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Abstract

Previous studies have successfully identified genetic variants in several genes associated with human iris (eye) color; however,
they all used simplified categorical trait information. Here, we quantified continuous eye color variation into hue and
saturation values using high-resolution digital full-eye photographs and conducted a genome-wide association study on 5,951
Dutch Europeans from the Rotterdam Study. Three new regions, 1q42.3, 17q25.3, and 21q22.13, were highlighted meeting the
criterion for genome-wide statistically significant association. The latter two loci were replicated in 2,261 individuals from the
UK and in 1,282 from Australia. The LYST gene at 1q42.3 and the DSCR9 gene at 21q22.13 serve as promising functional
candidates. A model for predicting quantitative eye colors explained over 50% of trait variance in the Rotterdam Study. Over all
our data exemplify that fine phenotyping is a useful strategy for finding genes involved in human complex traits.
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Introduction

The iris functions as the diaphragm of the eye controlling the

amount of light reaching the retina. The type, distribution, and

amount of pigments in the iris determine eye color [1,2]. Eye color

shows a high degree of variation in people of European ancestry and

correlates with latitude within the European continent, which may be

explained by a combination of natural and sexual selection [3]. The

inheritance of eye color is not strictly Mendelian although blue iris

color follows largely a recessive pattern [1]. Genome-wide association

studies in people of Europeans decent [4–7] have confirmed eye color

as a polygenic trait, with the HERC2/OCA2 genes explaining the

most of the blue and brown eye color inheritance, whereas other

genes such as SLC2A4, TYR, TYRP1, SLC45A2, and IRF4 contribute

additionally to eye color variation, albeit with minor effects [8]. These

findings increased our understanding of the genetic basis of human

pigmentation, and drew attention to their potential applications, such

as in forensic sciences [9,10].
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However, all previous genetic studies on human eye color were

based on categorical trait information, most often a three-point

scale of blue, green-hazel or intermediate, and brown eye color

[4–6,11,12], whereas it is known that in reality iris colour exists in

a more continuous grading from the lightest shades of blue to the

darkest of brown or black [13]. The use of categorized information

from continuous traits is expected to oversimplify the quantitative

nature of the trait. Therefore, additional genes contributing to

human iris coloration may be identifiable if the full quantitative

spectrum of eye coloration could be exploited. To this aim, we

digitally quantified continuous eye colors into hue and saturation

values from high-resolution, full-eye photographs, and conducted

a genome-wide association study in 5,951 Dutch Europeans from

the Rotterdam Study genotyped with 550–610,000 single

nucleotide polymorphisms (SNPs). Genetic variants with ge-

nome-wide significant eye color association were further tested

in replication samples of 2,261 participants of the UK Twin Study

(TwinsUK) and 1,282 participants of the Brisbane Twin Nevus

Study (BTNS) Australia. Finally, we evaluated the predictive value

of an updated list of informative SNPs, including interacting ones,

on quantitative eye color that is of relevance in forensic

applications.

Results

Quantitative eye color phenotyping
The discovery sample set included participants of three

Rotterdam Study (RS) cohorts (RS1, RS2, and RS3) with a total

of 5,951 Dutch European individuals after quality control of

genetic and phenotypic data (Table 1). Digitally extracted iris (eye)

color was quantified into two interval dimensions hue (H) and

saturation (S) (Figure 1A and 1B). H measures the variation in

color spectrum, whereas S measures the variation in color purity

or intensity. Thus, H and S may serve as representations of the

type and the amount of iris pigments. We noticed a high

correlation between H and S (r = 20.77), which may have a

biological explanation. Eyes classified in three different color

categories ‘‘blue’’, ‘‘brown’’ and ‘‘intermediate’’ by an ophthal-

mologist during eye examination largely clustered around distinct

areas on the HS color space but with considerable overlap

(Figure 1C). This is also true for the five color categories graded by

reviewing the digital photographs used for eye color quantification

in this report (Figure 1D). The overlap between clusters may be

expected given the quantitative nature of iris coloration and the

variation in color conception. Principal component analysis on z-

transformed H and S values revealed two components CHS1 and

CHS2 that accounted for 88.75% and 11.25% of the total

quantitative eye color variance (Figure 1E and 1F). Among the 4

quantitative measurements, the CHS1 variable showed the highest

correlation with the 3-ordinal category variable blue-intermediate-

brown.

Genome-wide association studies (GWAS)
GWAS in three independent RS cohorts, as well as in the

merged dataset (RS123), were carried out for 6 eye color traits i)

Author Summary

We measured human eye color to hue and saturation
values from high-resolution, digital, full-eye photographs
of several thousand Dutch Europeans. This quantitative
approach, which is extremely cost-effective, portable, and
time efficient, revealed that human eye color varies along
more dimensions than the one represented by the blue-
green-brown categories studied previously. Our work
represents the first genome-wide study of quantitative
human eye color. We clearly identified 3 new loci, LYST,
17q25.3, TTC3/DSCR9, in contributing to the natural and
subtle eye color variation along multiple dimensions,
providing new leads towards a more detailed understand-
ing of the genetic basis of human eye color. Our
quantitative prediction model explained over 50% of eye
color variance, representing the highest accuracy achieved
so far in genomic prediction of human complex and
quantitative traits, with relevance for future forensic
applications.

Table 1. Eye color details and demographics of the study subjects.

RS1 RS2 RS3 TwinsUK BTNS

N individuals 2429 1535 1987 2261 1282

N SNPs (K) 550 550 610

Age 74.02 8.23 67.65 7.37 56.24 5.80 52.22 12.52 17.19 4.56

Female (%) 59.40 54.40 56.10 89.31 51.48

Hue 34.86 7.62 32.19 7.25 32.27 6.93 19.22 18.44 27.99 6.38

Saturation 0.40 0.13 0.44 0.14 0.48 0.15 0.47 0.19 0.54 0.24

Blue 68.01 69.51 71.26 53.51

Intermediate 9.76 4.82 7.50 28.39

Brown 22.23 25.67 21.24 18.10

Dark blue 4.12 3.52 2.62

Grey/light blue 57.93 52.83 41.62

Green/brown spots 18.98 18.89 31.71

Light brown 18.03 23.13 22.35

Dark brown 0.95 1.63 1.71

Raw values, percentages, or means and standard deviations.
High resolution digital full eye size photos were available in Rotterdam Studies (RS1-3) and Brisbane Twin Nevus Study (BTNS), whereas in the Twin Study from the UK
(TwinsUK) only digital full size portrait photos were available with low iris resolution.
doi:10.1371/journal.pgen.1000934.t001

