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Abstract Greedy approaches suffer from a restricted search space which could lead to sub-
optimal classifiers in terms of performance and classifier size. This study discusses exhaus-
tive search as an alternative to greedy search for learning short and accurate decision rules.
The Exhaustive Procedure for LOgic-Rule Extraction (EXPLORE) algorithm is presented,
to induce decision rules in disjunctive normal form (DNF) in a systematic and efficient man-
ner. We propose a method based on subsumption to reduce the number of values considered
for instantiation in the literals, by taking into account the relational operator without loss of
performance. Furthermore, we describe a branch-and-bound approach that makes optimal
use of user-defined performance constraints. To improve the generalizability we use a vali-
dation set to determine the optimal length of the DNF rule. The performance and size of the
DNF rules induced by EXPLORE are compared to those of eight well-known rule learners.
Our results show that an exhaustive approach to rule learning in DNF results in significantly
smaller classifiers than those of the other rule learners, while securing comparable or even
better performance. Clearly, exhaustive search is computer-intensive and may not always
be feasible. Nevertheless, based on this study, we believe that exhaustive search should be
considered an alternative for greedy search in many problems.

Keywords Rule learning · Induction · Exhaustive search · Branch-and-bound

1 Introduction

Decision rules are among the most expressive and comprehensible knowledge representa-
tion formalisms. Many different approaches to learn decision rules have been developed
(Mitchell 1997). One approach is to first generate a decision tree from which a rule set is
then derived (Quinlan 1992). The decision tree is induced by using a “divide-and-conquer”
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strategy in which the feature space is recursively partitioned until regions with examples
of mainly the same class are obtained. In a subsequent step rules are derived directly from
each branch of the tree. Finally, a global optimization step is applied to prune the rule set to
improve classification accuracy.

Another rule learning approach is to use a “separate-and-conquer” strategy in which an
ordered set of rules is generated by first learning the single best conjunctive rule on the
training set. After removal of the positive examples covered by this rule, the process is
iterated over the remaining training examples. This approach, also called sequential cov-
ering, was first used in the AQ family of algorithms developed by Michalski et al. (1986)
but has since then been used by many rule learners (Clark and Niblett 1989; Cohen 1995;
Weiss et al. 1990; Frank and Witten 1998). This method can be used to generate two types of
rule sets: ordered and unordered. In an ordered rule set, rules can only be interpreted in the
context of previous rules, while in an unordered rule set each rule can be interpreted inde-
pendently. RIPPER for example applies sequential covering combined with a reduced error
pruning strategy (Cohen 1995) to induce ordered or unordered rule sets. A small number of
cases from the training set is used to extract a rule based on the minimum description length
principle. In two-class problems RIPPER only induces rules for one of the classes, which
makes their order irrelevant. In PART the decision tree approach and sequential covering
are combined by repeatedly generating partial decision trees (Frank and Witten 1998). In
essence, a pruned decision tree is built for the set of examples remaining after the previous
covering step, the leave with the largest coverage is made into a rule, and the rest of the tree
is discarded.

A disadvantage of both “divide-and-conquer” and “separate-and-conquer” is that, as in-
duction progresses, the number of available training examples dwindles. As a result deci-
sions are being made with less and less statistical support. To overcome this problem, an
approach called “conquering-without-separating” has been proposed by Domingos (1994).
Essentially, this approach conducts a batch, hill-climbing, specific-to-general search through
the space of rule sets. The algorithm is initialized by generating a specific rule for each case
in the dataset and applies a heuristic evaluation function to prune the rule set. The final
classification is achieved through weighted voting among the remaining rules.

Although all these approaches have been shown to perform well, they do have their
limitations. Firstly, they are based on heuristics to reduce the search space, and thus may
miss the classifier that performs best. Secondly, the resulting classifiers are often unnec-
essarily complex, that is, the same classification accuracy can be obtained with a smaller,
more comprehensible classifier (Rückert and De Raedt 2008). Comprehensibility is an im-
portant aspect of a classifier, for example in medical applications in which users want to
understand the ways by which a classification result is reached. Algorithms that generate
ordered rule sets may suffer from poor comprehensibility because an individual rule can-
not be interpreted without consideration of the previous rules in the covering sequence.
A single rule in Disjunctive Normal Form (DNF) would be far easier to understand. Further-
more, less complex classifiers are preferable according to Occam’s razor principle, which
states that for the explanation of any phenomenon one should make only as many assump-
tions as needed. Unnecessary complexity can reduce the generalizability of the classifier.
A third limitation of most existing rule learners is that they aim to maximize the accu-
racy of the classifier. However, in many application areas, for example in medicine, sen-
sitivity and specificity are more pertinent measures for the characterization of classifica-
tion performance (Galen and Gambino 1975). A classifier in these areas often needs to be
maximal for either sensitivity or specificity while fulfilling a user-specified minimum per-
formance for the other. For instance, in classifying a life-threatening disease in a hospital
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environment the highest possible sensitivity at an acceptable, minimum specificity level
may be required. Some rule learning algorithms allow for cost-sensitive learning with the
help of a cost matrix that directs the sensitivity-specificity trade-off. Cost-insensitive al-
gorithms can be made cost-sensitive by resampling or wrapper techniques (Elkan 2001;
Viaene and Dedene 2005), such as MetaCost (Domingos 1999). However, the choice of the
cost parameters is far from straightforward and generally requires a process of trial-and-
error.

These limitations of heuristic search can be overcome by an exhaustive search of the
feature space. Clearly, when all possible classifiers are scrutinized, it is easier to find the
best classifier with least complexity, and optimization under constraints is straightforward.
The problem, of course, is that the execution time of a truly exhaustive search algorithm may
soon become prohibitive even for moderately sized problems. Furthermore, there is the prob-
lem of overfitting. This could be handled by applying a proper stop criterion on the search
depth (Dietterich 1995). We previously developed an algorithm called EXPLORE (Exhaus-
tive Procedure for LOgic-Rule Extraction), that exhaustively searched for the smallest DNF
rule that fulfills user-specified performance requirements (Kors and Hoffmann 1997). In
this algorithm the rules were generated exhaustively using a time-consuming, brute-force
approach. This strongly limited its practical applicability. In the present study, we propose
several new techniques that allow for a considerably more efficient exhaustive search. We
show that a new version of EXPLORE which incorporates these techniques is comparable,
in terms of accuracy, to a wide range of rule learners while being able to induce considerably
smaller classifiers.

1.1 Related work

The simplest exhaustive algorithm is the 1R algorithm which searches exhaustively for the
most informative single feature and bases a rule set on this single feature alone (Holte 1993).
Such a very simple classifier was shown to perform surprisingly well on many datasets, but
obviously more complex rules with potentially better performance are being missed.

