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an anterior Morgagni type (about 27% of the cases) and a 
central hernia, septum transversum type (about 2–3% of 
the cases). Eighty-five percent of the hernias occur on the 
left side, 13% on the right and only 2% are bilateral [re-
viewed in  2–4 ]. Children with a CDH suffer from a sub-
stantial amount of morbidity and mortality due to the 
associated abnormal pulmonary development resulting 
in two clinical problems: pulmonary hypoplasia (PH) 
and persistent pulmonary hypertension. Both conditions 
are present to a variable extent in patients with CDH and 
despite the fact that recent progress in the care of these 
children has resulted in survival rates of up to 90% in 
some tertiary-care centers, these measures have not led to 
a lower morbidity  [5] . However, due to the absence of suf-
ficient lung-protective strategies, most of the newer treat-
ment modalities have replaced mortality with a higher 
morbidity. The problem with these new treatment mo-
dalities such as high-frequency oscillation and/or inhaled 
nitric oxide and extracorporeal membrane oxygenation, 
is that they are designed for treating the sequelae of CDH, 
PH and persistent pulmonary hypertension and do not 
contribute to the prevention of these conditions. More-
over, prevention is not possible without a sound under-
standing of the etiology and pathogenesis of CDH. Es-
sential elements required for a better understanding of 
this anomaly, notably how the different clinical problems 
relate to each other, are still lacking. A basic understand-
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 Abstract 

 Congenital diaphragmatic hernia (CDH) occurs in 1 in 3,000 
newborns. Mortality and morbidity are due to the amount 
of pulmonary hypoplasia (PH), the response on artificial ven-
tilation and the presence of therapy-resistant pulmonary 
 hypertension. The pathogenesis and etiology of CDH and its 
associated anomalies are still largely unknown despite all re-
search efforts over the past years. Several animal models 
have been proposed to study CDH. In this review we com-
pare surgical, pharmacological and transgenic models, and 
discuss their strengths and limitations to study PH. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Congenital diaphragmatic hernia (CDH), a develop-
mental defect of the diaphragm, has a prevalence of 1 in 
2,000–3,000 newborns and accounts for approximately 
8% of the known major congenital anomalies  [1] . In hu-
mans, three different types of hernia can be distinguished: 
a posterolateral Bochdalek type (about 70% of the cases), 
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ing of how a CDH arises together with PH and persistent 
pulmonary hypertension is fundamental in our quest for 
new answers on how to protect these children from the 
sequelae of this anomaly. Furthermore, it may aid in find-
ing ways to modulate the natural course in a prenatally 
diagnosed baby in the near future  [6] .

  Animal models available to study CDH include a sur-
gical model in the rabbit and sheep, a pharmacological 
(nitrofen) model in the rat and mouse, and genetic (knock-
out) mouse models. In this review we will describe these 
three models and specifically focus on PH, address their 
differences and discuss their relevance to human CDH.

  Surgical Models 

 One of the hypotheses concerning the pathogenesis of 
PH in CDH is that it results from the intrathoracic her-
niation of the abdominal viscera, thereby compromising 
pulmonary development. Fetal breathing movements are 
impaired and, therefore, normal development of the lungs 
is hampered. Based on this idea, the first surgical animal 
models were created to study both lung pathogenesis and 
rescue options. The most commonly used surgical mod-
els use sheep and rabbits.

  The sheep model was introduced by Delorimier et al. 
 [7]  in 1967. The hernia is surgically created at gestational 
days 72–75 (term is 145–149 days). The abdominal bowel 
is positioned into the chest to optimally mimic human 
CDH. Gestational days 72–75 in sheep are equivalent to 
a gestational age of 10 weeks in humans. This is the pseu-
doglandular stage of lung development: the moment of 
pleuroperitoneal canal fusion during diaphragmatic de-
velopment  [8] . Later, a similar surgical model was devel-
oped in rabbits. Advantages of the rabbit model over the 
sheep model are its shorter gestational period (term is 31 
days with the hernia created at day 23), the larger litter 
size, easy availability and lower costs  [9, 10] .

  Surgical models are mainly suitable to investigate in-
terventional strategies in CDH. Examples of investigated 
interventions are administration of corticosteroids, in 
utero repair of the diaphragmatic defect and fetal trache-
al occlusion or a combination of the two  [11, 12] . In utero 
repair has been attempted with either primary closure of 
the defect by using a patch (immediate reduction) or sec-
ondary closure by using the slow ‘silo’ reduction tech-
nique in which the opening gradually reduces as the fetus 
grows  [13–15] . After successful in utero repair of induced 
CDHs in animal models, including nonhuman primates, 
Harrison et al.  [14]  performed the first human surgical 

repair in utero. Unfortunately, it quickly became clear 
that there was no improvement in survival and, more-
over, an increase in premature delivery was observed. 

