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Abstract

Background: Although syndromic surveillance is increasingly used to detect unusual illness, there is a debate whether it is
useful for detecting local outbreaks. We evaluated whether syndromic surveillance detects local outbreaks of lower-
respiratory infections (LRIs) without swamping true signals by false alarms.

Methods and Findings: Using retrospective hospitalization data, we simulated prospective surveillance for LRI-elevations.
Between 1999–2006, a total of 290762 LRIs were included by date of hospitalization and patients place of residence (.80%
coverage, 16 million population). Two large outbreaks of Legionnaires disease in the Netherlands were used as positive
controls to test whether these outbreaks could have been detected as local LRI elevations. We used a space-time
permutation scan statistic to detect LRI clusters. We evaluated how many LRI-clusters were detected in 1999–2006 and
assessed likely causes for the cluster-signals by looking for significantly higher proportions of specific hospital discharge
diagnoses (e.g. Legionnaires disease) and overlap with regional influenza elevations. We also evaluated whether the number
of space-time signals can be reduced by restricting the scan statistic in space or time. In 1999–2006 the scan-statistic
detected 35 local LRI clusters, representing on average 5 clusters per year. The known Legionnaires’ disease outbreaks in
1999 and 2006 were detected as LRI-clusters, since cluster-signals were generated with an increased proportion of
Legionnaires disease patients (p:,0.0001). 21 other clusters coincided with local influenza and/or respiratory syncytial virus
activity, and 1 cluster appeared to be a data artifact. For 11 clusters no likely cause was defined, some possibly representing
as yet undetected LRI-outbreaks. With restrictions on time and spatial windows the scan statistic still detected the
Legionnaires’ disease outbreaks, without loss of timeliness and with less signals generated in time (up to 42% decline).

Conclusions: To our knowledge this is the first study that systematically evaluates the performance of space-time syndromic
surveillance with nationwide high coverage data over a longer period. The results show that syndromic surveillance can
detect local LRI-outbreaks in a timely manner, independent of laboratory-based outbreak detection. Furthermore, since
comparatively few new clusters per year were observed that would prompt investigation, syndromic hospital-surveillance
could be a valuable tool for detection of local LRI-outbreaks.
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Introduction

The SARS epidemic in 2003, the bioterrorism attacks in 2001,

and the ongoing threat of new infectious disease outbreaks have

prompted many countries to invest in their capacity to respond

timely to emerging infectious disease outbreaks, as early outbreak-

detection may well mitigate their impact. As a result, new

surveillance systems for earlier detection have been implemented,

often labeled ‘‘syndromic surveillance’’ [1–6]. These systems use

increased reporting of critical symptoms or clinical diagnoses as

early indicators of infectious disease outbreaks. This not only

allows monitoring of clinical syndromes before laboratory

diagnoses have been made, but also allows detection of outbreaks

of diseases for which no diagnostics were requested or available

(including emerging pathogens). Geographic analysis methods –

such as space-time scan statistics – may further increase the

sensitivity of syndromic surveillance for detection of local

outbreaks or of regional differences in regular seasonal epidemic

diseases [2,6]. In the SARS outbreak in Hongkong in 2003, it is

believed that a near real-time space-time analysis would have

detected the highly unusual clustering of severe acute respiratory

syndrome cases much sooner [7]. However, concerns exist about

the specificity of space-time syndromic surveillance, i.e. that it

might generate many false signals [8,9].

The objective of this study was to evaluate to what extent

syndromic surveillance detects local outbreaks of lower-respiratory

infections (LRIs) without swamping true signals by false alarms.

Using retrospective hospitalization data, we simulated prospective

space-time syndromic surveillance for LRI-elevations. The two

largest outbreaks of Legionnaires’ disease in the Netherlands in the
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last decade were used as ‘‘positive controls’’ to test whether these

known outbreaks would have been detected by space-time signals

in LRI data. To assess other (likely) causes for detected LRI-

elevations, we examined regional increases in the reported

incidence of influenza-like-illness (ILI), hospital discharge diagno-

ses for respiratory illnesses and age group distributions for LRI

cases. We also evaluated whether the number of generated space-

time signals can be reduced by restricting the time and spatial

windows for the analyses.