Quantification of Human Eye Color and GWA
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Figure 1. The Hue-Saturation (H-S) eye color space in the Rotterdam Study (RS123). (A) The Hue-Saturation (H-S) eye color space; (B) Example
eye photos at their respective position in the H-S space; (C) 3 color categories defined by an ophthalmologist during eye examination and highlighted in
the H-S space; (D) 5 categories defined by two researchers from digital full eye size photographs used for digital quantitative extraction of eye colors; (E)
4 quartiles of the 1st principle component CHS1; and (F) 4 quartiles of the 2nd principle component CHS2; all depicted on the H-S color space.
doi:10.1371/journal.pgen.1000934.g001
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H, ii) S, iii) CHS1, iv) CHS2, v) 3-category color classification

(‘‘blue’’, ‘‘brown’’ and ‘‘intermediate’’), and vi) 5-category color

classification (‘‘pure blue’’, ‘‘light blue/grey’’, ‘‘green/mixed with

brown spots’’, ‘‘light brown’’, and ‘‘dark brown’’). Genetic

outliers of non-European ancestry were excluded (Figure S1A).

No institutional heterogeneity between the three cohorts or

residual population sub-stratification was noticed after merging

the genotype data (Figure S1B). Inflation factors for all color traits

were in the range from 1.02 to 1.03 after adjusting for population

sub-stratification. The initial scan of the merged R123 samples

for all color traits revealed a sharp deviation between the

observed P values and the expected ones under the null

hypothesis (Figure 2), mainly due to a very strong effect of the

HERC2 and OCA2 genes on chromosome 15q13.1 (Figure 3A

and Table S1). SNPs in HERC2 showed the most significant effect

on all color traits (rs12913832 P,102300; except for CHS2 with

P = 0.60) (Figure 3, Table S1), confirming previous findings on

categorical eye color information [5–6,11,14]. In the subsequent

scan adjusted for the effect of HERC2 rs12913832, five other

genes known to be involved in eye color (OCA2, SLC2A4, TYR,

TYRP1, and SLC45A2) [4,7] revealed genome-wide significant

eye color association (P,561028), and the effect of IRF4 [7] was

confirmed at a somewhat lower significance level (P = 1.461026)

(Figure 3B). We did not observe a significant effect of ASIP on eye

color, which is in agreement with our earlier study on categorized

eye color [8], and in line with previous findings suggesting that

ASIP may be more involved in skin pigmentation [4,15].

Noteworthy, SNPs in the previously known eye color genes

TYRP1, TYR, and SLC24A4 showed more significant association

with quantitative eye color compared with categorical ones

(Figure 3B). In the subsequent GWAS adjusted for the effects of

all 7 known genes, the P values derived for CHS1, H and S still

significantly deviated from the expected ones (Figure 2). The tail

of deviation was mainly explained by 10 SNPs at 3 new loci

1q42.3, 17q25.3, and 21q22.13 (Table 2, Figure 3C). The

association of the three new loci met the genome-wide

significance criterion of P,561028. The allelic effects of the 10

SNPs were consistent through the 3 independent RS cohorts and

were nominally significant (Table 2). No more SNPs were clearly

associated with any eye color trait at the genome-wide significant

level in an additional scan adjusted for all previously known genes

as well as the 3 new loci.

At the 1q42.3 locus two SNPs, rs3768056 and rs9782955, were

associated with S at the genome-wide significance level

(5.561029,P,7.861029) (Table 2, Figure 4). Both SNPs are

located in introns of the lysosomal trafficking regulator (LYST)

gene. Note that SNPs at this locus were associated with S but not

with H or categorical colors, which is a different phenomenon

compared to the other two new loci identified. Three SNPs at

17q25.3 were associated with multiple color traits at the genome-

wide significance level and the association with CHS1 was the most

significant (5.9610211,P,7.261029) (Table 2, Figure 5). The

SNP rs7219915 is intronic and rs9894429 exonic of the nuclear

protein localization 4 homolog (NPLOC4) gene and rs12452184 is

intronic of the hepatocyte growth factor-regulated tyrosine kinase

substrate (HGS) gene. There are multiple small genes in the

17q25.3 region (Figure 5). Five SNPs at 21q22.13 were

significantly associated with CHS1 (5.061029,P,3.161028)

(Table 2, Figure 6). Four SNPs, rs1003719, rs2252893,

rs2835621, and rs2835630, are intronic of the tetratricopeptide

repeat domain 3 (TTC3) gene, and one, rs7277820, is in the

flanking 59 UTR region of the Down Syndrome Critical Region 9

(DSCR9) gene. The TTC3 and DSCR9 genes are in the same LD

block (Figure 6).

On chromosome 2q37 SNPs rs2070959, rs1105879, rs892839,

rs10209564 were associated with CHS2 at borderline genome-wide

significance (1027,P,1026, Figure 3C). The first 2 SNPs are in

the coding region of the UDP glycosyltransferase 1 family

(UGT1A) gene.

Replication analyses in TwinsUK and BTNS
Eye color data from the TwinsUK cohort were extracted from

digital portrait photographs with limited iris resolution. As these

photographs were taken under some variation in daylight and

exposure conditions, the trait variance was larger compared with

those of RS (H = 19.22618.44; S = 0.4760.19; Table 1). This, in

combination with smaller sample size, resulted in less significant

eye color association detected for the previously known eye color

SNPs, such as HERC2 rs12913832 (RS123: P,16102300,

TwinsUK: P = 1.4610288), SLC24A4 rs12896399 (RS123:

P = 2.0610223, TwinsUK: P = 2.161023), TYR rs1393350

(RS123: P = 1.061029, TwinsUK: P = 3.961022), and TYRP1

rs1325127 (RS123: P = 4.0610211, TwinsUK P.0.05). Despite

the considerable loss of statistical power, two of the three regions

newly identified here were replicated with significant eye color

association in the TwinsUK data. The SNPs at chromosome

21q22.13 locus were replicated with consistent allelic effects (P for

CHS1 and H,0.01, Table 2). The SNPs at 17q25.3 were

associated with S and CHS2 (P,0.02, not shown), but not

significant with CHS1 (0.92,P,0.27, Table 2), which was the

most significant association in the RS cohort (P = 5.9610211). The

chromosome 1q42.3 region was not significantly associated with

any eye color trait in the TwinsUK data.