  Later, tracheal ligation or clipping was developed with 
the aim to gradually reposition the abdominal viscera 
back into the abdomen  [16–18] . The rationale was based 
on the observation that children with a prenatal airway 
obstruction have hyperplastic lungs  [19] . Preventing lung 
fluid efflux exerts a build-up pressure in the thoracic cav-
ity that repositions the abdominal viscera back in the ab-
domen. Di Fiori et al.  [17]  demonstrated that tracheal li-
gation reversed the effects of surgically induced PH in 
fetal sheep. Unfortunately, the results of human trials on 
this ex-utero intrapartum treatment technique with clip-
ping were disappointing even when a minimally invasive 
approach was used. Again premature delivery appeared 
to be the problem  [20–22] . Later the ‘plug the lung until 
it grows’ method was developed in lambs. Endoscopical-
ly, an inflatable balloon is inserted through the fetal 
mouth in the trachea through a catheter, which then is 
filled with saline and kept in place for several days  [23–
28] . A tracheal occlusion trial in humans in North-Amer-
ica demonstrated no differences in survival when com-
pared to controls. The authors blamed this on an im-
provement in survival in the control group due to 
increased care in a specialized center  [22] . However, 
Deprest et al.  [29, 30]  stated that a great part of the en-
rolled patients were likely to have survived without treat-
ment based on the ‘lung area to head circumference ratio’ 
risk assessment. Exclusively, the most severe CDH cases 
were enrolled in a European study and underwent the fe-
toscopic endoluminal tracheal occlusion (FETO) proce-
dure. This study demonstrated up to 64% survival in 
comparison to 8% survival of nontreated comparable 
CDH patients, and thus appeared to be very promising 
 [29, 31–33] . The same group demonstrated similar results 
in a more homogeneous group a year later  [34] . Prema-
ture rupture of the membranes, with the risk of prema-
ture delivery, appeared to be a common complication, but 
in a more recent study it was shown that there was an in-
crease to 75% of deliveries after 34 weeks when FETO was 
performed due to improved experience. The most recent 
publication demonstrated a survival rate of 50%, with a 
higher neonatal survival with prenatal balloon removal 
in comparison to perinatal removal  [33] . It was also dem-
onstrated that lung volume before and lung response af-
ter FETO are important survival predictors  [35, 36] . At 
this moment, the FETO task force is working on permis-
sion to start a randomized controlled trial to better vali-
date these preliminary results  [33, 37] .
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  Tracheal occlusion in surgical models has not only 
been shown to improve PH, but pulmonary vascular ab-
normalities also benefit from this procedure. For in-
stance, tracheal occlusion studies in fetal sheep with a 
surgically induced diaphragmatic hernia demonstrated 
thinning of the pulmonary artery, correction of the ab-
normal muscularization of pulmonary arterioles, and a 
decrease in vessel resistance in the left pulmonary artery 
with maternal hyperoxia as seen in normal fetal sheep at 
term  [38–40] . Similar positive effects of tracheal occlu-
sion on pulmonary vascular development have been 
demonstrated in the surgical rabbit model  [28] . Both sur-
gical models are useful to study pulmonary vascular ab-
normalities in CDH  [41–43] . 

  Surgical models are based on a surgical intervention 
making a diaphragmatic defect in fetal rabbits and sheep 
 [44, 45] . This CDH model has proven especially useful in 
investigating interventional therapies such as the admin-
istration of corticosteroids,  in utero  repair of the dia-
phragmatic defect and tracheal occlusion  [46, 47] . Unfor-
tunately, the diaphragmatic defect is created relatively 
late in gestation and certain pulmonary changes seen in 
human CDH might have occurred prior to this time. 
Therefore, no information about the cause and early 
pathogenesis of the lung hypoplasia can be obtained with 
this model. Moreover, it is a uni-hit lung hypoplasia
model while evidence suggests that a dual-hit might be 
responsible for the hypoplasia  [48] . On top of that, a lot of 
the other associated anomalies (such as cardiac anoma-
lies) cannot be studied in this model. 

  In summary, surgical animal models are useful in in-
vestigating interventional therapies, but are less instruc-
tive in studying the etiology and pathogenesis of CDH. 
Interventional studies in this model have resulted in the 
incorporation of new prenatal techniques in human fe-
tuses, with very promising results so far. 

