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General introduction
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1.1. Life expectancy

Life expectancy of a human population measures the expected (or average) remaining years 
of life at a given age. Life expectancy can be defined by two forms of measurement: the 
period and the cohort life expectancy. The period life expectancy represents the mortality 
conditions at a specific moment in time, in comparison to the cohort life expectancy, which 
depicts the life history of a specific group of individuals (born in the same year). Period life 
expectancies are frequently utilized when assessing and monitoring the health status of a 
population over time.

Currently, the life expectancy of the Western world population is much greater than in 
prior decades. The dramatic increase over the last century is considered as one of the great 
achievements of modern societies. Between 1970 and 2009 the average length of life in the 
old EU member states increased from 68.7 to 78.0 among men and from 74.9 to 83.5 among 
women1. Similar trends were witnessed among the elderly. Although there are many differ-
ences in the health service organization, national wealth, culture and associated individual 
behaviours between these countries, within a broader European perspective the upward 
trends are remarkably alike2.

In the first half of the twentieth century eradication of infectious diseases caused unprec-
edented improvements in mortality, particularly at young ages. As the risk of dying from 
infectious diseases was reduced, those saved from dying at younger ages survived to middle 
and older ages3. A second wave of mortality improvement was achieved mainly at the adult 
life. Since the 1970s ischemic heart disease mortality has decreased in most Western coun-
tries contributing to the majority of the declines in age-specific death rates4. It has been 
suggested that the decline in cardiovascular disease mortality is due to the combination of 
better treatment and changes in risk factors such as: lower blood pressure, reduced tobacco 
consumption, diets containing lower cholesterol, and increased physical activity within the 
population5. There are of course more distal influences that contributed to the gains in 
overall mortality. The most important elements include increasing welfare, greater access 
to and better quality of health care, rising living standards and improvements in the level 
of education6,7.

1.2. Health expectancy

In comparison with mortality, health is difficult to measure and estimates of population 
health are usually based on self-reported survey data. There is no single indicator that sum-
marizes the health of a population thus no harmonized way of measuring health.

In the last two decades considerable effort has been put into the development of summary 
measures that assess population health. Such measures not only summarize information 
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of mortality alone (e.g. life expectancy) but rather combine information of mortality and 
non-fatal health outcomes8,9. There are two main classes of summary measures: health gap 
measures (e.g. disability-adjusted life years, years of life lost) and health expectancies (e.g. 
disability-free life expectancy, quality-adjusted life expectancy).

Referring to health gap measures, for example, one disability-adjusted life year lost (DALY) 
can be considered as one lost year of healthy life due to a disease. Therefore the burden of 
the disease, that is, the sum of these DALYs across a population is thought of a measurement 
of the gap between a population’s actual health situation and an ideal situation where the 
entire population lives to an advanced age, free of disease and disability. In essence, DALYs 
for a health condition are calculated as the sum of the years of life lost due to premature 
mortality and the years lost due to disability of the health condition. 

Health expectancy (or expected healthy life years) typically combines mortality and mor-
bidity information to represent overall population health in a single indicator10. It measures 
the number of remaining life years that a person at a certain age is expected to live without 
ill-health, and is increasingly used to complement the conventional total life expectancy10. 
In its most commonly employed form, health expectancy is a functional health status 
measure, yielding the disability-free life expectancy and the life expectancy with disability 
measures. Because health expectancy was developed to reflect that not all years of a person’s 
life are lived in perfect health, estimates of health expectancies have been very attractive 
and widely used tools for monitoring trends in population health10. In this thesis, I focus on 
health expectancy measures.

There are two commonly used methods to estimate health expectancy: Sullivan’s method 
and the multistate life table (MSLT) method. They require different data inputs and can 
yield different results11. In the simple method, health expectancy is estimated by the Sul-
livan approach that combines mortality data with external information on cross-sectional 
(period) stock prevalence in each health state12. The MSLT method is a more refined way 
to estimate healthy life expectancy, it models the prevalence of morbidity as the result of 
several transitions (e.g. incidence, mortality and possibly remission)13. The MSLT method 
can be seen as a generalization of the original life table method, in which the ‘alive’ state 
is divided into two or more sub-states. Although an MSLT has larger data requirements 
since it needs age-specific estimates of multiple transitions, it has several advantages. Most 
importantly, it acknowledges the fact that the stock of ill health is the result of different 
processes. Accordingly, one can interpret trends in health expectancy as a result of develop-
ments in the underlying transition rates, that is, trends in incidence and remission from 
morbidity and trends in mortality of those in both the morbid and non-morbid health state. 
Using the MSLT method it is possible to decompose the population life expectancy into a 
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weighed average of the life expectancy of non-disabled and the life expectancy of disabled 
people.

In the literature applications of both the Sullivan and the multistate methods are easy to 
find. A large proportion of these studies focus on trends or country comparisons, but stud-
ies quantifying differences in health expectancy between subgroups of a population are also 
published. In the latter case, subgroups are often distinguished by socioeconomic status or 
are based on lifestyle factors such as smoking and overweight status. Although normally 
the results of these studies are difficult to compare directly because of the different health 
indicators and measurements of determinants used, the general picture is that there are 
significant differences between subgroups. Typically those with a more favourable risk fac-
tor status have higher health expectancy.

With respect to the evolution of the relationship between life and health expectancy over 
time, three distinct theories have been proposed: compression of morbidity, expansion of 
morbidity and the so-called dynamic equilibrium theory. Compression of morbidity, pro-
posed by Fries14, postulates that survival and morbidity curves will become more and more 
rectangularized and closer to each other in the future, as a result of strategies that effectively 
eliminate premature morbidity and mortality. Supporters of the pessimistic theory15 assert 
that increases in life expectancy will not be followed by increases in healthy life expectancy 
because the declines in mortality stem from mainly those suffering from chronic, disabling 
diseases. Additionally, the age of onset of diseases is not postponed therefore people will 
live more years in a morbid state. The third theory emphasizes the link between morbidity 
and mortality. Supporters of the dynamic equilibrium argue that the severity and rate of 
progression of chronic disease are directly linked to mortality changes, and this relationship 
is in equilibrium over time (dynamic). They claim that increases in total life expectancy 
would likely entail increases in total life expectancy and life expectancy with morbidity 
but years with severe morbidity and disability remain relatively stable16. Eventually, the 
scale of increases in health expectancy and life expectancy with morbidity depends on 
the postponement of incidence and severity of morbidity. Compression (or expansion) 
of morbidity can be measured in absolute values (increases in healthy life expectancy is 
larger (or smaller) than increases in total life expectancy), or as a proportion (healthy life 
expectancy over total life expectancy is increasing (or decreasing)). Alternatively, one can 
refer to absolute compression of morbidity by decreasing number of years with ill-health, 
and to relative compression of morbidity by decreasing proportion of years with ill-health 
over total number of life-years.
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1.3. Trends in health expectancy

Many studies have estimated health expectancy in the past using various study popula-
tions, disability measures and calendar periods. The most extensive work in assessing the 
evolution of past health expectancy has been conducted for the U.S. population. Crimmins 
et al. estimated that gains in life expectancy during the 1970s were mainly accompanied by 
increasing time spent with chronic limitations of common activities and by slight decreas-
ing time with severe disability17. Later, Crimmins et al. found that during the 1980s gains in 
life expectancy rose along with disability-free life expectancy for both men and women18. 
In 2009 Crimmins et al. examined changes in life expectancy with and without disability in 
(instrumental) activities of daily living (ADL and IADL) using longitudinal data between 
1984 and 200019. They showed that the increase in disability-free life expectancy at age 70 
was the same as the increase in life expectancy.

In Europe estimates of life expectancy and disability-free life expectancy for men and 
women were published for 13 European Union member states from 1995 until 2001 based 
on the European Community Household Panel20. Significant increases were found in life 
expectancy at early (age 16) and late (age 65) adulthood with considerable heterogeneity 
observed in health expectancy trends. In nine countries life expectancy with disability 
increased, whereas four countries had evidence of decreasing life expectancy with disability.

For the Netherlands, van de Water et al. studied trends in health expectancy between 1983 
and 199021. The study results expressed a rise (or decline) in the healthy life percentage of 
men (or women), where health status was defined by self-rated health status. Perenboom 
et al. assessed trends in disability-free life expectancy and life expectancy with disability 
according to levels of severity between 1989 and 200022. At an aggregated level, for both 
men and women at age 65, a decrease in disability-free life expectancy and an increase in life 
expectancy with disability were observed. These trends were caused by greater increases in 
mild disability compared to decreases in severe disability. Trends in visual, hearing, mobil-
ity and ADL disability prevalence between 1990 and 1998 in the Netherlands were studied 
in Picavet et al.23. They found fairly stable disability prevalences during the study period.

In 2009 the Statistics Netherlands published trends on health expectancy estimates for 
the period 1981-200724. Morbidity was measured in three different ways: self-rated health, 
presence of chronic disease and physical limitation. Since the 1980s, health expectancy has 
been increasing in men aged 65 measured in terms of self-reported good health or physi-
cal limitation. The increase has been somewhat even faster since the turn of the century. 
Unfortunately, among both men and women, life expectancy without chronic diseases at 
age 65 has been decreasing. For women, disability-free life expectancy increased and life 
expectancy without chronic diseases stagnated.
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1.4. Forecasting life expectancy

The continuous rise of life expectancy is certainly welcome, however, in recent times it 
has been accompanied by low fertility rates, which accumulated in higher proportions of 
older people25. These developments have considerable consequences on the sustainability of 
two fundamental institutions of social security: health care and pension systems. Therefore 
there is a great need for insights and models of future mortality outlooks.

It is expected that further declines will predominantly be attributable to the older popula-
tion, but the degree of improvements is rather uncertain. Representative to the ambiguity 
around the trend of human lifespan two groups of opinion evolved in the scientific com-
munity. Followers of the conservative view argue that human lifespan may have a natural 
limit (rectangularization of mortality curve)26,27. They claim that rapid increases in life 
expectancy, like those observed early in the 20th century, are no longer plausible. In con-
trast, advocates of unlimited longevity say that if there were an impending limit to further 
declines in death rates at older ages, countries with low levels of mortality would record 
slow rates of reduction. However, no correlation between levels of mortality and rates of 
reduction has been shown. In most developed countries the rate of reduction has acceler-
ated, especially since 197028-30.

Forecasting life expectancy
The uncertainty around the future trend of mortality presents challenges, in particular, to 
governments, pension funds and life insurers. They have to deal with the uncertainties in 
some way, therefore financial specialists have already expressed much interest in the model-
ling of future evolution of life expectancy31-34. In fact, because future mortality declines may 
have potentially large financial and social consequences on pension costs, methodological 
developments in mortality forecasts have received increasing attention, and important 
work has been done in this field. Among the approaches to forecasting mortality, particular 
methods that do not include covariates became popular. The underlying assumption of 
these methods is that all the information about the future is contained in the past observed 
values of the log-mortality rate35. For example a non-parametric method based on principal 
components developed by Lee and Carter31 is now widely used around the world to forecast 
all-cause and cause-specific mortality.

1.5. Forecasting health expectancy

In ageing populations it is an important question whether increases in life expectancy will 
be accompanied with greater or lesser increases in life years spent in poor health36. For that 
reason monitoring the level of life expectancy, health expectancy and their relationship is 
a key component of the public policy process that in turn, gives the chance to assess if the 
changes therein support the compression of morbidity, the expansion of morbidity or the 
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dynamic equilibrium theory. Forecasts of life and health expectancy could shed light on the 
future potential of disability compression.

For pension providers and financial organisations it is important to have expectations on 
how long people will live after they retire. Therefore forecasts of cohort life expectancy 
are often prepared by these institutions. Concerning retirement policies, however, it may 
not be sufficient to form expectations on only future (overall) life expectancy. If a further 
raise in retirement age is on the agenda, it is more appropriate to answer how long people 
will be able to work in the future, instead of simply answering how long they will live. In 
fact, many countries have already undertaken systematic adjustments in retirement age to 
increasing life expectancy37,38. Although the rationale for such restructuring was to improve 
the financial sustainability of pension systems, these reforms may have adverse social side-
effects, as the extent to which total life expectancy increases may differ from the extent to 
which healthy life expectancy increases39,40.

In the light of increasing health care expenditures it is important to assess to what extent 
future trends in health influence the demand for health care. Given the fact that health 
care expenditure generally increases with age and bad health status, health policy makers 
expressed concerns about the pressure population aging will exert on the fundability of the 
health care system, supplementary to the availability of sufficient numbers of health care 
workers41.

Forecasting health expectancy
Contrary to forecasting life expectancy, virtually there is no literature on methodology or 
application of health expectancy projections. Along the lines of mortality projections, such 
methodology should reflect and combine the future trends in the underlying mechanisms 
of health and mortality. One possible approach is to invoke the multistate life table frame-
work, thus addressing such mechanisms. If so, the transition rates or transition probabilities 
should be modelled, and these quantities should be some function of calendar time and 
other characteristics (e.g. age, sex). If the purpose is to extrapolate past trends into the fu-
ture, then the time dimension should be extrapolated while everything else is kept constant. 
Ideally, uncertainty around the future estimates should be taken into account.

1.6. Aims of this thesis

So far the main focus of research has been on the trends of health expectancy in a given 
country or on cross-country comparisons between countries. Less emphasis has been 
put on determinants of health expectancy, such as obesity, smoking or educational level. 
Furthermore, studies aiming at predicting future health expectancy are rare. This is partly 
due to the lack of long time series data on health status. In addition, forecasting health 
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expectancy is based on multiple dimensions and is thus more complicated than forecasting 
life expectancy which is based on a single dimension, mortality. The main research ques-
tions addressed in this thesis aim to fill these gaps, and are as follows:

1. What are the mechanisms and factors that influence health expectancy?
2. What are the likely future trends in health expectancy?

1.7. Structure of this thesis

The first part of this thesis, Chapters 2, 3 and 4, aims to answer the first research ques-
tion by establishing the extent to which health expectancy is related to major risk factors 
of population health. In these chapters health is measured in various ways based on data 
from repeated cross-sectional survey collected in the Netherlands (Chapter 2) and from 
longitudinal multinational surveys (Chapter 3 and 4). Chapter 2 investigates whether the 
mortality risk related to disability can be explained by other risk factors, and differences are 
quantified in terms of life expectancy between the nondisabled and the disabled population. 
Chapter 3 estimates the extent to which overweight status and smoking status is related to 
life expectancy with disability. In Chapter 4 differences in disability-free life expectancy are 
estimated for different educational levels. In both Chapters 3 and 4 estimates are given for 
Western-European countries.

The second part of the thesis, i.e. Chapters 5 to 7, aims to answer the second research ques-
tion on future trends of health expectancy by projecting past trends between either 1981 
and 2007 or 1989 and 2007 until 2020/2030. The implications of future trends in population 
health, covered in this thesis, involve changes in the prevalence of selected health condi-
tions and economic consequences on long term care expenditures. Chapter 5 presents a 
multistate life table framework that can be applied to forecast the health expectancy of a 
population. Such an application is presented for the Netherlands where the health states are 
‘nondisabled’, ‘disabled’ and ‘dead’. Chapter 6 explores the effects of the future prevalence 
of disability on future long term care expenditures. In Chapter 7 future prevalence of over-
weight and obesity are estimated by taking into account the changing distribution of body 
mass index in the population.

Chapter 8 focuses on the main discussion points and elaborates on the policy implications 
of the likely trends. Finally, a summary of the thesis is provided in English and in Dutch.
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Objectives 

We assessed the association between mortality and disability and quantified the effect of 
disability-associated risk factors.

Methods 

We linked data from cross-sectional health surveys in the Netherlands to the population 
registry to create a large data set comprising baseline covariates and an indicator of death. 
We used Cox regression models to estimate the hazard ratio of disability on mortality.

Results 

Among men, the unadjusted hazard ratio for activities of daily living, mobility, or mild 
disability defined by the Organization for Economic Cooperation and Development at age 
55 years was 7.85 (95% confidence interval [CI]=4.36, 14.13), 5.21 (95% CI=3.19, 8.51), and 
1.87 (95% CI=1.58, 2.22), respectively. People with disability in activities of daily living and 
mobility had a 10-year shorter life expectancy than nondisabled people had, of which 6 
years could be explained by differences in lifestyle, sociodemographics, and major chronic 
diseases.

Conclusions 

Disabled people face a higher mortality risk than nondisabled people do. Although the dif-
ference can be explained by diseases and other risk factors for those with mild disability, we 
cannot rule out that more severe disabilities have an independent effect on mortality.

Am J Public Health. 2011 Dec;101(12):e9-e15.
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2.1. Introduction

Population aging is associated with an increase in the number of people wh0 are disabled. 
This increase presents a challenge for society because elderly persons disabled in 1 or more 
domains of life are hospitalized more often42, need more medical and long-term care43-46, 
and face a higher risk of death than nondisabled persons do47-54.

Disablement refers to the impact that chronic and acute conditions have on people’s ability 
to perform tasks necessary for daily living and normal social functioning55. In a broader 
context, the disablement process is described as a causal chain in which the progression 
of disease leads to functional limitations, loss of mobility, and eventually to inability to 
perform activities of daily living (ADLs)55-58. Empirical studies have found numerous risk 
factors associated with disablement. These factors are usually seen as risks that increase the 
chance of developing a disability. The major underlying causes are (acute and progressive) 
chronic diseases59, but other risk factors including sociodemographic factors (e.g., age, 
gender60, socioeconomic status61), behavioral factors (e.g., smoking)62, nutrition63, physical 
activity64, comorbidity59, self-rated health65, and cognitive impairment66 are also associated 
with incident disability.

Disability is most often assessed in cross-sectional studies without information on mor-
tality. The few longitudinal studies that have been conducted tend to emphasize incident 
disability rather than the trajectory of disability following onset because of lack of statistical 
power67. Thus, although the onset of disability has been extensively researched, there has 
been far less investigation into the mortality risk associated with disability. In previous stud-
ies, the study populations were often limited to specific disease groups48,52 or based on small 
sample sizes  with few control variables47,49-51,53,54. Moreover, the focus was often on other 
determinants of mortality rather than on disability. Nonetheless, disability has been found 
to be an independent predictor of death after adjustment for heart disease48, depressive 
symptoms51, physical activity54, socioeconomic status53, or health status51. However, no 
study has assessed the extent to which the relationship between disability and mortality can 
be explained by risk factors known to be associated with disablement. Assessment of this 
relationship may enhance understanding of the public health aspects of aging. If disability 
is found to be independently associated with mortality, developing strategies to prevent dis-
ability would not only increase disability-free life expectancy but also total life expectancy. 

We assessed the association between mortality and 3 disability measures reflecting differ-
ent levels of disability severity. The linking of cross-sectional health surveys to municipal 
health registries in the Netherlands permitted the compilation of a large time-to-event data 
set with covariates measured at baseline68. We quantified the magnitude of the associa-
tion between disability and mortality, unadjusted and adjusted for groups of risk factors. 
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These risk factors included distal and proximal risk factors that may influence the speed 
of disablement69-72. We used hazard ratios (HRs) and life expectancy to summarize the 
association between disability and mortality.

2.2. Methods

Our analyses were based on the Health Module of the Permanent Onderzoek LeefSitu-
atie (Ongoing Population Survey; POLS) survey collected among the noninstitutionalized 
population of the Netherlands73,74. The POLS is an ongoing, annual cross-sectional survey 
conducted to provide representative information on a broad range of topics concerning 
the living situation of the Dutch general population. The POLS is sampled from records 
of a centralized municipal registry and does not include the institutionalized population. 
Self-reported health data are collected through face-to-face interviews and written ques-
tionnaires. The interviewer visits the participants at home, asks for informed consent, and 
leaves a written questionnaire. The survey response rate is typically around 60%, yielding 
annual net participation of approximately 10,000 individuals.

We used the POLS Health Module conducted between 2001 and 2006 because a revised 
questionnaire was introduced in 2001, and we had access to data that could be linked to 
mortality registry until 2006. We were provided with a unique data key to link individuals’ 
survey responses with their municipal population registry records for all participants in 
POLS68. The available municipal population registries contained annual data on the event 
of death (yes or no) and its date in the population until December 31, 2007. Records of 
POLS and population registries were linked to establish the date of death during the study 
follow-up period. Those who were not identified in the death registry were considered to be 
alive at the end of the follow-up period.

The statistical key allowed the creation of a data set comprising a set of covariates measured 
at baseline for each person and an indicator whether that person had died before 2008 and, 
for those who had died, the date of death. Because the POLS consists of a new independent 
sample each year, we measured covariates for each person once.

Disability Measures
Disability refers to limitations in performance of socially defined roles and tasks within a 
sociocultural and physical environment, and to the inability to perform ADLs in a normal 
manner55. Because the concept of disability covers several types of limitations and in-
abilities, there is no single way of measuring it. In practice, indicators including disabilities 
in ADLs or disabilities in mobility are frequently used measures. We used 3 disability 
indicators reflecting different severity levels of disability. Both the severe disability indica-
tors, ADL and mobility, and the mild disability indicator, defined by the Organization for 
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Economic Co-operation and Development (OECD)75, were measured among persons aged 
55 years and older. The ADL disability uses 5 items (eating and drinking, dressing, washing 
hands and face, washing oneself completely, transfer from chair). The mobility disability 
measure uses 5 items (moving indoors, moving outdoors, walking stairs, transfer from bed, 
entering or leaving room). The OECD measure uses 7 items (conversing, reading small let-
ters, recognizing faces, biting, carrying objects, walking 400 m, bending). For each item, 
respondents were asked if they were able to perform the activities “without difficulty”, “with 
minor difficulty”, “with major difficulty”, or ”not able to perform or only with help”. For each 
indicator, disability was defined as having at least 1 item answered ”with major difficulty” or 
”not able to perform or only with help”.

Control Variables
We examined 3 sets of control variables (confounders in the trajectory of disablement) 
reflecting the time-distance between the risk factors and disability according to the dis-
ablement theory, in descending order: (1) lifestyle and sociodemographic risk factors, (2) 
chronic diseases, and (3) other indicators of health status. The first set of risk factors in-
cluded educational status, marital status, smoking status, and overweight status69,71,72. The 
second set of risk factors included both progressive and acute diseases70: diabetes, stroke, 
myocardial infarction or other severe heart disorder, any form of cancer, and diseases of the 
respiratory system. The third set included self-rated health status and hospitalization in the 
past year. More details on the variables are presented in Appendix 2A.

Data Analysis
We estimated HRs of disability on mortality for the disability measures with Cox regression 
models, for which the time scale was defined as a person’s age76. Cox models are math-
ematical models widely used for analyzing survival data. Left truncation was applied to 
the age range over which the individual was not observed before the inclusion to the POLS 
survey77. We conducted all analyses separately for men and women because of differences in 
mortality, prevalence, and onset of disability (lower mortality, higher incidence, and higher 
prevalence among women than men)78. We controlled for the survey year in the Cox models 
by stratification. We used Stata 10.0 (StataCorp LP, College Station, TX) to perform the 
analyses.
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•  Unadjusted models: comparing the mortality risk of disabled and nondisabled population
We fitted stratified Cox models to assess the risk of mortality associated with disability sta-
tus. The Cox models provide HR estimates of how much higher the mortality risk is among 
disabled than among nondisabled people. We fitted separate models for the 3 disability 
measures. The proportional hazard (PH) assumption was tested for each model by 2 types of 
test. First, we plotted log-log Kaplan-Meier estimates and judged whether they were paral-
lel. When the comparison between the nondisabled and the disabled produced nonparallel 
curves, it indicated the PH assumption was not satisfied for the disability status variable. 
Second, a parametric approach for assessing the PH assumption involved goodness-of-fit 
tests by using Shoenfeld residuals. This approach provides large sample Z or Χ2 statistics that 
can be computed for each variable while controlling for the other variables in the model. 
Nonsignificant (i.e., large) P values suggest that the PH assumption is reasonable, whereas 
small P values suggest that the variable being tested does not satisfy this assumption79.
 
