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Abstract The mechanism underlying the progressive

deterioration of left ventricular (LV) dysfunction after

myocardial infarction (MI) towards overt heart failure

remains incompletely understood, but may involve

impairments in coronary blood flow regulation within

remodelled myocardium leading to intermittent myocardial

ischemia. Blood flow to the remodelled myocardium is

hampered as the coronary vasculature does not grow com-

mensurate with the increase in LV mass and because

extravascular compression of the coronary vasculature is

increased. In addition to these factors, an increase in coro-

nary vasomotor tone, secondary to neurohumoral activation

and endothelial dysfunction, could also contribute to the

impaired myocardial oxygen supply. Consequently, we

explored, in a series of studies, the alterations in regulation

of coronary resistance vessel tone in remodelled myocar-

dium of swine with a 2 to 3-week-old MI. These studies

indicate that myocardial oxygen balance is perturbed in

remodelled myocardium, thereby forcing the myocardium

to increase its oxygen extraction. These perturbations do not

appear to be the result of blunted b-adrenergic or endo-

thelial NO-mediated coronary vasodilator influences, and

are opposed by an increased vasodilator influence through

opening of KATP channels. Unexpectedly, we observed that

despite increased circulating levels of noradrenaline,

angiotensin II and endothelin-1, a-adrenergic tone remained

negligible, while the coronary vasoconstrictor influences of

endogenous endothelin and angiotensin II were virtually

abolished. We conclude that, early after MI, perturbations

in myocardial oxygen balance are observed in remodelled

myocardium. However, adaptive alterations in coronary

resistance vessel control, consisting of increased vasodilator

influences in conjunction with blunted vasoconstrictor

influences, act to minimize the impairments of myocardial

oxygen balance.
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1 Introduction

Heart failure constitutes a major cardiovascular disorder of

which the incidence and prevalence are increasing, prin-

cipally due to an increased survival of acute myocardial

infarction (MI) in conjunction with an ageing population.

The mechanism underlying the progressive deterioration of

left ventricular (LV) dysfunction towards overt heart fail-

ure remains incompletely understood, but may involve (1)

loss of cardiomyocytes through apoptosis [75], (2) a pri-

mary reduction in contractile function of the surviving

myocardium [97], and/or (3) alterations in extracellular

matrix leading to progressive LV dilation [87]. In addition,

myocardial blood flow (MBF) abnormalities, resulting in

impaired myocardial O2 delivery to the non-infarcted

regions (leading to secondary contractile dysfunction and/

or enhanced apoptosis), have been suggested to contribute

to the progression of LV dysfunction after MI [99]. For

example, in vivo studies in rats [54, 55] and swine [108]

indicate a reduction in MBF reserve of up to 35% in the

surviving remodelled LV myocardium, 3–8 weeks after

infarction. Furthermore, in patients with overt heart failure
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[94], but also in patients with only asymptomatic LV

dysfunction [95], flow reserve is reduced in the non-ste-

notic myocardial regions. In line with these clinical

observations, we observed in a porcine model of post-

infarct remodelling that during increased O2-demand

induced by exercise, the increase in coronary blood flow

(CBF) is impaired resulting in perturbations in oxygen

delivery [43, 70]. The reduction in flow reserve and the

perturbed oxygen delivery during exercise are caused, at

least in part, by insufficient growth of the coronary vas-

culature to maintain flow capacity commensurate with

myocardial hypertrophy, in conjunction with a decrease in

diastolic pressure time index resulting from the elevated

heart rate and particularly elevated LV diastolic pressures

[43]. In addition, coronary vasomotor tone may also be

increased secondary to neurohumoral activation and

endothelial dysfunction, further adding to the perturbations

in CBF. However, little is known about the alterations in

vasomotor control in coronary resistance vessels within

remodelled myocardium (Fig. 1). For this reason we

undertook a series of studies to determine whether neuro-

humoral (autonomic nervous system and renin-angiotensin

system), local metabolic, and endothelial control mecha-

nisms of coronary resistance vessel tone are altered in

swine with remodelled myocardium produced by a recent

MI.

