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Abstract The mechanism underlying the progressive
deterioration of left ventricular (LV) dysfunction after
myocardial infarction (MI) towards overt heart failure
remains incompletely understood, but may involve
impairments in coronary blood flow regulation within
remodelled myocardium leading to intermittent myocardial
ischemia. Blood flow to the remodelled myocardium is
hampered as the coronary vasculature does not grow com-
mensurate with the increase in LV mass and because
extravascular compression of the coronary vasculature is
increased. In addition to these factors, an increase in coro-
nary vasomotor tone, secondary to neurohumoral activation
and endothelial dysfunction, could also contribute to the
impaired myocardial oxygen supply. Consequently, we
explored, in a series of studies, the alterations in regulation
of coronary resistance vessel tone in remodelled myocar-
dium of swine with a 2 to 3-week-old MI. These studies
indicate that myocardial oxygen balance is perturbed in
remodelled myocardium, thereby forcing the myocardium
to increase its oxygen extraction. These perturbations do not
appear to be the result of blunted fS-adrenergic or endo-
thelial NO-mediated coronary vasodilator influences, and
are opposed by an increased vasodilator influence through
opening of K5tp channels. Unexpectedly, we observed that
despite increased circulating levels of noradrenaline,
angiotensin II and endothelin-1, ¢-adrenergic tone remained
negligible, while the coronary vasoconstrictor influences of
endogenous endothelin and angiotensin II were virtually
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abolished. We conclude that, early after MI, perturbations
in myocardial oxygen balance are observed in remodelled
myocardium. However, adaptive alterations in coronary
resistance vessel control, consisting of increased vasodilator
influences in conjunction with blunted vasoconstrictor
influences, act to minimize the impairments of myocardial
oxygen balance.
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1 Introduction

Heart failure constitutes a major cardiovascular disorder of
which the incidence and prevalence are increasing, prin-
cipally due to an increased survival of acute myocardial
infarction (MI) in conjunction with an ageing population.
The mechanism underlying the progressive deterioration of
left ventricular (LV) dysfunction towards overt heart fail-
ure remains incompletely understood, but may involve (1)
loss of cardiomyocytes through apoptosis [75], (2) a pri-
mary reduction in contractile function of the surviving
myocardium [97], and/or (3) alterations in extracellular
matrix leading to progressive LV dilation [87]. In addition,
myocardial blood flow (MBF) abnormalities, resulting in
impaired myocardial O, delivery to the non-infarcted
regions (leading to secondary contractile dysfunction and/
or enhanced apoptosis), have been suggested to contribute
to the progression of LV dysfunction after MI [99]. For
example, in vivo studies in rats [54, 55] and swine [108]
indicate a reduction in MBF reserve of up to 35% in the
surviving remodelled LV myocardium, 3-8 weeks after
infarction. Furthermore, in patients with overt heart failure
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[94], but also in patients with only asymptomatic LV
dysfunction [95], flow reserve is reduced in the non-ste-
notic myocardial regions. In line with these clinical
observations, we observed in a porcine model of post-
infarct remodelling that during increased O,-demand
induced by exercise, the increase in coronary blood flow
(CBF) is impaired resulting in perturbations in oxygen
delivery [43, 70]. The reduction in flow reserve and the
perturbed oxygen delivery during exercise are caused, at
least in part, by insufficient growth of the coronary vas-
culature to maintain flow capacity commensurate with
myocardial hypertrophy, in conjunction with a decrease in
diastolic pressure time index resulting from the elevated
heart rate and particularly elevated LV diastolic pressures
[43]. In addition, coronary vasomotor tone may also be
increased secondary to neurohumoral activation and
endothelial dysfunction, further adding to the perturbations
in CBF. However, little is known about the alterations in
vasomotor control in coronary resistance vessels within
remodelled myocardium (Fig. 1). For this reason we
undertook a series of studies to determine whether neuro-
humoral (autonomic nervous system and renin-angiotensin
system), local metabolic, and endothelial control mecha-
nisms of coronary resistance vessel tone are altered in
swine with remodelled myocardium produced by a recent
MIL