When the PH assumption is violated, there are 2 approaches to consider: using a stratified 
Cox procedure or using an extended Cox regression with a time-dependent variable79. We 
used the second approach because using a stratified Cox model would imply that our main 
parameter of interest, disability status, would have been automatically removed from the 
model. We therefore added an interaction term between age (time axis in our model) and 
disability, which was interpreted as an age-dependent effect of disability status on mortality.

•  Adjusted models: explaining the difference in mortality risk of disabled and nondisabled 
populations

To assess the extent to which mortality differences between the disabled and nondisabled 
can be explained by risk factors, we compared the results of the unadjusted models (models 
without confounders) with the results of the adjusted models (models with confounders). 
First, we added behavioral and sociodemographic control variables to the model. Second, 
we added chronic diseases to the previous model. Third, we added the other indicators of 
health status. Although in the first 2 models, the risk factors typically precede disability, 
poor health status and hospitalization may already be a consequence of disability, indicating 
reverse causality. Because both explanations are plausible42, these 2 risk factors were con-
sidered as a separate group. The study populations for these were limited to those for whom 
information was available for all risk factors. The risk factors were added in groups, and we 
did not investigate any interaction between the risk factors. We tested the PH assumptions 
in the same way as for the unadjusted models.
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•  Life expectancy analysis
We calculated life expectancy estimates of nondisabled and disabled persons at age 55 years 
by disaggregating national mortality rates with HR and prevalence estimates80. Details on 
mortality decomposition are presented in Appendix 2B. The resulting LE estimates can 
be interpreted as the remaining life expectancy of someone who remains nondisabled or 
disabled for the rest of his or her life.

2.3. Results

Table 2.1 provides data for the POLS sample and final study population by gender. Of the 
original sample of 60,399 individuals completing the POLS health module, 15,208 were 
aged 55 years or older. Of these, 767 men and 582 women died during 26,584 and 29,554 
person-years of exposure time, respectively. The prevalence of ADL, mobility, and OECD 
disability was approximately 3.9%, 8.4%, and 24.5% for men and 6.3%, 15.9%, and 33.7% for 
women, respectively. Because our tests indicated that the PH assumption was violated in the 
unadjusted models of ADL and mobility disability, we added an interaction term between 
disability and age. Results are shown in Appendix 2C. 

Table 2.1 Sample characteristics at baseline, POLS Health Survey of the Netherlands, 2001–2006

Variable Men Women Total

POLS health and work module 29,558 30,841 60,399

Population aged 55+ 7,287 7,921 15,208

Exposure time, person-years 26,584 29,554 56,138

Number of deaths 767 582 1,349

Disability measures, yes, %

   ADL 3.9 (7,287) 6.3 (7,920) 5.1 (15,207)

   Mobility 8.4 (7,287) 15.9 (7,920) 12.3 (15,207)

   OECD 24.5 (6,242) 33.7 (6,532) 29.2 (12,774)

Lifestyle and socioeconomic risk factors

Smoking status, %

   Past daily smoker 55.8 (6,860) 27.1 (7,878) 40.5 (14,738)

   Present daily smoker 22.8 (6,860) 18.3 (7,878) 20.4 (14,738)

Overweight status, %

   Normal (18.5 <BMI <= 25) 38.0 (7,116) 42.3 (7,404) 41.7 (14,520)

   Overweight (25 < BMI <= 30) 48.0 (7,116) 36.4 (7,404) 43.4 (14,520)

   Obese (BMI > 30) 11.6 (7,116) 14.8 (7,404) 13.8 (14,520)

Educational status: ≤ secondary school, % 45.5 (7,226) 70.7 (7,883) 58.6 (15,109)

Marital status: widowed, divorced, or never 
married, %

20.1 (7,287) 40.0 (7,921) 30.4 (15,208)
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Table 2.2 shows the estimated HRs of the unadjusted models. Among men, the mortality 
risk at age 55 was 7.85 (95% confidence interval [CI]=4.36, 14.13), 5.21 (95% CI=3.19, 8.51), and 
1.87 (95% CI=1.58, 2.22) times higher for those with ADL, mobility, and OECD disability, 
respectively, than it was for those without disability. Among women, the corresponding 
ratios were 6.14 (95% CI=3.13, 12.03), 9.19 (95% CI=5.47, 15.44), and 1.61 (95% CI=1.29, 2.01).

The HR associated with ADL and mobility disability significantly decreased by approxi-
mately 0.96 with every year increase of age. By age 80 years, men with ADL or mobility 
disability faced risks of dying 2.92 (95% CI=2.36, 3.61) and 2.48 (95% CI=2.09, 2.95) times 
higher, respectively, than did those who did not have such disability. Corresponding HRs 
among women were 2.51 (95% CI=2.03, 3.10) and 2.28 (95% CI=1.93, 2.70). We found no 
significant age gradient for OECD disability, and the level of HR was lower.

Table 2.1 (Continued)

Diseases

Diabetes, % 9.9 (6,260) 9.0 (6,527) 9.4 (12,787)

Stroke, % 5.9 (6,243) 4.5 (6,515) 5.2 (12,758)

Myocardial infarction, % 15.7 (6,128) 7.5 (6,315) 11.5 (12,443)

Cancer, % 10.5 (6,224) 12.1 (6,500) 11.3 (12,724)

Respiratory disease, % 8.8 (6,283) 9.1 (6,592) 8.9 (12,875)

Morbidity measures

Self-rated health status: poor or very poor, % 17.4 (6,230) 21.3 (6,512) 19.4 (12,742)

Hospitalized, % 10.9 (7,287) 10.4 (7,921) 10. 7 (15,208)

Notes. ADL = activities of daily living; OECD = disability as measured by the Organization for Economic Co-
operation and Development indicator; BMI = body mass index (weight in kilograms divided by the square 
of height in meters); POLS =  Permanent Onderzoek LeefSituatie (Ongoing Population Survey). Number of 
responses in parentheses.
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Table 2.2 Mortality risk by baseline disability in terms of hazard ratios in the unadjusted models, 
separately for men and women: POLS Health Survey of the Netherlands, 2001–2006

HR 95% CI P value N

Men

ADL (at age 55 years) 7.85 4.36, 14.13 < 0.000 7,287

ADL × age 0.96 0.94, 0.98 < 0.000

Mobility (at age 55 years) 5.21 3.19, 8.51 < 0.000 7,287

Mobility × age 0.97 0.95, 0.99 < 0.01

OECD 1.87 1.58, 2.22 < 0.000 6,242

Women

ADL (at age 55 years) 6.14 3.13, 12.03 < 0.000 7,920

ADL × age 0.96 0.94, 0.99 < 0.01

Mobility (at age 55 years) 9.19 5.47, 15.44 < 0.000 7,920

Mobility × age 0.95 0.93, 0.96 < 0.000

OECD 1.61 1.29, 2.01 < 0.000 6,532

Notes.ADL = activities of daily living; CI = confidence interval; HR = hazard ratio; OECD = disability as 
measured by the Organization for Economic Co-operation and Development indicator; POLS = Permanent 
Onderzoek LeefSituatie (Ongoing Population Survey). P values are 2-sided.
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We assessed the extent to which mortality differs between disabled and nondisabled people 
by adding groups of risk factors to the models. First, we added behavioral and sociode-
mographic control variables (Table 2.3: column adjusted for socioeconomic factors and 
health behaviors). The risk of death by disability status was somewhat explained by marital, 
education, and smoking status in men but only by smoking status in women. Second, we 
added 5 key chronic diseases to the previous model (Table 2.3: column adjusted for chronic 
diseases). All were significant predictors of mortality (except for myocardial infarction 
among women), which substantially reduced the magnitude of the HRs, especially for ADL 
and mobility disability. Finally, when we added self-reported health status and previous 
hospitalization to the explanatory models (Table 2.3: column adjusted for health status), 
both morbidity measures were significant predictors of mortality, which further explained 
the risk of death by disability status. However, the HRs still indicated a significantly higher 
mortality risk for disability in ADL (men: HR=1.62; 95% CI=1.15, 2.30; women: HR=1.87; 
95% CI=1.32, 2.64) and for disability in mobility (men: HR=1.57; 95% CI=1.21, 2.02; women: 
HR=1.67; 95% CI=1.25, 2.23) than for nondisabled persons.

Figure 2.1 presents the remaining life expectancies of nondisabled and disabled populations 
for each disability measure. Men who are free of ADL, mobility, or OECD disability at age 
55 years and older can expect to live 25.2 (95% CI=24.8, 25.8), 25.8 (95% CI=25.3, 26.4), and 
26.3 (95% CI=25.6, 27.0) years, respectively. By contrast, men who have ADL, mobility, or 
OECD disability face substantially shorter life expectancies: i.e., 15.9 (95% CI=13.9,18.0), 17.4 
(95% CI=16.0,18.8), and 20.9 (95% CI=20.0, 21.8) years, respectively. Women without ADL, 
mobility, or OECD disability have a life expectancy of 29.3 (95% CI=28.9, 29.9), 30.2 (95% 
CI=29.5, 31.0), and 29.9 (95% CI=28.9, 31.0) years, respectively, whereas those with such 
disabilities can expect to live for substantially less time: 21.3 (95% CI=19.2, 23.5), 23.5 (95% 
CI=22.1, 24.9), and 26.3 (95% CI=25.5, 27.2) years, respectively. Much of these differences in 
LE are explained by risk factors. After we adjusted for all the covariates, differences in life 
expectancy associated with disability decreased to approximately 4 years for disability in 
ADL and mobility. For OECD disability, the differences become very small.
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Figure 2.1  Remaining life expectancy at age 55 years for nondisabled and disabledpopulations of (a) 
men and (b) women by disability measure: POLS Health Survey of the Netherlands, 2001–2006.
Note. ADL = activities of daily living; OECD = Organization for Economic Co-operation and Development 
indicator; SES = socioeconomic status.
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2.4. Discussion

We assessed the relationship between disability and all-cause mortality in the general popu-
lation for 3 different disability measures. We compared disabled and nondisabled popula-
tions in terms of relative mortality risk. People with disabilities were exposed to higher 
risk of death at any age. A major part of the excess risk of death associated with disability 
could be explained by major diseases and other risk factors typically preceding the presence 
of disability; however, for severe disability measures a substantial unexplained proportion 
remained.

As suggested by the disablement process, our empirical results confirmed that although ADL 
and mobility disability were strong predictors of death, OECD disability was only a weak 
predictor. Furthermore, adjustments for diseases with significant mortality risk explained 
a major part of the association. We speculate that the remaining association between dis-
ability and mortality may be explained by residual confounding or is an independent effect 
of disability. The risk factors that were not included in our models because of lack of data 
and that are known to be related to disability and death include disease severity81, injuries82, 
multiple sclerosis83, motor neuron disease84, or depression85. Poor health status and previ-
ous hospitalization in our model may capture these unobserved characteristics. If they did, 
our analyses would imply that the disabled face higher risk of death than the nondisabled 
do, even after controlling for these other indicators of health status, and this finding can be 
interpreted as an indication that disability has an independent effect on mortality.

To assess the validity of the changing HR with age, we searched studies with model speci-
fications similar to ours. We found only 1 study that used age as a timescale: it described 
the association between ADL disability and mortality among a small elderly population49. 
Similar to our results, the authors found that the effect of disability on mortality decreased 
with age (with control for a limited number of risk factors). At younger ages, ADL disability 
was associated with increased risk of death compared with that at older ages (for men, 
HR=1.80 at age 80 years and HR=1.15 at age 90 years; for women, HR=3.53 at age 80 years 
and HR=1.86 at age 90 years).

Strengths and Limitations
There are some limitations regarding the data that need to be acknowledged. First, disability 
data were self-reported, which can result in either under- or overreporting of disability, 
which, in turn, may bias the outcomes. Although we cannot exclude this possibility, mea-
surement of functional limitations by self-report are reported to be consistently associated 
with performance and reflect similar assessment of function86.
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Nonresponse might have been a problem if the disabled were less likely to respond to the 
survey. No study has explored the relationship between nonresponse and disability status in 
the POLS survey before; therefore, we assessed whether missing disability score was associ-
ated with participants’ health status. To do this, we used the POLS Basis module in which 
self-rated health status was elicited during face-to-face interviews but no other information 
on health was recorded. In terms of self-reported health status, the POLS Basis module 
was a larger sample than was the POLS Health module. We linked individual records of 
the POLS Health survey to records of self-assessed health status from the POLS Basis and 
created a data set in which the disability variable was a dichotomous indicator variable 
(missing or nonmissing). We found that the probability of exclusion because of missing 
values in a given disability measure was weakly related to self-reported health status (i.e., 
the worse the health status, the higher the probability of not completing the questionnaire). 
The odds ratio of being excluded from the analysis for those reporting very poor health 
status was around 1.2 for men and slightly higher for women. A recent study that investi-
gated the potential consequences of participation bias on associations between exposures 
and outcomes concluded that the nonparticipation of those with poorer health is probably 
a greater threat to the validity of prevalence studies than to studies of associations between 
exposures and outcomes87. These findings imply that differential nonresponse could not 
have strongly biased our estimates. 

Several studies have shown that individuals might change their disability status during 
the observation period88,89. By contrast, the present study approaches disability as a static 
condition as observed at enrollment, ignoring the possibility that disability may have begun 
or diminished over the follow-up period. The static disability measure was admittedly a 
limitation of our study. The probability of such misclassification is higher if the follow-up 
time is longer, given constant incidence and recovery intensities. Direct evaluation of the 
level of misclassification was not possible, but we could, however, test whether disability had 
a different effect on mortality among persons who were classified for a longer time before 
the event took place. We fitted additional Cox models, in which we added an interaction 
term of the standardized POLS year variable and the disability measure variable to each 
model. The HR of such interaction term larger than 1 could be an indication of a weaker 
effect of disability on mortality among those recruited earlier than among those who joined 
the POLS later. Such a situation could occur if many individuals became disabled during 
the follow-up period. After we assessed the significance of interaction terms in the models 
for each disability measure (P>0.5), we concluded that misclassification was unlikely to have 
biased our results.
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A main strength of this study was the annually collected data from a large representative 
survey of community-dwelling older people followed for up to 7 years. Measures of dis-
ability status were elicited by an identical survey design and survey questionnaire for all 
participants in each year, allowing the compilation of an extensive data set. In addition, 
recall bias was avoided because disability status was elicited on the spot. We are not aware 
of any study that has used such a large-scale record-linked data set to analyze the risk of 
disability on mortality.

A further strength is that we used 3 different disability measures. Different types of disability 
capture different severity levels90, which result in different trajectories after onset. Accord-
ingly, the severity of disability influences the mortality risk91 and the type or duration of 
subsequent care92. More severe disability implies an increased demand for formal care (e.g., 
nursing homes), although this demand becomes shorter because the associated mortality 
risk is high. Overall, more severe disability is likely to be associated with a greater need for 
institutional care during a shorter period of time.

Conclusions
Our results indicate that disabled persons face a higher mortality risk than the nondisabled, 
especially those who are severely disabled. Whereas for mild disability the risk difference 
can be explained by diseases and other risk factors related to sociodemographic status and 
lifestyle, we cannot rule out that more severe disabilities have an independent effect on 
mortality.
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Appendix 2A Detailed description of variables

Name Description Possible answers Coding

ADL eating and drinking, (un)dressing, 
washing hands and face, washing 
oneself completely, transfer from 
chair

1) without difficulty
2) with a little difficulty
3) with severe difficulty
4) only with help

someone is disabled if 
answer on at least one 
of the items was ‘severe 
difficulty’ or ‘only with 
help’ 

Mobility moving indoors, moving 
outdoors, walking stairs, transfer 
from bed, entering /leaving room

1) without difficulty
2) with a little difficulty
3) with severe difficulty
4) only with help

someone is disabled if 
answer on at least one 
of the items was ‘severe 
difficulty’ or ‘only with 
help’

OECD following / driving a conversation, 
reading small letters, recognising 
a face, biting, carrying an object, 
walking 400ms, bending

1) without difficulty
2) with a little difficulty
3) with severe difficulty
4) not able to perform

someone is disabled if 
answer on at least one 
of the items was ‘severe 
difficulty’ or ‘not able to 
perform’

Morbidity

Self-reported bad 
health

self-perceived health status 1) excellent
2) very good
3) fine
4) moderate
5) bad

Someone had bad health 
status if the answer was 
‘bad’

Hospitalised in 
the previous year

admission to hospital in the 
previous year

1) yes
2) no
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Name Description Possible answers Coding

Selected diseases

Diabetes having diabetes 1) yes
2) no

Stroke had a stroke 1) yes
2) no

Infarct had heart infarct or other 
severe heart disorder

1) yes
2) no

Cancer had at least one cancer 1) yes
2) no

Asthma / chronic 
non-specific lung 
disease

having asthma, chronic 
bronchitis or chronic non-
specific lung disease

1) yes
2) no

Other risk factors

Smoking status Question: do you smoke? 1) yes, daily
2) yes, sometimes
3) used to smoke daily
4) used to smoke 
sometimes
5) never smoked

smoker if the answer was 
“yes, daily”

ex-smoker = used to 
smoke daily

non-smoker = 2), 4) or 5)

Overweight status overweight index 1) severe underweight
2) normal
3) overweight
4) obese

dummy recoding

Educational level highest achieved 
educational level

1) low education
2) lbo
3) mavo
4) havo, vwo, mbo
5) hbo, university degree

a person was low educated 
if his educational level was 
1), 2) or 3)

Marital status civic status 1) married
2) widowed
3) divorced
4) never married

dummy recoding: married 
versus other
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Appendix 2b  Disentangling mortality rates of the whole population into 
mortality rates of non-disabled and disabled populations

Raw total mortality rates for the period 2001-2007 were calculated for each age and sex 
based on the total counts of mortality and exposure time during of interest, as published in 
Human Mortality Database (HMD). Age- and sex-specific prevalence of disability measures 
were calculated based on the number of disabled persons and the number of participants in 
the study population during the same period. Both total mortality rates and prevalence of 
disability were smoothed by P-splines method in R. 

Combining smoothed total mortality rates, hazard ratios and smoothed prevalence of dis-
ability mortality rates were calculated for non-disabled and disabled populations by the 
following formulas:

, where mx (nd), mx (d), HRx and px (d) indicated the mortality rate of non-disabled, mortality 
rate of disabled, estimated hazard ratio and prevalence of disability at age x, respectively.

LEs of non-disabled and disabled populations were calculated using survival probabilities, 
which were transformed from the state-specific mortality rates:
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Appendix 2C  Log-log Kaplan-Meier survival estimates of the disability 
measures in univariate analyses, men and women (ADL, 
Mobility, OECD)
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The goal of this study was to estimate life expectancy (LE) and LE with disability (LwD) 
among normal weight, overweight, and obese smokers and nonsmokers in Western Europe. 
Data from four waves (1998-2001) of the European Community Household Panel (ECHP) 
were used; a standardized multipurpose annual longitudinal survey. Self-reported health 
and socioeconomic information was collected repeatedly using uniform questionnaires 
for 66,331 individuals in nine countries. Health status was measured in terms of disability 
in daily activities. Multistate Markov (MSM) models were applied to obtain hazard ratios 
(HRs) and age-specific transition rates according to BMI and smoking status. Multistate life 
tables were computed using the predicted transition probabilities to estimate LE and LwD. 
Significant associations were observed between disability incidence and BMI (HR=1.15 
for overweight, HR = 1.64 for obese, compared to normal weight). The risk of mortality 
was negatively associated with overweight status among disabled (HR=0.77). Overweight 
people had higher LE than people with normal-weight and obesity. Among women, over-
weight and obese nonsmokers expect 3.6 and 6.1 more years of LwD than normal weight 
persons, respectively. In contrast, daily smokers expect lower LE but a similar LwD. The 
same patterns were observed among people with high education and those with low educa-
tion. To conclude, daily smoking is associated with mortality more than with disability, 
whereas obesity is associated with disability more than with mortality. The findings suggest 
that further tobacco control would contribute to increasing LE, while tackling the obesity 
epidemic is necessary to prevent an expansion of disability.

 
Obesity (Silver Spring). 2011 Jul;19(7):1451-9.
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3.1. Introduction

Life expectancy (LE) has been increasing for decades30, but whether and to what extent 
disability-free life expectancy will increase is not entirely clear93,94. In the past, advances in 
medical technologies and their increased availability have contributed to the independence 
of older people95. However, any optimism may be diminished by the impact of obesity96. 
The worldwide epidemic has already resulted in a doubling of the prevalence of obesity in 
Western and Westernizing countries97.

Early studies of U.S. populations found large effects of overweight and obesity (referred to 
the summary term “overweight status” below) on both premature death risk and on disabil-
ity prevalence98,99. However, these effects reflect life histories of older cohorts and there is 
evidence that the excess risk of higher body mass index (BMI) on mortality has diminished 
over time100,101. Studies using more recent data from the U.S. showed smaller impacts on 
LE, but still large effects on disability-free life expectancy102,103.

Results for Europe might be different from those of the U.S. though, due to different 
epidemiological profiles between these regions. In Southern Europe for example, lower 
cardiovascular mortality rates have been recorded than in the U.S, despite the relatively 
high prevalence of classical risk factors104. Consequently, one might hypothesize that the 
diminishing effect of high BMI on mortality over time may vary across the Atlantic.

Unfortunately the evidence on the impact of overweight status on life expectancy and the 
burden of disability in Europe is largely incomplete. Previous studies were based on small 
sample sizes and were restricted to single countries105,106. Consequently, a comprehensive 
picture on the population health associated with overweight status in Europe is still missing. 

The aim of this study was to assess how much the overweight status is associated with 
longevity and the burden of disability in Western Europe. To measure this relationship, life 
expectancy and life expectancy with disability (LwD) were estimated by overweight status 
and smoking status. Furthermore, it was investigated in subgroups of men and women as 
well as of low and high educated.

Life expectancy and life expectancy with disability are both aggregate measures of popula-
tion health referring to a certain period of time. LwD has similar interpretation to (total) 
LE but it refers to the number of years that people expect to live with disability. LE and 
LwD (and their difference, “disability-free life expectancy”) are routinely used aggregate 
indicators of population health for a certain calendar period10.
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The European Community Household Panel (ECHP) was used as data source. The main 
advantages of ECHP were that it provided comparable information on health and mortal-
ity for several European countries, and that it gave sufficient statistical power to obtain 
precise estimates for disability incidence and recovery rates, and for life table calculations 
for specific risk factor groups. 

3.2. Methods and procedures

Data
The ECHP is a standardised multi-purpose annual longitudinal social survey carried out 
at the level of the European Union between 1994 and 2001. It is centrally designed and 
coordinated by the Statistical Office of the European Communities (Eurostat), and includes 
demographics, labour force behaviour, income, health, education, training, housing, and 
migration. The data were collected by the National Statistical Institutes or research cen-
tres of the participating countries using uniform random sampling design and common 
blueprint questionnaires. Although Eurostat left the National Institutes of Statistics (NIS) 
free to organize the data collection, and national reporting on the survey organization is 
lacking (making assessment of data quality difficult), data checks, imputation and weight-
ing were done centrally to maximise data comparability. The ECHP is intended to be both 
cross-sectionally and longitudinally representative with respect to the national household 
populations. For more information about the design and the data procedures of the ECHP 
we refer to an extensive review of Peracchi107.

Data from the fifth wave of 1998 onwards until 2001 were used for the current study, as 1998 
was the first year that height, weight and smoking status were asked from the participants. 
Countries for which mortality data (the Netherlands), disability data (Luxembourg) or BMI 
data (France) was not available were omitted from the study. Similarly, data from Germany 
and the UK had to be left out because the original ECHP data were replaced by data from 
national surveys (German Social Economic Panel and British Household Panel Survey) 
which did not contain information on smoking and BMI.

