
macrophages upon R848 stimulation. However, IFNα suppressed IFNγ-induced IL-12p40 
and TNF production by human macrophages. The differential effects of IL-29 and IFNα on 
the responsiveness of macrophages to IFNγ could not be explained by an effect on TLR7 or 
TLR8 mRNA expression, or by altered IL-10 signaling. However, we demonstrated that IL-29 
up-regulated, whereas IFNα down-regulated, the surface expression of the IFNγ receptor 1 
chain on macrophages, thereby resulting in differential responsiveness of TLR-challenged 
macrophages to IFNγ. Our findings on the differences between IFNα and IL-29 in modulating 
TLR-induced cytokine production by macrophages may further contribute to understand the 
role of interferons in regulating immunity to pathogens. 
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INTRODUCTION 
Over the last years, the interferon-lambda (IFNλ) family members have been extensively 
studied for their antiviral activities. IL-28A (IFNλ2), IL-28B (IFNλ3) and IL-29 (IFNλ1) have 

been shown to possess potent antiviral activity via mechanisms similar to IFNα despite 

triggering of a unique IL-28 receptor pair which is distinct from the IFNα receptor.1-3 At 

present, IFNα combined with ribavirin is the most efficient therapy to treat patients chronically 

infected with the hepatitis C virus (HCV). However, many side-effects and a limited 
effectiveness in a large group of patients make that alternatives to the standard of care 
treatment are needed. Clinical studies are being conducted to examine whether pegylated-
IL-29 holds promise for future therapeutic use in the treatment of chronic HCV patients.4 
Interestingly, polymorphisms close to the IL-28B gene have been reported that are 
associated with disease progression and response to therapy, and have sparked interest in 
the IFNλ family members.5-8 Numerous studies have examined the antiviral activity of IFNλ,9-

13 however, little is known about the effect of IFNλ on innate immune cells and their 
immunoregulatory activity. 

Macrophages are crucial innate immune cells to eliminate pathogens and apoptotic 
cells.14-16 Upon stimulation of specific pathogen-recognition receptors, such as Toll-like 
receptors (TLR), macrophages produce inflammatory mediators and cytokines, such as IL-
1β, IL-6, TNF, and IL-12. IL-12p70, consisting of IL-12p40 and IL-12p35, plays an important 
role in the development of Th1-type responses, which are essential for the clearance of 
many infections.17 TLR ligands derived from microorganisms are strong inducers of IL-12,18-19 
however, additional signals from cytokines, such as IFNγ and IL-4, as well as the interaction 
between CD40L and CD40 are necessary for the optimal production of IL-12 by monocytes, 
dendritic cells (DC) and macrophages. 20-21 Both IFNα and IFNγ are able to regulate the 
production of IL-12. While the production of both IL-12p70 and IL-12p40 are strongly 
enhanced by IFNγ in antigen-presenting cells,20,22 IFNα has an inhibitory effect on IL-12p40 
production by both mice and human monocytes, DC and macrophages.22-23 In contrast to the 
effect on IL-12p40, the production of IL-12p70 is enhanced by exposure to IFNα in 
monocytes and DC.24  

IFNλ and IFNα interact with different receptors.25-27 The receptor of IFNα is composed 
of 2 unique receptor chains, IFNαR1 and IFNαR2, whereas the receptor of IFNλ comprises 
the IL-28 receptor alpha chain (IL-28RA) and the IL-10 receptor 2 chain (IL-10R2). 
Importantly, while IFNαR1, IFNαR2 and IL-10R2 are ubiquitously expressed, IL-28RA 
appears to be more restricted, and expression of this receptor chain has been reported by 
plasmacytoid DC, B cells, epithelial cells, and hepatocytes.1,27-30 The more restricted receptor 
expression of IL-28RA makes it likely that IL-29 would lead to less adverse effects as 
compared to IFNα if used therapeutically, for instance to treated chronic HCV patients. 
However, at present, little is known about the effect of IFNλ on innate immune cells, and their 
immunoregulatory activity. 

In this paper, we show that although IL-28RA is not expressed by human primary 
monocytes and, monocyte-derived DC, it is expressed by monocyte-derived macrophages. 
As a consequence, IL-29 enhances TLR-induced cytokine production of human monocyte-
derived macrophages, but does not affect monocytes or monocyte-derived DC. Unlike the 
reported similarities in antiviral activity, we show for the first time that IL-29 and IFNα differ in 
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their ability to modulate TLR-induced IL-12p40 production, especially in combination with 
IFNγ. In addition, IL-29 up-regulates the IFNγR1 chain, whereas IFNα down-regulates this 
receptor chain, which explains the differential responsiveness of human macrophage to 
IFNγ. Thus, our findings demonstrate that besides its potent antiviral activity, IL-29 plays an 
important role in modulating cytokine production by macrophages, which may enhance 
immune responses to pathogens.  

 
MATERIALS AND METHODS 
Cell culture and purification 
Monocytes were purified from PBMC obtained from buffycoats (Sanquin) with magnetic 
CD14-microbeads (Miltenyi Biotec) following the manufacturer’s instructions. The purity was 
always more than 97%. Macrophages were generated from purified monocytes with 10 ng/ml 
M-CSF (R&D) in 6-well plates (Costar) at a density of 1.5x106 cells/well in 2 ml RPMI1640 
supplemented with 8% research-grade FCS. On day 2 and day 5, half of the medium was 
refreshed and on day 6 monocyte-derived macrophages were harvested, and used for 
various purposes. Monocyte-derived DC were generated from monocytes with 10 ng/ml IL-4 
(eBioscience) and 10 ng/ml GM-CSF (Leukine, Bayer Healthcare Pharmaceuticals) in 6-well 
plates (Costar) at a density of 1.5x106 cells/well in 2 ml RPMI1640 supplemented with 8% 
research-grade FCS.  
 
Stimulation of monocyte-derived macrophages, monocytes, and monocyte-derived DC 
In order to determine which cells respond to IL-29, monocyte-derived macrophages, 
monocytes and monocyte-derived DC were pretreated with IL-29 (100 ng/ml, R&D) for 5h 
and further stimulated for 24h with LPS (100 ng/ml, InvivoGen) or R848 (1 ug/ml, Alexis) 
without removing the supernatant. To compare the effects of distinct IFNλ family members 
and IFNα, monocyte-derived macrophages were pre-exposed to IL-29 (100 ng/ml, R&D), IL-
28A (100 ng/ml, R&D), IL-28B (100 ng/ml, R&D) or IFNα (10 ng/ml, IntronA, Schering-
Plough) for 5h and further stimulated for 24h with LPS (100 ng/ml) or R848 (1 ug/ml). To 
check the response to IFNγ, monocyte-derived macrophages pretreated with IFNα or IL-29 
were further stimulated with IFNγ (10 ng/ml, Miltenyi Biotec) and R848. In some experiments, 
anti-human IL-10R antibody (anti-IL-10R, clone: 3F9, 5 ug/ml, Biolegend) was used to block 
IL-10 signaling in the cultures. Cytokine production was determined by ELISA.   
 
Flow cytometric analysis of the expression of interferon receptors, HLA-DR and HLA-
ABC 
Monocyte-derived macrophages, monocytes and monocyte-derived DC were stained with 
the antibodies IL-28RA-PE (Biolegend) and IL-10R2-Biotin (R&D) to evaluate the expression 
of the IFNλ receptor. Prior to the addition of antibodies, Fc-receptors were blocked to prevent 
non-specific staining. Streptavidin-APC (BD Pharmingen) was used to visualize the IL-10R2. 
IFNγR1-PE and IFNγR2-PE (Biolegend) were used to determine the IFNγ receptor 
expression on monocyte-derived macrophages pretreated with IL-29 (100 ng/ml, R&D), IL-
28A (100 ng/ml, R&D), IL-28B (100 ng/ml, R&D) or IFNα (10 ng/ml, IntronA). The specificity 
of the stainings was controlled with appropriate isotype antibodies. 
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To examine the surface expression of HLA-DR and HLA-ABC on the surface of monocyte-
derived macrophages, cells were first exposed to IL-29 (100 ng/ml, R&D) or IFNα (10 ng/ml, 
IntronA) for 5h and then further stimulated with IFNγ (10 ng/ml) for another 20h. HLA-DR and 
HLA-ABC expression on macrophages were determined by flow cytometry using antibodies 
against HLA-DR-PerCP-Cy5.5 (eBioscience, LN3) and HLA-ABC-FITC (Biolegend, W6/32). 
The specificity of the stainings was controlled with appropriate isotype antibodies. 
 