2 Characteristics of LV remodelling and dysfunction
after MI in swine

Left ventricular remodelling was produced by permanent
ligation of the left circumflex coronary artery. This liga-
tion results in a circumscribed transmural infarction of the
lateral LV wall, comprising 20-25% of the total LV [82,
96]. LV dysfunction in awake resting MI swine is char-
acterised by 20-30% decreases in cardiac output, stroke
volume and LVdP/dt,,, and a tripling of LV filling
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pressure. This difference between LVdP/dt,.., cardiac
output and stroke volume in normal and MI swine
remained constant between ~ 10 and ~32 days, indica-
ting that the degree of LV dysfunction and the circulatory
adaptations in MI were stable during this observation
period [43]. Similarly, we observed that already during
the first week after infarction significant LV remodelling
occurs, consisting of LV dilation and hypertrophy that
remain fairly stable between 1 and 6 weeks after infarc-
tion [98]. During exercise, cardiac output, LV systolic
pressure and LVdP/dt,,x increased almost in parallel in
MI and normal animals up to 3 km/h, after which curves
diverged (Fig. 2); 4 km/h was also the maximally attain-
able exercise level for most MI swine.

Left ventricular dysfunction produced by MI results in
neurohumoral activation, characterized by a trend towards
elevated plasma levels of catecholamines, but normal
circulating levels of renin, angiotensin II and aldosterone
at rest. The latter may have been due to the increments in
atrial natriuretic peptide (ANP) and endothelin, which can
suppress renin and aldosterone release [83]. In resting MI
swine, ANP doubled within 24 h, recovered to 50% above
normal values within 2 weeks and remained stable
between 2 and 6 weeks after infarction, while renin and
norepinephrine levels remained normal under resting
conditions [98]. In contrast to the discrete neurohumoral
activation in resting swine with MI, exercise resulted in
exaggerated increases in catecholamines and ANP and
increases in endothelin, angiotensin II, and aldosterone
(Fig. 3). While resting circulating levels of norepineph-
rine were still normal and the relative sympathetic drive
in response to exercise was preserved in MI, the cardiac
responsiveness to exercise (both heart rate and LVdP/
dfax) was already blunted 3 weeks after infarction [43],
likely due to f-adrenoceptor desensitization and/or
downregulation [100].

3 Myocardial O, balance in remodelled myocardium

Marked decreases in myocardial perfusion occur in pacing-
induced severe heart failure in swine [88] and dogs [85,
90], especially in the more vulnerable subendocardial
layers. Although one study in dogs indicated that the lower
MBEF is principally the result of a lower myocardial O,
consumption (MVO,) [90], studies in swine suggest that
the impaired perfusion is, at least in part, responsible for
the deterioration of LV function because the interstitial
edema and disruption of collagen fibers in the subendo-
cardium resemble the ultrastuctural changes that occur with
recurrent ischemia [49, 89]. In animal models of severe
pressure-overload induced LV hypertrophy, selective und-
erperfusion of the subendocardium can produce myocardial
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ischemia during exercise and result in post-exercise myo-
cardial stunning [2, 102]. The contribution of perfusion
abnormalities in the remote surviving myocardium to LV
dysfunction after a MI remains unclear. Studies in rats
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demonstrated a 25-40% reduction in coronary flow reserve
in the surviving myocardium at four [55] and eight [54]
weeks after MI. Similarly, maximum subendocardial blood
flow was blunted by 40% in anesthetized swine with heart
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failure 3 weeks after a MI [108]. We hypothesized that the
decreased flow reserve could limit the increase in MBF to
the hypertrophied myocardium during exercise when
hemodynamic abnormalities and neurohumoral activation
are exacerbated, thereby impairing myocardial O,-supply.

Three weeks after infarction, blood flow per gram of
myocardium in the (remote) LV anterior wall of resting
swine with MI was similar to that in normal animals
(Fig. 4), confirming previous studies in rats and swine [54,
55, 108]. Interestingly, we observed a trend towards
slightly higher blood flows in the outer two layers
(P = 0.09), suggesting that despite hypertrophy of the
surviving myocardium, metabolic demand in the outer, but
not the inner, layers was still slightly elevated, 3 weeks
after infarction [43]. During exercise, MBF increased but
was redistributed in favor of the subepicardium in MI
compared to normal swine. These perturbations were most
likely due to increased extravascular compressive forces,
resulting from a reduction in diastolic time fraction (sec-
ondary to impaired relaxation and increased heart rate) and
elevated LV filling pressures [43, 97], that impede MBF,
particularly in the subendocardial layers. The decreased
MBF necessitated a small increase in O, extraction that
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Fig. 4 Myocardial blood flow and O,-balance in the left ventricular
anterior wall of N and MI ~3 weeks after myocardial infarction. Epi
subepicardial, OM outer mid; /M inner mid; Endo subendocardial.
MVO, = myocardial O,-consumption; MEO, = myocardial O,
extraction; CVPO, = coronary venous O, tension In the top left
panel data myocardial blood flow data are shown for resting (Rest,
lying) conditions, and during maximum exercise (Ex, 5 km/h in N
and 4 km/h in MI). Data are mean & SEM; *P < 0.05 versus O,
P < 0.05 MI versus Normal. Data are from Haitsma et al [43]
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resulted in a slightly lower coronary venous O, tension
(Fig. 4), which actually may have been underestimated as
the lower myocardial capillary density in swine with MI
possibly prevented a greater increase in O, extraction [43,
70]. The observation that O, extraction was forced to
increase indicates that increases in extravascular forces are
not fully compensated by a concomitant lowering of cor-
onary vasomotor tone in remodelled myocardium during
exercise. These observations prompted us to further
investigate the control of coronary vasomotor tone in
remodelled myocardium during exercise.