Participants of the BTNS cohort were on average much

younger (17.1964.56 years) than the other 2 cohorts (over 50

years) and had more intermediate colored eyes compared with RS

(Table 1). The eye photographs from BTNS had similar

resolutions and sizes as the ones from RS; however, in contrast

to RS they were also taken under some variation in daylight and

exposure conditions and the effective sample size was the smallest

among the 3 studies. P-values derived from BTNS for the

association between eye color and previously known eye color

SNPs were somewhat in between those derived from RS and

TwinsUK (e.g. P for rs12913832 = 1.266102200). The newly

identified SNPs at 17q25.3 (P for CHS1,0.05) and 21q22.13 (P for

CHS1 and S,0.05) showed significant association with eye color

and the betas were consistent with those derived from RS (Table 2).

The chromosome 1q42.3 region was not significantly associated

with any eye color trait in the BTNS data.

In a combined analysis of all 9494 participants of the RS,

TwinsUK, and BTNS cohorts, the association signals at 17q25.3

and 21q22.13 were genome-wide significant (P = 8.9610214 and

P = 2.3610210, respectively, Table 2), whereas the signal at 1q42.3

did not reach the genome-wide significance threshold

(P = 3.961024, Table 2), as may be expected from the results of

the individual cohorts. Of note, the photos from the 3 study

cohorts, from which eye color was digitally extracted, were

ascertained based on different approaches (see Methods), and as

result, the H and S values showed different means and variance

between the 3 cohorts (Table 1). Hence, using all these data in a

combined analysis may result in a conservative association signal.

Eye color prediction
We identified 17 predictors that significantly explained the trait

variance, including age and sex, 11 SNPs from 9 genes, and 4 SNP

pairs that showed significant interaction effects. For details of

interaction analysis, see Text S1 and Figures S2, S3, S4. The 17

predictors together explained 48.87% of the H variance and

Quantification of Human Eye Color and GWA
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Figure 2. Observed and expected P values for eye color in the Rotterdam Study (RS123). Observed 2log10 P values in a GWA of CHS1 are
ranked on the y-axis and plotted against the expected distribution under the null on the x-axis. All P values smaller than 10210 were truncated at 10
at the log scale. The red dots are the P values excluding the effects of sex, age, and population stratification. Blue dots are the P values excluding the
effects of 7 genes previously known to be involved in eye color. Green dots are the P values after additionally excluding the effects of 3 newly
identified loci, with no more SNPs showing significant association at the genome-wide level.
doi:10.1371/journal.pgen.1000934.g002
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56.30% of the S variance in the Rotterdam Study (Table 3). Most

predictors had significant effects on both H and S. Exceptions

were rs3768056 in LYST and the interaction between HERC2

rs12913832 and SLC24A4 rs12896399, which were only significant

for S, as well as IRF4 rs12203592, OCA2 rs728405, and the

interaction between HERC2 rs12913832 and OCA2 rs728405,

which were only significant for H. The main effect of SLC45A2

rs16891982 is no longer significant when its interaction with

rs1800407 was taken into account. The HERC2 SNP rs12913832

showed, as expected, the strongest predictive power, which alone

Figure 3. GWA Manhattan plot for quantitative and categorical eye color in the Rotterdam Study (RS123). The 2log10 P values for
association with 6 eye color traits (hue, saturation, CHS1, CHS2, 3-category classification, 5-category classification) are plotted for each genotyped SNP
according to its chromosomal position (NCBI build 36). The distance between each tick on the x-axis represents 50 Mb. The P values smaller than
10212 are truncated at the level of 12 at the log scale and those greater than 0.01 are not shown. (A) P values are adjusted for age, sex and population
stratification, (B) additionally adjusted for the effect of rs12913832 in HERC2, the most significantly associated eye color SNP known before, and (C)
additionally adjusted for the effect of all 7 previously known eye color associated genes. Previously known eye color genes with genome-wide
significant eye color association in the present study are noted using blue text above the figure and genes in the three newly identified loci in the 3rd
scan are noted in red.
doi:10.1371/journal.pgen.1000934.g003

Table 2. New SNPs associated with eye color in Rotterdam Studies, and replication analyses in TwinsUK Study and Brisbane Twin
Nevus Study (BTNS).

RS1 (n = 2,429) RS2 (n = 1,535)
RS3
(n = 1,987)

RS123
(n = 5,951)

TwinsUK
(n = 2,261)

BTNS
(n = 1,282)

Combined
(n = 9,494)