A number of algorithms have been developed that approximate exhaustive search by
massive beam-search, or that search exhaustively but for conjunctive rules only (Clark and
Niblett 1989; Segal 1997; Weiss et al. 1990). In a beam search a fixed number, the beam
width, of candidate rules are considered in each step of the covering approach. This en-
larges the search space as compared to a hill-climbing approach, which has a beam width of
one. Beam search is a massive-search heuristic if a large beam width is chosen, but it is not
exhaustive because it does not generate all possible combinations of feature tests. A well-
known general-to-specific beam search algorithm is CN2 (Clark and Niblett 1989) in which
ideas from the AQ (Michalski et al. 1986) and ID3 (Quinlan 1986) algorithms are com-
bined. CN2 applies the covering approach of AQ but relaxes the constraint that only rules
be included that perform perfectly on the training data by applying pruning techniques as
used in ID3. BRUTE is a massive beam search algorithm that induces conjunctive decision
rules (Segal 1997). BRUTE was shown to perform better than greedy search algorithms on
a large number of datasets. The algorithm allows the user to specify a given performance
measure to be optimized, but it is not possible to simultaneously impose constraints on other
performance measures. The OPUS system searches exhaustively for conjunctive rules that
optimize the Laplace accuracy (Webb 1995). Using an admissible search strategy, OPUS
reduces the search space to a manageable size without loss of performance.

All these conjunctive rule learners can be employed as the primary rule learner in a
sequential covering approach. For example, BRUTE is implemented in BRUTEdl (Segal
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and Etzioni 1994), which generates a rule set. However, as discussed above, ordered rule
lists are less comprehensible than a single DNF rule. The Predictive Value Maximization
(PVM) algorithm developed by Weiss et al. (1990) generates rules in DNF format based on
a beam search strategy. Weiss demonstrated that a massive search strategy often outperforms
a greedy search. An attractive feature of the PVM algorithm is that it allows optimization
under constraints. The Stochastic Local Search algorithm SL2 induces DNF rules by means
of a stochastic approach that is claimed to provide a near-optimal solution (Rückert and
De Raedt 2008). The SL2 algorithm explicitly aims at inducing small rule sets with few
literals, and it was shown that many rule learning systems produce unnecessarily large rule
sets compared to SL2 (Rückert and De Raedt 2008). Unfortunately, their SL2 algorithm can
only handle nominal or discrete attributes while many datasets contain continuous-valued
attributes.

Finally, Classification Association Rule Mining (CARM) is an approach to classifier gen-
eration that builds a classifier by making use of Classification Association Rules (CARs),
i.e., association rules whose right-hand-side is restricted to the class attribute (Yin and Han
2003; Liu et al. 1998). Bayardo (1997) use a brute-force approach to mine conjunctive de-
cision rules based on an association rule learner, enhanced with new pruning techniques.
Since heuristic pruning techniques are applied and the rules are induced given some support
and confidence constraints, the search is only approximately exhaustive. The Classification
Based on Association (CBA) algorithm is a massive search algorithm that generates all the
frequent rule items (Liu et al. 1998). CBA applies a covering approach to build the final
classifier and uses heuristics to reduce the search space. A general disadvantage of the asso-
ciation rule based algorithms is that continuous-valued attributes can only be handled after
a discretization step.

The present paper is organized as follows: In Sect. 2 we describe the EXPLORE algo-
rithm in detail. The scalability of the algorithm is considered in Sect. 3. In Sect. 4, EX-
PLORE is compared with the other rule learners with respect to performance and classifier
size. Finally, in Sect. 5 we discuss our findings and present directions for future research.

2 Exhaustive procedure for logic-rule extraction

2.1 Preliminaries

We first define some basic concepts used throughout the article.1

Definition 1 (Example) A labeled example xk ∈ X consists of values for all f ∈ F features
and a class label c ∈ {0,1}. An example xk is said to be positive if ck = 1, and negative if
ck = 0. X is divided in a training set, Xtrain, and a testing set, Xtest .

Definition 2 (Literal) A literal l is a feature-operator-value triad, l = (f, o, v), in which f

is a feature, o is a relational operator (≤,=,>), and v is a value. An example xk satisfies a
literal l = (f, o, v) if the value of feature f in xk compared through the relational operator
o with the value v evaluates to True.

Definition 3 (Term) A term is a conjunction of literals. The term size t denotes the number
of literals in a term.

1In Appendix A, a table is given of the defined symbols.
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Table 1 Estimation of performance measures from a 2 × 2 classification matrix

Rule positive Rule negative

Class positive True positives (TP) False negatives (FN)

Class negative False positives (FP) True negatives (TN)

Sensitivity = TP/(TP + FN)

Specificity = TN/(FP + TN)

Positive predictive value = TP/(TP + FP)

Negative predictive value = TN/(FN + TN)

Accuracy = (TP + TN)/(TP + FN + FP + TN)

Definition 4 (Rule) A formula in Disjunctive Normal Form (DNF) is a disjunction of terms.
A rule r is a DNF formula that is associated with a class c ∈ {0,1}, taking the form: if (DNF
formula) then c = 1 else c = 0. The length n of a rule is the number of literals in a rule.

We wish to point out that in the literature on covering algorithms, a rule is often defined
as consisting of a single term, and disjunctions of terms are represented as a rule set (Cohen
1995; Clark and Niblett 1989). In our definition a rule is a DNF formula which can contain
more than one term.

Definition 5 (Performance measure) The performance measure P that needs to be opti-
mized is one of the measures as defined in Table 1. By P (r,X) we denote the performance
of rule r on the example set X.

Definition 6 (Performance constraints) The performance constraints C are minimal con-
straints on one or more of the performance measures, other than P , that should be attained
by a rule. If the performance constraints are fulfilled for rule r on example set X, then
C(r,X) = True, else C(r,X) = False.

2.2 Induction process

To induce a DNF rule from examples we apply the following steps:

i. Performance specification. A performance measure P is selected, and minimum con-
straints C are specified for the remaining performance measures.

ii. Initialization. To determine the optimal rule length, an embedded hold-out approach is
used. From Xtrain 2/3 of the examples are randomly selected as a learning set Xlearn and
the remaining 1/3 of the examples are taken as a validation set Xvalidate. The rule length
n is initialized to 1.

iii. Rule generation. For Xlearn, EXPLORE systematically generates all rules of length
n. The best rule bn is selected, i.e., the rule r for which P (r,Xlearn) is maximal and
C(r,Xlearn) = True.

iv. Stop criterion. If P (bn,Xvalidate) > P (bn−1,Xvalidate) then n is incremented by one and
step (iii) is repeated. If not, n is taken as the optimal rule length, nopt.

v. Evaluation. For Xtrain, EXPLORE determines the best decision rule of length nopt, i.e.,
the rule r for which P (r,Xtrain) is maximal and C(r,Xtrain) = True. The true perfor-
mance of this rule is estimated on Xtest .
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We will now focus on step (iii), the exhaustive generation of rules of length n, and pro-
pose a number of approaches to reduce the search space without loss of performance.

