The Time Window Assignment Vehicle Routing Problem

Remy Spliet, Adriana F. Gabor

Econometric Institute

Erasumus University Rotterdam
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

EI2012_07

April 20, 2012

Abstract

In many distribution networks, it is vital that time windows in which deliveries are made
are assigned to customers for the long term. However, at the moment of assigning time
windows demand is not known. In this paper we introduce the time window assignment
vehicle routing problem, the TWAVRP. In this problem time windows have to be assigned
before demand is known. Next the realization of demand is revealed and an optimal vehicle
routing schedule has to be made that satisfies the time window constraints. We assume that
different scenarios of demand realizations are known, as well as their probability distribution.
The TWAVRP is the problem of assigning time windows such that the expected traveling
costs are minimized. We propose a formulation of the TWAVRP and develop two variants
of a column generation algorithm to solve the LP relaxation of this formulation. Numerical
experiments show that these algorithms provide us with very tight LP-bounds to instances
of moderate size in reasonable computation time. We incorporate the column generation al-
gorithm in a branch and price algorithm and find optimal integer solutions to small instances
of the TWAVRP. In our numerical experiments, the branch and price algorithm typically
finds the optimal solution very early in the branching procedure and spends most time on
proving optimality.

1 Introduction

In many distribution networks deliveries are made at regular intervals. These deliveries are
scheduled to occur within a time window. Typically, these time windows are endogenously
imposed. The carrier and receiver might for instance agree on a specific time window for delivery.
These endogenous time windows are long term decisions in certain industries. In retail it is very
common that deliveries at a store are always made within a specific time interval on the same
day of the week. This is crucial for many operational processes like inventory management
and the scheduling of personnel. Note that distribution networks are often also faced with
exogenous time windows. For example, an exogenous time window might be imposed by a local
government which forces trucks to make deliveries in a populated area during day time only.
Hence an endogenous time window can only be chosen within the exogenous time window.

When demand of the receivers becomes known, a vehicle routing schedule has to be made
for making the deliveries within the provided time windows. This problem is known as the
VRPTW, which is a well studied problem in the scientific literature, see for instance Desrochers
et al. (1992) and Fischer et al. (1997). Many commercial software packages exist that are able
to design such a routing schedule in a limited amount of time.

However, demand most often fluctuates per delivery and is unknown at the moment that
time windows are assigned to the receivers. In practice these time windows are often determined

heuristically by solving a capacitated vehicle routing problem, CVRP, using average demand.
The arrival times in the resulting schedule are used as a reference point for assigning the time
windows. An overview of exact and heuristic methods for solving the CVRP can be found
in Toth and Vigo (2002) and Laporte (2007) amongst others. The problem of assigning time
windows before demand is known has largely been overlooked in the scientific literature.

In this paper a model is presented to assign time windows and design vehicle routes such that
the expected costs incurred after vehicle routing are minimized. The problem of assigning time
windows will be referred to as the time window assignment vehicle routing problem, TWAVRP.
A finite number of scenarios is given, each scenario describing a realization of demand for each
location. Furthermore, the probability with which each scenario occurs is assumed to be known
at the moment of scheduling. The TWAVRP consists of finding a single time window assignment
and a vehicle routing schedule for each scenario satisfying these time windows, such that the
expected costs are minimized. The TWAVRP is NP-hard because it contains the VRPTW as
an instance with one scenario.

In Jabali et al. (2010) a closely related problem is considered. In their paper demand is
assumed to be known at the moment of assigning the time windows and travel time is stochastic.
This problem is encountered by small package shipping companies. In another related problem,
the consistent vehicle routing problem, ConVRP, examined by Groér et al. (2009), demand and
travel time is deterministic and a schedule has to be made for multiple days. Not all receivers
have to be visited on every day. For the days on which a location receives a delivery the arrival
times should be roughly the same, within a prespecified amount of time apart. Moreover, a
location should always receive its delivery from the same driver. In their paper, a heuristic is
designed to find solutions to the ConVRP. The problem addressed in this paper, the TWAVRP,
can be considered a variant of the ConVRP.

In this paper, we propose a branch and price algorithm to solve the TWAVRP. Branch and
price has been successfully applied to solve instances of the classical CVRP and VRPTW, see
for instance Chabrier (2006), Desrochers et al. (1992) and Desaulnier (2010). We specifically
focus on a formulation of the TWAVRP that provides tight LP-bounds. We design a column
generation algorithm to solve the LP relaxation of the TWAVRP. Using our formulation, the
pricing problem decomposes into shortest path problems with two resource constraints and linear
node costs, per scenario. These problems are solved to optimality using a modified version of the
labeling algorithm proposed by Ioachim et al. (1998). In their paper they consider having only
one resource constraint, we have extended their algorithm to cope with an additional resource
constraint. We use this algorithm to find paths that may contain cycles, although no feasible
integer solution to the TWAVRP will make use of such paths. We allow such paths to limit
the computational complexity of the pricing problem at the expense of the value of the LP-
bound. We have furthermore adapted the algorithm to eliminate 2-cycles, thereby significantly
increasing the value of the LP-bound. In the column generation algorithm, we make use of the
fact that routes generated by solving the decomposed pricing problem for a certain scenario,
yielding a column with negative reduced costs, may also yield a column with negative reduced
costs describing the same route for other scenarios.

This paper is organized as follows. A formal definition of the TWAVRP is given in section 2.
In section 3 the column generation used to obtain lower bounds and the branching procedure is
discussed. This is followed by numerical experiments in section 4, in which the solution approach
is evaluated.

2 Problem Definition

Consider a complete graph G = (V, E), where V = {0, ...,n+ 1} is a set of locations such that 0
represents the starting depot, n+ 1 the ending depot and V' = {1,...,n} are the customers. Let
¢ij > 0 be the cost to travel along edge (7,j) and let ¢;; > 0 be the corresponding travel time.

Both the travel costs and travel time satisfy the triangle inequality. Furthermore, an unlimited
amount of vehicles of equal capacity @ is available.

A set Q of scenarios is given, where each scenario is characterized by a realization of demand.
Let demand at location v in scenario w € 2 be given by d such that 0 < d¥ <). The probability
that scenario w occurs is p,,.

For each location v, let s, and e, be the start and end time of the time interval during which
the location has to be visited. The time window [s,, e,] is exogenous and not to be confused
with the endogenous time window.

