

ERIM REPORT SERIES RESEARCH IN MANAGEMENT

ERIM Report Series reference number ERS-2012-006-LIS

Publication May 2012

Number of pages 59

Persistent paper URL http://hdl.handle.net/1765/32170

Email address corresponding author yqzhang@ese.eur.nl

Address Erasmus Research Institute of Management (ERIM)

 RSM Erasmus University / Erasmus School of Economics

 Erasmus Universiteit Rotterdam

 P.O.Box 1738

 3000 DR Rotterdam, The Netherlands

Phone: + 31 10 408 1182

Fax: + 31 10 408 9640

Email: info@erim.eur.nl

Internet: www.erim.eur.nl

Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:

www.erim.eur.nl

Solving Weighted Voting Game Design Problems

Optimally: Representations, Synthesis, and Enumeration

Bart de Keijzer, Tomas B. Klos, and Yingqian Zhang

http://www.erim.eur.nl/

ERASMUS RESEARCH INSTITUTE OF MANAGEMENT

REPORT SERIES

RESEARCH IN MANAGEMENT

ABSTRACT AND KEYWORDS

Abstract We study the inverse power index problem for weighted voting games: the problem of finding a

weighted voting game in which the power of the players is as close as possible to a certain

target distribution. Our goal is to find algorithms that solve this problem exactly. Thereto, we

study various subclasses of simple games, and their associated representation methods. We

survey algorithms and impossibility results for the synthesis problem, i.e., converting a

representation of a simple game into another representation. We contribute to the synthesis

problem by showing that it is impossible to compute in polynomial time the list of ceiling

coalitions of a game from its list of roof coalitions, and vice versa. Then, we proceed by studying

the problem of enumerating the set of weighted voting games. We present first a naive algorithm

for this, running in doubly exponential time. Using our knowledge of the synthesis problem, we

then improve on this naive algorithm, and we obtain an enumeration algorithm that runs in

quadratic exponential time. Moreover, we show that this algorithm runs in output-polynomial

time, making it the best possible enumeration algorithm up to a polynomial factor. Finally, we

propose an exact anytime algorithm for the inverse power index problem that runs in exponential

time. By the genericity of our approach, our algorithm can be used to find a weighted voting

game that optimizes any exponential time computable function. We implement our algorithm for

the case of the normalized Banzhaf index, and we perform experiments in order to study

performance and error convergence.

Free Keywords weighted voting games, inverse power index problem, synthesis problem, algorithms

Availability The ERIM Report Series is distributed through the following platforms:

Academic Repository at Erasmus University (DEAR), DEAR ERIM Series Portal

Social Science Research Network (SSRN), SSRN ERIM Series Webpage

Research Papers in Economics (REPEC), REPEC ERIM Series Webpage

Classifications The electronic versions of the papers in the ERIM report Series contain bibliographic metadata
by the following classification systems:

Library of Congress Classification, (LCC) LCC Webpage

Journal of Economic Literature, (JEL), JEL Webpage

ACM Computing Classification System CCS Webpage

Inspec Classification scheme (ICS), ICS Webpage

https://ep.eur.nl/handle/1765/1
http://www.ssrn.com/link/ERIM.html
http://ideas.repec.org/s/dgr/eureri.html
http://lcweb.loc.gov/catdir/cpso/lcco/lcco_h.pdf
http://www.aeaweb.org/journal/jel_class_system.html
http://www.acm.org/class/
http://www.iee.org/Publish/Support/Inspec/Document/Class/index.cfm

Solving Weighted Voting Game

Design Problems Optimally:

Representations, Synthesis, and Enumeration

Bart de Keijzer∗ Tomas B. Klos† Yingqian Zhang‡

Abstract

We study the inverse power index problem for weighted voting games:
the problem of finding a weighted voting game in which the power of the
players is as close as possible to a certain target distribution. Our goal
is to find algorithms that solve this problem exactly. Thereto, we study
various subclasses of simple games, and their associated representation
methods. We survey algorithms and impossibility results for the synthesis
problem, i.e., converting a representation of a simple game into another
representation.

We contribute to the synthesis problem by showing that it is impossible
to compute in polynomial time the list of ceiling coalitions of a game from
its list of roof coalitions, and vice versa. Then, we proceed by studying
the problem of enumerating the set of weighted voting games. We present
first a naive algorithm for this, running in doubly exponential time. Using
our knowledge of the synthesis problem, we then improve on this naive
algorithm, and we obtain an enumeration algorithm that runs in quadratic
exponential time. Moreover, we show that this algorithm runs in output-
polynomial time, making it the best possible enumeration algorithm up
to a polynomial factor.

Finally, we propose an exact anytime algorithm for the inverse power
index problem that runs in exponential time. By the genericity of our
approach, our algorithm can be used to find a weighted voting game that
optimizes any exponential time computable function. We implement our
algorithm for the case of the normalized Banzhaf index, and we perform
experiments in order to study performance and error convergence.
Keywords: Weighted voting games, inverse power index problem, syn-
thesis problem, algorithms

∗Algorithms, Combinatorics and Optimization; Centrum Wiskunde & Informatica; The
Netherlands; Email: keijzer@cwi.nl.
†Algorithmics; Delft University of Technology; The Netherlands; Email:

T.B.Klos@tudelft.nl.
‡Department of Econometrics; Erasmus University Rotterdam; The Netherlands; Email:

yqzhang@ese.eur.nl

1

1 Introduction

In many real-world problems that involve multiple agents, for instance elections,
there is a need for fair decision making protocols in which different agents have
different amounts of influence in the outcome of a decision. Weighted voting
games are often used in these decision making protocols. In a weighted voting
game, a quota is given, and each agent (or also: player) in the game has a
certain weight. If the total weight of a coalition of agents exceeds the quota,
then that coalition is said to be winning, and losing otherwise.

Weighted voting games arise in various settings, such as political decision
making (decision making among larger and smaller political parties), stock-
holder companies (where people with different numbers of shares are supposed
to have a different amount of influence), and elections (e.g., in the US Presi-
dential Election, where each state can be regarded as a player who has a weight
equal to its number of electors).

The weight that a player has in a weighted voting game turns out not to
be equal to his actual influence on the outcome of the decisions that are made
using the weighted voting game. Consider for example a weighted voting game
in which the quota is equal to the sum of the weights of all players. In such a
game, a player’s influence is equal to the influence of any other player, no matter
what weight he has. Throughout the literature, various power indices have been
proposed: ways to measure a player’s influence (or (a priori) power) in a voting
game. However, computing a power index turns out to be a challenge in many
cases.

In this paper, instead of analyzing the power of each agent in a voting game,
we investigate the problem that has been referred to as the “inverse problem”
and the “generalized apportionment problem”. We will call this problem the
power index voting game design problem. In the power index voting game design
problem we are given a target power index for each of the agents, and we study
how to design a weighted voting game for which the power of each agent is as
close as possible to the given target power index. The power index voting game
design problem is an instantiation of a larger class of problems that we will call
voting game design problems, in which the goal is to find a game G in a class of
voting games such that G has a given set of target properties.

The practical motivation behind our work is obvious: It is desirable to have
an algorithm that can quickly compute a fair voting protocol, given that we
want each agent to have some specified amount of influence in the outcome.
When new decision making bodies must be formed, or when changes occur in
the formation of these bodies, such an algorithm may be used to design a voting
method that is as fair as possible. Only very little work is known that tries
to solve this problem. The existing algorithms are local search methods that
do not guarantee an optimal answer. Surprisingly, no algorithm is known for
generating an optimal solution. Such an algorithm to solve the inverse problem
exactly is the topic of this paper: We are interested in finding a game for which
the power index of that game is the closest possible to a certain target power
index (or one of those games if there are multiple).

2

It seems that the most straightforward approach to solve the inverse problem
would be to simply enumerate all possible weighted voting games of n players,
and to compute for each of these weighted voting games its power index. We can
then output the game of which the power index is the closest to the given target
power index. This is precisely what we will do in this paper. Unfortunately,
it turns out that enumerating all weighted voting games efficiently is not so
straightforward.

The enumeration method that we present in this paper leads to a generic
exponential time exact anytime algorithm for solving voting game design prob-
lems. We implemented our algorithm for the power index voting game design
problem where our power index of choice is the (normalized) Banzhaf index :
one of the two most widely used power indices. Using this implementation, we
experimentally study the runtime and error convergence of this algorithm.

1.1 Contributions

This paper is based on the master’s thesis of De Keijzer [11]; one of the authors
of this manuscript. A shorter discussion of this work has also appeared [12].
We present and discuss the results of [11], and remove various redundancies,
imprecisions, typos, and mistakes that were present in [11]. The results we
present are thus as follows:

• We provide a general definition of voting game design problems, and show
how the power index voting game design problem is one of these problems.

• We present lower and upper bounds on the cardinalities of various classes
of games. As it turns out, for many of these classes there is a very strong
connection with certain classes of boolean functions; allowing us to borrow
many bounds directly from boolean function theory.

• We investigate thoroughly the problem of transforming various represen-
tations for simple games into each other. We give an overview of known
results, and we present a new result: We prove that it is not possible to
transform within polynomial time the roof-representation of a game into
a ceiling-representation, and vice versa.1

• We present exact algorithms for solving power index voting game design
problems: first, a doubly exponential one for the large class of monotonic
simple games; and subsequently we show that it is possible to obtain a
(singly) exponential algorithm for the important special case of weighted
voting games. This can be regarded as the main result of this paper.

– At the core of these algorithms lie methods for enumerating classes
of games. Therefore, it actually follows that the same approach can
be used for solving practically any voting game design problem.

1The roof-representation is also known as the shift-minimal winning coalition represen-
tation [50]. Likewise, the ceiling representation is also known as the shift-minimal losing
coalition representation.

3

– The method that we use for enumerating weighted voting games is
based on a new partial order on the class of weighted voting games,
that has some specific interesting properties. This result is of inde-
pendent interest from a mathematical point of view.

• The algorithm for solving the power index voting game design problem
for the case of weighted voting games (mentioned in the previous point)
is based on working with families of minimal winning coalitions. We show
how it is possible to improve the runtime of this algorithm by showing that
it suffices to only work with a subset of these minimal winning coalitions:
The roof coalitions. Using this idea, we provide various techniques to im-
prove our algorithm. Among these improvements is an output-polynomial
time algorithm for outputting the list of ceiling coalitions of a linear game,
given the list of roof coalitions.

• Finally, we implement the aforementioned enumeration algorithm for
weighted voting games, in order to measure its performance, obtain some
interesting data about the class of weighted voting games, and validate
some theoretical results related to weighted voting games.

1.2 Related work

Although some specific variants of voting game design problems are mentioned
sporadically in the literature, not many serious attempts to solve these problems
are known to us. The voting game design problem that is usually studied is that
of finding a weighted voting game, represented as a weight vector, for which the
power index lies as close as possible to a given target power index. This specific
version of the voting game design problem is sometimes referred to as the inverse
problem, and is also the focus of this paper.

We know of only a few papers where the authors propose algorithms for
the inverse problem. One of them is by Fatima et al. [18], where the authors
present an algorithm for the inverse problem with the Shapley-Shubik index
[45] as the power index of choice. This algorithm works essentially as follows:
It first receives as input a target Shapley-Shubik index and a vector of initial
weights. After that, the algorithm enters an infinite loop where repeatedly the
Shapley-Shubik index is computed, and the weight vector is updated according
to some rule. The Shapley-Shubik index is computed using a linear time ran-
domized approximation algorithm, proposed in [17, 19] by the same authors.
For updating the weights, the authors propose two different rules of which they
prove that by applying them, the Shapley-Shubik index of each player cannot
get worse. Hence, the proposed algorithm is an anytime algorithm: it can be
terminated at any time, but gets closer to the optimal answer the longer the
algorithm runs. No analysis on the approximation error is done, although the
authors mention in a footnote that analysis will be done in future work. The
runtime of one iteration of the algorithm is shown to be O(n2) (where n denotes
the number of players).

4

Another algorithm is by Aziz et al. [5] for the inverse problem with the
Banzhaf index as the power index of choice. The algorithm the authors present
here resembles that of [18], in that the algorithm repeatedly updates the weight
vector in order to get closer to the target power index. The algorithm gets
as input a target Banzhaf index. As an initial step, an integer weight vector
is estimated according to a normal distribution approximation. Subsequently,
the algorithm enters an infinite loop, and consecutively computes the Banzhaf
index and updates the weight. For computing the Banzhaf index, the generating
function method is used [9, 35, 10]. This is an exact pseudopolynomial time
method that works only when the weights in the weighted representation of a
game are integers. Therefore, the output of the algorithm is always an integer
weighted representation (contrary to the method in [18] for which the output
may have rational weights). The updating is done by interpolating a best fit
curve. This results in a rational weight vector. To obtain integer weights, the
weight vector is rounded to integers, but prior to that it is multiplied by a
suitable constant that reduces the error when rounding to integers.

For Aziz’s approach, there is no approximation guarantee and the conver-
gence rate is unknown, so it is not certain whether this method is anytime just
like Fatima’s algorithm. Moreover, not much is known about the time complex-
ity and practical performance of this algorithm (one example is presented of this
algorithm working on a specific input).

Leech proposes in [30, 33] an approach that largely resembles the method
of Aziz et al.: it is the same, with the exception that a different updating rule
is used. The method that Leech uses for computing the Banzhaf index is not
mentioned. The focus in this paper is on the results that are obtained after
applying the method to the 15-member EU council (also see [31]), and to the
board of governors of the International Monetary Fund.

As of writing, the most recent work on the voting game design problem
that we know of, is by Kurz [28]. Kurz proposes an exact method for solving
the weighted voting game design problem for the Shapley-Shubik index and the
Banzhaf index, by using integer linear programming: The set of linear games is
taken as the search space, and branch-and-bound techniques (along with various
insights about the set of weighted voting games) are used in order to find in
this set a weighted voting game with a power index closest to the target. The
author does not give a runtime-analysis. However, experiments are performed
that show that the algorithm works well for small numbers of players. Besides
the algorithm, various precise conjectures are made about which instances have
a large optimal error, i.e., which points in the n-dimensional unit simplex are
farthest away from the closest power index among the power indices of the set
of n-player weighted voting games.

Kurz moreover correctly points out that in the master’s thesis of De Keijzer
[11] (on which the present paper is based) the numbers of canonical weighted
voting games for 6, 7, and 8 players are wrongly stated. After investigation on
our part, it turned out that this is due to a bug in the first implementation of
the algorithm. In this paper, we correct this mistake and report the numbers of
canonical weighted voting games correctly, although these numbers are already

5

known by now due to the recent paper [27], also by Kurz (see below).
The problem of enumerating the set of weighted voting games on a fixed

number of players is, as we will see, closely related to the approach that we
take for solving the weighted voting game design problem. This enumeration
problem has been studied before in a paper by Kurz [27], where the author uses
integer programming techniques in order to enumerate all canonical weighted
voting games on up to nine players. The author generates integer weighted
representations for all of these games and classifies the games that do not have
a unique minimum-sum integer weighted representation.

Krohn and Südholter [26] study enumeration of weighted voting games as
well as linear games using a combination of order theoretic concepts and linear
programming.

Enumeration of threshold functions is a topic closely related to enumeration
of weighted voting games, and has been studied in [39, 52, 40].

Alon and Edelman observe that we need to know a priori estimates of what
power indices are achievable in simple games, in order to analyze the accuracy of
these kinds of iterative algorithms, i.e., there is a need for information about the
distribution of power indices in [0, 1]n. As a first step into solving this problem,
they prove in [2] a specific result for the case of the Banzhaf index for monotonic
simple games.

Also, some applied work has been done on the design of voting games. In two
papers, one by Laruelle and Widgrén [29] and one by Sutter [49], the distribution
of voting power in the European Union is analyzed and designed using iterative
methods that resemble the algorithm of Aziz [5].

1.3 Outline

The paper is divided into seven sections.
Section 2 introduces the required preliminary knowledge and defines some

novel concepts. In particular it introduces cooperative games, with an emphasis
on simple games (since our paper deals exclusively with simple games). We
will also explain the notion of a power index, because a great part of what
motivates the results of this paper has to do with a problem related to power
indices. We give a definition of one of the most popular power indices (the
Banzhaf index), and we briefly discuss algorithms for computing them, as well
as the computational complexity of this problem.

We define in Section 3 the main problem of interest that we attempt to solve
in this paper: the problem where we are given a target power index, and where
we must find a game such that its power index is as close as possible to the
given target power index. We explain that this specific problem is part of a
more general family of problems that we call voting game design problems.

Before directly trying to solve the problem introduced in Section 3, we first
discuss in Section 4 the problem of transforming various representations of games
into each other. We give polynomial time algorithms for some of these problems,
and also in some cases impossibility results regarding the existence of polynomial

6

time algorithms. Also, in this section, we make some statements about the
cardinality of certain classes of simple games.

Some of the results given in Section 4 are necessary for Section 5, where we
devise exact algorithms for the power index voting game design problem (our
main problem of interest). We first explain a naive approach for the class of
monotonic simple games, and after that, improve on this exponentially for the
subclass of weighted voting games. We show how this improvement is possible by
the existence of a certain partial order with some specific desirable properties.
Next, we give various improvements to this algorithm by making use of the
concepts of roof and ceiling coalitions.

