
A note on “The Economic Lot Sizing Problem with

Inventory Bounds”

Mehmet Önal, Wilco van den Heuvel, Tieming Liu

Econometric Institute Report 2012-04

Abstract

In a recent paper, Liu (2008) considers the lot-sizing problem with lower and

upper bounds on the inventory levels. He proposes an O(n2) algorithm for the

general problem, and an O(n) algorithm for the special case with non-speculative

motives. We show that neither of the algorithms provides an optimal solution in

general. Furthermore, we propose a fix for the former algorithm that maintains the

O(n2) complexity.

1 Introduction and problem description

In the economic lot-sizing problem with inventory bounds (ELSB), one seeks a minimal

cost production plan, such that demands are satisfied and inventory levels are between

certain bounds in each period of a discrete model horizon of length n. Recently, Liu (2008)

developed an O(n2) algorithm using the geometric approach of Wagelmans et al. (1992).

For the special case of non-speculative motives, he proposed an O(n) time algorithm.

We will show that neither of the algorithms provides an optimal solution in general. We

propose a fix for the first algorithm that maintains the O(n2) complexity. Love (1973)

introduced the ELSB and solved it in O(n3) time, while Toczylowski (1995) and Wolsey

(2006) improved this to O(n2) time by using approaches different from Liu (2008).

To formulate the ELSB, let di be the demand (with di,j :=
∑j

t=i dt), pi the unit

production cost, hi the unit inventory carrying cost, Ki the fixed setup cost, and IL
i (IU

i)

1

the lower (upper) bound on the inventory level in period i = 1, . . . , n. Starting from a

‘natural’ formulation with variables yi, the production quantity, and Ii, the inventory level

in period i, Liu (2008) reformulates the ELSB in terms of the variables xi = di+1,n − Ii

(i = 1, . . . , n), called the Net Cumulative Demand (NCD). The NCD xi level at the end of

period i is the amount of replenishment required to satisfy demands in periods i+1, . . . , n.

This reformulation leads to lower (upper) bounds Li = di+1,n − IU
i (Ui = di+1,n − IL

i)

on xi. Furthermore, by redefining the marginal production costs as ci = pi +
∑n

t=i ht

(i = 1, . . . , n), a valid formulation for the ELSB is as follows (Liu (2008, Formulation III)):

min
n∑

i=1

(ciyi + Kiδ(yi))

s.t. xi = xi−1 − yi for i = 1, . . . , n,

Li ≤ xi ≤ Ui for i = 1, . . . , n,

yi ≥ 0 for i = 1, . . . , n,

x0 = d1,n, xn = 0

with δ(x) = 1 if x > 0 and 0 otherwise. Without loss of generality, we may assume that

the bounds Li and Ui are effective, i.e., Li ≤ Li−1 and Ui ≤ Ui−1 for i = 1, . . . , n.

2 The issue in the O(n2) algorithm

2.1 Dynamic programming algorithm

We first describe the dynamic programming (DP) recursion proposed in Liu (2008). Let

Cm(xi, xj) be the cost of replenishing an amount of xi − xj in period m:

Cm(xi, xj) =

Km + cm(xi − xj) if xi > xj

0 if xi = xj

∞ otherwise.

Let e(i) be the latest period that can be completely satisfied by a replenishment in

period i, i.e., e(i) = max{j : Uj ≥ Li} = max{j : di+1,j + IL
j ≤ IU

i }. The DP relies on

the characterization of extreme point solutions. In an extreme point solution, there is at

2

most one replenishment period between two periods i < j whose NCD levels are at their

lower or upper bounds, i.e., xi ∈ {Ui, Li} and xj ∈ {Uj, Lj}.
Let Gi(xi), i = 0, . . . , n, be the cost of the optimal production plan from period i + 1

to n given a NCD level of xi in period i , where Gn(x) = 0 for all x. Because an optimal

solution is found among the extreme point solutions, we only need to consider Gi(x) for

x ∈ {Ui, Li}. The aim is to compute G0(U0) = G0(d1,n) by the recursive equations

Gi(Ui) = min

{
Ci+1(Ui, Li+1) + Gi+1(Li+1), min

i+1≤j≤e(i+1)
(Ci+1(Ui, Uj) + Gj(Uj))

}
(1)

Gi(Li) = min

{
min

i+1≤k≤e(i)+1
(Ck(Li, Lk) + Gk(Lk)) , min

i+1≤m≤e(i)+1,e(i)+1≤j≤e(m)
(Cm(Li, Uj) + Gj(Uj))

}
.