Methods

Ethical Approval
Since we only used anonymous data from existing medical

research and surveillance registries, neither formal ethics commit-

tee approval nor informed consent from the patients were

required.

LRI-syndrome data (1999–2006)
Hospitalization data were collected from the Dutch National

Medical Register (discharge and secondary diagnoses by date of

hospitalization for 1999–2006). In 1999–2004 this registry had a

99% coverage (16 million pop.) and in 2005/6 approximately

80%, after exclusion of hospitals with incomplete data for those

years.

We included all records on hospitalizations with any kind of

LRI as either discharge or secondary diagnosis, under the

assumption that this reflects prospective classification of patients

with a lower respiratory infection in a ‘‘LRI-syndrome’’ on the day

of hospitalization. ICD-9-CM (International Classification of

Diseases, 9th revision, Clinical Modification) codes for a LRI

syndrome were selected from the CDC respiratory syndrome

codes-list (Centers for Disease Control and Prevention, USA,

http://www.bt.cdc.gov/surveillance/syndromedef/; and see Ap-

pendix S1). After excluding duplicate hospitalizations of the same

patient within 6 weeks (5% excluded), 222638 records were

included for 1999–2004, and 68124 for 2005–2006. Data were

aggregated by hospitalization date, postal-code and age group

(0–4, 5–19, 20–49, 50–64, $65 years). Since higher levels of

spatial resolution can result in more sensitive detection of

outbreaks [10,11] we used 4-digit postal-codes (4023 areas in a

16 million population), which provide the highest level of spatial

resolution available within privacy regulations.

Regional ILI-surveillance data
ILI-data were collected from a sentinel network of general

practitioners (GPs, Continuous Morbidity Registration Centres,

CMR sentinel stations, 1% population coverage) [12]). The ILI-

counts and underlying GP-practice populations were aggregated

by region and week. The GP-practice populations were corrected

for weeks that specific GP-practices did not supply data. Due to

the small number of GP-practices in some parts of the country, the

weekly ILI-data were aggregated in 4 major regional groups

instead of postal codes.

Test-case outbreaks
Two large outbreaks of Legionnaires’ disease were used as

‘‘positive controls’’ for emerging LRI-outbreaks [13,14]:

1) In March 1999, a large Legionnaires’ disease outbreak

occurred among persons who had visited a flower show [13].

Ten patients with pneumonia were admitted to one hospital

between March 7th to 11th. By March 11th, six patients were

diagnosed with Legionnaires’ disease and an alarm notice was

given to hospitals and GPs in the region. Follow-up

investigation detected a total of 188 cases, of whom 167

(87%) were hospitalized and 21 (11%) died.

2) Between July 6th–28th 2006, 30 Legionnaires’ disease cases

were identified in Amsterdam, 2 of which were fatal [14]. On

July 7th an alarm notice was given. A cooling tower in the

town centre was later identified as the outbreak-source.

Scan statistics for space-time clusters
For the LRI-data, we used a space-time permutation scan

statistic which compared the observed number of cases in circular

areas with variable radii in flexible time periods vs the expected

number of cases, based on the geographic distribution of cases in

the whole dataset [15]. In this way, only the case data is needed to

estimate the expected number of cases in each space-time window,

and population density and time trends in the case data are

automatically adjusted for.

We used SaTScan software [16] and the SaTScan Macro

Accessory for Cartography (SMAC [17], applied in SAS version

9.1, SAS Institute Inc., Cary, NC, USA) to run the scan-statistic

and visualize the results. We simulated a prospective surveillance

by running the scan-statistic on data from the year preceding each

time unit (day or week) in the analysis period. Thus, weekly or

daily space-time signals were generated, each time that the

observed number of cases in a certain space and time window

exceeded the defined significance threshold. Since such analysis

consumes a lot of computation time, we performed weekly analysis

(instead of daily) over the whole study period. Daily analyses were

also performed in the years that the test-case outbreaks occurred

(1999 and 2006), to assess the earliest possible detection date. For

all analyses, we chose to use a time-aggregation level of 7-days

length. For the daily analyses, these 7-day aggregation windows

shifted one day forward for each daily run. Thus we both reduced

the computation time and adjusted for day-of-week effects (both

purely temporal and spatial day-of-week effects).