Information on non-response rates at baseline and cumulative retention percentages, i.e. 
the cumulative percentages of individuals retained until the fourth wave of the panel are 
presented in Appendix 3A. There were differences between countries, with high retention 
percentages in Italy (83%) and Portugal (87%), while samples in Ireland, Denmark and 
Spain suffered somewhat higher attrition. Respondents were followed over a maximum of 
four years. Since respondents could die, while new individuals could also join the survey 
in calendar years later than 1998, the average follow-up time was less than the maximum 
achievable. However, most people (85%) participated in all four waves. Detailed informa-
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tion on the distribution of age at entry, number of deaths as well as average follow-up time 
is presented in Table 3.1.

Table 3.1 Characteristics of the study population

Number of 
individuals a Mean age (range)

Mean follow-up 
time

Overweight 
(%)

Obese 
(%)

Smoker b 
(%)

Men

Finland 3,179 44.7 (16.8-89.8) 2.4 42.2 10.9 24.8

Denmark 1,694 46.5 (16.8-89.6) 2.8 38.6 9.6 35.8

Ireland 2,412 45.2 (16.7-90.2) 2.5 41.7 7.8 25.9

Austria 2,721 45.4 (15.3-89.6) 2.8 41.9 11.3 29.5

Belgium 2,072 46.2 (16.3-88.7) 2.7 39.2 10.1 29.9

Greece 3,985 49.1 (17.3-90.3) 2.0 51.4 9.9 44.2

Italy 6,735 45.1 (16.8-89.7) 2.6 38.9 8.2 31.1

Spain 5,212 44.9 (15.9-89.7) 2.8 43.0 13.2 37.9

Portugal 4,628 46.8 (16.9-89.8) 2.8 43.5 9.5 28.6

Sum 32,638 45.9 (15.3-90.3) 2.6 42.3 10 32.5

Women

Finland 3,112 45.8 (16.8-89.5) 2.4 28.7 13.2 14.9

Denmark 1,706 47.1 (16.7-89.4) 2.8 26.5 9.4 33.8

Ireland 2,375 46.2 (16.7-89.6) 2.5 28.1 8.5 23.9

Austria 2,814 47.9 (15.3-89.8) 2.9 30.2 10.8 15.9

Belgium 2,278 47.5 (16.4-89.4) 2.7 24.6 11.1 20.7

Greece 4,389 50.6 (17.4-90.4) 2.0 35.7 10.0 14.7

Italy 6,742 47.1 (16.8-89.8) 2.6 24.8 7.4 13.2

Spain 5,262 47.7 (15.9-89.7) 2.8 28.9 13.6 20.2

Portugal 5,015 49.6 (16.9-89.9) 2.8 32.5 11.1 4.8

Sum 33,693 47.9 (15.3-90.4) 2.6 28.9 10.4 16.0

Notes: a The number of individuals refers to those who participated in at least two waves of ECHP survey 
between 1998 and 2001
b Those who are not daily smoker could be never smokers and former smoker, treating these two groups 
separately.
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Indicators
All individuals were asked if they were hampered in their daily activities by any physical or 
mental health problem, illness or disability in each wave. Positive response were categorised 
in two classes of severity: “Yes, to some extent” or “Yes, severely”108. For this study we 
considered them as a single disabled category. Persons who were lost to the ECHP panel 
because of moving to an institution were also considered as ‘disabled’ for the remainder of 
the study period.

The BMI variable was recoded into four categories: (1) Underweight: BMI ≤ 18.5, (2) Nor-
mal weight: 18.5 < BMI ≤ 25, (3) Overweight: 25 < BMI ≤ 30, (4) Obese: BMI > 30. After 
preliminary analysis, underweight persons were excluded from further analysis because of 
the small number of respondents and the high prevalence of disability in this category. 
Moreover this group is less relevant for the purpose of our study as their prevalence of 
disability is commonly explained as a result of weight loss caused by ill-health, rather than 
a causal effect of underweight on disability.

Smoking status was classified into three categories: (1) Current daily smokers, (2) Former 
(daily) smokers, and (3) Never (daily) smokers. The latter included those who smoke 
occasionally or who used to smoke occasionally. With regard to former smokers, health 
problems may increase the chances of smoking cessation; therefore the association of health 
with former smoking may in part reflect a selection effect. Additionally, the group of former 
smokers is a heterogeneous group in terms of time since quitting. As a result, the inter-
pretation of results for this group is less straightforward. Therefore, former smokers were 
excluded from the presentation of the detailed results.

The distribution of overweight and smoking status in the study population is presented in 
Table 3.1.

The level of completed education at the fifth wave was used to measure education status. 
Individuals were divided into three groups according to their level of educational attain-
ment based on the International Standard Classification of Education109: 1) lower secondary 
education or lower; 2) upper secondary education; and 3) tertiary education, which includes 
higher vocational and university education. For this study we considered people with upper 
secondary or tertiary education as those with high education.

Data analysis
We employed a multi-state Markov (MSM) model, which is often used to describe the pro-
cess in which individuals move through health states over time110. By fitting MSM models to 
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longitudinal data one is able to estimate hazard or transition rates. The association between 
variables and a particular transition rate was modelled assuming proportional hazards.

We defined three health states, non-disabled, disabled and dead, and four possible transi-
tions between the health states: incidence (from non-disabled to disabled), recovery (from 
disabled to non-disabled) and state-specific mortality (from both non-disabled and dis-
abled). We merged data from the countries after preliminary analyses showed only minor 
cross-national differences in associations with overweight and smoking. Transition rates 
were estimated on the pooled dataset adjusted for age, sex, overweight status and smoking 
status. The advantage of preparing estimates using the data of all nine countries together 
was the very large number of observations that ensured sufficient power in estimating the 
age profiles of disability incidence and recovery.

To detect significant and meaningful interactions and to obtain estimates of transition rates 
that accurately describe the data, various models were considered and evaluated. Models 
including two- or three-way interaction terms between sex, overweight and smoking status 
were tested. No significant interactions were found between smoking and overweight status. 
Akaike Information Criteria (AIC) values indicated that the best model fit was achieved 
by including two-way sex-interactions. In additional analyses according to educational 
subgroup, we included interaction terms between education and overweight and smoking 
status. Age-sex interaction terms were included in both models.

Because mortality cases were under-registered in the ECHP in most of the countries, 
the mortality rates were adjusted to the pooled level (pooled across country and time) in 
four steps. First, using national statistics, mortality rates were calculated over the period 
1998-2001 for each age and sex. Second, they were transformed into mortality rates of 
non-disabled and disabled assuming that 1) the age and sex-specific mortality rates in the 
overall (i.e. mixed non-disabled-disabled) population are the weighted average of mortality 
rates of non-disabled and disabled populations, with the proportion of non-disabled and 
disabled respectively as weights estimated from the ECHP, and 2) that the ratio between 
the mortality rate of disabled and non-disabled populations is equal to the hazard ratio as 
estimated from the ECHP data80. Third, rescaling factors were calculated to specify how 
much age- and sex-specific mortality rates estimated from the ECHP had to be scaled to 
make them consistent with the estimates from step two. Fourth, all predicted mortality rates 
were multiplied by the corresponding rescaling factors, assuming that under-representation 
of mortality was the same for each overweight and smoking status combination. A more 
formal explanation of the decomposition is shown in the Appendix 3B.
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Multi-state life tables were used to estimate LE and LwD at the age of 16. The empirical input 
for the multi-state life tables were the transition rates described above, after converting 
them into probabilities (assuming that hazard rates were constant over a life year). Once 
a life table was set up, probabilistic sensitivity analysis111 was performed to estimate con-
fidence intervals (CIs) around the LEs and LwD. For this, random log-hazard ratios were 
drawn from a multivariate normal distribution, which was defined by the natural logarithm 
of the regression coefficients and their variance-covariance structure. The corresponding 
transition rates and life expectancies were calculated for each of the 1000 draws. The 25th 
and 975th of the latter ordered values indicated the 2.5% and 97.5% boundaries of the CIs. 
All MSM analyses were performed in R112, whereas life table calculations were carried out 
in Microsoft Excel. Due to technical limitations of the MSM package, taking into account 
ECHP sampling weights was not possible.

3.3. Results

The hazard ratios of transitions by overweight status and smoking status of the main effect 
model are given in Table 3.2. The risk of disability onset was moderately higher for over-
weight (HR=1.15, CI: 1.10-1.20) and considerably higher for obese (HR=1.64, CI: 1.54-1.74) 
than for normal weight persons. Conversely, overweight showed to be protective for dying 
among those who were disabled (HR=0.77, CI: 0.66-0.90). Daily smoking was strongly as-
sociated with early death among non-disabled (HR=1.68, CI: 1.29-2.19), weakly associated 
with disability onset, and not associated with recovery. The combined effect of two risk 
factors can be obtained as well by multiplying the corresponding hazard ratios. For example, 
the hazard ratio of overweight and smoking on disability incidence could be calculated as 
follows: 1.09*1.15 = 1.25 (compared to a person who has normal weight and is non-smoker).

The hazard ratios of incidence and recovery of the models assessing interaction with sex 
and educational level are given in Table 3.3. For men, disability incidence was not associated 
with overweight (HR=1.00, CI: 0.94-1.07), while it was associated with obesity (HR=1.35, 
CI: 1.23-1.48). Among women both overweight and obesity were related to an increased risk 
of disability onset (overweight: HR=1.28, CI: 1.20-1.36; obese: HR=1.87, CI: 1.72-2.03). With 
regard to recovery from disability no substantial differences between the risk factors were 
found among men or women; however, the negative association between obese women and 
recovery, while marginal, is noteworthy (HR=0.92, CI: 0.85-0.99).
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Table 3.2 Hazard ratios associated with disability incidence, recovery from disability and state-specific 
mortality by overweight status and smoking status

Hazard ratios a

(CI) (number of transitions) 

Normal weight +
Never-smoker

Normal weight + 
Daily smoker

Overweight + 
Never-smoker

Obese + 
Never-smoker

Disability incidence 1.00 1.09* 1.15* 1.64*

(1.04, 1.15) (1.10, 1.20) (1.54, 1.74)

(2,955) (1,043) (2,742) (1,071)

Recovery from disability 1.00 1.01 1.03 0.96

(0.95, 1.07) (0.98, 1.08) (0.90, 1.02)

(2,619) (921) (2,539) (973)

Mortality of non-disabled 1.00 1.68* 0.81 1.06

(1.29, 2.19) (0.63, 1.03) (0.73, 1.52)

(162) (55) (121) (43)

Mortality of disabled 1.00 1.04 0.77* 0.82

(0.81, 1.34) (0.66, 0.90) (0.65, 1.03)

  (257) (49) (190) (73)

Notes:

* p < 0.05

a Derived from a multi-state Markov (MSM) model that included age, sex, age*sex, overweight, obese, past daily 
smoking, daily smoking 
Hazard ratios are interpreted at average age
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Table 3.3 Hazard ratios associated with disability incidence and recovery from disability by overweight 
status and smoking status according to sex and educational level

Number of 
transitions

Normal weight +
Never-smoker

Normal weight + 
Daily smoker

Overweight + 
Never-smoker

Obese + 
Never-smoker

Hazard ratio of incidence

Baseline model a 10,244 1.00 1.09* 1.15* 1.64*

(1.04, 1.15) (1.10, 1.20) (1.54, 1.74)

Male b 4,602 1.00 1.15* 1 1.35*

(1.07, 1.24) (0.94, 1.07) (1.23, 1.48)

Female b 5,642 1.00 1.05 1.28* 1.87*

(0.97, 1.16) (1.20, 1.36) (1.72, 2.03)

Low educated c 7,307 1.00 1.11* 1.13* 1.54*

(1.04, 1.18) (1.07, 1.19) (1.43, 1.66)

High educated c 2,937 1.00 1.13* 1.12* 1.72*

(1.03, 1.24) (1.03, 1.22) (1.53, 1.94)

Hazard ratio of recovery

Baseline model a 9,171 1.00 1.01 1.03 0.96

(0.95, 1.07) (0.98, 1.08) (0.90, 1.02)

Male b 4,057 1.00 1.08 1.04 1.01

(0.99, 1.17) (0.97, 1.11) (0.92, 1.12)

Female b 5,114 1.00 0.93 1.03 0.92*

(0.85, 1.02) (0.97, 1.10) (0.85, 1.00)

Low educated c 6,524 1.00 1.02 1.07* 1.00

(0.95, 1.10) (1.01, 1.13) (0.92, 1.07)

High educated c 2,647 1.00 1.01 0.96 0.88*

      (0.92, 1.11) (0.88, 1.05) (0.78, 0.99)

Notes:

* p < 0.05

a  Derived from a multi-state Markov (MSM) model that included age, sex, age*sex, overweight, obese, 
past daily smoking, daily smoking 

b  Derived from a multi-state Markov (MSM) regression model that included: age, sex, age*sex, 
overweight, obese, past smoking, daily smoking, overweight*sex, obese*sex, past smoker*sex, daily 
smoker*sex

c  Derived from a multi-state Markov (MSM) regression model that included: age, sex, age*sex, 
education, overweight, obese, past smoking, daily smoking, overweight*education, obese*education, 
past smoker*education, daily smoker*education

Hazard ratios are interpreted at average age
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Educational level was strongly associated with the transition rates. Low educated people 
faced higher risk of disability incidence, high state-specific mortality and lower chance of 
recovery from disability. However, the relationship between the risk factors and disability 
incidence and recovery were similar for high and low educational level people (results not 
shown).

Table 3.4 shows estimates of LE, LwD and the ratio of LwD to LE by overweight status and 
smoking status. A positive association between overweight and LE was found for both non-
smokers and smokers, as well as for men and women. For example, among non-smokers, 
the difference in LE relative to normal weight was 2.0 years for men and 2.9 years for 
women. Conversely, obesity was negatively associated with LE, although much more clearly 
for women (-1.6 years) than for men (-0.2 years). Daily smoking was inversely related to LE. 

Table 3.4 Total life expectancy and life expectancy with disability by smoking and overweight status at 
the age of 16

Never-smoker Daily smoker

Normal weight Overweight Obese Normal weight Overweight Obese

Men

LE 60.4 62.4 60.2 56.9 58.8 56.7

(60.2, 60.5) (62.2, 62.5) (60.0, 60.4) (56.7, 57.0) (58.7, 59.0) (56.6, 56.8)

LwD 9.5 10.1 11.8 8.9 9.5 11.1

(9.1, 9.9) (9.7, 10.5) (11.1, 12.6) (8.4,9.4) (9.0, 10.0) (10.3, 11.9)

LwD 
/ LE 15.70% 16.20% 19.60% 15.70% 16.10% 19.60%

Women

LE 65.5 68.4 63.9 63.2 66.4 61.9

(65.4, 65.7) (68.2, 68.6) (63.7, 64.1) (62.9, 63.4) (66.2, 66.7) (61.6, 62.2)

LwD 11.9 15.5 18.0 12.0 15.7 18.3

(11.5, 12.3) (15.0, 15.9) (17.3, 18.8) (11.3, 12.7) (14.8, 16.7) (17.2, 19.5)

 
LwD 
/ LE 18.10% 22.60% 28.20%   19.00% 23.70% 29.60%

Notes:
Derived from an multi-state Markov regression model that included:
age, sex, age*sex, overweight, obese, past daily smoking, daily smoking, overweight*sex, obese*sex, past daily 
smoker*sex, daily smoker*sex
LE: Total life expectancy, LwD: Life expectancy with disability
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Smokers had 3.5 and 2.3 years lower LE than non-smokers, among normal weight men and 
women, respectively. 

The relationship between overweight status and LwD was different: the higher the BMI 
category the more years are expected to be spent with disability. Normal weight, overweight 
and obese non-smoker men can expect to live 9.5, 10.1 and 11.8 years with disability, respec-
tively. Smokers expect lower LE but the same number of years with disability. In general, 
overweight status was the main driver of the proportion of LE spent with disability. For 
example, normal weight, overweight and obese non-smoker women expect to live 11.9 
(18.1% of LE), 15.5 (22.6%) and 18.0 (28.2%) years with disability. These general patterns were 
observed for both sexes despite some variation between men and women.

Figure 3.1 presents LE and LwD estimates by overweight and smoking status among low and 
high educated. The positive association between overweight and LE was observed among 
both high educated and among low educated. For both high and low educated people, the 
previously observed patterns were found: in higher BMI categories people expect to live 
more years in disability, whereas smoking is not related to the proportion of life spent with 
disability. The magnitude of LwD and its proportions of LE were considerably higher for low 
educated than for high educated persons due to the association between educational level 
and both mortality and disability burden.

3.4. Discussion

This study quantified the relationship of overweight status with longevity and the burden 
of disability in Western-Europe in terms of LE and LwD. Overweight people can expect 
to live slightly longer than those with normal weight, which – suggested by other studies 
– might be a consequence of the protective effect of overweight on mortality in disabled 
populations. In contrast, overweight and obese people can expect to live 3.6 and 6.1 more 
years with disability though, respectively. Smoking had a different relationship with LE and 
LwD, as it was associated with lower LE but with an unchanged LwD. Similar patterns were 
observed both among men and women, and among low and high educated populations.

Sensitivity analyses
A number of sensitivity analyses were performed to further explore the relationship between 
overweight status, smoking status and the burden of disability. 

First, an additional analysis was carried out to assess the sensitivity of the results to differ-
ences in the ways in which surveys in the participating countries were carried out. To this 
end, dummy variables for each country were added to the ‘main effect’ MSM model. Such 
model can be seen as a fixed effects model. Differences between the countries were found in 
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Figure 3.1 Life expectancy estimates according to smoking and overweight status at age 16 by 
educational level. 
Notes: DFLE: disability-free life expectancy, LwD: life expectancy with disability
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terms of the general level of transition rates. However, these inter-country differences did 
not substantially alter our key findings. For example the hazard ratio of disability incidence 
among obese were 1.49 (CI: 1.40-1.59) versus 1.64 (CI: 1.54-1.74) with and without control-
ling for counties, respectively. Similar (but generally smaller) effects were found for all risk 
factors. 

Second, the original obese category (BMI>30) was split into two sub-categories: BMI 
between 30 and 35 (mild obese), and higher than 35 (severe obese). Our results indicated 
heterogeneity within the group of obese people, with the severe obese being worst off. The 
incidence of disability was associated with mild obesity (HR=1.60, CI: 1.50-1.70) and slightly 
stronger with severe obesity (HR=1.91, CI: 1.69-2.16). Besides, the relative risk of recovering 
from disability was lower in the severely obese group (HR=0.79, CI: 0.69-0.90) than in 
the mild obese group (HR=1.00, CI: 0.94-1.07). No statistically significant differences were 
found in mortality risk. Hazard ratios of the other risk factors remained stable after recod-
ing the obese category.

Third, the influence of age on the association was explored. It is often argued that the size 
of the association between a risk factor and outcome decreases with age. Therefore two-
way interaction variables between age and the risk factors were added to the ‘main effects’ 
MSM model. We found significant interaction terms between age and obesity (for disability 
incidence), and between age and daily smoking (for both disability incidence and recovery). 
The age-interaction term was fairly small indicating an approximately a 0.4% percent de-
crease with every year of increasing age.

Data strength and limitations
The ECHP data has a number of strengths of note. The most evident of which is the avail-
ability of a large number of observations on disability incidence or recovery, and moreover 
the use of an identical survey design and survey questionnaire for all participating coun-
tries. Although the data collection was carried out by the National Institutes of Statistics 
separately, and hence national versions of the ECHP are not perfectly comparable, these 
common questions ensured a much higher degree of comparability between countries than 
would have been possible using national data sources. The key variables used in this paper, 
on health status and risk factors, are comparable across all ECHP countries. Our study was 
the first to assess the impact of overweight for large number of Western-European countries 
simultaneously. In contrast, previous European studies focused exclusively on single coun-
tries, and used relatively much smaller data sets.

This study also has a number of limitations, however. First, disability data were self-
reported, which can result in either under- or over-reporting of disability. If the reporting 
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of disability differs by risk factor group then our estimates of impact of LE and LwD will also 
be biased. Studies have shown that measurements of functional limitations by self-report or 
objective measures are consistently associated, and that they reflect similar assessment of 
function86,113. It is therefore likely that objective measures of disability would show similar 
associations with smoking, overweight status and education. 

A second potential limitation is related to the use of self reports on smoking and on weight 
and height. It has been found that smoking prevalence rates are underestimated if estimates 
are based on self-report114. Similarly, people tended to under-report weight and over-report 
height115. These findings were confirmed by recent studies116,117. If such underreporting of 
daily smoking and BMI levels is non-differential, it may lead to an underestimation of the 
association with disability, and thus an underestimation of the differences in LwD.

A third drawback relates to non-response and attrition, which might be a problem in our 
study if they are related to disability or risk factor groups. Some studies have explored the 
attrition in the ECHP. For example, analyses on attrition in the ECHP showed a positive 
relationship between attrition and worsening health in all countries118 and only a weak rela-
tionship between attrition and educational level119. Additional to these studies, we assessed 
the likelihood of attrition in the current study population in relation to characteristics at 
the last wave in which the respondent participated120. We found that the risk of loss to 
follow-up for reasons other than death or institutionalization was hardly related to disability 
status, sex, overweight status or educational level (relative differences of about 10 percent 
or less). We found slightly higher risk of attrition in former and daily smokers only (rela-
tive difference 15 percent). These findings imply that the relative differences are unlikely to 
have a major effect on differential retention, and therefore attrition could not have strongly 
biased our estimates of LE and LwD by overweight status.

When we adjusted the estimates for underestimation of mortality in the ECHP data, we had 
to assume that the degree of underestimation was identical in each risk factor group. If, for 
a specific risk factor group the under-registration of mortality would in fact be larger than 
what we assumed, the LE for this group would be overestimated. It is difficult to assess to 
what extent this is a problem. Even though the causes of under-registration of deaths in the 
ECHP data are not known, we see no reason to expect a strong relationship with overweight 
status or other risk factors. Furthermore, we would like to point out that even though this 
problem might affect LE estimates, it could not explain the large differences between BMI 
groups in estimates of LwD.
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Previous studies
Data from previous studies are not directly comparable with our data for several reasons: of 
the different ages for which life expectancies were calculated; many of the previous studies 
reflect life histories of older cohorts; and different measures and classifications of disability 
were used. Nonetheless, comparisons could be made with regards to the general patterns 
observed.

Peeters et al.98,121 found large effects of overweight and obesity on premature death. Ac-
cording to their results non-smoking men and women lost 5.8 and 7.1 years of LE at age 40, 
respectively, due to obesity. Because of both higher disability prevalence and higher mortal-
ity in the obese population, the authors found no significant difference in LwD (measured 
by activities of daily living (ADL) scores) between the obese and those of normal weight. 
However, these effects reflect life histories of older cohorts. There is evidence that the effects 
of high BMI on mortality have diminished over time101,122. 

Studies using more recent data from the U.S. have already justified smaller impacts on LE 
but large effects on LwD. For example, Reuser et al.102 estimated the burden of mortality of 
obesity among middle and old-age adults in the Health and Retirement Survey (HRS). LE 
and LE with ADL disability were calculated in relation to self-reported body mass index, 
smoking and education at age 55. Obesity was found to have only a limited effect on mortal-
ity, and overweight was estimated to be protective for dying. Both overweight and obesity 
increased LwD for both sexes. These results are closely consistent with our findings.

Walter et al. estimated the influence of overweight and obesity on mortality and disability 
by quantifying its effect in terms of disability-free life expectancy and years lost to disability 
(YLD) for a suburban elderly population in the Netherlands123. Similar to our conclusions, 
they did not find that increased BMI reduces LE because of a protective effect of overweight 
on death (HR=0.81 compared to normal weight). As in our study, both overweight and 
obesity were found to be associated with a larger number of years lived with disability.