In this paper we will use the term route to refer to a pair (P,t) where P is a path in G
starting at 0 and ending at n + 1 and ¢ is a vector containing arrival times at each location on
the path. An acyclic route is a route such that its path does not contain a cycle. To each acyclic
route r we associate the following parameters: a? indicates whether location v is visited on r
and ¢ is the time of arrival at location v on r. Let ¢ = 0 whenever a location is not visited. If
location j is visited directly after i on the acyclic route 7 then ¢ + tij < ti. Note that waiting
at a location is allowed. Let R(w) be the set of all feasible acyclic routes for scenario w, i.e. all
routes such that the capacity constraints and exogenous time window constraints are satisfied.
To each acyclic route r with edges {r1, ..., } we assign costs ¢, = Zle ¢r,. A routing schedule
is a collection of routes such that all customers are visited exactly once.

An endogenous time window will be assigned to each customer within which it will receive
its delivery. The assignment will be made before the realization of demand is learned. Prior to
the dispatching of the vehicles, demand becomes known and an optimal routing schedule will be
designed to make the deliveries within the assigned time windows. The problem is to assign time
windows of width w, to each customer v such that the expected traveling costs are minimal.

Let the variable g, be the start time of the endogenous time window at each location v € V”.
Note that y, € [sy, €, — wy]. We will assume s, < e, — w,. Let the binary variable z¥ indicate
whether route r is used for scenario w. Let R = [R(w)]weq be the vector containing all feasible
acyclic routes for each scenario. The optimal solution to the TWAVRP is given by OPT(R):

OPT(R) = min pr Z ey (1)

we reR(w)

Z a,xy =1 Yo e V') Vw € Q (2)
reR(w)
Z tray > yy Yo e V') Vw € Q (3)
reR(w)
Z tray <y, + wy Vo e V' Vw € Q (4)
reR(w)
2 e {0,1}1F) Vw €

y € [s,e —w]

Here (1) are the expected total costs of a time window assignment. Constraints (2) ensure
that every location is visited exactly once and constraints (3) and (4) ensure that all locations
are visited within the time windows. Finally, as time is continuous in this model, observe that
the number of routes in R, and therefore also the number of variables, are infinite unless w = 0
and s = e.

As will become apparent in the next section, in our solution approach we will use an equiva-
lent formulation of the TWAVRP in which we allow cyclic routes. A cyclic route is a route such
that its path contains at least one cycle. It is feasible for scenario w if the consecutive arrival
times differ by at least the travel time and the capacity constraints are satisfied, i.e. for each
cyclic route r visiting consecutively locations 71, ..., 7%, it holds that Zle dy, < Q. For a cyclic
route r define ay as the number of times location v is visited and let ¢? be any real number. In

Proposition 1 we state that including cyclic routes in the problem formulation in this way does
not affect the optimal solution.

Let C(w) be a collection of feasible cyclic routes and let C = [R(w) U C(w)]yeq, where C is
a vector containing all feasible acyclic routes and a set of feasible cyclic routes for each scenario.

Proposition 1. OPT(R) = OPT(C).

Proof. Clearly OPT(R) > OPT(C). Observe that there does not exist an integer solution in
which a cyclic route is selected as this would violate (2). Therefore equality holds. O

This Proposition shows that the formulations of the TWAVRP are equivalent for any choice
of C and t!. Clearly the value of the LP relaxation decreases when comparing a formulation
using routes C' and C’ for C C C".

In the next section we propose column generation algorithms to solve the LP relaxation of
the TWAVRP for specific choices of C and ¢; and use them in a branch and price algorithm to
find the optimal integer solution.

3 Solution Approach

We propose to solve the TWAVRP using a branch and price algorithm. In the branch and price
algorithm, lower bounds are obtained by solving the LP relaxation using a column generation
algorithm, which is presented in section 3.1. The choice of C influences the quality of the lower
bounds and the computational complexity of obtaining these lower bounds. We will in particular
present algorithms for two choices of C, including all cyclic routes visiting at most n locations
and including all cyclic routes visiting at most n locations except routes containing 2—cycles.
Furthermore, we will define specific values of t7 for cyclic routes which are used in our algorithm.
In section 3.2 the branching decisions are explained.

3.1 Solving the LP relaxation

To solve the LP relaxation of the TWAVRP for a formulation OPT(C), a column generation
algorithm is used. At each step of the algorithm, a solution is found to the LP relaxation
including only a subset of the variables. New variables that exhibit negative reduced costs
will be identified and added to the problem. Let us denote the dual variables by A, u and v
corresponding to (2)-(4) respectively. For ease of notation, let 7 = v — . Observe that \Y and

“ can both be positive and negative. The reduced costs corresponding to a non-basic variable

7T’U
are given by:

xw

T

Putr — Y Aal = > wt
veV’ veV’

To find a non-basic variable with negative reduced costs, a route r has to be found in
R(w) U C(w) for some w € € such that the above expression is negative. Note that when for
all scenarios w € €2 no such solution exists, the current solution to the LP relaxation is optimal.
Therefore, we define the pricing problem as finding a route and scenario w which minimize the
reduced costs. Solving this problem either yields a variable with negative reduced costs or it
proves optimality. The pricing problem can be decoupled into several problems, one for each
scenario. Next, the decoupled pricing problem is described in more detail.

Recall that a route is a pair (P,t). Let the path P be represented by its edges, and let P
be the corresponding vertex representation. Furthermore, recall that for a cyclic route r any
value of the parameters t for location v provides us with a valid formulation of the TWAVRP.
For the remainder of the paper, for each cyclic route r let us define ¢! as the sum of the arrival
times at location v provided by ¢. This enables us to formulate the decoupled pricing problem

as follows. For each w € €, the decoupled pricing problem is to find a pair (P,t) which is the
optimal solution to the following problem:

min p,, Z cij + Z[)\‘f + 7t (5)

B8 ipep iep
ti+ti; <t V(i,j) € P (6)
Y ar<Q (7)
icP
ti S [Si, ei] Vi € P

P e R(w)UC(w)

In the above formulation (5) are the reduced costs of the variable corresponding to the pair
(P,t). Constraints (6) ensure that travel time is not violated by the arrival times. Recall that it
is allowed to wait at a location. The capacity constraint is described by (7). This is a shortest
path problem with two resources, time and capacity, with constant costs on the arcs and nodes as
well as costs at the nodes that are linear in time. For simplicity we will refer to these decoupled
problems as pricing problems as well.

The column generation algorithm

To initialize the column generation algorithm, a set of initial routes R,, is constructed for each
scenario w € Q. In our implementation we have chosen to use return trips (routes r such that its
path are of the form {(0,%), (¢,n+1)}) to each customer. For each scenario, multiple return trips
are generated per customer, with arrival times evenly spread over the exogenous time window,
such that for every choice of endogenous time windows there is a feasible return trip.