(2)

Clearly, a straightforward implementation of (1) and (2) leads to an O(n3) algorithm.

2.2 The O(n2) implementation proposed in Liu (2008)

To implement (1) and (2) more efficiently, Liu (2008) extends the geometric technique of

Wagelmans et al. (1992). To illustrate this, consider the computation of Gi(Ui) by (1)

given the values Gj(Uj) for j = i + 1, . . . , n. The second term is equivalent to

Ki+1 + min
i+1≤j≤e(i+1)

{ci+1 (Ui − Uj) + Gj(Uj)}. (3)

To evaluate (3) efficiently, Wagelmans et al. (1992) utilize the lower convex envelope of

the points (U`, G`(U`)) for ` = i + 1, . . . , e(i + 1), denoted by LE(i). The breakpoints

and endpoints on the envelope are called efficient points and the corresponding periods

are called efficient periods, denoted by E(i). As illustrated in Figure 1, the minimum

in (3) is obtained at the period corresponding to the efficient point tangent to the line

with slope ci+1. This point is denoted by τ(i + 1) in Liu (2008) (so τ(i + 1) = j in

Figure 1) and can be determined in O(log n) time by binary search. Therefore, (1) can

be simplified to

Gi(Ui) = min
{
Ci+1(Ui, Li+1) + Gi+1(Li+1), Ci+1(Ui, Uτ(i+1)) + Gτ(i+1)(Uτ(i+1))

}
. (4)

Given the τ(i) values, (4) takes constant time for fixed i. To compute Gi−1(Ui−1) in the

next iteration, the point (Ui, Gi(Ui)) is included in the graph and the envelope is updated.

3

6

-

.................................

.................................

.................................

.................................

.................................

.................................

...

...

. .

Ue(i+1) Uj Ud Uc Ub Ua = Ui+1 Ui

Gj(Uj)

Gj(Uj) + ci+1(Ui − Uj)

Gi(Ui)

Á

¸

slope = ci+1

Ki+1

Figure 1: Illustration of the convex lower envelope and the dominance relations

Now consider the computation of Gi(Li) in (2). The bottle neck is the second term,

i.e., finding the optimal replenishment period m (i + 1 ≤ m ≤ e(i) + 1) that reduces the

NCD level down to Uj for some j with e(i) + 1 ≤ j ≤ e(m). As in Liu (2008), we call

i the origination period, m the replenishment period, and j the destination period. Liu

(2008) claims that the destination period corresponding to each replenishment period m

(i + 1 ≤ m ≤ e(i) + 1) is equal to τ(m) and hence independent of the origination

period. Since the values τ(m) have already been found in the computation of G`(U`)

(` = i+1, . . . , n), they can be directly used in the computation of Gi(Li). Therefore, Liu

(2008) simplifies (2) to

Gi(Li) = min

{
min

i+1≤j≤e(i)+1
(Cj(Li, Lj) + Gj(Lj)) , min

i+1≤m≤e(i)+1

(
Cm(Li, Uτ(m)) + Gτ(m)(Uτ(m))

)}
.

(5)

Given the values τ(m) (i + 1 ≤ m ≤ e(i) + 1), (5) can be evaluated in O(n) for a

fixed index i. Liu (2008) claims that the lower envelope can be updated in O(n) overall

time. Furthermore, it takes O(n log n) time to compute the τ(i) values for i = 1, . . . , n.