Evaluation
The relation between overweight and mortality has been a controversial topic. We showed 
that overweight is associated with protection for dying among the disabled, while the 
relationship between obesity and mortality is modest, especially among men. Our results 
reaffirm recent doubts about overstated concerns of overweight and obesity in terms of 
excess mortality124. Possible explanations for the small and even protective mortality ef-
fect of overweight include improved survival of overweight persons from major diseases of 
developed societies, e.g. heart failure125 or CVD126, and a better nutritional status providing 
necessary reserves during chronic disease127. Recent studies reaffirmed the protective ef-
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fect of overweight as well documenting that increased BMI protects against mortality after 
hospitalisation128.

3.5. Conclusions

The steadily increasing life expectancy in the developed countries is a great achievement but 
at the same time a major concern. It raises the question of whether living longer lives will 
be accompanied by a decrease or an increase of disability during old age. The main concern 
is that the obesity epidemic may, in the long run, increase the prevalence of disability in 
ageing populations.

Our results show that tobacco control is still highly relevant to the prevention of premature 
death. Continued success in this area may contribute to a further increase in life expectancy, 
but without substantially affecting the burden of disability over the life course (i.e. in terms 
of LwD). This stresses the importance of further public health aimed to address the obesity 
epidemic. Given the large impact of overweight and obesity on the burden of disability 
over the life course, halting the obesity epidemic is essential if an increase of LwD is to be 
stopped as LE continues to grow.
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Appendix 3A  Population characteristics in the ECHP, separately for all 
countries

Appendix 3b Mortality decomposition

Raw total mortality rates for the pooled period 1998-2001 were calculated for each age and 
sex based on the total counts of mortality and exposure time obtained for each country, as 
published in Human Mortality Database (HMD). Age- and sex-specific prevalence of dis-
ability measures were calculated based on the number of disabled persons and the number 
of participants in the study population during the same period as published in the online 
database of European Health Monitoring Unit. Age- and sex-specific hazard ratios were 
estimated using MSM models based on the pooled study populations.

Combining total mortality rates, hazard ratios and prevalence of disability, mortality rates 
were calculated for non-disabled and disabled populations by the following formulas:

where mx (nd), mx (d), HRx and px (d) indicated the mortality rate of non-disabled, mortality 
rate of disabled, estimated hazard ratio and prevalence of disability at age x, respectively.

Appendix 3A Population characteristics in the ECHP, separately for all countries

Number of respondentsa Non-response (%)b Retention percentage (%)c

Finland 11,184 27 92 

Denmark 7,537 38 67 

Ireland 14,170 44 64 

Austria 9,450 30 82 

Belgium 8,976 16 78 

Greece 15,872 10 77 

Italy 21,520 9 83 

Spain 22,578 33 71 

Portugal 14,285 11 87 

Notes:
a First wave
b Household non-response, first wave
c Retention percentage until the fourth wave
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Appendix 3C An illustration of the shape of age-profiles
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background

Discussions on raising pension eligibility age focus more on improvement in life expectancy 
(LE) and health expectancy measures than on socioeconomic differences in these measures. 
Therefore, this study assesses the level of socioeconomic differences in these two measures 
in Western-Europe. 

Methods

Data from seven annual waves (1995-2001) of the European Community Household Panel 
were used. Health and socioeconomic information was collected using standardised ques-
tionnaires. Health was measured in terms of disability in daily activities. Socioeconomic 
status was determined as education level at baseline. Multistate Markov modelling was 
applied to obtain age-specific transition rates between health states for every country, 
educational level and gender. The multistate life table method was used to estimate LE and 
disability free life expectancy (DFLE) according to country, educational level and gender. 

Results

When comparing high and low educational levels, differences in partial DFLE between the 
ages 50 and 65 were 2.1 years for men and 1.9 years for women. At age 65 years, for LE the 
difference between high and low educated groups was 3 years for men and 1.9 years for 
women, and for DFLE the difference between high and low educated groups was 4.6 years 
for men and 4.4 years for women. Similar patterns were observed in all countries, although 
inequalities tended to be greater in the southern countries. 

Conclusions

Educational inequalities, favouring the higher educated, exist on both sides of the retire-
ment eligibility age. Higher educated persons live longer in good health before retirement 
and can expect to live longer afterwards.

J Epidemiol Community Health. 2011 Nov;65(11):972-9. 
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4.1. Introduction

Social policymakers in Western-European countries are facing a common problem with re-
gard to population ageing. Low birth rates, increasing life expectancy (LE) and dependency 
ratios have resulted in increased spending on pensions. Many countries have undertaken 
systematic restructuring of their pension system, including adjustment of the pension eli-
gibility age to increasing LE37,38. At present, in most OECD countries the eligibility age for 
retirement among men and women is 65 years.

Although the rationale for such restructuring is to improve the financial sustainability of 
pension systems, such reforms may have adverse social effects37,38. An increase in LE is 
not necessarily equivalent to being able to work longer, and the extent to which total LE 
increases may differ from the increase in health expectancy (HE)39,40. Furthermore, both 
LE and HE are strongly related to socio-economic status (SES). If the standard retirement 
age is raised, people at the bottom of the socioeconomic ladder could be disproportionately 
affected. Whether one should consider socioeconomic differences in LE and HE in discus-
sions on raising the pension eligibility age depends on the magnitude of these differences. 
Therefore, it is important to establish to what extent people in various socioeconomic 
groups are healthy and remain healthy at older ages.

Estimates of socioeconomic differences in HE are available for an increasing number of 
European countries61,129-134. Unfortunately, estimates from national studies could not be 
compared due to large variations in the data sources used, the age ranges covered, and 
the health and socioeconomic indicators employed. Because no study has used data from 
more than two countries to report on LE and HE by SES, an overview of the magnitude of 
socioeconomic differences in total and healthy life years at old age in Europe is still lacking. 

Therefore, this study aims to determine the magnitude of socioeconomic differences in LE 
and HE, measured in terms of disability-free life expectancy (DFLE) in European countries: 
more specifically, inequalities in DFLE between age 50 and 65, and in LE and DFLE after 
age 65. DFLE combines information on mortality and disability into a summary measure of 
the expected number of years to be lived without disability. Investigation of these measures 
at these specific age intervals provides data on several aspects relevant to discussions on 
pension age.

4.2. Methods

Data
The data for this study were derived from the European Community Household Panel 
(ECHP). The ECHP is a standardised multi-purpose annual longitudinal social survey car-
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ried out at the level of the European Union between 1994 and 2001. It is centrally designed 
and coordinated by the Statistical Office of the European Communities (Eurostat), and 
covers demographics, labour force behaviour, income, health, education and training, hous-
ing, migration, etc. The data were collected by the National Statistical Institutes or research 
centres of the participating countries using a uniform random sampling design and com-
mon blueprint questionnaires. Data checks, imputation and weighting were done centrally 
to maximise data quality. ECHP aimed at being both cross-sectionally and longitudinally 
representative for the national populations. The design and procedures of the ECHP have 
been extensively reviewed in Peracchi107. Information on non-response rates at baseline is 
given by Huisman et al.135.

For the current study data were used from the second wave of 1995 onwards because this 
was the first year that an identical disability question was asked from the participants in all 
countries. Countries for which mortality data (the Netherlands) and disability data (Luxem-
bourg) were not available were omitted from the study. Germany and the UK were replaced 
by data from national surveys (SOEP and BHPS, respectively). Austria and Finland joined 
the ECHP at wave 2 and 3, respectively.

Table 4.1 presents information on cumulative retention percentages within the countries, 
i.e. the cumulative percentages of individuals retained until the fourth wave of the Panel. 
For most of the countries this was 1997; however, this year represented the third wave in 
Austria and the second wave in Finland. Individuals who were out of scope of the survey by 
1997 (e.g. because they died, became institutionalised, or had moved outside the EU) were 
excluded from the calculation of these rates. There were large differences between countries, 
with relatively high retention percentages in Italy (83%) and Portugal (87%) whereas the 
samples in Ireland, Denmark and Spain suffered from high attrition.

Indicators
The level of completed education at the first wave was used as a measure of SES. Individuals 
were divided into three groups according to their level of educational attainment based on 
the International Standard Classification of Education109: 1) lower secondary education or 
lower; 2) upper secondary education; and 3) tertiary education, which is constituted by 
vocational and university education.

All individuals were asked if they were hampered in their daily activities by any physical 
or mental health problem, illness or disability. The possible answers made a distinction 
between two severity degrees: “Yes, to some extent” or “Yes, severely”108. For this study these 
persons were considered as a single ‘disabled’ category. Persons who were lost to the ECHP 
because of moving to an institution were also considered as ‘disabled’ for the remainder of 
the study period.
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Table 4.1 shows the distribution of the elderly population by level of education of men and 
women, respectively. The countries with the most skewed distribution are the southern 
countries.

Data analysis
In our multi-state Markov (MSM) models110,136 three health states were defined: non-dis-
abled, disabled and dead. Between the health states four transitions could occur, incidence 
(from non-disabled to disabled), recovery (from disabled to non-disabled), and state-
specific mortality. For each country transition rates were estimated on the pooled dataset 
controlling for age, gender, education level and the country of interest. In other words, a 
model for each country was specified whereby the country of interest was compared to the 
other 9 countries. The advantage of preparing estimates using the data of all 10 countries 
together was the large number of observations; this ensured a high level of accuracy of the 
estimates of age profiles. We tested whether including 2-way or 3-way interaction terms 
between gender, education level and country of interest would result in a better model fit. 
AIC values indicated that the best model fit was achieved by including all 2-way interac-
tions, but none of the 3-way interactions.Because in most of the countries mortality cases 
were under-registered in the ECHP, the mortality transition rates were adjusted to the level 
of the given countries in four steps. First, using national data, mortality rates were calcu-
lated for the pooled period 1995-2001 for each age, gender and country. Second, they were 
transformed into mortality rates of non-disabled and disabled assuming that 1) the age and 
sex-specific mortality rates in the overall (i.e. mixed non-disabled-disabled) population are 

Table 4.1 Total number of cases in the first wave, cumulative retention rates until fourth wave and 
proportion of education level in the study population, all countries

Total 
number of 

cases at the 
first wave

Retention 
percentage 

until the fourth 
wave (%)

Study population

Men Women

High level 
education (%)

Middle level 
education (%)

High level 
education (%)

Middle level 
education (%)

Finland 11 184 92 28.6 21.9 25.9 22.9

Denmark 7537 67 35.2 31.7 26.2 24.3

Ireland 14 170 64 21.0 10.5 23.2 7.9

Austria 9450 82 62.2 5.5 38.6 2.8

Belgium 8976 78 28.3 26.6 24.6 18.4

Greece 15 872 77 13.6 10.2 8.6 4.1

Italy 21 520 83 17.6 6.3 12.2 2.6

France 18 643 75 29.2 15.6 21.4 10.7

Spain 22 578 71 7.2 9.7 4.2 4.4

Portugal 14 285 87 2.8 3.3 1.8 2.9
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the weighted average of mortality rates of non-disabled and disabled populations, with the 
proportion of non-disabled and disabled respectively as weights, and 2) that the ratio be-
tween the mortality rate of disabled and non-disabled people is equal to the hazard ratio as 
estimated with the ECHP data. A more formal explanation of the decomposition is shown 
in the Appendix 3B. Third, rescaling factors were calculated for both types of mortality rates 
by age and gender. Rescaling factors specified how much age-specific and gender-specific 
mortality rates had to be scaled to make them consistent with the national data. Fourth, all 
estimated mortality rates were multiplied by the corresponding rescaling factors, assuming 
that under-representation of mortality was the same for all educational levels.

To provide estimates of LE and DFLE according to gender, educational level and country, 
multi-state life tables were used. The empirical input for these multi-state life tables were 
the transition rates described above, after converting them into probabilities67. Once a life 
table was set up for a country, probabilistic sensitivity analysis111,137,138 was performed to 
estimate confidence intervals (CIs) around the life expectancies. Random regression coeffi-
cients were drawn from each regression model for 1000 times assuming multivariate normal 
distribution. After each draw the corresponding transition rates and life expectancies were 
calculated. The 25th and 975th of the latter ordered values indicated the boundaries of the 
CIs. All MSM analyses were performed in R112, whereas life table calculations were carried 
out in Excel.

4.3. Results

The hazard ratios of transitions by educational level for the 10 countries are given in Table 
4.2. Generally, the risk of disability onset and mortality from a non-disabled state was higher 
for the middle or low educated groups than for the high educated groups. For recovery 
rates, the higher the educational level the higher the rate to recover from disability. There 
were no differences between hazard ratios of mortality from a disabled state. Educational 
differences in hazard rates were similar for both genders, with some variation between the 
individual countries.
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Table 4.2 Hazard ratios of disability-related transitions in relation to educational level, by country

Incidence Recovery
Mortality of non-

disabled Mortality of disabled

Country   Middle Low   Middle Low   Middle Low   Middle Low

Men

Finland 1.15 1.29* 0.74* 0.69* 1.2 1.37 1.01 1.00

Denmark 1.19 1.37* 0.93 0.76* 1.36 2.25 1.02 0.81

Ireland 1.48* 1.68* 0.85 0.70* 0.99 1.61 1.10 1.11

Austria 1.91* 1.99* 1.07 0.88 1.47 1.41 0.83 1.35

Belgium 0.97 1.19 0.76* 0.78* 1.36 1.61 0.92 1.16

Greece 1.39* 1.84* 0.78 0.75* 1.13 1.81 1.09 0.99

Italy 1.27 1.86* 1.03 0.81 1.61 1.32 1.44 0.85

France 1.49* 1.56* 0.74* 0.55* 1.14 0.96 0.85 1.14

Spain 1.72* 2.86* 1.06 0.94 1.09 1.35 0.90 0.92

Portugal 1.17 2.25* 1.05 0.76 1.54 1.33 1.05 1.16

Women

Finland 0.97 1.28* 0.71* 0.72* 1.11 1.20 0.94 0.92

Denmark 1.00 1.33* 0.88 0.79* 1.25 2.00 0.98 0.78

Ireland 1.25 1.59* 0.80 0.74* 0.91 1.41 1.02 1.04

Austria 1.60* 1.95* 1.03 0.91 1.34 1.22 0.77 1.27

Belgium 0.81 1.13 0.73* 0.83* 1.25 1.40 0.85 1.08

Greece 1.16 1.79* 0.75 0.78* 1.05 1.58 1.02 0.93

Italy 1.08 1.83* 0.99 0.85 1.46 1.20 1.36 0.79

France 1.26* 1.53* 0.71* 0.58* 1.09 0.86 0.79 1.09

Spain 1.44* 2.75* 1.02 0.99 1.01 1.20 0.86 0.82

Portugal   0.99 2.17*   1.00 0.80   1.44 1.17   0.95 1.16

Notes: Derived from an MSM regression model that included age, sex, age × sex, middle level education, 
low level education, middle level education × sex, low level education × sex, country, country × middle 
level education, country × low level education, country × sex.
* significant at p=0.05 level
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The estimates of partial DFLE per country, gender and educational levels are shown in 
Figure 4.1. Educational inequalities existed in partial DFLE in all countries. On average, 
people with a higher educational level can expect to live the most years without disability 
between age 50 and 65 years. Partial DFLE was 10.1 years for high educated men, 8.9 years 
for middle educated men, and 8.0 years for low educated men; the corresponding values 
for women were 10.8, 10.0 and 8.9 years. When comparing high to lower educational levels, 
these partial DFLEs translated into 2.1 and 0.9 years of difference for men, and 1.9 and 
1.1 years for women. Larger inequalities were found in Portugal and France and smaller 
inequalities in Belgium.

Figure 4.1–Partial disability-free life expectancy between age 50 and 65 by educational level 
 

 
Figure 4.1 Partial disability-free life expectancy between age 50 and 65 by educational level
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Table 4.3 presents LE estimates at age 65 years. A common pattern emerged in all countries: 
the higher the educational level the greater the LE at age 65. On average, the difference in 
men’s LE between high educated and lower educated groups was around 3 years, i.e. about 
double the difference between the middle and low educated groups, i.e. 1.3. Among women, 
differences in LE were smaller than among men. On average, high and middle educated 
women can expect to live 1.9 and 1.3 years longer, respectively, than low educated women. 
Relatively larger differences were found in Austria and Portugal compared to smaller differ-
ences in Denmark and Finland.

Table 4.3 Total life expectancy at age 65 years by educational level, for men and women separately

LE (95% confidence interval) by educational level

High Middle Low High–Low / Middle-Low

Men

Finland 15.7 (15.3 - 16.1) 14.6 (14.3 - 14.8) 14.2 (14.0 – 14.4) 1.5 / 0.3

Denmark 15.8 (15.4 - 16.2) 14.5 (14.2 - 14.7) 13.8 (13.7 - 13.8) 2.1 / 0.7

Ireland 17.8 (16.9 - 18.6) 16.0 (15.5 - 16.5) 14.1 (13.9 - 14.3) 3.7 / 1.9

Austria 17.5 (16.6 - 18.3) 16.3 (16.2 - 16.5) 13.6 (13.4 – 13.9) 3.8 / 2.7

Belgium 16.2 (15.7 – 16.8) 15.2 (14.9 - 15.5) 13.4 (13.2 – 13.7) 2.8 / 1.8

Greece 19.2 (18.5 - 19.8) 17.2 (16.7 – 17.6) 15.8 (15.6 - 15.9) 3.4 / 1.4

Italy 19.0 (18.2 – 19.8) 15.3 (15.0 - 15.7) 16.7 (16.5 – 16.8) 2.3 / -1.3

France 19.4 (19.0 – 19.8) 18.5 (18.3 – 18.7) 16.4 (16.2 - 16.6) 3.0 / 2.1

Spain 19.4 (18.8 - 19.9) 18.4 (17.9 - 18.9) 16.4 (16.3 – 16.6) 2.9 / 2.0

Portugal 18.7 (17.8 - 19.5) 16.7 (16.0 - 17.3) 14.8 (14.7 – 15.0) 3.8 / 1.9

Average 17.9 (17.2 – 18.5) 16.3 (15.9 – 16.6) 14.9 (14.8 - 15.1) 2.9 (2.5 – 3.4) / 1.3 (1.2 – 1.5)

Women

Finland 18.9 (18.6 – 19.2) 18.6 (18.4 - 18.9) 18.3 (18.2 – 18.5) 0.6 / 0.3

Denmark 17.9 (17.5 - 18.4) 17.4 (17.1 – 17.8) 17.2 (17.1 – 17.2) 0.8 / 0.3

Ireland 21.0 (20.2 – 21.7) 20.1 (19.7 – 20.7) 18.3 (18.1 – 18.5) 2.7 / 1.8

Austria 21.4 (20.7 – 22.1) 21.1 (21.0 – 21.2) 18.4 (18.3 – 18.6) 3.0 / 2.7

Belgium 20.8 (20.4 – 21.2) 20.7 (20.4 – 21.0) 19.1 (18.9 – 19.3) 1.7 / 1.6

Greece 20.6 (19.9 - 21.2) 19.4 (19.0 - 19.8) 18.1 (18.0 – 18.2) 2.5 / 1.3

Italy 22.1 (21.3 – 22.8) 19.6 (19.2 - 20.0) 20.8 (20.7 – 21.0) 1.3 / -1.2

France 23.8 (23.4 - 24.2) 23.9 (23.8 – 24.1) 21.7 (21.6 – 21.9) 2.1 / 2.2

Spain 22.3 (21.6 – 22.9) 22.0 (21.5 – 22.5) 20.4 (20.3 – 20.5) 1.9 / 1.6

Portugal 21.4 (20.7 – 22.2) 20.6 (20.0 – 21.2) 18.5 (18.3 – 18.6) 3.0 / 2.2

Average 21.0 (20.4 – 21.6) 20.4 (20.0 – 20.7) 19.1 (18.9 – 19.2) 1.9 (1.5 – 2.4) / 1.3 (1.1 – 1.5)
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Table 4.4 presents estimates on the DFLE at age 65. The higher the educational level the 
longer people remain healthy at older age. For both men and women, differences between 
the educational attainment groups were larger for DFLE than for LE. Among men, the aver-
age DFLE difference between high and low educated groups was 4.6 years, compared with 
2.1 between middle and low educated men; for women, the corresponding values are 4.4 and 
2.7, respectively. Larger differences were seen in Spain and Portugal, and smaller differences 
in Finland, Denmark and Belgium.

Table 4.4 Life expectancy without disability at age 65 years by educational level, for men and women 
separately

DFLE (95% confidence interval) by educational level

High Middle Low High–Low / Middle-Low

Men

Finland 7.8 (7.1 –8.7) 5.9 (5.3 – 6.6) 5.2 (4.8 - 5.7) 2.6 / 0.7

Denmark 9.7 (8.7 – 10.7) 8.2 (7.4 – 8.8) 6.5 (6.0 – 7.1) 3.2 / 1.6

Ireland 14.2 (12.5 - 15.7) 11.3 (10.3 – 12.2) 9.1 (8.6 – 9.6) 5.1 / 2.2

Austria 11.8 (9.8 – 13.7) 9.1 (8.5 – 9.6) 7.2 (6.7 – 7.7) 4.7 / 1.9

Belgium 11.0 (10.1 – 12.2) 9.6 (8.8 – 10.4) 8.1 (7.6 – 8.7) 2.9 / 1.5

Greece 15.4 (14.1 – 16.5) 12.1 (11.2 – 13.0) 9.9 (9.6 – 10.3) 5.4 / 2.2

Italy 15.8 (14.4 – 17.1) 12.5 (11.9 – 13.2) 11.4 (11.1 – 11.8) 4.3 / 1.1

France 13.0 (12.0 – 14.0) 9.4 (8.7 – 10.0) 7.3 (6.9 – 7.8) 5.6 / 2.0

Spain 15.2 (14.1 – 16.4) 13.1 (12.0 – 14.2) 9.8 (9.4 – 10.1) 5.5 / 3.4

Portugal 14.0 (12.1 – 15.7) 12.2 (10.4 – 13.8) 7.7 (7.4 – 8.1) 6.2 / 4.4

Average 12.8 (11.5– 14.1) 10.3 (9.5 – 11.2) 8.2 (7.8 – 8.7) 4.6 (3.7 – 5.4) / 2.1 (1.7 – 2.5)

Women

Finland 8.6 (7.7 –9.5) 7.2 (6.5 – 8.0) 6.0 (5.6 – 6.6) 2.5 / 1.2

Denmark 9.4 (8.4 – 10.5) 8.7 (7.8 – 9.6) 6.9 (6.3 – 7.4) 2.6 / 1.8

Ireland 16.2 (14.4 – 17.8) 13.9 (12.8 – 15.1) 11.4 (10.8 – 12.0) 4.7 / 2.5

Austria 13.9 (11.6 – 15.9) 11.6 (10.9 – 12.2) 9.2 (8.7 – 9.7) 4.7 / 2.4

Belgium 13.5 (12.3 – 14.6) 12.8 (11.6 – 13.7) 11.1 (10.5 – 11.8) 2.3 / 1.6

Greece 15.9 (14.4 – 17.3) 13.5 (12.5 – 14.5) 10.9 (10.5 – 11.2) 5.0 / 2.6

Italy 17.5 (15.7 – 19.2) 15.5 (14.6 – 16.3) 13.3 (12.9 – 13.7) 4.2 / 2.2

France 14.8 (13.6 – 16.0) 11.6 (10.8 – 12.4) 8.7 (8.3 – 9.2) 6.1 / 2.9

Spain 16.5 (15.0 – 17.9) 14.8 (13.6 – 16.1) 10.8 (10.5 – 11.1) 5.6 / 4.0

Portugal 14.3 (12.1 – 16.3) 13.7 (11.5 – 15.8) 8.0 (7.7 – 8.4) 6.3 / 5.7

Average 14.0 (12.5 -15.5) 12.3 (11.3 – 13.4) 9.6 (9.2 – 10.1) 4.4 (3.3 – 5.4) / 2.7 (2.1 – 3.3)
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4.4. Discussion

This study explored educational differences in (disability-free) LE before and after formal 
retirement age across 10 Western European countries. Populations with a higher level of 
education can expect to live more years free of disability before retirement, suggesting less 
problems in reaching pension age in good health. People with a higher educational level can 
also expect to live longer after retirement, implying that they represent a greater liability 
for pension funds. For LE larger inequalities were found among men than among women, 
whereas differences in DFLE were similar for both men and women. Similar patterns 
emerged in all countries, although the inequalities tended to be larger in southern countries.