2.3 Exhaustive rule generation

First, we define the terminology used in the rule-generation procedures of EXPLORE.

Definition 7 (Literal tuple) A literal tuple L = (l1, . . . , ln) is an ordered list of literals in a
rule of length n. The literal at position j in term i is denoted by li,j .

Definition 8 (Term tuple) A term tuple T = (t1, . . . , tm) is an ordered list of term sizes of
the m terms of the rule.

For example, for r = (A > 2 ∧ B = green) ∨ A ≤ 1, T = (2,1) and L = (A > 2,B =
green,A ≤ 1). Note that a rule r is completely defined by the literal tuple and the term tuple,
r(L,T ), since the literal tuple defines all the literals and the term tuple defines how the
literals should be combined logically.

Definition 9 (Feature-operator list) The set of feature-operators FO consists of a lexico-
graphically ordered list of all the (f,>) and (f,≤) pairs for continuous features, with >

preceding ≤, and all the (f,=) pairs for nominal features. We denote the feature-operator
in term i at position j as foi,j .

Definition 10 (Value list) The value list V (fo) is a list of values for a feature-operator fo.
The value lists of all feature-operators are denoted by V .

The rule generation step in EXPLORE is presented in Algorithm 1. The algorithm con-
sists of an initialization part in which the lexicographically ordered feature-operator list and
the value lists are generated (lines 1–2).

The main part of EXPLORE consists of three nested do-while loops, which systemati-
cally generate admissible decision rules of length n. The outer loop generates a term tuple
(lines 6–17), the second loop instantiates the literal tuple with feature-operator pairs (lines 8–
16), and the inner loop instantiates the literal tuple with values (lines 10–14). If r fulfills the
performance constraints and outperforms the current best rule, this rule becomes the new
best rule (lines 11–13).

To improve readability, the literal tuple L and the term tuple T are passed by reference
to the functions. If one of these global variables are changed by a function this is denoted in
the results section in the header. The functions in the do-while loops return True on success
and False otherwise.

In the following paragraphs we will give a detailed description of each of the functions
in Algorithm 1.

2.3.1 Generation of feature-operators

The lexicographically ordered list of feature-operators is generated as shown by Algo-
rithm 2. The feature-operator list is appended with a (f,=) pair for nominal features and
with (f,>) and (f,≤) pairs for continuous-valued features.
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Algorithm 1: EXPLORE

Input : X, examples; F , features; n, rule length; P , performance measure; C,
constraints.

Output: b, best rule of length n.

// initialize rule generation
FO = GenerateFeatureOperatorList(F );1

V = GenerateValueLists(X,FO);2

// start rule generation
T = (n); // start with one term of size n3

L = ∅;4

b = ∅;5

do6

InitFeatureOperators(FO,L,T );7

do8

if InitValues(L,T ,V ) then9

do10

// evaluate r(L,T )

if (P (r,X) > P (b,X)) ∧ C(r,X) then11

b = r ; // best rule becomes current rule12

end13

while NextValues(L,T ,V )14

end15

while NextFeatureOperators(FO,L,T )16

while NextTermTuple(T )17

return b;18

Algorithm 2: GenerateFeatureOperatorList

Input : F , features.
Output: FO, lexicographically ordered list of feature-operator pairs.

FO = ∅;1

foreach f ∈ F do2

if f is nominal then3

FO ← (f,=);4

else5

FO ← (f,>);6

FO ← (f,≤);7

end8

end9

return FO;10

2.3.2 Generation of list of values

Algorithm 3 generates for each feature-operator a list of values that are used to instantiate the
literals. The values are sorted in decreasing order by the number of true positives generated
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Algorithm 3: GenerateValueLists

Input : X, examples; FO, feature-operator list.
Output: V , value lists for all feature-operator pairs.

foreach fo ∈ FO do1

V (fo) = ∅;2

if f in fo is nominal then3

V (fo) equals all nominal values;4

else5

V (fo) equals all values determined by subsumption;6

end7

sort V (fo) in decreasing order by number of true positives;8

end9

return V ;10

Table 2 Example dataset with
one feature A Example A Class

1 4.50 0

2 5.00 0

3 5.10 1

4 5.20 1

5 5.40 0

6 6.00 1

by a single literal containing the feature-operator and the value. For a nominal feature, the
value list consists of all its nominal values. For a continuous-valued feature, a large reduction
in values is possible if the principle of subsumption pruning, often used in beam-search
strategies, is applied. For example, suppose we have the following two rules:

1. if A > 5 then c = 1 else c = 0
2. if B > 7 then c = 1 else c = 0

If rule 1 covers a superset of the positive examples covered by rule 2, and a subset of
the negative examples, then rule 1 has a higher coverage of correctly classified examples.
Any conjunctive extension of rule 1 with a second literal will perform at least as good as
the extension of rule 2. In subsumption pruning a rule is removed from the set of promising
rules if there exists another rule that covers a superset of the positive examples and a subset
of the negative examples (Webb 1995).

The ideas behind subsumption pruning can also be applied to reduce the number of values
without loss of performance. Suppose we have a small dataset ordered by increasing feature
values of a feature A as shown in Table 2, and we want to determine only the relevant values.

A simplistic way to generate the values would be to take all averages of two subsequent
feature values in the ordered value list for both feature-operators (A > and A ≤). However,
it is unnecessary to select values of examples that have adjacent feature values and assign
to the same class, because class separation will never improve at those values. This class-
boundary approach has been used earlier for greedy approaches (Fayyad and Irani 1992).
However, a further reduction is possible if we apply the subsumption principle. To illustrate
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Table 3 Number of true
positives (TP) and false positives
(FP) for literals that contain A >

and a value that is equal to the
average feature value of adjacent
cases

Literal TP FP

A > 4.75 3 2

A > 5.05 3 1

A > 5.15 2 1

A > 5.30 1 1

A > 5.70 1 0

Table 4 Number of values for standard datasets using the class-boundary approach and the subsumption
principle. The percentage reduction in the number of values is indicated in parentheses

Dataset Examples Features Values

Continuous Nominal Boundary Subsumption

australian 690 6 8 1648 1128 (31.6%)

breast-cancer 277 0 10 41 41 (0.0%)

breast-w 683 9 0 152 138 (9.2%)

diabetes 768 8 0 1736 1220 (29.7%)

glass(G2) 214 9 0 654 380 (41.9%)

heart-statlog 270 7 6 578 426 (26.3%)

liver 345 7 0 556 448 (19.4%)

mammographic 830 3 2 143 127 (11.2%)

mushroom 5644 0 22 98 98 (0.0%)

sick 2643 6 21 1180 954 (19.2%)

vote 232 0 16 32 32 (0.0%)

wine 178 13 0 1202 732 (39.1)

this we calculate the number of true positives (TP) and false positives (FP) for all literals
that contain the feature-operator “A >” and a value that is equal to the average feature value
of adjacent examples, as shown in Table 3.