4 Vasomotor control of the coronary microcirculation
in remodelled myocardium

4.1 Neurohumoral control

Cardiac dysfunction is accompanied by a hemodynamic
defense reaction consisting of salt and water retention,
peripheral vasoconstriction and cardiac stimulation, which
serves to partially restore cardiac output and to increase
systemic vascular resistance in order to maintain arterial
pressure [56]. An integral part of this defense reaction
involves alterations in autonomic balance, consisting of an
increase in sympathetic activity and a decrease in para-
sympathetic activity [56].

4.1.1 Sympathetic control

In patients with advanced heart failure plasma noradrena-
line levels are already increased under resting conditions
[11, 36]. These increased levels result principally from
increased sympathetic nerve activity although impaired
reuptake may also contribute [56]. Prolonged exposure to
elevated noradrenaline levels results in desensitization and
downregulation of the f-adrenergic receptors [8, 32, 101].
During exercise, the increases in catecholamine levels are
exaggerated in patients with heart failure as compared to
healthy controls [35], which is aimed at maintaining
chronotropic and inotropic responses to exercise [34].
Also in swine with LV dysfunction produced by a 2-3-
week-old MI, we observed exaggerated increases in arterial
and coronary venous catecholamine levels during treadmill
exercise [23, 43], at a time when resting catecholamine
levels were still in the normal range [43, 98]. The exag-
gerated exercise-induced increases in catecholamine levels
reflect increased sympathetic activity, which acts to
maintain the chronotropic and inotropic responses to acute
exercise. This concept is supported by the observation that
f-adrenoceptor blockade produced slightly greater
decreases in the chronotropic response during exercise in
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MI as compared to normal swine. In contrast, ff-adreno-
ceptor blockade in MI swine resulted in a smaller decrease
in global LV contractility compared to normal swine, in
particular during exercise. The latter findings are consistent
with a reduced left ventricular myocardial f-adrenoceptor
responsiveness [100].

In normal swine and dogs, f-adrenergic receptor acti-
vation contributes to coronary vasodilatation during
exercise [27, 39]. The f-adrenergic coronary vasodilata-
tion results in an increase in myocardial oxygen delivery
that is commensurate with the increase in oxygen con-
sumption, so that myocardial oxygen extraction and hence
coronary venous O, tension remain constant (Fig. 5). In
MI swine, the net f-adrenergic vasodilator influence on
the coronary circulation is maintained. However, in view
of the exaggerated increases in catecholamine levels
during exercise, these findings suggest a diminished
f-adrenergic responsiveness of the coronary resistance
vessels after MI.

In dogs, a-adrenoceptor activation limits the exercise-
induced increase in CBF, thereby necessitating an increase
in myocardial O, extraction, which leads to a decrease in
coronary venous O, tension [39, 51]. In contrast, o-
adrenoceptors do not contribute to regulation of coronary
blood flow in normal swine during exercise [27]. We found
that, in accordance with our findings in normal swine,
administration of the o-adrenoceptor blocker phentolamine
had also no effect on coronary venous O, tension of MI
swine (Fig. 5). These findings indicate that even in the
presence of exaggerated increments in catecholamine
levels in MI swine during exercise, a-adrenoceptors do not
contribute to regulation of tone in porcine coronary resis-
tance vessels [23].