Data issues
Some limitations regarding the use of data need addressing. First, disability data were self-
reported which can result in either under- or over-reporting of disability. If the reporting 
of disability differs by educational level then the differences in DFLE estimates will also 
be biased. Although we cannot exclude that reporting of disability differed by educational 
level, it is unlikely that differential reporting patterns would have strongly biased our results. 
To support this conclusion, an earlier study showed that educational inequalities in the 
prevalence of disability remained about the same when self-reported measures of disability 
were replaced by performance-based measures139.

Non-response and attrition might have been a problem in the present study if they had been 
related to disability and SES. A few studies have explored the association between attrition 
and disability status in the ECHP. For example, analyses on attrition in the ECHP showed 
a positive relationship with worsening health in all countries118 and only a weak relation-
ship with educational level119. Also, we assessed the likelihood of attrition in the current 
study population in relation to characteristics at the last wave in which the respondent 
participated120. We found that the risk of loss to follow-up for reasons other than death or 
institutionalization was hardly related to disability status or educational level. This implies 
that differential retention could not have strongly biased our estimates of relative educa-
tional differences in LE and DFLE.

The distribution of educational level across the countries showed rather skewed patterns, 
with large proportions in the lower educated groups. The sample size of higher educated 
persons was particularly small in Austria, Greece, Italy, Spain and Portugal. Because of the 
relatively small sample sizes the CIs are wider for the higher educated groups. As a result, 
the CIs around LE and DFLE estimates for the groups with middle and high educational 
status often overlap. The same problem of random fluctuations might explain unexpectedly 
high or low values of LE or DFLE in some specific population as in the case of Italy. 
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A main advantage of the ECHP was the availability of a large number of observations based 
on use of an identical survey design and survey questionnaire for all participating coun-
tries. Although the data collection was carried out by the National Institutes of Statistics 
separately, and hence national versions of the ECHP are not perfectly comparable, these 
common questions ensured a much higher degree of comparability between countries 
than would have been possible using national data sources. The key variables used in this 
paper, on educational level and health status, are comparable across all ECHP countries, 
albeit comparability of educational information could only be achieved at the level of three 
broad groups. Even so, international comparability may still be far from optimal due to 
cross-national variations in factors such as people’s perception of health problems and 
their propensity to report perceived health problems. Therefore, caution is needed when 
interpreting any differences in results between these European countries. We therefore 
recommend focussing on the patterns common to all countries, rather than on the cross-
national variations.

Previous studies
Estimates of DFLE according to SES have been reported for several coun-
tries21,61,103,129-134,140-152 however, for Greece, Ireland and Portugal we believe that the 
current study is the first to report estimates of socioeconomic inequalities in DFLE. Data 
from other countries are not directly comparable with our data because of the different ages 
at which life expectancies were calculated, or because different measures and classifications 
of disability and SES were used. 

A few estimates for SES differences in LE and DFLE at higher ages have been reported 
earlier. In the Netherlands, at age ≥65 years, for total LE and healthy LE a difference of 3.1 
and 3.4 years, respectively, was found in men when comparing primary educated and higher 
educated groups21. In England and Wales, in the age group ≥65 years, for estimated LE free 
of mobility limitations a difference of 2.7 and 2.5 years was found between high and low 
educated men and women, respectively; corresponding differences in LE were 1.1 and 1.9 
years61. In the USA, differences in LE between primary and higher educated were 2.5 and 3.3 
years, respectively, whereas differences in active LE were 2.4 and 2.8 years for white men and 
women, respectively150. For Italy, differences in DFLE were also found, with a 3-year differ-
ence between the higher and lower educated for both men and women at age 65 years131.

The present study shows similar basic patterns of DFLE and LE by SES. A common finding 
is that inequalities in HE were larger than inequalities in LE. Although comparison between 
studies is difficult we found somewhat larger differences, especially in terms of DFLE. This 
might be due to the milder measure for disability that was used in our study.
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At a pan-European level, previous studies – implicitly or explicitly – examined the feasibil-
ity of increasing labour force participation around retirement eligibility age using health 
expectancy measures based on the ECHP data153,154, the Statistics of Income and Living 
Conditions (SILC) data155, or the Survey of Health, Ageing and Retirement in Europe 
(SHARE) data156. These studies assessed the average health expectancy and ‘unused capac-
ity’ in several European countries, and pointed at substantial differences therein. Our study 
extends this work for a selection of European countries, included in the ECHP, by focussing 
on variations by socio-economic status. It would be particularly interesting to further ex-
tend our study to the Central-Eastern European (CEE) countries included in the SHARE or 
SILC surveys, even though SILC data do not contain information on mortality and SHARE 
data have only one wave with CEE countries.

In previous studies, large inequalities were observed independent of the applied socio-
economic indicators (educational, occupational class, income, or wealth measures). The 
inequalities that we observed in relation to educational level may reflect the operation 
of different causal mechanisms, including effects of socioeconomic position in later life. 
Blane157 proposed five explanations for the strong and persistent association between edu-
cation and health in later life: 1) influence of childhood living circumstances on adult health, 
2) effects of occupation and income achieved in adult life, 3) receptivity and adaptability to 
health education, 4) effects of ill health during childhood on education, and 5) influence of 
other background variables, e.g. self-efficacy time preference, etc. 

Although the evidence regarding cross-national variations is rather weak, it is interesting 
to find that inequalities in DFLE were generally larger in southern than in northern coun-
tries. Our results are generally in line with the hypothesis that in Nordic countries (where 
egalitarian welfare regimes have been implemented) inequalities in health may be smaller. 
Protective welfare systems could lead to smaller inequalities through their effect on income 
and wealth, on working conditions, and on socio-psychological resources available to dif-
ferent socio-economic groups Nevertheless, other studies provide no consistent evidence 
that socioeconomic inequalities in mortality or self-reported health are smaller in Nordic 
countries158.

Conclusions
Systematic reforms aimed at increasing pension(able) age have been proposed or imple-
mented, also to take into account the trend of rising life expectancy and similar rises in 
health expectancy. However, such restructuring rarely acknowledges the differences in life 
and health expectancies between socio-economic groups. For Europe at large, this study 
has shown that such inequalities are substantial in every country investigated. Educational 
inequalities favouring the higher educated exist on both sides of the official retirement age. 
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On the one side, retired people with a higher educational level live healthier and longer 
lives and represent a subpopulation making greater demands on pension resources. On 
the other side, those with a higher educational level live more years in good health before 
reaching pension age. Although being disabled does not necessarily mean being unable to 
work, and being non-disabled does not necessarily mean being able to work, good health is 
associated with increased likelihood of participation. Our results indicate that in the case of 
lower socioeconomic groups, increasing the retirement ages will be more difficult to achieve 
(given higher disability prevalence) or to justify (given shorter life expectancies). Social 
policies should be oriented towards promoting the employment of seniors with higher 
socio-economic status because this is the group of people where the “unused capacity” 
is largest159. As a consequence, more flexible pension schemes could be considered, for 
instance taking into account the number of years worked over life course, or allowing for 
part-time pensioning.
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Life expectancy continues to grow in most western countries, however, a major remaining 
question is whether longer life expectancy will be associated with more or less life years 
spent with ill-health. Therefore it is useful to complement forecasts of life expectancy with 
forecasts of health expectancies. To forecast health expectancy an extension of the stochas-
tic extrapolative models developed for forecasting total life expectancy could be applied, 
but instead of projecting total mortality and using regular life tables, one could project 
transition probabilities between health states simultaneously and use multi-state life table 
methods (MSLT). In our paper we present a theoretical framework for a MSLT model, in 
which the transition probabilities depend on age and calendar time. The goal of our study 
was to describe a model that projects transition probabilities by the Lee-Carter method, and 
to illustrate how it can be used to forecast future health expectancy with prediction intervals 
around the estimates. We applied the method to data on the Dutch population aged 55 and 
older, and projected transition probabilities until 2030 to obtain forecasts of life expectancy, 
disability-free life expectancy and probability of compression of disability.
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5.1. background

Life expectancy
Over the last decades improving mortality conditions have resulted in increases in the length 
of human life and subsequent population ageing in western countries. The continuous rise 
of life expectancy (LE) is certainly welcome. However, the increasing life expectancy has 
been accompanied by low fertility rates, resulting in growth of the elderly proportion of 
populations in most OECD countries25. Since these developments have considerable conse-
quences for the sustainability of two fundamental institutions of social security, health care 
and pensions, the future of human survival has gained growing attention not only among 
demographers and epidemiologists but also among actuaries, economists and financial 
specialists32,33. The concern is that health insurers and pension funds will have to provide 
provision for however long people will live.

Whether and to what extent life expectancy will continue to increase has been source of 
discussion, dividing scholars into camps of optimists or pessimists160. Various arguments 
have been used to support the potential upward or downward effects on mortality rates, 
including not only historical trends, biomedical and life-style arguments, but even the 
potential of medical breakthroughs. Reflecting on the uncertainty surrounding the evolu-
tion of future mortality  ife expectancy, particularly at older ages, demographers began to 
consider improvements in mortality, and all other quantities depending on future mortality, 
as a stochastic process. A wide range of extrapolative empirical models have been proposed 
which share a common feature: based on historical data, they all estimate age-specific 
mortality as a function of time, and project them into the future using probability distribu-
tions31,34,35,161,162. The earliest and still one of the most popular models is the Lee-Carter 
model31, which proved to perform very well and has become the “leading statistical model 
of mortality forecasting in the demographic literature”163. In many cases however, it is not 
sufficient to form expectations on future life expectancy alone. For example, if a further raise 
of retirement age is being considered, it is more appropriate to estimate how long people 
will be able to work in the future, instead of simply how long they will live. An important 
question in aging populations is whether increases in life expectancy will be accompanied 
with greater or lesser increases in life years spent in poor health and/or with disability164. 
Consequently, it would be useful to form expectations not only on how long people are 
expected to live, but also on how healthy they will be in the future.

Health expectancy and compression of morbidity
Health expectancy (or expected healthy life years, HE) typically combines mortality and 
morbidity information to represent overall population health in a single indicator10. It 
measures the number of remaining life years that a person at a certain age is expected to 
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live without ill-health, and is increasingly used to complement the conventional measure 
of life expectancy165. Because health expectancy was developed to reflect that not all years 
of a person’s life are lived in perfect health, estimates of health expectancies have been very 
attractive and widely used tools for monitoring trends in population health10.

Three distinct theories have been proposed regarding the evolution of health expectancy and 
life expectancy over time: compression of morbidity14, expansion of morbidity15, and the 
so-called dynamic equilibrium theory16. Compression of morbidity postulates that survival 
and morbidity curves will become closer to each other in the future, as a result of strategies 
that effectively eliminate premature morbidity and mortality. Supporters of the pessimistic 
expansion theory assert that increases in life expectancy will not be followed by increases in 
healthy life expectancy because the declines in mortality stem from mainly those suffering 
from chronic, disabling diseases. The third hypothesis, dynamic equilibrium emphasizes the 
link between morbidity and mortality and asserts that the increases in total life expectancy 
would likely entail increases in life expectancy both with and without morbidity, whereas 
years with severe morbidity remain stable. Compression (expansion) of morbidity can be 
measured in absolute values: increases in healthy life expectancy are larger (smaller) than 
increases in total life expectancy; or as a proportion: healthy life expectancy over total life 
expectancy is increasing (decreasing).

Modeling and forecasting health expectancy
There are two commonly used methods to estimate health expectancy: Sullivan’s method 
and the multistate life table (MSLT) method. They require different kinds of data and 
can yield different results11. The simpler Sullivan method estimates health expectancy by 
combining mortality data with external information on cross-sectional prevalence in each 
health state12. The more refined multistate method models the prevalence of disability as the 
result of several transitions (e.g. incidence, mortality and possibly remission)13. Although 
a multistate model has larger data requirements since it needs age-specific estimates of 
multiple transitions, it has several advantages. Most importantly, it acknowledges the fact 
that the stock of ill health is the result of different processes. Accordingly, one can interpret 
trends in health expectancy as a result of developments in the underlying transition rates.

In the demographic literature there are many multistate projection studies that forecast 
the size of populations into the future. The projections are based on cohort components of 
demographic change including births, deaths, and migration. The transitions between the 
modeled states are based on transition rates that may change in time166 and / or may vary 
between subpopulations. Projections for subpopulations has been performed by region167, 
educational status168, household status169, labor force participation170 as well as by health 
/ disability status171. Recently a large-scale research project has been completed in the Eu-
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ropean Union. One of the goals of the research was to provide the size and age structure of 
future populations with and without disability172.

With regard to forecasting morbidity by multistate models we refer to a review of epide-
miological approaches by Tabeau173. The main output of the models discussed here are 
disease incidence numbers and cause-specific or total mortality counts. Several studies 
on health-based population forecasts and implications in terms of health service needs 
have been carried out by Manton and colleagues174-176. They have proposed the use of a 
multidimensional stochastic process model to project population changes under simulated 
modifications in the distribution of major risk factors171,177. None of these studies focused 
explicitly on forecasting the expected life years that a person is expected to live without 
ill-health.

Although there is a clear rationale for forecasting health expectancy efforts at improving 
forecasting models have been limited exclusively to life expectancy. This is partly because 
the primary object of interest for pension providers is the expected life years after retirement 
and not the expected healthy life years, and partly because the lack of long time series data 
on health status. Furthermore, compared to forecasting life expectancy based on mortality 
alone, forecasting health expectancy is more complicated because of the additional dimen-
sions in the models. To our knowledge, there has been only a recent study that forecast both 
life expectancy and a form of health expectancy. The authors employed Sullivan’s method 
to forecast active life expectancy for a number of years during the twenty-first century until 
2080 for the U.S.178, and for which they used future life tables estimated by the Social Secu-
rity Administration and two scenarios on the expected rate of disability decline (1.7% and 
0.8% per annum). Other studies forecasting health expectancy - either Sullivan or multistate 
- are virtually non-existent.

Purpose of our study
Our study had two goals. The first was to build a theoretical framework for a multi-state 
life table model, in which the transition probabilities depend on age and calendar time. 
We aimed to describe how to model and forecast these transition probabilities using the 
Lee-Carter method, and to illustrate how this method can be used to forecast future health 
expectancy with prediction intervals around the forecasts. Second, we applied the method to 
data of the Dutch population aged 55 and older, and estimated health expectancies between 
1989 and 2007 for men and women. We projected the transition probabilities until 2030, and 
applied multistate life table methods to obtain forecasts of life expectancy, disability-free life 
expectancy (DFLE), a frequently employed form of health expectancy, and life expectancy 
of non-disabled and life expectancy of disabled people. In addition, we analyzed the chang-
ing relationship between DFLE and life expectancy over time, and attached probability 
distributions to different future scenarios of compression or expansion of disability.
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A key concept in our work is the idea that the stochastic extrapolative models developed to 
forecast total life expectancy could be used to forecast health expectancy. However, instead 
of forecasting population mortality probabilities and using regular life tables, future health 
expectancies could be modeled by forecasting transition probabilities between the health 
states, and developments of future transition rates can be viewed as realizations of stochastic 
processes, like in case of mortality. Accordingly, future health expectancy could be modeled 
through transition probabilities that are extrapolated in a stochastic manner.

5.2. Methods

We specified three health states indicating the functional status of the individuals: non-
disabled, disabled, and dead. Three possible transitions between these states were allowed: 
healthy persons may experience onset of disability or they may die, while disabled person 
may die(1). A crucial element in our model is that transition probabilities do not only depend 
on age but also on calendar year, and that they are treated as stochastic time series, which 
can be forecasted by extending the Lee-Carter model31. In the following subsection we will 
describe how the Lee-Carter method can be used to forecast multiple transitions in order 
to forecast health expectancy. In particular, we pay attention as to how the joint tendency 
of the stochastic period effects of each transition type can be modeled. Limitations of the 
assumptions and their importance for the results are assessed at the Discussion section of 
this chapter.

Forecasting transition rates and health expectancy with the Lee-Carter model
The Lee Carter model takes the following form:

mx,t (i) is the specific type i = (tr,g)∈I transition rate for an x year old individual at time 
t∈{1,2,…,T} with gender g∈{male, female} and tr∈{nd, d, inc} the mortality rate of non-
disabled, mortality rate of disabled, and the incidence rate, respectively. The parameters to 
be estimated are αx (i), βx (i), and κt (i), and εx,t (i) is the error term.

Applying the Lee-Carter model is a two step procedure. First, the parameters in equation (1) 
are estimated. Second, the transition rates are projected by forecasting the time-dependent 
parameter.

1 Detailed descriptions of the quantities obtainable in an MSLT and information about how transition rates 
are converted into 1-year transition probabilities have been put in Appendix 5B.
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In the first step, parameters of equation (1), αx (i), βx (i), and κt (i) are estimated to model a 
given type of transition rate, ln mx,t (i) . The least square solution to the equation (1) is sought, 
however this model cannot be fitted by Ordinary Least Squares, because there are no predic-
tors on the right hand side. Nevertheless, assuming that εx,t (i) is normally distributed, the 
singular value decomposition (SVD) of the matrix with elements ln mx,t (i) – αx (i) estimation 
is equivalent to the maximum likelihood estimates. Generally a one factor model is used, 
hence in the Lee-Carter model the matrix, βx κt , is a function of the leading singular value, 
σ1 (i), the first column, u1 (i), and the first row, [v1 (i)]

l  , of the SVD. Due to lack of identification 
Lee and Carter proposed to use the constraints: Σx β̂x (i)=0 and Σt κ̂ t (i)=1 in order to ensure 
that the solutions are unique. The latter constraint implies that summing the modeled log 
transition rate over t, and taking its expected value, the age-specific constant parameter  
α1 (i) is simply the empirical average of the log transition rate at age x. The parameter 
κt (i) indicates the time-dependent latent process that quantifies the evolution of transition 
rates over time. The βx (i) profiles express which age-specific rate change rapidly or slowly in 
response to changes in κt (i). εx,t (i) ’s are sets of disturbances. If X is the set of age groups and T 
is the set of time periods, then the parameter estimates are given by:

At each age the disturbances are assumed to have an independently and identically distrib-
uted multivariate normal distribution with mean zero and covariance matrix Σx 2, which 
takes into account the joint distribution of the disturbances of every type of transition rate: 
εx,t (i) ~ N(0, Σx 2). The maximum likelihood estimate for the covariance parameter is:

In the second step, transition rates are forecasted and used to estimate future health ex-
pectancies. By modeling future transition rates, αx (i) and βx (i) are assumed to be constant 
over time, whereas the values of κt (i)=[ κ1(i), κ2(i),..., κt (i)]

l  are extrapolated using a standard 
univariate time-series model. Eventually these extrapolated latent factors are inserted into 
equation (1) to obtain future transition rates.

For modeling and extrapolating the estimated values of κt (i), Lee and Carter tested several 
autoregressive integrated moving average (ARIMA) time series models, and they found that 
the model of random walk (trajectory of successive random steps) with a drift parameter 
described their data the best. They suggested that different model specifications might be 
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more appropriate for other data sets however their random walk model with drift is used 
almost exclusively in applications. We follow Lee and Carter in adopting their projection 
model. The time series model on the values of κ̂t (i) take the following form: 

where θ is a vector with elements θ (i), the drift parameter of transition type (i), and Δ2 
is the variance-covariance matrix taking into account the joint tendency of each transition 
type (i) over time.

The maximum likelihood estimate of the parameter θ̂ (i) and the variance-covariance matrix 
[Δ̂ 2]ij for the time series model are computed as follows:

where i=(tr , g)∈I and j=(tr , g)∈J are transition types at time t∈{1,2,...,T} with gender  
g∈{male, female} and tr∈{nd,d,inc}, the mortality rate of non-disabled, mortality rate of 
disabled, and the incidence rate, respectively.

Having obtained the parameter estimates of the time series model, one may allow for and 
take into account parameter uncertainty in the trend itself during the forecasts. In such 
a case the trend parameters are assumed to have a multivariate normal distribution with  
θ·~N(θ̂,V{θ̂}), where θ̂ is a vector with the true parameter estimates θ̂ (i), and where the 
variance-covariance matrix of the parameter estimates is:

To model future transition rates we used the last-year transition rates as observed in the 
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are given by:
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where ),( gtri � I�  and ),( gtrj � J�  are transition types at time � �Tt ,,2,1 ��  with 
gender � �femalemaleg ,�  and � �incdndtr ,,� , the mortality rate of non-disabled, mortality 
rate of disabled, and the incidence rate, respectively. 
 
Having obtained the parameter estimates of the time series model, one may allow for and 
take into account parameter uncertainty in the trend itself during the forecasts. In such a 
case the trend parameters are assumed to have a multivariate normal distribution with 

� �� ���� ˆ,ˆ~ VN� , where �̂  is a vector with the true parameter estimates )(ˆ i� , and where the 
variance-covariance matrix of the parameter estimates is: 
 

� � � �
1

ˆ
ˆ

2
),(

�

�
�
T

V ijji� .           
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Once simulations of future transition rates are obtained, they can be converted into one-
year transition probabilities taking into account the competition between the rates 
(Appendix 5B). For each set of forecasted transition probability profiles a multistate life table 
can be set up and corresponding DFLEx,t can be estimated. Furthermore, the several 
probabilistic simulations yield prediction intervals for the life expectancy estimates, and the 
simulated health expectancies allow calculating the probability of a specific scenario of 
compression or expansion of disability. 
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where RF  (i)x,T,s is the age-x reduction factor between time T and T+s for type of transition 
rate i. Forecasts of the reduction factor are obtained by the following equation:

where β̂x (i) denotes the estimated βx (i), and κ̂(i)T +s denotes the forecasted reduction factor 
s ≥ 1 periods ahead of κ̂(i)T  . κ̂(i)T +s has the following conditional distribution:

Once simulations of future transition rates are obtained, they can be converted into one-year 
transition probabilities taking into account the competition between the rates (Appendix 
5B). For each set of forecasted transition probability profiles a multistate life table can be 
set up and corresponding DFLEx,t can be estimated. Furthermore, the several probabilistic 
simulations yield prediction intervals for the life expectancy estimates, and the simulated 
health expectancies allow calculating the probability of a specific scenario of compression 
or expansion of disability.

Application
We applied the method to Dutch population data which came from several sources because 
there was no single longitudinal data set available that could have provided all the neces-
sary transition probabilities. Therefore, we used official mortality statistics pertaining to the 
whole population, prevalence of disability and estimates of the hazard ratio of the mortality 
risk between disabled and non-disabled. We made use of the simple relationships between 
mortality, prevalence and hazard ratio to obtain state-specific mortality rates in the first 
step, and to estimate incidence rates given prevalence and mortality rates in the second 
step179.
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Once simulations of future transition rates are obtained, they can be converted into one-
year transition probabilities taking into account the competition between the rates 
(Appendix 5B). For each set of forecasted transition probability profiles a multistate life table 
can be set up and corresponding DFLEx,t can be estimated. Furthermore, the several 
probabilistic simulations yield prediction intervals for the life expectancy estimates, and the 
simulated health expectancies allow calculating the probability of a specific scenario of 
compression or expansion of disability. 
 
Application 
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Once simulations of future transition rates are obtained, they can be converted into one-
year transition probabilities taking into account the competition between the rates 
(Appendix 5B). For each set of forecasted transition probability profiles a multistate life table 
can be set up and corresponding DFLEx,t can be estimated. Furthermore, the several 
probabilistic simulations yield prediction intervals for the life expectancy estimates, and the 
simulated health expectancies allow calculating the probability of a specific scenario of 
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Once simulations of future transition rates are obtained, they can be converted into one-
year transition probabilities taking into account the competition between the rates 
(Appendix 5B). For each set of forecasted transition probability profiles a multistate life table 
can be set up and corresponding DFLEx,t can be estimated. Furthermore, the several 
probabilistic simulations yield prediction intervals for the life expectancy estimates, and the 
simulated health expectancies allow calculating the probability of a specific scenario of 
compression or expansion of disability. 
 