Based on the subsumption principle, only those literals have to be considered that cover
a superset of the positive examples and a subset of the negative examples. Thus, in our
example, A > 5.05 is preferred over A > 4.75, because there are less FP for the same num-
ber of TP; A > 5.05 is preferred over A > 5.15 and A > 5.30, because there are more TP
for the same number of FP. In our example the final relevant values for feature-operator
A > are 5.05 and 5.70. Generalizing, for the relational operator >, only values that are at
a class boundary from 0 to 1 have to be taken as values. Similarly, for the ≤ operator we
only need to include values that are at a class boundary from 1 to 0. However, if there are
examples with the same feature value but different labels, adjacent values are relevant for
both relational operators. Note that if we would not apply the subsumption principle, the
class-boundary approach would result in 3 values for each feature-operator.

Table 4 shows the effect of the subsumption selection strategy on the total number of
values of all feature-operators for 12 standard datasets taken from the UCI data repository
(Murphy and Aha 1994). Examples with missing values have been removed.

The percentage reduction in number of values strongly varies across datasets. Since the
subsumption strategy applies to continuous-valued features, datasets that only contain nom-
inal features obviously have no reduction in values. The datasets that showed the largest
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Table 5 Enumeration of all term
tuples for rule length n = 5 (5)

(4,1)

(3,2)

(3,1,1)

(2,2,1)

(2,1,1,1)

(1,1,1,1,1)

reduction were glass (41.9%) and wine (39.1%); the smallest reduction was seen for mam-
mographic (11.2%) and breast-w (9.2%).

2.4 Generation of term tuples

The generation of term tuples can be seen as the problem of generating all finite decreasing
sequences of positive integers (t1, t2, . . . , tm) such that

∑m

i=1 ti = n. This is called the parti-
tioning of a positive integer n (Andrews and Eriksson 2004). As an example, Table 5 shows
all term tuples for n = 5.

2.4.1 Generation of next term tuple

The first term tuple is initialized to a single term of size n, which equals the rule length
(Algorithm 1). The next term tuple is systematically generated by Algorithm 4. In integer
partitioning theory, several algorithms exist that generate a new partitioning from a given
partitioning t1, t2, . . . , tm (Zoghbi and Stojmenovic 1998). Define h as the number of terms
greater than 1, i.e., ti > 1 for 1 ≤ i ≤ h, and ti = 1 for h < i ≤ m. We use an algorithm that
is based on the idea of subtracting one from the term th > 1 and replacing the terms to the
right with as many terms c of size (th − 1) as possible and a single term with a size of the
remainder d (Algorithm 4). The last term tuple then consists of n terms of size 1, i.e., t1 = 1.

2.5 Generation of feature-operators

After a term tuple has been generated, the literal tuple will be instantiated with features and
operators (Algorithm 1). Several characteristics of decision rules can help to greatly reduce
the number of those instantiations, without loss of performance.

Firstly, each feature-operator occurs only once per term, since multiple occurrences of
the same feature-operator in a term are redundant, e.g., A > AND A >. Notice that the same
feature can occur twice in a term with different operators, e.g., A > AND A ≤.

Secondly, permutation of feature-operators in a term is not necessary. For example, A >

AND B ≤ is logically equivalent to B ≤ AND A >. Therefore, we only instantiate a term
with feature-operators in lexicographic order.

Thirdly, permutation of terms in a rule is not necessary. For example, (A > AND B >)

OR (C > AND D >) is logically equivalent to (C > AND D >) OR (A > AND B >).
Fourthly, for continuous-valued features each feature-operator is used only once to in-

stantiate a term of size 1, since A > OR A > is always logically equivalent to single A >.
However, (A > AND B >) OR (A > AND B >) has to be generated because it cannot be
simplified if the values in the literals are different.

Next we will describe the function InitFeatureOperators which initializes the literal tu-
ple with feature-operators and the function NextFeatureOperators which generates the next
instantiation of the literal tuple with feature-operators.
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Algorithm 4: NextTermTuple

Input : T , term tuple.
Output: True if the next term tuple T could be generated, False otherwise.
Result : T equals the next term tuple.

m = |T |; // m equals the current number of terms1

if t1 > 1 then2

// check the size of the last term m

if tm = 1 then3

Replace th > 1, th+1 = 1, . . . , tm = 1 by c integers equal to (th − 1), and a4

single integer d , such that 0 < d ≤ th − 1 and c(th − 1) + d = th + m − h;
m = c + h;5

else6

Replace t1, . . . , tm by t1, . . . , tm − 1,1;7

m = m + 1;8

end9

T = (t1, . . . , tm);10

return True;11

else12

return False;13

end14

Algorithm 5: InitFeatureOperators

Input : FO, feature-operator list; L, literal tuple; T , term tuple.
Result: L is instantiated with feature-operators.
// Initialize feature-operators in all terms
for i = 1 to |T | do1

InitFeatureOperatorsTerm(i,FO,L,T );2

end3

2.5.1 Initialization with feature-operators

The feature-operators in the literal tuple are initialized by the function InitFeatureOperators
(Algorithm 5). For each term, it calls InitFeatureOperatorsTerm (Algorithm 6). If the size of
a term is not equal to the size of the preceding term (line 1), the term is initialized to lexi-
cographically ordered feature-operators (lines 2–4). If the term sizes are equal and greater
than 1, the term is initialized by copying the instantiation of the preceding term (lines 7–9).
If term sizes are equal to 1, the instantiation of the preceding term is copied for a nominal
feature; for a continuous-valued feature, the term is instantiated with the lexicographically
next feature-operator (lines 11–15).

2.5.2 Instantiation with next set of feature-operators

The function NextFeatureOperators instantiates a rule with the next set of feature-operators
(Algorithm 7). Starting at the last term and moving to the left, we find the first term for
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Algorithm 6: InitFeatureOperatorsTerm

Input : i, term number; FO, feature-operator list; L, literal tuple; T , term tuple.
Result: L is instantiated with feature-operators for term i.
if ti �= ti−1 ∨ i = 1 then1

// instantiate feature-operators in lexicographic order
for j = 1 to ti do2

foi,j = FOj ;3

end4

else5

if ti > 1 then6

for j = 1 to ti do7

foi,j = foi−1,j ; // copy previous term8

end9

else10

if f in foi,j is nominal then11

foi,1 = foi−1,1; // copy previous term12

else13

foi,1 = foi−1,1 + 1; // take next feature-operator14

end15

end16

end17

Algorithm 7: NextFeatureOperators

Input : FO, feature-operator list; L, literal tuple; T , term tuple.
Output: True if L could be instantiated with the next set of feature-operators, False

otherwise.
Result : L is instantiated with the next set of feature-operators.
for i = |T | to 1 do1

if NextFeatureOperatorsTerm(i,FO,L,T ) then2

for k = i + 1 to |T | do3

InitFeatureOperatorsTerm(k,FO,L,T );4

end5

return True;6

end7

end8

return False;9

which a next set of feature-operators can be generated. All the terms to the right of this term
are initialized (lines 3–5).