Flow cytometric analysis of pSTAT-1 staining  
Monocyte-derived macrophages, monocytes and monocyte-derived DC were stimulated with 
IL-29 or IFNα for 20 min. Stimulated cells were immediately fixed with BD Phosflow Lyse/Fix 
(BD Bioscience) and then permeabilized with BD Phosflow Perm Buffy III (BD Bioscience). 
Cells were then incubated with mouse anti-pSTAT1-Alexa Fluor488 (eBioscience) and the 
phosphorylation state of STAT-1 were measured by flow cytometry (Canto-II, BD). 
 
Quantification gene expression by RT-PCR 
To determine the effect of IL-29 and IFNα on TLR7 and TLR8 mRNA expression, monocyte-
derived macrophages were stimulated with IL-29 (100 ng/ml, R&D) or IFNα (10 ng/ml, 

IntronA) for 5h and then lysed using TRI® Reagent (Sigma-Aldrich) and stored at -80°C. To 

determine the IL-12p40, IL-12p35 and IL-12p19 mRNA expression in macrophages, 
monocyte-derived macrophages were stimulated with IL-29 (100 ng/ml, R&D) or IFNα (10 

ng/ml, IntronA) for 5h and then further stimulated for 5h with R848 (1 µg/ml) plus IFNγ (10 

ng/ml, Miltenyi Biotec). The cells were lysed using TRI® Reagent (Sigma-Aldrich) and stored 

at -80°C. 

Total RNA from monocyte-derived macrophages was extracted using NucleoSpin RNA II kit 
(Macherey-Nagel) according to the manufacturer’s instructions. RNA was quantified using a 
Nanodrop ND-1000 (Thermo). cDNA was prepared using the iScript cDNA Synthesis Kit 
(Bio-Rad Laboratories). All real-time PCR reactions were performed in Bio-Rad optical 96-
well plates using a MyIQ5 detection system (Bio-Rad Laboratories). SYBR-Green present in 
the MasterMix Plus (Eurogentec) was used for quantification. Primers for GAPDH (forward 
5’-TGCACCACCAACTGCTTAGC-3’ and reverse 5’-GGCATGGACTGTGGTCATG AG-3’) 
and TLR7 (forward 5’-AATGTCACAGCCGTCCCTAC-3’ and reverse 5’-
GCGCATCAAAAGCATTTACA-3’) were designed to determine the TLR7 mRNA expression. 
Furthermore, primer-probes for GAPDH (Hs00266705_g1), TLR8 (Hs00152972_m1), IL-
12p40 (Hs01011518_m1), IL-12p35 (Hs01073447_m1) and IL-23p19 (Hs00372324_m1) 
were purchased from Applied Biosystems. The expression of target genes was normalized to 
GAPDH using the formula: 2-∆Ct, ∆Ct=Ct TLR - Ct GAPDH. 
 
Immunoassay for detection of cytokines in supernatant 
The concentrations of cytokines in supernatant were determined using sandwich ELISA 
specific for IL-12p40 (C8.6 and C8.3 antibody pairs, Biolegend), and Ready-Set-Go kits for 
IL-12p70, IL-23, IL-10 and TNF (all from eBioscience). The detection limits for IL-10, IL-
12p70, IL-23 and TNF were 15 pg/ml and for IL-12p40 30 pg/ml. 
 
Statistics 
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Values are expressed as mean values, unless indicated otherwise. Data was analyzed with 
Prism 5.0 (Graphpad software) using the Mann-Whitney t-test to compare variables between 
two independent groups. In all analyses, a two-tailed p-value of less than 0.05 (confidence 
internal 95%) was considered statistically significant. 

Results 

Monocyte-derived macrophages, but not monocytes or monocyte-derived DC, 
respond to IL-29 due to the restricted IL-28RA expression by monocyte-derived 
macrophages 
To examine the role of IL-29 in modulating immune responses, we first compared the 
responsiveness of different innate target cells to IL-29. For this purpose, human circulating 
monocytes, monocyte-derived DC and monocyte-derived macrophages were challenged with 
IL-29 in combination with LPS or R848. As shown in Figure 1A, IL-29 enhanced the levels of 
TNF produced by LPS-stimulated monocyte-derived macrophages by 2-fold, and R848-
induced responses were enhanced 5-fold by IL-29. However, neither TLR-stimulated 
monocytes nor monocyte-derived DC responded to IL-29, as indicated by their TNF 
production. Both monocytes and monocyte-derived DC did not respond to increasing doses 
of IL-29 (Supplementary Figure S1A), or when the cells were exposed to IL-29 for different 
pretreatment periods (Supplementary Figure S1B). Importantly, monocytes remained 
unresponsive to IL-29 when cultured in the presence of M-CSF for 24h (data not shown).  

The receptor of IL-29, consisting of IL-28RA and IL-10R2, is expressed by a limited 
number of cells types, including plasmacytoid DC, B cells, epithelial cells, and 
hepatocytes.1,27-30 To examine whether the differential responsiveness of human monocyte-
derived macrophages, monocytes and DC to IL-29 can be explained by their receptor 
expression, flowcytometric analysis for IL-28RA and IL-10R2 expression was performed. 
Although IL-10R2 is expressed by monocyte-derived macrophages, monocytes and weakly 
by DC, IL-28RA expression is only observed by monocyte-derived macrophages, but not by 
monocytes and monocyte-derived DC (Figure 1B). In addition, phosphorylation of STAT-1 
upon exposure to IL-29 was only observed by monocyte-derived macrophages, but not by 
monocytes or monocyte-derived DC (Figure 1C). These data indicate that differential 
responsiveness of human monocyte-derived macrophages, monocytes and DC to IL-29 is 
likely due to restricted IL-28RA expression by monocyte-derived macrophages. 

 
IL-29 enhances TLR-induced IL-12p40 production by human monocyte-derived 
macrophages 
Although much is known about the antiviral activity of IFNλ, their immunoregulatory activity 
on immune cells is still poorly understood. To examine this, we determined whether IL-29 
affects the cytokine production by TLR-stimulated monocyte-derived macrophages. We 

compared the effect of IL-29 on macrophages with IFNα to determine whether these 

cytokines modulate macrophage responses in a similar manner. This is especially relevant 
since IL-29 and type I interferon induce antiviral activity via similar mechanisms.1-3 
Furthermore, since macrophages are highly responsive to IFNγ, we also included IFNγ in our 
analysis.  
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Figure 1. Monocyte-derived macrophages, but not monocytes nor monocyte-derived DC, respond 
to IL-29 due to the restricted IL-28RA expression by monocyte-derived macrophages. (A) 
Monocytes, monocyte-derived DC and monocyte-derived macrophages were pretreated with IL-29 
for 5h and then further stimulated with LPS or R848 for 24h. TNF production was determined by 
ELISA. The values depicted show representative data from 11 independent experiments. (B) 
Monocytes, monocyte-derived DC and monocyte-derived macrophages were stained with 
antibodies against IL-28RA and IL-10R2 to evaluate the expression of the IFNλ receptor by flow 
cytometry. The specificity of the staining was controlled with the appropriate isotype antibodies. 
The histograms depicted show representative data from 10 independent experiments. (C) 
Monocytes, monocyte-derived DC and monocyte-derived macrophages were stimulated with IL-29 
or IFNα for 20min, and then cells were fixed and permeabilized. The phosphorylation of STAT-1 was 

measured by flow cytometry (Canto-II, BD).  
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As shown in Figure 2A, low or undetectable IL-12p40 was produced by monocyte-
derived macrophages in response to LPS irrespective of the addition of IL-29. However, 
upon R848 stimulation, IL-29 increased the IL-12p40 production by monocyte-derived 
macrophages by about 2-fold, which was observed in the majority of donors (Figure 2A). 