In each iteration we solve the LP relaxation of OPT([Ry]weq) such that for each scenario
w only the routes included in R,, are used. Next the pricing problem is solved to either find
new routes to add to the model or prove optimality. The pricing problem can be solved for each
individual scenario to find a feasible route corresponding to that scenario.

An algorithm for solving the pricing problem may yield several routes with negative reduced
costs that are feasible for a single scenario w, each route carrying a different amount of total
demand. All of them are added to R,. In algorithm 1, pseudo code of the column generation
algorithm is presented.

Algorithm 1 Column Generation Algorithm version 1 (CGA1)
Initialize R, for all w
while Optimum not found do
Solve LP using the routes R, for scenario w
Solve the Pricing Problems for all w
if There does not exist a route with negative reduced costs then
Optimum found
else
Add all found routes with negative reduced costs to the corresponding R,
end if
end while

The algorithm as described above will be referred to as CGA1. Next, another version of the
column generation algorithm is described, using a different strategy for adding columns.

Observe that when solving the pricing problem for one scenario, the routes that are found
might be used for other scenarios as well. In version 2 of the column generation algorithm,

CGA2, the pricing problems are solved iteratively. In this algorithm, all routes with negative
reduced costs for scenario w are added to R, as well if they are feasible and have negative
reduced costs for scenario w’.

When a route found for scenario w is added to R/, CGA2 does not solve the pricing problem
for scenario w’ in the same iteration. This potentially reduces the number of pricing problems
to be solved, and therefore also the computation time.

Moreover, including a route in multiple scenarios as is done in CGA2 also helps overcome
the following problem. When a good route r is added to R, for instance one that is part of
the optimal solution, the solution of the LP relaxation might not improve much. The routes in
R, for ' # w, can not be used to construct an improved solution incorporating r when no
endogenous time window satisfied by r is feasible.

In algorithm 2, CGA2 is described.

Algorithm 2 Column Generation Algorithm version 2 (CGA2)
Initialize R, for all w
while Optimum not found do
Solve LP using the routes R, for scenario w
Set 1 =Q
while Q # () do
Choose w € € and remove it from €2
Solve the pricing problem for scenario w, to find routes R
Add all routes r € R such that r has negative reduced costs for scenario w to R,
for All & € Q do
Let R be all routes r € R such that r is feasible and has negative reduced costs for
scenario @
if R # 0 then
Add R to R, and remove @ from QO
end if
end for
end while
if No new routes are added to the formulation then
Optimum found
end if
end while

In the column generation algorithms, the computational difficulty lies in solving the pricing
problems. Next, we describe how the choice of routes C affects the computational complexity
of these pricing problems. We will suggest two specific choices of C for which we have designed
an algorithm to solve the pricing problem.

Obtaining LP-bounds for different choices of C

As a customer is visited exactly once, the optimal solution to the TWAVRP will not contain any
cyclic route for any formulation OPT(C). Hence, a natural choice for allowed cyclic routes C(w)
is C(w) = 0. This choice limits the paths in the pricing problem to R(w), the elementary (0,7 +
1) paths in G. However, this places excessive burden on the computational complexity of the
pricing problem. Therefore, we suggest including cyclic routes in C to limit the computational
complexity at the expense of a decreased LP-bound. Another option is to let C contain all
acyclic and cyclic routes but eliminate routes that contain cycles of at most k& nodes, generally
referred to as k—cycles. As can be read in Irnich and Villeneuve (2003), k—cycle elimination has
been successfully employed to find solutions to shortest path problems with resource constraints.

In the case of VRPTW, Kohl et al. (1999) have shown that k—cycle elimination can be used to
reduce overall computation time.

There does not exist an integer solution to the TWAVRP in which routes that contain cycles
are selected, hence no route that visits more than n locations will be selected. Therefore we will
only consider routes that visit at most n locations. As will become apparent in the description of
our algorithm for solving the pricing problem, this choice helps us in the design of the algorithm
and it slightly increases the value of the LP-bound.

For the formulations of the TWAVRP in which all routes are allowed in which at most n
locations are visited and that do not contain k—cycles, the value of the LP-bound increases with
k, as does the computational complexity. In the paper by Kohl et al. (1999) it is illustrated for
the VRPTW that 2—cycle elimination provides a significantly better LP-bound than allowing
all cyclic routes, while the increase in computational complexity is limited. In the remainder
of the paper, we will consider two choices of C; including all cyclic routes visiting at most n
customers and including all cyclic routes visiting at most n customers except routes containing
2—cycles.

Next, we will describe an algorithm for solving the pricing problem when all cyclic paths
visiting at most n customers are allowed, referred to as no-cycle elimination. This is followed by
a description of the algorithm for the case where 2—cycles are eliminated, referred to as 2—cycle
elimination.

Solving the pricing problem with no-cycle elimination

When C includes all cyclic routes visiting at most n locations, the pricing problem is a shortest
path problem with time window and capacity constraints, with constant costs on the arcs and
nodes and linear costs in time defined on the following acyclic graph. Consider the graph G,
containing the start and end depot and n copies of each customer, ordered in layers'. At each
node in a specific layer, all outgoing arcs end at a node in the next layer or at the ending
depot, see Figure 1 for an example with 4 locations. Observe that any elementary path in G
corresponds to a path trough copies in G’. Moreover, G’ also contains paths that visit multiple
copies of the same customer, corresponding to cyclic paths in G visiting at most n locations. To
properly define the pricing problem using G’, let the values of the parameters associated to the
copied nodes and arcs in G’ be the same as for their originals in G.

In Ioachim et al. (1998) a labeling procedure is presented to solve the shortest path problem
with time window constraints and linear costs in time on an acyclic graph. First we summarize
their algorithm, followed by a description on how their algorithm is modified to incorporate
capacity constraints in order to solve our pricing problem.

The algorithm of Ioachim et al. provides a shortest path for each possible arrival time at
the end depot. One assigns a label to each node v in a graph describing both the costs of the
shortest path to v as a function of the arrival time ¢ with domain [s,,e,], and the preceding
node in the shortest path. The cost function of each label is piecewise linear with a finite
number of line pieces. Associated to each line piece is a preceding node in the shortest path.
The labels are propagated through the network using a basic dominance criterion common to
labeling algorithms, which at each node compares the costs of the paths that have equal arrival
time.

To modify the labeling algorithm such that capacity constraints are taken into account we
have extended the label. In our modified labeling algorithm, a label for node v is a vector of
cost functions, one function for each possible load upon arrival at v. Dominance of paths is
evaluated for paths ending at v at the same time with the same load. The modified labeling
algorithm provides a shortest path for each possible load and arrival time at the end depot.