2 Characteristics of LV remodelling and dysfunction

after MI in swine

Left ventricular remodelling was produced by permanent

ligation of the left circumflex coronary artery. This liga-

tion results in a circumscribed transmural infarction of the

lateral LV wall, comprising 20–25% of the total LV [82,

96]. LV dysfunction in awake resting MI swine is char-

acterised by 20–30% decreases in cardiac output, stroke

volume and LVdP/dtmax and a tripling of LV filling

pressure. This difference between LVdP/dtmax, cardiac

output and stroke volume in normal and MI swine

remained constant between *10 and *32 days, indica-

ting that the degree of LV dysfunction and the circulatory

adaptations in MI were stable during this observation

period [43]. Similarly, we observed that already during

the first week after infarction significant LV remodelling

occurs, consisting of LV dilation and hypertrophy that

remain fairly stable between 1 and 6 weeks after infarc-

tion [98]. During exercise, cardiac output, LV systolic

pressure and LVdP/dtmax increased almost in parallel in

MI and normal animals up to 3 km/h, after which curves

diverged (Fig. 2); 4 km/h was also the maximally attain-

able exercise level for most MI swine.

Left ventricular dysfunction produced by MI results in

neurohumoral activation, characterized by a trend towards

elevated plasma levels of catecholamines, but normal

circulating levels of renin, angiotensin II and aldosterone

at rest. The latter may have been due to the increments in

atrial natriuretic peptide (ANP) and endothelin, which can

suppress renin and aldosterone release [83]. In resting MI

swine, ANP doubled within 24 h, recovered to 50% above

normal values within 2 weeks and remained stable

between 2 and 6 weeks after infarction, while renin and

norepinephrine levels remained normal under resting

conditions [98]. In contrast to the discrete neurohumoral

activation in resting swine with MI, exercise resulted in

exaggerated increases in catecholamines and ANP and

increases in endothelin, angiotensin II, and aldosterone

(Fig. 3). While resting circulating levels of norepineph-

rine were still normal and the relative sympathetic drive

in response to exercise was preserved in MI, the cardiac

responsiveness to exercise (both heart rate and LVdP/

dtmax) was already blunted 3 weeks after infarction [43],

likely due to b-adrenoceptor desensitization and/or

downregulation [100].

3 Myocardial O2 balance in remodelled myocardium

Marked decreases in myocardial perfusion occur in pacing-

induced severe heart failure in swine [88] and dogs [85,

90], especially in the more vulnerable subendocardial

layers. Although one study in dogs indicated that the lower

MBF is principally the result of a lower myocardial O2

consumption (MVO2) [90], studies in swine suggest that

the impaired perfusion is, at least in part, responsible for

the deterioration of LV function because the interstitial

edema and disruption of collagen fibers in the subendo-

cardium resemble the ultrastuctural changes that occur with

recurrent ischemia [49, 89]. In animal models of severe

pressure-overload induced LV hypertrophy, selective und-

erperfusion of the subendocardium can produce myocardial

O2 Supply
O2 demand

O2 balance

Heart Rate ↑ / ↔
LV wall stress ↑ / ↔

Contractility ↓

Aortic Blood Pressure ↔
Compressive Forces ↑
Vascular Density ↓/↔

Vascular Length ↑
Vasomotor tone ? 

Fig. 1 Alterations in determinants of oxygen supply and demand in

remodelled myocardium in swine with a 3-week-old myocardial

infarction (MI). The net effect of these alterations is a decrease in

oxygen supply/demand ratio
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ischemia during exercise and result in post-exercise myo-

cardial stunning [2, 102]. The contribution of perfusion

abnormalities in the remote surviving myocardium to LV

dysfunction after a MI remains unclear. Studies in rats

demonstrated a 25–40% reduction in coronary flow reserve

in the surviving myocardium at four [55] and eight [54]

weeks after MI. Similarly, maximum subendocardial blood

flow was blunted by 40% in anesthetized swine with heart

Fig. 2 Cardiovascular

responses to exercise in normal

swine and swine with a *3-

week-old MI. 0L = lying,

0S = standing. Data are

mean ± SEM; *P \ 0.05

versus 0L, �P \ 0.05 MI versus

normal a corresponding exercise

level. Data are from Haitsma

et al. [43]

Fig. 3 Neurohumoral responses

in exercising swine with a *3-

week-old MI. In the

norepinephrine, epinephrine and

dopamine panels, data shown

for N represent 0L, 1, 2, 3, 4 and

5 km/h and data for MI

represent 0L, 1, 2, 3 and 4 km/h.

In all other panels, data shown

for N represent 0L, 1, 3 and

5 km/h and data for MI

represent 0L, 1, 3 and 4 km/h.

Mean data points were fitted

with second order curves.

VO2 = O2-consumption. Data

are mean ± SEM; *P \ 0.05 vs

0L, �P \ 0.05 MI versus

Normal. Data are from Haitsma

et al [43]
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failure 3 weeks after a MI [108]. We hypothesized that the

decreased flow reserve could limit the increase in MBF to

the hypertrophied myocardium during exercise when

hemodynamic abnormalities and neurohumoral activation

are exacerbated, thereby impairing myocardial O2-supply.