After that, in Section 6 we will show various experimental results of a sim-
ple implementation of this exact algorithm. Because we can also use these
algorithms as enumeration algorithms, we are able to provide some exact infor-
mation about voting games, such as how many weighted voting games with a
fixed number of minimal winning coalitions exist.

We conclude this paper in Section 7, with a discussion and some ideas for
future work.

2 Preliminaries

In this section, we will discuss some required preliminary definitions and results.
Throughout this paper, we assume familiarity with big-O notation and analysis
of algorithms. In some parts of this paper, some basic knowledge of computa-
tional complexity theory is assumed as well, although these parts are not crucial
for understanding the main results presented. We will not cover these topics in
this section.

We use some order-theoretic notions throughout various sections of the pa-
per. These are given in the following definition.

Definition 1 ((Graded) poset, cover, rank function, least element). A poset or
partially ordered set is a set S equiped with a partial order �, i.e., a pair (S,�).
We say that y ∈ S covers x ∈ S in (S,�) when x � y and there is no z ∈ S
such that x � z � y. A poset (S,�) is graded when there exists a rank function
ρ : S → N such that for any pair (x, y) ∈ S2 it is true that ρ(y) = ρ(x) + 1
whenever y covers x in the poset (S,�). A least element of a poset (S,�) is an
element x ∈ S such that x � y for all y ∈ S.

The remainder of this section on preliminaries will be devoted to the theory
of cooperative simple games. A lot of the information in this section can be
looked up in an introductory text on cooperative game theory, for example [43]
or in Taylor and Zwicker’s book on simple games [50]. We start with defining
some essential terminology.

Definition 2 (Cooperative (simple) games, grand coalition, characteristic func-
tion, monotonicity).

7

• A cooperative game is a pair (N, v), where N is a finite set of players;
subsets of N are called coalitions and v : 2N → R≥0 is a function mapping
coalitions to non-negative real numbers. Intuitively, v describes how much
collective payoff a coalition of players can gain when they cooperate.

• N is called the grand coalition. v is called the characteristic function or
gain function.

• A simple game is a cooperative game (N, v) where the codomain of v is
restricted to {0, 1}. In this context, subsets of N are referred to as winning
coalitions if v(S) = 1, and losing coalitions otherwise (i.e., if v(S) = 0).

• A cooperative game (N, v) is monotonic if and only if v(S) ≤ v(T) for all
pairs of coalitions (S, T) ∈ (2N)2 that satisfy S ⊆ T .

Note that in a large body of literature, the additional assumption is made
that v(∅) in a cooperative game. For the sake of stating the results of our paper
elegantly, we do not make this assumption.

We will often use simply the word game to refer to a cooperative game. A
cooperative game (N, v) will often be denoted by just v when it is clear what the
set of players is. Later, we define various important additional classes of simple
games. Since we will be working with these classes extensively, it is convenient
to introduce the following notation in order to denote classes of games that are
restricted to a fixed number of players n:

Definition 3. Let G be a class of games. Then we use G(n) to denote the class
of games restricted to the set of players {1, . . . , n}. In more formal language:

G(n) = {G : G ∈ G ∧G = ({1, . . . , n}, v)}.

Throughout this paper, n will always be the symbol we use to denote the
number of players in a cooperative game.

The monotonic simple games are the games that we are concerned with in
this paper.

Definition 4 (The class of monotonic simple games). We define Gmon to be the
class of all monotonic simple games.

Some of the definitions in the remainder of this section are taken or adapted
from [4] and [50]. Next, we turn to some syntactic definitions of certain classes
of simple games. There are various important ways to represent simple games:

Definition 5 (Representations of simple games). Suppose that (N, v) is a sim-
ple game. Let W = {S : S ∈ 2N ∧ v(S) = 1} and L = {S : S ∈ 2N ∧ v(S) = 0}
be its sets of respectively losing coalitions and winning coalitions. Define
Wmin = {S ∈ W : (∀i ∈ S)v(S \ {i}) = 0} and Lmax = {S ∈ L : (∀i ∈
N \ S)v(S ∪ {i}) = 1} as their respective sets of minimal winning coalitions
and maximal losing coalitions. We can describe a simple game in the following
forms:

8

Winning coalition form (N,W) is called the winning coalition form of
(N, v).

Losing coalition form (N,L) is called the losing coalition form of (N, v).

Minimal winning coalition form If (N, v) is monotonic, then (N,Wmin) is
the minimal winning coalition form of (N, v). Observe that Wmin fully
describes v if and only if (N, v) is monotonic.

Maximal losing coalition form If (N, v) is monotonic, then (N,Lmax) is the
maximal losing coalition form of (N, v). Observe that Lmax fully describes
v if and only if (N, v) is monotonic.

Weighted form If there exists a quota q ∈ R≥0 and a weight wi ∈ R≥0 for
each player i ∈ N , such that for each coalition S ∈ 2N it holds that
v(S) = 1 ⇔

∑
i∈S wi ≥ q, then the vector w = (q, w1, . . . , wn), also

written as [q;w1, . . . , wn], is called a weighted form of (N, v). Observe
that every game that has a weighted form is also monotonic.

Games that have a weighted form are of our main interest and have a special
name:

Definition 6 (Weighted voting games). If a monotonic simple game has a
weighted form, then it is called a weighted voting game. The class of all weighted
voting games is denoted by Gwvg.

It is well known that the class of weighted voting games is strictly contained
in the class of monotonic simple games: examples of monotonic simple games
that are not weighted are numerous and easily constructed. Later, in Section
4.1, we discuss the cardinalities of these classes with respect to n.

A weighted voting game is an important type of simple game because it has
a compact representation. Also, weighted voting games are important because
they are used in a lot of practical situations, i.e., in a lot of real-life decision
making protocols, for example: elections, politics and stockholder companies.
An important property of weighted voting games that we will use, is that a
weighted representation of such a game is invariant to scaling:

Proposition 1. Let G ∈ Gwvg(n) be a weighted voting game, and let ` =
[q;w1, . . . , wn] be a weighted representation for G. For every λ ∈ R+, we have
that `′ = [λq;λw1, . . . , λwn] is a weighted representation for G.

Proof. For any coalition C ⊆ N such that w`(C) < q:

w`′(C) =
∑
i∈C

λwi = λ
∑
i∈C

wi = λw`(C) < λq,

and for any coalition C ⊆ N such that w`(C) ≥ q:

w`′(C) =
∑
i∈C

λwi = λ
∑
i∈C

wi = λw`(C) ≥ λq.

9

We will be using the following notational abuse in the remainder of this
paper: Whenever we are discussing a weighted voting game G with players
N = {1, . . . , n} and weighted form [q;w1, . . . , wn], we use w(S) as a shorthand
for
∑
i∈S wi for any subset S of N .

We next turn our attention to the topic of influence and power in monotonic
simple games. For a monotonic simple game, it is possible to define a relation
called the desirability relation on the players (see [50] and [15]):

Definition 7 (Desirability relation). For a monotonic simple game (N, v), the
desirability relation �v is defined by:

• For any (i, j) ∈ N2 : if ∀S ⊆ N \ {i, j} : v(S ∪ {i}) ≥ v(S ∪ {j}), then
i �v j. In this case we say that i is more desirable than j.

• For any (i, j) ∈ N2 : if ∀S ⊆ N \ {i, j} : v(S ∪ {i}) = v(S ∪ {j}), then
i ∼v j. In this case we say that i and j are equally desirable.

• For any (i, j) ∈ N2 : if ∀S ⊆ N \ {i, j} : v(S ∪ {i}) ≤ v(S ∪ {j}), then
i �v j. In this case we say that i is less desirable than j.

• For any (i, j) ∈ N2 : if i �v j and not i ∼v j, then i �v j. In this case we
say that i is strictly more desirable than j.

• For any (i, j) ∈ N2 : if i �v j and not i ∼v j, then i ≺v j. In this case we
say that i is strictly less desirable than j.

Moreover, if neither i �v j nor j �v i holds for some i, j ∈ N , then we say that
i and j are incomparable.

In cases that it is clear which game is meant, we drop the subscript and
write �,≺,�,�,∼ instead of �v,≺v,�v,�v,∼v.

There exist other notions of desirability, for which different properties hold
[15]. In the context of other desirability relations, the desirability relation that
we have defined here is refered to as the individual desirability relation. Since
this is the only desirability relation that we will use in this paper, we will refer
to it as simply the desirability relation.

Using the notion of this desirability relation, it is now possible to define the
class of linear games.

Definition 8 (Linear game). A simple game (N, v) is a linear game if and only
if it is monotonic, and in (N, v) no pair of players in N is incomparable with
respect to �. Thus, for a linear game (N, v), � is a total preorder on N . We
denote the class of linear games by Glin.

It is straightforward to see that all weighted voting games are linear: let
(N, v) be a weighted voting game where N = {1, . . . , n}, and let [q;w1, . . . , wn]
be a weighted form of (N, v). Then it holds that i � j when wi ≤ wj . Hence,
every pair of players is comparable with respect to �.

In fact, the following sequence of strict containments holds: Gwvg ⊂ Glin ⊂
Gmon. This brings us to the definition of two special classes of games that will
be convenient for use in subsequent sections.

10

Definition 9 (Canonical weighted voting games & canonical linear games). A
linear game (N, v) is a canonical linear game whenever N = {1, . . . , n} for some
n ∈ N>0, and the desirability relation � satisfies 1 � 2 � · · · � n. When
G is also weighted, then G is a canonical weighted voting game. The class of
canonical linear games is denoted by Gclin, and the class of canonical weighted
voting games is denoted by Gcwvg.

Note that the weight vector of a weighted form of a canonical weighted voting
game is always non-increasing.

It is now time to introduce two special ways of representing canonical linear
games.

Definition 10 (Left-shift & right-shift). Let N be the set of players {1, . . . , n}
and let S be any subset of N . A coalition S′ ⊆ N is a direct left-shift of
S whenever there exists an i ∈ S and i − 1 6∈ S with 2 ≤ i ≤ n such that
S′ = (S \ {i}) ∪ {i − 1}. A coalition S′ ⊆ N is a left-shift of S whenever for
some k > 1 there exists a sequence (S1, . . . , Sk) ∈ (2n)k, such that

• S1 = S,

• Sk = S′,

• for all i with 1 ≤ i < k, we have that Si+1 is a direct left-shift of Si.

The definitions of direct right-shift and right-shift are obtained when we replace
in the above definition i− 1 with i+ 1 and i+ 1 with i− 1.

For example, coalition {1, 3, 5} is a direct left-shift of coalition {1, 4, 5}, and
coalition {1, 2, 5} is a left-shift of {1, 4, 5}.

The notions of left-shift and right-shift make sense for canonical linear games
and canonical weighted voting games: Because of the specific desirability order
that holds in canonical linear games, a left-shift of a winning coalition is always
winning in such a game, and a right-shift of a losing coalition is always losing
in such a game. This allows us to represent a canonical linear game in one of
the following two forms.

Definition 11 (Roof/ceiling coalition/form). Let (N = {1, . . . , n}, v) be a
canonical linear game. Also, let Wmin be (N, v)’s list of minimal winning coali-
tions and let Lmax be (N, v)’s list of maximal losing coalitions. A minimal
winning coalition S ∈Wmin is a roof coalition whenever every right-shift of S is
losing. Let Wroof denote the set of all roof coalitions of G. The pair (N,Wroof)
is called the roof form of G. A maximal losing coalition S ∈ Lmax is a ceiling
coalition whenever every left-shift of S is winning. Let Wceil denote the set of
all ceiling coalitions of G. The pair (N,Wceil) is called the ceiling form of G.

The terminology (“roof” and “ceiling”) is taken from [42], although they
have also been called shift-minimal winning coalitions and shift-maximal losing
coalitions [50].

Because we will be discussing simple games from a computational perspec-
tive, we next introduce the concept of representation languages for simple games.

11

2.1 Representation languages

We have introduced several ways of representing simple games: by the sets of
winning and losing coalitions; by the sets of minimal winning coalitions and
maximal losing coalitions; by the sets of roof coalitions and ceiling coalitions;
and by their weighted representation.

We now make precise the notion of representing a simple game by turning
these methods representing simple games into languages: sets of strings, such
that the strings are a description of a game according to one of the methods in
the list above.

Prior to defining these languages, we need a way of describing coalitions.
Coalitions can be described using their characteristic vector.

Definition 12. Let N = {1, . . . , n} be a set of n players. The characteristic
vector ~χ(S) of a coalition S ⊆ N is the vector (χ(1, S), . . . , χ(n, S)) where

χ(i, S) =

{
1 if i ∈ S
0 otherwise.

A characteristic vector of a coalition in a game of n players is described by
n bits.

Definition 13 (Representation Languages). We define the following represen-
tation languages to represent simple games.

• LW . Strings ` ∈ LW are lists of characteristic vectors of coalitions. The
string ` represents a simple game G if and only if the set of coalitions that
` describes is precisely the set of coalitions that are winning in G.

• The languages LW,min, LL, LL,max, Lroof , and Lceil are defined in the
obvious analogous fashion.

• Lweights. Strings ` ∈ Lweights are lists of numbers 〈q, w1, . . . , wn〉. The
string ` represents the simple game G if and only if G is a weighted voting
game with weighted form [q;w1, . . . , wn].

We will use the following convention: For a representation language L, we
denote with L(n) the set of strings in the language L that represent games of n
players. Also, let ` be a string from a representation language L(n). Then we
write G` to denote the simple game on players {1, . . . , n} that is represented by
`.

Definition 14. We say that a class of games G is defined by a language L if
and only if ∀` ∈ L : ∃G ∈ G : G` = G and vice versa ∀G ∈ G : ∃` ∈ L : G` = G.

Using the above definition, we see that

• Gsim is defined by both LW and LL;

• Gmon is defined by both LW,min and LL,max;

• Glin is defined by both Lroof and Lceil;

• Gwvg is defined by Lweights.

12

2.2 Power indices

Power indices can be used to measure the amount of influence that a player has
in a monotonic simple game. Power indices were originally introduced because
it was observed that in weighted voting games, the weight of a player is not
directly proportional to the influence he has in the game. This is easy to see
through the following trivial example weighted voting game:

[1000; 997, 1, 1, 1].

Here, each player is in only one winning coalition: the grand coalition. All
players are required to be present in this coalition for it to be winning, and can
therefore be said to have the same influence, despite the fact that there is a
huge difference between the weights of the first vs. the other three players.

Many proposals have been put forward to answer the question of what con-
stitutes a good definition of power in a voting game. These answers are in the
form of power indices, which are mathematical formulations for values that try
to describe the ‘true’ influence a player has in a weighted voting game. We refer
the reader to [3] for an excellent WWW information resource on power indices.

Power indices try to measure a player’s a priori power in a voting game.
That is, they attempt to objectively measure the influence a player has on the
outcome of a voting game, without having any statistical information on which
coalitions are likely to form due to the preferences of the players. To do this,
we cannot avoid making certain assumptions, but we let these assumptions be
as neutral as possible. For example, in the Banzhaf index we describe below,
the assumption is that each coalition will form with equal probability.

While the need for power indices originally arose from studying weighted
voting games, all of the power indices that have been devised up till now also
make sense for (and are also well-defined for) simple games. So, for any simple
coalitional game, we can use a power index as a measure of a player’s a priori
power in it.

In this paper we use the normalized Banzhaf index as our power index of
choice. This power index is used in the experiments discussed in Section 6.
However, we will see that for the theoretical part of our work, the particular
choice of power index is irrelevant.

Definition 15 (normalized Banzhaf index & raw Banzhaf index). For a mono-
tonic simple game (N = {1, . . . , n}, v), the normalized Banzhaf index of (N, v)
is defined as β = (β1, . . . , βn), where for 1 ≤ i ≤ n,

βi =
β′i∑n
j=1 β

′
j

,

and
β′i = |{S ⊆ N \ {i} : v(S) = 0 ∧ v(S ∪ {i}) = 1}|. (1)

Here, β′i is called the raw Banzhaf index of player i.

13

Note that the Banzhaf index of an n-player simple game is always a member
of the unit simplex of Rn, i.e., the set {x ∈ Rn :

∑n
i=1 xi = 1}.

The problem of computing power indices, and its associated computational
complexity, has been widely studied (e.g., in [37, 36, 16, 7, 8, 1, 24, 9, 51, 6,
32, 30, 22]). For a survey of complexity results, exact algorithms and approxi-
mation algorithms for computing power indices, see [22]. In general, computing
power indices is a hard task, and the case of the normalized Banzhaf index
is no exception: Computation of the raw Banzhaf index is known to be #P-
complete [44], and the fastest known exponential time algorihm for computing
the Banzhaf index is due to Klinz and Woeginger [24]. It achieves a runtime in
O((
√

2)n · n2).

3 The problem statement

In this section, we will introduce the problem that we call the voting game
design problem: the problem of finding a simple game that satisfies a given
requirement (or set of requirements) as well as possible. We will focus on the
problem of finding games in which the power index of the game is as close as
possible to a given target power index.

We define a voting game design problem as an optimization problem where
we are given three parameters f , G, and L. In such a voting game design
problem we must minimize some function f : G → R≥0, with G being some class
of simple games. L is a representation language for G. We require the game
that we output to be in the language L.

Definition 16 ((f,G,L)-voting game design ((f,G,L)-VGD)). Let G be a class
of simple games, let L be a representation language for G, and let f : G →
R+ ∪ {0} be a function. The (f,G,L)-voting game design problem (or (f,G,L)-
VGD) is the problem of finding an ` ∈ L such that G` ∈ G and f(G`) is
minimized.