 
Figure 2. IL-29 enhances TLR-induced IL-12p40 production by human monocyte-derived 
macrophages. (A) Monocyte-derived macrophages were pretreated with IL-29 (100 ng/ml), IFNα (10 
ng/ml), or IFNγ (10 ng/ml) for 5h and then further stimulated with LPS or R848. The levels of IL-
12p40 in supernatant were determined by ELISA. The values depicted show representative data 
from 27 independent experiments. The increase of IL-12p40 by IL-29 in monocyte-derived 
macrophages was observed in 19 out of 27 healthy individuals. (B) Monocyte-derived macrophages 
were pretreated with IL-29, IFNα or IFNγ at the indicated concentrations for 5h and then further 
stimulated with R848. The levels of IL-12p40 in the supernatants were determined by ELISA. The 
values depicted show representative data from 3 independent experiments. Medium, IL-29, IFNα or 
IFNγ alone did not induce IL-12p40 production by R848-stimulated monocyte-derived macrophages. 
(C) Monocyte-derived macrophages were stimulated as described for Figure 2A. The concentrations 
of IL-12p70, TNF and IL-10 were determined in supernatant by ELISA. Macrophages from 10 out of 
15 healthy individuals showed undetectable levels of IL-12p70 in response to IFNγ and R848 
stimulation. (D) Monocyte-derived macrophages were pretreated with IL-29 (100 ng/ml), IFNα (10 
ng/ml), or IFNγ (10 ng/ml) for 5h and then further stimulated with LPS or R848. The levels of IL-23 in 
supernatant were determined by ELISA. 

 

In line with previous reports,20,22-23 no modulation of the levels of R848-induced IL-12p40 was 
observed by IFNα-treated monocyte-derived macrophages, whereas IFNγ strongly enhanced 
IL-12p40 levels by macrophages upon TLR ligation (Figure 2A). Importantly, the 
enhancement of R848-induced IL-12p40 production by IL-29 was dose-dependent, which 



Chapter 7 

136 

was also observed for IFNγ (Figure 2B). However, even at relatively high IFNα 
concentrations no increase of IL-12p40 production was observed, but a mild decrease 
instead (Figure 2B). Reduced IL-12p40 production by IFNα was not due to IFNα-induced 
cytotoxicity (Supplementary Figure S2A). This demonstrates that the distinct ability of IL-29 
and IFNα to modulate the IL-12p40 levels is not the result of sub-optimal dosing of IFNα. 
Although IL-29 and IFNα regulate IL-12p40 production differently, IL-29 has similar effects as 
IFNα or IFNγ in enhancing TNF and IL-10 production by monocyte-derived macrophages in 
response to R848 stimulation (Figure 2C). Furthermore, upon R848 stimulation, the 
production of IL-12p70 was only observed by IFNγ-treated monocyte-derived macrophages 
in 5 out of 15 experiments, but not by macrophages treated with IL-29 or IFNα (Figure 2C). 
However, the production of bioactive IL-23 (heterodimer consisting of a IL-12p40 and IL-
23p19 chain) following stimulation in the presence of IL-29 reflected the observed effect on 
IL-12p40 production, which suggests that IL-12p40 production contributes to the levels of 
bioactive IL-23 (Figure 2D). In summary, IL-29 has similar effects as IFNγ, but not as IFNα, in 
augmenting IL-12p40 production by human monocyte-derived macrophages upon TLR 
ligation. 
 
IL-28A and IL-28B also enhance R848-induced IL-12p40 production by human 
monocyte-derived macrophages 
We next examined whether IL-28A and IL-28B also affected TLR-induced cytokine 
production by human monocyte-derived macrophages. As shown in Figure 3, both IL-28A 
and IL-28B were able to increase IL-12p40, TNF and IL-10 production by monocyte-derived 
macrophages in response to R848 stimulation, although the effects of IL-28A and IL-28B 
were weaker than that of IL-29. Similarly, also upon LPS stimulation, both IL-28A and IL-28B 
enhanced the TNF and IL-10 production by monocyte-derived macrophages in response 
(data not shown). These data indicate that the effects of IL-28A and IL-28B are similar as IL-
29 in monocyte-derived macrophages upon R848 stimulation, and all lead to an enhanced 
production of IL-12p40, TNF and IL-10. 
 

 
Figure 3. Similar to IL-29, IL-28A and IL-28B enhance R848-induced IL-12p40, TNF and IL-10 
production by human monocyte-derived macrophages. Monocyte-derived macrophages were 
pretreated with IL-28A, IL-28B and IL-29 (all 100 ng/ml) for 5h and then further stimulated with 
R848. The levels of IL-12p40, TNF and IL-10 in supernatants were determined by ELISA. The 
values depicted show the mean +/- SE from 7 independent experiments. 
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IL-29 enhances IFNγ-induced IL-12p40 production by monocyte-derived macrophages 
in response to R848 stimulation, whereas IFNγ-induced IL-12p40 production is 
suppressed by IFNα 
Previously, it has been reported that the combination of IL-29 and IFNγ synergistically 
inhibited HCV replication in Huh7 by inducing the expression of multiple genes, and to exert 
stronger antiviral activity than the combination of IL-29 and IFNα or the combination of IFNα 
and IFNγ.31 Based on these findings, we further examined the effect of IL-29 on IL-12p40 
production by TLR-stimulated monocyte-derived macrophages by combining IL-29 with IFNγ, 
which is also known to enhance IL-12p40 production.32  

Both IL-29 and IFNγ augmented IL-12p40 production by R848-challenged monocyte-
derived macrophages (Figure 2A, Figure 4B). However, upon R848 stimulation, IFNγ 
induced higher levels of IL-12p40 production in IL-29 pretreated monocyte-derived 
macrophages than in macrophages without IL-29 pretreatment (61 ng/ml and 35 ng/ml, 
respectively; Figure 4A). This effect was observed in IL-29 pretreated macrophages from the 
majority of healthy donors (Figure 4B). The additive effect of IL-29 and IFNγ was also 
observed for TNF production in IL-29 pretreated monocyte-derived macrophages (Figure 
4A). In addition, IL-29 and IFNγ synergistically up-regulated IL-12p40 mRNA expression in 
R848-challenged monocyte-derived macrophages (Figure 4C). Although IL-12p70 production 
was not detectable in the majority of the experiments, we found that IL-29 increased the level 
of IFNγ-induced IL-12p35 mRNA expression in monocyte-derived macrophages upon R848 
stimulation (Figure 4C). Importantly, IL-29-treated macrophages had higher levels of IL-
23p19 mRNA expression upon IFNγ plus R848 stimulation compared to macrophages that 
were not treated with IL-29 (Figure 4C). These data indicate that IL-29 can cooperate with 
IFNγ in inducing high levels of IL-12p40 by monocyte-derived macrophages. Although IFNγ 
potently induced IL-12p40 production by monocyte-derived macrophages upon R848 
stimulation, this induction of IL-12p40 by IFNγ was suppressed by IFNα pretreatment (from 
35 ng/ml to 5 ng/ml, respectively; Figure 4A), which was in line with the finding that IFNα-
pretreated macrophages had lower fold expression of IL-12p40 mRNA in response to IFNγ 
plus R848 stimulation (Figure 4C). Failure to induce IL-12p40 production by IFNγ was 
observed in IFNα-pretreated monocyte-derived macrophages in all the experiments 
performed (Figure 4B), which could not be explained by enhanced cytotoxicity after exposure 
to IFNα (Supplementary Figure S2B). This inhibitory effect of IFNα was also observed for 
TNF production (Figure 4A). These data demonstrate that IFNα potently suppress the 
responsiveness of monocyte-derived macrophages to subsequent stimulation with IFNγ upon 
TLR ligation. 