  Nitrofen Model 

 The nitrofen model has been used for the past two de-
cades to investigate the anomalies in CDH. Original-
ly, nitrofen (2,4-dichlorophenyl- p -nitrophenyl ether) was 
used as a herbicide. In toxicology screens in adult rats, no 
apparent problems were observed, though administra-
tion during midgestation to pregnant dams appeared to 
cause developmental anomalies of the heart, lungs, dia-
phragm, and skeleton of the embryos  [49, 50] . Based on 
the latter findings, nitrofen has been investigated for its 
usefulness to simulate the anomalies of CDH in rodents. 

Numerous groups including ours demonstrated that ni-
trofen induced diaphragmatic hernias that were striking-
ly similar to the human condition. The specific location 
and extent of the diaphragmatic defects were very com-
parable, but the similarities in the CDH-associated anom-
alies, including PH and persistent pulmonary hyperten-
sion, and cardiovascular and skeletal defects, were im-
pressive too  [51–54] . When nitrofen is administered to 
pregnant rat dams on day 9 of gestation when normal 
lung (day 11 of gestation) and diaphragm development 
(day 13 of gestation) are just about to begin, approximate-
ly 70% of the offspring will develop CDHs and 100%, PH. 
Therefore, the nitrofen animal model, taking into ac-
count the obvious disadvantages of being a toxicological 
(animal) model, can serve as a good tool to investigate the 
pathogenesis and therapeutic options in CDH and its 
anomalies in rodents. Despite the extensive use of nitro-
fen as a herbicide in agriculture, its possible teratogenetic 
effects have never been shown to play a role in human 
CDH. 

  The etiology of both human CDH and nitrofen-in-
duced CDH in rodents has been connected to perturba-
tions in the retinoid signaling pathway ( fig. 1 ), although 
the exact underlying mechanism remains to be elucidat-
ed. The first evidence that CDH could be connected to 
perturbations in the retinoid signaling pathway was ob-
tained already in 1941 by Andersen  [55] , who noted dia-
phragmatic hernias in embryos of pregnant rats on a vi-
tamin-A-deficient diet. This effect of maternal vitamin A 
deficiency was confirmed by Wilson et al.  [56]  in 1953. 
More modern approaches using genetic manipulation in 
mice have shown that ablation of retinoic acid receptor 
(RAR) signaling during development indeed results in 
diaphragmatic hernias, PH and/or lung agenesis  [57] . In 
humans, only one small clinical study (n = 7) demon-
strated that newborns with CDH had lower levels of plas-
ma retinol in cord blood than controls  [58] . Subsequently, 
CDH has been observed in patients with deletions on the 
15q chromosome, which contains the encoding gene for 
a cellular retinoic acid binding protein (CRABP1), al-
though so far mutation analysis in isolated CDH cases are 
negative  [59–61] . In 2000, the dual-hit hypothesis was in-
troduced. It explained PH in CDH as a result of two in-
sults  [48] . There is an early bilateral nitrofen-induced PH 
observed prior to closure of the diaphragm (first insult) 
 [62, 63] . The second insult is caused by herniation of the 
abdominal viscera into the thorax due to disrupted clo-
sure of the diaphragm and affects the ipsilateral lung only 
by interference with fetal breathing movements. Admin-
istration of retinoic acid (RA) to nitrofen-treated lung ex-
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plants demonstrated an increase in lung growth and par-
tially rescued the hypoplasia  [64] . This observation was 
supported by Thebaud et al.  [65, 66] , who demonstrated 
an improvement in lung maturation and growth in nitro-
fen-treated embryos when the pregant dam was treated 
with vitamin A before, during or after nitrofen adminis-
tration. In addition, survival of the fetuses improved in 
the vitamin-A-treated group  [66] . Subsequently, admin-
istration of RA and vitamin A were compared in their 
effectiveness to reduce the number of hernias. In the un-
treated group the incidence of hernia was 54%. With vi-
tamin A treatment, the number of hernias was reduced 
to 32%. RA demonstrated a reduction to 15% and with 
continuation of the RA feedings for up to 5 days, even a 
percentage of less than 10% was reached  [67] . This sup-
ports the concept that both the diaphragmatic hernia and 
the PH result from a disruption in the retinoid signaling 
pathway.