Hence, f can be seen as a function indicating the error, or the distance from
the game that we are ideally looking for. By imposing restrictions on the choice
of f , and by fixing G and L, we can obtain various interesting optimization
problems. The cases that we will focus on will be those where f is a function
that returns the distance of a game’s power index from a certain target power
index.

Definition 17 ((g,G,L)-power index voting game design ((g,G,L)-PVGD)).
Suppose G is a class of games, and L is a representation language for a class
of games. Furthermore, suppose g : G → Rn is a function that returns a type
of power index (e.g., the normalized Banzhaf index) for games in G. Then,
the (g,G,L)-power index voting game design problem (or (g,G,L)-PVGD) is
the (f,G,L)-VGD problem with f restricted to those functions for which there

14

exists a vector (p1, . . . , pn) such that for each G ∈ G,

f(G) =

√√√√ n∑
i=1

(g(G)i − pi)2.

In words, in a (g,G,L)-PVGD problem we must find a voting game in the
class G that is as close as possible to a given target power index (p1, . . . , pn)
according to power index function g and error function f . In this paper we
measure the error by means of the Euclidean distance in Rn between the power
index of the game and the target power index. We made this particular choice of
f because from intuition it seems like a reasonable error function. In principle,
we could also choose f differently. For example, we could take for f any other
norm on Rn. For our purpose, the precise choice of f does not really matter, as
long as the error function is not hard to compute, given g.

We can analyze this problem for various power index functions, classes of
games, and representation languages. So, an instance of such a problem is then
represented by only a vector (p1, . . . , pn), representing a target power index.

We will focus in this paper on the problem (β,Gwvg,Lweights)-PVGD, i.e., the
problems of finding a weighted voting game in weighted representation, that is
as close as possible to a certain target (normalized) Banzhaf index.

4 Voting game synthesis

The method that we will propose for solving the power index voting game de-
sign problem involves transforming between different representations for classes
of simple games. In this section we will give an overview of transforming rep-
resentations of simple games into each other. We call these problems voting
game synthesis problems, inspired by the term threshold synthesis used in [42]
for finding a weight vector for a so-called threshold function, to be defined later
in this section.

In Section 4.1, we first find out what we can say about the cardinalities of
various classes of voting games. We state the synthesis problem formally in
Section 4.2. In Section 4.3 we will look at how to solve it.

4.1 On cardinalities of classes of simple games

In some variants of the voting game synthesis problem, we want to transform a
simple game into a specific representation language that defines only a subclass
of the class of games that is defined by the input-language.

It is interesting to know what fraction of a class of games is synthesizable in
which language, i.e., we are interested in the cardinalities of all of these classes
of simple games. This is an interesting question in its own right, but we also
require it in order to analyze the algorithms for the voting game design problems
that we will present in the next sections.

15

First we will discuss the number of monotonic simple games and linear games
on n players. After that, we will also look at the number of weighted voting
games on n players.

4.1.1 The number of monotonic simple games and linear games

Let us start off with the cardinality of the class of monotonic simple games of
n players: Gmon(n). This class is defined by language LW,min, i.e., each game
in this class can be described by a set of minimal winning coalitions (MWCs),
and for each possible set of MWCs Wmin there is a monotonic simple game G
such that the MWCs of G are precisely Wmin. We see therefore that the number
of monotonic simple games on n players is equal to the number of families of
MWCs on n players. In a family of MWCs, there are no two coalitions S and
S′ such that S′ is a superset of S. In other words: all elements in a family of
MWCs are pairwise incomparable with respect to ⊆, or: A family of MWCs on
the set of players N = {1, . . . , n} is an antichain in the poset (2N ,⊆). Hence,
the number of antichains in this poset is equal to |Gmon(n)|. Counting the
number of antichains in this poset is a famous open problem in combinatorics,
known as Dedekind’s problem and |Gmon(n)| is therefore also referred to as the
nth Dedekind number Dn. Dedekind’s problem was first stated in [13]. To the
best of our knowledge, exact values for Dn are known only up to n = 8. We
will return to the discussion of the Dedekind number in Section 5.1, where we
will also mention some known upper and lower bounds for it. For now, let us
simply say that Dn grows rather quickly in n: as n gets larger, Dn increases
exponentially.

For linear games, we know only of the following lower bound on the number
of canonical linear games. The prove that we give here is from [42]:

Theorem 1. For large enough n,

|Gclin(n)| ≥ 2(
√

2
3π2

n)/(n
√
n).

Proof. First observe that |Gclin(n)| is equal to the number of antichains in the
poset (2N ,�ssrs), where �ssrs is defined as follows: for two coalitions S ⊆ N and
S′ ⊆ N , we have S �ssrs S

′ if and only if S is a superset of a right-shift of S′. It
can be seen that (2N ,�ssrs) is a graded poset, with the following rank function
r:

r : 2N → N
S 7→

∑
i∈S

n− i+ 1.

A set of points of the same rank is an antichain in (2N ,�ssrs). Let Ak denote

the set of points of rank k. k is at most n(n+1)
2 . For each coalition S in Ak,

its complement N \ S is in An(n+1)/2−k; therefore |Ak| = |An(n+1)/2−k|. It is
shown in [48] that the sequence (|A1|, . . . , |An(n+1)/2|) is unimodal, i.e., first
non-increasing, then non-decreasing. By this fact and the fact that |Ak| =

16

|An(n+1)/2−k|, it must be the case that the largest antichain is |An(n+1)/4|.
|An(n+1)/4| is equal to the number of points (x1, . . . , xn) satisfying x1 + 2x2 +

· · ·+ nxn = n(n+1)
4 , and this number of points is equal to the middle coefficient

of the polynomial (1 + q)(1 + q2) · · · (1 + qn). It is shown in [41] that this middle
coefficient is asymptotically equal to√

2
3π2n

n
√
n

Since every subset of an antichain is also an antichain, there must be more than

2(
√

2
3π2

n)/(n
√
n)

antichains in (2N ,�ssrs).

4.1.2 The number of weighted voting games

To our knowledge, in the game theory literature there has not been any research
on the number of Weighted Voting Games on n players. Fortunately there is
a closely related field of research, called threshold logic (see for example [38]),
that has some relevant results.

Definition 18 (Boolean threshold function, realization, LT). Let f be a
boolean function on n boolean variables. f is a (boolean) threshold function
when there exists a weight vector of real numbers r = (r0, r1, . . . rn) ∈ Rn+1

such that r1x1 + · · ·+ rnxn ≥ r0 if and only if f(x1, . . . , xn) = 1. We say that r
realizes f . We denote the set of threshold functions of n variables {x1, . . . , xn}
by LT(n).2

Threshold functions resemble weighted voting games, except for that we talk
about boolean variables instead of players now. Also, an important difference
between threshold functions and weighted voting games is that r0, r1, . . . , rn are
allowed to be negative for threshold functions, whereas q, w1, . . . , wn, must be
non-negative in weighted voting games.

Zunic presents in [54] an upper bound on the number of threshold functions
of n variables |LT(n)|:

|LT(n)| ≤ 2n
2−n+1. (2)

Also, the following asymptotic lower bound is known, as shown in [53]: For large
enough n, we have

|LT(n)| ≥ 2n
2(1− 10

log n). (3)

From these bounds, we can deduce some easy upper and lower bounds for
|Gwvg|.

First we observe the following property of the set of threshold functions
on n variables. Let LT+(n) be the set of non-negative threshold functions of

2“LT” stands for “Linear Threshold function”.

17

variables {x1, . . . , xn}: threshold functions f ∈ LT(n) for which there exists a
non-negative weight vector r that realizes f It is then not hard to see that there
is an obvious one-to-one correspondence between the games in Gwvg(n) and the
threshold functions in LT+(n), so |Gwvg(n)| = |LT+(n)|. An easy upper bound
then follows:

Corollary 1. For all n, |Gwvg(n)| ≤ 2n
2−n+1.

We will proceed by obtaining a lower bound on the number of weighted
voting games.

Corollary 2. For large enough n, it holds that

|Gwvg(n)| ≤ 2n
2(1− 10

log n)−n−1 (4)

Proof. Let f be a non-negative threshold function and let r be a non-negative
weight vector that realizes f . There are 2n+1 possible ways to negate the ele-
ments of r, so there are at most 2n+1−1 threshold functions f ′ ∈ LT(n)\LT+(n)
such that f ′ has a realization that is obtained by negating some of the elements

of r. From this, it follows that |LT+(n)| ≥ |LT(n)|
2n+1 , and thus also |Gwvg(n)| ≥

|LT(n)
2n+1 |. Now by using (3) we get |Gwvg(n)| ≥ 2

n2(1− 10
log n

)

2n+1 = 2n
2(1− 10

log n)−n−1.

We have obtained this lower bound on the number of weighted voting games
by upper-bounding the factor, say k, by which the number of threshold functions
is larger than the number of non-negative threshold functions. If we could find
the value of k exactly, or at least lower-bound k, then we would also be able to
sharpen the upper bound on the number of weighted voting games.

Our next question is: what about the canonical case, Gcwvg(n)? Gcwvg(n) is a
subset of Gwvg(n), and for each non-canonical weighted voting game there exists
a permutation of the players that makes it a canonical one. Since there are n!

possible permutations, it must be that |Gcwvg(n)| ≥ |Gwvg(n)|n! , and thus we obtain
that

|Gcwvg(n)| ≥ 2n
2(1− 10

log n)−n−1

n!
(5)

for large enough n.

4.2 The synthesis problem for simple games

In a voting game synthesis problem, we are interested in transforming a given
simple game from one representation language into another representation lan-
guage.

Definition 19 (Voting game synthesis (VGS) problem). Let L1 and L2 be two
representation languages for (possibly) distinct classes of simple games. Let
fL1→L2

: L1 → L2 ∪ {no} be the function that, on input `,

• outputs no when G` is not in the class of games defined by L2,

18

• otherwise maps a string ` ∈ L1 to a string `′ ∈ L2 such that G` = G`′ .

In the (L1,L2)-voting game synthesis problem, or (L1,L2)-VGS problem, we are
given a string ` ∈ L1 and we must compute fL1→L2

(`).

4.3 Algorithms for voting game synthesis

In this section we will discuss algorithms and hardness results for various VGS
problems. In Sections 4.3.1, 4.3.2 and 4.3.3 we will consider respectively the
problems of

• transforming games into weighted representation (Lweights);

• transforming games into roof- or ceiling-representation (Lroof ,Lceil);

• transforming games into the languages LW ,LW,min,LL,LL,max.

4.3.1 Synthesizing weighted representations

For our approach to solving the power index voting game design problem for
weighted voting games, which we will present in Section 5, it is of central impor-
tance that the problem (LW,min,Lweights)-VGS has a polynomial time algorithm.
This is a non-trivial result and was first stated in [42] by Peled and Simeone.
In [42], the problem is stated in terms of set-covering problems. Because this
algorithm is central to our approach for solving the PVGD-problem, we will
here restate the algorithm in terms of simple games, and we will give a proof of
its correctness and polynomial time complexity.

In order to state the algorithm, we first introduce a new total order on the
set of coalitions 2N of a set of players N = {1, . . . , n}.

Definition 20 (Positional representation). Let S ⊆ N = {1, . . . , n} be a coali-
tion. The ith position p(i, S) of S is defined to be the player a in S such that
|{1, . . . , a} ∩N | = i. The positional representation of S, pr(S), is defined as the
n-dimensional vector (p′(1, S), . . . , p′(n, S)) where

p′(i, S) =

{
0 if |S| < i,

p(i, S) otherwise.

for all i with 1 ≤ i ≤ n.

As an example: if we have N = {1, . . . , 5} and S = {1, 4, 5}, then pr(S) =
(1, 4, 5, 0, 0).

Definition 21 (PR-lexi-order). The PR-lexi-order is the total order (2N ,�pr),
where for two coalitions S ⊆ N and S′ ⊆ N : S �pr S

′ if and only if pr(S)
lexicographically precedes pr(S′). A vector ~v lexicographically precedes another

vector ~v′ when there exists a i such that vi < v′i and for all j < i it holds that
vi = vj .

19

For example, we see that for N = {1, . . . , 5}, we have {1, 2, 3} �pr {1, 3, 5}.
The least element of (2N ,�pr) is ∅ and the greatest element of (2N ,�pr) is N .

Next, we introduce some operations that we can apply to coalitions. For
this, the reader should recall definitions 10 and 12.

Definition 22 (fill-up, bottom right-shift, truncation, immediate successor).
Let N be the set of players {1, . . . , n} and let S ⊆ N be a coalition. The
functions a and b are defined as follows.

• b(S) is the largest index j such that χ(j, S) = 1.

• a(S) is the largest index j such that χ(j, S) = 0 and χ(j + 1, S) = 1 (if
such a j does not exist, then a(S) = 0).

Now we can define the following operations on S:

• The fill-up of S: fill(S) = S ∪ {b(S) + 1} (undefined if S = N).

• The bottom right-shift of S: brs(S) = S ∪ {b(S) + 1} \ {b(S)} (undefined
if b(S) = n).

• The truncation of S: trunc(S) = S \ {a(S) + 1, . . . n}.

• The immediate successor of S:

succ(S) =

{
fill(S) if n 6∈ S ,

brs(S \ {n}) if n ∈ S .

The immediate successor operation is named as such because it denotes the
successor of S in the total order (2N ,�pr).

One last concept we need is that of a shelter coalition.

Definition 23 (Shelter). A shelter is a minimal winning coalition S such that
brs(S) is losing or undefined.

Note that the set of roof coalitions of a canonical linear game is a subset of
the set of shelter coalitions of that game.

The Hop-Skip-and-Jump algorithm We are now ready to state the al-
gorithm. The input to the algorithm is a string ` in LW,min, i.e., the list of
characteristic vectors describing the set of minimal winning coalitions Wmin.
The four main steps of the algorithm are:

1. Check whether G` is a linear game. If not, then stop. When it turns out
that the game is linear, find a permutation of the players that turns the
game into a canonical linear game. In the remaining steps, we assume
that G` is a canonical linear game.

2. Generate a list of shelters S, sorted according to the PR-lexi-order.

20

3. Use S as input for the Hop-Skip-and-Jump algorithm. The Hop-Skip-and-
Jump algorithm will give as output the set of all maximal losing coalitions
Lmax. This step, is the most non-trivial part, and we will explain it in
detail below.

4. Use Wmin and Lmax to generate the following system of linear inequalities,
and solve it for any choice of q in order to find the weights w1, . . . , wn:

w1χ(1, S) + · · ·+ wnχ(n, S) ≥ q,∀S ∈Wmin

w1χ(1, S) + · · ·+ wnχ(n, S) < q,∀S ∈ Lmax

(6)

If this system of linear inequalities has no solutions, then G` is not
weighted; and otherwise the weights that have been found are the weights
of the players, and q is the quota: [q;w1, . . . , wn] is a weighted form of the
weighted voting game.

The first step of the algorithm is easy if we use an algorithm by Aziz, given in
[4]. This algorithm decides whether a monotonic simple game represented as a
listing of minimal winning coalitions is a linear game, and if so it outputs a strict
desirability order3. From the strict desirability order, the required permutation
directly follows.

The generation of the sorted list of shelters can be done in polynomial-time:
We can easily check for each minimal winning coalition whether its bottom
right-shift is losing.

Linear programs are solvable in a time that is polynomial in the size of
the linear program, by Karmarkar’s algorithm [21] for example. For the linear
program of the fourth part of the algorithm we will have to show that its size
is bounded by a polynomial in n and the number of minimal winning coali-
tions, i.e., we will have to show that there are only polynomially many more
maximal losing coalitions than that there are minimal winning coalitions. This
follows from the fact that the Hop-Skip-and-Jump algorithm (see below) runs in
polynomial time and hence can output only a polynomial number of coalitions.
Lastly, the fact that we can choose any q ∈ R>0 follows from Theorem 1.

The hard part that now remains is part three of the algorithm: outputting
the list of maximal losing coalitions, given a sorted list of shelter coalitions. This
is what the Hop-Skip-and-Jump-algorithm does. We will now state this algo-
rithm, prove it correct and show that the runtime is bounded by a polynomial
in the number of players n and the number of shelter coalitions t. From this
polynomial runtime it then also follows that |Lmax| is polynomially bounded in
|Wmin|.

The pseudocode for the Hop-Skip-and-Jump algorithm is given in Algorithm
1. The basic idea is to consider all coalitions in the order induced by the PR-lexi-
order, and output those coalitions that are maximal losing coalitions. During

3With this, we mean that the algorithm outputs a list ~P = (P1, . . . , Pj) such that
{P1, . . . , Pj} is a partition of N , where the players of a set in this partition are all equally
desirable, and for all i and j with i > j we have that any player in Pi is strictly more desirable
than any player in Pj .

21

this process, we will be able to skip huge intervals of coalitions in order to
achieve a polynomial run-time.

Algorithm 1 The Hop-Skip-and-Jump algorithm. A polynomial-time algo-
rithm that outputs the set of maximal losing coalitions of a monotonic simple
game G on players N = {1, . . . , n}, given the sorted list of shelters of G as input.
An assumption we make in this algorithm is that the empty coalition does not
occur in the list of shelters. If it does, it becomes a trivial task to output the
list of maximal losing coalitions, so this is a safe assumption.