Therefore, the values Gi(Li) for i = 1, . . . , n can be computed in O(n2) time. As a result,

the overall time complexity of the algorithm of Liu (2008) becomes O(n2).

2.3 The issue in the implementation

As explained in the previous section, Liu (2008) is able to reduce the computational

complexity to O(n2) by claiming that “given the marginal cost cm in the replenishment

4

period, the optimal destination period can be determined independent of the origination

period”. Recall that for a replenishment period m, τ(m) is found using the lower envelope

LE(m − 1) of points (U`, G`(U`)) for ` = m, . . . , e(m). However, as seen in (2), if the

origination period is i, the destination period for m should be within the periods {e(i) +

1, . . . , e(m)}, which is a subset of {m, . . . , e(m)}. Therefore, the destination period τ(m)

found in the computation of Gm−1(Um−1) may be an infeasible destination period in the

computation of Gi(Li). As a result, the recursive equations (4) and (5) do not lead to an

optimal solution in general. We illustrate the issue in Liu (2008) in Example 1.

Example 1. Consider the 4 period problem instance with di = 2, IL
i = 0 (i = 1, . . . , 4)

and the other parameters as in Table 1. Table 2 shows the values of the recursion variables

i 0 1 2 3 4

IU
i 3 3 1 0

Ki 0 0 3 0

ci 0 2 0 0

Li 8 3 1 1 0

Ui 8 6 4 2 0

e(i) 0 2 3 3 4

Table 1: Problem instance to illustrate the mistake in Liu (2008)

Gi(Li) and Gi(Ui), when we either apply (1) and (2), or (4) and (5). When applying

the correct recursive equations (1) and (2), we find the optimal solution (y1, y2, y3, y4) =

(5, 1, 0, 2) with total cost equal to 2. However, applying (4) and (5) gives the solution

(y1, y2, y3, y4) = (5, 0, 2, 1) with total cost equal to 3.

use of (1) and (2) use of (4) and (5)

i 0 1 2 3 4 0 1 2 3 4

Gi(Ui) 2 7 3 0 0 3 7 3 0 0

Gi(Li) 2 2 0 0 0 3 3 0 0 0

Table 2: Application of the recursive equations

5

The issue of Liu (2008) is illustrated in the computation of G1(L1). The true minimum

is attained for m = 2 and j = 3 in (2): G1(3) = C2(3, 2) + G3(2) = 2 · (3 − 2) + 0 = 2.

In fact, j = 3 is the only feasible destination period corresponding to origination period

i = 1 and replenishment period m = 2. In order to apply (5), we first need to find

τ(2) by computing the lower convex envelope of the points (Ui, Gi(Ui)) for i = 2, 3 (since

e(2) = 3). This results in the set of efficient points {(4, 3), (2, 0)}. The line with slope

c2 = 2 is tangent to the point (U2, G2(U2)) = (4, 3) and hence τ(2) = 2 turns out to be

the optimal destination period in the algorithm of Liu (2008). Substituting this in the

second term of (5) gives the cost term C2(3, 4)+G2(4), which corresponds to an infeasible

solution since it implies a production quantity of y2 = −1 (note that C2(3, 4) = ∞). Since

origination period i = 1 and replenishment period m = 2 are part of the optimal solution,

it will not be found when applying (4) and (5). Instead, the (wrong) minimum of G1(L1)

is attained in the first term of (5) for j = 3: G1(L1) = C3(L1, L3) + G3(L3) = 3 + 0 = 3.

2.4 Fix of the issue

The O(n2) algorithm in Liu (2008) does not guarantee an optimal solution because the

destination period does not only depend on the replenishment period but also on the

origination period. We fix the issue by computing the optimal destination periods for

every pair (i,m) of origination and replenishment periods. Let τ(i,m) be the optimal

destination period of the replenishment period m when the origination period is i. We

can then rewrite (2) as

Gi(Li) = min

{
min

i+1≤j≤e(i)+1
(Cj(Li, Lj) + Gj(Lj)) , min

i+1≤m≤e(i)+1

(
Cm(Li, Uτ(i,m)) + Gτ(i,m)(Uτ(i,m))

)}
.