Function NextFeatureOperatorsTerm (Algorithm 8) instantiates literal tuple L with the
next set of feature-operators for term i. Starting at the last literal in the term and moving
to the left, we find the first literal which is not instantiated with its last possible feature-
operator. This literal is instantiated with the next feature-operator and all feature-operators
to the right are initialized (lines 3–10).
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Algorithm 8: NextFeatureOperatorsTerm

Input : i, term number; FO, feature-operator list; L, literal tuple; T , term tuple.
Output: True if L could be instantiated with the next set of feature-operators for

term i, False otherwise.
Result : L is instantiated with the next set of feature-operators for term i.
// find literal that can be instantiated with a next

feature-operator
for j = ti to 1 do1

last = |FO| − ti + j ;2

// index of last possible feature-operatorforliteral j

if foi,j �= FOlast then3

foi,j = foi,j + 1;4

while j < ti do5

j = j + 1;6

foi,j = foi,j−1 + 1;7

end8

return True;9

end10

end11

return False;12

2.6 Instantiation of values

The next task is to instantiate the values in the literals which up to now consist only of
feature-operators. Because the number of values is often very large compared to the number
of feature-operators, especially for continuous-valued features, the total number of rules that
are generated is mainly determined by the number of values per feature. We showed earlier
that the number of values can be reduced considerably when subsumption is applied. To
further reduce the search space at the value instantiation level we propose a branch-and-
bound approach.

2.6.1 Value instantiation by branch-and-bound

Branch-and-bound searches the complete space of solutions iteratively by applying branch-
ing and bounding rules. The first operation of an iteration is branching, i.e., the unexplored
solution space is subdivided into two or more subspaces to be investigated in a next itera-
tion. Subsequently, a bounding rule for each of the subspaces is evaluated and compared to
the current best solution. If it can be established that a subspace cannot contain the optimal
solution, the subspace is discarded, else it is further explored. The search terminates when
there is no unexplored part of the search space left. Branch-and-bound can provide a tightly
focused traversal of the search space, while assuring that the optimal solution will be found
(Webb 1995).

We systematically instantiate the literals in the rule only with values that have a potential
to obtain a higher performance than the current best performing rule. To apply a branch-and-
bound technique we need to define bounding rules. Clearly, the bounds are dependent on the
performance measure to be optimized and on the user-defined performance constraints. We
present here the bounding rules for two optimization problems: sensitivity optimization with
a constraint on specificity, and accuracy optimization.
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2.6.2 Sensitivity optimization with a constraint on specificity

In sensitivity optimization the number of true positives needs to be maximized. Let TPmaxi

be the maximum number of examples that can correctly be assigned to the positive class by
term i, and let TPi,j be the number of true positives of literal j in term i. Then TPmaxi is
determined by:

TPmaxi = min(TPi,1, . . . ,TPi,ti ). (1)

Note that the number of true positives of a term i, TPi , can be lower than TPmaxi , because
an example can be classified correctly by one literal and incorrectly by another. However, we
can define a minimum bound TPboundi on TPi,j , to guarantee that no rules will be generated
that cannot improve on the number of true positives of the current best rule, TPbest. Suppose
we have a rule that consists of one term A > ∧B >. For a rule with one term the TPboundi

is equal to TPbest. If literal A > 5 correctly classifies 10 positive cases (TP1,1 = 10) and
TPbest = 15, then no instantiation of values in B > can result in a decision rule with a
higher number of true positives than TPbest. All conjunctive extensions of A > 5 can be
skipped without loss of performance.

If we have a rule that consists of more than one term, then TPboundi depends on TPbest
and the number of true positives generated by the other terms. Let TPcumi be the cumulative
number of true positives of the rule up to term i. For example, if we have a term tuple
T = (2,2,2), TPcum2 is the number of true positives of the disjunction of the first two
terms. In EXPLORE we instantiate new values starting at the last literal in the last term.
Therefore, each TPcumi can be calculated once and used as long as no literals are changed
in that particular ensemble of terms. TPboundi can be calculated by taking into account the
cumulative number of true positives up to term i − 1, TPcumi−1, as well as the TPmaxi of
the terms i + 1, . . . ,m:

TPboundi = TPbest − TPcumi−1 −
k=m∑

k=i+1

TPmaxk. (2)

To reduce the search space even further, a second bound can be defined based on the
specificity constraint. Let FPbound be the maximum number of false positives that are al-
lowed according to the specificity constraint. The number of false positives of each term,
FPi , should be lower than FPbound, since an example can be classified as false positive by
multiple terms. Note that FPbound is a constant value, in contrast to TPboundi , which is
updated after each generated value tuple.

We will now describe the initialization of the first completely instantiated rule and the
subsequent generation of all relevant rules by branch-and-bound.

2.6.3 Initialization with values

The literal tuple is initialized by the function InitValues (Algorithm 9), which calls Init-
ValuesTerm (Algorithm 10) for each term. InitValuesTerm initializes the literal tuple with
values for term i. The values of each feature-operator were sorted in decreasing order by
the number of true positives of a literal containing the feature-operator and the value (Al-
gorithm 3). The literal with the highest number of true positives has the highest potential
to improve on TPbest, therefore we take the first value in the value list as initial value for
all literals (lines 1–3). If TPboundi is met we check FPbound, otherwise we return False
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Algorithm 9: InitValues

Input : L, literal tuple; T , term tuple; V , set of values lists.
Output: True if L could be initialized with values, False otherwise.
Result : L is initialized with values.
i = 1;1

while i ≤ |T | do2

if InitValuesTerm(i,L,T ,V ) then3

i = i + 1;4

else5

return False;6

end7

end8

return True;9

Algorithm 10: InitValuesTerm

Input : i, term index; L, literal tuple; T , term tuple; V , set of value lists.
Output: True if the literals in term i could be initialized with values, False otherwise.
Result : L is initialized with values in term i.

for 1 ≤ j ≤ ti do1

vi,j = V (foi,j )1;2

// initialize to the first value in the list for foi,j

end3

// Branch and Bound
// TPboundi: minimum number of TPs for term i

// FPbound: maximum number of FPs for each term
if TPi,j ≥ TPboundi then4

if FPi ≤ FPbound then5

return True;6

else7

if NextValuesTerm(i,L,T ,V ) then8

return True;9

else10

return False;11

end12

end13

else14

return False;15

end16

because a higher number of true positives will not be possible, i.e., for all feature-operators
the values have been chosen with the highest number of true positives and TPmaxi is deter-
mined by the literal with the lowest number of true positives (Eq. 1). If not FPi ≤ FPbound,
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Algorithm 11: NextValues

Input : L, literal tuple; T , term tuple; V , set of value lists.
Output: True if L could be instantiated with a next set of values, False otherwise.
Result : L is instantiated with the next set of values.

i = |T |;1

result = False;2

while (i > 1) ∧ (result = False) do3

if NextValuesTerm(i,L,T ,V ) then4

result = True;5

// initialize terms to the right
k = i + 1;6

while (k ≤ |T |) ∧ (result = True) do7

result = InitValuesTerm(k,L,T ,V );8

k = k + 1;9

end10

else11

i = i − 1;12

end13

end14

return result;15

we call NextValuesTerm (Algorithm 12), which generates the next set of values for this
term.