1: nextshelter := first shelter on the list. {Output the coalition N and stop if
the list is empty.}

2: currentcoalition := ∅ {Start with the least coalition, according to the PR-
lexi-order.}

3: loop
4: while currentcoalition 6= nextshelter \ {b(nextshelter)} do
5: if n 6∈ currentcoalition then
6: currentcoalition := fill(currentcoalition)
7: else
8: output currentcoalition
9: currentcoalition := brs(trunc(currentcoalition)) {Stop if undefined.}

10: end if
11: end while
12: if n 6∈ nextshelter then
13: currentcoalition := brs(nextshelter)
14: else
15: output currentcoalition
16: currentcoalition := succ(nextshelter) {Stop if nextshelter = {n}.}
17: end if
18: nextshelter := next shelter on the list.
19: end loop

We will now proceed by giving a correctness-proof of this algorithm.

Theorem 2. Algorithm 1 outputs only maximal losing coalitions.

Proof. There are three places at which Algorithm 1 outputs coalitions: line 1,
8 and line 15.

At line 1, a coalition is only output when the list of shelters is empty. When
this list is empty, it means there are no winning coalitions, so N is the only
maximal losing coalition.

At line 15 we see that currentcoalition ⊂ nextshelter, and nextshelter is a
minimal winning coalition, so currentcoalition must be losing. Also, at line 15,
n ∈ nextshelter. This means that any superset of currentcoalition is a super-
set of a leftshift of nextshelter, and therefore winning. So we conclude that
currentcoalition is a maximal losing coalition. This establishes that at line 15,
all coalitions output are maximal losing coalitions.

22

Now we need to show the same for line 8. For this, we first need to prove
the following invariant.

Lemma 1. When running Algorithm 1, directly after executing line 2, line 18,
and each iteration of the while-loop of line 4, currentcoalition is a losing coalition.

Proof. We prove all three cases separately.

• Directly after executing line 2, currentcoalition is the empty coalition and
thus losing by assumption.

• Directly after executing line 18, we have two subcases:

Case 1: After the last time the execution of the algorithm passed line
11, lines 12 and 13 were executed while lines 14–16 were skipped.
In this case, currentcoalition is a bottom right-shift of a shelter, so
currentcoalition is losing by the definition of a shelter.

Case 2: After the last time the execution of the algorithm passed line
11, lines 14–16 were executed while lines 12 and 13 were skipped. In
this case, currentcoalition is a direct successor of a shelter s containing
player n, by definition of the direct successor function, currentcoalition
is a subset of s and hence losing.

• Directly after each iteration of the while-loop of line 4. We can use induc-
tion for this final case. By the preceding two cases in this list, that we
proved, we can assume that currentcoalition is losing when the while-loop
is entered. It suffices now to show that currentcoalition is losing after a
single repetition of the while-loop. We divide the proof up again, in two
cases:

Case 1: During the execution of the while-loop, lines 5 and 6 were exe-
cuted while lines 7–9 were skipped. Then currentcoalition is a fill-up
of a losing coalition, say l. Let i be the agent that was added by the
fill-up, i.e., currentcoalition = l ∪ {i}. Suppose for contradiction that
currentcoalition is winning; then i ∈ nextshelter and i−1 ∈ nextshelter.
It must also be true that l ⊆ nextshelter because otherwise l is a right-
shift of nextshelter and therefore winning (the induction hypothesis
states that l is losing). Therefore l = nextshelter \ {b(nextshelter)}.
But then execution would have left the loop because of line 4. Con-
tradiction.

Case 2: In the execution of the while-loop, lines 7–9 were executed while
lines 5 and 6 were skipped. currentcoalition is a bottom right-shift of
a truncation of a losing coalition. A truncation of a losing coalition
is losing, and a bottom right-shift of a losing coalition is losing, so
currentcoalition is losing.

23

From the lemma above, it follows that at line 8, currentcoalition is losing. To
show that it is also maximal, we divide the proof up in three cases:

Case 1: The execution of the algorithm has never passed line 11. In this case
currentcoalition at line 8 is obtained by a series of successive fill-ups start-
ing from the empty coalition, and n ∈ currentcoalition. This means that
currentcoalition = N , so currentcoalition is maximal.

Case 2: The execution of the algorithm did pass line 11 at least once, and
the last time that execution has done so lines 12 and 13 were executed
while lines 14–16 were skipped. In this case we have that at line 8,
currentcoalition is obtained by a series of fill-ups of a bottom right-shift of
a shelter-coalition s. It follows that adding any player to currentcoalition
will turn currentcoalition into a winning coalition, because currentcoalition
would then become a superset of a left-shift of s. So currentcoalition is
maximal.

Case 3: The execution of the algorithm did pass line 11 at least once, and the
last time that execution has done so, lines 14–16 were executed while lines
12 and 13 were skipped. In this case we have at line 8 that currentcoalition
is the successor of a shelter s that has player n in it. By the definition of the
successor function we get that adding any player to currentcoalition would
make it a superset of a left-shift of s, and thus winning. So currentcoalition
is maximal.

Theorem 3. Algorithm 1 outputs all maximal losing coalitions.

Proof. By Theorem 2 we have that Algorithm 1 outputs only maximal losing
coalitions, so what suffices is to show that the intervals of coalitions that Algo-
rithm 1 does not output, do not contain any losing coalitions.

Let s be a coalition that is not output by Algorithm 1. There are several
cases possible.

Case 1: There is a point when the execution of the algorithm has just passed
line 6, such that currentcoalition = s. In that case s is losing, following
from Lemma 1.

Case 2: There is a point when the execution of the algorithm has just passed line
8, such that currentcoalition �pr s �pr brs(trunc(currentcoalition)). Now s
is a direct right-shift of a point s′ that the algorithm has output. s′ is
maximal losing so s is not maximal losing.

Case 3: There is a point when the execution of the algorithm has just passed
line 12, such that currentcoalition �pr s �pr brs(nextshelter). Here we have
that s is either a right-shift of currentcoalition or a left-shift of a superset of
nextshelter. In the former case, s is not a maximal losing coalition because
it is a right-shift of currentcoalition, and currentcoalition is not a maximal

24

losing coalition because it is a strict subset of the bottom right-shift of
nextshelter, which is also losing. In the latter case, s is winning, so s can
not be maximal losing.

By the two theorems above, we have established that the Hop-Skip-and-
Jump algorithm works correctly. Now we will also show that it runs in polyno-
mial time.

Theorem 4. Algorithm 1 runs in time O(n3t) (where t is the number of shelter
coalitions).

Proof. When repeatedly executing the while-loop of line 4, lines 5 and 6 can
be executed only n consecutive times, before lines 7–9 are executed. Line 9
can be executed at most n times in total, given that the execution does not
leave the while-loop (after n times, the operation done at line 9 is undefined,
and execution stops). It follows that the while-loop is executed at most n2

consecutive times before execution leaves the while-loop. Each time lines 12–18
are executed, one shelter is taken from the list, so lines 12–18 are executed only
t times. The fill-up operation, bottom right-shift operation, successor operation
and truncation operation can all be implemented in O(n) time. So, bringing
everything together, we arrive at a total runtime of O(n3t).

4.3.2 Synthesizing roof- and ceiling-representations

Next, we consider the problem of synthesizing various representations of games
into the roof- and ceiling-representation of a canonical linear game.

Let us start with the problem (LW,Lroof)-VGS. This problem boils down to
solving the (LW,min,Lroof)-VGS problem, since (LW,LW,min)-VGS is easy (just
check for each coalition in W whether it is minimal, and if so, it is in Wmin).
The same holds for the problems (LL,Lceil)-VGS and (LL,max,Lceil)-VGS.

Solving (LW,min,Lroof)-VGS is also not very difficult. As pointed out before,
there is a polynomial-time algorithm that checks whether a monotonic simple
game given as a list of minimal winning coalitions is linear, and we can obtain
the strict desirability order if this is the case. It could be that it turns out the
game is linear, but not canonical. If we wish, we are then also able to permute
the players so that we end up with a canonical linear game. After that, all
that we have to do is check for each minimal winning coalition C whether each
of its direct right-shifts (no more than n direct right-shifts are possible) are
losing coalitions. If that is the case, then C must be a roof. For the problem
(LL,max,Lceil)-VGS, the situation is completely symmetric.

What also follows now, is that the problems (LW,min,Lceil)-VGS can be
solved in polynomial time: we first check if the input list of minimal winning
coalitions describes a linear game. If so, then the Hop-Skip-and-Jump algo-
rithm of Section 4.3.1 is able to generate in polynomial time a list of maximal
losing coalitions from the list of minimal winning coalitions. After that, we

25

filter from this output list the coalitions that are not ceiling coalitions. The
problem (LL,max,Lroof)-VGS is also solvable in polynomial time by running a
“symmetric” version of the Hop-Skip-and-Jump algorithm where we

• permute the players according to the permutation π where the players
are ordered in ascending desirability, i.e., the least desirable player is now
player 1, and the most desirable player is player n;

• run a version of the Hop-Skip-and-Jump algorithm where losing coalitions
are treated as winning coalitions and vice versa.

once the Hop-Skip-and-Jump algorithm is done, we have a list of coalitions. For
each C in this list, the coalition {π−1(i) : i ∈ C} is a minimal winning coalition.

As a consequence, by polynomial time solvability of (LW,LW,min)-VGS and
(LL,LL,max)-VGS we also have that (LL,Lroof)-VGS and (LW,Lroof)-VGS admit
a polynomial time algorithm.

Is the problem (Lceil,Lroof)-VGS solvable in polynomial time? This turns out
to not be the case. We will now give a family of examples of canonical linear
games in which the number of roof coalitions is exponential in n, while the num-
ber of ceiling coalitions is only polynomial in n. As a consequence, any algorithm
that generates the list of roofs from the list of ceilings will run in exponential
time in the worst case. By symmetry it also follows that (Lroof ,Lceil)-VGS is
not solvable in polynomial time.

Let us first define the following specific type of coalition.

Definition 24 ((k, i)-encoding coalition). Let N = {1, . . . , n} be a set of players
such that n = 4i for some i ∈ N. For any k satisfying 0 ≤ k < 2i − 1, the (k, i)-
encoding coalition Sk,i ⊆ N is then defined as

{4(j − 1) + 2, 4(j − 1) + 3 : The jth bit in the binary representation of k equals 0.} ∪
{4(j − 1) + 1, 4(j − 1) + 4 : The jth bit in the binary representation of k equals 1.}

For example, S2,2 = {1, 4, 6, 7}, and S5,3 = {1, 4, 6, 7, 9, 12}. We can then
define canonical linear games in which the roof coalitions are (k, i)-encoding
coalitions.

Definition 25 (i-bit roof game). Let N = {1, . . . , n} be a set of players
such that n = 4i for some i ∈ N. The i-bit roof game on N , denoted
Gi−bit, is the canonical linear game such that the set of roof coalitions of G
is {S0,i, . . . , S2i−1,i}.

For example, the 2-bit roof game, G2−bit, consists of the roofs {{2, 3, 6, 7},
{2, 3, 5, 8}, {1, 4, 6, 7}, {1, 4, 5, 8}}. Gi−bit is well-defined for all i because the
binary representations of two arbitrary i-bit numbers k and k′ differ in at least
one bit. Therefore, Si,k is not a superset of a left-shift of Si,k′ and hence the set
of roofs that we have defined for Gi−bit is indeed a valid set of roofs (i.e., there
are no two roofs such that one is a left-shift of another).

Gi−bit has 2i = 2
n
4 roofs, i.e., an exponential number in n. We will show

that the number of ceilings in Gi−bit is only polynomially bounded. First let us
use the following definitions for convenience.

26

Definition 26 (Accepting roof set). Let G ∈ Gclin(n) be a canonical linear game
on players N = {1, . . . , n}. Let C ⊆ N be a coalition, let a be a number such
that 1 ≤ a ≤ |C|, and let D(C, a) be the ath most desirable player in C. The
accepting set of roofs of the ath most desirable player in C, denoted A(C, a),
is the set consisting of those roof coalitions R for which either the ath most
desirable player in R is greater than or equal to D(c, a), or |R| < a.

It is important to now observe that the following fact holds.

Proposition 2. In a canonical linear game, a coalition C is winning if and

only if
⋂|C|
a=1A(C, a) 6= ∅.

Proof. This lemma is in fact an equivalent statement of the fact that C is
winning in a canonical linear game if and only if it is a superset of a left-shift of

a roof: if R ∈
⋂|C|
a=1A(C, a) then it means that replacing the ath most desirable

player in R by the ath most desirable player in C for all a,1 ≤ a ≤ R would
result in a left-shift of R that is a subset of C, so C must be winning.

Conversely, suppose C is winning. Then there must be a roof R that is a
right-shift of a subset of C. By removing from C the players with a higher
number than D(C, |R|), we obtain a subset C ′ of C with |R| players. By re-
placing the ath most desirable player of C by the ath most desirable player of
R for 1 ≤ a ≤ R, we obtain a right-shift of C that is R. Because in this last
step we replaced each player in C ′ by a higher-numbered player, we get that

R ∈
⋂|R|
a=1A(C, a). R is also in

⋂|C|
a=|R|+1A(C, a) by definition.

Using the notion of an accepting roof set, we can prove the following technical
lemma. The reader should recall the definition of a direct left-shift (Definition
10).

Lemma 2. Let C be a ceiling of Gi−bit with two or more distinct coalitions that
are direct left-shifts of C, and let p be an arbitrary player that we can apply the
direct left-shift operation on, i.e., let p be a player such that C1 = C∪{p−1}\{p}
is a direct left-shift of C. Also, let a be the number such that p = D(C, a). Then
p = 2a.

Proof. Observe that for all b it holds that every roof R of Gi−bit has either
D(R, b) = 2b − 1 or D(R, b) = 2b. By construction of Gi−bit, the number of

roofs of Gi−bit that contain player 2b − 1 is 2i

2 , and the number of roofs that

contain player 2b is also 2i

2 .
C has at least two distinct direct left-shifts, so there must be another player

p′, p′ 6= p, such that C2 = C ∪ {p′ − 1} \ {p′} is a direct left-shift of C.
First we will show that p ≤ 2a. Assume therefore that p > 2a. Now we have

that |A(C, a)| = 0, so then |A(C2, a)| = 0 and hence
⋂
aA(C2, a) = ∅. We see

that C2 is losing, but C2 is a direct left-shift of C, which is a ceiling, so C2 is
winning. This is a contradiction, so p ≤ 2a.

Now we will show that p ≥ 2a. Assume therefore that p < 2a. Now
we have that |A(C, a)| = 2i, so then A(C1, a) = 2i. Now it must be that

27

⋂
aA(C1, a) =

⋂
aA(C, a). But

⋂
aA(C, a) = ∅ because C is losing, and there-

fore
⋂
aA(C1, a) = ∅ so C1 is losing. C1 is also winning, because it is a left-shift

of ceiling C. This is a contradiction, so p ≥ 2a.
p ≥ 2a and p ≤ 2a, so p = 2a.

Lemma 3. In Gi−bit, a ceiling does not have more than two direct left-shifts.

Proof. For contradiction, let C be a ceiling with more than two direct left-shifts.
Let k be the number of direct left-shifts of C, and let P = {p1, . . . , pk} be the
set containing the players of C that we can apply the direct left-shift operation
on (we say that we can apply the direct left-shift operation on a player q when
C ∪{q− 1} \ {q} is a left-shift of C). Let A = {a1, . . . , ak} then be the numbers
such that pj is the ajth most desirable player in C, for all i with 1 ≤ j ≤ k.
For any j ∈ {1, . . . , i} and any b ∈ {0, 1}, let R(j, b) denote the following set of
roofs of Gi−bit:

R(j, b) = {Sk,i : The jth bit of the binary representation of k is b. }

Observe that by the previous lemma, there is a k-tuple of bits (b1, . . . , bk) ∈
{0, 1}k such that for all j with 1 ≤ j ≤ k:

A(C, aj) = R(dpj/4e, kj).

There are now two cases:

Case 1: All of the players {p1, . . . , pk} are in different multiples of 4, i.e.,
dp1/4e 6= dp2/4e 6= · · · 6= dpk/4e. Then by the properties of the binary
numbers, the intersection

⋂
a∈AA(C, a) =

⋂
p∈P R(dp/4e, b) is not empty,

therefore C must be winning, which is in contradiction with C being a
ceiling. So this case is impossible.

Case 2: There are two players p and p′, both in P , that are in the same multiple
of 4, i.e., dp/4e = dp′/4e. Assume without loss of generality that p < p′.
Then A(C, a) ∩ A(C, a′) = ∅. But then we would be able to apply a
direct left-shift on player p′′ without turning C into a winning coalition,
i.e., C ∪ {p′′ − 1} \ {p′′} is winning. But C is a ceiling, so that is a
contradiction.

From the previous lemma it follows that there can not be more than two players
that are the same multiple of 4, so the above two cases are indeed exhaustive.
Both cases are impossible, so we must reject the assumption that there exists a
ceiling C with more than two left-shifts.

It is easy to see that there exist no more than O(n5) coalitions with exactly
two left-shifts, here are no more than O(n3) coalitions with one left-shift, and
there are no more than O(n) coalitions with no left-shifts. so we get the following
corollary.

Corollary 3. The game Gi−bit (on n = 4i players) has O(n5) ceilings.