SNP EA Trait beta P beta P beta P beta P beta P beta P beta P

1q42.3 LYST

rs3768056 G S 0.01 5.0E-05 0.01 3.7E-03 0.01 1.3E-03 0.01 7.8E-09 20.01 5.4E-01 20.01 1.9E-01 0.01 5.3E-04

rs9782955 T S 0.01 3.3E-05 0.01 3.6E-03 0.01 1.2E-03 0.01 5.5E-09 0.00 7.5E-01 20.01 1.5E-01 0.01 3.9E-04

17q25.3 NPLOC4-HGS

rs7219915 T CHS1 0.11 4.1E-05 0.10 1.8E-03 0.10 2.8E-04 0.11 5.9E-11 0.01 8.7E-01 0.10 4.3E-03 0.10 1.5E-13

rs9894429 T CHS1 0.11 2.8E-05 0.07 2.0E-02 0.11 2.8E-05 0.10 2.0E-10 0.01 9.2E-01 0.12 7.0E-04 0.12 8.9E-14

rs12452184 T CHS1 0.10 1.5E-04 0.08 1.2E-02 0.10 2.1E-04 0.10 7.2E-09 0.07 2.7E-01 0.07 6.1E-02 0.07 9.0E-10

21q22.13 TTC3-DSCR9

rs1003719 A CHS1 20.10 7.2E-05 20.11 5.6E-04 20.06 2.8E-02 20.09 1.9E-08 20.12 9.1E-04 20.08 4.1E-02 20.10 2.3E-10

rs2252893 C CHS1 20.12 2.4E-06 20.08 1.0E-02 20.06 3.4E-02 20.10 6.0E-09 20.11 2.3E-03 20.08 4.1E-02 20.10 2.3E-10

rs2835621 A CHS1 20.12 3.2E-06 20.09 8.0E-03 20.06 3.1E-02 20.10 5.0E-09 20.11 2.3E-03 20.08 4.1E-02 20.10 2.3E-10

rs2835630 G CHS1 20.13 1.2E-06 20.09 9.2E-03 20.04 1.2E-01 20.09 3.1E-08 20.10 4.8E-03 20.09 1.8E-02 20.10 3.6E-10

rs7277820 G CHS1 20.12 1.5E-06 20.09 4.9E-03 20.04 1.0E-01 20.09 1.5E-08 20.10 6.9E-03 20.09 1.5E-02 20.09 1.4E-08

EA, the effect allele based on which beta was derived.
RS123, merged data of Rotterdam Study 1, 2, and 3.
In TwinsUK SNPs at 17q25.3 were associated with S and CHS2 (P,0.02).
doi:10.1371/journal.pgen.1000934.t002
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Figure 4. Chromosome 1q42.3 associated with quantitative eye color in the Rotterdam Study (RS123). Regional association plots for
300 Kb surrounding the three newly identified eye color locus on chromosomal 1q42.3. Statistical significance of associated SNPs at each locus are
shown on the 2log(P) scale as a function of chromosomal position. P values were derived for 6 eye color traits (see figure legend). Genes in the
region and LD patterns according to HapMap version 21a CEU samples are aligned bellow. Chromosome 1 233.85–234.25 Mb region includes the
LYST gene, where SNPs rs3768056 and rs9782955 showed genome-wide significant association with saturation only.
doi:10.1371/journal.pgen.1000934.g004
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Figure 5. Chromosome 17q25.3 associated with quantitative eye color in the Rotterdam Study (RS123). The chromosome 17 77.05–77.35 Mb
region includes multiple small genes, SNPs rs7219915, rs9894429, and rs12452184 showed genome-wide significant association with multiple traits.
doi:10.1371/journal.pgen.1000934.g005

Quantification of Human Eye Color and GWA
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Figure 6. Chromosome 21q22.13 locus associated with quantitative eye color in the Rotterdam Study (RS123). The chromosome 21
37.30–37.65 Mb region includes DSCR6, PIGP, TTC3, DSCR9, and DSCR3 genes, SNPs rs1003719, rs2252893, rs2835621, rs2835630, and rs7277820
showed genome-wide significant association with CHS1.
doi:10.1371/journal.pgen.1000934.g006
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explained 44.50% of the H and 48.31% of the S variance.

Surprisingly, age was identified to be the 2nd strongest predictor of

quantitative eye color; the increased age was associated with

increased H (DR2 = 1.17%, P = 8.2610229) and decreased S

(DR2 = 5.03%, P = 1.46102131). The 3 newly identified loci

together explained 0.53% and 0.73% and the identified SNP-

SNP interactions explained 0.75% and 0.72% of the H and S

variance, respectively. Gender showed a small effect on H

(DR2 = 0.04%) and S (DR2 = 0.09%), although statistically signif-

icant (P,0.04). After adjusting for the effects of the 17 predictors,

the summary variance explained by the remaining SNPs was

negligible (DR2,0.01%). These 17 identified predictors explained

56.2% of S and 11.1% of H variance in BTNS as well as 28.5% of

S and 4.1% of H in TwinsUK.

We also used the 17 predictors for 3 or 5 categorical eye color

prediction based on a multinomial logistic regression model. The

prediction accuracy was measured by the Area Under the receiver

operation Curve (AUC). The accuracy in predicting 3-category

eye color was 0.92 for blue, 0.74 for intermediate, and 0.93 for

brown, which reflects a slight but statistically significant

(P = 2.761024) improvement compared to our previous attempt

using 15 SNPs from 8 genes (AUC 0.91 for blue, 0.73 for

intermediate, and 0.93 for brown) [8]. Excluding the non-genetic

predictors age and gender from the model had no major impact on

the prediction accuracy of categorical eye color (DAUC,0.01 for

any color category). Notably, predicting 5 eye colors was category-

wise less accurate compared to the 3-category prediction (AUC

0.72 for pure blue, 0.82 for light blue/grey, 0.66 for green/mixed,

0.93 for light brown, 0.89 for dark brown), which may not be

unexpected as by increasing the number of categories in the

phenotype classification the uncertainty of assignment also

increases.

Discussion

Using digitally-quantified continuous eye color information,

extracted from high-resolution full eye size pictures, we were able

to improve the power of finding genetic associations as evident

from seeing SNPs in some known eye color genes with more

significant association with quantitative than categorical eye color.

The gain of power also allowed us to identify 3 new loci, which

add substantially to the previously available list of seven genes and

provide additional insights into the genetic origins of human

pigmentation. Fine-resolution phenotyping may therefore serve as

an important alternative strategy for finding genes involved in

complex traits to simply increasing sample size, which represents

the main trend of current GWA studies in humans.

All SNPs associated with eye color at 1q42.3 are located in the

LYST gene. Mutations in the LYST gene are involved in Chediak-

Higashi and exfoliation syndromes characterized by iris pigmen-

tation dispersion, transillumination and other defects [16]. Mice

studies showed that LYST mutations reproduced the iris defects of

human exfoliation syndrome [17]. Furthermore, a study of coat

colour in cattle showed that LYST may influence the intensity of

pigment within coat colour categories, e.g., dark grey to light grey,

but do not result in color type changes, e.g., grey to red or black

Table 3. Predicting quantitative eye color in Rotterdam Studies.

Hue Saturation

Predictors Gene Beta se DF P value DR2 % rank Beta se DF P value DR2 % rank

Constant 34.31 1.32 0.550 0.011

Female 0.29 0.14 4.2 4.2E-02 0.04 16 0.009 0.003 11.8 6.0E-04 0.09 14

Age per 10 yr 0.71 0.07 125.4 8.2E-29 1.17 2 20.030 0.001 627.5 1.4E-131 5.03 2

rs3768056G LYST --- --- --- NS --- --- 0.013 0.002 37.9 8.0E-10 0.29 6

rs16891982C SLC45A2 --- --- --- NS --- --- --- --- --- NS --- ---

rs12203592A IRF4 22.10 0.51 17.9 2.4E-05 0.16 10 --- --- --- NS --- ---

rs1325127G TYRP1 20.54 0.11 23.5 1.3E-06 0.21 7 0.012 0.002 40.9 1.7E-10 0.32 5

rs1393350A TYR 0.38 0.11 13.9 1.9E-04 0.12 14 20.011 0.002 34.0 5.9E-09 0.26 7

rs12896399C SLC24A4 20.46 0.10 21.9 3.0E-06 0.20 9 0.059 0.005 125.0 9.9E-29 0.98 3