  Retinal dehydrogenase (RALDH) 2 is perceived to be 
the key enzyme in the RA synthetic pathway  [68–70] . In 
vitro experiments have demonstrated that several agents 
(including nitrofen) responsible for the induction of dia-
phragmatic hernias, inhibit RALDH2 activity  [71, 72] . 
Others have proposed that nitrofen interferes with the 
uptake of retinol by lung cells. Nitrofen-treated lungs 
have lower retinol levels while circulating retinol levels 
are increased in comparison to controls, in agreement 
with the idea of a disturbed retinol uptake  [73] . Recently, 
STRA6 has been identified as the membrane receptor for 
serum retinol, and mutations in STRA6 result in dia-

phragmatic hernias and PH amongst a variety of other 
anomalies  [74–76] . However, nitrofen does not block the 
uptake of retinol by STRA6  [72] . Nitrofen treatment has 
been reported to downregulate the pulmonary retinol 
storage enzyme, lecithin:retinol acyltransferase (LRAT), 
and the RA-degrading enzyme Cyp26, while not affect-
ing RALDH2  [42] . Since vitamin A deficiency experi-
ments have shown similar decreases in RA-degrading en-
zymes and storage enzymes  [77, 78] , it is thought that this 
downregulation is due to low pulmonary retinol levels. 
Evidently, the exact mechanism by which nitrofen affects 
RA synthesis remains to be elucidated. It has also been 
suggested that nitrofen may compete with RA to bind to 
the RA receptor during embryogenesis, thereby impair-
ing lung and diaphragm development  [66, 79] . In a two-
hybrid yeast assay nitrofen inhibited RAR and retinoid X 
receptor association only when very high embryonic le-
thal dosages were used  [72] . In contrast, Chen et al.  [80] 
 demonstrated that nitrofen inhibits the activation of RA 
response elements in lacZ mice. RAR expression is not 
affected in CDH. Rajatapiti et al.  [81]  reported that it was 
normal in human CDH lungs and in nitrofen-induced rat 
CDH lung tissue.

  In summary, the retinoid signaling pathway is com-
plex and it appears that a disruption anywhere in the 
pathway might be responsible for the morphological 
changes including PH seen in CDH. 

  Besides the retinoid signaling pathway, another path-
way implicated in CDH is the thyroid hormone signaling 
pathway ( fig. 2 )  [82] . Nitrofen, triidothyronine (T 3 ) and 
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  Fig. 1.  Schematic representation of the 
retinoid signaling pathway. Retinol binds 
STRA6 and is transferred into the cyto-
plasm. Retinol can either be stored as 
retinyl ester (RE) by LRAT or be convert-
ed into retinal by retinol dehydrogenase 
(ROLDH). Retinal is converted into RA 
by RALDH. RA can either remain in the 
cytoplasm to be metabolized by cyto-
chrome p450 (Cyp) 26 enzymes, or bind 
to RAR or retinoid X receptor (RXR) to 
activate the RA response element (RARE) 
and thereby alter gene transcription. 
Pathways that might be influenced by the 
effects of nitrofen are indicated by ar-
rows.  
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thyroxine (T 4 ) have similar chemical structures. All three 
are halogenated diphenyl ethers  [83–85] . Thyroid hor-
mones are important in lung morphogenesis  [86–88] .   
  Thyroid hormone receptors (TRs) are mostly expressed 
after gestational day 13 in the rat  [89] , but it has been 
demonstrated that very low levels of message are present 
at day 11 in the embryo  [90] . Both T 3  and T 4  can cross the 
placenta during embryo morphogenesis in the rat from 
gestational day 9 onwards  [91–93] . Therefore, it is possible 
that nitrofen influences both diaphragm formation and 
lung development by interfering with the thyroid hor-
mone signaling pathway  [72] . However, nitrofen-treated 
adult mice have decreased T 4  levels while T 3  levels remain 
normal  [83] . In addition, fetuses of pregnant rats treated 
with nitrofen have lower circulating T 3  and T 4  levels, but 
pulmonary levels of T 3  and T 4  are not changed when com-
pared to control fetuses  [84, 94, 95] . If nitrofen exerts its 
action due to structural similarities with thyroid hor-
mones (thyromimetica), it would be in a competitive 
manner. Nonetheless, Brandsma et al.  [85]  demonstrated 
that nitrofen inhibits binding of T 3  to TR � 1 and TR � 1 in 
a noncompetitive manner by reducing the maximal bind-
ing capacity in vitro. In contrast, Noble et al.  [72]  found 
no perturbation in TR binding in the presence of nitro-
fen. When nitrofen and T 4  were administered simultane-

ously to thyroidectomized pregnant rats, the incidence of 
congenital anomalies in embryos dropped by 70%  [84] . 
Despite this observation, coadministration of T 4  and ni-
trofen did not reduce the percentage of CDHs  [72] .