4.1.2 Parasympathetic control

The shift in the sympathovagal balance, with an increased
sympathetic activity [12, 33] and a blunted parasympa-
thetic activity is reflected in reduced heart rate variability
and reduced baroreceptor reflex sensitivity [6, 12, 30, 76]
in patients with advanced heart failure. We observed that a
maximal dose of the muscarinic receptor blocker atropine
produced a similar increase in resting heart rate in swine
with MI as compared to normal swine, suggesting pre-
served parasympathetic activity under resting conditions
[23]. In contrast, the atropine-induced increase in heart rate
during exercise (particularly at higher exercise levels) was
blunted in MI swine, while the increase in LVdP/dt,,,, was
abolished [23]. These results are consistent with the con-
cept that gradual inhibition of parasympathetic influence on
the heart during exercise was more pronounced in swine
with MI compared to normal swine. Importantly, these
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Fig. 5 Effect of saline, o-adrenoceptor blockade (phentolamine,
1 mg/kg iv) and/or f-adrenoceptor blockade (propranolol, 0.5 mg/
kg iv) and of muscarinic receptor blockade (atropine, 30 pg/kg/min,
iv) and/or f-adrenoceptor blockade (propranolol, 0.5 mg/kg iv) on the
response of coronary venous O, tension (CVPO,) plotted as a
function of myocardial O, consumption (MVO,) in seven normal and
7 MI swine. *P < 0.05 versus corresponding Control; "P < 0.05
Atropine + Propranolol versus corresponding Atropine or Phentol-
amine + Propranolol versus corresponding Phentolamine; Data are
mean =+ SEM. Data are from Duncker et al. [23]

findings suggest that after MI, at a time when parasympa-
thetic tone under basal resting conditions is normal, a more
pronounced inhibition of parasympathetic tone occurs with
increasing exercise intensity. Since parasympathetic
activity can presynaptically modulate sympathetic activity
[1], it is likely that the greater degree of withdrawal of
parasympathetic tone during exercise contributed to the
exaggerated increase in sympathetic activity during exer-
cise. This is also supported by the observation that in the
presence of propranolol, the effects of atropine were no
longer different between MI and normal swine [23].

In resting dogs, parasympathetic activity exerts a direct
vasodilator influence on coronary resistance vessels that is
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mediated via nitric oxide [109]. In contrast, in resting
swine parasympathetic activity exerts an indirect vaso-
constrictor effect on the coronary resistance vessels (which
wanes at increasing exercise intensity) that is mediated via
inhibition of -adrenergic vasodilatation [27]. In contrast to
the loss of the inhibitory influence of the parasympathetic
system on f3-adrenoceptor mediated cardiostimulation, we
observed that its effects on the coronary circulation were
maintained in MI compared to normal swine (Fig. 5) [23].
These findings indicate that at this stage of LV dysfunction,
parasympathetic control of f-adrenoceptor-mediated coro-
nary vasodilatation is unimpaired.

4.1.3 Angiotensin Il

The renin-angiotensin system plays an important role in
cardiovascular homeostasis by contributing to the regula-
tion of blood volume, blood pressure and vascular tone.
Angiotensin II (ANG-II) exerts its effects on vascular tone
through binding to the AT;-receptor, resulting in vaso-
constriction, as well as binding to the AT,-receptor,
evoking vasodilation [14]. Both receptor subtypes have
been identified in the coronary microcirculation [4, 107],
suggesting that endogenous ANG-II may contribute to the
regulation of coronary vascular tone and to the regulation
of myocardial perfusion. Under pathological circum-
stances, i.e. after MI, the renin-angiotensin system is
activated, resulting in increased plasma levels of ANG-II,
particularly during exercise [34, 43]. Moreover, there is
evidence that AT;-receptor density in the viable region of
the myocardium is increased early after MI [62, 98], sug-
gesting that its vasoconstrictor influence on the coronary
vasculature could be increased, which may limit myocar-
dial perfusion thereby exacerbating LV dysfunction.
Contrary to our hypothesis, we observed a loss of ANG-
IT induced vasoconstrictor influence, reflected by the lack
of increase in coronary venous O, tension (Fig. 6), despite
increased plasma ANG-II levels and maintained AT,
receptor densities in coronary arterioles isolated from
remodelled myocardium of MI swine [68]. It is unlikely
that a generalized loss of vasodilator capacity in the remote
myocardium contributed to the blunted vasodilator
response to the AT receptor blocker irbesartan, as we have
previously shown that vasodilation produced by nitro-
prusside is unperturbed [44]. Although an increased AT,-
receptor expression could have acted to limit ANG-II
induced vasoconstriction [84] this is unlikely as AT,-
mRNA was not altered in coronary arteries from patients
with ischemic heart disease [103]. Moreover, the dramatic
increases in ANG-II levels that we observed after irbesar-
tan did not result in enhanced, but rather blunted, coronary
vasodilation [68]. Therefore, the observation of a reduced
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vasoconstrictor influence of endogenous ANG-II is best
explained by AT, -receptor-desensitization, which is in
accordance with studies in dogs with pacing-induced heart
failure [78], in rats with pressure-overload LV hypertrophy
[63], and in rats with LV remodeling after MI [84], that
demonstrated blunted vasoconstrictor responses to exoge-
nous ANG-II.