Three weeks after infarction, blood flow per gram of

myocardium in the (remote) LV anterior wall of resting

swine with MI was similar to that in normal animals

(Fig. 4), confirming previous studies in rats and swine [54,

55, 108]. Interestingly, we observed a trend towards

slightly higher blood flows in the outer two layers

(P = 0.09), suggesting that despite hypertrophy of the

surviving myocardium, metabolic demand in the outer, but

not the inner, layers was still slightly elevated, 3 weeks

after infarction [43]. During exercise, MBF increased but

was redistributed in favor of the subepicardium in MI

compared to normal swine. These perturbations were most

likely due to increased extravascular compressive forces,

resulting from a reduction in diastolic time fraction (sec-

ondary to impaired relaxation and increased heart rate) and

elevated LV filling pressures [43, 97], that impede MBF,

particularly in the subendocardial layers. The decreased

MBF necessitated a small increase in O2 extraction that

resulted in a slightly lower coronary venous O2 tension

(Fig. 4), which actually may have been underestimated as

the lower myocardial capillary density in swine with MI

possibly prevented a greater increase in O2 extraction [43,

70]. The observation that O2 extraction was forced to

increase indicates that increases in extravascular forces are

not fully compensated by a concomitant lowering of cor-

onary vasomotor tone in remodelled myocardium during

exercise. These observations prompted us to further

investigate the control of coronary vasomotor tone in

remodelled myocardium during exercise.

4 Vasomotor control of the coronary microcirculation

in remodelled myocardium

4.1 Neurohumoral control

Cardiac dysfunction is accompanied by a hemodynamic

defense reaction consisting of salt and water retention,

peripheral vasoconstriction and cardiac stimulation, which

serves to partially restore cardiac output and to increase

systemic vascular resistance in order to maintain arterial

pressure [56]. An integral part of this defense reaction

involves alterations in autonomic balance, consisting of an

increase in sympathetic activity and a decrease in para-

sympathetic activity [56].

4.1.1 Sympathetic control

In patients with advanced heart failure plasma noradrena-

line levels are already increased under resting conditions

[11, 36]. These increased levels result principally from

increased sympathetic nerve activity although impaired

reuptake may also contribute [56]. Prolonged exposure to

elevated noradrenaline levels results in desensitization and

downregulation of the b-adrenergic receptors [8, 32, 101].

During exercise, the increases in catecholamine levels are

exaggerated in patients with heart failure as compared to

healthy controls [35], which is aimed at maintaining

chronotropic and inotropic responses to exercise [34].

Also in swine with LV dysfunction produced by a 2–3-

week-old MI, we observed exaggerated increases in arterial

and coronary venous catecholamine levels during treadmill

exercise [23, 43], at a time when resting catecholamine

levels were still in the normal range [43, 98]. The exag-

gerated exercise-induced increases in catecholamine levels

reflect increased sympathetic activity, which acts to

maintain the chronotropic and inotropic responses to acute

exercise. This concept is supported by the observation that

b-adrenoceptor blockade produced slightly greater

decreases in the chronotropic response during exercise in

Fig. 4 Myocardial blood flow and O2-balance in the left ventricular

anterior wall of N and MI *3 weeks after myocardial infarction. Epi
subepicardial, OM outer mid; IM inner mid; Endo subendocardial.

MVO2 = myocardial O2-consumption; MEO2 = myocardial O2

extraction; CVPO2 = coronary venous O2 tension In the top left

panel data myocardial blood flow data are shown for resting (Rest,

lying) conditions, and during maximum exercise (Ex, 5 km/h in N

and 4 km/h in MI). Data are mean ± SEM; *P \ 0.05 versus 0L, �

P \ 0.05 MI versus Normal. Data are from Haitsma et al [43]
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MI as compared to normal swine. In contrast, b-adreno-

ceptor blockade in MI swine resulted in a smaller decrease

in global LV contractility compared to normal swine, in

particular during exercise. The latter findings are consistent

with a reduced left ventricular myocardial b-adrenoceptor

responsiveness [100].

In normal swine and dogs, b-adrenergic receptor acti-

vation contributes to coronary vasodilatation during

exercise [27, 39]. The b-adrenergic coronary vasodilata-

tion results in an increase in myocardial oxygen delivery

that is commensurate with the increase in oxygen con-

sumption, so that myocardial oxygen extraction and hence

coronary venous O2 tension remain constant (Fig. 5). In

MI swine, the net b-adrenergic vasodilator influence on

the coronary circulation is maintained. However, in view

of the exaggerated increases in catecholamine levels

during exercise, these findings suggest a diminished

b-adrenergic responsiveness of the coronary resistance

vessels after MI.