Application 

(11)

(12)

(13)
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• Mortality
Survival probabilities for Dutch men and women by age (i.e., x∈{55.5,56.5,...,96.5,97.5}) 
were used, as published at Statistics Netherlands for each year between 1989 and 2007 (i.e., 
T=19). The online database of Statistics Netherlands contains original calculations of one-
year mortality probabilities and life tables for the Netherlands. The input data consist of 
death counts from vital statistics, birth counts, and population numbers.

• Prevalence of disability
Prevalence of disability was estimated using the POLS health and labor survey collected 
among the community-dwelling population of the Netherlands73. The POLS is an ongoing 
annually conducted cross-sectional survey aiming to provide information on a broad range 
of topics concerning the living situation representative of the Dutch general population. The 
POLS is sampled on records from a centralized municipal registry, and does not include the 
institutionalized population (less than 2% below age 75 among both men and women). Self-
reported health data was collected by face-to-face interviews and written questionnaires. The 
interviewer visited the participants at home, asked for informed consent and left a written 
(drop-off) questionnaire. The annual net participation is approximately 10,000 individuals, 
with response rates of around 60% for the questionnaire. We used POLS surveys conducted 
between 1989 until 2007 because the current disability questions were first introduced in 
1989 and we had access to data until 2007. To correct for selective non-response and to 
ensure representativeness for the Dutch population, we used POLS sample weights180. Data 
from the health and work module of POLS were available for those aged 12 or older. Table 
5.1 shows the population characteristics by gender.

Disability status was measured by the OECD indicator75, in persons aged 55 years and 
older. The OECD disability indicator, combining the aspects of basic activities of daily liv-
ing (ADL) and mobility limitations, measures the ability to perform tasks necessary for 
both physical functioning and for independent living. In this respect the OECD indicator 
measures disability on a less severe level than the ADL disability indicator but measures 
it on a more severe level than the instrumental activities of daily living (iADL) indicator. 
The OECD disability indicator uses 7 items (conversing, reading small letters, recognizing 
faces, biting, carrying objects, walking 400ms, bending). For each item respondents were 
asked if they were able to perform the activities ‘without difficulty’, ‘with minor difficulty’, 
‘with major difficulty’, or ‘only with help’. Using equipment such as eyeglasses or hearing 
aid was not indicative of disability if the respondent did not need help or was able to carry 
out the activity with little or no difficulty. Disability was defined as having at least one item 
answered: ‘with major difficulty’ or ‘only with help’. Overall item non-response was fairly 
low, 14.4%.
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Population-level unadjusted prevalence of OECD disability gradually decreased between 
1989 and 2007. For men, it fell from 23.4% to 17.0%, whereas for women it declined from 
38.2% to 28.3%. The prevalence of disability for each sex and calendar year was smoothed 
by logistic regressions using a dummy variable for each sample year. The aim of smoothing 
was to capture the important patterns in the prevalence of disability while leaving out noise 
due to the sampling design (independent sample every year) of the POLS survey. Logistic 
regression is commonly used way to smooth disability prevalence. The Akaike Information 
Criteria indicated that a model including squared age and / or interaction variables would 
have been less appropriate.

• Hazard ratio of disabled persons on death
A unique key for all respondents in the POLS between 1997 and 2006 was provided, which 
allowed the linking of individuals to the municipal population registries68. The available 
population registries contain annual data on the date of death in the population until De-
cember 31, 2007. Records of POLS and population registries were linked deterministically to 
establish the date of death during the study follow-up period. Those who were not identified 
in the death registry were considered to be alive at the end of the study follow-up period.

The relative risk of disability on mortality was estimated using the record-linked survival 
dataset with Cox regression models, stratified by survey year, and estimated for men and 
women separately. The time scale of the survival analyses was defined as a person’s age76. 
Left truncation was applied to the age range over which the subject was not observed before 
the inclusion to the POLS survey77. We did not find significant age-interaction and time 
trend in the hazard ratios therefore we considered them as being constant over age and time. 
Hazard ratio of disability on mortality was 1.85 (CI: 1.66, 2.07) and 1.72 (CI: 1.50, 1.97) for 
men and women, respectively.

• Estimating transition rates
Because information on mortality rates of non-disabled and disabled populations sepa-
rately was not available from primary data sources we decomposed total mortality using the 
prevalence of disability and the hazard ratio of disability on mortality. We assumed that 1) 
the age and sex-specific mortality rates in the overall population are the weighted average 
of mortality rates of non-disabled, mx,t (nd), and disabled populations, mx,t (d), with the propor-
tion of non-disabled and disabled respectively as weights, and 2) that the ratio between 
the mortality rate of disabled and non-disabled people is equal to the hazard ratio. The 
corresponding age and time-specific incidence rates, mx,t (inc), could be derived from given 
mortality rates of the non-disabled and disabled of age x at time t, and given prevalence of 
disabled population at age x and x+1 at time t, because these quantities are interrelated and 
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mutually define each other. Appendix 5C presents a formal derivation of these transition 
rates.

Although our model assumes that only incidence is possible, there is evidence that people 
can recover from disability, even at higher ages181. Therefore, the probability of incidence in 
our model can be interpreted as a modified net incidence probability, which corresponds to 
the number of transitions from non-disabled to disabled state minus the number of transi-
tions from disabled to non-disabled state, relative to the number of non-disabled people.

Figure 5.1 shows the incidence probabilities and mortality probabilities of the non-disabled 
for a number of different ages for men and women between 1989 and 2007, where we nor-
malized the transition probabilities to the year 1989. Because our decomposition of total 
mortality rates assumes that mortality rates of disabled are constant multiples of the mortal-
ity rates of non-disabled, where the multiplier is the hazard ratio, the normalized mortality 
probabilities are identical for these two groups. Consequently, we only show the graphs 
for the non-disabled. The figures clearly illustrate that over longer periods, the transition 
probabilities decrease, reflecting the decrease of prevalence of disability, and the increase in 
LE over time. The figures also show that the decreases in mortality were substantially larger 
for men, especially at younger age groups (60, 70).

 1 

Figure 1. Normalized Transition Probabilities at Age 60, 70, 80 and 90, 1989-2007 
 

 
Figure 5.1 Normalized transition probabilities at age 60, 70, 80 and 90, 1989-2007
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There are two implicit assumptions in our estimation of transition rates. First, our preva-
lence estimates are based on survey data that does not include institutionalized individuals 
hence our prevalence figures are somewhat underestimated. Second, we assume that the 
hazard ratio is constant over time which may not be valid. Sensitivity of our results to these 
assumptions is discussed explicitly later.

• Fitting Lee-Carter model on the transition rates and applying the multistate method
We fitted a separate Lee-Carter model on each of the six sets of age-specific transition rates to 
estimate the model parameters, including κ̂t (i). Based on the predicted values of κ̂t (i) we esti-
mated six drift parameters and the 6-by-6 (men and women together) variance-covariance 
matrix indicating the size of their joint distribution. This latter one allowed for taking into 
account the joint tendency of the transition rates during the forecasts. By simulating future 
transition rates we used the last year transition rates as observed in 2007 to avoid a jump-off 
bias. Once we obtained the simulated transition rates we converted them into one-year 
transition probabilities, and set up a multistate life table to get health expectancy estimates.

• Model validation
We used the R2 statistic to measure how large proportion of the variation in the different 
transition rates could be explained by the Lee-Carter models. Furthermore we performed 
two types of analysis to assess how well the model fitted past life expectancy and disability-
free life expectancy based on official sources published by Statistics Netherlands. In the first 
analysis, we plotted our life and health expectancy estimates against the official statistics 
between 1989 and 2007, the period on that we had data. In the second analysis, we back-
cast LE and DFLE by our model for the years between 1983 and 1988, and compared these 
estimates with those of the Statistics Netherlands.

• Model outcomes
The model can be used to forecast numerous outcomes: i) transition probabilities, ii) preva-
lence of disability, iii) total life expectancy (LE55,t), iv) total life expectancy of non-disabled 
and of disabled v) disability-free life expectancy (DFLE55,t), vi) difference between total LE 
and DFLE (LE55,t - DFLE55,t) vii) proportion of DFLE in total LE (DFLE55,t / LE55,t). Estimating 
total LE55,t and DFLE55,t enabled us to assess the likelihood of future compression or expan-
sion of disability.

We assessed the role of uncertainty in the projections from a number of sources: first, the 
uncertainty of the parameters for predicting prevalence and hazard ratios; second, the 
uncertainty of the evolution of transition profiles over time; and third, the uncertainty of 
the trends themselves.
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For a reference deterministic model we assumed that the prevalence of disability and the 
hazard ratios were known with certainty. Since these two ingredients were used to decom-
pose total mortality and to calculate incidence rates, this assumption actually implied that 
we treated the transition rates as if we had observed them in the whole Dutch population. 
We further assumed that the future development of transition rates, κ̂(i)T +s, was also known 
with certainty. Each year the transition rates changed according to the drift factor, θ̂ (i). We 
refer to this model as the ‘Deterministic model’.

In the first step of our analysis of uncertainty we relaxed some of the assumptions of the 
Deterministic model: we took into account the fact that the calculation of transition rates 
was based on estimates of hazard ratios and odds ratios. We applied probabilistic sensitivity 
analysis to take parameter uncertainty into account, and we drew random hazard ratios 
and odds ratios 100 times. After each random draw we obtained a set of transition rates 
and corresponding DFLE estimates. The simulated variation in the DFLE estimates was 
summarized by prediction intervals that implicitly reflect the effect of the variability of the 
Lee-Carter model parameters. We refer to this model as ‘Model [1]’.

In the second step we relaxed the assumptions we made about future realizations of the 
transition rates. Here, we took into account that future developments of transition rates are 
uncertain given a fixed trend. We drew 50 random odds ratios and hazard ratios to simulate 
the variation in the transition rates. Given a particular set of these, and based on which the 
trend of evolution was estimated, we simulated the uncertainty in the future evolution of 
the transition rates 50 times by probabilistic sensitivity analyses. We refer to this model as 
‘Model [2]’.

In the third step, we also relaxed the assumption about fixed trends. We simulated random 
sets of transition rates, based on a particular set of transition rates we simulated random 
trends, and conditional on a particular realization of the trend, we simulated the uncertainty 
in the evolution of future transition rates. Each part of the simulation was carried out 50 
times, and since the simulation contained multiple loops this resulted in a total number of 
125,000 random draws. We refer to this model as ‘Model [3]’.
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5.3. Results

Parameter estimation
Parameter estimates of the Lee-Carter model for the different transitions are plotted in 
Figure 5.2. The first column of the graph depicts the empirical average of the age-specific 
transition rates. The second column shows the age profiles, indicating which rates change 
rapidly or slowly in response to the time dependent evolution of the transition rates. This 
latent evolution is quantified in the third column.

 1 

Figure 2. Parameter Estimates of the Lee-Carter Model 
 

 
 Figure 5.2 Parameter estimates of the Lee-Carter model
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On average women had higher incidence rates than men, and for both sexes the incidence 
rates decreased between 1989 and 2007. Incidence rates decreased relatively faster than 
mortality rates (Figure 5.2., third panel), which, is consistent with the fact that healthy life 
expectancy increased.

During the period 1989-2007 both types of mortality rates decreased; the decrease was 
faster for men than for women. Due to our decomposition method the pace of the decrease 
was the same for both non-disabled and disabled mortality rates. In absolute terms however, 
mortality rate of disabled people decreased more than non-disabled mortality rates.

The parameter estimates for the time series models on the values of κ̂t (i) are given in Table 
5.4 in Appendix 5D.

Figure 5.3 presents the core results of the model from which life- and health expectancies are 
derived. We depicted age profiles of one-year incidence probability, mortality probability 
of non-disabled, and prevalence of disability in 1989, 2007 and their expected value in 
2030. The graphs clearly show that the likely increase of LE and DFLE will be the combined 
result of a decreasing disability incidence and a decreasing mortality, among both men and 
women.

Forecast and validation
We used the R2 statistic to measure how large proportion of the variation in the data was 
explained by the model. We refer the reader to Appendix 5E for figures which shows the 
age-specific and overall R2 estimates.

An alternative way of assessing model fit is to compare internally obtained results with 
external statistics. We performed two types of analysis to assess how well the model fits 
past LE and DFLE measures based on official sources published by Statistics Netherlands. 
In the first analysis, we plotted our life and health expectancy estimates against the of-
ficial statistics between 1989 and 2007, the period on that we had data (Figure 5.4 and 5.5, 
period 1989-2007). In the second analysis, we back-cast LE and DFLE by our model for 
the years between 1983 and 1988, and compared these estimates with those of the Statistics 
Netherlands. If the estimates of Statistics Netherlands fall into the prediction intervals of 
our model, then the model can be considered valid, because the model not only predicts in-
sample outcomes (LE and DFLE between 1989 and 2007) but also out-of-sample outcomes 
(LE and DFLE between 1983 and 1988). We presented the results in Figure 5.4 and Figure 5.5.

According to official statistics, LE at 55 increased faster among men (+3.7 years, from 21.1 
to 24.8) than it did among women (+1.9 years, from 26.8 to 28.7) between 1983 and 2007. 
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Based on estimates of Statistics Netherlands for the period 1989-2007, DFLE increased with 
approximately the same extent among both men (from 16.1 to 19.9) and women (from 15.8 
to 19.1). Statistics Netherlands also published DFLE for years preceding 1989 (1983 -1988), 
however these time series contain a 3-year period (1986-1988) with a considerably different 
disability questionnaire as compared to the one employed before 1986 and since 1989. We 
decided not to use these years in our model whereas Statistics Netherlands did publish 
DFLE estimates for these years, applying a number of adjustment techniques to take into 
account the breaks in the time series180,182. These point estimates and confidence intervals 
are depicted in Figure 5.4 and Figure 5.5.

 
Figure 5.3 Probability of incidence, (non-)disabled mortality and prevalence in 1989, 2007 and 2030, 
men and women
Notes: ND indicates non-disabled; D indicates disabled
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Figure 5.4 Total life expectancy and disability free life expectancy at age 55, 1983-2030, men
Notes: Model [1] allows for uncertainty in prevalence and HR. Model [2] allows for uncertainties of 
Model [1] and uncertainty in process. Model [3] allows for uncertainties of Model [2] and uncertainty in 
parameters. CBS: Statistics Netherlands.



96 Chapter 5 

6810121416182022242628303234

19
83

19
86

19
89

19
92

19
95

19
98

20
01

20
04

20
07

20
10

20
13

20
16

20
19

20
22

20
25

20
28

To
ta

l L
ife

 E
xp

ec
ta

nc
y 

an
d 

D
is

ab
ili

ty
 F

re
e 

L
ife

 E
xp

ec
ta

nc
y 

at
 A

ge
 5

5 
19

83
 - 

20
30

, W
om

en
 

    
 □

   
   

  C
B

S 
LE

 e
st

im
at

e 
   

 Δ
   

   
  C

B
S 

D
FL

E 
es

tim
at

e 
    

   
   

   
   

 D
et

er
m

in
is

tic
 m

od
el

 
   

   
   

   
   

 9
5%

 P
re

di
ct

io
n 

in
te

rv
al

 o
f M

od
el

 [1
] 

   
   

   
   

   
 9

5%
 P

re
di

ct
io

n 
in

te
rv

al
 o

f M
od

el
 [2

] 
   

   
   

   
   

 9
5%

 P
re

di
ct

io
n 

in
te

rv
al

 o
f M

od
el

 [3
] 

Figure 5.5 Total life expectancy and disability free life expectancy at age 55, 1983-2030, women
Notes: Model [1] allows for uncertainty in prevalence and HR. Model [2] allows for uncertainties of 
Model [1] and uncertainty in process. Model [3] allows for uncertainties of Model [2] and uncertainty in 
parameters. CBS: Statistics Netherlands.
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Regarding the model fit in terms of estimated LE and DFLE between 1989 and 2007, it is 
clear even by visual inspection that fitting Lee-Carter model on the transition rates result 
in excellent model fit to reproduce past life expectancy and disability-free life expectancy 
as published by Statistics Netherlands. Concerning the back-cast LE and DFLE values, pro-
jected prediction intervals of our model contained estimates from Statistics Netherlands, 
hence the model can be considered valid for this data set.

Future projections of life expectancy
Figures 5.4 and 5.5 show how the various types of uncertainties build up the prediction 
intervals around the deterministic estimates for future values of total LE and DFLE (period 
2008-2030 in the graphs). Tables 5.2 and 5.3 detail how LE and DFLE at age 55 is anticipated 
to increase for men and women until 2030. According to our projections men’s LE will 
increase from 24.8 in 2007 to 26.8 years by 2020 and to 28.2 years by 2030. Taking all the 
uncertainty into account the 95% prediction interval lies between 25.3 and 28.0 years by 
2020, and 26.0 and 29.6 years by 2030. These projections correspond to a minimum of 0.5 
and 1.2, or a maximum of 3.2 and 4.8 years of increase in LE by 2020 and 2030, respectively.

The projected increase in LE for women is somewhat smaller than it is for men. Our model 
predicts that LE is likely to increase from 28.7 in 2007 to 29.8 and 30.6 by 2020 and 2030, 
respectively. However, a decrease in LE has some marginal possibility, resulting in a LE 
of 28.3 and 28.2 with 2.5% probability by 2020 and 2030, respectively. Conversely, a large 
increase has some minor potential too, which would yield a LE of 31.1 and 32.6 by 2020 and 
2030, respectively.

Tables 5.2 and 5.3 present LE estimates for non-disabled and disabled people at age 55 and 
onwards, both for the past and for the future. Between 1990 and 2005 LE of non-disabled 
men increased from 22.9 (CI: 22.6-23.3) to 25.2 (CI: 24.9-25.4) years, whereas LE of disabled 
men increased from 17.8 (CI: 17.3-18.3) to 20.2 (CI: 19.7-20.8) years. Further increases are 
expected in the future. Between 2010 and 2030 LE of non-disabled men is projected to 
increase from 26.2 (PI: 25.3-26.9) to 28.8 (PI: 26.2-30.7) years, whereas LE of disabled men is 
forecasted to rise from 21.2 (PI: 20.2-22.2) to 24.3 (PI: 21.2-26.9) years.

LE of non-disabled and disabled women also increased between 1990 and 2005. Whereas 
the former individuals expected to live 28.7 (CI: 28.4-29.3) years in 1990, this expectation 
increased to 29.7 (CI: 29.3-30.2) by 2005. Corresponding values of the disabled were 24.4 
(CI: 24.0–24.8) in 1990 and 25.5 (CI: 25.0-25.8) in 2005. With regard to the future, LE of 
the non-disabled is forecasted to increase between 2010 and 2030, from 30.2 (PI: 29.4-31.1) 
to 31.6 (PI: 28.9-33.8). This increase is anticipated to be approximately the same for the 
disabled, from 26.1 (PI: 25.0-26.9) to 27.6 (PI: 24.4-30.3).
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Tables 5.2 and 5.3 present estimates of DFLE both in terms of number of years and as a 
proportion of total LE. DFLE of men is projected to increase from 19.1 (CI: 18.6-19.4) in 
2005 to 21.9 (PI: 18.0-23.5) and 23.4 (PI: 16.2-25.2) years by 2020 and 2030, respectively. 
DFLE relative to LE is forecasted to rise from 78.9% in 2005 to 81.7% and to 82.8% during 
the same period. Expectations about increases in DFLE for women are similar to those of 
men. It is anticipated that DFLE will increase from 17.7 (CI: 17.2-18.1) to 20.4 (PI: 15.4-23.3) 
years between 2005 and 2020, and further to 21.5 (PI: 13.3-24.9) years by 2030. These changes 
correspond to increases in the DFLE / LE ratio from 62.7 % to 68.4% by 2020 and to 70.1% 
by 2030.

The jointly simulated DFLE and LE estimates made it possible to calculate the probability 
that either compression or expansion of disability will occur in the future. Tables 5.2 and 5.3 
present the likelihood of compression of disability. We expressed compression of disability 
in terms of both absolute and relative value. In the first case, compression of disability would 
occur if the increase in DFLE was larger than the increase in total LE, that is, a reduction 
in the years with disability. If the compression of disability is interpreted in a relative sense, 
then such a compression would occur if the proportion of disability-free life years to total 
life years would increase over time.

When compression of OECD disability is measured in years, then the probability of its 
occurrence by 2030 is approximately 50% for men, and 60% for women. In other words, 
among women the number of years lived without OECD disability is more likely to increase 
slightly faster than the number of years lived in total. The picture is somewhat brighter if 
compression of disability is measured in a relative sense. According to the projections it 
is more likely that disability-free life years as a proportion of total LE would increase; the 
probability of compression is 63% for men, 67% for women.

5.4. Discussion

We proposed a theoretical framework for a multi-state life table model, in which the transi-
tion probabilities depended on age and calendar time. We described how to model and 
project these transition rates by the Lee-Carter method, and illustrated how it could be used 
to forecast future health expectancies including prediction intervals. We applied the model 
to the Dutch population aged 55 and older, and estimated health expectancies between 1989 
and 2030. Additionally, we analyzed the changing relationship between DFLE and LE over 
time, and attached probability distributions to different future scenarios of compression or 
expansion of disability. 
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Explanation
There are several reasons to believe why DFLE will keep increasing in the future. Favorable 
trends in tobacco consumption183, dietary habits restricting the intake of saturated fats184, 
physical exercise185, changes in the composition of the population by socio-economic status 
and advances in medical technology have all contributed to improving individual risk pro-
files and better health status of the Dutch populations. These trends are likely to continue 
in the future.

On the contrary, there are unfavorable health trends as well. Particularly worrying is the 
fact that the share of overweight population is continuously increasing, and that the dietary 
habits of adolescents change adversely185. These trends will have an increased impact on 
morbidity, as diabetes, cardiovascular and musculoskeletal diseases, as well as various types 
of cancers have been shown to be associated with obesity186. Two demographic trends may 
also have a negative effect on health expectancy: the increasing instability of social relations 
and the changing ethnic composition with higher share of groups with non-western origin.

Other studies
Many studies have estimated HEs in the past using various study populations, disability 
measures and calendar periods. The most extensive work in assessing the evolution of past 
HE has been conducted for the U.S. population. Crimmins et al. estimated that gains in LE 
during the 1970s were mainly accompanied by increasing time spent with chronic limita-
tions of common activities and by slight decreasing time with severe disability17. Later, 
Crimmins et al. found that during the 1980s gains in LE rose along with DFLE for both 
men and women18. In 2009 Crimmins et al. examined changes in LE with and without ADL 
and iADL disability using longitudinal data between 1984 and 200019. They showed that 
the increase in DFLE at age 70 was the same as the increase in LE. Our results accord with 
these findings.

In Europe estimates of LE and DFLE for men and women were published for 13 European 
Union member states from 1995 until 2001 based on the European Community Household 
Panel20. Significant increases were found in LE at early (age 16) and late (age 65) adulthood 
with considerable heterogeneity in the trends in health expectancy. In nine countries life 
expectancy with disability increased, whereas four countries had evidence of decreasing life 
expectancy with disability.

Previous studies on trends in health expectancy in the Netherlands23,187,188 used various 
health status indicators, time periods and age groups for their analyses and resulted in 
diverse conclusions on the trends. A recent study by the Statistics Netherlands on health 
expectancy trends at age 65 however used the same data set as we did but here morbidity 
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was measured in three different ways: self-rated health, presence of chronic disease and 
OECD disability. The results show that since the 1980s health expectancy at age 65 measured 
in terms of good self-reported health or DFLE has been increasing for men. The increase has 
been somewhat faster since the early 2000s. Unfortunately, among both men and women, 
life expectancy without chronic diseases has been decreasing. For women, DFLE increased 
and years with good self-rated health stagnated.