4.2 Local metabolic control
4.2.1 Adenosine

Adenosine has been proposed to be a metabolic messen-
ger that regulates coronary resistance vessel tone in
response to changes in metabolic needs of the myocar-
dium [5]. However, adenosine receptor blockade with
8PT and/or augmenting adenosine catabolism with intra-
coronary adenosine deaminase had either no effect [3] or
produced a small decrease [28, 67, 93] in basal coronary
venous O, tension (reflecting vasoconstriction), but did
not interfere with the normal exercise-induced increase in
CBF and O, delivery [3, 28, 67, 93], indicating that
adenosine is not critical for the exercise-induced coronary
vasodilation or that loss of adenosine-mediated vasodila-
tion can be compensated for by increased contribution of
other vasodilator pathways to maintain adequate meta-
bolic vasodilation.

In contrast to the lack of evidence for an essential role of
adenosine in regulation of CBF under physiological con-
ditions, endogenously released adenosine does contribute to
coronary vasodilation when there is insufficient supply of
O, [61]. Similarly, adenosine production could be increased
in the remodelled myocardium after MI as a result of the
perturbations in the myocardial O, balance [43, 70, 108].
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However, we found no evidence for an increased contri-
bution of adenosine to regulation of coronary resistance
vessel tone in remodelled myocardium of swine with a
recent MI [71], as adenosine receptor blockade with 8PT
caused a similar decrease in coronary venous O, tension in
post-infarct remodelled hearts and normal hearts both at rest
and during exercise (Fig. 7). These findings are in agree-
ment with observations in dogs with pressure-overload LV
hypertrophy, in which adenosine receptor blockade did not
affect CBF either at rest or during exercise [65].

Several reasons could be forwarded for the failure to
observe a larger contribution of adenosine to regulation of
coronary resistance vessel tone. First, it is possible that the
perturbations in the myocardial O, balance were too mild
to increase adenosine production. Second, the activity of
enzymes that regulate tissue adenosine levels may have
been altered [16, 17]. For example, the activity of
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Fig. 7 Effect of the adenosine receptor antagonist 8-phenyltheo-
phylline (8PT, 5 mg/kg iv), the Kotp channel blocker glibenclamide
(Glib, 3 mg/kg iv) or their combination on myocardial O, balance in
the LV anterior free wall of normal swine and swine with a recent MI.
MVO, = myocardial O, consumption; CVPO, = coronary venous
O, tension; Data are mean = SEM; Data are mean &= SEM;
*P < 0.05 versus corresponding control; p < 0.05 effect of Glib
was blunted at higher MVO, levels (Glib x MVO,); *P < 0.05 effect
of Glib different after MI (Glib x MVO, x MI). Data are from
Merkus et al. [71]

adenosine deaminase, the enzyme responsible for break-
down of adenosine to inosine, was found to be elevated in
LV hypertrophy [10, 13, 15]. Furthermore, there is evi-
dence that the activity of cytosolic 5’ nucleotidase, which
converts 5’ AMP to adenosine, is lower in certain models of
pressure-overload [13] and volume-overload [10] induced
LV hypertrophy, which could be related to intermittent
hypoperfusion of the hypertrophic myocardium [41].
Together these enzymatic alterations, which act to decrease
myocardial levels of adenosine may have prevented a
significant increase in myocardial adenosine levels in the
post MI remodelled hearts.

Finally, it is possible that an increased role of adenosine
in hypertrophied myocardium is masked by an increased
contribution of other vasodilator systems during adenosine
receptor blockade, as the process of metabolic vasodilation
is thought to be mediated through multiple parallel or
redundant pathways. Thus, K tp channel activity may have
increased in response to adenosine receptor blockade to
compensate for the loss of adenosine-mediated vasodila-
tion. Hence, we evaluated the interactions between these
vasodilator pathways.