  Similar to RAR, TR � 1 and TR � 1 belong to the steroid/
thyroid/retinoid receptor superfamily. Noble et al.  [72] 
 demonstrated that TR � 1 and thyroid response element 
activity were not influenced by nitrofen in vitro. In vivo, 
however, nitrofen reduced the expression of TR � 1 and 
TR � 1 in CDH rat lungs  [96]  without changing their cel-
lular localization  [81] . A similar decrease in TR � 1 expres-
sion was noted in human CDH-related hypoplastic lungs 
 [81] . This decrease in TR � 1 could lead to a diminished 
response to maternal thyroid hormone and later on (from 
gestational day 18 in rats) to the hormones produced by 
the fetus itself. In this way, lung morphogenesis might be 
affected by nitrofen  [96] . As described earlier, Montedo-
nico et al.  [64]  demonstrated a partial rescue by RA treat-
ment in nitrofen-induced hypoplastic lung explants. The 
authors suggested that this might be only partial because 
downregulation in the thyroid hormone signaling path-
way might also contribute to the PH. However, we should 
bear in mind that the role of thyroid hormones appears 
to be limited since in TR null mutant mice no apparent 
lung and diaphragm problems were observed and, there-
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  Fig. 2.  Schematic representation of the 
thyroid signaling pathway. Thyroid hor-
mones T 4  and T 3  are produced in the thy-
roid gland. The hypothalamus produces 
thyrotropin-releasing hormone (TRH) 
which stimulates the pituitary gland to 
release thyroid-stimulating hormone 
(TSH) which for its part directly acts on 
the thyroid gland to stimulate T 4  and T 3  
synthesis. At the target cells membrane 
passage is either carrier-mediated by thy-
roid hormone transporters (THT) or by 
diffusion. In the cell T 4  is converted to T 3  
by deiodinases and binds to the nuclear 
TRs TR �  and TR � . Through activation 
of the thyroid response element (TRE), 
gene expression is altered. Pathways that 
might be influenced by the effects of ni-
trofen are indicated by arrows. 
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fore, antenatal lung growth does not seem to be impaired 
by a lack of thyroid hormones  [97] . In addition, van Tuyl 
et al.  [98]  demonstrated that both maternal and fetal hy-
pothyroidism in transgenic mice did not alter prenatal 
lung development. Furthermore, there is great redundan-
cy between the different TRs. Thus, while TR � 1 levels are 
reduced in nitrofen-induced CDH rat lungs as well as hu-
man hypoplastic CDH lungs, the lack of both lung and 
diaphragm defects in TR null mice makes its role in the 
pathogenesis of CDH less likely. Even though nitrofen 
and thyroid hormones have similar structures, a clear re-
lation between the thyroid signaling pathway and lung or 
diaphragm defects has not been demonstrated so far. 

  Similar to the surgical CDH models, the nitrofen mod-
el has been used to study vascular defects in CDH  [99] . 
However, a detailed discussion of vascular abnormalities 
associated with CDH is beyond the scope of this review. 

  The nitrofen model is based on the administration of 
the herbicide before the onset of lung and diaphragm for-
mation. Although this model appears to be the best mod-
el available since the timing of the developmental insult 
is similar to that in humans, a large disadvantage is that 
the significance of the potential teratogenic effects of ni-
trofen in rodents has never been demonstrated in hu-
mans. Although increasing evidence of the etiology of 
CDH points towards a disturbance in the retinoid signal-
ing and/or thyroid signaling pathways, the nitrofen mod-
el has not resolved the pathogenesis of CDH and the as-
sociated PH. 

  Genetic Models 

 Since the first knockout mice were produced at the end 
of the eighties, they have been widely employed by mo-
lecular biologists to investigate the function of the gene 
that is made inoperable. In this way, several expected and 
unexpected genes have been linked to CDH. 

  Wilm’s Tumor 1 (wt1) 
 The original paper describing the phenotype of Wilm’s 

tumor 1 ( wt1)  null mutant mice focused on the role of this 
tumor-suppressor gene in urogenital development  [100] . 
In the same paper, the authors briefly describe the incom-
plete formation of the diaphragm in the mutants result-
ing in the herniation of the lungs into the abdominal cav-
ity, whereas in human CDH, abdominal contents nor-
mally herniate into the thorax. However, in a recent 
publication, Clugston et al.  [101]  describe a more classical 
picture of abdominal contents herniating into the thorax 

in a comparative study on diaphragm development in 
three animal models for CDH including  wt1  null mutant 
mice. In addition, the authors observe a ‘real’ posterolat-
eral (Bochdalek) hernia based on the malformation of the 
pleuroperitoneal folds as opposed to different diaphrag-
matic defects observed in other knockout mice. An ac-
curate indication of the incidence of CDH could not be 
calculated because of the small numbers of fetuses inves-
tigated. Despite the ‘true’ Bochdalek phenotype of the 
 wt1  null mutant mice, a translation to the human situa-
tion of CDH has not been made. Besides a few reports of 
mutations of WT1 in human case reports on syndromic 
CDH such as WAGR and Denysh Drash, no relationship 
between the presence of the WT1 mutation and isolated 
CDH was found  [102–105] . In a Swedish series of 27 chil-
dren with isolated CDH no WT1 gene mutations could 
be detected  [106] . 