28

We can now conclude that {Gi−bit : i ∈ N} is an infinite family of examples
in which there are exponentially many more roofs than ceilings. Hence, finally
we obtain:

Corollary 4. there is no polynomial time algorithm for (Lceil,Lroof)-VGS
and (Lceil,Lroof)-VGS.

4.3.3 Other voting game synthesis problems & summary of com-
plexity results for voting game synthesis

In this section we will discuss some of the remaining variants of the voting game
synthesis problem that we did not discuss in the other sections. At the end of
this section, Table 1 summarizes all of the results that we have discussed up to
now.

First of all, Freixas et al. investigate in [20] the (L1,L2)-VGS problem for
L1 and L2 ∈ {LW ,LW,min,LL,LL,max}. Most of their results follow from the
discussion above. One of their results that does not, is that (LW ,LL)-VGS and
(LL,LW)-VGS do not have a polynomial time algorithm. This holds because
there are instances where there are exponentially many more losing coalitions
than that there are winning coalitions. Consider for instance the game in which
only the grand coalition is winning. In this game there are 2n − 1 losing coali-
tions, so it takes exponential time to list them all. This game is also a canonical
linear game and a weighted voting game, so even if we restrict games to be
weighted, or canonical linear, it still holds that (LW ,LL)-VGS and (LL,LW)-
VGS do not have polynomial time algorithms.

In [20], it is also shown that (LW,max,LL,min)-VGS is in general not poly-
nomial time solvable. The authors show this by giving a family of examples
of monotonic simple games that have exponentially many more maximal losing
coalitions than minimal winning coalitions. The Hop-Skip-and-Jump algorithm
that we described above does actually solve (LW,max,LL,min)-VGS in polynomial
time, but only for the restriction to linear games.

Another set of voting game synthesis problems that we have not yet discussed
is the (Lweights,L2)-VGS case, for any choice of L2. In this case it always holds
that there is no polynomial time algorithm for the problem:

• When L2 = LW , consider the weighted voting game in which the quota
is 0. Now there are 2n minimal winning coalitions, so the output is expo-
nentially larger than the input. The case L2 = LL is analogous, but now
we take a weighted voting game in which the quota is larger than the sum
of all weights, so that there are no winning coalitions.

• When L2 = LW,min or L2 = LL,max, we see that the weighted voting game
in which every player’s weight is 1 and the quota is bn2 c has an exponential
number of minimal winning coalitions and maximal losing coalitions: any
coalition of size bn2 c is minimal winning, and any coalition of size bn2 c −
1 is maximal losing. There are respectively

(
n
bn/2c

)
and

(
n

bn/2c−1
)

such

coalitions (by Sperner’s theorem, see Theorem 5). By using Stirling’s

29

approximation, we can see that both these expressions are exponential in
n.

• When L2 = Lroof it follows directly from the proof of Theorem 1 that the
weighted voting game in which player i gets weight n− i+1 and the quota
is equal to n(n + 1)/4, has an exponential number of roofs. We do not
know whether there is also a weighted voting game with an exponential
number of ceilings.

That completes our study of the voting game synthesis problem. As said
before, table 1 summarizes all of the results that we have discussed and obtained.
It indicates for each variant of the voting game synthesis problem whether it is
solvable in polynomial time (P), or does not have a polynomial time algorithm
(EXP). We see that the complexities of three problems remain open:

• transforming roof-representations of canonical linear games into weighted
representations,

• transforming ceiling-representations of canonical linear games into
weighted representations,

• transforming weighted-representations of weighted voting games into ceil-
ing representations.

Table 1: Time complexities of the various (L1,L2)-VGS problems that we have
discussed in this section.

L2 → LW LW,min LL LL,max Lroof Lceil Lweights

L1 ↓
LW - P EXP P P P P

LW,min EXP - EXP EXP (P if linear) P P P
LL EXP P - P P P P

LL,max EXP EXP (P if linear) EXP - P P P
Lroof EXP EXP EXP EXP - EXP ?
Lceil EXP EXP EXP EXP EXP - ?

Lweights EXP EXP EXP EXP EXP ? -

5 Solving the power index voting game design
problem

From the existing literature on the power index voting game design problem, we
see that researchers have only considered heuristic methods for the case where

30

a weighted representation must be output. Even stronger: the weighted repre-
sentation is the only representation that current voting game design algorithms
internally work with. No other methods of representing a game have even been
considered.

A second fact that stands out is that (as of yet) an exact algorithm for voting
game design problems is not known. An interesting question that we could ask
is whether there even exists a method to exactly compute the optimal answer
to a voting game design problem. There exists an infinite number of weighted
representations for each weighted voting game (this follows from Proposition 1).
This makes it hard to derive an exact algorithm that is based on working with
weighted representations alone, since there is no clear finite set of weight vectors
that an algorithm can search through. Hence, it seems not that surprising that
no algorithm has yet been developed that exactly solves the problem.

Nevertheless, it turns out that we can fortunately answer this question pos-
itively: there do exist exact algorithms for voting game design problems. What
follows in this section, is a study of exact algorithms for some power index voting
game design problems. Of course, the most important among these problems is
the variant in which we must find a weighted voting game, and output it in a
weighted representation.

We approach the voting game design problem by devising an enumeration
method that generates every voting game relatively efficiently. First, we de-
vise a “naive” method that enumerates all monotonic simple games in doubly
exponential time (Section 5.1). Subsequently, in Section 5.2, for the case of
weighted voting games, we improve on this runtime exponentially by showing
how to enumerate all weighted voting games within exponential time. Although
the runtime of this enumeration method is still exponential, we will see that
the algorithm for the power index weighted voting game problem that results
from this has the anytime property: the longer we run it, the better the result
becomes. Also, we are guaranteed that the algorithm eventually finds the op-
timal answer. The enumeration method is based on exploiting a new specific
partial order on the class of weighted voting games. From a mathematical point
of view, this partial order is interesting in its own right.

Because we will be dealing with exponential algorithms, we make use of the
O∗-notation: A function f : R→ R is in O∗(g) for some g : R→ R if and only
if there is a polynomial p : R→ R such that f ∈ O(g ·p). This essentially means
that we make light of polynomial factors.

5.1 Monotonic simple game design

In this section we will consider the power index voting game design problem
for the class of monotonic simple games Gmon. There are four representation
languages that can be used for monotonic simple games:

• LW , the winning coalition listing;

• LL, the losing coalition listing;

31

• LW,min, the minimal winning coalition listing;

• LL,max, the maximal losing coalition listing.

From these languages, we obtain the following four different power in-
dex voting game design problems: (g,Gmon,LW)-PVGD, (g,Gmon,LL)-PVGD,
(g,Gmon,LW,min)-PVGD and (g,Gmon,LL,max)-PVGD. For g we can then choose
any power index. Of these problems, the cases of LW,min and LL,max are the
most interesting, because these languages both define the class of monotonic
simple games.

We do not know of any practical situations in which this problem occurs.
Therefore, we will only address this problem briefly and show for theoretical
purposes that the optimal answer is computable. We do this by providing an
exact algorithm.

An exact algorithm that solves (g,Gmon,LW,min)-PVGD or (g,Gmon,LL,max)-
PVGD must search for the antichain of coalitions that represents the game that
has a power index closest to the target power index. This antichain of coalitions
could either be a set of minimal winning coalitions, or a set of maximal losing
coalitions. In either way, a simple exact algorithm for this problem would be
one that considers every possible antichain, and computes for each antichain the
power index for the game that the antichain represents.

Algorithm 2 describes the process more precisely for the case that the rep-
resentation language is LW,min. We will focus on LW,min from now on, because
the case for LL,max is symmetric. An algorithm for the languages LW and LL
can be obtained by applying the transformation algorithm discussed in the last
section.

Algorithm 2 A straightforward algorithm for solving (g,Gmon,LW,min)-PVGD.
The input is a target power index ~p = (p1, . . . , pn). The output is an ` ∈ LW,min

such that g(G`) is as close as possible to ~p.

1: bestgame := 0 {bestgame keeps track of the best game that we have found,
represented as a string in LW,min.}

2: besterror := ∞ {besterror is the error of g(Gbestgame) from ~p, according to
the sum-of-squared-errors measure.}

3: for all ` ∈ LW,min do
4: Compute g(G`) = (g(G`, 1), . . . , g(G`, n)).
5: error :=

∑n
i=1(g(G`, i)− pi)2.

6: if error < besterror then
7: bestgame := `
8: besterror := error
9: end if

10: end for
11: return bestgame

From line 3, we see that we need to enumerate all antichains on the grand
coalition. As we already said in Section 4.1, the number of antichains we need to

32

enumerate is Dn, the nth Dedekind number. Because the sequence of Dedekind
numbers (Dn) quickly grows very large, line 3 is what gives the algorithm a very
high time complexity. The following bounds are known [23]:

2(1+c
′ log n

n)En ≥ Dn ≥ 2(1+c2
−n/2)En , (7)

where c′ and c are constants and En is the size of the largest antichain on an
n-set.4 Sperner’s theorem [47] tells us the following about En:

Theorem 5 (Sperner’s theorem).

En =

(
n

bn/2c

)
.

From Sperner’s theorem and Stirling’s approximation, we get

En ∈ Θ

(
2n√
n

)
. (8)

We conclude that Dn is doubly exponential in n. Algorithm 2 therefore achieves
a running time in O∗(22

n · h(n)), where h(n) is the time it takes to execute
one iteration of the for-loop in Algorithm 2. The function h is an exponential
function for all popular power indices (e.g., the Shapley-Shubik index and the
Banzhaf index) ([4, 14, 44]).

Remark 1. The following is an interesting related problem: Apart from the
fact that Dn is very large, we do not even know of an output-polynomial time
procedure to enumerate all antichains on a set of n elements: The simplest way
to enumerate antichains would be to enumerate each possible family of coalitions,
and check if that family is an antichain. Unfortunately, this method does not
run in output-polynomial time. In total, there are 22

n

families of coalitions.
Substituting the tight bound of (8) into the upper bound of (7), we get

Dn ≤ 2
(1+c′ log n

n)k 2n√
n (9)

for some constants k and c′.

Exponentiating both sides of the above inequality by
√
n

(1+c′ log n
n)k

, we see that

D

√
n

(1+c′ log n
n

)k

n ≤ 22
n

.

This means that the number of families of subsets on an n-set (i.e., the right
hand side of the above inequality) is super-polynomial in n relative to the
Dedekind number. This enumeration algorithm does thus not run in output-
polynomial time, even though the nth Dedekind number and the number of fam-
ilies of coalitions on a set of n elements, are both doubly-exponential. We leave
this as an open problem.

4Korshunov devised an asymptotically equal expression [25]:

Dn ∼ 2C(n)ec(n)2−n/2+n22−n−5−n2−n−4

with C(n) =
(n
bn/2c

)
and c(n) =

(n
bn/2c−1

)
. In [25], this expression is described as the number

of monotonic boolean functions, which is equal to the nth Dedekind number.

33

5.2 Weighted voting game design

Having given a simple but very slow algorithm for the PVGD-problem for the
very general class of monotonic simple games, we will now see that we can
do much better if we restrict the problem to smaller classes of simple games.
More precisely, we will restrict ourselves to the class of weighted voting games:
Gwvg. This class is contained in the class of linear games Glin, and therefore also
contained in the class of monotonic simple games Gmon. For this reason, we
can represent a game in Gwvg using any representation language that we have
introduced.

As has been said in Section 1.2, the known literature on voting game design
problems has focused on this specific variant, (g,Gvwg,Lweights)-PVGD, with f
being either the Banzhaf index or the Shapley-Shubik index. The methods
that have been proposed up until now are all local search methods without an
approximation guarantee. Here, we will give an exact algorithm for this problem
that runs in exponential time. What will turn out to make this algorithm
interesting for practical purposes, is that it can be used as an anytime algorithm:
we can stop execution of this algorithm at any time, but the longer we run it,
the closer the answer will be to the optimum. The advantage of this algorithm
over the current local search methods is obviously that we will not get stuck in
local optima, and it is guaranteed that we eventually find the optimal answer.

5.2.1 Preliminary considerations

Before proceeding with formally stating the algorithm, let us first address the
question of which approach to take in order to find an exact algorithm for
designing weighted voting games.

A possible approach to solve the (g,Gvwg,Lweights)-PVGD problem is to use
Algorithm 2 as our basis, and check for each monotonic simple game that we
find whether it is a weighted voting game. We do the latter by making use
of the Hop-Skip-and-Jump algorithm that we described in Section 4.3.1. This
indeed results in an algorithm that solves the problem, but this algorithm would
be highly unsatisfactory: firstly, we noted in the previous section that it is not
known how to enumerate antichains efficiently. Secondly, the class of weighted
voting games is a subclass of the class of monotonic simple games: in fact, we
will see that there are far less weighted voting games than monotonic simple
games.

The main problem we face for the (g,Gvwg,Lweights)-PVGD problem is the fact
that every weighted voting game G ∈ Gwvg has an infinite number of weighted
representations, i.e., strings in Lweights that represent G. This is easily seen
from Proposition 1: we can multiply the weight vector and the quota with any
constant in order to obtain a new weight vector that represents the same game.
On top of that, it is also possible to increase or decrease a player’s weight by
some amount without “changing the game.”

For this reason, it will be hard to find an exact algorithm that internally
works with weighted representations of weighted voting games. By intuition

34

one would suspect that an exact algorithm for this problem will probably have
to consider many different weighted voting games, but when doing so, it is hard
for such an algorithm to find out whether or not it has already considered a
game at some earlier point in time.

All of the local search methods that try to solve the PVGD-problem do use
the weighted representation internally, but if we want to solve this problem
exactly, we will have to resort to using other representations. In our case, we
will initially be working with LW,min, the minimal winning coalition listings,
because for each weighted voting game there is a unique representation as a
listing of minimal winning coalitions, instead of an infinite number, as is the
case for weighted representations.

5.2.2 A new structural property for the class of weighted voting
games

Let us now develop the necessary theory behind the algorithm that we will
propose. We will focus only on the class of canonical weighted voting games,
since for each non-canonical weighted voting game there is a canonical one that
can be obtained by merely permuting the players.

The algorithm we will propose is based on a new structural property that
allows us to enumerate the class of canonical weighted voting games efficiently:
We will define a new relation ⊆MWC and we will prove that for any number of
players n the class Gcwvg(n) forms a graded poset with a least element under
this relation.

We define the ⊆MWC-relation as follows.

Definition 27 (⊆MWC). Let G1 and G2 be any two monotonic simple games.
Let Wmin,1 and Wmin,2 be their respective sets of minimal winning coalitions.
Then, we say that G1 ⊆MWC G2 if and only if Wmin,1 ⊆Wmin,2.

The relation ⊆MWC on Gcwvg(n) forms a poset with some interesting proper-
ties, as the next theorem tells us. This theorem is crucial for our enumeration
algorithm.

Theorem 6. For each n, (Gcwvg(n),⊆MWC) is a graded poset with rank function

ρ : Gcwvg(n) → N
G 7→ |Wmin(G)|,

where Wmin(G) is the set of minimal winning coalitions of G. Moreover,
(Gcwvg(n),⊆MWC) has a least element of rank 0.

Informally, the theorem says the following: “Consider an arbitrary weighted
voting game of n players, and look at its list of minimal winning coalitions.
There is a minimal winning coalition in this list, such that if we remove that
coalition, we obtain a list of winning coalitions that represents yet another
weighted voting game of n players.”

35

Proof (Theorem 6). By the properties of the ⊆-relation, (Gcwvg(n),⊆MWC) is a
valid poset. In order to prove that the poset is graded under the rank function ρ
that is specified in the theorem, we will prove the following lemma constructively.

Lemma 4. For every game G ∈ Gcwvg(n) with a non-empty set Wmin as its
set of minimal winning coalitions, there is a coalition C ∈ Wmin and a game
G′ ∈ Gcwvg(n) so that Wmin \{C} is the set of minimal winning coalitions of G′.

From Lemma 4, the remaining part of the theorem automatically follows:
the game with no minimal winning coalitions is the only weighted voting game
with rank 0, and is the least element of the poset.

To prove Lemma 4, we first prove the following two preliminary lemmas.

Lemma 5. Let G = (N = {1, . . . , n}, v) be a weighted voting game, and let
` = [q;w1, . . . , wn] be a weighted representation for G. For each player i there
exists an ε > 0 such that for all ε′ < ε, the string `′ = [q;w1, . . . , wi+ ε′, . . . , wn]
is also a weighted representation for G.

Informally, this lemma is telling us that it is always possible to increase the
weight of a player by some amount without changing the game.

Proof. The string ` is a weighted representation for G, so for each winning
coalition D we have that w`(D) ≥ q, and for each losing coalition C we have
that w`(C) < q. If all coalitions containing player i are winning, then increasing
player i’s weight by whatever amount will not change the game: all coalitions
containing player i will still be winning, and all coalitions not containing player
i are unaffected by the increase in i’s weight.

If, on the other hand, there exist one or more losing coalitions containing
player i, then define Li as the set of losing coalitions containing player i. Now
consider (one of) the heaviest coalition(s) in Li: a coalition C ∈ Li for which it
holds that for all C ′ ∈ Li : w`(C

′) ≤ w`(C).
Because w`(C) < q, it must be that 0 < q−w`(C). If we increase wi in ` by

a number strictly between 0 and q−w`(C) to obtain `′, then no losing coalition
in G` becomes a winning coalition in G`′ . Moreover, all winning coalitions in
G` are also winning coalitions in G`′ , because we only increased the weight of
a player, and we did not change the quota.