4.2.2 Kurp channels

In addition to the role of Kstp channels in the regulation of
CBF under physiological conditions [24, 25, 31], there is
evidence for an increased K,rtp channel activity in the
coronary circulation of remodelled hearts. For example, in
anesthetized dogs with pacing-induced severe heart failure
[106], the Kap channel blocker glibenclamide resulted in
an exaggerated vasoconstrictor response as compared to
normal dogs. Interestingly, in dogs subjected to only
1 week of pacing (when LV function was still normal),
Katp channel activity was not different from normal dogs
[106], suggesting that K tp channel activity in the basal
resting state was only enhanced in the presence of overt
heart failure. Similarly, in awake dogs with compensated
pressure-overload induced LV hypertrophy, the reduction
in CBF produced by glibenclamide was similar to that in
normal dogs [65]. During exercise, however, glibenclamide
produced a greater reduction in CBF in hypertrophied
hearts, indicating increased Karp-channel contribution to
coronary vasodilation when O, requirements of the
hypertrophied heart were augmented [65].

In swine with MI-induced moderate LV remodeling and
dysfunction, glibenclamide caused a marked decrease in
coronary venous O, tension in remodelled left ventricle
under resting conditions, that was similar to the decrease in
coronary venous O, tension in normal hearts (Fig. 7; [71]).
Although the vasoconstriction under resting conditions in
response to Katp channel blockade was similar in normal

@ Springer



492

Med Biol Eng Comput (2008) 46:485-497

and post-MI remodelled hearts, the responses to exercise
were different. Thus in normal swine, the effects of Katp
channel blockade waned during exercise, suggesting that
other vasodilator systems compensated for the loss of Karp
channels during exercise. In contrast, in the post-MI
remodelled hearts the effects of K,rp channel blockade
were maintained during exercise. Our findings, which are
consistent with the observations in dogs [65], support the
hypothesis that K rp channel opening is of greater
importance in resistance vessel dilation during exercise in
hypertrophied than in normal hearts. It is likely that with
the progression from LV dysfunction to overt heart failure,
increased Karp channel activity may also become impor-
tant under resting conditions [106].

4.2.3 Interaction between K rp channels and adenosine

In contrast to the canine heart in which adenosine can act
as a back-up system [29, 81], adenosine and K, tp channels
appear to exert additive vasodilator influences on coronary
vasomotor tone in the normal porcine heart [67]. Thus, the
coronary vasoconstriction that occurs in response to com-
bined adenosine receptor blockade and Karp channel
blockade equalled the sum of the vasoconstriction induced
by blockade of the individual pathways. Adenosine medi-
ates its vasodilator effect on porcine coronary resistance
vessels via Katp, Ko, and K, channels [9, 46-48] It is
therefore possible that following Karp channel blockade
adenosine maintained its vasodilator influence via K¢, and/
or K, channels.

In contrast to the normal porcine heart, the magnitude of
the constriction induced in remodelled hearts by combined
blockade of adenosine receptors and Karp channels was
virtually identical to that produced by blockade of Katp
channels alone [71]. These findings could be interpreted to
suggest that in remodelled myocardium the vasodilator
influence of endogenous adenosine was entirely mediated
through opening of Ksrp channels, observations that are
corroborated by findings in pressure-overload hypertro-
phied canine hearts [65]. Taken together these observations
in the porcine and canine coronary circulations suggest
that, although the magnitude of the vasodilator influence
exerted by endogenous adenosine was similar in normal
and remodelled hearts, its effector pathway was different.

4.3 Endothelial control

Several studies have indicated that endothelial dysfunction,
in particular a decreased production of NO and an
increased production of endothelin, could aggravate LV
dysfunction due to the peripheral vasoconstriction-induced
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increase in LV afterload, coronary vasoconstriction, and
increased myocardial O, consumption [26, 59, 80, 105].

4.3.1 Nitric oxide

Clinical studies indicate that chronic heart failure is
accompanied by blunted vasodilator responses to endo-
thelium-dependent ~ receptor  mediated  vasodilators
(particularly acetylcholine) in the microcirculation of the
LV myocardium [92], leg [45, 57], and forearm [19, 52, 57,
64]. In the canine model of pacing-induced end-stage
congestive heart failure, attenuated vasodilator responses
of resistance vessels to acetylcholine in vivo have also been
observed in the microvasculature of the hindleg circulation
[22, 64] and the coronary circulation [105]. In swine with a
2-3-week-old MI, we observed reduced vasodilator
responses in the systemic and coronary microvasculature to
ATP, in doses which we have previously shown to be
completely abolished by pretreatment with the eNOS-
inhibitor NLA [26]. The findings of a blunted ATP-induced
vasodilation are in agreement with the hypothesis that
agonist-induced eNOS-mediated NO production is blunted
2-3 weeks after MI.