  Sonic Hedgehog (Shh) and Gli2/Gli3  
  Sonic Hedgehog (Shh)  and  Gli2  and  Gli3  are members 

of a highly conserved morphogenetic family known as 
the  Shh -signaling pathway  [107] . In the original publica-
tions on the functions of  Shh  and  Gli2  and  Gli3,  no men-
tion was made on the diaphragmatic defects some of the 
null mutant mice displayed. These papers focused on the 
foregut anomalies such as abnormal branching morpho-
genesis of the lungs, tracheal-esophageal fistula and 
esophageal atresia, respectively  [108–110] . In  Shh  null 
mutants, there is a failure of tracheo-esophageal separa-
tion and, in addition, the lungs have undergone less 
branching morphogenesis, making them hypoplastic 
 [108, 110] . Interestingly,  Shh  expression is decreased in 
human hypoplastic lungs of CDH patients  [111] .

  Studies from  Gli2  and  Gli3  double-knockout mice 
demonstrated a similar phenotype of foregut abnormali-
ties, but a more severe phenotype of disturbed branching 
morphogenesis.  Gli2  –/–  mice have only one lobe on the 
right side (instead of four) indicating that lungs are 
formed, but primary branching is affected. In  Gli2  –/–  /
Gli3  –/–  mice, no lungs are formed at all. In  Gli2  –/–  /Gli3  +/–  
mice there is ectopic branching and fusion of lung lobes 
 [109] . However, none of the first studies described a CDH 
in these mice. In a more recent publication, the same 
group demonstrated that the single null mutant mice for 
both  Gli2  and  Gli3  as well as the double mutant  Gli2  –/–  /
Gli3  +/–  mice have diaphragmatic defects  [112] . No de-
scription of the type of hernia was given for either  Shh  or 
 Gli  null mutant mice. No relationship between a muta-
tion in GLI genes and CDH has been demonstrated in 
humans so far.
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  Slit3 
  Slit3  belongs to the family of Slit guiding proteins that 

are highly conserved throughout evolution. Especially 
 Slit1  and  Slit2  have been investigated for their role in axon 
guidance and cell migration [reviewed in  113 ]. Approxi-
mately 70% of  Slit3  null mutant mice have a CDH  [114, 
115] . In contrast to other animal models for CDH, most 
of these mice do not die after birth. The mice display a 
defect in the central tendon of the diaphragm, which fails 
to detach from the liver on the right side, thereby making 
it a good model of the human central (septum transver-
sum) type of hernia. The origin of the defect lies in a de-
fective connective tissue formation in the central septum 
transversum. The innervation of the phrenic nerve to the 
diaphragm was found to be normal in the knockout mice. 
No primary lung phenotype was observed in the mice. 
However, mice with end-stage CDH were short of breath 
due to atelectasis and intrapulmonary hemorrhage. Alto-
gether, these data suggest that  Slit3  might play a role in a 
small subgroup of CDH cases. Recently, a case report of 
a newborn with CDH with a hernia sac attached to the 
liver was published  [116] . The left side of the liver formed 
a part of the sac of the CDH. Liver tissue including vessels 
was seen in the sac, as seen in Slit3 –/–    mice  [115] . This is 
the first time that presence of hepatocytes within the sac 
itself was observed in a patient with CDH. 

  Fog2 (Friend of GATA) 
 Employing an elegant approach of high-throughput 

mutagenesis analysis using the chemical mutagen N-
ethyl-N-nitrosourea, Ackerman et al.  [117]  identified a 
mouse line with respiratory failure at birth. This pheno-
type was based on PH, disturbed heart development and 
a diaphragmatic defect and could be linked to a mutation 
in the gene  Fog2 (Friend of GATA) . In contrast to the oth-
er models, these mice displayed severe PH in the absence 
of a hole in the diaphragm. Instead, a posterolateral mus-
cularization defect was observed. As such, this pheno-
type correlates better to the human situation of CDH 
with regard to the existence of PH. Interestingly, the au-
thors demonstrated that PH occurs independently of de-
ficient diaphragm development. This is a situation that 
can also be observed in unilateral agenesis of the lung 
with an intact diaphragm. Others and we have demon-
strated that the same holds true for lung development in 
the nitrofen model of CDH  [48, 118, 119] . However, a clear 
relationship between disturbed lung development and 
diaphragmatic development has not been shown. It is 
more likely that both lungs and diaphragm are disturbed 
in their development separately.