2.6.4 Instantiation with next set of values

Function NextValues (Algorithm 11) instantiates the literal tuple with the next set of values
that fulfill the bounds. It starts with the last term and calls NextValuesTerm (Algorithm 12)
to instantiate the literal tuple with the next set of values for that term (line 4). If this is not
possible we move to the left until a term is found that can be instantiated with a next set of
values (line 12). If a term i can be instantiated we have to initialize all terms to its right again
(lines 6–10). However, it is possible that one of these terms cannot be initialized to a value
that fulfills the bounds. In that case, we determine the next values for term i and try again.
The function returns True if a rule is found that fulfills both bounds and False otherwise.

Function NextValuesTerm (Algorithm 12) instantiates the literal tuple with the next set of
values for a term. We start with the last literal (line 1) and move to the left, and reset the value
to the first in the list, (line 2–5) as long as a literal contains the last value in the value list
(|V (foi,j )|) or TPi,j < TPboundi . We then instantiate the next value for the literal where we
stopped (line 7). If the bounds are not met for the instantiated term we call NextValuesTerm
again (line 8–12).

2.6.5 Accuracy optimization

The branch-and-bound approach can also be applied for the optimization of the accuracy of
a DNF rule. Accuracy is defined as the total number of true classifications, TT = TP + TN,
divided by the total number of examples N . We denote TTbest as the total number of cor-
rectly classified examples by the current best rule. Suppose that all negative examples (Nneg)
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Algorithm 12: NextValuesTerm

Input : i, item index; L, literal tuple; T , term tuple; V , value list.
Output: True if L could be instantiated with a next set of values for term i, False

otherwise.
Result : L is instantiated with a next set of values for term i.
j = ti ; // start with last literal1

// find literal that is not at its last value and for
which TPi,j ≥ TPboundi

while j ≥ 1 ∧ (vi,j = V (foi,j )|V (foi,j )| ∨ TPi,j < TPboundi ) do2

vi,j = V (foi,j )1; // reset to first value3

j = j − 1; // move one literal to the left4

end5

if j ≥ 1 then6

vi,j = V (f oi,j )++; // instantiate next value7

if TPi ≥ TPboundi ∨ FPi ≤ FPbound then8

return True;9

else10

return NextValuesTerm(i,L,T ,V );11

end12

else13

return False;14

end15

would have been correctly classified then we need at least (TTbest − Nneg) true positives to
improve on the current best rule. TPboundi for each term can thus be calculated by taking
into account the cumulative number of true positives up to term i − 1, TPcumi−1, as well as
the TPmaxi of the terms on the right of term i:

TPboundi = (TTbest − Nneg) − TPcumi−1 −
i=m∑

i+1

TPmaxi . (3)

Using the same approach FPbound can be derived for accuracy optimization. If we assume
that all positive examples (Npos) are correctly classified we need at least (TTbest − Npos)

true negatives which implies that:

FPbound = Nneg − (TTbest − Npos) = N − TTbest. (4)

The same algorithm can now be employed as described for sensitivity optimization with a
specificity constraint. The bounds for accuracy optimization are less strong than for sensi-
tivity optimization with a constraint on specificity because they are based on the extreme
case that all negative or positive examples are classified correctly.

3 Scalability

In the previous paragraphs we have proposed several methods to strongly reduce the search
space without introducing any performance degradation. This allows us to induce larger
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rules in the same time. Nevertheless, exhaustive search will still be a computer-intensive
approach. Clearly, the rule length is an important factor in the complexity of the problem.
Furthermore, the complexity strongly depends on the dataset composition, i.e., the number
of features and values will have a large impact on the size of the search space. In this section
we will give some insight in the complexity by discussing the number of term tuples and
literal tuples as a function of the rule length. Subsequently we will present the execution
time of EXPLORE for experiments with the datasets used before.

3.1 Term tuples

The number of term tuples equals the number of logical combinations of terms in a rule
of length n. Let p(n, k) be the number of term tuples with all term sizes ti ≥ k. The total
number of term tuples, p(n,1), can then be calculated by the following recursive formula
(Andrews and Eriksson 2004):

p(n, k) = p(n, k + 1) + p(n − k, k) if (k < n),

p(n, k) = 1 if (k = n),

p(n, k) = 0 if (k > n).

(5)

Figure 1 shows the exponential behavior of the number of term tuples as a function of
the rule length.

3.2 Literal tuples

The number of literal tuples as function of the rule length depends on the number of feature-
operator instantiations and the number of value instantiations in the literal tuple. Note that

Fig. 1 Number of term tuples as a function of rule length
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the total number of literal tuples equals the number of fully instantiated rules. Unfortu-
nately, it is not possible to calculate the exact number of literal tuples as function of the
rule length because the effectiveness of the branch-and-bound approach for value instantia-
tion is strongly dependent on the data and user-defined performance constraints. However,
a worst-case estimate can be derived.

Each feature-operator can occur only once in a single term. For a term of size t , the num-
ber of possible feature-operator instantiations with a set of |FO| different feature-operators
is therefore equal to

(|FO|
t

)
. Since all terms have different sizes the total number of feature-

operator instantiations is the product of the number of feature-operator instantiations for
the individual terms. However, a rule can have terms of the same size. EXPLORE gener-
ates terms of equal size t > 1 with replacement and without ordering from the set of

(|FO|
t

)

possible feature-operator combinations (cf. Algorithm 7). The number of feature-operator
instantiations pt>1 for terms of equal size k, can be calculated by:

pt>1(k, |FO|, t) =
(

k + (|FO|
t

) − 1

k

)

. (6)

Finally, in multiple terms of size t = 1, each feature-operator containing a continuous-valued
feature is allowed only once. However, multiple occurrences of the same nominal features
are possible. If the feature set FO consists of Fnom nominal features and Fcont continuous-
valued features, then the number of feature-operator instantiations for k terms of size 1 is
equal to

pt=1(k, |Fnom|, |Fcont|) =
(|Fcont|

k

)

+ |Fnom|k. (7)

If a rule consists of terms of different sizes, the total number of instantiations is obtained by
multiplying the number of feature-operator instantiations for terms of equal sizes, e.g., for
4 continuous-valued feature-operators and a term tuple T = (3,2,2) the number of feature-
operator tuples is pt>1(1,4,3) × pt>1(2,4,2) = 84.