A loss of NO-mediated vasodilation could enhance the
progression of LV dysfunction to heart failure. This is
supported by studies in dogs with pacing-induced dilated
cardiomyopathy, in which the loss of basal NO production
in the LV myocardium coincides with the progression from
LV dysfunction to overt heart failure [80, 105]. However,
in swine with a 2-3-week-old MI, we did not find any
evidence of a reduced coronary vasodilator influence of
endogenous NO as decreases in coronary venous O, ten-
sion produced by NLA in resting and exercising MI swine
were similar to those of normal swine (Fig. 8). In heart
failure patients, studies on the contribution of NO to basal
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Fig. 8 Effect of inhibition of NO synthase by NLA (20 mg/kg iv) on
myocardial O, extraction and coronary venous PO, at rest (lying) and
during treadmill exercise in MI and N. Data are mean £ SEM.
*P < 0.05 NLA versus corresponding Control; there were no
significant differences in the responses to NLA between MI and N
either at rest or during exercise. Data are from Haitsma et al. [44]
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microvascular tone in the forearm, leg, or total systemic
bed have yielded equivocal results with responses varying
from blunted [45, 58, 64], to maintained [60], and even
enhanced [20, 42] increases in vascular tone following NO
synthase inhibition. It is possible that a maintained or
increased NO production as observed in some studies, was
the result of increased iNOS expression [21, 79], as part of
a generalized inflammatory response in end-stage heart
failure, that occurred in the presence of either a decreased
[21, 86] or increased [37, 50] eNOS expression. Since NLA
can block all three isoforms of NOS [7], we performed
additional experiments, in which we blocked iNOS with
aminoguanidine, to determine whether an upregulation of
iNOS-mediated NO production masked a reduction in
eNOS activity. iNOS blockade had no effect on coronary
vasomotor tone, demonstrating that NO production via
iNOS does not contribute significantly to vascular tone in
MI swine, and, consequently, that basal and exercise-
induced endothelial NO production is maintained early
after MI [44].

The reason for the maintained basal and exercise-
induced NO production in the presence of a blunted
vasodilator response to ATP is unclear. However, Traverse
et al. [91] have shown that the amount of NO, produced
after stimulation with an agonist is larger than the amount
of NO produced during moderate exercise (60% increase in
heart rate). Hence, the maximal capacity of NO production
may be reduced, whereas the capacity of eNOS is sufficient
to maintain basal and exercise-induced NO production.
This explanation is unlikely since agonist-induced dilation
is already affected at the lowest dose of administered ATP
(which probably releases less NO than strenuous exercise).
Moreover, higher doses of ATP still produce more dilation.
Another explanation for the divergent results between ATP
and exercise-induced increases in NO-production may be
that ATP activates eNOS through a different mechanism
than shear stress. ATP-induced activation of eNOS is
mediated through a calcium-calmodulin dependent path-
way [74] whereas shear stress activates eNOS through Akt-
mediated phosphorylation [18], resulting in calcium-inde-
pendent activation of eNOS. Hence, it is possible that
perturbations in the calcium homeostasis of endothelial
cells contributed to the selective impairment of ATP-
induced vasodilation in swine with MI.

4.3.2 Endothelin

Despite the increased plasma levels of endogenous ET in
swine with a 2-3 week old M1, its vasoconstrictor influence
on the coronary circulation was reduced (Fig. 9 [69, 70]).
To determine whether this was the result of blunted receptor
responsiveness or reduced local ET-production, we studied
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Fig. 9 Effect of ET, receptor blockade with EMD (3 mg/kg iv) on
myocardial oxygen balance in normal swine and swine with a recent
MI. Data are means £ SE; *P < 0.05 versus corresponding Control
relation, P < 0.05 effect of EMD waned during exercise. Data are
from Merkus et al. [70]

the vasoconstriction induced by exogenous ET. The coro-
nary vasoconstrictor influence to exogenous ET-1 in vivo
was reduced after MI, indicating a reduced coronary vas-
cular responsiveness to ET. Paradoxically, a recent study
showed that ischemic heart disease results in upregulation
of ET 4 and ETg receptor mRNA in human coronary arteries
[104]. This is in accordance with our measurements in
isolated coronary arterioles obtained from sham-operated
swine and swine with a MI, which showed that the ET
responsiveness in vessels from animals with a MI was
actually increased [70]. The discrepancy between the in
vivo and the in vitro findings suggests that ET receptor
sensitivity is modulated in vivo, and that this modulation is
apparently lost in vitro. Possible modulators of ET-receptor
sensitivity are adenosine and NO, which have been shown
to desensitize ET-receptors on the coronary vasculature [72,
73], and which may have been lost in the in vitro set-up due
to lack of surrounding myocardium and intravascular blood
flow. However, since we observed similar vasoconstrictor
responses to blockade of adenosine receptors and NO pro-
duction in MI and normal swine, these vasodilators would
seem unlikely explanations for the observed reduced ET
receptor sensitivity in MI swine in vivo.