Sensitivity analyses
A limitation of the POLS data is that the annual samples do not include the institutionalized 
population, among whom the prevalence of disability is higher than in the general popula-
tion. We performed sensitivity analyses to assess the potential bias on the DFLE forecasts 
caused by this limitation. Information on the number of institutionalized persons for every 
age and year between 1995 and 2007 was available on the website of Statistics Netherlands 
(Statline). Using this information we calculated the age-specific prevalence of institutional-
ized population for each year and ran a new model using only the period 1995-2007. We 
assumed that everybody who was institutionalized was disabled thereby we assessed the 
maximum bias that exclusion of these people may have caused. Results of the sensitivity 
analyses revealed that our model overestimates DFLE with a maximum of 0.6 year for men 
and 0.7 year for women between 1995 and 2007. Similar differences were predicted between 
the original and the new DFLE forecasts by 2030. Given the uncertainty around these future 
estimates, the importance of differences can be considered small.

Another limitation of our study comes from the fact that the record-linked POLS data did 
not have enough power to detect changes in the hazard ratio. We performed additional 
sensitivity analyses to assess the potential bias that changes in the hazard ratio may have 
caused. In particular, we assessed the effect of both an annual 1% decrease and 1% increase 
in the hazard ratio between 1989 and 2007 on our estimates of DFLE. In the first case the HR 
in 2007 was 83% of the HR in 1989, whereas in the second case it was 120%. The results of the 
sensitivity analyses indicated that such changes in the hazard ratio virtually had no effect on 
the original DFLE estimates. These findings were true for men as well as for women. 

It is important to note that our definition of disability essentially excludes the possibility 
of detecting a dynamic equilibrium, because we did not make distinction between severe 
and mild disability, and because we interpreted future compression of disability in terms 
of probabilities. A dynamic equilibrium would occur if both incidence and mortality were 
postponed such that the LwD55,t neither decreased nor increased. Looking at the expected 
future LwD values for men in Table 5.2 (column LwD), this is exactly what we find. Cor-
respondingly, the probability of compression is very close to 50%, referring to the situation 
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that an increasing LwD is equally likely as a decreasing LwD. Such a situation in our model 
seems to indicate a dynamic equilibrium among men.

Model related issues
Every model is a simplification of reality; therefore certain assumptions are made during 
the construction of the model. One of the assumption of the Lee-Carter model is that 
the expected evolution of the transition rates over time, θ  (i), depends on the first and the 
last observation of the latent process, κ̂ l(i) and κ̂T(i), and that the expected evolution of the 
transition rates is merely an extrapolation of the trend estimated on these two end points. 
Therefore, if for example, the trend of κ̂t (i) is close to linear then choosing other end points 
would not significantly influence the future evolution of the transition rates. Consequently, 
the uncertainty around the predictions would be relatively small as well. We see this 
situation at mortality rates. However, if the trend in κt (i) is less linear and the observation 
window is relatively short, then the estimate of θ  (i) might be sensitive on choosing other 
end points than κl (i) and κT (i). Accordingly, the uncertainty around future evolution would 
be somewhat larger as well. We see such situation at incidence rates.

We assessed the stability of the age-interaction and the trend parameters by defining a dif-
ferent time window on which the parameters were estimated. We eliminated the first three 
years of the POLS data resulting in the period of 1992-2007. We then re-estimated the model 
and we found that the parameters were stable. The age-interaction parameters were very 
close to the original estimates with an average difference of approximately 5%. The effect of 
trimming the time window of the analysis had little effect on the results. The deterministic 
forecasts of life expectancy were essentially the same as at the original forecasts, disability-
free life expectancy was higher with 0.3 years by 2030.

We have also carried out an analysis in that we forecasted overall life expectancy based 
on only mortality rates while using the same simple Lee-Carter method as we used for 
forecasting health expectancy. We then compared these forecasts with the ones from the 
MSLT projections. We found that the projections were very similar, but larger prediction 
intervals were estimated around the MSLT projections.

Conclusions
Our finding suggest that the Lee-Carter model is generalizable to multi-state life table set-
tings, and can be used to model transition rates connecting non-disabled, disabled and 
dead states, and to forecast disability-related health expectancies. However, the application 
of the generalized Lee-Carter model to different data sets may result in poorer model fit, 
for example if the time-evolution of transition rates is not linear. Nonetheless, we consider 
that the model framework presented here can be used in other settings, for example for 
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other countries. Prevalence of OECD disability may be replaced with ADL, iADL disability, 
subjective well-being or other prevalence measures, which are good indicators of popula-
tion health. The approach demonstrated for health expectancies in our study could be used 
for working life expectancies as well, since working life expectancies are based on similar 
multistate models. Thus the model framework may be used to forecast population health 
where the health status is measured in various ways. Besides the application of different 
health indicators, a specific methodological question may appear on the future research 
agenda, the inclusion of common trends in the forecasts of transition rates189.



Modeling and forecasting health expectancy; theoretical framework and application 105

Appendix 5A Glossary of acronyms

ADL: Activities of daily living
DFLE: Disability-free life expectancy
HE: Health expectancy
HR: Hazard ratio
iADL: Instrumental activities of daily living
LE:  Life expectancy
LwD: Life expectancy with disability
MSLT: Multistate life table
OECD: Organisation for Economic Co-operation and Development
POLS:  Permanent Onderzoek LeefSituate (in Dutch), Repeated Survey on Living Situa-

tion (English)
Statistics Netherlands (in English): Centraal Bureau voor de Statistiek (in Dutch)
SVD: Singular Value Decomposition

Appendix 5b

The original (mortality or actuarial) life table is a transition model in which observed death 
rates, within age interval, are the basis of probabilities of dying, and in which the main 
parameter of interest is the expectation of life. A multistate life table (MSLT) model is an 
extension of the original life table method. In a MSLT not only ‘alive’ and the absorbing 
‘dead’ states are distinguished but there is at least one additional state, typically between 
‘perfectly healthy’ and ‘dead’, for example ‘disabled’. In contrast to a mortality table, an MSLT 
not only shows, for each age, what the probability is that a person of that age will die before 
his next birthday, but rather it shows what the probability is that a person of that age will 
move from one state to another. Correspondingly, an MSLT not only shows the remaining 
life expectancy and the proportion of the original birth cohorts still alive at different ages, 
but rather it shows the remaining life expectancy and proportion of people still alive in a 
given state. Furthermore, the population-average LE can be decomposed into a weighted 
average of health expectancies, indicating the number of years people are expected to live 
in each health state.

Conversion of rates into probabilities taking into account competing risks
In an MSLT the possible transitions are expressed by the matrix, M g

x ,t , standing for the 
transition rates between the several states, and where g denotes the gender. The matrix 
M g

x ,t refers to the chance of moving from the ith state to the jth state in infinitesimal time. 
However, instead of infinitesimal time intervals, one typically works with longer periods, 
like one year. In such a case one refers to the transition probability matrix Q g

x ,t, whose qij ele-
ment indicate the transition probability that a person at age x at time t is in the ith state and 
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in the jth state one year later. Assuming that the exposure is linear in age, one can convert 
the transition rates into the appropriate transition probabilities.

1. Transition rates

M g
x ,t is the matrix of transition rates at age x and time t

where inc, rec, nd and d represents the transition from non-disabled to disabled, from dis-
abled to non-disabled, from non-disabled to dead, and from disabled to dead, respectively,

2. Transition probabilities

Using linear approximation: that is, all transitions (incidence, deaths) occur in the middle 
of the interval.

Q g
x ,t is the transition-probability matrix, consisting of elements qij(x,t) which represents the 

1-year probability that an individual with gender g alive at age x and time t will be in state j 
at age x+1, and  I is a 2x2 identity matrix.

Note: in our model, recovery is set to zero, and incidence is considered as net incidence (real 
incidence minus real recovery).
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Note: in our model, recovery is set to zero, and incidence is considered as net incidence (real 
incidence minus real recovery). 
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Note: in our model, recovery is set to zero, and incidence is considered as net incidence (real 
incidence minus real recovery). 
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Note: in our model, recovery is set to zero, and incidence is considered as net incidence (real 
incidence minus real recovery). 
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Calculating number of non-disabled and disabled alive
1. Number of persons alive

lx,t
g  is the sum of the number of non-disabled (lx,t(nd,g)) and disabled (lx,t(d,g)) individuals alive at 

age x and at time t:

l g
x +1, t+1 is the sum the number of aged x+1 individuals with gender g alive at time t+1, ex-

pressed as a function of the number of individuals alive and transition probabilities at age x 
and at time t (lx,t(nd,g), lx,t(d,g), qx,t(.tr,g)).

2. Prevalence of disabled

pg
x,t

 is the prevalence matrix, consisting of elements px,t(nd,g) and px,t
d,g which represent the 

proportion of gender g specific population without (nd) and with (d) disability at age x and 
at time t.

pg
x +1, t+1  is the gender g specific prevalence matrix, expressed as a function of the number of 

individuals alive and transition probabilities at age x and at time t (lx,t(nd,g), lx,t(d,g), qx,t(tr,g.)).
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Calculating life expectancy of non-disabled and disabled 
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Calculating life expectancy of non-disabled and disabled
Lg

x,t denotes the gender g specific average number of non-disabled and disabled aged x 
individuals alive at time t

where ω is the maximum attainable age.
Tg

x,t denotes the cumulative average number of non-disabled and disabled aged x individuals 
alive at time t

Gender g specific life expectancy of non-disabled and disabled are calculated as

Disability-free life expectancy (DFLE) and life expectancy with disability (LwD) are calcu-
lated as 
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Disability-free life expectancy (DFLE) and life expectancy with disability (LwD) are calculated 
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Appendix 5C–Estimating transition rates 
 
Because information about mortality rates of non-disabled and disabled was not available 
from primary data sources we decomposed total mortality using the prevalence of disability 
and the hazard ratio of disability on mortality as follows: 
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Appendix 5C Estimating transition rates

Because information about mortality rates of non-disabled and disabled was not available 
from primary data sources we decomposed total mortality using the prevalence of disability 
and the hazard ratio of disability on mortality as follows:

where M g
x ,t, m~x,t(nd,g), m~x,t(d,g), Ĥ R g

x and p̂x,t(d,g) indicate the gender-g specific population mortal-
ity rate, estimated mortality rate of non-disabled and disabled, the estimated hazard ratio 
and smoothed prevalence of disability at age x and time t, respectively.

The converted transition, q x,t(nd,g) (q x,t(d,g)), show the probability that a person is non-disabled 
(disabled) at age x at time t and is dead at age x+1 at time t. Such formulation of the model 
implies the period-age approach, which is often used when the main point of interest is the 
change of transition probabilities over a certain period of time, e.g. calendar years. With the 
period-age approach it is implicitly assumed that a person of age x at time t will have the 
same transition probability at age x+1 at time t+1 (assumption) as a person who is of age 
x+1 at time t (reality). Making such assumption is unavoidably done by estimating period 
life expectancies.

Estimating incidence rates
Given the prevalence of disabled populations px,t(d,g), px+1,t(d,g) of age x and x+1 at time t, the 
mortality rate of non-disabled mx,t(nd,g) and disabled mx,t(nd,g) of age x at time t, it is possible to 
calculate the corresponding incidence rate, mx,t(inc,g) , since these quantities are interrelated 
and mutually define each other. The prevalence of disabled population of age x+1 at time t is 
expressed as the proportion of those who are disabled to those who are alive. However, this 
fraction is dependent on the number of transitions during age x. That is, the prevalence at 
age x+1 is a function of the number of people alive (l g

x ,t), the prevalence of disabled and the 
transition probabilities at age x and at time t:

Expressing transition probabilities as functions of the transition rates, the incidence rate can 
be obtained by the following formula after rearranging (3):
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Then qx,t(inc,g) shows the probability that a person is non-disabled at age x at time t and dis-
abled at age x+1 at time t. Although our model assumes that only incidence is possible, 
there is evidence that people can recover from disability even at higher ages. Therefore, 
the probability of incidence in our model can be interpreted as a modified net incidence 
probability, which corresponds to the number of transitions from non-disabled to disabled 
state minus the number of transitions from disabled to non-disabled state, relative to the 
number of non-disabled people.

Appendix 5D

Table 5.4 Parameter estimates in the time trends of the Lee-Carter model
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f) 

j = (d , 
m) j = (d , f) j = (inc , m) j = (inc , f) 

(nd , m) -0.669 0.040 0.844  1 0.748 1 0.748 -0.638 -0.322 
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Note: 
nd = mortality of non-disabled, d = mortality of disabled, inc= incidence, m = male, f = female 
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mortality rate, estimated mortality rate of non-disabled and disabled, the estimated hazard 
ratio and smoothed prevalence of disability at age x and time t, respectively. 
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(disabled) at age x at time t and is dead at age x+1 at time t. Such formulation of the model 
implies the period-age approach, which is often used when the main point of interest is the 
change of transition probabilities over a certain period of time, e.g. calendar years. With the 
period-age approach it is implicitly assumed that a person of age x at time t will have the 
same transition probability at age x+1 at time t+1 (assumption) as a person who is of age x+1 
at time t (reality). Making such assumption is unavoidably done by estimating period life 
expectancies. 
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Expressing transition probabilities as functions of the transition rates, the incidence rate can 
be obtained by the following formula after rearranging (3): 
 

),(
,

),(
,

),(
,

),(
,

),(
,

),(
,

),(
,

),(
,

),(
,1

),(
,

),(
,1

ˆ1

~ˆ
ˆ1
ˆ

ˆ1

~ˆˆ
ˆ1
ˆ

gd
tx

gd
tx

gd
tx

gd
tx

gd
tx

gd
tx

gd
tx

gd
tx

gd
tx

gd
tx

gd
txg

p
qp

p
p

p
qpp

p
p

A
�

�
�

�
�

�
�

� ��       

 

 63 

��
�

�
��
�

�
�����

�

�
��
�

�
��

��
�

�
��
�

�
����

�

�
��
�

�
���

�

�
��
�

�
�

�

��

�

2

~
1

2
ˆ

2

~
11

2

~
1~ˆ

2

~
1

2

~
1

ˆ
),(

,),(
,1

),(
,),(

,1

),(
,),(

,
),(

,1

),(
,

),(
,

),(
, gd

tx
g

gd
tx

gd
txgd

tx

gd
txgmrn

tx
gd
tx

gd
tx

gnd
txg

ginc
tx mAp

m
p

m
mp

mm
A

m .        

 
Then ),(

,
ginc

txq  shows the probability that a person is non-disabled at age x at time t and 
disabled at age x+1 at time t. Although our model assumes that only incidence is possible, 
there is evidence that people can recover from disability even at higher ages. Therefore, the 
probability of incidence in our model can be interpreted as a modified net incidence 
probability, which corresponds to the number of transitions from non-disabled to disabled 
state minus the number of transitions from disabled to non-disabled state, relative to the 
number of non-disabled people. 
 
 
Appendix 5D 
 
 
Appendix 5E–Fit of transition rates, age-specific and overall R2 

 
The R2 statistic can be used to measure how large proportion of the variation in the data is 
explained by the model. R2 can be calculated for each age separately, 2

xR , or for the entire 

age-profile of a certain type of transition rate, 2R . In most of the transition rates above 80% 
of the age-specific variation is explained by the model until the age of 85. Up till the age of 
60 and after the age of 85 the model fit was somewhat lower. A possible explanation is that 
the number of transitions (incident cases, deaths) at younger ages is low compared to the 
size of the exposed populations; therefore there is a larger variation in the transition rates at 
these ages. After the age 80 the model fit started to decrease. This could be explained by the 
large number of transitions relative to the small size of exposed populations; therefore the 
transition rates were less stable at higher ages. Even though the age-specific model fits were 
quite poor at very high ages, the overall fit of the models can be considered as very good (≈ 
70-95%).  
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(5)
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Appendix 5E Fit of transition rates, age-specific and overall R2

The R2 statistic can be used to measure how large proportion of the variation in the data is 
explained by the model. R2 can be calculated for each age separately, R2x,t, or for the entire 
age-profile of a certain type of transition rate, R2. In most of the transition rates above 80% 
of the age-specific variation is explained by the model until the age of 85. Up till the age of 
60 and after the age of 85 the model fit was somewhat lower. A possible explanation is that 
the number of transitions (incident cases, deaths) at younger ages is low compared to the 
size of the exposed populations; therefore there is a larger variation in the transition rates 
at these ages. After the age 80 the model fit started to decrease. This could be explained by 
the large number of transitions relative to the small size of exposed populations; therefore 
the transition rates were less stable at higher ages. Even though the age-specific model fits 
were quite poor at very high ages, the overall fit of the models can be considered as very 
good (≈ 70-95%). 
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Chapter 6 
Forecasting lifetime and aggregate long-

term care spending: accounting for changing 
disability patterns

C. de Meijer, I.M. Majer, M. Koopmanschap, P. van Baal



Objective

The impact population aging exerts on future levels of long-term care (LTC) spending is 
an urgent topic in which few studies have accounted for disability trends. We forecast indi-
vidual lifetime and population aggregate annual LTC spending for the Dutch 55+ population 
to 2030 accounting for changing disability patterns.

Methods

Three levels of (dis)ability were distinguished: none, mild, and severe. Two-part models were 
used to estimate LTC spending as a function of age, sex, and disability status. A multistate 
life table model was used to forecast age-specific prevalence of disability and life expectancy 
(LE) in each disability state. Finally, 2-part model estimates and multistate projections were 
combined to obtain forecasts of LTC expenditures.

Results

LE is expected to increase, whereas life years in severe disability remain constant, resulting 
in a relative compression of severe disability. Mild disability life years increase, especially for 
women. Lifetime homecare spending —mainly determined by mild disability— increases, 
whereas institutional spending remains fairly constant due to stable LE with severe dis-
ability. Lifetime LTC expenditures, largely determined by institutional spending, are thus 
hardly influenced by increasing LE. Aggregate spending for the 55+ population is expected 
to rise by 56.0% in the period of 2007–2030.

Conclusions

Longevity gains accompanied by a compression of severe disability will not seriously 
increase lifetime spending. The growth of the elderly cohort, however, will considerably 
increase aggregate spending. Stimulating a compression of disability is among the main 
solutions to alleviate the consequences of longevity gains and population aging to growth 
of LTC spending.

Medical Care. Published ahead of print. 2012
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6.1. Introduction

The impact of population aging on the level of health care expenditures has become a topic 
of growing attention over the last decades. Of particular interest is its impact on long-term 
care (LTC) spending. Although the increase in the acute care expenditure age profile can 
entirely be explained by age-specific differences in health status (often approximated by 
time to death), LTC expenditures increase with age even after accounting for variations in 
health status. Besides, LTC use is more concentrated among the middle aged and elderly. 
Hence, the most dramatic spending growth due to population aging is expected in the LTC 
sector92,190-196.

Population aging, defined as the increasing share of elderly in a population, results from 
lower birth rates, longevity gains, and baby boomer aging. The increasing proportion of 
elderly and the growing proportion of the very old in the elderly cohort will swell the need 
for LTC. Also, longevity gains mean needing LTC for longer periods. Population aging thus 
impacts the group of individuals requiring LTC, aggregate annual LTC spending, and indi-
vidual lifetime LTC spending. As disability is the main determinant of LTC use197-199, the 
growth of aggregate and lifetime LTC spending is strongly associated with future disability 
trends200.

Forecasting individual lifetime and population aggregate LTC spending is challenging, 
because it requires estimates of disability and mortality. Estimating such trends is compli-
cated: disability is a stock measure governed by inflows (incidence) and outflows (recovery 
or mortality) that are likely to change over time. Although past disability trends have been 
investigated abundantly39,199,201-205, few studies have exploited the trends to forecast future 
LTC use or spending. We aim to assess the effect of aging (the growing number of elderly 
and longevity gains) on the future trend of lifetime and aggregate LTC spending for the 
Dutch 55+ population by explicitly accounting for changing disability patterns. Given fur-
ther population aging, it is important to estimate future levels of LTC spending to prepare 
the LTC sector for future needs.

Disability trends and LTC spending forecast
Evidence on disability trends varies across and even within countries.39,206. Trends depend 
on the selected measure of disability [instrumental activities of daily living (iADL), activi-
ties of daily living (ADL) or mobility] and the severity of disability. A consistent decrease 
in disability prevalence has been documented for the United States39,199,201-205. Evidence on 
disability trends in European countries is less conclusive39,207. Although Puts et al. report 
declining ADL and mobility prevalences for the Dutch non-institutionalized elderly from 
1987 to 2001208, Picavet et al. found a declining mobility prevalence for males and a constant 
ADL disability trend for the period 1990-199823. Finally, a meta-analysis on the disability 
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trend in the non-institutionalized Dutch population over 1990-2007 reported constant ADL 
and mobility disabilities209.

Disability-free life expectancy (DFLE), absolutely and relatively as a proportion of total life 
expectancy (LE), increased for both males and females in the United States in 1980–199018,178. 
A similar trend has been observed for males in several European countries; the trend for 
females was inconclusive10. In The Netherlands a decrease of LE with severe disability and 
an increase of LE with mild disability have been observed22. A US study extrapolated the 
annual disability decline of 0.8% observed in 1910–1999 and estimated a DFLE at age 65 to 
grow from 79.9% in 2015 to 85.2% in 2080178.

Future disability trends are shown to largely impact LTC spending forecasts. LTC spending 
in OECD countries from 2005 to 2050 will increase from 1.1% to 2.8% of GDP under stable 
age-specific severe disability prevalence but only to 1.9% with declining severe disability 
rates39. Similar results were found in other studies199,210. Moreover, forecasts using an ex-
trapolation of the disability decline best approached the actual amount spent.201. If and to 
what extent disability will continue declining, given the less healthy lifestyles and higher 
disability rates of the middle-aged population is, however, debatable211-213.

Our study extends the literature in 3 respects. First, we estimate future disability prevalence 
and DFLE for the Dutch 55+ population. As both trends have been shown to depend on 
the severity of disability, we simultaneously forecast mild and severe disability. Second, we 
use the forecasts to estimate lifetime and aggregate public LTC spending. Previous studies 
have only applied LTC spending by age and sex to the future age-sex decomposition of the 
population. Third, our spending forecasts distinguish between homecare and institutional 
LTC.

Public LTC spending in The Netherlands is high because it is a universal insurance, cover-
age of services is comprehensive, and copayments are limited. Eligibility to public LTC is 
regulated by an assessment agency and is primarily subject to needs. In this study, services 
include publicly financed institutional LTC and the homecare services domestic care, per-
sonal care and nursing care, but not homecare financed by a personal care budget (5%-10% 
of publicly financed homecare)214. Institutional LTC accounts for approximately 70% of 
LTC spending and includes residential and nursing home admissions. Residential homes 
provide living assistance; nursing homes also provide personal and nursing care. Overall, 
our analysis includes the bulk of public LTC expenditure.
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6.2 Methods

To forecast future LTC spending by accounting for changing disability patterns, we first 
estimate the relation between disability and LTC spending to obtain average LTC spending 
patterns by age, sex, and disability status (nondisabled, mild disabled, severe disabled), and 
then forecast disability prevalences by applying a previously published multistate model to 
our dataset215. Finally, average spending patterns are combined with forecasts of disability 
status by age and sex to forecast LTC spending.