In dogs, a-adrenoceptor activation limits the exercise-

induced increase in CBF, thereby necessitating an increase

in myocardial O2 extraction, which leads to a decrease in

coronary venous O2 tension [39, 51]. In contrast, a-

adrenoceptors do not contribute to regulation of coronary

blood flow in normal swine during exercise [27]. We found

that, in accordance with our findings in normal swine,

administration of the a-adrenoceptor blocker phentolamine

had also no effect on coronary venous O2 tension of MI

swine (Fig. 5). These findings indicate that even in the

presence of exaggerated increments in catecholamine

levels in MI swine during exercise, a-adrenoceptors do not

contribute to regulation of tone in porcine coronary resis-

tance vessels [23].

4.1.2 Parasympathetic control

The shift in the sympathovagal balance, with an increased

sympathetic activity [12, 33] and a blunted parasympa-

thetic activity is reflected in reduced heart rate variability

and reduced baroreceptor reflex sensitivity [6, 12, 30, 76]

in patients with advanced heart failure. We observed that a

maximal dose of the muscarinic receptor blocker atropine

produced a similar increase in resting heart rate in swine

with MI as compared to normal swine, suggesting pre-

served parasympathetic activity under resting conditions

[23]. In contrast, the atropine-induced increase in heart rate

during exercise (particularly at higher exercise levels) was

blunted in MI swine, while the increase in LVdP/dtmax was

abolished [23]. These results are consistent with the con-

cept that gradual inhibition of parasympathetic influence on

the heart during exercise was more pronounced in swine

with MI compared to normal swine. Importantly, these

findings suggest that after MI, at a time when parasympa-

thetic tone under basal resting conditions is normal, a more

pronounced inhibition of parasympathetic tone occurs with

increasing exercise intensity. Since parasympathetic

activity can presynaptically modulate sympathetic activity

[1], it is likely that the greater degree of withdrawal of

parasympathetic tone during exercise contributed to the

exaggerated increase in sympathetic activity during exer-

cise. This is also supported by the observation that in the

presence of propranolol, the effects of atropine were no

longer different between MI and normal swine [23].

In resting dogs, parasympathetic activity exerts a direct

vasodilator influence on coronary resistance vessels that is

Fig. 5 Effect of saline, a-adrenoceptor blockade (phentolamine,

1 mg/kg iv) and/or b-adrenoceptor blockade (propranolol, 0.5 mg/

kg iv) and of muscarinic receptor blockade (atropine, 30 lg/kg/min,

iv) and/or b-adrenoceptor blockade (propranolol, 0.5 mg/kg iv) on the

response of coronary venous O2 tension (CVPO2) plotted as a

function of myocardial O2 consumption (MVO2) in seven normal and

7 MI swine. *P \ 0.05 versus corresponding Control; �P \ 0.05

Atropine + Propranolol versus corresponding Atropine or Phentol-

amine + Propranolol versus corresponding Phentolamine; Data are

mean ± SEM. Data are from Duncker et al. [23]
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mediated via nitric oxide [109]. In contrast, in resting

swine parasympathetic activity exerts an indirect vaso-

constrictor effect on the coronary resistance vessels (which

wanes at increasing exercise intensity) that is mediated via

inhibition of b-adrenergic vasodilatation [27]. In contrast to

the loss of the inhibitory influence of the parasympathetic

system on b-adrenoceptor mediated cardiostimulation, we

observed that its effects on the coronary circulation were

maintained in MI compared to normal swine (Fig. 5) [23].

These findings indicate that at this stage of LV dysfunction,

parasympathetic control of b-adrenoceptor-mediated coro-

nary vasodilatation is unimpaired.

4.1.3 Angiotensin II

The renin-angiotensin system plays an important role in

cardiovascular homeostasis by contributing to the regula-

tion of blood volume, blood pressure and vascular tone.

Angiotensin II (ANG-II) exerts its effects on vascular tone

through binding to the AT1-receptor, resulting in vaso-

constriction, as well as binding to the AT2-receptor,

evoking vasodilation [14]. Both receptor subtypes have

been identified in the coronary microcirculation [4, 107],

suggesting that endogenous ANG-II may contribute to the

regulation of coronary vascular tone and to the regulation

of myocardial perfusion. Under pathological circum-

stances, i.e. after MI, the renin-angiotensin system is

activated, resulting in increased plasma levels of ANG-II,

particularly during exercise [34, 43]. Moreover, there is

evidence that AT1-receptor density in the viable region of

the myocardium is increased early after MI [62, 98], sug-

gesting that its vasoconstrictor influence on the coronary

vasculature could be increased, which may limit myocar-

dial perfusion thereby exacerbating LV dysfunction.