Our findings thus demonstrate that IL-29 pretreatment renders monocyte-derived 
macrophages more responsive to IFNγ stimulation, as indicated by their IL-12p40 production 
in response to R848, whereas IFNα suppresses IFNγ-induced IL-12p40 production by human 
macrophages upon TLR ligation. 
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Figure 4. IL-29 enhances, but IFNα suppresses, IFNγ-induced IL-12p40 production by human 
monocyte-derived macrophages in response to R848 stimulation. (A, B) Monocyte-derived 
macrophages were pretreated with IL-29 or IFNα for 5h and then further stimulated with IFNγ in 
combination with R848. IL-12p40, TNF and IL-23 production were determined by ELISA. The values 
depicted show representative data from 7 independent experiments. (C) Monocyte-derived 
macrophages were pretreated with IL-29 or IFNα for 5h and then further stimulated with IFNγ in 
combination with R848 for another 5h. IL-12p40, IL-12p35 and IL-23p19 mRNA expression in 
macrophages were quantified by RT-PCR. The values depicted show representative data from 2 
independent experiments.  

 

 
IL-10 is not involved in the differential regulation of IFNγ-induced IL-12p40 production 
by IL-29 and IFNα in human monocyte-derived macrophages upon R848 stimulation 
We previously showed that endogenous IL-10 produced by murine macrophages upon TLR 
ligation suppresses the induction of IL-12 and TNF.33 To examine whether the activity of IL-
10 is involved in the distinct regulation of IFNγ-induced IL-12p40 production by IL-29 or IFNα 
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pretreated human macrophages upon TLR ligation, we blocked the IL-10 receptor with 
antibodies.  

As shown in Figure 5, IFNγ-induced IL-12p40 levels were increased about 20-fold by 
blocking the IL-10 receptor in monocyte-derived macrophages upon R848 stimulation (from 
23 ng/ml to 471 ng/ml), indicating that IFNγ-induced IL-12p40 by R848-challenged 
monocyte-derived macrophages was strongly suppressed by endogenous IL-10. We showed 
that IL-29 treated macrophages were more responsive to IFNγ as evident by IL-12p40 
production upon R848 stimulation (Figure 4A and Figure 5 upper panel). Interestingly, the 
additive effect of IL-29 and IFNγ on human macrophages was still observed in the absence 
of IL-10 signaling as shown by IL-12p40 production (Figure 5, upper panel). IFNα-pretreated 
monocyte-derived macrophages have impaired IFNγ-induced IL-12p40 production in 
response to R848 stimulation (Figure 4 and Figure 5, lower panel). Upon IL-10 receptor 
blockade, IFNα pretreatment did not restore IFNγ-induced IL-12p40 production by monocyte-
derived macrophages (Figure 5, lower panel). These results show that IL-10 is not involved 
in the differential regulation of IFNγ-induced IL-12p40 production by IL-29 and IFNα in human 
macrophages upon R848 stimulation. 

 

 
Figure 5. IL-10 is not involved in the differential regulation of IFNγ-induced IL-12p40 production by 
IL-29 and IFNα in human monocyte-derived macrophages upon R848 stimulation. Monocyte-derived 
macrophages were pretreated with IL-29 or IFNα for 5h and then further stimulated with IFNγ and 
R848. Anti-human IL-10 receptor antibody (αIL10R, 5 µg/ml) was added to some conditions to block 
the IL-10 receptor. The IL-12p40 concentrations in supernatant were determined by ELISA. The 
values depicted show representative data from 3 independent experiments. 

 

 
Both IL-29 and IFNα up-regulate TLR8 mRNA expression in human monocyte-derived 
macrophages 
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A possible explanation for the distinct regulation of IFNγ-induced IL-12p40 production by IL-
29 and IFNα in human macrophages is a different effect of these two cytokines on TLR 
mRNA expression. As shown in Figure 6, upon incubation with IL-29 or IFNα for 5h, a 3-4 
fold increase of TLR8 mRNA expression was observed in monocyte-derived macrophages. 
The regulation of TLR7 by IL-29 or IFNα in macrophages was next investigated, since TLR7 
is also the receptor for R848. While IL-29 did not increase TLR7 mRNA expression, IFNα up-
regulated TLR7 mRNA expression in monocyte-derived macrophages by 3-fold (Figure 6). 

Since both IL-29 and IFNα up-regulated TLR8 mRNA expression, TLR expression does not 

explain our findings on the different IFNγ-induced IL-12p40 production by IL-29 and IFNα in 
macrophages.  

 
Figure 6. Both IL-29 and IFNα up-regulate TLR8 mRNA expression. Monocyte-derived 
macrophages were stimulated with medium, IL-29 or IFNα for 5h, and the mRNA expression of 
TLR7 and TLR8 were measured by real-time PCR. B cells, monocytes, and monocyte-derived DC 
were included as controls. The values depicted show representative data from 5 independent 
experiments. 

 

IL-29 enhances, but IFNα suppresses, IFNγ-induced IL-12p40 production by human 
monocyte-derived macrophages via differential regulation of IFNγR1 expression  
The regulation of TLR mRNA expression by IL-29 and IFNα could not explain that IL-29 and 
IFNα differentially affect IFNγ-induced IL-12p40 production by human macrophages. We next 
investigated whether the receptor for IFNγ (IFNγR) is differentially regulated by IL-29 and 
IFNα.  

As shown in Figure 7A, IFNγR1 expression on the membrane of monocyte-derived 
macrophages was up-regulated after incubation with IL-29 for 5h, whereas no up-regulation 
of IFNγR1 was observed in macrophages incubated with IL-28A or IL-28B for 5h. In contrast, 
down-regulation of IFNγR1 on the membrane of macrophages was observed upon IFNα 
treatment (Figure 7A). However, both IL-29 and IFNα did not affect the expression of IFNγR2 
on monocyte-derived macrophages (data not shown). These data strongly suggest that IL-29 
and IFNα alter the response of macrophages to IFNγ via distinct regulation of the expression 
of surface IFNγR1 on monocyte-derived macrophages.  
To further examine whether the additive effect between IL-29 and IFNγ also occurs in the 
absence of TLR-signaling, we investigated the effect of exposure to IL-29, IFNα and IFNγ on 
the surface expression of HLA-DR and HLA-ABC on monocyte-derived macrophages. As 
shown in Figure 7B, pre-treatment of macrophages with IL-29 did not affect the HLA-DR and 
HLA-ABC expression. However, pre-treatment of macrophages with IL-29 resulted in a 
strong upregulation of HLA-DR and HLA-ABC in response to IFNγ. These findings indicate 
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that the synergistic effect between IL-29 and IFNγ also occurs in the absence of TLR 
triggering.  
 