rs728405C OCA2 21.38 0.41 11.8 6.0E-04 0.10 15 --- --- --- NS --- ---

rs1800407G OCA2 7.69 1.30 20.7 5.6E-06 0.18 12 20.062 0.010 19.6 9.8E-06 0.15 11

rs1129038C HERC2 24.55 0.43 96.2 1.6E-22 0.88 3 0.027 0.008 12.3 4.5E-04 0.09 13

rs12913832A* HERC2 29.91 0.74 4665.6 ,1E-300 44.50 1 0.258 0.012 5438.3 ,1E-300 48.31 1

rs9894429A NPLOC4 0.55 0.10 33.1 9.2E-09 0.30 5 20.009 0.002 25.0 5.9E-07 0.19 9

rs7277820G DSCR9 20.45 0.10 25.7 4.2E-07 0.23 6 0.010 0.002 33.6 7.1E-09 0.25 8

rs1800407G_ rs16891982C 25.25 1.09 23.7 1.1E-06 0.21 13 0.025 0.006 15.8 7.3E-05 0.12 12

rs12913832A_rs12203592A 2.11 0.36 33.9 6.1E-09 0.31 4 20.011 0.002 23.3 1.4E-06 0.18 10

rs12913832A_rs728405C 1.13 0.27 22.5 2.1E-06 0.20 8 --- --- --- NS --- ---

rs12913832A_rs12896399C --- --- --- NS --- --- 20.030 0.004 58.9 1.9E-14 0.46 4

Total 48.79 56.72

NS: not significant.
Beta, se, and P values were derived in RS1 and RS2 cohorts, R2 changes were estimated in RS3 cohort.
The interaction terms are defined at the multiplicative scale.
*rs12913832 A allele is modeled to have a dominant effect, allelic effects in other SNPs are modeled additively.
The main effect of rs16891982C is not significant when the interaction term is included.
doi:10.1371/journal.pgen.1000934.t003
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[18]. These authors suggested that allelic variation in this gene,

possibly not associated with illness, could underlie the different

shades of colours observed in the partially diluted colour. Our

results in the Rotterdam Study are in perfect agreement with their

conclusion. Also, the LYST gene was identified in two studies with

evidence for positive selection when comparing continental

populations that strongly differ in pigmentation phenotypes [19].

This provides additional arguments that the gene is involved in

human pigmentation traits [2]. Noteworthy, the SNPs in LYST

gene were associated at genome-wide significance with saturation

only but were not even nominally significant with hue. This

finding underlines the relevance of our approach to separately

analyze the H and S dimensions, which are likely to involve

independent biological bases. The failure to replicate the 1q42.3/

LYST findings in the TwinsUK and BTNS studies may be

explained by a combination of factors related to the smaller sample

size, the relatively small effect size (smallest of the 3 loci described

in this manuscript), as well as some limitations in the photographs.

Lighting conditions and background color were not standardized

for the TwinsUK and BTNS cohorts, and picture resolution in the

TwinsUK study was much lower than in the other two studies,

reducing accuracy of H and S estimation. 1q42.3 was the only

region that did not reach genome-wide significance in the

combined analysis - again likely to be a result of small effect size,

but also that the detected association was with S, whereas both

other regions expressed association with CHS1, which may be less

affected by noise. Although the signals detected at 1q42.3 in the

Rotterdam Study may represent a false positive finding, the

abundant evidence from animal studies and from human

evolutionary studies suggest that LYST is likely to influence subtle

variation in the amount of pigmentation that requires high

precision measurements to be detectable.

The replicated significant association at chromosome 17q25.3

locus, which also showed genome-wide significance in the combined

analysis, was detected for SNPs located in the NPLOC4 and HGS

genes. There are, however, multiple small genes in this region,

including ACTG1, FSCN2, C17orf70, NPLOC4, TSPAN10, PDE6G,

LOC339229, ARL16, HGS, MRPL12, and SLC25A10. At this moment

it is difficult to clearly affiliate a functional unit to the association

signal observed. Based on current knowledge, PDE6G may be the best

candidate gene for the association signal observed. Mutations in

PDE6G cause autosomal recessive retinitis pigmentosa [20], in which

the dysfunction in retinal pigment epithelium is typical.

The chromosome 21q22.13 locus, which we identified with

replicated significant eye color association, and also in the

combined analysis, contains several genes including the Down

Syndrome Critical Region 3 (DSCR3), 6 (DSCR6), 9 (DSCR9),

tetratricopeptide repeat domain 3 (TTC3), and phosphatidylino-

sitol glycan anchor biosynthesis (PIGP) genes. The SNPs showing

significant association with eye color were in the TTC3 and DSCR9

genes. Both genes are in the same high linkage disequilibrium

region. It is known that trisomy of the chromosomal 21q22 region

leads to Down syndrome in which so called Brushfield spots are

often observed [21]. Brushfield spots are small white or grayish/

brown spots on the periphery of the human iris due to aggregation

of connective tissue, a normal iris element. These spots are normal

in children but much more frequently (up to 78%) observed in

newborn Down Syndrome patients [22]. Also, they are much

more likely to occur in patients of European origin, where eye

color variation is observed, compared to patients of Asian ancestry

with homogeneous brown eyes [23]. Further, the DSCR9 gene,

encoding functionally unknown proteins, was found a new gene in

the primate lineage during evolution and exclusive to primate

genomes [24]. We therefore hypothesize that genetic variants in

DSCR9 or nearby genes may influence the aggregation of

connective tissue of normal iris resulting in different iris color

appearance, and extreme forms of variation, e.g., via trisomy, lead

to Down Syndrome. It has been suggested that the development of

the iris and brain are linked, speculatively via genetic pathways

that may also involve pigment production [25].

There remained several residual signals over the genome at

borderline genome-wide significant association with eye color in

the Rotterdam Studies. Such signals may represent false positive

results or genes with true but small effects requiring a larger

sample for detecting unambiguous associations or iris color

phenotypes of even more detailed characterization as obtainable

here. Most notably is the association identified at 2q37; this region

includes the UGT1A gene encoding a UDP-glucuronosyltransfer-

ase, an enzyme of the glucuronidation pathway that transforms

bilirubin into water-soluble metabolites. Variants in this gene

influence bilirubin plasma levels [26], and were suggested to cause

Gilbert’s syndrome [27], which is the most common syndrome

known in humans characterized with mild and harmless jaundice

characterized by a yellowish discoloration of the skin. Interestingly,

SNPs in the UGT1A gene were most significantly associated with

CHS2, a dimension that is uncorrelated with the blue-brown

variation represented by CHS1, indicating that CHS2 may represent

the variation in yellowish pigments.