To indicate the significance of detected space-time signals, we

used recurrence intervals, which indicate how often a signal of the

observed significance would be observed by chance under the

hypothesis of no outbreak [18]. I.e. if the recurrence interval of a

signal is say 1 year, 1 signal of the observed significance is expected

in 1 year. Two thresholds levels were used: signals with recurrence

interval $1 and $5 years. We assessed whether successive signals

overlapped in space and time, which suggests the same cause. For

the sake of readability, we indicated a group of such overlapping

space-time signals as ‘‘cluster’’ and an individual space-time signal

as ‘‘cluster-signal’’.

We evaluated how many LRI-clusters and signals were detected

over the whole study period (1999–2006) and looked for explanations

guided by the two-step criteria in Figure 1. In step one, we assessed

likely causes for the cluster-signals by looking for significantly higher

proportions of specific hospital discharge diagnoses (e.g., Legion-

naires’ disease [19,20]). In step two we assessed overlap with regional

ILI clusters (Appendix S2), as (local) influenza activity might be

reflected in local LRI-elevations. Since other pathogens than

influenza might cause some ILI fluctuations, influenza activity was

only considered to be a likely cause if space-time overlap between

LRI and ILI-clusters coincided with the annual influenza season

(Figure 1). If a specific cause was defined for one or more signals

within one cluster, we considered that to be a likely cause for the

whole cluster. We also evaluated the timeliness of detection for the

clusters related to the known Legionnaires’ disease outbreaks.

A sensitivity analysis was used to evaluate the impact of time

and spatial window settings on the number of clusters and signals

Syndromic Outbreak Detection
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detected. For the initial analyses, we put only minor constraints on

the maximum temporal and spatial windows of the scan-statistic,

to avoid wrongful assumptions about time, geographical location

and size of an outbreak. We then repeated these weekly analyses

with a temporal window of maximum 7 weeks and also with a

spatial window of maximum 25 km radius, to assess the impact of

these parameters on the number of signals generated.

See Appendix S2 for further details on use and settings of the

scan-statistics.

Results

LRI-clusters
Between Feb 1st 1999 and Sept 30th 2006, a total of 35 LRI-

clusters with 221 cluster-signals were detected by weekly analysis

(Table 1, non-restrictive parameter settings, recurrence interval

$1 year). By raising the threshold (recurrence interval $5 years),

we observed only 24 clusters with 146 cluster-signals (respectively

31% and 34% decrease). Figure 2a shows all LRI-clusters and

signals on a timescale for the different recurrence interval levels –

as detected with the initial non-restrictive parameter settings for

space and time windows. The time between the first and the last

signal within one cluster ranged from 0 to 26 weeks. By daily

analysis, in 1999 and 2006 a total of 194 cluster-signals were

detected (compared to 75 signals by weekly analysis with a $1

year recurrence level, both with non-restrictive parameter

settings). However, the number of clusters was lower (10 clusters

by daily analysis vs 12 by weekly analysis in 1999 and 2006).

Figure 2a and Table 1 also show the likely causes for the

detected LRI-clusters (according to the criteria in Figure 1, see

methods section). The known Legionnaires’ disease outbreaks in

1999 and 2006 were detected by LRI-clusters, since cluster-signals

were generated with an increased proportion of patient discharge

diagnoses for Legionnaires’ disease in both outbreak areas and

periods (Table 1, Figure 2a and 3a–b) (proportions differed

between successive signals: 44–65% in 1999, and 21–63% in 2006;

p:,0.0001). The 1999 Legionnaires’ disease related cluster-signals

included a higher proportion of persons 50–64 years of age (37–

48%; p:,0.0001). We compared the earliest detection dates for

these outbreaks for daily and weekly analysis. Daily analysis

signaled the outbreak 4 days earlier than weekly analysis, 2 days

before the national alarm was given during the 1999 Legionnaires’

disease outbreak. The 2006 Legionnaires’ disease outbreak was

detected by weekly analysis on 2006 July 15th, and could have

been detected by daily analysis 5 days earlier, 3 days after the

national alarm was given.