Contrary to our hypothesis, we observed a loss of ANG-

II induced vasoconstrictor influence, reflected by the lack

of increase in coronary venous O2 tension (Fig. 6), despite

increased plasma ANG-II levels and maintained AT1

receptor densities in coronary arterioles isolated from

remodelled myocardium of MI swine [68]. It is unlikely

that a generalized loss of vasodilator capacity in the remote

myocardium contributed to the blunted vasodilator

response to the AT1 receptor blocker irbesartan, as we have

previously shown that vasodilation produced by nitro-

prusside is unperturbed [44]. Although an increased AT2-

receptor expression could have acted to limit ANG-II

induced vasoconstriction [84] this is unlikely as AT2-

mRNA was not altered in coronary arteries from patients

with ischemic heart disease [103]. Moreover, the dramatic

increases in ANG-II levels that we observed after irbesar-

tan did not result in enhanced, but rather blunted, coronary

vasodilation [68]. Therefore, the observation of a reduced

vasoconstrictor influence of endogenous ANG-II is best

explained by AT1-receptor-desensitization, which is in

accordance with studies in dogs with pacing-induced heart

failure [78], in rats with pressure-overload LV hypertrophy

[63], and in rats with LV remodeling after MI [84], that

demonstrated blunted vasoconstrictor responses to exoge-

nous ANG-II.

4.2 Local metabolic control

4.2.1 Adenosine

Adenosine has been proposed to be a metabolic messen-

ger that regulates coronary resistance vessel tone in

response to changes in metabolic needs of the myocar-

dium [5]. However, adenosine receptor blockade with

8PT and/or augmenting adenosine catabolism with intra-

coronary adenosine deaminase had either no effect [3] or

produced a small decrease [28, 67, 93] in basal coronary

venous O2 tension (reflecting vasoconstriction), but did

not interfere with the normal exercise-induced increase in

CBF and O2 delivery [3, 28, 67, 93], indicating that

adenosine is not critical for the exercise-induced coronary

vasodilation or that loss of adenosine-mediated vasodila-

tion can be compensated for by increased contribution of

other vasodilator pathways to maintain adequate meta-

bolic vasodilation.

In contrast to the lack of evidence for an essential role of

adenosine in regulation of CBF under physiological con-

ditions, endogenously released adenosine does contribute to

coronary vasodilation when there is insufficient supply of

O2 [61]. Similarly, adenosine production could be increased

in the remodelled myocardium after MI as a result of the

perturbations in the myocardial O2 balance [43, 70, 108].

Fig. 6 Effect of AT1-receptor blockade with irbesartan (1 mg/kg iv)

on the relation between myocardial O2 consumption (MVO2) and

coronary venous O2 tension (CVPO2) in normal swine and swine with

a 2–3-week-old myocardial infarction. Data are means ± SE;

*P \ 0.05 versus corresponding control relation, �P \ 0.05 effect

of irbesartan different in MI versus Normal animals. Data are from

Merkus et al. [68]
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However, we found no evidence for an increased contri-

bution of adenosine to regulation of coronary resistance

vessel tone in remodelled myocardium of swine with a

recent MI [71], as adenosine receptor blockade with 8PT

caused a similar decrease in coronary venous O2 tension in

post-infarct remodelled hearts and normal hearts both at rest

and during exercise (Fig. 7). These findings are in agree-

ment with observations in dogs with pressure-overload LV

hypertrophy, in which adenosine receptor blockade did not

affect CBF either at rest or during exercise [65].

Several reasons could be forwarded for the failure to

observe a larger contribution of adenosine to regulation of

coronary resistance vessel tone. First, it is possible that the

perturbations in the myocardial O2 balance were too mild

to increase adenosine production. Second, the activity of

enzymes that regulate tissue adenosine levels may have

been altered [16, 17]. For example, the activity of

adenosine deaminase, the enzyme responsible for break-

down of adenosine to inosine, was found to be elevated in

LV hypertrophy [10, 13, 15]. Furthermore, there is evi-

dence that the activity of cytosolic 50 nucleotidase, which

converts 50AMP to adenosine, is lower in certain models of

pressure-overload [13] and volume-overload [10] induced

LV hypertrophy, which could be related to intermittent

hypoperfusion of the hypertrophic myocardium [41].

Together these enzymatic alterations, which act to decrease

myocardial levels of adenosine may have prevented a

significant increase in myocardial adenosine levels in the

post MI remodelled hearts.