The HERC2/OCA2 genes showed some ‘‘masking’’ effects over

SLC24A4, SLC45A2 and IRF4 genes (Figure S4) that significantly

improved the prediction accuracy. However, it remains uncertain

if these interactions are truly genetic or confounded by other

factors. For example, high melanin concentration in the frontal iris

epithelia may block the color variation in the inner layers from

being measurable, which may lead to statistically significant

interactions. Still, not all genes showed interaction with HERC2/

OCA2 and some of the interactions are specific for the H or S

dimension. These findings are of interest for further functional

studies.

Our prediction model explained 49–56% of the trait variance in

the Rotterdam Study. To our knowledge these values represent

the highest accuracy achieved so far in genomic prediction of

human complex and quantitative traits [28]. We used non-

overlapping samples in building and evaluating the prediction

model, and this may lead to slightly conservative R2 estimates

compared with the methods based on cross validations. Also note

that these R2 estimates are not equivalent to the ones from linkage-

based studies or logistic models. The fact that the identified 17

predictors explain less trait variance in TwinsUK may be

addressed by the quality limitations in the photographs available.

In both TwinsUK and BTNS the variance explained for H was

much lower than that for S. This is most likely because the light

conditions were not standardized when the photographs were

taken in these two cohorts available for replication analyses. Given

that the newly identified genetic variants together explained less

than 2% of the trait summary variance, we do not expect that

additional but unknown genetic variants may account for an

essential portion of the unexplained variance. The color of the eye

as perceived from the outside was the main outcome of this study,

whereas the pigmentation genes by definition have a more direct

effect on the melanin content. However, so far it is unclear if

probing deeper into endophenotypes, e.g., directly measuring

melanin content using biochemical methods, is going to reduce the

unexplained variance, as we have also shown that there are regions

putatively associated to eye colour but not clearly involved in the

melanin pathways.

Using the 17 predictors for 3-categorical color prediction

slightly improved the accuracy compared to our previous attempt
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using 15 SNPs from 8 genes. The 5-category model had little

power in differentiating ‘‘pure blue’’ from ‘‘light blue/grey’’, and

‘‘dark brown’’ from ‘‘light brown’’ categories, which are more

likely to be consequences of differences in tissue structure than

chemical composition [1]. The proposed quantitative prediction

model may be helpful as an investigative tool in forensic

applications, i.e. to better trace unknown suspects in cases where

conventional DNA profiles from crime scene samples do not

match those of known suspects including those already in criminal

DNA databases [9]. Instead of a verbal statement on categorical

eye color, which is prone to subjective imagination and is expected

to result in inter-individual differences on the actual eye color in

question when used to trace unknown persons, our quantitative

prediction approach results in a more precisely defined eye color

outcomes. For forensic practice we envision that results from

DNA-based quantitative eye color prediction tests will be provided

as standardized color charts or as computer-based color prints,

which could also include uncertainty intervals expressed in colors,

hence providing a small range of the most likely colors a DNA

sample donor’s irises may have. Therefore quantitative eye color

prediction is expected to enhance the success rate of tracing

unknown individuals according to eye color in forensic applica-

tions compared with categorical eye color prediction suggested

previously [10]. Our data also demonstrate that eye color

saturation declines substantially in elderly people, further empha-

sizing the gain in power by using a quantitative approach. Age was

significant in each of the 3 RS cohorts as well as in the UK and

Australia replication cohorts. Thus, its effect on eye color is

unlikely a reflection of sample composition and we speculate its

effect may share some biological pathways involved in the graying

of hair color. Future studies aiming to identify biomarkers for age

prediction may further improve the eye color prediction accuracy.

In this study we focused on quantitative H and S dimensions,

which may reflect the variation in type and amount of iris

pigmentation, whereas the distribution of pigmentation is less

covered by these measures. For example, some irises are

characterized by an inner brown ring surrounding the pupil and

blue/gray color at the outer part of the iris. Such traits reflecting

the variation in pigmentation distribution, if measured quantita-

tively, may be useful for a further and even more detailed

understanding of eye color genetics.

Using the example of eye color we have demonstrated that

employing quantitative phenotype information about a complex

trait in GWA analysis allows detection of new genetic variants.

The three new regions and the new genetic interactions identified

here as being involved in human quantitative eye color variation

may serve as guides for future studies exploring the functional basis

of human pigmentation. Finally, our findings are relevant for

predicting eye color in applied areas of science such as in forensics.

Methods

Rotterdam Study
The Rotterdam Study (RS) is a population-based prospective

study including a main cohort and 2 extensions. The RS1 [29] is

ongoing since 1990 and included 7,983 participants living in

Rotterdam in The Netherlands. The RS2 [30] is an extension of

the cohort, started in 1999 and included 3,011 participants. The

RS3 [31] is a further extension of the cohort started in 2006 and

included 3,932 participants. The participants were all examined in

detail at baseline. Collection and purification of DNA have been

described in detail previously [6]. Each eye was examined by slit

lamp examination by an ophthalmological medical researcher,

and iris color was graded by standard images showing various

degrees of iris pigmentation. Three categories of iris color (blue,

intermediate, and brown) were distinguished based on predomi-

nant color and the amount of yellow or brown pigment present in

the iris. Additionally, digital full eye size photographs of the

anterior segment were obtained with a Sony HAD 3CCD color

video camera with a resolution of 8006600 pixel for each of three

colors (Sony Electronics Inc., New York, NY) mounted on a

Topcon TRC-50EX fundus camera (Topcon Corporation, Tokyo,

Japan) after pharmacologic mydriasis (tropicamide 0.5% and

phenylephrine 5%). The procedure of pharmacologic mydriasis

(dilation of the pupil) was employed because the initial target for

taking these pictures was the retina. The treatment makes the area

of visible iris tissue smaller (Figure 1B), and, thus, these images

were not initially optimized for iris color examination. However,

this procedure had little influence on the precision of the color

measurements given the large number of the pixels in iris part.