(6)

Given τ(i,m) for m = i+1, . . . , e(i)+1, and Gj(Lj) and Gj(Uj) for j = i+1, . . . , n, com-

puting (6) takes O(n) time for fixed i. Therefore, to maintain an overall time complexity

of O(n2), it is sufficient to show that all τ(i,m) values can be determined in O(n2) time.

To describe our approach, we need some additional notation. Let b(j) be the earliest

feasible origination period for period j, i.e., b(j) = min
1≤i≤n

{i : e(i) + 1 ≥ j}. As shown in

Section 2.3, to determine τ(i,m), we need the lower envelope of the points (U`, G`(U`)) for

` = e(i)+1, . . . , e(m), which we denote by LE(i, m) (i = 1, . . . , n, m = i+1, . . . , e(i)+1).

6

For convenience, let LE(i, i) be the lower envelope of the single point (Ue(i), Ge(i)(Ue(i)))

and let τ(m, m) = e(m). To determine all the τ(i,m) values (i = b(m), . . . , m − 1,

m = 1, . . . , n) using the geometric approach efficiently, we exploit the following property.

Theorem 1. It holds τ(i,m) ≤ τ(i + 1, m) for i = b(m), . . . , m− 1 and m = 1, . . . , n.

Proof. For a given pair (i,m), the destination period τ(i, m) is the period where the line

with slope cm is tangent to LE(i,m). Now consider τ(i + 1,m) and the corresponding

lower envelope LE(i + 1,m), i.e., the lower envelope of the points (U`, G`(U`)) for ` =

e(i+1)+1, . . . , e(m). If τ(i,m) ≥ e(i+1)+1, then the line with slope cm is still tangent

to LE(i+1,m) at period τ(i,m) (since the slopes to the right of τ(i, m) have not become

smaller) and we have τ(i + 1,m) = τ(i,m). On the other hand, if τ(i,m) < e(i + 1) + 1,

then it is immediate that τ(i, m) < e(i + 1) + 1 ≤ τ(i + 1,m).

Our approach is summarized in Algorithm 1. Instead of updating a single lower

envelope as in Liu (2008), we construct a lower envelope from scratch in each iteration. At

the iteration for origination period i, we start by creating the lower envelope LE(i+1, i+

1) = {(Ue(i+1), Ge(i+1)(Ue(i+1)))}. We then determine the destination period of i+1 for all

possible origination periods h, b(i + 1) ≤ h ≤ i, in decreasing order of h (see lines 4–7).

First, we obtain LE(h, i+1) by adding the points (U`, G`(U`)), ` = e(h+1), . . . , e(h+2)−1,

to LE(h+1, i+1) using the update procedure described in Wagelmans et al. (1992). Since

τ(h, i + 1) ≤ τ(h + 1, i + 1) by Theorem 1, we can determine τ(h, i + 1) by a monotonic

search that starts from period τ(h + 1, i + 1). In this way, we obtain all relevant τ(i,m)

values needed in the computation of Gi(Li).

In contrast to Liu (2008), points are only added to the envelope, while no deletions

are needed in Algorithm 1. Using the update procedure in Wagelmans et al. (1992), it

takes O(1) amortized time to add a point to the envelope. Therefore, for a fixed index i,

it takes O(n) overall time to build the lower envelopes between lines 4 and 7. The

monotonic search evaluates every efficient point on the envelope at most once. Hence, it

takes an additional O(n) time to determine τ(h, i + 1) for h = i, . . . , b(i + 1). Therefore,

the operations in the inner loop take O(n) time. When we reach line 8, we have all

the required destination periods, and we can compute Gi(Li) in O(n) time. Since the

7

Algorithm 1 The proposed O(n2) algorithm

1: Set Gn(Ln) = Gn(Un) = 0

2: for i = n− 1 to 0 do

3: Create LE(i + 1, i + 1) and Set τ(i + 1, i + 1) := e(i + 1)