 
Figure 7. IL-29 and IFNα differentially regulate the surface IFNγR1 expression on monocyte-
derived macrophages. (A) Monocyte-derived macrophages were treated with IL-29, IL-28A, IL-28B, 
or IFNα for 5h and then stained with antibodies against IFNγR1. The specificity of the stainings was 
controlled with appropriate isotype antibodies. (B) Monocyte-derived macrophages were treated 
with IL-29 or IFNα for 5h and then further stimulated with IFNγ (10 ng/ml) for another 20h. Cells 
were then harvested and stained with antibodies against HLA-DR and HLA-ABC. The specificity of 
the staining was controlled with appropriate isotype antibodies. 
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Discussion 

In this study we examined whether persistent infections with HCV influences the functionality 
of monocytes in patients. We demonstrate that the response of highly purified, circulating 
monocytes to distinct TLR agonists is differentially affected between chronic HCV patients 
and healthy individuals. Reduced production of pro-inflammatory cytokines in response to 
TLR4 ligation, and augmented production upon TLR8 ligation of monocytes from chronic 
HCV patients demonstrates specific modulation of the function of monocytes in patients with 
chronic HCV infection. We further show that the differences in suppression of TLR4- and 
TLR8-induced activation as observed in chronically infected HCV patients, was likely due to 
differential responsiveness to IL-10.  
Monocytes are important players in the first-line of defense against numerous pathogens, as 
well as in initiating and controlling adaptive immunity [25]. Indeed, in HIV-1 infection, reduced 
function of mononuclear phagocytic cells results in the weaker innate immunity to bacterial 
infection [13]. In persistent HCV infections the numbers of studies examining this issue are 
limited, and the conclusions on the functionality of monocytes in patients are conflicting. 
We demonstrate that, in contrast to TLR8 ligation, triggering of monocytes from chronic HCV 
patients with TLR4 ligands resulted in lower levels of the pro-inflammatory cytokines TNF 
and IL-12p40. Interestingly, exposure of human monocytes to recombinant HIV Tat or Vpr 
proteins lead to defective responses to LPS as shown by TNF and IL-12p40 production [26-
27], whereas no information is available on the effect of exposure to these antigens upon 
TLR8 ligation. The reduced TLR4-induced responses were not simply due to lower TLR4 
levels, since TLR4 mRNA levels in monocytes were similar in chronic HCV patients as 
compared to control individuals. Importantly, our data further shows that monocytes from 
chronic HCV patients spontaneously produce higher level of IL-10 as compared with 
monocytes from healthy controls, and that serum from chronic HCV patients contains higher 
IL-10 levels than control serum. Furthermore, since also cytokine production of monocytes 
induced by TLR4 ligation is suppressed by IL-10 very efficiently, whereas this is more 
modest upon TLR8 ligation, IL-10 is a likely candidate to explain the reduced LPS responses 
of monocytes from chronic HCV patients. At present, the cell types responsible for the 
relatively high serum IL-10 levels in these patients are not known. However, some studies 
have shown that HCV encoded proteins, such as HCV core, NS3 and NS4 proteins have the 
ability to induce IL-10 production by monocytes isolated from both patients and healthy 
individuals [19, 28-33]. The importance of monocyte-derived IL-10 was further highlighted in 
a study that demonstrated that patients with self-limiting HCV infections produced 
significantly less IL-10 than chronic HCV patients [28]. Moreover, in the chronic LCMV model 
in mice, the role for IL-10 in preventing viral clearance was demonstrated in which 
therapeutic administration of an antibody that blocks the IL-10R restored T-cell function and 
eliminated LCMV infection [34]. 
In contrast to activation via TLR4, we demonstrated that monocytes from chronic HCV 
patients are more responsive to TLR8 ligation than monocytes from healthy individuals by 
producing cytokines. Similar to healthy individuals, also monocytes from chronic HCV 
patients were unresponsive to pure TLR7 ligands (data not shown). The enhanced response 
to TLR8 ligation could not be fully explained by elevated TLR8 mRNA expression in 
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monocytes from chronic HCV patients in our patient group, as has been reported before [35-
36]. Interestingly IL-10 has less effect on TLR8 signalling in suppressing TNF and IL-12p40 
production, since the TLR8 pathway is only weakly sensitive to the suppressive effects of IL-
10, even at high concentrations. Also, serum from chronic HCV patients has no effect in 
increasing IL-10 production by monocytes after triggering of TLR8 signalling pathway. At 
present, it is unknown why IL-10 is able to inhibit the TLR4, but not the TLR8-induced 
responses. One possibility is that IL-10 signalling events may differentially affect the MyD88 
and TRIF signalling pathways, since the MyD88-independent TRIF pathway, is activated 
upon TLR4 ligation, but not TLR8 ligation [37]. To further add to the complexity, we observed 
that upon combined triggering of TLR4 and TLR8, TLR8 ligation was able to overcome the 
inhibitory effect of IL-10 on TLR4 stimulation (Supplementary Figure S1B). Detailed signalling 
studies need to be conducted in order to delineate the underlying mechanisms.  However, 
the specific inhibition by IL-10 of responses induced by LPS, but not R848 in vitro, is 
reflected by the selective inhibition of the TLR4 pathway as observed in chronic HCV 
patients. 
In contrast to our findings, enhanced LPS-induced TNF production by monocytes from 
chronic HCV patients was observed by some groups [14, 18, 20], whereas others - similar to 
our findings - did not [17, 24]. Besides the method of purification, the choice of medium and 
serum, and the read-out assay, also the specific LPS preparation used to stimulate 
monocytes is important as we demonstrate in this study. Great differences in TNF and IL-
12p40 production by healthy monocytes stimulated with ultrapure LPS and the commonly 
used LPS preparations suggest that contaminants present in some LPS preparations 
activate monocytes, which may explain, at least in part, the opposing findings in literature. 
Although it is well-known that many preparations of LPS contain low amounts of TLR2 
ligands [38], we observed that stimulation with Pam3CSK4 resulted in similar levels of TNF 
produced by monocytes from patients and healthy controls (data not shown). However, 
triggering by a different TLR2 ligand present in the LPS preparations, or synergistic triggering 
of the TLR2 and TLR4 pathways may be important in this. 
Together, our results indicate that, by differentially affecting TLR4 and TLR8 pathways, IL-10 
may mediate highly selective modulation of the function of monocytes observed in chronic 
HCV patients. This suggests that there is no overall increased susceptibility to pathogens, 
but a specific inhibition of the functionality of TLR4 signaling pathway in monocytes, which is 
likely mediated by IL-10. 
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Supplementary Figures 

 
Supplemntary Figure 1. Both monocytes and monocyte-derived dendritic cells did not respond to IL-29 with 
different pretreatment periods as well as different doses of IL-29 were evaluated. (A). Monocytes, monocyte-
derived DC and monocyte-derived macrophages were pretreated with IL-29 (100ng/ml) for the indicated periods 
and then further stimulated with R848 for 24h. TNF production was measured by ELISA.  IL-29 alone did not 
induce TNF production by all three types of cells. The values depicted show representative data from 2 
independent experiments.  (B). Monocytes, monocyte-derived DC and monocyte-derived macrophages were 
pretreated with IL-29 at indicated concentrations for 5h and then further stimulated with R848 for 24h. TNF 
production was measured by ELISA.  IL-29 alone did not induce TNF production by all three types of cells. The 
values depicted show representative data from 2 independent experiments. 
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Supplementary Figure S2. The inhibitory effect of IFNα on IL12p40 production by monocyte-derived 
macrophages was not due to IFNα-induced cytotoxicty. (A) Monocyte-derived macrophages were pretreated with 
IFNα for indicated concentrations and further stimulated with R848 for 5h. Cells were then harvested and checked 
for viability with 7-AAD. The level of IL-12p40 was measured in the supernatants from cells that were stimulated 
for 24h. (B) Monocyte-derived macrophages were pretreated with IFNα for indicated concentrations and further 
stimulated with R848 plus IFNγ for 5h. Cells were then harvested and checked for viability with 7-AAD. The level 
of IL-12p40 was measured in the supernatants from cells that were stimulated for 24h. 