Let G' = (W), E'), let V{ = {(v,k)|v € V'}, then V; = {0, U}, V{,n+1} and E' = {((u, k), (v, k+1))|u,v €
Vi u#vU{(0,9)]i € VIYU{G, n+ 1)l € Up_, Vid

®

Figure 1: Example of G’, not showing all arcs

For a detailed exposition of the labeling algorithm for the problem without capacity con-
straints on an acyclic graph we refer the reader to Ioachim et al. (1998). Pseudo code of the
modified labeling algorithm is provided in Appendix 1.

Solving the pricing problem with 2—cycle elimination

Next we present an algorithm to solve the pricing problem for the TWAVRP with 2—cycle
elimination. Note that k—cycles in G are represented in G’ by paths visiting copies of the same
location. This allows us to use G’ to solve the pricing problem with 2—cycle elimination.

Irnich and Villeneuve (2003) propose a solution method for solving the shortest path problem
with resource constraints and 2—cycle elimination. The above labeling algorithm is modified,
to solve our pricing problem including linear node costs with 2—cycle elimination. Following
the ideas of Irnich and Villeneuve (2003), two labels are assigned to each node. The first label
describes the costs of the shortest path to a node arriving at time ¢ with load ¢q. The second
label describes the costs of the shortest path with arrival time ¢ and load ¢ among the paths
that have a different predecessor than the path in the first label.

Observe that by construction the first and second path ending at a node representing a copy
of location ¢ at time t with load ¢, have predecessors representing different locations j and k
respectively. Therefore, when extending a path from i to a node representing location j, the label
describing the costs of the first path is not used as this would in effect yield a path containing
the 2—cycle j — ¢ — j. Instead, the second path is now used for extending, yielding the shortest
path not containing a 2—cycle. Pseudo code for the labeling algorithm with 2—cycle elimination
is provided in Appendix 2.

Finally, note that Irnich and Villeneuve (2003) show that the required number of labels per
node in a labeling algorithm that eliminates k—cycles quickly increases, as does the computation
time of such an algorithm. For 2—cycle elimination, only 2 labels are required at each node. For
3—cycle elimination as much as 6 labels are necessary. Irnich and Villeneuve conjecture that a
tight upper bound is k! labels. Moreover, they have shown that at most k(k — 1)!? labels are
necessary per node for k—cycle elimination.

3.2 Branch and Price

To find the optimal solution to the TWAVRP we use a branch and price algorithm. Lower
bounds are obtained by solving the LP relaxation of the TWAVRP with no-cycle elimination
or with 2—cycle elimination using either CGA1 or CGA2. Upper bounds are obtained when an
integer solution is found. Next, the branching rules are described.

Branching on arcs

Let (z",y") be the optimal solution to the LP relaxation of the TWAVRP at a specific node u
in the branching tree. Based on this solution, one can determine the possibly fractional values
z¢ with which each arc e in the graph G is used in the LP solution. We apply special ordered
subset (SOS) branching on the arcs based on the values z.

More specifically, for branching node u, scenario w and location i, let 69,(i) be the set of
the in or out arcs indicated by o =in or o =out respectively. Next, a location 7', a scenario
w' and arc type o is selected such that the number of arcs e in 69 ,(i’) for which 2 > 0 is
highest. Let 62 (i) = {e1,...,em} be ordered with respect to z, such that z;’k/ > z‘g’l/ it k <L
The arcs are divided into two groups, S and its complement, where S = {ey, ..., e;} is such that
Y ecs z;’/ > 0.5 and ZeeS\Ek z;"/ < 0.5. In one branch we disallow the use of the arcs in S and
in the other we disallow the use of the arcs in S. This does not alter the pricing problem, in
fact the number of arcs in the network decreases. In algorithm 3, the branching procedure is
summarized.

Algorithm 3 Branch on arcs

- Calculate the arc use z¢g = ZT€R<dw)|EET Y

- Choose (i',w’,0") € argmax |{e|e € §3,,(i), 25 > 0}

- For 62.,(i') = {e1, ..., em}, let S = {ex, ..., ex} such that Y ees 22" > 0.5 and 2 ees\en 22 < 0.5.

- Construct two new nodes for the branch and bound tree, in one node disallow the use of the arcs in S, in the
other node disallow the use of the arcs in S

Note that when no arcs are used fractionally, the current solution to the LP relaxation is
either integer or could easily be transformed into an integer solution with equal value. In this
case no branching is performed and the upper bound of the branch and bound tree is updated
if necessary.

Branching on time windows and arcs

Next we investigate branching on the variable y, referred to as branching on time windows.
Branching on time windows affects the routes that might be chosen in all scenarios simultane-
ously. This might have a greater impact on the value of the LP relaxation than branching on
arcs, which only influences the routes that might be chosen in a single scenario.

We propose the following decision rule to branch on time windows. At each node of the
branch and bound tree, first calculate the (fractional) amount of routes that are selected in
the optimal solution of the LP relaxation, which fall outside the endogenous time window.
Next choose the location for which this fraction is highest. Finally, create two new nodes for
the branching tree by bounding the endogenous time window, or, equivalently, by altering the
exogenous time window.

More precisely, let ¢ be the location for which branching on time windows will be performed.
Let L; be the latest arrival time at location ¢ among the fractionally selected routes and F; the
earliest arrival time. We create one new node in the branching tree by adding the constraint
yi < % + %' and another by adding the constraint y; > %
constraints do not alter the structure of the pricing problem, as they can be added by modifying
the exogenous time windows.

— 5. The new time window

Note that branching solely on time windows does not guarantee that an integer solution is
found. Therefore, algorithm 4 combines branching on arcs and time windows and is sufficient
to obtain the optimal integer solution. A threshold is chosen which is used to decide whether
branching on arcs or time windows should be performed. When the amount of routes selected
outside the time window exceeds this threshold for all locations, branching on time windows is
performed, otherwise branching on arcs is performed. In algorithm 4, this branching procedure
is summarized.

Algorithm 4 Branch on time windows and arcs

Calculate the amount of routes selected outside the time window h; =} g zreR(w)BtT'g[

Yyl tw;) Lr
Choose j € arg max{h;}

if (;—;‘ >Threshold then
Ej+L;

w4 .
5 —- in one node and

Construct two new nodes for the branch and bound tree, add constraint y; <

y; > Ej;L" — % in the other
else

Branch on arcs using Algorithm 3
end if

Note that the computation time of the labeling procedure is dependent on the number of arcs
in the network and the width of the time windows. Therefore, the computation time necessary
to solve the pricing problem will decrease in new nodes of the branch and bound tree when
branching is performed as described in Algorithm 3 and 4.