Two independent researchers additionally reviewed these images

on a monitor with standard settings and graded the eye color into

five categories, ‘‘pure blue’’, ‘‘light blue/grey’’, ‘‘green/mixed with

brown spots’’, ‘‘light brown’’, and ‘‘dark brown’’. The Medical

Ethics Committee of the Erasmus University Medical Center

approved the study protocol, and all participants provided written

informed consent. The current study included in total of 5,951 RS

participants who had both genotypic information and eye photos.

TwinsUK
The TwinsUK cohort is a volunteer cohort of 10,000 same-sex

monozygotic and dizygotic twins recruited from the general

population (http://www.twinsUK.ac.uk). They have been exten-

sively phenotyped, and gradeable portrait images (digitized from

Polaroid photographs and digital photographs), with GWAS

information, were available for 2,261 subjects. The study was

reviewed by the St Thomas’ Hospital Local Research Ethics

Committee, and subjects were included after fully informed consent.

BTNS Australia
Adolescent twins, their siblings and parents have been recruited

over sixteen years into an ongoing study of genetic and

environmental factors contributing to the development of

pigmented nevi and other risk factors for skin cancer as described

in detail elsewhere [32]. The proband twins were recruited at age

twelve years via schools around Brisbane, Australia, and followed

up at age fourteen. Iris colour was scored by a trained nurse. Iris

photographs were taken for all twins using a 13.6 megapixel digital

camera (Sony Cybershot W300) using a flash. The camera was

placed 5–7 cm in front of the eye to be photographed. Images

were cropped in-camera to show only the iris, and the cropped 5

megapixel image stored for later processing. BTNS photos were

similar with those from RS in term of sizes and resolutions. The

pupils were not dilated so more iris area was available to score per

individual. However, these photos were taken under some

variation in day light conditions and exposure levels. Principal

components analysis of Illumina 610k GWAS data for all

participants allowed identification of ancestry outliers and these

were removed before further analysis so that the sample here is of

exclusively northern European origin. All participants gave

informed consent to participation in this study, and the study

protocol was approved by appropriate institutional review boards.

The current study includes 1,282 participants with eye photo-

graphs and GWAS information.

Eye color quantification
To measure colors quantitatively, we first compared several

models in representing iris color including the RGB, CIE Lab,
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CIE XYZ and HSB/HSV models. We chose the HSB model

where H stands for hue, S for saturation, and B for brightness.

Under a fixed B, HS can be viewed as a color pie where H

represents the variation of the color type, ranging from 0u–360u
for all human detectable true colors, and the radius S represents

the purity or intensity of the color, ranging from 0 to 1. The

brightness or luminance is measured by B, a separate dimension

that was removed from genetic analysis since it is sensitive to the

lighting conditions when a photo is taken. The HSB color model

suits well the current application because (1) the perceptual

difference in it is uniform, (2) H and S values are invariant to

brightness, (3) H and S may represent the type and the amount of

iris pigments and (4) H and S values can be directly translated to

true colors.

We developed a simple algorithm to automatically retrieve iris

colors from the RS eye photos. Starting at the center of an image

where the pupil is located, the algorithm samples pixels along

multiple radii that cross the pupil, the iris, and the white of the eye

in that sequence. The color intensity distribution of the sampled

pixels follows a characteristic shape, based on which, the algorithm

determines the starting and ending points of the iris by means of

edge detection. It then connects all detected edge points by fitting

an inner and an outer ellipse. The region between the inner and

outer ellipse is considered as the iris region. Median RGB values of

the pixels in the iris region were retrieved from each image and

transformed to HS values according to standard formulas. The

image processing procedures were programmed using Matlab

7.6.0 (The MathWorks, Inc., Natick, MA).

We noticed minor discordances between digital quantification

and expert classification; 0.25% (58) ‘‘brown’’ eyes appeared in the

blue area of the HS space (H.35 and S,0.45) whereas 1.65%

(98) ‘‘blue’’ eyes were in the brown area (H,30 and S.0.55)

(Figure 1). Most of these are due to expert misclassification. We

kept the color categories of these individuals in the prediction

analysis for a fair comparison with our previous prediction results

that also allow a certain degree of sampling uncertainty.

Due to significant differences between RS eye photographs

and TwinsUK portrait photographs, we preprocessed TwinsUK

photographs by correcting R, G, B channels of each photo

using Y~
c

�xx
X , where c is the channel mean of all photos, �xx is the

channel mean of each photo and X is the matrix of the raw

channel values of all pixels in that photo. We then applied the iris

color retrieval algorithm on the TwinsUK photographs where the

pupil was centralized manually.

We applied the iris color retrieval algorithm on the BTNS full-

size eye photographs. BTNS photos were similar with those from

RS in term of sizes and resolutions but were also taken under

various day light conditions. The resultant distribution on the Hue

dimension was not normal with a cluster of samples having low

values. The mean correction technique used in TwinsUK data

could not be applied because the iris part composed a significant

portion of the image. We therefore excluded 66 samples with

H,20 from the BTNS data.

Genotyping and quality control
In RS1 and RS2, genotyping was carried out using the Infinium

II HumanHap550K Genotyping BeadChip version 3. Complete

information on genotyping protocols and quality control measures

for RS1 and RS2 have been described previously [33,34]. In RS3,

the genotyping method followed tightly those of RS1 and RS2 but

using a denser array, the Human 610 Quad Arrays of Illumina. We

excluded individuals with a call rate ,97.5%, gender mismatch

with typed X-linked markers, excess autosomal heterozygosity

.0.33, duplicates or 1st degree relatives identified using IBS

probabilities, and outliers using multi-dimensional scaling analysis

with reference to the 210 HapMap samples (Figure S1A). Further

excluding individuals without eye photos from all cohorts left 2429

individuals in RS1, 1535 in RS2, and 1987 in RS3 (Table 1).

Genome-wide imputation in RS3 also followed tightly the methods

used in RS1 and RS2 as described in detail previously [34].

Genotypes were imputed using MACH [35] based upon phased

autosomal chromosomes of the HapMap CEU Phase II panel

(release 22, build 36), orientated on the positive strand. The scripts

developed for this project are freely available online. In total of

2543887 SNPs passed quality control. DNA samples from the

TwinsUK registry genotyped using the Hap317K chip (Illumina,

San Diego, California, USA). Quality control at individual and SNP

levels were described in detail previously [36]. DNA samples from

the BTNS were genotyped by the Scientific Services Division at

deCODE Genetics, Iceland (http://www.decode.com/genotyp-

ing/) using the Illumina 610-Quad BeadChip. Additional genotyp-

ing for SNPs within known pigmentation genes was conducted using

Sequenom as described in detail previously [37].