Finally, it is possible that an increased role of adenosine

in hypertrophied myocardium is masked by an increased

contribution of other vasodilator systems during adenosine

receptor blockade, as the process of metabolic vasodilation

is thought to be mediated through multiple parallel or

redundant pathways. Thus, KATP channel activity may have

increased in response to adenosine receptor blockade to

compensate for the loss of adenosine-mediated vasodila-

tion. Hence, we evaluated the interactions between these

vasodilator pathways.

4.2.2 KATP channels

In addition to the role of KATP channels in the regulation of

CBF under physiological conditions [24, 25, 31], there is

evidence for an increased KATP channel activity in the

coronary circulation of remodelled hearts. For example, in

anesthetized dogs with pacing-induced severe heart failure

[106], the KATP channel blocker glibenclamide resulted in

an exaggerated vasoconstrictor response as compared to

normal dogs. Interestingly, in dogs subjected to only

1 week of pacing (when LV function was still normal),

KATP channel activity was not different from normal dogs

[106], suggesting that KATP channel activity in the basal

resting state was only enhanced in the presence of overt

heart failure. Similarly, in awake dogs with compensated

pressure-overload induced LV hypertrophy, the reduction

in CBF produced by glibenclamide was similar to that in

normal dogs [65]. During exercise, however, glibenclamide

produced a greater reduction in CBF in hypertrophied

hearts, indicating increased KATP-channel contribution to

coronary vasodilation when O2 requirements of the

hypertrophied heart were augmented [65].

In swine with MI-induced moderate LV remodeling and

dysfunction, glibenclamide caused a marked decrease in

coronary venous O2 tension in remodelled left ventricle

under resting conditions, that was similar to the decrease in

coronary venous O2 tension in normal hearts (Fig. 7; [71]).

Although the vasoconstriction under resting conditions in

response to KATP channel blockade was similar in normal

Fig. 7 Effect of the adenosine receptor antagonist 8-phenyltheo-

phylline (8PT, 5 mg/kg iv), the KATP channel blocker glibenclamide

(Glib, 3 mg/kg iv) or their combination on myocardial O2 balance in

the LV anterior free wall of normal swine and swine with a recent MI.

MVO2 = myocardial O2 consumption; CVPO2 = coronary venous

O2 tension; Data are mean ± SEM; Data are mean ± SEM;

*P B 0.05 versus corresponding control; �P B 0.05 effect of Glib

was blunted at higher MVO2 levels (Glib 9 MVO2); �P B 0.05 effect

of Glib different after MI (Glib 9 MVO2 9 MI). Data are from

Merkus et al. [71]
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and post-MI remodelled hearts, the responses to exercise

were different. Thus in normal swine, the effects of KATP

channel blockade waned during exercise, suggesting that

other vasodilator systems compensated for the loss of KATP

channels during exercise. In contrast, in the post-MI

remodelled hearts the effects of KATP channel blockade

were maintained during exercise. Our findings, which are

consistent with the observations in dogs [65], support the

hypothesis that KATP channel opening is of greater

importance in resistance vessel dilation during exercise in

hypertrophied than in normal hearts. It is likely that with

the progression from LV dysfunction to overt heart failure,

increased KATP channel activity may also become impor-

tant under resting conditions [106].

4.2.3 Interaction between KATP channels and adenosine

In contrast to the canine heart in which adenosine can act

as a back-up system [29, 81], adenosine and KATP channels

appear to exert additive vasodilator influences on coronary

vasomotor tone in the normal porcine heart [67]. Thus, the

coronary vasoconstriction that occurs in response to com-

bined adenosine receptor blockade and KATP channel

blockade equalled the sum of the vasoconstriction induced

by blockade of the individual pathways. Adenosine medi-

ates its vasodilator effect on porcine coronary resistance

vessels via KATP, KCa and Kv channels [9, 46–48] It is

therefore possible that following KATP channel blockade

adenosine maintained its vasodilator influence via KCa and/

or Kv channels.

In contrast to the normal porcine heart, the magnitude of

the constriction induced in remodelled hearts by combined

blockade of adenosine receptors and KATP channels was

virtually identical to that produced by blockade of KATP

channels alone [71]. These findings could be interpreted to

suggest that in remodelled myocardium the vasodilator

influence of endogenous adenosine was entirely mediated

through opening of KATP channels, observations that are

corroborated by findings in pressure-overload hypertro-

phied canine hearts [65]. Taken together these observations

in the porcine and canine coronary circulations suggest

that, although the magnitude of the vasodilator influence

exerted by endogenous adenosine was similar in normal

and remodelled hearts, its effector pathway was different.