Up to now we only calculated the number of feature-operator instantiations for a specific
term tuple. The total number of feature-operator instantiations for a certain rule length can be
calculated by repeating the calculation described above for each term tuple. Figure 2 shows
the number of instantiations in the literal tuple as a function of rule length, for different
numbers of continuous-valued feature-operators.

Finally, to calculate the total number of literal tuples the number of value instantiations
should be known. However, the branch-and-bound approach does not allow to compute this
number analytically. We can only define an upper bound on the number of value instan-
tiations. In a worst-case scenario the literals have to be instantiated by all values of each
feature-operator pair, i.e., the branch-and-bound approach has no effect. The total number
of value instantiations in each DNF rule can then be calculated by multiplying the number
of values of all feature-operator pairs. If we assume that all the feature-operator pairs have
an equal number of values c, then the number of feature-operator instantiations in a rule
of length n as shown in Fig. 2 should be multiplied by cn to get the total number of literal
tuples.

3.3 Execution time

In Table 6 we present the execution times of EXPLORE for increasing rule length when
optimizing on accuracy in a resubstitution experiment. We increased the rule length until
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Fig. 2 Number of feature-operator instantiations as function of rule length, for 6, 10, and 14 continu-
ous-valued feature-operators

the execution time became longer than 24 hours. The experiments were done on an Intel
Xeon CPU 2.33 GHz with 3 GB of RAM.

As expected, execution time increases very fast with rule length. Moreover, the execution
time strongly depends on the dataset composition. In datasets with predominantly nominal
features, rules are induced faster than in datasets with many continuous-valued features. The
number of examples is of less importance for nominal datasets, as shown by the large mush-
room dataset. The main bottleneck appears to be the total number of values to instantiate the
literals.

The EXPLORE algorithm is generally faster when optimizing sensitivity with a mini-
mum constraint on specificity because much tighter bounds can be applied in the branch-
and-bound approach. For example, the execution time of EXPLORE for the heart-statlog
dataset for rules of length 4 is approximately 3.5 minutes when optimizing sensitivity with a
specificity bound of 95% compared to 1.3 hours when optimizing accuracy. However, the re-
duction in execution time strongly depends on the dataset, the rule length, and the specificity
constraint imposed.

4 Experimental evaluation

We compared the accuracy and the size of the DNF rule induced by EXPLORE with those of
the classifiers induced by eight well-known rule learners. These eight algorithms represent
all different rule learning strategies that have been described in the introduction to this paper:

• C4.5R (Quinlan 1992): induces a set of rules with a single term by applying a post-
processing step on the decision tree learned by the C4.5 learning algorithm.

• CBA (Liu et al. 1998): is a CARM algorithm that induces classification rules based on
an association rule learner. The implementation of Coenen was employed (Coenen 2004),
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which is the same as the initial CBA algorithm described by Liu et al. (1998) except that
the classification association rules are generated by means of the Apriori-TFP algorithm.
We induced a set of rules with a single term that have a minimum support of 5% and a
minimum confidence of 80%.

• CN2 (Clark and Niblett 1989): applies the separate-and-conquer strategy to induce an
ordered rule set.

• 1R (Holte 1993): is a baseline learner that induces a classifier based on one single at-
tribute.

• PART (Frank and Witten 1998): combines the decision tree approach and sequential cov-
ering by repeatedly generating partial decision trees.

• RIPPER (Cohen 1995): induces an ordered set of rules with a single term by combining
covering with a reduced error pruning strategy. We used the WEKA implementation JRIP
(Witten and Frank 1999).

• RISE (Domingos 1994): induces an unordered set of rules with a single term with the
help of the conquering-without-separating strategy.

• SL2 (Rückert and De Raedt 2008): induces a single DNF rule by a Stochastic Local Search
algorithm. The number of terms in the DNF rule is minimized through internal cross-
validation. We used the ‘−l’ option of SL2 to minimize the number of literals in the DNF
rule.

The algorithms were evaluated by executing ten runs of a 10-fold cross-validation experi-
ment on the twelve datasets used before. The same folds were used for all algorithms. Since
CBA and SL2 only operate on nominal features, we performed a simple frequency-based
discretization to replace the continuously-valued features by ten new Boolean features, as
previously done by Rückert (Rückert and De Raedt 2008). The other algorithms were run
without discretization. In all datasets, examples with missing values were removed.

4.1 Performance comparison

Table 7 shows the average accuracy and standard deviation of the ten runs on the datasets.
Differences between EXPLORE and the other algorithms were tested by a paired t-test at the
1% significance level in accordance with the study of Rückert (Rückert and De Raedt 2008).
Results are marked with a filled circle “•” if EXPLORE performed significantly better than
another algorithm and are marked with an open circle “◦” if EXPLORE performed signif-
icantly worse. Our results show that there are only few datasets where another algorithm
outperforms EXPLORE. Interestingly, for the diabetes and the liver datasets EXPLORE
performs significantly better than all the other algorithms.

To compare the algorithms over multiple datasets we used a Friedman test with a conserv-
ative Bonferroni-Dunn post-hoc test as recently suggested by Demšar (2006). The Friedman
test showed that there is a statistically significant difference in accuracy among the algo-
rithms (p = 0.006) with EXPLORE having the highest average rank. In Fig. 3 the ranks
of all the algorithms are presented together with the critical distance (marked interval) as
defined by the Bonferroni-Dunn test. The results show that 1R, CN2, SL2, and CBA per-
form significantly worse that EXPLORE overall, while C4.5R, PART, RISE, and RIPPER
are comparable. Note that the average accuracy of C4.5R is lower than that of EXPLORE on
all the datasets but the difference is not large enough to result in a rank outside the critical
distance (cf. Table 7).
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Fig. 3 Comparison of EXPLORE against the other algorithms with the Bonferroni-Dunn test. All algorithms
with ranks outside the marked interval are significantly different (p < 0.05) from EXPLORE

4.2 Classifier size

The comprehensibility of a classifier strongly depends on its size. We compared the number
of terms (Table 8) and the number of literals (Table 9) induced by EXPLORE and by the
other rule learners. For the algorithms that generate a set of rules with a single term, we
counted the total number of terms and literals in the set.

All algorithms induce classifiers with more terms and more literals than EXPLORE,
except for SL2 which generates a smaller number of terms. In particular, C4.5R, CBA, CN2,
PART, and RISE generate classifiers with more literals. For example, for the mammographic
dataset CN2 induces on average 283.9 literals, while EXPLORE uses only 3 literals and
achieves a higher accuracy (cf. Table 7). Furthermore, the results on the mushroom dataset
show that although all algorithms, except CBA and 1R, are able to find a classifier with
100% accuracy, only RIPPER and EXPLORE consistently find the least complex classifier
containing 6 literals.