GWA analysis
GWA analysis was conducted in RS1, RS2, and RS3 separately

as well as in the merged data set RS123. The genotypes were

merged according to the annotation files provided by Illumina on

the positive strand. Pair-wise identity by state (IBS) matrix between

individuals in RS123 was recalculated by using a subset of pruned

markers (50,000 SNPs) that are in approximate linkage equilib-

rium. Principle components were re-derived using multidimen-

sional scaling analysis of the 1-IBS matrix. The potential

institutional heterogeneity between the three RS data sets and

residual population stratification were checked by plotting the first

2 principal components (Figure S1B). The effects of sex, age, and 4

main principal components on eye color traits were regressed out

prior to GWA analysis. Association was based on a score test of the

additive effect of the minor allele and the x2 value with 1df was

derived. Inflation factors were derived for each trait and were used

to adjust the x2 values. The distribution of observed P values was

inspected using Q-Q plots against the P values from the null x2

distribution with 1df. P values smaller than 561028 were

considered to be genome-wide significant. A subsequent scan is

performed on the residuals excluding the effects of the significant

SNPs in a previous scan, until no more significant SNP is

identified. All significant SNPs were further examined using linear

regression for quantitative traits and multinomial logistic regres-

sion for categorical traits, where sex, age, and the 4 principal

components were adjusted as covariates. GWA analyses were

conducted using R library GenABEL v1.4-3 [38] for genotyped

SNPs and PLINK v1.07 [39] for imputed data. Haplotype and LD

analysis were conducted for the regions of interest using Haplo-

view v4.1 [40]. Replication analysis in TwinsUK and BTNS were

conducted using the score test implemented in Merlin [41], which

took account of relatedness.

Prediction analysis
We performed a multivariate analysis and present a linear model

for predicting quantitative human eye color. A total of 70 predictors

were analyzed, including the 64 SNPs (Table S1), the 4 SNP-SNP

interaction terms identified in the interaction analysis (see Text S1

for details), age, and sex. The predictors included in the final model

were selected by iteratively including the next ranked predictor that

reduces the Akaike information criterion [42] value of the model.

The predictors and model parameters were derived in the RS1 and

RS2 cohorts and subsequently used to predict eye color H and S in

the RS3 cohort. The prediction accuracy was evaluated using R2,

Quantification of Human Eye Color and GWA

PLoS Genetics | www.plosgenetics.org 13 May 2010 | Volume 6 | Issue 5 | e1000934



the variance of H and S that were explained by the predictors in

RS3. The genotype of rs12913832 was binary coded as 0

representing the GG genotype and 1 representing the GA or AA

genotypes, whereas the genotypes of other SNPs were coded as 0, 1

and 2 number of the minor alleles.

Multinomial logistic regression was used for categorical

prediction as described previously [8]. Categorical prediction

was evaluated using AUC. Interaction analysis, prediction

modeling and evaluation procedures were scripted in Matlab

v7.6.0 (The MathWorks, Inc., Natick, MA).

Supporting Information

Figure S1 Genotype quality control. (A) Genotypes from 120

HapMap Phase 2 subjects were merged with the RS3 samples.

QCs of RS1 and RS2 samples have been described in detail

previously. The first 2 principal components derived from

multidimensional decomposition analysis of the 1-IBS matrix are

depicted. Blue circles represent the HapMap European (CEU)

samples, green circles are the HapMap East Asian (CHB+JPT)

samples, and red circles represent the HapMap West African

(YRI) samples. Black and Grey circles are samples from RS3. In

total 112 RS3 samples outside of 4 standard deviations of the

principle component of the CEU samples were removed. (B) RS1,

RS2, and RS3 samples were merged after excluding outliers in

separate quality control procedures. The first 2 principal

components are depicted. Red circles are the RS1 samples, blue

circles are RS2 samples, and green circles are the RS3 samples. No

outliers were identified.

Found at: doi:10.1371/journal.pgen.1000934.s001 (1.10 MB TIF)

Figure S2 SNP interaction analysis. Pair-wise SNP-SNP inter-

actions of 64 SNPs preselected from known eye color genes and in

3 novel loci identified in the current study. SNPs are indexed

according to Table S1, sorted according to chromosome and

physical positions. The high LD regions include LYST (SNPs 1–2),

SLC45A2 (3–4), IRF4 (5–6), TYRP1 (7–16), TYR (17–23), SLC24A4

(24–27), OCA2/HERC2 (28–57), 17q25.3 (58–59), TTC3/DSCR9

(60–64). The lower right triangle represents the significance of

interaction on the 2log10(P) scale; all P values smaller than 10210

are truncated at 10210. The upper triangle are the linkage

disequilibrium r2 values610. (A) Hue, (B) Saturation.

Found at: doi:10.1371/journal.pgen.1000934.s002 (2.95 MB TIF)

Figure S3 The effect of LD on SNP interaction analysis. 10,000

pairs of SNPs in LD (r2.0.5) and 10,000 pairs of SNPs not in LD

(r2,0.01) were randomly selected over the genome and tested for

interaction with the permutated color traits using F-test specified

in the method section. The observed P values on the 2log10(P)

scale derived without LD (blue circle) or with LD (red plus) are

plotted against the expected ones under the null distribution of no

interaction.

Found at: doi:10.1371/journal.pgen.1000934.s003 (0.39 MB TIF)

Figure S4 Significant SNP interactions on eye color. SNPs

having significant interaction effect on eye color are depicted using

box-and-whisker diagrams. Color H and S distributions are

grouped by cross genotypes of 2 interacting SNPs. Distribution

summaries include min-max range (black dotted vertical line),

lower-upper 25% quartile range (blue box), and median (red line).

Observations outside of 1.5 folds of the quartile range are

indicated using red pluses.

Found at: doi:10.1371/journal.pgen.1000934.s004 (0.34 MB TIF)

Table S1 SNPs ascertained for pair-wise interaction analysis and

P values from single SNP analysis in the Rotterdam Study

(RS123).

Found at: doi:10.1371/journal.pgen.1000934.s005 (0.11 MB

DOC)

Text S1 Interaction analysis.

Found at: doi:10.1371/journal.pgen.1000934.s006 (0.04 MB

DOC)
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