4 Numerical experiments

In this section the results of numerical experiments are presented. In section 4.1 the performance
of the column generation algorithm is discussed. In section 4.2 the performance of the branch and
price algorithm to solve the TWAVRP to optimality is discussed. Moreover, we will comment
on the relative gap between the value of the LP relaxation of our formulation and the optimal
integer solution of the TWAVRP.

Unless stated otherwise, instances of the TWAVRP are randomly generated for different
numbers of customers and different numbers of scenarios. The choice of parameter values is
based on experiences with a Dutch retail company.

Locations: Uniformly distributed in a square (5 x 5) area around the
depot. The starting depot and ending depot are on the

same location.

Travel Costs: Equal to the Euclidean distance.
Travel Time: Equal to the Euclidean distance.
Exogenous Time Windows: Three versions [10,16],[9,18] and [7,21], randomly as-

signed to customers at fixed frequency {0.1,0.6,0.3} re-

spectively. The depot has time window [6, 22].

Time Window Width: 2.
Vehicle Capacity: 30.
Demand per scenario: Randomly generated using a normal distribution with dif-

ferent randomly generated mean per customer and a vari-
ance of 1. The mean was generated using a normal distri-
bution with mean 5 and variance 1 for each customer. All
demand was rounded to the next integer. Demand below
1 is rounded up to 1 and demand over 30 is rounded down

to 30.
Scenario Probability Distribution: Equal probabilities.

10

In section 4.2 we also solve a modified version of the instances generated by Groér et al. (2009)
for the ConVRP. Locations, travel costs, travel time, time window width, vehicle capacity and
demand per scenario are the same as in their instances. We used the maximal driving time per
driver as the exogenous time window width of the depot, as well as the exogenous time window
of all other locations. We let the probability of a scenario occurring be equal for each scenario.

The algorithms are coded in C++ and CPLEX 12.3 is used for solving Linear Programs.
All experiments were performed on Pentium(R) Dual-Core CPU, E5800, 3.2GHz with 4.00GB
of RAM

4.1 Numerical experiments on the column generation algorithm

In this section the results of numerical experiments on solving the LP relaxation of instances
of the TWAVRP are shown. The LP relaxations are solved to optimality using the proposed
column generation algorithms using formulations with no-cycle elimination and with 2-cycle
elimination. The instances vary in the number of customers and the number of scenarios. We
will compare the computation time of both column generation algorithms. Furthermore, we will
highlight the difference in LP value of the TWAVRP with no-cycle elimination and with 2-cycle
elimination. In section 4.2 we will comment on the relative gap between the LP-Bound and the
value of the optimal integer solution.

Table 1 contains average LP values of instances of the TWAVRP with 10 scenarios are shown,
as well as the average computation time of CGA1l and CGA2. The instances are solved with
no-cycle elimination and with 2-cycle elimination. For each choice of the number of customers,
25 instances were generated of which the average results are presented in table 1. The first
column indicates the number of customers in the instances, the second shows the optimal LP
value. Moreover, average total computation time in seconds is shown for both CGA1 and CGA2.
The computation time is decomposed into time spent on solving LLP problems and time spent on
solving the pricing problems. There is a slight discrepancy between the total computation time
and the cumulative time spent on solving the LP relaxations and the pricing problems. This is
due to overhead such as initializing the algorithm. Finally, the number of generated routes are
presented, including the initial routes. Routes that are used for multiple scenarios are counted
multiple times.

First note that the LP value increases on average with 6.6% from solving the instances with
no-cycle elimination to solving them with 2-cycle elimination. The computation time increases
significantly for both CGA1 and CGA2. Secondly, it is apparent that the computation time
grows more than linearly in the number of customers. Furthermore, CGA1 generates a higher
number of routes than CGA2. Finally, observe that CGA2 spends less time on solving the
instances than CGA1. It spends less time on solving LP’s as well as on solving the pricing
problems. Both CGA1 and CGA2 spend most of their time on solving the pricing problem.

Next, table 2 shows the computational results of numerical experiments where the LP relax-
ation of instances of the TWAVRP with 15 customers are solved. They are solved with no-cycle
elimination and with 2-cycle elimination. In these experiments, 25 instances are repeatedly
solved for different numbers of scenarios. The choices of the number of scenarios are indicated
in the first column. The table shows average scores over the instances. In these experiments,
the total computation of CGA1 seems to grow approximately linearly in the number of scenarios
for both the no-cycle elimination as the 2-cycle elimination case. However, the time spent on
the LP’s grows more than linearly, significantly faster than the growth of the time spent on the
pricing problems. The computation time of CGA2 grows more than linearly, although even for
the instances with 100 scenarios, the computation time is less than half the computation time
of CGAL.

Next, we will look at the amount of time spent per iteration on solving the LP’s and on
solving the pricing problems. Recall that the main idea behind CGA2 is to save time in the
pricing problem phase, by solving less pricing problems. Moreover, the effect of using a route for

11

Table 1: Averaged computational results on CGA1 and CGA2 on instances with 10 scenarios

No-Cycle Elimination
CGAl CGA2
Time Time
#Customers | LP Value Total LP Pricing | #Routes Total LP Pricing | #Routes
10 15.321 2.2090 0.232 1.971 1577.0 0.690 0.100 0.586 1246.4
15 20.011 7.041 0.361 6.668 2554.3 2.663 0.297 2.355 2031.6
25 29.436 33.530 1.089 32.395 4672.5 13.090 0.820 12.220 3508.2
35 38.272 104.779 3.348 101.317 6988.8 40.667 1.755 38.792 5208.0
50 49.975 351.356 9.593 341.429 10364.7 | 143.060 4.097 138.631 7437.9
2-Cycle Elimination
CGAl CGA2
Time Time
#Customers | LP Value Total LP Pricing | #Routes Total LP Pricing | #Routes
10 16.857 6.462 0.148 6.311 1591.0 2.418 0.273 2.138 1258.3
15 21.465 23.394 0.380 23.001 2638.0 9.512 0.392 9.112 2075.3
25 31.434 128.808 1.978 126.789 4951.0 50.438 1.134 49.260 3833.5
35 40.082 396.004 6.844 389.043 7339.6 160.925 2.698 158.118 5579.6
50 52.228 1278.150 24.010 1253.810 10933.2 | 554.119 7.547 546.243 8323.3

Table 2: Averaged computational results on CGA1 and CGA2 on instances with 15 customers