 

 

 
Supplementary Figure S3. Blood myeloid DC did not respond to IL-29. CD14+ and CD19+ cells were depleted 
from PBMC.Blood myeloid DC were then purified using DBCA-1-PE and anti-PE-microbeads (Miltenyi). The purity 
of BDCA1+ myeloid DC was higher than 95%. Myeloid DC were pretreated with IL-29 for 5h, stimulated with 
polyIC for 24, and IL-12p40 levels were measured in supernatant by ELISA. The data depicted show 
representative data from 3 independent experiments. 
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Worldwide, chronic HCV infection causes major health problems. Currently, the underlying 
mechanisms for the chronicity of HCV infection are still not fully understood. Besides 
mutational escape, HCV is generally believed to be able to induce immune suppressive 
mechanisms to evade from host immunity, such as the induction of IL-10 production, the 
functional impairment of APC (reviewed in Chapter 2) and the increase of the number of 
regulatory T cells. Human monocytes, containing at least two subpopulations: CD14+CD16- 
and CD16+CD14- monocytes [1-4], are important players in the first-line of defense against 
numerous pathogens, as well as in initiating and controlling adaptive immunity [1]. Currently, 
the immune status of human monocytes in chronic HCV patients is still not clear.  

Due its potent antiviral effects, IFNα forms the backbone of current therapy for chronic 
HCV patients, and to a lesser extent for chronic HBV infection. However, only about 50% of 
chronic HCV and HBV patients respond to IFN-based therapy. It has been suggested that 
the activity of type I IFN on APC is weakened via modulation of the immunosuppressive 
cytokine IL-10. However, the effect of type I IFN on IL-10 production by immune cells is still 
under debate, and how IL-10 signaling is affected by type I IFN is not clear. IFNα was shown 
to be able to enhance IL-10 production by human monocyte-derived DC in response to LPS 
stimulation [5], and DC derived from human monocytes in the presence of IFNα or IFNβ 
produced high levels of IL-10 [6-9]. Furthermore, human monocyte-derived macrophages 
when primed by IFNα produced a higher level of IL-10 in response to LPS or R848 
stimulation [10]. However, conflicting data was reported about the effect of IFNα on IL-10 by 
human monocytes. IFNα was reported to enhance IL-10 production by monocytes in 
response to TLR stimulation [11-12], whereas other group showed that IFNα inhibited IL-10 
production by monocytes in response to TLR stimulation [13-14]. Moreover, how IFNα 
regulates IL-10 signal events is not well studied either.  

Studies to find alternative therapy for chronic HCV patients are currently active, due to 
many side-effects and the relatively low response rates of the standard IFN-based therapy in 
some patients. In addition to the standard IFNα-based therapy, different TLR7/8 agonists, 
which are potent inducers of endogenous IFNα, for the treatment of chronic HCV patients are 
under investigation. Furthermore, polymorphisms close to the IL-28B gene that are 
associated with disease progression and the response to IFNα-based therapy have sparked 
interest in type III IFN [15-18]. Clinical studies are being conducted to examine the benefits of 
treatment with pegylated IL-29 [19]. However, the immunoregulatory effect of type III IFN is 
currently poorly understood. 

 

Differential responsiveness of CD14+CD16- and CD16+CD14- 
monocytes to TLR4 and TLR8 agonists 
Both CD16+CD14- and CD14+CD16- monocytes express pathogen-recognition receptors, 
such as TLR, which recognize microorganisms, resulting in the production of cytokines and 
chemokines [1]. Monocytes are important in the defense of bacterial pathogens [1, 20], as 
partially evidenced by the factors that monocytes are highly responsive to TLR4 and TLR2 
agonists (Chapter 3). However, how monocytes respond to viral-derived pathogens is still 
not clear. In Chapter 3 and 4, we studied in detail the responsiveness of human 

CD14+CD16- and CD16+CD14- monocytes to LPS, a TLR4 agonist and R848, a TLR8 



Chapter 8 

152 

agonist. While TLR4 recognizes bacterial derived LPS, TLR8 recognizes the single-stranded 
RNA (ssRNA), which is present in many viruses, including HCV. 

 
 

Figure 1. Recognition of bacterial- and viral-derived pathogens by human monocytes. While 
human monocytes are highly activated by bacterial derived pathogens via TLR2 and 4, they can 
also recognize viral-derived RNA via intracellular receptors, such as TLR8 and RIG-I. 

 

We found that CD14+CD16- monocytes were highly activated by both LPS and R848, 
as demonstrated with high level of TNF, IL-12p40 production (Chapter 3). Interestingly, 
CD16+CD14- monocytes were more responsive to TLR8 ligation by their production of TNF 
and IL-12p40 as compared to CD14+CD16- monocytes, while CD16+CD14- monocytes were 
less responsive to TLR4 ligation than CD14+CD16- monocytes (Chapter 4). These findings 

suggest that in addition to their well-known function in defense to bacterial invasions, 
monocytes may also play a role in some viral infections (Figure 1). Indeed, it is reported that 

human CD16+CD14- monocytes patrol and sense nucleic acids and viruses via TLR7/8 
receptors [21]. In addition to TLR8, RIG-I expressed in human monocytes, can also 
recognize RNA oligonucleotides to produce IFNα [22]. Interestingly, compared with 
CD14+CD16- monocytes, CD16+CD14- monocytes may be specialized to recognize RNA 
viruses, since they highly respond to TLR8 agonists, but not TLR4 agonists. 

Role for IL-10 in modulating the function of monocytes isolated 
from chronic HCV patients 
IL-10 has been suggested as one of the mechanisms that favor the development of chronic 
HCV infection. Indeed, a higher systemic level of IL-10 was found in our chronic HCV 
patients (Chapter 3), which is supported by previous reports [23-24]. Interestingly, we found 
that CD14+CD16- monocytes isolated from chronic HCV patients had higher levels of 
spontaneous IL-10 production and also accordingly higher levels of IL-10 mRNA expression, 
as compared with CD14+CD16- monocytes isolated from healthy individuals. This is 
important, since monocytes are the main producers of IL-10 in peripherial blood in response 
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to LPS or R848 stimulation (Chapter 3 and 5). Furthermore, serum isolated from chronic 

HCV patients had the ability to enhance IL-10 production by CD14+CD16- monocytes upon 
LPS stimulation (Chapter 3). HCV mainly infects hepatocytes, but not monocytes in the 

periphery [25]; we thus hypnotized that HCV might have an indirect effect on the function on 
monocytes via IL-10. As expected, we found that LPS-induced TNF and IL-12p40 production 
by monocytes isolated from chronic HCV was suppressed, since we observed that the TLR4 
pathway in CD14+CD16- monocytes was very sensitive to IL-10. However, TLR8-derived 
TNF and IL-12p40 was not inhibited which was explained by our finding that the TLR8 
pathway in CD14+CD16- monocytes was less sensitive to IL-10 as compared with the TLR4 
pathway (Chapter 3). Our results indicate that, by differentially affecting the TLR4 and TLR8 
pathways, IL-10 may mediate highly selective modulation of the function of monocytes 
observed in chronic HCV patients. This suggests that there is no overall increased 
susceptibility to pathogens, but a specific suppression of the functionality of the TLR4 
signaling pathway in monocytes, which is, at least partly, mediated via IL-10. Although the 
function of CD14+CD16- monocytes isolated from chronic HCV patients is selectively 
impaired in TLR pathways, the response of human CD16+CD14- monocytes to TLR ligation 
was weakly modulated as a consequence of persistent infection with HCV (Chapter 4). 

Therefore, in monocytes from chronic HCV patients, the TLR4 pathway, which recognizes 
bacterial pathogens, is impaired in CD14+CD16- monocytes, but the TLR8 pathway, which 
recognizes viral-derived ssRNA, is not affected in both CD14+CD16- and CD16+CD14- 

monocytes (Figure 2).  

 

Figure 2. Monocytes from chronic HCV patients are impaired in bacterial recognition the TLR4 
pathway, but not in the TLR8 pathway, which is able to recognize viral-derived ssRNA. In chronic 
HCV patients, the TLR4 pathway, which sense bacterial pathogen, is impaired in CD14+CD16- 
monocytes possibly via IL-10, but the TLR8 pathway, which is able to recognize ssRNA, is not 
impaired. The response to TLR ligation of human CD16+CD14- monocytes is weakly modulated as 
a consequence of persistent infection with HCV. 