5 Discussion

In this study we show that our exhaustive approach to rule learning gives, on average, sub-
stantially smaller classifiers than those of eight rule learners, while securing comparable or
even better performance. Although, it is interesting to see that on some datasets the other
algorithms are able to induce rules with an accuracy comparable to exhaustive search in
a fraction of the execution time, our study also shows that they can result in suboptimal
solutions. This lower performance can probably be attributed to overfitting and/or search-
ing a limited space. Our results indicate that EXPLORE is not very sensitive to overfitting,
since only for the vote dataset it induced a longer rule than RIPPER and SL2, with a lower
performance. Interestingly, RISE performs better than EXPLORE on the breast-cancer and
breast-w datasets, but with much more complex classifiers than those produced by all other
algorithms. By default RISE combines all rules that are induced, including rules that win
only a few or even no examples in the training set. RISE can induce a more comprehensi-
ble classifier if a threshold is used on the number of training examples won by a rule, but
this could negatively affect the performance. Recently, Rückert has shown that the SL2 al-
gorithm was able to obtain a similar level of accuracy as state-of-the-art rule learners, with
smaller DNF rules (Rückert and De Raedt 2008). According to our study the DNF rules
induced by SL2 based on stochastic local search are still larger than the DNF rules induced
by EXPLORE utilizing exhaustive search and have a lower accuracy on most datasets. The
necessary discretization step for SL2 to handle continuously-valued features may have nega-
tively affected its results. However, in the breast-cancer dataset all features were nominal and
still EXPLORE performed better with respect to classifier size and inductive performance.
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Our findings contradict the paper of Quinlan and Cameron-Jones, which suggests that
massive search reduces inductive performance (Quinlan and Cameron-Jones 1995). They
called this phenomenon oversearching and studied it empirically by varying the amounts of
search and comparing the performance of the different classifiers that were induced. Their
hypothesis is that the more rules are evaluated the greater the chances of finding a fluke rule,
i.e., a rule that accidentally fits the data well but does not represent a real pattern. Yet, we
agree with Segal who states that this could also be the result of a faulty evaluation function
which results in overfitting of the data (Segal 1997). Exhaustive and massive search algo-
rithms have to limit the depth of the search to avoid loss of generalizability. In EXPLORE
we use a validation set to determine the maximum length of the DNF rule.

We were able to shorten the execution time of EXPLORE significantly by incorporating
several new techniques that greatly reduce the search space. Firstly, the application of the
subsumption principle considerably reduces the number of values, as compared to taking
the class-boundary approach as proposed by Fayyad and Irani (1992). Our new approach
selects relevant values based on the type of operator (>,≤) in the literal. In an earlier study
a subsumption approach was used to select relevant literals (Lavrač et al. 1999). In addi-
tion, we here show that there is a direct relationship between the relational operator and the
subset of relevant values in the literals. We believe this finding can be important for other
algorithms as well to reduce the search space without loss of performance. Secondly, we
apply a branch-and-bound technique to assure that rules are not generated and evaluated if
they cannot attain a higher performance than the currently best performing rule. We defined
novel bounding rules to induce DNF rules. Other algorithms, such as OPUS, have also used
branch-and-bound to reduce the search space but for conjunctive rules only. We show that
the branch-and-bound approach is not limited to accuracy optimization but can also be ap-
plied to problems in which sensitivity needs to be optimized with a minimum constraint
on specificity. For this latter type of optimization, the user-defined constraint can strongly
reduce the search space and shorten the execution time.

6 Future research

The current study is a starting point for a number of interesting research possibilities:
Firstly, EXPLORE is designed for binary classification, but we will extend EXPLORE

to the multi-class scenario in the near future. The conventional way to handle this problem
is to decompose the multi-class problem into a series of two-class problems and construct
several binary classifiers, e.g., by the one-against-all method. The method used by CN2 to
induce an unordered rule set can possibly be applied (Clark and Boswell 1991).

Secondly, in EXPLORE we use a validation set to determine the maximum length of the
DNF rule. Other approaches can be applied for regularization in an exhaustive search, e.g.
internal cross-validation instead of hold out. We need to study the effect of the regularization
method on the results.

Thirdly, EXPLORE is able to learn DNF rules under one or more performance con-
straints. Learning under constraints is a form of cost-sensitive learning, and it would be in-
teresting to compare the performance of EXPLORE in this respect with wrapper techniques
and other cost-sensitive algorithms.

Fourthly, in this study only relatively small datasets from the UCI data repository have
been used in the experiments because exhaustive search is not feasible in much larger prob-
lems. Yet, there are several possibilities to reduce the computation time of EXPLORE.
Heuristics can be applied to reduce the search space. For example, one of the two possi-
ble relational operators for each continuous-valued attribute could be preselected instead of
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considering both relational operators for each instantiation. Of course, such heuristics may
negatively affect classification performance. Another option is to incorporate expert knowl-
edge to guide the search. For example, based on prior knowledge some features can be made
obligatory, relevant values can be specified by a range, or rules can be defined as a starting
point for induction. The expert may also predefine a minimum value of the sensitivity by
increasing the TPbound beforehand and then let EXPLORE optimize sensitivity with a con-
straint on the specificity. This can improve the speed of the search considerably because a
higher bound at the start of the induction reduces the number of potential rules. Another
advantage of the use of expert knowledge is that this may improve the comprehensibility of
the resulting rule. Comprehensibility is generally greater for smaller rules and for rules that
contain features that are easily interpretable for the end-user. Finally, the ever-increasing
processor speed and the application of grid computing will allow exhaustive search on in-
creasingly larger problems. The systematic rule generation of EXPLORE is eminently fit for
parallel computation at various levels in the algorithm. A distributed version of EXPLORE
that runs on a cluster of computers is under development.

7 Conclusions

In this study we present the EXPLORE algorithm, a new exhaustive search algorithm for
finding a DNF rule. We describe a novel branch-and-bound approach for DNF rule learning,
which reduces the execution time considerably. Also, we propose an operator-dependent
version of the subsumption principle that can strongly reduce the number of relevant values
and allows exhaustive search of much larger problems than previously possible. A compar-
ison with eight rule learners showed that exhaustive search often results in more accurate
and, in particular, less complex classifiers, and is to be preferred over non-exhaustive search
if computationally feasible.
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Appendix A: Symbol table

Symbol Definition

b best DNF rule
C(r,X) constraints of rule r on examples X

foi,j feature-operator in literal j of term i

FO list of feature-operators
FPi number of false positives of term i

FPbound bound on the number of false positives
L tuple of literals
li,j literal j of term i

m number of terms
n rule length
P (r,X) performance of rule r on example set X
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r DNF rule
T tuple of term sizes
TPbest number of true positives of best rule
TPi number of true positives of term i

TPi,j number of true positives of literal j in term i

TPmaxi maximum number of true positives in term i

TPboundi bound on the number of true positives in term i

V value lists of all feature-operators
V (fo) list of values of feature-operator fo
vi,j value in literal j of term i

x labeled example from set X
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