Lemma 6. Let G = (N = {1, . . . , n}, v) be a weighted voting game. There exists
a weighted representation ` ∈ Lweights for G such that for all (C,C ′) ∈ (2N)2

with C 6= C ′, for which v(C) = v(C ′) = 1, it holds that w`(C) 6= w`(C
′).

Or, informally stated again: for every weighted voting game there exists a
weighted representation such that all winning coalitions have a different weight.

Proof. Let ` = [q;w1, . . . , wn] be a weighted representation for G for which
there exists a (C,C ′) ∈ (2N)2 with C 6= C ′ and v(C) = v(C ′) = 1, for which
w`(C) = w`(C

′). We will show how to obtain an `′ from ` such that G` = G`′

and w`′(C) 6= w`′(C
′′) for any coalition C ′′ ∈ 2N other than C with v(C ′′) = 1.

36

This process can then be repeated to obtain a weighted representation for G
under which the weights of all winning coalitions differ.

The procedure works as follows: it can be assumed w.l.o.g. that there is an
agent i in C but not in C ′. By Lemma 5, there is an ε > 0 such that `′ =
[q;w1, . . . , wi + ε′, . . . , wn] is a weighted representation for G for any 0 < ε′ < ε.
The string `′ is then a weighted representation with w`′(C) 6= w`′(C

′), so this
almost proves the lemma; we must only make sure that we adjust i’s weight
in such a way that C’s weight does not become equal to any other coalition’s
weight. This can indeed be done: Consider the set of winning coalitions Wi

containing agent i, and let D ∈ Wi be a coalition such that C 6= D and for
all D′ ∈ Wi \ {C}, we have w`(D) < w`(D

′). If D exists, we make sure that
0 < ε′ < min{w`(D)− w`(C), ε}, and then w`′(C) is different from w`′(C

′′) for
any C ′′ ⊆ N . w`(D)− w`(C) > 0, so this is possible. Otherwise, if D does not
exist, then it suffices to simply take ε′ strictly between 0 and ε.

Using Lemma 6, we can prove Lemma 4, which establishes Theorem 6.

Proof (Lemma 4). Let G = ({1, . . . , n}, v) be a canonical weighted voting game.
Let Wmin be its set of minimal winning coalitions and let ` = [q;w1, . . . , wn] be
a weighted representation for which it holds that all winning coalitions have a
different weight. By Lemma 6, such a representation exists. We will construct
an `′′ from ` for which it holds that it is a weighted representation of a canonical
weighted voting game with Wmin \ {C} as its list of minimal winning coalitions,
for some C ∈Wmin.

Let i be the highest-numbered player that is in a coalition in Wmin (i.e., i is
the least desirable non-dummy player). Let C ∈ Wmin be the minimal winning
coalition containing i for which it holds that ∀C ′ ∈Wmin : (C ′ 6= C ∧ i ∈ C)→
w`(C

′) > w`(C). Next, define `′ as [q;w1, . . . , wi − (w`(C) − q), . . . , wn]. Now
G`′ = G` = G and w`′(C) = q. Moreover, all coalitions in Wmin that contain
player i have a different weight under `′.

We now decrease i’s weight by an amount that is so small, that the only
minimal winning coalition that turns into a losing coalition is C. Note that under
`′, minimal winning coalition C is still the lightest minimal winning coalition
containing i. Let C ′ ∈ Wmin be the second-lightest minimal winning coalition
containing i. Obtain `′′ by decreasing i’s weight (according to `′) by a positive
amount smaller than w`′(C

′)−w`′(C). Coalition C will become a losing coalition
and all other minimal winning coalitions will stay winning. No new minimal
winning coalition is introduced in this process: suppose there would be such a
new minimal winning coalition S, then S contains only players that are at least
as desirable as i (the other players have weight 0). But then S would also be a
minimal winning coalition in the original game G`′ , which is a contradiction.

We conclude that `′′ is a weighted representation forG′, soG′ ∈ Gcwvg(n).

In Figure 1, (Gcwvg(4),⊆MWC) is depicted graphically. Note that this is not
precisely the Hasse diagram of the poset (Gcwvg(4),⊆MWC) (see the explanation

37

1001 0110

1000 0000111111101100

0100 1011101001110110

01110110 100101110011 01010010

00110001 01110110

0101

0011

1101

1011

0111

 Ø

Figure 1: Graphical depiction of (Gcwvg(4),⊆MWC). Each node in this graph
represents a canonical weighted voting game of four players. It should be read
as follows: each node has the characteristic vector of a minimal winning coalition
as a label. The set of minimal winning coalitions of a game that corresponds
to a certain node n in the graph, are those coalitions that are described by the
set Vn of vectors that is obtained by traversing the path from the top node to
n along the solid edges. The top node corresponds to the canonical weighted
voting game with zero minimal winning coalitions (i.e., every coalition loses).
The actual Hasse diagram of this poset can be obtained by changing the label
of each node n to Vn and including the solid edges as well as the dashed edge
in the diagram.

in the caption of this figure; the reason that we do not give the Hasse dia-
gram is because the Hasse diagram is not a very convenient way of representing
(Gcwvg(4),⊆MWC)).

Next, we show that (Gcwvg(n),⊆MWC) is not a tree for n ≥ 4. When we will
state our algorithm in the next section, it will turn out that this fact makes
things significantly more complicated.

Proposition 3. For n ≥ 4, (Gcwvg(n),⊆MWC) is not a tree.

Proof. We will give an example of a game in (Gcwvg(4),⊆MWC) that covers mul-
tiple games.5 A similar example for n > 4 is obtained by adding dummy players
to the example that we give here.

Consider the following weighted representation of a canonical weighted vot-
ing game over players {1, 2, 3, 4}:

` = [4; 3, 2, 2, 1].

The set of characteristic vectors Cmin,` of minimal winning coalitions of G` is

5In fact, from inspecting Figure 1 and the explanation given in its caption, it may already
be rather obvious to the reader which example game we intend.

38

as follows:

Cmin,` = {1100, 1010, 0110, 1001}.

Next, consider the weighted voting games `′ and `′′:

`′ = [4; 3, 1, 1, 1]

`′′ = [2; 1, 1, 1, 0],

with respectively the following sets of characteristic vectors of minimal winning
coalitions:

Cmin,`′ = {1100, 1010, 1001},
Cmin,`′′ = {1100, 1010, 0110}.

It can be seen that Cmin,`′ = Cmin,` \ {0110} and Cmin,`′′ = Cmin,` \ {1001}.

5.2.3 The algorithm

We will use the results from the previous section to develop an exponential-time
exact algorithm for (f,Gcwvg,LW,min)-PVGD, and also for (f,Gcwvg,Lweights)-
PVGD. The way this algorithm works is very straightforward: Just as in algo-
rithm 2, we enumerate the complete class of games (weighted voting games in
this case), and we compute for each game (that is output by the enumeration
algorithm) the distance from the target power index.

Recall that the problem with Algorithm 2 was that the enumeration proce-
dure is not efficient. For the restriction to weighted voting games, we are able
to make the enumeration procedure more efficient. We will use Theorem 6 for
this: The key is that it is possible to generate the minimal winning coalition
listing of canonical weighted games of rank i fairly efficiently from the minimal
winning coalition listing of canonical weighted voting games of rank i− 1.

The following theorem shows us how to do this. To state this theorem, we
will first generalize the truncation-operation from Definition 22.

Definition 28 (Right-truncation). Let S ⊆ N be a coalition on players N =
{1, . . . , n}. The ith right-truncation of S, denoted rtrunc(S, i), is defined as

rtrunc(S, i) =


S \ {P (S, i), . . . , n} if 0 < i ≤ |S|,
S if i = 0,

undefined otherwise,

where P (S, i) is the ith least desirable player among the players in S.

In effect, the ith right truncation of a coalition S (for i ≤ |S|) is the coalition
that remains when the i least desirable players are removed from S.

Theorem 7. For any n, let (G,G′) ∈ Gcwvg(n)2 be a pair of canonical weighted
voting games such that G is covered by G′ in (Gcwvg(n),⊆MWC). Let Wmin,G

39

and Wmin,G′ be the sets of minimal winning coalitions of G and G′ respectively,
and let Lmax,G and Lmax,G′ be the sets of maximal losing coalitions of G and
G′ respectively. There is a C ∈ Lmax,G and an i ∈ N with 0 ≤ i ≤ n such that
Wmin,G′ = Wmin,G ∪ {rtrunc(C, i)}.

Proof. Because G is covered by G′, by definition there is a coalition C ′ 6∈Wmin,G

such that Wmin,G′ = Wmin,G ∪ {C ′}. Coalition C ′ can not be a superset of a
coalition in Wmin,G, because then it would not be a minimal winning coalition
in G′. Therefore, C ′ is a losing coalition in G, and thus it must be a subset of a
coalition in Lmax,G. Suppose for contradiction that C ′ is not a right-truncation
of a maximal losing coalition C ∈ Lmax,G. So C ′ is a subset of C, but not a right
truncation: This would mean that in C ′, some player j from C is not present,
while at least one less desirable player k > j from C does remain in C ′. Then
there is a left-shift C ′′ of C ′ such that C ′′ is a subset of a coalition in Lmax,G:
In C ′′, the less desirable player k can be replaced by player j removed from C.
This means that C ′′ is a losing coalition in G, and is thus not a superset of
any coalition in Wmin,G, and hence C ′′ is also not a superset of any coalition
in Wmin,G′ . So C ′′ is a losing coalition in G′. But G′ is a canonical weighted
voting game, and hence also a canonical linear game. By the fact that canonical
linear games have the desirability relation 1 �D · · · �D n, C ′′ is a winning
coalition in G′ because it is a left-shift of the winning coalition C ′. This is a
contradiction.

From Theorem 7, it becomes apparent how to use (Gcwvg(n),⊆MWC) for
enumerating the class of n-player canonical weighted voting games. We start
by outputting the n-player weighted voting game with zero minimal winning
coalitions. After that, we repeat the following process: generate the LW,min-
representation of all canonical weighted voting games with i minimal winning
coalitions, using the set of canonical weighted voting games games with i − 1
minimal winning coalitions (also represented in LW,min). Once generated, we
have the choice to output the games in their LW,min-representation or in their
Lweights-representation, by using the Hop-Skip-and-Jump algorithm presented in
Section 4.3.1.

Generating the set of games of i minimal winning coalitions works as follows:
For each game of i−1 minimal winning coalitions, we obtain the set of maximal
losing coalitions by using the Hop-Skip-and-Jump algorithm. Next, we check for
each maximal losing coalition C whether there is a right-truncation of C that
we can add to the set of minimal winning coalitions, such that the resulting
set represents a weighted voting game. Again, testing whether a game is a
weighted voting game is done by using the Hop-Skip-and-Jump algorithm. If a
game turns out to be weighted, we can store it and output it.

There is one remaining problem with this approach: It outputs duplicate
games. If (Gcwvg(n),⊆MWC) were a tree, then this would not be the case, but by
Proposition 3 it is not a tree for any n ≥ 4. Therefore, we have to do a duplicates-
check for each weighted voting game that we find. We have to check whether we
did not already generate it. In principle, this seems not to be so difficult: For

40

each game that we find, sort its list of minimal winning coalitions, and check if
this list of coalitions already occurs in the array of listings of minimal winning
coalitions that correspond to games that we already found. The problem with
this is that the list can grow very large, so these checks are then very time- and
space-consuming operations.

We will therefore use a different method for doing this “duplicates-check”.
Suppose that we have found an n-player canonical weighted voting game G
of i minimal winning coalitions by adding a coalition C to a minimal winning
coalition listing of a canonical weighted voting game that we have already found.
We first sort G’s list of minimal winning coalitions. After that, we check for each
coalition C ′ that occurs before C in this sorted list, whether C ′’s removal from
the list results in a list of minimal winning coalitions of a canonical weighted
voting game. If there is such a C ′, then we discard G, and otherwise we keep
it. This way, it is certain that each canonical weighted voting game will be
generated only once.

Algorithm 3 gives the pseudocode for this enumeration method. Correctness

Algorithm 3 An enumeration algorithm for the class of n player canonical
weighted voting games. hopskipjump refers to the Hop-Skip-and-Jump algo-
rithm, see Algorithm 1.

1: {games[i] will be the list of canonical weighted voting games that have i
minimal winning coalitions. The value of i can not exceed n

bn/2c by Theorem

5. The games are represented in language LW,min. The game games[0] is
our starting point. First we output the n-player canonical weighted voting
game with zero minimal winning coalitions.}

2: Output [1; 0, . . . , 0].
3: games[0] := {∅}
4: for i := 1 to

(
n
bn/2c

)
do

5: for all Wmin ∈ games[i− 1] do
6: {Obtain the maximal losing coalitions:}
7: Lmax := hopskipjump(Wmin)
8: for all C ∈ Lmax do
9: for j := 0 to n do

10: if isweighted(Wmin ∪ rtrunc(C, j)) then
11: if Wmin∪ rtrunc(C, j) passes the duplicates-check (see discussion

above) then
12: Output the weighted representation of the voting game with

minimal winning coalitions Wmin ∪ rtrunc(C, j)).
13: Append Wmin ∪ rtrunc(C, j)) to games[i].
14: end if
15: end if
16: end for
17: end for
18: end for
19: end for

41

of the algorithm follows from our discussion above. We will now analyze the
time-complexity of the algorithm.

Theorem 8. Algorithm 3 runs in O∗(2n
2+2n) time.

Proof. Lines 5 to 18 are executed at most once for every canonical weighted
voting game. From Theorem 5 we know that any list of minimal winning coali-
tions has fewer than

(
n
bn/2c

)
elements. So by the runtime of the Hop-Skip-and-

Jump algorithm, line 7 runs in time O
(
n
(

n
bn/2c

)2
+ n3

(
n
bn/2c

))
= O(n2

√
n2n).

Within an iteration of the outer loop (line 4), lines 10 to 15 are executed at most
n
(

n
bn/2c

)
= O(

√
n2n) times (because Lmax is also an antichain, so Sperner’s the-

orem also applies for maximal losing coalitions). The time-complexity of one
execution of lines 10 to 15 is as follows.

• At line 10 we must solve a linear program, taking time O
(
n4.5

(
n
bn/2c

))
=

O(n42n) using Karmarkar’s interior point algorithm [21].

• At line 11, we must execute the duplicates-check. This consists of check-
ing for at most

(
n
bn/2c

)
sets of minimal winning coalitions whether it is

weighted. This involves running the Hop-Skip-and-Jump algorithm, fol-
lowed by solving a linear program. So in total this takes O(n3

√
n22n).

• Lines 12 and 13 take linear time.

Bringing everything together, we see that a single pass through lines 6 to 16 costs
us O(n423n) time. As said, these lines are executed at most |Gcwvg(n)| times.

We know that |Gwvg(n)| ∈ O(2n
2−n) (see Corollary 2 in the previous section),

and of course |Gcwvg(n)| < |Gwvg(n)|, so lines 6 to 17 are executed at most

O(2n
2−n) times, and therefore the runtime of the algorithm is O(2n

2+2nn4) =

O∗(2n
2+2n).

Although the runtime analysis of this algorithm that we gave is not very
precise, the main point of interest that we want to emphasize is that this method
runs in exponential time, instead of doubly exponential time. We can also show
that this algorithm runs in an amount of time that is only polynomially greater
than the amount of data output. This implies that Algorithm 3 is essentially
the fastest possible enumeration algorithm for canonical weighted voting games,
up to a polynomial factor.

Theorem 9. Algorithm 3 runs in output-polynomial time, i.e., a polynomial in
the number of bits that Algorithm 3 outputs.

Proof. Lines 5 to 18 are executed less than |Gcwvg(n)| times. From 5, we have

as a lower bound that |Gcwvg(n)| ∈ Ω(2n
2(1− 10

log n)/n!2n). One execution of lines
6 to 16 costs O(n423n) time, and thus one iteration takes

O(n423n) ∈ O
(

2n
2(1− 10

log n)/n!2n
)
∈ O(|Gcwvg(n)|)

time. We conclude that the algorithm runs in O(|Gcwvg(n)|2) time.

42

Remark 2. We can not give a very sharp bound on the space complexity of
Algorithm 3, because we do not know anything about the maximum cardinality
of an antichain in (Gcwvg(n),⊆MWC). However, it can be seen that it is also
possible to generate the games in this poset in a depth-first manner, instead of a
breadth-first manner like we do now. In that case, the number of space that needs
to be used is bounded by the maximum length of a chain in (Gcwvg(n),⊆MWC).
This is a total amount of O(2n√

n
) space.

Now that we have this enumeration algorithm for weighted voting games,
we can use the same approach as in algorithm 2 in order to solve the
(f,Gcwvg,Lweights)-PVGD problem: for each game that is output, we simply
compute the power index of that game and check if it is closer to the optimum
than the best game we have found up till that point.

5.3 Improvements and optimizations

Algorithm 3 is in its current state not that suitable for solving the
(f,Gcwvg,Lweights)-PVGD problem in practice. In this section we will make sev-
eral improvements to the algorithm. This results in a version of the enumer-
ation algorithm of which we expect that it outputs canonical weighted voting
games at a steady rate. We will see that this gives us a practically applicable
anytime-algorithm for the (β,Gcwvg,Lweights)-PVGD problem for small numbers
of players.