No-Cycle Elimination
CGA1l CGA2
Time Time

#Scenarios Total LP Pricing | #Routes Total LP Pricing | #Routes

2 1.494 0.232 1.255 441.7 0.918 0.117 0.799 409.4

5 3.641 0.162 3.474 1255.8 1.672 0.195 1.471 1019.8

10 8.095 0.318 7.767 2663.9 3.229 0.382 2.835 2106.2

25 21.033 1.203 19.805 6830.3 7.734 0.991 6.715 5168.6

50 43.806 3.565 40.193 13829.8 15.880 3.070 12.758 10620.5
100 92.616 10.316 82.201 27793.1 41.150 9.687 31.363 21018.4

2-Cycle Elimination
CGA1l CGA2
Time Time

#Scenarios Total LP Pricing | #Routes Total LP Pricing | #Routes

2 4.643 0.117 4.520 478.3 2.992 0.119 2.870 418.4

5 12.224 0.153 12.065 1305.8 5.451 0.196 5.247 1064.7

10 26.132 0.412 25.708 2714.4 9.730 0.367 9.351 2140.7

25 68.393 2.006 66.360 6920.6 24.422 1.446 22.952 5405.0
50 140.090 6.287 133.754 13953.0 49.311 4.367 44.896 10640.0
100 296.201 16.405 279.699 27783.2 | 144.515 15.169 129.254 21169.7

multiple scenarios will be greater for instances with a high number of scenarios. Figures 2 and 3
illustrate the allocation of time spent per iteration for a representative instance of the TWAVRP.
They are generated by solving the LP relaxation of a single instance of the TWAVRP with 15
customers, with no-cycle elimination and with 2-cycle elimination, using CGA1 and CGA2, for
25 and 100 scenarios respectively.

In CGA1, the time spent per iteration decreases as the current solution value approaches
optimality. However, in CGA2 the time spent per iteration increases. The time spent on the
pricing problem in the initial iterations is lower for CGA2, since many routes that are found for
one scenario are also suitable for inclusion in other scenarios. Also observe that the minimum
time spent per iteration in CGA1 is close to the maximum time spent per iteration for CGA2.

12

Clearly, the number of iterations needed to find the optimum is higher for CGA2.

Furthermore, the time spent on solving the LP’s is negligible in CGA1, as solving the pricing
problem takes up most of the computation time per iteration. However, for CGA2, in particular
for a larger number of scenarios, solving the LP relaxation takes up a significant portion of the
computation time in each iteration. In the first iterations of the algorithm for the TWAVRP
instance without 2-cycle elimination and with 100 scenarios as depicted in figure 3, the time
spent on solving the LP relaxation is even higher than the time required to solve the pricing
problems. This suggests that when solving instances with a high number of scenarios with
CGA2, solving the pricing problem to optimality is not the main bottleneck with respect to
computation time.

Figure 2: Time spent per iteration on an instance with 15 Customers and 25 Scenarios

CGA1, No-Cycle Elimination CGA2, No-Cycle Elimination
06 —

25 B P Time m P Time

-— M Pricing Problem Time

M Pricing Problem Time

1=
«n

2

o
=

[
n

-
Time in Seconds
o
w

I
N

Time in Seconds

0.5

o
-

1 6 11 16 21 1 6 11 16 21 26 31 36
Iterations Iterations

CGA1, 2-Cycle Elimination CGA2, 2-Cycle Elimination

B P Time T mLPTime

M Pricing Problem Time M Pricing Problem Time

Time in Seconds
S B N W R N X W

1 6 11 16 21 1 6 11 16 21 26 31 36 41
Iterations Iterations

4.2 Numerical experiments on the branch and price algorithm

In this section, results of numerical experiments on finding integer optimal solutions to instances
of the TWAVRP are presented. Furthermore we illustrate the relative gap between the value of
the LP-bound and the optimal integer solution. As indicated in section 4.1, CGA2 outperformed
CGAL1 in all experiments. Therefore, we will only present findings of using CGA2 in the branch
and price algorithm.

In table 3 running time in seconds can be found for applying the branch and price algorithm
to 5 instances of the TWAVRP with 8 customers and 3 scenarios. The first column indicates the
solved instance. The second column indicates whether no-cycle elimination or 2-cycle elimination
was applied in finding lower bounds. The third column refers to the threshold for branching
on time windows. We present findings on using a threshold of 0 and 0.5. Furthermore, a dash
indicates that no branching on time windows was performed.

The column ’Opt Found’ shows the time needed to find the optimal solution, if optimality
was proven. The following columns show the time needed to close the optimality gap to 5%,
1% and 0% respectively. If optimality could not be proven within 5 days, the optimality gap at
termination is shown in the last column.

Recall that solving the LP relaxation with no-cycle elimination is done significantly faster

13

Figure 3: Time spent per iteration on an instance with 15 Customers and 100 Scenarios

CGA1, No-Cycle Elimination CGA2, No-Cycle Elimination
25 —

=

Time inSeconds
O RPN W R U N ® WL O

| B P Time B LP Time

M Pricing Problem Time

PR Pricing Problem Time

-
v

-

Time in Seconds

05

1 6 11 16 21 26 1 6 11 16 21 26 31 36 41 46

Iterations Iterations

CGA1l, 2-Cycle Elimination CGA2, 2-Cycle Elimination
3 B LP Time [mLPTime
30 W Pricing Problem Time |~ M Pricing Problem Time

@

@

Time in Seconds
= o] N
(=]
Time inSeconds
o = N w - w o ~

5]

o wu

1 6 11 16 21 1 6 11 6 21 26 31 36 4 46 51 56

Iterations Iterations

than with 2-cycle elimination using CGA2. Nevertheless, table 3 shows that on all 5 instances,
the branch and price algorithm using 2-cycle elimination proves optimality more than nine times
faster than when using no-cycle elimination. In one instance, the optimum could not even be
found using no-cycle elimination.

When comparing branching on time windows to branching only on arcs, the computation
time of the branch and price algorithm when branching on time windows seems less stable. In
some instances branching on time windows helps finding the optimal solution very fast, in others
the computation time explodes.

For the remainder of this section, we only present results obtained by using the branch and
price algorithm with 2-cycle elimination and no branching on time windows. Table 4 shows the
results of computational experiments on the TWAVRP with 9 locations and 3 scenariod. In
three out of five instances, the calculation time is very high.

Next, we investigate the effect of the time window width on computation time. We provide
results for instances 1 to 5 where the time window width is changed from 2 to 6. Table 5 shows
that these modified instances are solved significantly faster. Obviously, when endogenous time
windows are very large, the problem reverts to separate VRPTW’s, one for each scenario.