4: for h = i to b(i + 1) do

5: Obtain LE(h, i + 1) from LE(h + 1, i + 1)

6: Determine τ(h, i + 1) by a monotonic search starting from τ(h + 1, i + 1)

7: end for

8: Compute Gi(Li) by (6)

9: Compute Gi(Ui) by (1)

10: end for

computation of Gi(Ui) by (1) takes O(n) as well, Gi(Li) and Gi(Ui) are calculated in O(n)

time for a fixed index i. Hence, the overall time complexity of the algorithm is O(n2).

3 The issue in the O(n) algorithm

Liu (2008) also considers the special ELSB where the marginal production costs satisfy

ci ≥ ci+1 (i = 1, . . . , n−1), also known as non-speculative motives in the literature. In this

case there exists an optimal solution such that between any two consecutive production

periods, there is a period for which the NCD (inventory) level is equal to the upper

(lower) bound. (If additionally IL
i = 0 (i = 1, . . . , n), then this property reduces to the

zero-inventory ordering property.) Due to this property, (1) and (2) simplify to

Gi(Ui) = min
i+1≤j≤e(i+1)

{Ci+1(Ui, Uj) + Gj(Uj)} (7)

or, since period j is the optimal destination period for replenishment period i + 1, to

Gi(Ui) = Ci+1(Ui, Uj) + Gτ(i+1)(Uτ(i+1)). (8)

To determine τ(i+1) using the geometric technique, the lower convex envelope LE(i)

of the points (U`, G`(U`)) (` = i + 1, . . . , e(i + 1)) should be available. Since ci ≥ ci+1

(i = 1, . . . , n − 1), it follows that τ(i + 1) ≥ τ(i). Hence, it is sufficient to investigate

8

efficient periods to the right of τ(i + 1) to determine τ(i). In turn, this means that the

binary search to find the destination period can be replaced by a monotonic search.

To determine Gi−1(Ui−1), Liu (2008) computes LE(i − 1) by updating the left and

right borders of LE(i). The right border is updated by including (Ui, Gi(Ui)) in LE(i) as

in Wagelmans et al. (1992). In the updating process, some originally efficient points may

leave the lower envelope. Using the terminology of Liu (2008), such a point is said to be

dominated by the newly included point (Ui, Gi(Ui)) and right dominated by the originally

efficient point on its immediate left. The set of periods that period i right dominates is

denoted by R(i). Before adding the point (Ui, Gi(Ui)) to LE(i−1) in Figure 1, R(c) = {b}
and R(j) = {d}. After adding the point, periods a = i+1 and c leave the lower envelope.

Period a becomes right dominated by period c and period c by period j, as indicated by

the arrows. Hence, R(c) = {a, b} and R(j) = {d, c}.
To obtain LE(i−1) from LE(i), the left border of LE(i) needs to be updated as well if

e(i+1) > e(i). Liu (2008) proposes to add the periods t ∈ R(l) (e(i) < l ≤ e(i+1)) with

t ≤ e(i) straight to the set E(i). It takes O(n) amortized time to update the right and

left borders of LE(i− 1) from LE(i) for i = 1, . . . , n. Hence, the overall time complexity

becomes O(n). However, Liu’s algorithm does not update the lower envelope correctly

(the convexity is lost), which is crucial to apply the monotonic search. Hence, the O(n)

algorithm does not lead to an optimal solution in general, as shown in Example 2.

Example 2. Consider the 5 period problem instance with di = 1, IL
i = 0 (i = 1, . . . , 5)

and the other data as in Table 3. The left part of Table 4 shows the summary of the

i 0 1 2 3 4 5

IU
i 3 3 2 1 0

Ki 0 3 1 5 3

ci 1 0 0 0 0

Li 5 1 0 0 0 0

Ui 5 4 3 2 1 0

e(i) 4 5 5 5 5

Table 3: Problem instance illustrating the mistake in the O(n) algorithm

9

computations if the left border of the envelope is updated as described in Liu (2008),

while the right part shows the correct computations.