Indirect modulatory effects of HCV on human APC 
The functional modulation of human APC by HCV has been observed (Chapter 2) despite 

the fact that HCV mainly infects liver hepatocytes, but not human monocytes nor DC. This 
indicates that HCV infection may induce indirect mechanisms to affect the function of 
peripheral APC (Figure 3). Indeed, we have shown in Chapter 4 that chronic HCV infection 

elevates systemic IL-10 levels as well as increases TLR-induced IL-10 production by 
monocytes, and subsequently affects the function of monocytes via IL-10, and possibly other 
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immune cells. Furthermore, it is reported that other cytokines, such as IFNγ, MIP-1β, are also 
induced by chronic HCV infections and affect the function of human APC [26-27]. In addition 
to cytokines, HCV encoded proteins, such as core, NS3 etc., have reported to have immune 
modulatory effects on human APC [28-31]. In the liver, similar indirect effects via cytokines or 
HCV proteins could be speculated during chronic HCV infection. Interestingly, it has been 
suggested by in vitro studies [32] that the function of liver APC could be impaired by the 
debris from HCV-infected apoptotic hepatocytes, despite liver APC are not directly infected 
by HCV. 

 

Figure 3. Hypothesized indirect modulatory effects of HCV on liver and peripheral APC. During 
chronic HCV infection, HCV induces apoptosis in liver hepatocytes and the apoptotic debris and 
the viral encode proteins could impair the function of liver APC. The debris of apoptotic and the 
viral components may circulate into the periphery and affect the function of immune cells in the 
blood. 
 
 

Therefore, during chronic HCV infection, HCV-infected liver hepatocytes may slowly 
undergo apoptosis, as indicated by the higher ALT levels in chronic HCV patients. Liver APC 
could be exposed to the apoptotic debris as well as the viral components and then be 
functionally impaired. It could be speculated that the debris of apoptotic and the viral 
components may circulate into the periphery and affect the function of immune cells in the 
blood (Figure 3). 

Type I and III IFN priming increase the sensitivity of human 
monocytes and macrophages to IL-10  
IFNα is well known for its antiviral and immunomodulatory effects. In this, IFNα has been 
shown to increase TLR-induced IL-10 production by human monocyte-derived DC and 
macrophages [5-10] and mouse bone marrow derived macrophages [33]. Previously, 
conflicting data was reported about the effect of IFNα on IL-10 by human monocytes, which 
are important IL-10 producers in human leukocytes. IFNα was reported to enhance IL-10 
production by monocytes in response to TLR stimulation [11-12]; whereas other groups 
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showed that IFNα inhibited IL-10 production by monocytes in response to TLR stimulation 
[13-14]. In Chapter 5, we aimed to settle these controversies about the effect of IFNα on 
monocyte-derived IL-10 production by using several different techniques. We showed that 
IFNα decreased the percentages of TLR-induced IL-10-producing monocytes in human 
PBMC and also inhibited IL-10 production by purified monocytes in response to TLR ligation. 
Interestingly, despite IFNα-mediated inhibition of IL-10 production by human monocytes, 
TLR-induced IL-12p70 secretion by IFNα-primed cells was strongly controlled by IL-10. We 
observed that priming of monocytes with IFNα or IFNβ up-regulated membrane IL-10 
receptor 1 (IL-10R1) expression, which may –at least partly- be responsible for enhanced IL-
10 induced phosphorylation of STAT3 (Figure 4). Moreover, type I and III IFN potentiated IL-
10 signalling in a comparable manner in macrophages, indicating a more general effect of 
IFN on modulating the activity of IL-10 in APC. In summary, in this study, we demonstrated 
that one of the consequences of priming of human APC with type I and III IFN was to 
promote the cells’ sensitivity to IL-10 rather than to promote IL-10 production. 

 

 
Figure 4. IFNα pretreatment enhances IL-10 signal events via up-regulating membrane IL-10R 
expression and enhancing IL-10-induced p-STAT3.  

 

It is well known that IFNα can activate multiple signaling pathways and it is possible 
that the promotor of the gene that encodes IL-10R1 is regulated by one of the ISGs.  This 
may be examined by future studies on the genetic structure of the IL-10R1 promotor. The up-
regulation of IL-10R1 by IFNα may be sufficient to enhance IL-10 downstream signal events, 
as observed by enhanced IL-10-induced p-STAT3. However, it might also be possible that 
IFNα directly provides some molecules, such as p-JAK1, p-TYK2 or p-STAT3 for IL-10/IL-
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10R complex, since these molecules are also involved in IL-10 signaling pathways. 
Interestingly, the IL-10/IL-10R1 complex is similar to the IFNγ/IFNγR complex [34]; and it has 
been shown that low concentrations of IFNα can provide p-STAT1 for the IFNγ/IFNγR 
complex [34]. Thus, it is possible that the downstream molecules in the IFNα pathway can 
also be recruited by the IL-10/IL-10R1 complex (Figure 5). 

 
Figure 5. The possible explanations for the findings that IFNα pretreatment enhances the IL-10 
signal events. (1) the IL-10R promoter might be one of the targets of IFNα signaling (1); IFNα-
induced molecules, such as p-JAK1, p-TYK2 and p-STAT3 could be directly recruited by the IL-
10/IL-10R complex (2, 3) 
 

Due to the severe side-effects of IFNα-based therapy for chronic HCV patients, we 
were interested to study the effects of an oral TLR7 agonist, ANA773, which is a potent 
inducer of endogenous IFNα, in the treatment of chronic HCV patients in Chapter 6. 
Importantly, monocytes do not express TLR7, which means that monocytes will not be 
activated by ANA773. The administration of ANA773 resulted in transiently reduced numbers 
of mDC and pDC in blood. Interestingly, reduced pDC numbers as well as increased serum 
IFNα and IP-10 levels were observed only in virological responders (≥1 log10 IU/mL reduction 
of HCV RNA levels upon ANA773 treatment), but were absent in virological non-responders. 
In vitro stimulation of PBMC from virologic responders showed a high frequency of IFNα-
producing pDC upon stimulation in vitro with ANA773, whereas no IFNα was induced in non-
responders. These findings indicate that the efficacy of viral load decline in chronic HCV 
patients with the TLR7 agonist ANA773 is likely due to intrinsic differences in the induction of 
endogenous interferons and ISG products (IFNα and IP-10) upon TLR7 ligation. 

The regulatory effect of IL-29 on IL-12p40 production by human 
macrophages 
Type III IFN including IL-28A (IFNλ2), IL-28B (IFNλ3) and IL-29 (IFNλ1), were first uncovered 
in 2003 [35-36]. Since then, the research was mainly focused on the antiviral activities of 



General discussion 

157 

these cytokines. Type III IFN have been shown to possess potent antiviral activities via 
mechanisms similar to IFNα despite triggering of a unique IL-28 receptor pair which is distinct 
from the IFNα receptor [37-39]. In vitro, IL-29 has been shown to be able to suppress the 
replication of HCV in human hepatocyte cell lines [40-42]. The current IFNα-based standard 
therapy for chronic HCV patients has many side-effects and a limited effectiveness in a 
group of patients. Due to the restricted expression of IL-28RA, type III IFN become a 
potential alternative medicine for chronic HCV patients. Clinical studies are being conducted 
to examine whether pegylated-IL-29 holds promise for future therapeutic use in the treatment 
of chronic HCV patients.[19]. The interests in type III IFN is further inspired by many recent 
findings that polymorphisms close to the IL-28B gene are associated with disease 
progression and response to IFNα-based therapy for chronic HCV patients. The antiviral 
activities of type III IFN have been extensively studied [42-46], however, little is known about 
the effect of type III IFN on innate immune cells and their immunoregulatory activity.  