Furthermore, we analyze instances of the TWAVRP which are modified versions of the
ConVRP instances proposed by Groér et al. (2009). They solved these instances of the ConVRP
using CPLEX 11.0 on a 1.4 GHz Intel processor and 512 MB of RAM. They did not specify
exact computation times, but report that up to several days were needed to solve each instance.

As table 6 shows, only 4 out of 5 instances with 10 customers and 3 scenarios, and 3 out of
5 instances with 12 customers and 3 scenarios could be solved within 5 days. Observe that in 4
out of 7 solved instances more than 80% of the computation time is spent on proving optimality.

Finally, table 7 shows the relative gap between the value of the LP-bound and the value of the
optimal integer solution for the instances for which an optimal integer solution was obtained.
The relative gap when using no-cycle elimination is on average 10.2%. When using 2-Cycle
elimination, the gap decreases to on average 3.6%. This illustrates that the LP-bound using our
formulation, specifically when applying 2-cycle elimination, is very tight.

As the LP-bound is very tight and the branch and price algorithm typically finds the optimal

14

Table 3: Computation time in second

TWAVRP with 8 Locations, 3 Scenarios

solution very early in the branching procedure, we conclude that the algorithm spends a lot of

Table 5: Computation time in second

TWAVRP with 8 Locations, 3 Scenarios, and Triple Time-Window Width

Instance | Opt Found 5% 1% Opt Proven | Final Gap
1 43.041 4.524 43.93 125.191 -
2 2.059 1.154 9.812 12.262 -
3 1.669 1.669 44.398 83.226 -
4 3.526 1.217 4.977 4.977 -
5 6.521 2.371 12.059 12.137 -

time on closing a small optimality gap.

15

Instance | Cycle Elimination | Threshold | Opt Found 5% 1% Opt Proven | Final Gap
1 no - - - - - 13.87
1 2 0 - - - - 2.79
1 2 0.5 85.598 86.534 660.084 8884.4 -
1 2 - 34.554 26.177 162.069 547.577 -
2 no - 133344 12819.8 183096 295902 -
2 2 0 3.120 0.795 4.836 5.335 -
2 2 0.5 1.950 1.077 9.859 10.171 -
2 2 - 15.585 6.381 33.665 43.805 -
3 no - 9.267 22.558 335.26 1090.97 -
3 2 0 - - - - 0.91
3 2 0.5 2.262 2.262 101.057 225.373 -
3 2 - 2.324 2.324 58.563 110.074 -
4 no - 8.845 36.754 362.124 915.113 -
4 2 0 1.279 1.279 32.963 1913.83 -
4 2 0.5 1.233 1.233 155.236 215.608 -
4 2 - 26.161 1.825 26.348 31.153 -
5 no - 1410.34 1738.92 1738.92 3266.38 -
5 2 0 0.920 0.920 1.950 1.950 -
5 2 0.5 0.827 0.827 1.872 1.872 -
5 2 - 39.905 22.136 40.576 64.194 -

Table 4: Computation time in second
TWAVRP with 9 Locations, 3 Scenarios
Instance | Opt Found 5% 1% Opt Proven | Final Gap
6 33934.1 393.027 28768.8 45170.1 -
7 18.782 18.798 97.453 399.751 -
8 11699.7 7325.59 28573.2 313155 -
9 - - - - 1.15
10 2.106 2.106 2.106 34.227 -

Table 6: Computation time in second

Adapted Consistent Vehicle Routing Instances

Instance Locations | Opt Found 5% 1% Opt Proven | Final Gap
11 10 1.466 0.842 0.842 2.839 -
12 10 5969.51 2111.48 9848.06 31036.7 -
13 10 - - - - 17.87
14 10 13.697 296933 298143 298144 -
15 10 5791.97 241.317 4278.51 6593.7 -
16 12 - - - - 13.59
17 12 312.391 5.944 315.121 2844.88 -
18 12 26212.8 397.208 31454.1 166823 -
19 12 74315.3 47455 6239.62 91851.6 -
20 12 - - - - 1.75

Table 7: Relative gap in percentages

Instance | no-cycle Elimination 2-cycle Elimination
1 14.971 3.086
2 18.246 2.470
3 6.110 3.746
4 8.738 2.500
5 7.472 1.934
6 28.312 4.775
7 10.099 4.259
8 7.704 5.053
10 10.698 0.776
11 5.402 0.153
12 7.108 4.940
14 11.004 8.223
15 6.821 3.980
17 5.087 2.442
18 5.509 4.239
19 10.105 4.914

5 Conclusion

In many distribution networks it is very important to assign time windows to customers as a
long term decision. In particular, time windows are often assigned before demand is known.
The problem of assigning time windows has largely been overlooked in the scientific literature.
In this paper we introduce the time window assignment vehicle routing problem, TWAVRP.
It models the problem of assigning time windows to customers before demand is known. In
this model, demand realizations occur according to a predefined set of scenarios with known
probability distribution. After demand becomes known, an optimal vehicle routing schedule
should be made adhering to the assigned time windows. The problem is to assign time windows
such that the expected traveling costs are minimized.

To solve the TWAVRP, we suggest using a branch and price algorithm. We have designed
two variants of a column generation algorithms to solve the LP relaxation of our formulation of
the TWAVRP. Specifically CGA1 and CGA2 are presented, with as main difference that CGA2
uses routes found by solving the pricing problem for one scenario as solutions to the pricing
problem of other scenarios. Numerical experiments show that this significantly speeds up the
solution process. The technique of using solutions of one problem as solutions to others seems
promising for other scenario based optimization problems as well.

We have formulated the TWAVRP in such a way that it allows the incorporation or elim-

16

ination of cyclic routes. We suggest a trade off between the quality of the LP-bound and its
computation time, in the choice of cyclic routes included in the formulation of the TWAVRP.
Specifically, numerical experiments show that the LP relaxation of the TWAVRP with no-cycle
elimination can be solved faster than with 2-cycle elimination, using our column generation algo-
rithms. However, numerical experiments on finding integer optimal solutions to the TWAVRP
show that the increase in LP value for the formulation with 2-cycle elimination, is more than
sufficient to offset the increased computation time on solving the LP relaxation. The total
computation time of the branch and price algorithm is significantly lower when using 2-cycle
elimination.

The proposed column generation algorithm can solve instances of up to 50 customers and
up to 100 scenarios in reasonable computation time. However, the branch and price algorithm
is only able to solve small sized instances to optimality. Numerical experiments suggest that
the LP-bound obtained using our formulation of the TWAVRP with 2-cycle elimination is very
tight. Moreover, the optimal solution is often found early in the branching procedure. The
algorithm spends a long time on closing a very small optimality gap and further research is
needed to speed this process up.