4.3 Endothelial control

Several studies have indicated that endothelial dysfunction,

in particular a decreased production of NO and an

increased production of endothelin, could aggravate LV

dysfunction due to the peripheral vasoconstriction-induced

increase in LV afterload, coronary vasoconstriction, and

increased myocardial O2 consumption [26, 59, 80, 105].

4.3.1 Nitric oxide

Clinical studies indicate that chronic heart failure is

accompanied by blunted vasodilator responses to endo-

thelium-dependent receptor mediated vasodilators

(particularly acetylcholine) in the microcirculation of the

LV myocardium [92], leg [45, 57], and forearm [19, 52, 57,

64]. In the canine model of pacing-induced end-stage

congestive heart failure, attenuated vasodilator responses

of resistance vessels to acetylcholine in vivo have also been

observed in the microvasculature of the hindleg circulation

[22, 64] and the coronary circulation [105]. In swine with a

2–3-week-old MI, we observed reduced vasodilator

responses in the systemic and coronary microvasculature to

ATP, in doses which we have previously shown to be

completely abolished by pretreatment with the eNOS-

inhibitor NLA [26]. The findings of a blunted ATP-induced

vasodilation are in agreement with the hypothesis that

agonist-induced eNOS-mediated NO production is blunted

2–3 weeks after MI.

A loss of NO-mediated vasodilation could enhance the

progression of LV dysfunction to heart failure. This is

supported by studies in dogs with pacing-induced dilated

cardiomyopathy, in which the loss of basal NO production

in the LV myocardium coincides with the progression from

LV dysfunction to overt heart failure [80, 105]. However,

in swine with a 2–3-week-old MI, we did not find any

evidence of a reduced coronary vasodilator influence of

endogenous NO as decreases in coronary venous O2 ten-

sion produced by NLA in resting and exercising MI swine

were similar to those of normal swine (Fig. 8). In heart

failure patients, studies on the contribution of NO to basal

Fig. 8 Effect of inhibition of NO synthase by NLA (20 mg/kg iv) on

myocardial O2 extraction and coronary venous PO2 at rest (lying) and

during treadmill exercise in MI and N. Data are mean ± SEM.

*P \ 0.05 NLA versus corresponding Control; there were no

significant differences in the responses to NLA between MI and N

either at rest or during exercise. Data are from Haitsma et al. [44]
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microvascular tone in the forearm, leg, or total systemic

bed have yielded equivocal results with responses varying

from blunted [45, 58, 64], to maintained [60], and even

enhanced [20, 42] increases in vascular tone following NO

synthase inhibition. It is possible that a maintained or

increased NO production as observed in some studies, was

the result of increased iNOS expression [21, 79], as part of

a generalized inflammatory response in end-stage heart

failure, that occurred in the presence of either a decreased

[21, 86] or increased [37, 50] eNOS expression. Since NLA

can block all three isoforms of NOS [7], we performed

additional experiments, in which we blocked iNOS with

aminoguanidine, to determine whether an upregulation of

iNOS-mediated NO production masked a reduction in

eNOS activity. iNOS blockade had no effect on coronary

vasomotor tone, demonstrating that NO production via

iNOS does not contribute significantly to vascular tone in

MI swine, and, consequently, that basal and exercise-

induced endothelial NO production is maintained early

after MI [44].

The reason for the maintained basal and exercise-

induced NO production in the presence of a blunted

vasodilator response to ATP is unclear. However, Traverse

et al. [91] have shown that the amount of NO, produced

after stimulation with an agonist is larger than the amount

of NO produced during moderate exercise (60% increase in

heart rate). Hence, the maximal capacity of NO production

may be reduced, whereas the capacity of eNOS is sufficient

to maintain basal and exercise-induced NO production.

This explanation is unlikely since agonist-induced dilation

is already affected at the lowest dose of administered ATP

(which probably releases less NO than strenuous exercise).

Moreover, higher doses of ATP still produce more dilation.

Another explanation for the divergent results between ATP

and exercise-induced increases in NO-production may be

that ATP activates eNOS through a different mechanism

than shear stress. ATP-induced activation of eNOS is

mediated through a calcium-calmodulin dependent path-

way [74] whereas shear stress activates eNOS through Akt-

mediated phosphorylation [18], resulting in calcium-inde-

pendent activation of eNOS. Hence, it is possible that

perturbations in the calcium homeostasis of endothelial

cells contributed to the selective impairment of ATP-

induced vasodilation in swine with MI.