Section 5.3.1 shows how we can make the system of linear inequalities (6)
smaller. In Section 5.3.2, we will improve Theorem 7 in order to more quickly
find new potential minimal winning coalitions to extend our weighted voting
games with. Lastly, in Section 5.3.3 we give an output-polynomial time algo-
rithm for enumerating all ceiling coalitions, given a set of roof coalitions.

It is important to note that these three improvements combined eliminate
the need to keep track of the complete lists of minimal winning coalitions and
maximal losing coalitions of the weighted voting games that we enumerate.
Instead, it suffices to only keep track of the sets of roof coalitions and ceiling
coalitions.

5.3.1 An improved linear program for finding the weight vector of
a weighted voting game

When finding a weight vector for a weighted voting game of which we obtained
the minimal winning coalitions and maximal losing coalitions, we proposed in
the previous section to do this by solving the system of inequalities (6). In [42]
it is noted that we can make this system much more compact, as follows.

First of all we can reduce the number of inequalities in our system by ob-
serving that a minimal winning coalition C which is not a roof, always has a
higher total weight than at least one roof, in a canonical weighted voting game.
This is because C is a superset of a left-shift of some roof. In the same way, a
maximal losing coalition which is not a ceiling, always has a lower total weight

43

than at least one ceiling. Therefore, adding the inequalities w1 ≥ · · · ≥ wn to
our system of inequalities (6) allows us to remove a lot of other inequalities from
(6), because it now suffices to only make sure that out of all minimal winning
coalitions, only the roofs have a higher weight than q; and out of all maximal
losing coalitions, only the ceilings have a lower total weight than q.

Secondly, we can reduce the number of variables (weights) in (6) by noting
that if two players i and i+ 1 are equally desirable, then wi = wi+1. Therefore,
we need only one representative variable from each set D of players for which it
holds that that

1. the players in D are pairwise equally desirable, and

2. any player in N \D is strictly less or strictly more desirable than a player
in D.

By reducing the number of inequalities and variables in this way, we can in most
cases drastically decrease the time it takes to find a solution to (6).

5.3.2 A better way of finding new minimal winning coalitions

Theorem 7 allows us to find potential minimal winning coalitions that we can
extend our weighted voting games with. We will now see that we do not really
need to consider every right-truncation of every maximal losing coalition: In
fact, we only need to look at ceiling coalitions.

Theorem 10. For any n, let (G,G′) ∈ Gwvg(n)2 be a pair of weighted vot-
ing games such that G is covered by G′ in (Gcwvg(n),⊆MWC). Let Wmin,G and
Wmin,G′ be the sets of minimal winning coalitions of G and G′ respectively,
and let Lceil,G and Lceil,G′ be the sets of ceiling coalitions of G and G′ re-
spectively. There is a C ∈ Lceil,G and an i ∈ N with 0 ≤ i ≤ n such that
Wmin,G′ = Wmin,G ∪ rtrunc(C, i).

Proof. Let Wmin,G and Wmin,G′ be the sets of minimal winning coalitions of
games G and G′ respectively. Because G is covered by G′, by definition there is
a coalition C 6∈ Wmin,G such that Wmin,G′ = Wmin,G ∪ C. By Theorem 7, C is
a right-truncation of a coalition in Lmax,G. Suppose for contradiction that C is
not a right-truncation of a ceiling in Lceil,G. Then there is a ceiling C ′ ∈ Lceil,G

such that C is a subset of a right-shift of C ′, and there is a left-shift C ′′ of C,
C ′′ 6= C, such that C ′′ is also a subset of a right-shift of C ′. Coalition C ′′ is
not a superset of Wmin,G because C ′ is losing in G, and C ′′ is not a superset of
C either, because C ′′ is a left-shift of C and is unequal to C. So it follows that
C ′′ is a losing coalition in G′.

But G′ is a canonical weighted voting game, so the desirability relation
1 �D · · · �D n is satisfied. Because C ′′ is a left-shift of C, and C is winning in
G′, it follows that C ′′ is a winning coalition in G′. This is a contradiction.

44

5.3.3 An output-polynomial time algorithm for obtaining the
ceiling-list from the roof-list

In Section 4.3.2, we derived that the (Lroof ,Lceil)-VGS problem does not have
a polynomial time algorithm because the output may be exponentially sized in
the input. Nevertheless, it is certainly interesting to try to come up with an
as efficient as possible an algorithm for this problem, considering that such an
algorithm can be used in combination with the improvements of the previous
section for finding weight vectors for weighted voting games. If we have a good
algorithm for (Lroof ,Lceil)-VGS, then using that algorithm is certainly preferred
to using the Hop-Skip-and-Jump algorithm (described in Section 4.3.1), because
in a canonical linear game there are always fewer roof coalitions than minimal
winning coalitions, and fewer ceiling coalitions than maximal losing coalitions.

We will now present an output-polynomial time algorithm for (Lroof ,Lceil)-
VGS. For this, we need the notion of a prefix.

Definition 29 (i-prefix, prefix). Let S be a coalition on N = {1, . . . , n}. The
i-prefix of S is the set S′ = S∩{1, . . . , x} where x is the agent such that |S′| = i.
If for some i a coalition S is an i-prefix of another coalition S′, then we say that
S is a prefix of S′.

The algorithm that we present is based on the following observation.

Theorem 11. Let G ∈ Gclin(n) be a canonical linear game on players N =
{1, . . . , n}, let S ⊆ N be a coalition, let a be the least desirable player of S, and
let C be the set of ceilings of G. Then S is a |S|-prefix of a ceiling C ∈ C if and
only if there exists a number i ≥ 0 such that

1. S ∪ {a+ 1, . . . , a+ i} is winning in G or a ceiling,

2. and S ∪ {n− i+ 1, . . . , n} is losing in G.

Proof. (⇒) Let S be a |S|-prefix of a ceiling C ∈ C. In case S = C, the proof is
trivial. In case S 6= C then the coalition S ∪ {a+ 1, . . . , a+ |C| − |S|} is either
equal to C or a left-shift of C (hence winning), and S∪{n−|C|+ |S|+1, . . . , n}
is either equal to C or a left-shift of C (hence losing in both cases).

(⇐) Let S be a coalition and let i be a number such that S∪{a+1, . . . , a+1}
is winning or a ceiling, and S ∪ {n− i+ 1, . . . n} is losing. There are two cases:
S ∪ {a+ 1, . . . , a+ i} is either winning or a ceiling. In the latter case it follows
immediately that S is a |S|-prefix of a ceiling, namely of S itself, so we assume
that S ∪ {a+ 1, . . . , a+ i} is winning. From the fact that S ∪ {n− i+ 1, . . . n}
is losing, it follows that there must be a left-shift S′ of {a+ 1, a+ i} such that
S ∪ S′ is losing and all direct left-shifts of S ∪ S′ are winning. S ∪ S′ can only
be a prefix of a ceiling and therefore S is also a prefix of a ceiling.

The algorithm we will give, uses Theorem 11 to find and extend the prefixes
of ceiling coalitions. Once it has found the j-prefix of a ceiling C ∈ C(i), there
are at most n coalitions that can be the (j+1)-prefix of C. Theorem 11 provides
us with a fast method to test whether a coalition is a prefix of a ceiling.

45

Algorithm 4 An algorithm that outputs all ceiling coalitions of a canonical
linear game on players N = {1, . . . , n} that is represented as a list of roof
coalitions. The input is a string ` ∈ Lroof . For any i with 0 ≤ i ≤ n, the
variable Pi represents the prefixes of cardinality i of ceiling coalitions.

1: P0 := {∅} {For any coalition C, the empty coalition is a 0-prefix of C.}
2: for i = 1 to n do
3: Using Pi−1, generate all prefixes S of ceilings such that |S| = i, and store

them in Pi
4: output all ceilings in Pi and remove them from Pi.
5: end for
6: return

The (high level) pseudocode for the algorithm is given in Algorithm 4. The
correctness of this algorithm is obvious. We will now show that it can be im-
plemented to run in output-polynomial time.

Theorem 12. Let ` ∈ Lroof(n) be a list of roofs of a canonical linear game
G` ∈ Gclin(n) on players N = {1, . . . , n}. Let C be the set of all ceilings of G`.
On input `, Algorithm 4 runs in time O(n3 · |`| · |C|) and is hence an output-
polynomial time algorithm.

Proof. Line 3 can be implemented by applying Theorem 11: during iteration j
of the for-loop this involves checking for each coalition C ∈ Pj (let a be C’s least
desirable player), whether there is an i such that C ∪{a+1, . . . a+ i} is winning
or a ceiling and C ∪ {a − i + 1, . . . , i} is losing. Pj is the set of all prefixes of
ceiling coalitions, so |Pj | ≤ C.

Checking whether a coalition is winning, losing, or a ceiling, are easy oper-
ations and take time at most O(n2 · |`|): They all require scanning the list of
roofs ` and checking whether or not the coalition is a left-shift of one of the
roofs. Checking whether a coalition is a ceiling additionaly requires checking
whether all (at most n) direct left-shifts are winning. The for loop is executed
n times.

Bringing everything together, we end up with a total runtime of O(n3 · |`| ·
|C|).

6 Experiments

Before we turn to the results of some relatively large scale experiments, let
us visualize the results for just n = 3 players, because we can easily depict
these in two dimensions. Figure 2 shows the 3-player simplex, with the vertices
labeled by the player numbers. Because we focus on canonical weighted voting
games, only the shaded part of the simplex contains games. These games are
represented as dark dots. There are four dots, but, as we shall see, there are
ten 3-player games. Two of these are degenerate, namely the game with no
winning coalitions, and the game in which the empty set is the minimal winning

46

1

2 3

(1, 0, 0)

(½, ½, 0)

(⅓, ⅓, ⅓)

(⅗, ⅕, ⅕)

[999: 1000, 0, 0]

[999: 1000, 500, 500]

[999: 998, 2, 2]

[999: 1000, 1000, 0]

[999: 500, 500, 0]
[999: 1000, 1000, 1000]

[999: 500, 500, 500]

[999: 333⅓, 333⅓, 333⅓]

Figure 2: The games on three players, and their power indices.

coalition, so all coalitions are winning. Weighted representations for the other
eight games are given on the right in the figure. There are only four distinct
power indices corresponding to these games, they are indicated on the left.

In the remainder of this section, we will discuss the results obtained from
some experiments that we have performed by implementing Algorithm 3, and
the algorithm for (β,Gwvg,Lweights)-PVGD that directly follows from it (where β
denotes the normalized Banzhaf index). There are various reasons for perform-
ing these experiments: First of all, we are interested in running our algorithm for
some small choices of n to see at what point our algorithm becomes intractable.
A second goal of these experiments is to obtain some interesting statistics about
the class of canonical weighted voting games (e.g., the number of weighted voting
games on n players). Thirdly, it we are interested in obtaining some statistics
on the average optimal attainable error on a random instance, when we let the
algorithm run to completion for small n. Lastly, we want to know about the
error convergence rate of the algorithm for larger values of n, when solving the
problem to optimality is intractable. More precisely, we want to gain insight in
the following:

• the practical time-performance of the algorithm (for small n);

• the average optimal attainable error on random instances (for small n);

• the error-convergence behaviour of the algorithm (for larger n, when it
becomes intractable to run the algorithm to completion);

• obtaining the exact number of weighted voting games of n players, in order
to compare this to the theoretical bounds;

• obtaining the number of weighted voting games for fixed numbers of play-
ers, as a function of the number of minimal winning coalitions.

47

In Section 6.1 we give some important information about the implementation
of our algorithm. Section 6.2 describes our experiments. Lastly, in Section 6.3
we present the results of the experiments.

6.1 Implementation details

We have implemented Algorithm 3 together with all of the optimization tricks
described in Section 5.3. The programming language that we used is C.

Execution of the algorithm encompasses solving a large number of linear
programs. For doing this, we make use of the GNU Linear Programming Toolkit
[34]. This is an open-source C library.

As said in the introduction of this section, our implementation solves the
(β,Gwvg,Lweights)-PVGD problem, where β is the normalized Banzhaf index.
This means that for each weighted voting game that is output by our enu-
meration algorithm, we must invoke a procedure for computing the normalized
Banzhaf index. The algorithm we use for this is simply the naive brute-force
approach.

Two variants of the enumeration algorithm have been implemented: The
first one uses the standard breadth-first approach, that sequentially generates
all weighted voting games of i minimal winning coalitions, for increasing i. The
second one uses the depth-first method mentioned in Remark 2 (in Section
5.2.3).

6.2 Experiments

We perform our experiments on a computer with an Intel Core2 Quad Q9300
2.50GHz CPU with 2GB SDRAM Memory. The operating system is Windows
Vista. We compiled our source code using gcc 3.4.4, included in the DJGPP
C/C++ Development System. We compiled our code with the –O3 compiler
flag.

For doing the experiments, we need input data: instances that we use as
input for the algorithm. An instance is a target banzhaf index for a canonical
weighted voting game, i.e., a point p in the unit simplex such that pi ≥ pj if
i < j, for all i, j between 1 and n. Our instances therefore consist of samples of
such vectors that were taken uniformly at random. These samples are generated
according to the procedure described in [46].

The experiments are as follows:

Experiment 1: For up to 8 players, we measured the CPU time it takes for
the enumeration algorithm to output all games, for both the breadth-first
and the depth-first method. From these experiments we obtain the exact
number of canonical weighted voting games of n players for all n between
1 and 8. We also measure the additional runtime that is necessary when
we include the computation of the Banzhaf index in the algorithm.

Experiment 2: We use the enumeration algorithm to compute for all n with
1 ≤ n ≤ 8 and all m with 0 ≤ m ≤

(
n
bn/2c

)
, the exact number of canonical

48

weighted voting games on n players with m minimal winning coalitions.

Experiment 3: For n between 1 and 7, we compute for 1000 random instances
the average optimal error. That is, the average error that is attained out of
1000 random instances (i.e., uniform random vectors in the n-dimensional
unit-simplex), when the algorithm is allowed to run to completion on
these instances. We also report the worst error that is attained among
these 1000 instances. The error function we use is the square root of the
sum of squared errors, as stated in Definition 17. The reason for using this
specific error measure is because it has a nice geometric interpretation: it
is the Euclidean distance between the target (input) vector and the closest
point in the unit simplex that is a normalized Banzhaf index of a weighted
voting game.

Experiment 4: For n ∈ {10, 15, 20}, we measure the error-convergence be-
haviour of the algorithm: the Euclidean error as a function of the amount
of time that the algorithm runs. We again do this experiment for both
the breadth-first and the depth-first version of the algorithm. For each
of these three choices of n, we perform this experiment for 10 random
instances, and for each instance we allow the algorithm to run for one
minute.

6.3 Results

For Experiment 1, the runtimes are given in Figure 3. From the graph we
see that for all four versions of the algorithm, there is relatively not much dif-
ference in the runtimes. This means that the inclusion of the Banzhaf index
computation procedure does not add a significant amount of additional run-
time. Nonetheless, one should not forget that these results are displayed on
a logarithmic scale. When we compare the runtimes for 8 players with each
other for example, we see that the runtime of the depth-first search version
without Banzhaf index computation is 21 minutes, while it is 26 minutes when
we include the computation of the Banzhaf index into the algorithm. When we
use the breadth-first search approach instead, the runtime is only 16 minutes.
In general, the breadth-first search method is a lot faster than the depth-first
search method.

The number of canonical weighted voting games on n players, for 1 ≤ n ≤ 8,
is displayed in Figure 4. Even for these small values of n, we can already clearly
see the quadratic curve of the graph on this log-scale, just as the theoretical
bounds from Section 4.1 predict. In Table 2, we state the exact numbers of
canonical weighted voting games on n players as numbers, for 1 ≤ n ≤ 8.

For Experiment 2, the results are displayed in Figure 5. Note that on the
vertical axis we have again a log-scale. We see that for each of these choices
of n, most of the canonical weighted voting games have a relatively low num-
ber of minimal winning coaltions relative to the maximum number of winning
coalitions

(
n
bn/2c

)
.

49

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8

R
un

tim
e

of
 a

lg
or

ith
m

 (
se

co
nd

s)

Number of players

BFS enumeration + Banzhaf computation
BFS enumeration

DFS enumeration + Banzhaf computation
DFS enumeration

Figure 3: Runtimes of Algorithm 3 for 1 to 8 players, for both the breadth-
first search and the depth-first search variant of the algorithm, both with and
without the Banzhaf index computation procedure included.

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8

N
um

be
r

of
 c

an
on

ic
al

 w
ei

gh
te

d
vo

tin
g

ga
m

es

Number of players

Figure 4: The number of canonical weighted voting games on n players, for
1 ≤ n ≤ 8.

50

Table 2: Exact values for the number of weighted voting games on n players,
for 1 ≤ n ≤ 8.

n |Gcwvg(n)|
1 3
2 5
3 10
4 27
5 119
6 1113
7 29375
8 2730166

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 c

an
on

ic
al

 W
V

G
s

w
ith

 m
 M

W
C

s

Number of minimal winning coalitions m

of 1 player CWVGs with m MWCs
of 2 player CWVGs with m MWCs
of 3 player CWVGs with m MWCs
of 4 player CWVGs with m MWCs
of 5 player CWVGs with m MWCs
of 6 player CWVGs with m MWCs
of 7 player CWVGs with m MWCs
of 8 player CWVGs with m MWCs

Figure 5: The number of canonical weighted voting games (y-axis) on n players,
for 1 ≤ n ≤ 8, with m minimal winning coalitions (x-axis).