Many of the other clusters and signals seemed to be related to

local RSV and/or influenza activity (70% of cluster-signals and

60% of clusters, Table 1). Some of the influenza and RSV related

clusters tended to persist over longer periods (Figure 2a). Young

children (0–4 years old) were overrepresented in 82 of the 99

cluster-signals that we scored as RSV related (Table 1; p:,0.05).

In 2000, a cluster was detected with an unusually high number

of patients diagnosed with aspergillosis, which was traced to a

registration error (one patient was accidentally registered under 28

different anonymous identifiers).

For 46 cluster-signals we did not find a ‘‘likely cause’’ according

to the criteria in Figure 1. Of these, 6 belonged to influenza and/

or RSV related clusters (Figure 2a), and 11 coincided with local

ILI-elevations outside the influenza season (1 at the end of spring

2000, 4 at the end of summer 2000 and 6 at the end of 2005).

When repeating the weekly analyses with restricted time or

spatial windows, both Legionnaires’ disease outbreaks were still

detected with the same timeliness. Table 1 and Figure 2b and 2c

also show the clusters and signals that were still detected with a

temporal window of maximum 7 weeks, and with a spatial window

of maximum 25 km respectively (as compared to the signals

detected with the initial non-restrictive settings).

With a time window of maximum 7 weeks, 129 of the 221 initial

cluster-signals and 30 of the initial 35 clusters were still detected

(respectively 42% and 14% decline, Table 1). Of the 5 clusters not

detected — as compared to the initial analyses — 2 had been

scored as likely due to RSV, 1 to influenza and for the other 2 no

likely cause had been scored (Table 1 and Figure 2a–b).

With a maximum 25 km radius, 165 of the 221 initial cluster-

signals and 33 of the 35 clusters were still detected (respectively

25% and 6% decline, Table 1). One of the 2 undetected clusters

Figure 1. Two-step criteria to define (likely) causes for LRI hospitalization clusters detected in 1999–2006. * As evaluated by the right-
sided Fisher’s exact test for 262 Tables (alpha#0.01) of hospitalizations within vs hospitalizations outside of the cluster-signal. The proportion of
hospitalizations with a specific characteristic (e.g. legionnaires’ disease as discharge diagnoses, or age 20–49 yrs) can be significantly higher among
hospitalizations within the cluster-signal than the proportion outside of the cluster-signal. ** For the ILI-cluster-signals we could only use 4 major
regions as spatial resolution. Overlap in time between LRI and ILI-cluster-signals was defined as occurrence of weekly ILI-cluster-signals within 2
weeks (+/2) around LRI-cluster-signals. ***The annual influenza season was defined as all weeks with a national weekly ILI-incidence $3 per 10.000
pop. **** Possibly unreported/undetected local LRI-outbreaks by undetected pathogens.
doi:10.1371/journal.pone.0010406.g001

Syndromic Outbreak Detection

PLoS ONE | www.plosone.org 3 April 2010 | Volume 5 | Issue 4 | e10406



had been scored as likely due to RSV, for the other no likely cause

had been scored (Table 1, Figure 2a and 2c).

Some of the cluster-signals detected with restrictive time/spatial

windows had not been detected with the initially detected signals

(data not shown). With the restrictive time window 2 borderline

significant cluster-signals were detected, that had been non-

significant in the initial analysis. This was due to the fact that the

restrictive settings limited the adjustments for taking into account

the multiple testing (stemming from the many potential cluster

locations and sizes evaluated) [15]. With the restrictive spatial

window 3 extra cluster-signals were detected due to the same

mechanism, and 2 other extra cluster-signals were detected due to

the fact that initial cluster-signals that geographically overlapped

with them had dropped out.