4.3.2 Endothelin

Despite the increased plasma levels of endogenous ET in

swine with a 2–3 week old MI, its vasoconstrictor influence

on the coronary circulation was reduced (Fig. 9 [69, 70]).

To determine whether this was the result of blunted receptor

responsiveness or reduced local ET-production, we studied

the vasoconstriction induced by exogenous ET. The coro-

nary vasoconstrictor influence to exogenous ET-1 in vivo

was reduced after MI, indicating a reduced coronary vas-

cular responsiveness to ET. Paradoxically, a recent study

showed that ischemic heart disease results in upregulation

of ETA and ETB receptor mRNA in human coronary arteries

[104]. This is in accordance with our measurements in

isolated coronary arterioles obtained from sham-operated

swine and swine with a MI, which showed that the ET

responsiveness in vessels from animals with a MI was

actually increased [70]. The discrepancy between the in

vivo and the in vitro findings suggests that ET receptor

sensitivity is modulated in vivo, and that this modulation is

apparently lost in vitro. Possible modulators of ET-receptor

sensitivity are adenosine and NO, which have been shown

to desensitize ET-receptors on the coronary vasculature [72,

73], and which may have been lost in the in vitro set-up due

to lack of surrounding myocardium and intravascular blood

flow. However, since we observed similar vasoconstrictor

responses to blockade of adenosine receptors and NO pro-

duction in MI and normal swine, these vasodilators would

seem unlikely explanations for the observed reduced ET

receptor sensitivity in MI swine in vivo.

In conclusion, our observations suggest that when

additional coronary vasodilation is required in the hyper-

trophied myocardium after MI, withdrawal of the ET-

mediated vasoconstrictor influence contributes to a shift in

vasomotor tone towards vasodilation. These findings may

also explain in part why clinical trials of ET-receptor

antagonists in heart failure have failed to show therapeutic

value of these compounds [40, 77].

4.4 Conclusions and physiological relevance

Under physiological circumstances, the heart matches its

blood supply to the demand of the myocardium by altering

Fig. 9 Effect of ETA receptor blockade with EMD (3 mg/kg iv) on

myocardial oxygen balance in normal swine and swine with a recent

MI. Data are means ± SE; *P \ 0.05 versus corresponding Control

relation, �P \ 0.05 effect of EMD waned during exercise. Data are

from Merkus et al. [70]
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the balance of vasodilator and vasoconstrictor influences,

i.e. an increase in myocardial O2 demand results in an

increased influence of vasodilators (opening of KATP

channels, NO, adenosine [53], b-adrenergic vasodilation

[27]) and a decreased influence of the potent vasocon-

strictor endothelin-1 [66, 69]. Studies from our laboratory

performed during the past 10 years have shown that fol-

lowing MI myocardial O2 balance in the remodelled LV is

perturbed, necessitating vasodilation and recruitment of

coronary flow reserve, as evidenced by increased opening

of KATP channels [71]. Importantly, however, not only an

increased KATP channel vasodilator influence, but also

blunting of the coronary vasoconstrictor influences of

endogenous endothelin [70] and angiotensin II [68], aid in

preventing a more significant impairment of oxygen supply

to the remodelled myocardium (Figs. 10, 11). Our studies

suggest that generalized blunting of vasoconstrictor influ-

ences is one of the first adaptive mechanisms to reduce

coronary resistance vessel tone and increase myocardial

blood supply. This adaptation, which occurs in the healthy

porcine heart during acute exercise, also appears operative

in remodelled myocardium. Blunting of vasoconstrictor

influences may be a physiologically favorable strategy,

since it is more energy-efficient to blunt vasoconstrictor

influences than to synthesize vasodilators.

Although the shift in coronary tone towards vasodila-

tation acts to blunt the flow perturbations in the remodelled

heart, it does not appear to fully restore myocardial oxygen

balance. This is also supported by the observation that

KATP channel activation is increased, consistent with the

presence of metabolic distress. Whether these perturbations

in myocardial oxygen delivery blood are sufficiently severe

to contribute to the progressive deterioration of contractile

function of the remodelled left ventricle remains to be

established, but it is of interest to note that we previously

found that troponin I proteolysis occurred in remodelled

myocardium, which was associated with a loss of myofil-

ament force development [97]. Intermittent myocardial

ischemia, as may occur in remodelled hearts during exer-

cise or excitement, has been shown to be able to promote

troponin I proteolysis [38] and could thereby mediate the

flow perturbation-induced progressive deterioration of LV

function after MI. Definitive proof of our hypothesis must

await future studies demonstrating that prevention of such

flow perturbations will indeed prevent progressive loss of

contractile function of the remodelled porcine left

ventricle.
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