 
 

Figure 6. IL-29 and IFNα differentially regulate IL-12p40 production by human monocyte-derived 

macrophages. IFNα has a weak inhibitory effect on TLR8-inudeced IL-12p40 production by 
macrophages, whereas IFNα potently inhibits IFNγ-induced IL-12p40 by macrophages in response 
to TLR8 stimulation. In contrast, IL-29 enhances TLR8-induced IL-12p40 production as well as 
IFNγ-induced IL-12p40 by macrophages upon TLR8 stimulation. 

 
We have shown in Chapter 7 for the first time that IL-29 can increase TLR-induced IL-

12p40 production by human monocyte-derived macrophages. Furthermore, IL-29-treated 
macrophages were more responsive to IFNγ, since IL-29 enhanced IFNγ-induced IL-12p40 
and TNF production by macrophages upon R848 stimulation. However, IFNα suppressed 
IFNγ-induced IL-12p40 and TNF production by human macrophages (Figure 6). The 
differential effects of IL-29 and IFNα on the responsiveness of macrophages to IFNγ could 
not be explained by an effect on TLR7 or TLR8 mRNA expression, or by altered IL-10 
signaling. However, we demonstrated that IL-29 up-regulated, whereas IFNα down-
regulated, the surface expression of the IFNγR1 on macrophages, thereby resulting in 
differential responsiveness of TLR-challenged macrophages to IFNγ. Our findings on the 
differences between IFNα and IL-29 in modulating TLR-induced cytokine production by 
macrophages may further contribute to understand the role of interferons in regulating 
immunity to pathogens. 
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Figure 7. IL-29 and IFNα may co-operate to induce a Th1 response during bacterial or viral 
infections. IFNα favors the Th1 responses by enhancing IL-12p70 production by APC and amplifies 
the Th1 responses via increasing IFNγ production by Th1 cells in the presence of APC; IL-29 
activates cytokine production by macrophages and also enhances the responses of macrophages 
to IFNγ. Also, type III IFN  reduces IL-13 production by ConA-driven Th2 cells [51] and inhibits 
GATA3 expression in human naïve and memory T cells [52]. 

 

Despite the finding that IFNα inhibits IL-12p40 production by macrophages, IFNα is 
shown to potently enhance IL-12p70 production by both human and mouse monocytes and 
DC [47], which indicates that IFNα favors Th1 response upon bacterial and viral infections, 
since the level of IL-12p70, but not IL-12p40, is important for promoting a Th1 response. 
Also, IFNα can increase IFNγ production by Th1 cells indirectly via APC [48-50], showing 
that IFNα can further amplify Th1 responses. However, IL-29 is able to activate human 
macrophages and also enhances the responses of macrophages to IFNγ. Interestingly, type 
III IFN  have no effect on DC and monocytes, and also they have no direct effect on Th1 
responses, yet it has been reported that IL-29 is able to reduce IL-13 production by ConA-
driven Th2 cells [51] and inhibits GATA3 expression in human naïve and memory T cells 
[52]. Therefore, IFNα and type III IFN, induced during bacterial and viral infections, might 
together favor the Th1 responses (Figure 7). 

IFNα has been shown to have an effect on human liver Kupffer cells (KC) and play an 
important role in viral infection in the liver. We have found that IL-29 has a regulatory effect 
on human monocyte-derived macrophages, and we are interested to translate our in vitro 
findings on IL-29 to processes operational in the liver of chronic HCV patients. The future 
research will focus on liver KC. Since the SNPs close to IL-28B gene are associated with the 
IFNα-based therapy, it is also very interesting to study the cross-talk between IFNα and type 
III IFN in human liver. 
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Summary 

The consequences of chronic infection with the HCV on immunity to distinct pathogens are 
not fully appreciated despite the potent modulatory effects of HCV on the immune system. 
Our research shows that there is no overall increased susceptibility to pathogens, but a 
specific suppression of the functionality of TLR4 signaling pathway in CD14+CD16- 
monocytes from patients chronically infection with HCV, which is, at least partly, mediated via 
IL-10 either present in the serum of the patients or produced by monocytes. Different from 
CD14+CD16- monocytes, the function of CD16+CD14- monocytes is only minimally altered as 
a consequence of the persistent HCV infection, indicating no roles for CD16+CD14- 
monocytes in HCV pathogenesis. 

Type I IFN form the backbone of current therapy for chronic HCV patients, and to a 
lesser extent for chronic HBV infection. However, only about 50% of chronic HCV and HBV 
patients respond to IFN-based therapy. We demonstrated that one of the effects of type I and 
III IFN on human APC is to promote the cells’ sensitivity to IL-10. These findings suggest that 
IFNα also acts as a foe during infections or IFN-based therapy for chronic HCV patients due 
to its indirect immunosuppressive capacities on immune cells, and modulation of IL-10 
signaling may improve the outcome of the standard IFN-based therapy for chronic HCV 
patients.  

Type III and I IFN were previously shown to induce similar antiviral signaling pathways 
via different receptors. However, the effects of type III IFN on immune cells were not 
completely appreciated. Our research reports for the first time that type III and I IFN differ in 
the regulation of IL-12p40 and IL-23 production by TLR-activated human macrophages. 
These findings on the differences between type I and III IFN in modulating TLR-induced 
cytokine production by macrophages may further contribute to understand the role of IFNs in 
regulating immunity to pathogens as well as the therapy for patients with viral hepatitis.   
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Samenvatting 

De gevolgen van chronische HCV infectie voor de immuniteit tegen verschillende 
ziekteverwekkers wordt niet volledig naar waarde geschat ondanks de krachtige 
modulerende effecten van HCV op het immuunsysteem. Ons onderzoek laat zien dat de 
vatbaarheid voor ziekteverwekkers in het algemeen niet verhoogd is, maar er een specifieke 
onderdrukking plaats vindt van de TLR4 signaaltransductie route in CD14+CD16- monocyten 
van patiënten die chronisch geïnfecteerd zijn met HCV. Deze onderdrukking wordt, in ieder 
geval gedeeltelijk, tot stand gebracht door IL-10 dat aanwezig is in het serum van de 
patiënten of geproduceerd wordt door monocyten. In tegenstelling tot CD14+CD16- 

monocyten is de functie van CD16+CD14- monocyten slechts minimaal beïnvloed door de 
chronische HCV infectie, hetgeen er op duidt dat er geen rol is weggelegd voor CD16+ CD14- 
monocyten in de HCV pathogenese. 

IFNα vormt de basis van de huidige therapie voor chronische HCV patiënten, en in 
mindere mate van de therapie voor chronische HBV patiënten. Echter, slechts 50% van de 
chronische HCV en HBV patiënten reageren op deze op IFN gebaseerde therapie. Wij 
hebben aangetoond dat een van de effecten van type I en III IFN op humane antigeen-
presenterende cellen is het bevorderen van de gevoeligheid van deze cellen voor IL-
10. Deze bevindingen suggereren dat IFNα ook een nadelig effect kan hebben op de 
immuunrespons tijdens infecties of tijdens de op IFN gebaseerde therapie voor chronische 
HCV patiënten, als gevolg van de indirecte immuunsuppressieve werking op immuuncellen. 
Derhalve zou modulatie van de IL-10 signaaltransductie route mogelijk de uitkomst kunnen 
verbeteren van de op IFN gebaseerde standaard therapie voor chronische HCV-patiënten.  

Van Type III en I IFN werd eerder aangetoond dat ze dezelfde antivirale 
signaaltransductie routes induceren via verschillende receptoren. De effecten van Type III 
IFN op immuuncellen zijn echter nog niet volledig onderkend. Ons onderzoek laat voor het 
eerst zien dat Type III en I IFN verschillen in de regulatie van IL-12p40 en IL-23 productie 
door TLR geactiveerde humane macrofagen. Dit verschil tussen Type I en III IFN in het 
moduleren van TLR-geïnduceerde cytokine productie door macrofagen kan verder bijdragen 
aan de kennis over de rol van IFN in zowel immuunregulatie tegen pathogenen als de 
therapie voor patiënten met virale hepatitis. 
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