Discussion

In this study, prospective surveillance of hospitalization data was

simulated using retrospective data, to evaluate whether syndromic

surveillance can effectively detect local outbreaks of lower-

respiratory infections (LRIs). Over 1999–2006 (400 weeks), 35

space-time LRI-clusters were detected by weekly analysis, with a

total of 221 generated cluster-signals. This represents an average

rate of approximately 5 new clusters per year, or 3 per year using a

threshold recurrence interval $5 years. The number of clusters

detected per year differed over the study period, reflecting

substantial annual variation in influenza epidemics.

Two clusters were related to the Legionnaires’ disease ‘‘test-

case’’ outbreaks and would have been detected around the same

time as the outbreaks were actually detected. This indicates that

syndromic surveillance will pick up similar outbreaks of severe

respiratory disease in a timely manner. Note that the Legionnaires’

disease outbreaks are used here as ‘‘positive controls’’ (or Gold

Standard) for realistic severe respiratory outbreaks by uncommon

pathogens that may not be (timely) detected by traditional

surveillance, such as the Dutch Q-fever outbreak in 2007, for

which the initial diagnoses were delayed by several weeks [21,22].

As 17 out of the total 35 LRI clusters probably reflected local RSV

and/or influenza activity, many signal investigations could be

limited to checking their concurrence with local RSV and/or

influenza activity. The 3 clusters with ‘‘unknown cause’’, that

concur with local ILI-elevations outside the influenza season,

possibly represent very early local influenza activity or local

activity of another respiratory pathogen reflected in both GP-ILI-

data and hospital LRI-data. For these 3 clusters and the other 8

clusters for which no likely cause was defined, it would have been

interesting to investigate possible causes in a truly prospective

setting (e.g., by additional diagnostics). Some of these clusters

possibly represent unreported and/or undetected local LRI-

outbreaks.

As a threshold value for the significance of cluster signals, we

used a threshold of recurrence intervals $1 year, and only

evaluated the LRI clusters that were above this threshold. To

illustrate the impact of changing the threshold we repeated the

analyses for recurrence intervals $5 years. At both threshold

levels, two LRI clusters showed a higher proportion of Legion-

naires’ disease cases (p:,0.0001, see also results section)

overlapping with the known outbreak areas, which made us

conclude that these LRI clusters indeed detected the Legionnaires’

disease outbreaks.

The results of the sensitivity analysis show that the test outbreaks

are still detected with the restricted time and spatial windows (at

both threshold levels), without loss of timeliness and with less

signals generated in time. To limit the computation time we only

performed a modest sensitivity analysis. In this study, the

restrictions on the time window almost halved the number of

signals (42% decline), whereas the clusters in time to investigate

declined much less (14% decline). The spatial restrictions resulted

in less decline in generated signals (25% decline in signals and 6%

decline in clusters). This indicates that with little loss of sensitivity,

the restricted time window would be most appropriate to limit the

number of generated signals.

Table 1. Detected LRI-clusters and signals between 1999 Feb 1st and 2006 Sept 30th by weekly analysis (recurrence interval $1 or
$5 years) for different parameter settings.

(A) Non restrictive settings for time
and spatial windows (B) Maximum 7 weeks time window (C) Maximum radius 25 km

(Likely) cause LRI-cluster-signals LRI-clusters* LRI-cluster-signals LRI-clusters* LRI-cluster-signals LRI-clusters*

Recurrence
interval

Recurrence
interval

Recurrence
interval

Recurrence
interval

Recurrence
interval

Recurrence
interval

$1 yr. $5 yr. $1 yr. $5 yr. $1 yr. $5 yr. $1 yr. $5 yr. $1 yr. $5 yr. $1 yr. $5 yr.