51

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7

E
rr

or
 (

E
uc

lid
ea

n
di

st
an

ce
)

Number of players

Maximal Euclidean error out of 1000 random instances
Average Euclidean error out of 1000 random instances

Figure 6: Optimal Euclidean error of 1000 random n player instances, for 1 ≤
n ≤ 7. The error bars indicate one standard deviation.

The Euclidean errors computed in Experiment 3 are displayed in Figure 6.
We see that the errors decrease as n gets larger. We also see that the worst case
optimal error can be much worse than the average case. We want to emphasize
that these are results computed over only 1000 random instances. Therefore,
these worst case optimal errors serve only as a lower bound for the worst case
optimal error over all possible instances.

For Experiment 4, we see no possibility for a meaningful or interesting vi-
sualisation of its results. Experiment 4 confirms to us that this enumeration-
approach of solving PVGD problems quickly becomes impractical as n gets
larger. Our hopes were that the anytime-property of the algorithm would ac-
count for a quick convergence to a low (but not necessarily optimal) error; even
for large values of n. It turns out that this is not the case. In all cases (i.e.,
for n = 10, n = 15 and n = 20, for all of the 10 random instances), the error-
convergence is high during approximately the first second that the algorithm
runs. After that, the frequency by which improvements in the error occur,
seems to decrease exponentially. Moreover, it holds without exception that af-
ter the first second, the improvements are only tiny. The average euclidean
errors obtained after letting the algorithm run for one minute are as follows:

• For n = 10, after one minute, the average euclidean error over the 10
instances was 0.055234 for the breadth-first variant, and 0.1705204 for the
depth-first variant.

• For n = 15, after one minute, the average euclidean error over the 10

52

instances was 0.0983193 for the breadth-first variant, and 0.2018266 for
the depth-first variant.

• For n = 20, after one minute, the average euclidean error over the 10
instances was 0.1475115 for the breadth-first variant, and 0.2399217 for
the depth-first variant.

From this, we see that for n = 10, the breadth-first search method still gives
us reasonably nice results within a minute, but when we increase the number of
players to 15 and 20, we see that the results quickly get worse. Especially when
we compare the results to the expected average optimal error (that we obtain
by extrapolation of the results of Experiment 3).

Another interesting observation is that these errors for the depth-first variant
are much worse than the errors for the breadth-first variant. An explanation for
this is that the Banzhaf indices of the generated games are scattered more evenly
across the unit simplex in the case of the breadth-first variant: We expect the
depth-first variant to enumerate a lot of games for which the Banzhaf indices
are close to each other, due to the cover relation of (Gcwvg(n),⊆MWC).

A final comment we would like to make is that when n gets larger, the output
rate of the enumeration algorithm goes down. Of course, this is explained by
the fact that many of the operations in the algorithm must now be performed on
games with more players. Especially this slowdown is caused by the computation
of the Banzhaf index that is done for every game. In our current implementation,
computing the Banzhaf index takes time exponential in n.

In general, our current implementation is crude: many procedures in this
implementation are still far from optimal. We expect that it is possible to attain
a significant improvement in the performance of this algorithm by optimizing
the code.

7 Conclusions & future work

In this paper, we have derived the first exact algorithm for solving power index
weighted voting game design problems. We have shown that such a problem
is always solvable for any class of games, but the guarantee on the worst-case
runtime that we can give is unfortunately only doubly exponential. For the im-
portant case of weighted voting games, we have derived an anytime method that
runs in exponential time, and we have developed various additional techniques
that we can use to speed this algorithm up.

This algorithm is based on an enumeration procedure for the class of
weighted voting games: it works by simply enumerating every game, and verify-
ing for each game whether it lies closer to the target power index than the games
that we encountered up until that point. For this reason, the algorithm has the
anytime-property: as we run this algorithm for a longer period of time, the
algorithm enumerates more games, and the quality of the solution will improve.

Also, due to the genericity of enumeration, we can use our algorithm not
only to solve power index voting game design problems: we can use it to solve

53

any other voting game design problem as well. The only thing we have to adapt
is the error-function of the algorithm (i.e., the part of the algorithm that checks
the property in question for each of the games that the enumeration procedure
outputs); the enumeration procedure does not need to be changed.

Finally, we implemented a simple, non-optimized version of the algorithm
in order to do some experiments and obtain some statistical information about
the class of weighted voting games. We have computed some exact values for
the number of canonical weighted voting games on n players with m minimal
winning coalitions, for small choices of n, and every m. We have seen that even
for small n, it is already obvious from the experimental results that the number
of weighted voting games grows quadratically on an exponential scale, precisely
according to the known asymptotic bounds.

We measured the runtime of the algorithm, and observed that running the
algorithm to completion becomes intractable at approximately n = 10 (on the
computer that we performed the experiments with, we estimate that it takes a
month to run the algorithm to completion for n = 9). Lastly, for larger values
of n, our algorithm (or at least our current implementation) is of little use for
practical purposes because the error does not converge as quickly as we would
want to. We think that we can attain a significant speedup by optimizing the
code, and by using better linear programming software.

Note that in most real-life examples, the number of players in a weighted
voting game is rather small: usually 10 to 50 players are involved. For future
work, the goal is to get this algorithm to yield good results within a reasonable
amount of time when the number of players is somewhere in this range. We
believe that there is still a lot of room for improving the proposed algorithm,
and our current implementation of it.

We think that it will be interesting to study in more depth the partial order
we introduced in this paper, both from a from a computational perspective and
from a purely mathematical perspective. One possible prospect is the following.
With regard to weighted voting game design problems, we suspect that it is
possible to prune a lot of “areas” in this partial order: Careful analysis of the
partial order and its properties might lead to results that allow us to construct an
enumeration algorithm that a priori discards certain (hopefully large) subsets
of weighted voting games.

We are moreover interested to see how an algorithm performs that searches
through the partial order in a greedy manner, or what will happen if we use
some other (possibly heuristic) more intelligent methods to search through the
partial order. We wonder if it is possible to use such a search method while
still having an optimality guarantee or approximation guarantee on the quality
of the solution. Lastly, we can also consider the ideas presented here as a
postprocessing step to existing algorithms. In other words, it might be a good
idea to first run the algorithm of [18] or [5] in order to obtain a good initial
game. Subsequently, we can try to search through the “neighborhood” of the
game to find improvements, according to the partial order introduced in this
paper, .

Lastly, some related questions for which it would be interesting to obtain

54

an answer are about the computational complexity of the power index voting
game design problem, and also about the polynomial-time-approximability of
the problem. The runtime of our current algorithm implies that the problem is
in EXPTIME for the case of weighted voting games, but it may be possible to
characterize its computational complexity more precisely. We do not expect the
problem to be complete for EXPTIME, but on the other hand, at the moment
we do not have any ideas on how to prove hardness for this problem for any
complexity class whatsoever. It seems a challenge to come up with a polynomial-
time reduction from any known computational problem that is hard for any
nontrivial complexity class. Also, on questions related to approximability of
PVGD problems we currently do not have an answer.

References

[1] E. Algaba, J. M. Bilbao, J. R. Fernández Garćıa, and J. J. López. Com-
puting power indices in weighted multiple majority games. Mathematical
Social Sciences, 46:63–80, 2003.

[2] N. Alon and P. H. Edelman. The inverse Banzhaf problem. Social Choice
and Welfare, June 2009.

[3] P. Antti. Voting power and power index website: a voting power WWW-
resource including powerslave voting body analyser. WWW, april 2002.
University of Turku, Finland. URL: http://powerslave.val.utu.fi/

(last accessed on April 10, 2012).

[4] H. Aziz. Complexity of comparison of influence of players in simple games.
In Proceedings of the 2nd International Workshop on Computational Social
Choice (COMSOC-2008), pages 61–72, 2008.

[5] H. Aziz, M. Paterson, and D. Leech. Efficient algorithm for designing
weighted voting games. In Proceedings of the IEEE Computer Society,
11th IEEE International Multitopic Conference, 2007.

[6] Y. Bachrach, V. Markakis, A. D. Procaccia, J. S. Rosenschein, and
A. Saberi. Approximating power indices. In Proceedings of The Seventh
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), pages 943–950, 2008.

[7] Y. Bachrach and J. S. Rosenschein. Computing the Banzhaf power index in
network flow games. In AAMAS ’07: Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems, pages 1–7,
New York, NY, USA, 2007. ACM.

[8] Y. Bachrach and J. S. Rosenschein. Power and stability in connectivity
games. In The Seventh International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Estoril, Portual, May
2008.

55

http://powerslave.val.utu.fi/

[9] J. Bilbao, J. Fernández, A. Losada, and J. López. Generating functions for
computing power indices efficiently. TOP: An Official Journal of the Span-
ish Society of Statistics and Operations Research, 8(2):191–213, December
2000.

[10] S. F. Brams and P. J. Affuso. Power and size: a new paradox. Theory and
Decision, 7:29–56, 1976.

[11] B. de Keijzer. On the design and synthesis of voting games : exact solutions
for the inverse problem. Master’s thesis, Delft University of Technology,
2009.

[12] B. de Keijzer, T. Klos, and Y. Zhang. Enumeration and exact design of
weighted voting games. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’10, pages 391–
398, Richland, SC, 2010. International Foundation for Autonomous Agents
and Multiagent Systems.

[13] R. Dedekind. Über Zerlegungen von Zahlen durch ihre grössten gemein-
sammen Teiler. Gesammelte Werke, 1:103–148, 1897.

[14] X. Deng and C. H. Papadimitriou. On the complexity of cooperative solu-
tion concepts. Math. Oper. Res., 19(2):257–266, 1994.

[15] E. Einy. The desirability relation of simple games. Mathematical Social
Sciences, 10(2):155–168, 1985.

[16] P. Faliszewski and L. Hemaspaandra. The complexity of power-index com-
parison. In In Proceedings of the 4th International Conference on Algorith-
mic Aspects in Information and Management, pages 177–187. Springer-
Verlag Lecture Notes in Computer Science, june 2008.

[17] S. S. Fatima, M. Wooldridge, and N. R. Jennings. A randomized method
for the Shapley value for the voting game. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2007), pages 955–962, Honolulu, Hawaii, May 2007.

[18] S. S. Fatima, M. Wooldridge, and N. R. Jennings. An anytime approxi-
mation method for the inverse Shapley value problem. In Proceedings of
the Seventh International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2008), pages 935–942, Estoril, Portugal,
May 2008.

[19] S. S. Fatima, M. Wooldridge, and N. R. Jennings. A linear approximation
method for the Shapley value. Artificial Intelligence, 172(14):1673–1699,
2008.

[20] J. Freixas, X. Molinero, M. Olsen, and M. J. Serna. The complexity of
testing properties of simple games. CoRR, abs/0803.0404, 2008.

56

[21] N. Karmarkar. A new polynomial-time algorithm for linear programming.
In STOC ’84: Proceedings of the sixteenth annual ACM symposium on
Theory of computing, pages 302–311, New York, NY, USA, 1984. ACM.

[22] B. de Keijzer. A survey on the computation of power indices. Technical re-
port, Delft University of Technology, 2009. http://www.st.ewi.tudelft.
nl/~tomas/theses/DeKeijzerSurvey.pdf.

[23] D. Kleitman and M. Markowski. On Dedekind’s problem: The number of
isotone boolean functions II. In Transactions of the American Mathematical
Society, volume 213, pages 373–390, 1975.

[24] B. Klinz and G. J. Woeginger. Faster algorithms for computing power
indices in weighted voting games. Mathematical Social Sciences, 49:111–
116, 2005.

[25] A. D. Korshunov. Monotone boolean functions. Russian Mathematical
Surveys, 58(5(353)):198–162, 2003.

[26] I. Krohn and P. Sudhölter. Directed and weighted majority games. Math-
ematical Methods of Operations Research, 42(2):189–216, 1995.

[27] S. Kurz. On minimum sum representations for weighted voting games.
CoRR, abs/1103.1445, 2011.

[28] S. Kurz. On the inverse power index problem. Optimization, 2012. To
appear.

[29] A. Laruelle and M. Widgrén. Is the allocation of voting power among EU
states fair? Public Choice, 94:317–339, 1998.

[30] D. Leech. Computation of power indices. Technical Report 664, Warwick
Economic Research Papers, July 2002.

[31] D. Leech. Designing the voting system for the EU council of ministers.
Public Choice, 113(3–4):437–464, December 2002.

[32] D. Leech. Computing power indices for large voting games. Management
Science, 49(6):831–838, June 2003.

[33] D. Leech. Power indices as an aid to institutional design: the generalised
apportionment problem. In M. Holler, H. Kliemt, D. Schmidtchen, and
M. Streit, editors, Yearbook on New Political Economy. Warwick Economic
Research Papers, 2003. Number 648.

[34] A. Makhorin. GNU linear programming toolkit, 2004.

[35] I. Mann and L. S. Shapley. Values of large games, VI: Evaluating the
electoral college exactly. Technical Report RM-3158-PR, The RAND Cor-
poration, 1962.

57

http://www.st.ewi.tudelft.nl/~tomas/theses/DeKeijzerSurvey.pdf
http://www.st.ewi.tudelft.nl/~tomas/theses/DeKeijzerSurvey.pdf

[36] Y. Matsui and T. Matsui. A survey of algorithms for calculating power
indices of weighted majority games. J. Oper. Res. Soc. Japan, 43:71–86,
2000.

[37] Y. Matsui and T. Matsui. NP-completeness for calculating power indices
of weighted majority games. Theoretical Computer Science, 263(1–2):305–
310, 2001.

[38] S. Muroga. Threshold logic and its applications. Wiley-Interscience, 1971.

[39] S. Muroga, I. Toda, and M. Kondo. Majority functions of up to six vari-
ables. Mathematics of Computation, 60(80):459–472, October 1962.

[40] S. Muroga, T. Tsuboi, and C. R. Baugh. Enumeration of threshold func-
tions of eight variables. IEEE Transactions on Computers, C-19(9):818–
825, September 1970.

[41] A. M. Odlyzko and L. B. Richmond. On the unimodularity of some parti-
tion polynomials. European Journal of Combinatorics, 3:69–84, 1982.

[42] U. M. Peled and B. Simeone. Polynomial-time algorithms for regular set-
covering and threshold synthesis. Discrete Applied Mathematics, 12:57–69,
1985.

[43] B. Peleg and P. Sudḧ’olter. Introduction to the Theory of Cooperative
Games. Springer, 2003.

[44] K. Prasad and J. S. Kelly. NP-completeness of some problems concerning
voting games. International Journal of Game Theory, 19(1):1–9, 1990.

[45] L. S. Shapley and M. Shubik. A method for evaluating the distribu-
tion of power in a committee system. American Political Science Review,
48(3):787–792, 1954.

[46] N. A. Smith and N. W. Tromble. Sampling uniformly from the unit simplex.
Technical report, John Hopkins University, 2004.

[47] E. Sperner. Ein Satz über Untermengen einer endlichen Menge. Mathema-
tische Zeitschrift, 27(1):544–548, December 1928.

[48] R. P. Stanley. Weyl groups, the hard Lefschetz theorem, and the Sperner
property. SIAM J. Algebraic Discrete Methods, 1:168–184, 1980.

[49] M. Sutter. Fair allocation and re-weighting of votes and voting power in the
EU before and after the next enlargement. Journal of Theoretical Politics,
12:433–449, 2000.

[50] A. D. Taylor and W. S. Zwicker. Simple Games: Desirability Relations,
Trading, Pseudoweightings. Princeton University Press, 1999.

58

[51] T. Uno. Efficient computation of power indices for weighted majority
games. Technical Report NII-2003-006E, National Institute of Informat-
ics, 2003.

[52] R. O. Winder. Enumeration of seven-argument threshold functions. IEEE
Transactions on Electronic Computers, EC-14(3):315–325, June 1965.

[53] Y. A. Zuev. Asymptotics of the logarithm of the number of threshold
functions of the algebra of logic. Soviet Math. Dokl., 39:512–513, 1989.

[54] J. Žunić. On encoding and enumerating threshold functions. IEEE Trans-
actions on Neural Networks, 15(2):261–267, march 2004.

59

	Introduction
	Contributions
	Related work
	Outline

	Preliminaries
	Representation languages
	Power indices

	The problem statement
	Voting game synthesis
	On cardinalities of classes of simple games
	The number of monotonic simple games and linear games
	The number of weighted voting games

	The synthesis problem for simple games
	Algorithms for voting game synthesis
	Synthesizing weighted representations
	Synthesizing roof- and ceiling-representations
	Other voting game synthesis problems & summary of complexity results for voting game synthesis

	Solving the power index voting game design problem
	Monotonic simple game design
	Weighted voting game design
	Preliminary considerations
	A new structural property for the class of weighted voting games
	The algorithm

	Improvements and optimizations
	An improved linear program for finding the weight vector of a weighted voting game
	A better way of finding new minimal winning coalitions
	An output-polynomial time algorithm for obtaining the ceiling-list from the roof-list

	Experiments
	Implementation details
	Experiments
	Results

	Conclusions & future work