  Subsequently, the authors searched for FOG2 muta-
tions in a series of 30 autopsy specimens of CDH patients 
and found a nonsense mutation in a female patient with 
severe bilateral PH and a posterior diaphragmatic even-
tration on the left side. The authors suggested that this 
was the first reported gene mutation in a patient with 
CDH and PH. More recently, Bleyl et al.  [120]  reported 
novel FOG2 sequence variants in 2 isolated CDH pa-
tients, but could not identify them as mutations.

  Gata4 and Gata6 
  Fog2  can interact with many different transcription 

factors such as the  Gata  zinc finger transcription factors 
 Gata4  and  Gata6 . Null mutant mice for both  Gata4  and 
 Gata6  die early in embryonic development because of the 
essential roles of these factors in ventral morphogenesis 
(including heart development) and differentiation of vis-
ceral endoderm, respectively  [121–123] . Therefore, these 
models could not be used to evaluate their roles in lung 
or diaphragm development that occur later in gestation. 
However, others and we demonstrated that  Gata6  is es-
sential for normal branching morphogenesis of the lung 
and late epithelial cell differentiation using a chimeric 
mouse mutagenesis approach  [124–126] . So far  Gata6  has 
not been implicated in diaphragm development. A role 
for  Gata4  in lung or diaphragm development was recent-
ly observed by Jay et al.  [127] . They noticed disturbed 
heart, lung and diaphragm development in approximate-
ly 70% of heterozygous  Gata4  knockout mice that were 
generated in a different genetic background  [127] . The 
mutation resulted in a mortality of up to 40%. The defect 
in the diaphragms consisted of a ventral hernia covered 
with a sac that was not attached to the liver, but allowed 
abdominal viscera to protrude. The incidence of CDH 
was approximately 30%. Pulmonary development in the 
mutant mice was not very disturbed although the authors 
describe some airway dilatation and altered expression of 
certain genes in the most affected mice. In addition, an-
other study recently demonstrated that  Gata4  is impor-
tant for normal pulmonary lobar development  [128] . In-
terestingly, a microdeletion on human chromosome 
8p23.1 that includes the GATA4 gene, has been linked to 
isolated human cases of CDH especially in combination 
with cardiac anomalies  [129–132] .

  COUP-TFII 
 Another transcription factor that is a binding partner 

of  Fog2  is  COUP-TFII , which   belongs to a nuclear steroid/
thyroid/retinoid hormone receptor superfamily and has 
been shown to be essential for embryonic mouse develop-



 van Loenhout   /Tibboel   /Post   /Keijzer   

 

Neonatology 2009;96:137–149 144

ment  [133] . Mice lacking  COUP-TFII  show defects in car-
diovascular development and die around day 10.5 of ges-
tation. Conditional mutagenesis of  COUP-TFII  in mice 
using the Cre-lox conditional knockout system to ablate 
 COUP-TFII  function in the mesenchyme only resulted in 
a Bochdalek-type diaphragmatic defect on the left side 
 [134] . However, the authors did not find a deficient lung 
phenotype in these mice, although this might be due to 
the tissue-specific ablation of the gene in the mesen-
chyme. In line with the latter idea, the authors state that 
 COUP-TFII  expression is markedly decreased in the 
structures contributing to the developing diaphragm 
such as the pleuroperitoneal folds, but the expression was 
only slightly reduced in the developing lung. These re-
sults are even more interesting in the light of the location 
of COUP-TFII on human chromosome 15q26. Our group 
has identified this region as a potential candidate region 
for human patients with isolated CDH  [135, 136] . How-
ever, following an evaluation of over 130 cases of isolated 
CDH from different hospitals, no mutations in the cod-
ing regions of COUP-TFII have yet been identified.

  Platelet-Derived Growth Factor Receptor- �  
 Very recently, the platelet-derived growth factor re-

ceptor- �  (PDGFR � ) gene has been identified as an im-
portant factor in the formation of the diaphragm and 
lung development  [120] . This gene is known for its role in 
tumorigenesis of gastrointestinal and neural tumors 
 [137–140] . In  pdgfr  �    null mice, Bleyl et al.  [120]  observed 
PH and a range of diaphragmatic defects including pos-
terolateral diaphragmatic hernias. This and the other 
phenotypical characteristics observed are similar to the 
human Fryns syndrome (nonisolated CDH)  [141] . Hence 
PDGFR �  might be a candidate gene for nonisolated CDH. 
Moreover, in one patient with nonisolated CDH a novel 
sequence variant of PDGFR �  was identified. The authors 
did not prove the variant to be a mutation  [120] . 