Legionnaires’ disease outbreak 1999 10 10 1 1 7 7 1 1 10 10 1 1

Legionnaires’ disease outbreak 2006 4 4 1 1 4 4 1 1 4 4 1 1

Local RSV activity 99 78 9 7 62 55 7 7 68 56 8 6

Local influenza activity 55 28 8 5 25 13 7 5 40 17 9 4

Local RSV and influenza activity n/a n/a 4 3 n/a n/a 4 3 n/a n/a 3 2

Other specific pathogen** 7 6 1 1 5 5 1 1 7 6 1 1

No cause defined*** 46 20 11 6 26 12 9 4 36 16 10 5

Total 221 146 35 24 129 96 30 22 165 109 33 20

The total number of detected clusters and signals is presented, for the non-restrictive parameter settings on space and time (A), for the settings with a maximum time
window of 7 weeks (B), and for the settings with a maximum radius of 25 km (C). The distribution of (likely) causes according to the criteria in Figure 1 is also presented
in the Table.
* A cluster is defined by a set of successive cluster-signals that overlap in space and time.
** The cluster-signals in this category formed only one cluster, which appeared to be caused by a data artifact.
*** Possibly unreported/undetected local LRI-outbreaks by undetected pathogens.
doi:10.1371/journal.pone.0010406.t001
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To our knowledge this is the first study that evaluates the

performance of syndromic surveillance with nationwide high

coverage data (80–99% of hospitalizations) over a longer period (8

years) with all detected clusters analyzed and (if possible) explained

in a systematic way. Feasibility of localized outbreak detection is

demonstrated without swamping true signals by excessive false

alarms. Some other studies evaluating the performance of space-

time syndromic surveillance have concluded differently, but these

studies were based on shorter periods, had lower coverage or lacked

comparable outbreaks which could be tested [8,23,24]. Cooper et

al. tracked the spatial diffusion of influenza and norovirus, using

space-time analysis on syndromic data from a telephone help line

system in the UK, but did not test space-time detection for more

localized outbreaks [23]. Using syndromic surveillance for detection

of local gastro-intestinal outbreaks in New York City, Balter et al.

found numerous cluster-signals in time, but these could not be used

for effective surveillance because of insufficient comparable

diagnostic data [8]. Respiratory disease outbreaks could not be

evaluated in the NYC study, because no local respiratory outbreaks

had been reported in the study period. Nordin et al. used simulated

anthrax attack data injected in true physician’s visit data to confirm

that a respiratory outbreak initiated by bioterrorism will be detected

in a timely manner by syndromic surveillance [24]. However, no

results on the number of possibly false alarms were presented. These

studies present space-time cluster detection analyses over relatively

few years and are therefore prone to miss the effects of annual

variation. Furthermore, sensitivity for local outbreaks is reduced by

using data with relatively low coverage levels. For such data sources

with low coverage, methods other than space-time scan statistics

seem more appropriate to generate useful information for public

health practice (like aberration detection in time).

We performed weekly analyses (instead of daily) over the whole

study period, because these analyses consume considerable

computation time. Daily analyses in 1999 and 2006 detected

fewer clusters than weekly analyses because the threshold level for

recurrence intervals ($1 year) is more strict (see Appendix S2).

Daily analyses would therefore probably not detect more

epidemiological events but would yield more timely signals.

Hospital based syndromic surveillance could be a helpful tool in

detecting local LRI-outbreaks, complementing outbreak detection

by laboratory surveillance or astute clinicians. Syndromic surveil-

lance might be most valuable for outbreaks due to uncommon or

novel pathogens (like the SARS outbreak), as these seem more likely

to be missed by the laboratory and clinicians. Furthermore, out-

breaks due to more common pathogens could also be missed, as for

community acquired pneumonia often no causative pathogen is

detected [25,26]. Apart from that, under-notification can complicate

outbreak detection through laboratories and clinicians [20].