In conclusion, our observations suggest that when
additional coronary vasodilation is required in the hyper-
trophied myocardium after MI, withdrawal of the ET-
mediated vasoconstrictor influence contributes to a shift in
vasomotor tone towards vasodilation. These findings may
also explain in part why clinical trials of ET-receptor
antagonists in heart failure have failed to show therapeutic
value of these compounds [40, 77].

4.4 Conclusions and physiological relevance

Under physiological circumstances, the heart matches its
blood supply to the demand of the myocardium by altering

@ Springer



494

Med Biol Eng Comput (2008) 46:485-497

30 —
25 |
=) _
I
€
E 50
)
3 1 O Control
A Ml
159 € MI+ET
B M +ET+ANGII
1 A M+ET+ANGII-K,
10— T T T |
0 200 400 600 800

MVO, (umol/min)

Fig. 10 Myocardial oxygen balance in normal and MI swine. Shown
are the actual relations between MVO, and CVPO, in 30 normal
swine (open circles) and 20 MI swine (open triangles) under control
conditions. In addition, we have depicted the computed relations in
MI swine if the ET (solid diamonds) and ANG 11 (solid squares)
vasoconstrictor influences (which were both attenuated in MI swine)
and the Karp (solid triangles) vasodilator influences (which were
enhanced in MI swine) would have been identical to those in normal
swine. The graph clearly illustrates that the adaptations in coronary
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Fig. 11 Alterations in vasomotor balance in the coronary resistance
vessels within remodelled myocardium in swine with a 2-3-week-old
myocardial infarction

the balance of vasodilator and vasoconstrictor influences,
i.e. an increase in myocardial O, demand results in an
increased influence of vasodilators (opening of Karp
channels, NO, adenosine [53], f-adrenergic vasodilation
[27]) and a decreased influence of the potent vasocon-
strictor endothelin-1 [66, 69]. Studies from our laboratory
performed during the past 10 years have shown that fol-
lowing MI myocardial O, balance in the remodelled LV is
perturbed, necessitating vasodilation and recruitment of
coronary flow reserve, as evidenced by increased opening
of Karp channels [71]. Importantly, however, not only an
increased Katp channel vasodilator influence, but also
blunting of the coronary vasoconstrictor influences of
endogenous endothelin [70] and angiotensin II [68], aid in
preventing a more significant impairment of oxygen supply
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to the remodelled myocardium (Figs. 10, 11). Our studies
suggest that generalized blunting of vasoconstrictor influ-
ences is one of the first adaptive mechanisms to reduce
coronary resistance vessel tone and increase myocardial
blood supply. This adaptation, which occurs in the healthy
porcine heart during acute exercise, also appears operative
in remodelled myocardium. Blunting of vasoconstrictor
influences may be a physiologically favorable strategy,
since it is more energy-efficient to blunt vasoconstrictor
influences than to synthesize vasodilators.

Although the shift in coronary tone towards vasodila-
tation acts to blunt the flow perturbations in the remodelled
heart, it does not appear to fully restore myocardial oxygen
balance. This is also supported by the observation that
Katp channel activation is increased, consistent with the
presence of metabolic distress. Whether these perturbations
in myocardial oxygen delivery blood are sufficiently severe
to contribute to the progressive deterioration of contractile
function of the remodelled left ventricle remains to be
established, but it is of interest to note that we previously
found that troponin I proteolysis occurred in remodelled
myocardium, which was associated with a loss of myofil-
ament force development [97]. Intermittent myocardial
ischemia, as may occur in remodelled hearts during exer-
cise or excitement, has been shown to be able to promote
troponin I proteolysis [38] and could thereby mediate the
flow perturbation-induced progressive deterioration of LV
function after MI. Definitive proof of our hypothesis must
await future studies demonstrating that prevention of such
flow perturbations will indeed prevent progressive loss of
contractile function of the remodelled porcine left
ventricle.
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