  Retinoid Signaling Pathway in Knockout Mice 
 Increasing evidence from data obtained with the ni-

trofen model and knockout mice points towards pertur-
bations in the retinoid signaling pathway. For example, 
 COUP-TFII  has been shown to be a downstream target of 
retinoid signaling [reviewed in  142 ]. In addition, different 
 Gata  transcription factors have been demonstrated to in-
teract with RARs  [143] . Therefore, we also want to review 
the role of members of the retinoid signaling pathway in 
knockout mice. The first evidence from knockout mice 
that RA is involved in the pathogenesis of CDH came 
from RAR double-knockout mice, as described earlier. 

Single RAR null mutant mice did not show the expected 
anomalies that were observed in the vitamin-A-deficient 
rats, indicating that the different types of receptors are 
highly redundant  [144–147] . However, when the function 
of multiple receptors was abolished, multiple congenital 
abnormalities were observed including right-sided CDH 
in RAR �  � 2 and left-sided CDH in RAR �  � 2 +/– . In addi-
tion, these mice displayed severe PH  [57] . Despite the 
convincing data from animal studies, the results in hu-
mans have been limited. Until now the only described 
mutations in CDH patients related to the RA pathway are 
in STRA6 and CRABP1 on chromosome 15  [59–61, 74–
76] .     A study evaluating the RA status of CDH cases, their 
mothers and age-matched controls is currently under 
way. 

  Despite the ample evidence that certain genes are in-
volved in the pathogenesis of different types of CDH, 
only a mutation in FOG2 has so far been demonstrated 
in a single patient with nonsyndromic CDH. This might 
be due to several factors. First, as described for the  Gata4  
gene, the genetic background of the species carrying the 
mutation is of importance for the phenotype that is re-
lated to the mutation. The diaphragmatic defect was only 
observed in heterozygous C57Bl/6  Gata4  mutant mice. 
This is also true for the rodent model based on the tera-
togenic effects of nitrofen. When nitrofen is administered 
to Sprague-Dawley rats, the percentage of the offspring 
having CDH is higher than following administration to 
Wistar rats. The same phenomenon has been observed in 
different mouse strains. Second, the pathogenesis of CDH 
might be explained by the necessity of multiple develop-
mental insults to happen during development of the dia-
phragm and the lung. We and others demonstrated this 
scenario for PH in the nitrofen model for CDH  [48] . We 
named this the dual-hit hypothesis. Finally, the observed 
phenotype in CDH is so variable that it is potentially not 
due to a single gene mutation, but the result of multiple 
gene mutations. Different genes involved in different sig-
naling pathways that have been shown to be important 
for normal embryonic development might be involved. In 
addition, as has been suggested for the nitrofen model, 
there may be a disturbed interaction of certain genes with 
environmental factors. 

  Concluding Remarks 

 Surgical models have been of great importance for val-
idating new interventions in CDH. Many new approach-
es used today in CDH patients, as for example FETO, 
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were first optimized in surgical animal models. However, 
these models are less suitable than either nitrofen or ge-
netic models for elucidating the pathogenesis of CDH, 
since the diaphragmatic defect is created rather late in 
fetal development. A combination of two models might 
further improve our understanding of CDH-associated 
PH  [148] . Nitrofen has never been demonstrated to cause 
CDH in humans, despite its massive use as a herbicide. 
Nevertheless, the nitrofen rodent model has great simi-
larities with human CDH. The most plausible pathoge-
netic explanation for CDH and its associated anomalies 
is a general genetic defect that causes cardiovascular, lung 
and diaphragm defects. However, this particular genetic 
defect has not been found, although some mouse mod-
els resemble human CDH. A new approach to discover 
changes in the genetics of CDH in human cases is the ge-
nome-wide array. Genome-wide arrays are useful to com-
pare the genetic changes between CDH patients and to 
search for the existence of CDH-related genes. Up to now, 
such an approach has only been attempted in nonisolated 
(syndromic) human cases, mainly for Fryns syndrome 
 [136, 149, 150] .

  Although none of the animal models perfectly mimic 
human CDH and its associated anomalies, they all have 
shed light on the underlying pathogenesis of the disease. 

Increasing evidence from studies in both human CDH 
and animal models of CDH (nitrofen and knockout mice) 
suggest that a disturbance in the retinoid signaling path-
way might be responsible for the anomaly. However, not 
all findings can solely be explained by disturbances in 
this pathway. Based on the spectrum of defects in heart, 
lungs and diaphragm, it is likely that there is a general 
defect in mesenchymal signaling in all organs involved in 
CDH. More research is warranted to improve our under-
standing of normal and abnormal diaphragm and lung 
development in relation to CDH. Eventually, such inves-
tigations will help in the design of new treatment mo-
dalities to improve the natural course or even to prevent 
this anomaly.
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