Appendix 1

In this appendix we present the labeling algorithm used for solving the pricing problem without
2—cycle elimination. This algorithm provides the costs of the shortest (0,n + 1) paths for each
possible load and arrival time at location n+ 1. Consider the network G’ as described in section
3.1. For each node i we will construct a function F;(t,q) representing the costs of the shortest
(0,4) path when the total load of a vehicle arriving at location i is ¢ and service at location 4
would start at time ¢t. For fixed ¢, the function Fj(t,q) is piecewise linear in ¢. For every ¢ and
q, the preceding node of i in the path yielding costs F;(t,q) is stored for backtracking.

The main observation in the design of this algorithm is that for a given path, finding the
arrival times at each node, ¢, such that the total costs are minimized is computationally easy.
As the costs at a node are linear in time, ¢ will be as large as possible when the unit costs are
negative and as small as possible otherwise. For details on the corectness of this algorithm we
refer to Toachim et al. (1998).

Algorithm 5 contains pseudo code for solving the the pricing problem with no-cycle elimina-
tion. Assume that the locations are numbered in topological order:

Algorithm 5 Labeling Algorithm: pricing problem with no-cycle elimination
Initialize Fo(t,q) = 0 and F;(t,q) = oo for all ¢ > 0, ¢ and q.
for nodes i <n+1 do
for all out arcs (7,) of node i do
for all loads ¢ at ¢ such that there exists a time ¢ < e; — ¢;; for which F;(¢,q) < co and ¢+ d; < @ do
Calculate the costs f(¢) of a shortest path starting at 0 and ending at j having predecessor ¢ with a
total load of g + d and service commencing at time ¢.
Let Fj(t,q + d3) be the minimum of the piecewise linear functions Fj(t,q + d5) and f(t) at each t.
end for
end for
end for

Note that the costs f(t) are co when the arrival time ¢ is before the start of the exogenous
time window. The costs are constant for ¢ > e;, this corresponds to an arrival occuring at the
end of the exogenous time window and waiting before departure. The optimal path for each
possible load can be obtained trough backtracking.

17

Appendix 2

Next we present the algorithm for solving the pricing problem when 2-cycles are eliminated. We
follow the same approach as in algorithm 5. The main difference is that at each node two labels
(functions) need to be constructed in stead of one. The second function will be denoted F!(t, q)
and represents the costs of the shortest path in terms of costs, ending at ¢ with total demand
q and arriving at node ¢ at time ¢, and with a different predecessor with respect to the path
resulting in costs Fj(t,q). For every t and ¢, the preceding node of i in the path yielding costs
F!(t,q) is stored for backtracking.

At each iteration, let P be the shortest path ending at location ¢ at time ¢ with load ¢ and
P’ the second path. Consider extending the path P from 7 to 7. When the predecessor of 7 in P
is j, extending P to j would yield a 2—cycle. By construction of the algorithm, the predecessors
of 7 in P and P’ are different. Hence extending P’ to j does not yield a 2—cycle and, if feasible,
provides the shortest path ending at location j visiting predecessor node i at time ¢ with load
g. For more details on k-cycle elimination we refer to Irnich and Villeneuve (2003).

Algorithm 6 contains pseudo code of the algorithm for the pricing problem algorithm with
2-cycle elimination.

Algorithm 6 Labeling Algorithm: pricing problem with 2-cycle elimination
Initialize Fo(t,q) = F5(t,q) = 0 and F;(t,q) = F/(t,q) = oo for all i > 0, t and gq.
for nodes i = 1,...,n do
for all out arcs (7,) of node i do
for all loads g at i such that there exists a time ¢ < e; — t;; for which Fj(t,q) < co and ¢+ d; < Q do
Calculate the costs f(¢) of a shortest path starting at 0 and ending with nodes k — ¢ — j, such that k
and j are not a copy of the same location, with a total load of ¢ + dj for all ¢.
Replace Fj(t,q + df) and Fj(t,q + d) by the minimum and second best respectively of the piecewise
linear functions Fj(¢,q + d¥), F;(t,q + d¥) and f(t) at each .
end for
end for
end for

References

e Chabrier, A. (2006), "Vehicle Routing Problem with elementary shortest path based col-
umn generation’, Computers & Operations Research, 33, pp. 2972-2990.

e Desaulnier, G. 2010, 'Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing
Problem with Time Windows’, Operations Research, Vol. 58, No. 1, pp. 179-192.

e Desrochers, M., Desrosiers, J. and Solomon, M. 1992, ’A New Optimization Algorithm for
the Vehicle Routing Problem with Time Windows’, Operations Research, Vol. 40, No. 2,
pp- 342-354.

e Desrochers, M., Soumis, F. 1988, ’A reoptimization algorithm for the shortest path problem
with time windows’, Furopean Journal of Operations Research, 35, pp. 242-254.

e Fischer, M.L., Jornsten, K.O. and Madsen, O.B.G. 1997, ’Vehicle Routing with Time
Windows: Two Optimization Algorithms’, Operations Research, Vol. 45, No. 3, pp. 488-
492.

e Groér, C., Golden, B. and Wasil, E. 2009, "The Consistent Vehicle Routing Problem’,
Manufacturing & Service Operations Management, Vol. 11, No. 4, pp. 630-643.

e Joachim, I., Gélinas, S., Soumis, F. and Desrosiers, J. 1998, ’A Dynamic Programming
Algorithm for the Shortest Path Problem with Time Windows and Linear Node Costs’,
Networks, 31, pp. 193-204.

18

Irnich, S. and Villeneuve, D. 2003,”The Shortest Path Problem with Resource Constraints
and k-Cycle Elimination for k > 3’, Les Cahiers du GERAD, 55.

Jabali, O., Leus, R., van Woensel, T. and de Kok, A.G. 2010, ’Self-impose time windows
in vehicle routing’, Working Paper 1028, Katholieke Universiteit Leuven.

Kohl, N., Desrosiers, J., Madsen, O.B.G., Solomon, M.M. and Soumis, F. 1999, '2-Path
Cuts for the Vehicle Routing Problem with Time Windows’, Transportation Science, Vol.
33, No. 1, pp. 101-116.

Laporte, G. 2007, "What you should know about the vehicle routing problem’;, Nawval
research Logistics, Vol. b4, No. 8, pp. 811-819.

Toth, P. and Vigo, D. 2002, "Models, relaxations and exact approaches for the capacitated
vehicle routing problem’; Discrete Applied Mathematics, 123, pp. 487-512.

19