Consider the computation of τ(1) in G0(U0). The envelope at the start of the iteration

computations according to Liu (2008) correct computations

i 5 4 3 2 1 0 5 4 3 2 1 0

E(i) ∅ {5} {5,4} {5,3} {5,2} {4,3,2,1} ∅ {5} {5,4} {5,3} {5,2} {4,2,1}
τ(i) 5 5 5 5 4 5 5 5 5 2

Gi(Ui) 3 5 1 3 7 3 5 1 3 3

Table 4: Computations associated with Example 2

is illustrated in Figure 2(a). We see that R(5) = {4, 3}. To find τ(1), the left border of

the envelope has to be updated since e(1) = 4 < 5 = e(2). Following the update process

described in Liu (2008), we remove the point (U5, G5(U5)) from the envelope and add

the points (U4, G4(U4)) and (U3, G3(U3)) to obtain the lower envelope as in Figure 2(b).

Clearly, this envelope is not convex anymore. Nevertheless, starting at period 4, we find

τ(1) = 4 since the first line segment with a slope higher than c1 is the first one in the

envelope. The solution found by Liu’s algorithm is (y1, y2, y3, y4, y5) = (4, 0, 0, 0, 1) with

a total cost of 7. However, as shown in Figure 2(b) the true value of τ(1) = 2 , resulting

in the optimal solution (y1, y2, y3, y4, y5) = (2, 0, 3, 0, 0) with a total cost of 3.

6

-..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.................................

.................................

.................................

.................................

.................................

Ui

Gi(Ui)

0 1 2 3 4 5

1

2

3

4

5

±

±

(5)

(4)

(3)

(2)

(1)

(a) Envelope at the start of computing G1(U1)

6

-..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.................................

.................................

.................................

.................................

.................................

Ui

Gi(Ui)

0 1 2 3 4 5

1

2

3

4

5

slope = c1 = 1

(4)

(3)

(2)

(1)

(b) E(0) after updating the left border

Figure 2: Computation of G1(U1) by the convex envelopes

10

To the best of our knowledge, there is no fix based on the geometric approach of

Wagelmans et al. (1992) and maintains the O(n) running time. Brodal and Jacob (2002)

present a data structure to maintain a convex hull of n points in the plane under insertion

and deletion of points in amortized O(log n) time per operation. A straightforward

application of this result leads to an O(n log n) algorithm. Recently, Hwang and van

den Heuvel (2012) proposed an O(n) time algorithm by using another type of geometric

technique, which maintains a lower envelope of line segments. In their approach, line

segments only need to be added to an existing envelope and no deletions are required.

This property together with the non-speculative motives cost structure allows for an O(n)

implementation.

References

Brodal, G. S., Jacob, R., 2002. Dynamic planar convex hulls. In: Proceedings of the 43rd

Annual IEEE Symposium on Foundations of Computer Science. pp. 617–626.

Hwang, H.-C., van den Heuvel, W., 2012. Improved algorithms for a lot-sizing problem

with inventory bounds and backlogging. Naval Research Logistics (forthcoming).

Liu, T., 2008. Economic lot sizing with inventory bounds. EJOR 185, 204–215.

Love, F., 1973. Bounded production and inventory models with piecewise concave costs.

Management Science 20, 313–318.

Toczylowski, E., 1995. An O(T 2) algorithm for the lot-sizing problem with limited in-

ventory levels. In: INRIA/IEEE Symposium on Emerging Technologies and Factory

Automation. Vol. 3. pp. 77–85.

Wagelmans, A. P. M., van Hoesel, C. P. M., Kolen, A., 1992. Economic lot sizing: an

O(n log n) algorithm that runs in linear time in the Wagner-Whitin case. OR 40, S145–

S156.

Wolsey, L. A., 2006. Lot-sizing with product and delivery time windows. MP 107, 471–

489.

11