Figure 2. Clusters and generated cluster-signals on a timescale, including all (likely) causes (by weekly analysis).* *Clusters are
indicated by sets of successive space-time overlapping cluster-signals placed next to each other on the same height on the y-axis. The cluster-signals
caused by a data artifact in 2000 are not presented in the graphs. See Figure 1 for the criteria by which the likely causes were defined and see the
Figure 2 legend for the graphic indication of likely causes. **In Figure 2a — for the analyses with non-restrictive settings on time and spatial windows
— all detected clusters and signals are presented, as well as the (likely) causes according to the criteria in Figure 1. Figure 2b presents the signals and
clusters that are still detected with a maximum time window of 7 weeks, and Figure 2c signals and clusters still detected with a maximum radius of
25 km. ***Signals indicated by open symbols (e.g. ‘‘#’’) have a $1 year recurrence interval, coloured symbols (e.g. ‘‘N’’) have a $5 yr recurrence
interval. A recurrence interval reflects how often a signal of the observed significance level would be observed by chance [18]. I.e. if the recurrence
interval of a signal is say 1 year, 1 signal of the observed significance is expected in 1 year.
doi:10.1371/journal.pone.0010406.g002

Syndromic Outbreak Detection

PLoS ONE | www.plosone.org 5 April 2010 | Volume 5 | Issue 4 | e10406



A prerequisite for prospective syndrome surveillance is the real-

time availability of hospitalization data, including clinical

diagnoses and symptoms by date of hospitalization. Although at

present not available in the Netherlands, such real-time syndromic

data collection may become feasible after the nationwide

implementation of electronic health-care information exchange.

In this light, the results of our study justify further development of

these methods, including retrospective evaluation of other types of

documented health events than the ones presented in our study.

Besides that, further research should focus on prospective

application of these methods. In a prospective setting, sustaining

reliable data with high coverage and few data artifacts might be more

challenging, thus possibly leading to higher numbers of false alarms.

In addition, it should be evaluated to what extent 3 to 5 new

syndromic clusters per year would indeed be manageable in a

prospective setting. Responding to such clusters is complicated,

because the cause and thus possible threat will initially often be

unknown. For each new cluster, it should first be verified whether

plausible explanations can be found in epidemiological or laboratory

data. For example, LRI clusters need to be interpreted in relation to

local influenza or RSV activity similar as we did in our study, and

provided the age distribution of cases reflects the usual pattern,

further investigation would seem unnecessary. Internet-based ILI-

monitoring [27] combined with virological self -sampling (at home)

[28] could increase the microbiological base for interpreting

syndromic surveillance data. Age stratified syndromic surveillance

with a multivariate space-time scan statistic [29] may further facilitate

quick interpretation of clusters by revealing the affected age groups.

Conclusion
This retrospective study shows that space-time syndromic

surveillance on hospitalizations can timely detect local LRI-

outbreaks independent of detection of the causative pathogen. The

frequency of cluster detection, when interpreted in the light of

available epidemiological and microbiological data, does not give

rise to excessive levels of further investigations.

Consequently, we recommend real-time syndromic surveillance

as an additional tool for detection of local LRI outbreaks, but only if

syndromic data with sufficient quality and coverage can be

collected, coupled with epidemiological and microbiological data.

Public health responses can be based on a combination of

syndromic surveillance data, reports by astute clinicians and early

diagnostic test results, which all could generate the first alarm for

different kinds of disease events. Future research on prospective

syndromic surveillance should therefore focus on practical methods

for integrating syndromic surveillance alarms with clinical reports

and laboratory information for effective public-health responses.

Supporting Information

Appendix S1 Detailed syndrome definition for hospitalizations

with lower-respiratory infection syndrome.

Figure 3. The earliest detected Legionnaires’ disease outbreak related LRI-cluster-signals (1999 and 2006) as presented on a map of
the Netherlands (by daily analysis). Figure 3a and 3b show the cluster-signals that detected the 1999 and 2006 outbreak respectively. Output of
the Satscan scan-statistic software is presented in the legend. On the map the borders of all postal code areas are indicated, the postal code areas of
the cluster-signals are marked in dark-grey with the center postal code marked in red.
doi:10.1371/journal.pone.0010406.g003
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settings.
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DOC)
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