Data to model individual LTC function
We used 3 datasets to model yearly LTC expenditures: the Health Survey 2004/5, the Reg-
istry of Public LTC Use 2004/5, and the Elderly in Institutions Survey 2004 (EIS). We used 
the Health Survey, a cross-sectional survey among a representative sample (n ≈ 10,000) 
of the Dutch noninstitutionalized population, to obtain information on disability. Health 
Survey respondents were selected by a 2-stage sampling design: first, municipalities pro-
portional to their size were selected; second, individuals within the selected municipalities 
were randomly sampled. Our study population comprised individuals aged 55–97. Disability 
was measured by the performance on the following ADL and mobility items: (un)dress, 
wash face and hands, wash oneself completely, transfer from chair, transfer from bed, move 
outdoors, climb stairs, and enter/leave the house. Respondents could state whether they 
could perform the activity without difficulty, with difficulty, or not able to perform the 
activity. Most previous studies use the number of (i)ADL/mobility problems as cut-offs for 
the disability level92,191,197,199,200. Some Dutch studies, however, used the level of difficulty 
with activities to distinguish between mild and severe disability10,209,216. In our analyses, we 
choose the latter disability measure as it outperformed the former in explaining LTC use 
substantially. This led to the following classification: nondisabled is defined as the ability 
to perform all items without difficulty, mild disability as the ability to perform all items 
independently but at least 1 item with difficulty, severe disability as the inability to perform 
at least 1 item. Note that nondisabled individuals might still experience difficulties with 
iADL’s as our data did not contain iADL information. Table 6.1 shows the prevalence of mild 
and severe disability for 2 different disability measures. The threshold to be severely disabled 
is substantially higher when measured by the disability measure selected for our analyses. 
As severe disability is a prerequisite to obtain access to publicly financed institutional LTC 
and institutional LTC accounts for approximately 70% of LTC spending, this might explain 
the better performance of our disability measure in explaining LTC spending.
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We obtained information on LTC spending by linking the Health Survey to the Registry 
of Public LTC Use (CAK). Statistics Netherlands used a probabilistic linking process to 
uniquely identify respondents of several micro datasets, including the Health Survey and 
the CAK but not the EIS survey. Linking keys to uniquely identify individuals were date 
of birth, sex, and zip code. Nearly 100% of individuals could be uniquely identified. Us-
ing these individual identifiers, we linked our Health Survey sample to the CAK to obtain 
information on individual LTC use. Total LTC spending is composed of institutional LTC 
and homecare expenditures. Because the Health Survey excludes the institutionalized 
population, we added a random sample (n = 1000) of institutional LTC users from CAK. 
As we did not have disability information on this subsample, we used the EIS197, a national 
representative sample of the 55+ institutionalized population, to assign disability status to 
this subsample. Disability items of the EIS are identical to the Health Survey. The distribu-
tion of disability by sex and type of institution in our institutionalized sample is set equal to 

Table 6.1 Description of LTC estimation sample (weighted; standard deviations after ±-sign)

Total sample 
(n=6,512)

Institutional users 
sample (n=1,049)

Homecare users sample 
(n=679)

LTC consumption
LTC use (%) 
  Mean LTC costs (€)

14.7 
1,647 ± 8,167

100.0 
32,617 ± 26,961

100.0 
5,124 ± 8,257

Institutional LTC use (%) 
  Mean institutional LTC
   costs (€)

3.5 
1,125 ± 7,778

100.0 
32,081 ± 27,092

3.2 
619 ± 5310

Homecare use (%) 
  Mean homecare costs

11.6 
522 ± 2,569

10.6 
536 ± 2,410

100.0 
4504 ± 6249

Demographics 
  Age
  Male (%)

67.6 ± 9.4
45.7

83.1 ± 7.6
25.1

77.0 ± 8.7
25.3

Disability (%) 
   Non-disabled  
   Mildly disabled 
   Severely disabled

Alternative disability measure (%)* 
  Non-disabled  
  Mildly disabled
   (1-3 ADL problems) 
  Severely disabled
   (4-7 ADL problems)

 
66.8 
30.7 
2.5

67.0
19.0

14.1

 
6.3 

23.3 
70.4

6.1
19.4

74.5

 
20.9 
78.6 
0.5

21.3
32.2

46.5

*The alternative disability measure is included only to highlight that the prevalenceof mild and severe disability 
strongly depends on the chosen definition of disability.The alternative disability measure is not used in any of 
the forecasts; LTC indicates long-term care.
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that of the EIS. Because of uniform tariffs of LTC institutions and the fact that individuals 
can only obtain access to publicly financed institutional LTC if they are sufficiently disabled, 
the variances of LTC spending and disability levels of institutionalized individuals are very 
low. Hence, the assignment of disability to our institutionalized sample closely reflects the 
true disability level of individuals. 4.2%, 9.3%, and 86.5% of the permanently institutional-
ized were nondisabled, mildly, and severely disabled, respectively.

Item nonresponse excluded four individuals, leaving a sample of 6512 individuals. Post-
stratification weights were computed to correct the joint distribution of weighting variables 
in our sample to those of the Dutch 55+ population as registered at Statistics Netherlands217. 
Weighting variables were age × sex × institutionalized.

Modelling individual LTC expenditure
We employed a two-part model – common to health care expenditures analysis218 – to esti-
mate LTC spending by age, sex, and disability status. A 2-part model accounts for the high 
proportion of nonusers by separately analyzing use (part I) and the level of expenditures 
conditional on use (part II). Part I contains a probit model that analyses the probability of 
using LTC. We followed the procedure proposed by Manning and Mullahy219 to select the 
most appropriate model for part II. A generalized linear model with power link and gamma 
family best suited our data. The Box Cox transformation parameter was used as the power 
link. Expected expenditures for individual i are obtained by multiplying parts I and II:

where Φ() is the probability given by part I and λ
√(.) is the conditional level of expenditures 

given by part II for individual i and type of LTC j, with j=1 (total LTC), j=2 (institutional 
LTC), j=3 (homecare). β1 and β2 are vectors of parameters to be estimated by part I and 
part II, respectively, and Xi is a vector of covariates, that is, orthogonal age variables, sex, 
disability, and interactions between disability and age.

Forecasting disability prevalence and (DF)LE
To forecast disability prevalence and (DF)LE we used a multistate life table model that 
distinguished 3 states: nondisabled, disabled, and dead. As this model could only handle a 
dichotomous disability variable, the model is used twice: first to forecast the sum of mild 
and severe disability, then to forecast severe disability. Finally, both estimates are combined 
to obtain forecasts of the prevalence of nondisabled, mildly disabled, and severely disabled.
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Connecting the health states, transition probabilities were estimated as a function of age 
and calendar year. We forecast transition probabilities up to 2030 based on trends over the 
period of 1989–2007. Forecasts of all the transition rates used the Lee-Carter method31. 
Having obtained the future age-specific transition probabilities, LE with and without 
disability could be estimated. The reader is referred to Majer et al215 for an extensive 
description of the model used to forecast (DF)LE. 
 
We used different sources to estimate the parameters of the model. The Human Mortality 
Database gave us sex-specific and age-specific mortality rates from 1989 to 2007. The Health 
Surveys 1989–2007 were used to estimate disability prevalence in the noninstitutionalized 
population. National statistics on LTC institution residents by age and sex were pooled to the 
Health Surveys to obtain complete age-specific and sex-specific disability prevalence for the 
55+ population. Finally, the dataset was linked to the Death Registry to obtain mortality 
rates by disability status220. 
 
Forecasting LTC expenditure 
 

(1)
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Connecting the health states, transition probabilities were estimated as a function of age 
and calendar year. We forecast transition probabilities up to 2030 based on trends over the 
period of 1989–2007. Forecasts of all the transition rates used the Lee-Carter method31. Hav-
ing obtained the future age-specific transition probabilities, LE with and without disability 
could be estimated. The reader is referred to Majer et al215 for an extensive description of 
the model used to forecast (DF)LE.

We used different sources to estimate the parameters of the model. The Human Mortality 
Database gave us sex-specific and age-specific mortality rates from 1989 to 2007. The Health 
Surveys 1989–2007 were used to estimate disability prevalence in the noninstitutionalized 
population. National statistics on LTC institution residents by age and sex were pooled to 
the Health Surveys to obtain complete age-specific and sex-specific disability prevalence for 
the 55+ population. Finally, the dataset was linked to the Death Registry to obtain mortality 
rates by disability status220.

Forecasting LTC expenditure
Forecasting lifetime expenditures required combining the probabilities of surviving to future 
ages, being disabled, and expected LTC spending. Lifetime expenditures were computed 
using a period rather than cohort measure. Expected lifetime spending for an individual 
(E(LT_LTCE)) could be expressed as the sum of the product of (i) the probability of being 
alive (Si) at a certain age given sex and disability status, and (ii) the expected level of LTC 
spending at a certain age given sex, disability, and survival status summing over all the ages 
between 55 years and death:

where the first term on the right hand side is the survival probability as a function of age, 
sex and disability status as forecast with the model.

Aggregated expenditures were estimated to 2030. Aggregate LTC expenditure was defined as 
the sum of individual expenditures given the number of individuals forecasted by Statistics 
Netherlands combined with the disability prevalence forecasts of our model.

6.3 Results

Descriptives
Table 6.1 provides summary statistics for the study sample and for the subsamples of 
institutional and homecare users: 14.7% used LTC (average cost unconditional on use = 
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where the first term on the right hand side is the survival probability as a function of age, sex 
and disability status as forecast with the model. 
 
Aggregated expenditures were estimated to 2030. Aggregate LTC expenditure was defined 
as the sum of individual expenditures given the number of individuals forecasted by 
Statistics Netherlands combined with the disability prevalence forecasts of our model. 
 
 
6.3 Results 
 
Descriptives 
 
Table 6.1 provides summary statistics for the study sample and for the subsamples of 
institutional and homecare users: 14.7% used LTC (average cost unconditional on use = 
€1647), 11.6% used homecare (€522), and 3.5% used institutional care (€1125). Homecare 
users – and to a greater extent institutional users – were older, more often female and more 
often disabled. The prevalence of mild disability was lower for institutional residents than 
homecare users because the institutionalized are more often severely disabled. 
 
LTC spending by age, sex and disability 
 
Figure 6.1 displays homecare and institutional LTC use and spending by age, sex, and 
disability status. The first, second, and third rows present the predicted probabilities of use, 
conditional expenditures, and expected expenditures, respectively. The probability of using 
LTC and the level of (un)conditional spending increase with the severity of disability. 
Homecare use and spending, however, is highest for the mildly disabled elderly; the severely 
disabled elderly are more likely to be institutionalized. The probability of using homecare or 
institutional LTC increases with age. Conditional homecare spending increases and 
institutional LTC spending decreases with age. The latter finding is caused by the fact that 
the younger institutional LTC users are rarely admitted to residential homes (the least 
expensive LTC institution) but more often to somatic nursing homes. Females are more likely 
to use both types of LTC and spend on average more than males. This finding could either be 
due to their higher morbidity level or lower availability of adequate informal care sources. 
No substantial differences in conditional expenditures were found between males and 
females. The difference in unconditional expenditures is thus driven mainly by the 
probability of using LTC. 

(2)
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€1647), 11.6% used homecare (€522), and 3.5% used institutional care (€1125). Homecare 
users – and to a greater extent institutional users – were older, more often female and more 
often disabled. The prevalence of mild disability was lower for institutional residents than 
homecare users because the institutionalized are more often severely disabled.

LTC spending by age, sex and disability
Figure 6.1 displays homecare and institutional LTC use and spending by age, sex, and dis-
ability status. The first, second, and third rows present the predicted probabilities of use, 
conditional expenditures, and expected expenditures, respectively. The probability of us-
ing LTC and the level of (un)conditional spending increase with the severity of disability. 

 Figure 6.1 Long-term care (LTC) use and (un)conditional spending by age, sex, and disability status
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Homecare use and spending, however, is highest for the mildly disabled elderly; the severely 
disabled elderly are more likely to be institutionalized. The probability of using homecare 
or institutional LTC increases with age. Conditional homecare spending increases and in-
stitutional LTC spending decreases with age. The latter finding is caused by the fact that the 
younger institutional LTC users are rarely admitted to residential homes (the least expensive 
LTC institution) but more often to somatic nursing homes. Females are more likely to use 
both types of LTC and spend on average more than males. This finding could either be due 
to their higher morbidity level or lower availability of adequate informal care sources. No 
substantial differences in conditional expenditures were found between males and females. 
The difference in unconditional expenditures is thus driven mainly by the probability of 
using LTC.

Disability prevalence trend
Figure 6.2 presents the trend in mild and severe disability prevalence as estimated by our 
model. The proportion of nondisabled elderly decreased for females, but remained fairly 
constant for males. The higher disability rates among females are entirely driven by in-
creases in mild disability. Mild disability rates also increased for males, but less seriously. 
The prevalence of severe disability decreased for both sexes and is expected to further 
decrease the coming years.

(DF)LE trend
The trend in LE at the age 55 stratified by disability status is illustrated in Figure 6.3. LE 
will continue to increase, but more for males than for females. LE for males is expected to 
increase by 3.4 years, from 24.9 (95% confidence interval, 24.5–25.3) in 2008 to 28.3 (26.4–
30.0) in 2030; for females it is expected to increase by 2.0 years, from 28.6 (28.3–28.9) to 30.6 
(29.3–31.9). For both sexes, the number of severely disabled life years will remain constant, 
but the number of mildly disabled life years will increase, especially for females. For fe-
males mildly disabled life years will increase from 8.9 (7.6–10.2) in 2008 to 11.5 (4.1–18.5) 
in 2030. For females, the expected increase in life years with mild disability dominates the 
total increase in LE, resulting in a slight decrease of absolute LE years without disability. A 
relative compression of severe disability is estimated for both sexes. In 2008, 10.0% (12.5%) 
of the remaining LE for males (females) was spent with severe disability; this is expected 
to decrease to 7.0% (11.1%) by 2030. In the period 2008–2030, the proportion of life years 
lived with mild disability is expected to remain constant for males (roughly 20.0%), and is 
expected to increase from 31.1% to 37.5% for females. Overall, the proportion of DFLE will 
remain constant for males and decrease for females.
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 Figure 6.2 Trends in the disability status stratified by age and sex
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Lifetime spending forecasts
Figure 6.4 presents lifetime spending per capita at age 55 stratified by LTC service (year 
2004 values). Females spend about twice as much as males on both LTC services. In 2008, 
lifetime spending on LTC for females (males) is approximately €128,000 (€71,000). Homec-
are spending is expected to increase by €2503 for males and €5850 for females. Most of the 
growth is caused by the expansion of mild disability as most spending on homecare is in-
curred during mildly disabled life years. The bulk of institutional LTC spending is incurred 
during severely disabled life years. The pattern of lifetime spending on institutional LTC, 
therefore, coincides with the trend in severely disabled life years: lifetime institutional LTC 
spending slightly increases for males and decreases for females. Overall, total spending on 
LTC is expected to increase by €5435 (7.7%) for males and €3044 (2.4%) for females.

 

Figure 6.3 Trend in life expectancy at age 55 stratified by life years with no, mild, and severe disability
Notes: DFLE indicates disability-free life expectancy; LE, life expectancy
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Figure 6.4 Trend in lifetime spending at age 55 accounting for the disability trend
Notes: DFLE indicates disability-free life expectancy; LE, life expectancy; LTC, long-term care.
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Aggregated spending forecasts
The effect of the increasing number of elderly and the oldest of the old becomes apparent 
in the aggregated spending forecasts. Accounting for the trend in disability prevalence, 
aggregated LTC spending (year 2004 values) for the population aged 55–97 is expected to 
increase from €10.7 to €16.8 billion between 2007 and 2030, a 56.0% growth. This amounts 
to an annual growth rate of 1.95%. Increased use of institutional LTC is responsible for about 
two third of the total aggregate growth in LTC spending.

6.4 Discussion

We have forecasted lifetime and aggregated LTC spending among the Dutch 55+ population 
out to 2030. Our approach goes beyond earlier efforts in that (i) our forecasts explicitly 
account for changes in disability patterns and longevity with and without mild and severe 
disability, and (ii) we distinguish forecasts of homecare and institutional LTC expenditures.

There are several notable findings. First, a prevalence shift has been observed from severe 
disability to mild disability resulting in improved disability profiles for males. For females, 
the decrease in severe disability prevalence is offset by a larger increase in mild disability 
prevalence resulting in a lower proportion of nondisabled females. Concerning DFLE, our 
forecasts indicate a relative compression of severe disability as the years with disability 
remain constant but are postponed to higher ages, whereas the proportion of life years 
with mild disability remains constant for males and increases for females. Second, lifetime 
spending for females is approximately double that of males primarily because females have 
a higher LE (with disability) and secondarily because they more often rely on formal care 
in the absence of informal care sources. Third, we found a tremendous effect of the dis-
ability trend on lifetime and aggregate LTC spending. Future longevity gains coinciding 
with a compression of severe disability are not very costly. Homecare is mainly used during 
life years with mild disability, whereas institutional LTC is strongly associated with severe 
disability. As such, a compression of severe and expansion of mild disability will increase 
lifetime spending on the least intensive LTC service: homecare. Finally, the substantial effect 
of population aging on aggregate LTC spending reflects the substantial growth of the elderly 
cohort. Given such dramatic growth in future public LTC spending, changes in LTC financ-
ing might be necessary to keep LTC provision efficient and equitable.

Our results do not necessarily contradict evidence from other countries that found a decline 
in the prevalence of mild disability as we used different cut-offs for mild and severe dis-
ability199,203,205,207,221. The trend in mild disability is often operationalized by the prevalence 
of iADL problems, whereas our data lacked iADL information.
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Causes of disability declines are not fully understood. We expect the observed decline in 
disability prevalence and DFLE to be partly explained by improvements in health status. 
Simultaneous to the disability decline, however, the prevalence of chronic conditions has in-
creased206. Moreover, the relationship between disability and health status has been proven 
to depend on behavioral and environmental factors, for example, healthier lifestyles, less 
physically demanding work, technological improvements that allow greater independence 
given a certain level of body functioning (eg, development of appliances)206,222,223. Further 
research should disentangle the causes of the disability decline to improve prognoses and 
possibilities of a continuation of it, and in turn stem LTC spending.

Most studies projecting future LTC spending based on disability trends assume that the 
trends are exogenous. The observed declines in disability prevalence and DFLE, however, 
are likely to be partly caused by the growth in acute care spending. Although technological 
advances in acute care that solely mitigate mortality might increase disability rates, tech-
nological advances are often able to mitigate disability. The decrease in LTC spending, 
therefore, probably occurs at the cost of the acute care sector. This is confirmed by the 
finding that in most developed countries, disability improvements have been accompanied 
by an increase in chronic diseases206,221.

Our study has a number of limitations. First, our forecasts do not account for future changes 
in informal care availability, which have been found to codetermine formal LTC spend-
ing216,224. The higher probability of females relying on formal LTC might be partly explained 
by the fact that they more often reside alone; even if co-residing, their partners are less likely 
to provide sufficient informal care. Given that our forecasts assume stable informal care 
sources, they might underestimate the future level of LTC spending as co-residence rates are 
expected to decrease, and increases in the female labor force participation and the retire-
ment age likely decreases future informal care sources. Second, our model assumes stability 
of the LTC expenditure function and constant prices but LTC service prices will most likely 
increase due to a number of reasons such as labor shortages and quality improvements in 
the LTC sector. A final limitation is the likely endogeneity of disability. In addition to the 
impact of disability on LTC use, use of LTC could in turn influence disability rates, which 
might bias our results.

Concluding, we have shown the importance of accounting for changing disability trends 
when modeling future LTC expenditures. Although longevity gains accompanied by a 
compression of severe disability do not substantially increase lifetime spending, aggregate 
spending will increase considerably due to the sheer number of elderly. Stimulating a com-
pression of disability might alleviate the consequences of aging on LTC spending growth.
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In this paper we report a case study on a technical generalization of the Lee-Carter model, 
originally developed to project mortality, in order to forecast body mass index (BMI, kg/
m2). We present the method on an annually repeated cross sectional data set, the Dutch 
Health Survey (POLS), covering years between 1981 and 2008. We applied Generalized Ad-
ditive Models for Location, Scale and Shape semi-parametric regression models to estimate 
the probability distribution of BMI for each combination of age, gender and year assuming 
that BMI follows a Box-Cox power exponential distribution. We modelled and extrapolated 
the distribution parameters as a function of age and calendar time using the Lee-Carter 
model. The projected parameters defined future BMI distributions from which we derived 
the prevalence of normal weight, overweight and obesity. Our analysis showed that impor-
tant changes occurred not only in the location and scale of the BMI distribution but also in 
the shape of it. The BMI distribution became flatter and more shifted to the right. Assuming 
that past trends in the distribution of BMI will continue in the future we predicted a stable 
or slow increase in the prevalence of overweight until 2020 among men and women. We 
conclude that our adaptation of the Lee-Carter model provides an insightful and flexible 
way of forecasting body mass index, and that ignoring changes in the shape of the BMI 
distribution would likely result in biased forecasts.

Submitted
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7.1 Introduction

The continuous increase in the prevalence of obesity and overweight is a growing health 
problem in developed countries and particularly in the wealthiest ones225. In the United 
States (US) the prevalence of obesity (Body Mass Index, kg/m2, ≥30) and overweight 
(25≤BMI<30) have increased noticeably among both children and adults. National health 
survey data have shown that the age-adjusted prevalence of obesity more than doubled 
between the early ‘70s and the middle ‘00s, from 14.1% to 30.5%, in the US adult popula-
tion226-228. By 2008, the prevalence of obesity had risen to around 34%, while another 34% 
of the adult populations were overweight229. Recently, an updated analysis showed that 
the age-adjusted prevalence of obesity even further increased to 35.7% by 2010230. In the 
Netherlands, the share of the Dutch population being at least overweight has increased from 
a third to a half in the past twenty years. The share of obese people has doubled, to about 
one in ten among men and one in eight among women160. It is expected that, by 2020, the 
number of obese persons in the Netherlands will increase by 50 percent231.

The effect of overweight and obesity on health has become a major concern of public policy 
in many developed countries232. Therefore forecasting future levels of obesity is essential 
to informing policy makers. A few studies have attempted to project the prevalence of 
overweight and obesity. Based on four waves of longitudinal US data from the National 
Health and Nutrition Evaluation Survey (NHANES) spanning from 1971-2004, Wang et al. 
estimated annual proportional changes of the mean BMI by age, sex and race233. To project 
10-year changes in the BMI until 2010 the authors applied the estimated annual propor-
tional changes to the individuals in the latest NHANES survey, and subsequently projected 
their BMI 10 years forward. Using these projections, the estimated future prevalence of 
overweight and obesity in the population was calculated. Ruhm estimated trends in BMI 
and forecasted the prevalence of overweight and obesity as well234. The author calculated 
annual growth rates based on data from NHES (1960-1962), NHANES II (1976-1980) and 
NHANES 1999-2004 using quantile regressions for each of the 1st through 99th BMI per-
centiles. Compared to using traditional regression methods, the advantage of using quantile 
regressions is that it allows BMI growth trends to vary across the distribution of BMI. 
Projected BMI at the specified percentile was obtained by setting the time trend to its value 
in the forecasted year of interest (e.g. 2020) with other explanatory variables evaluated at the 
latest NHANES survey averages. Basu forecasted the distribution of BMI using longitudinal 
US data by estimating the probabilities of moving between BMI categories235. Letting the 
transition probabilities be constant and continue in the future, cohort-wise estimates of fu-
ture BMI categories were estimated. Finally, Mills forecasted BMI categories for England236. 
Contrary to previous studies, in which the prevalence estimates were derived from trends in 
the continuous BMI variable, Mills modelled the proportions directly using compositional 
data analysis methods. Such a method requires an additive log-ratio transformation on the 
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original data, so that the transformed data has a multivariate normal distribution. Standard 
time series models were fitted to the transformed data, and using the fitted models, forecasts 
were made until 2010.

Forecasting BMI can be challenging due in part to the lack of good quality and long time 
series BMI data and to the multinomial nature of the overweight status variable, i.e. the 
forecasted proportions must remain positive fractions and sum up to one. Compared to 
forecasting binomial data, such setting is more complicated to handle because of the addi-
tional dimensions in the model. One alternative to modelling the proportion of overweight 
and obesity directly is to model the entire BMI distribution. However, the challenge then 
becomes how to capture the patterns in the changes of the BMI distribution over time. For 
instance, it has recently been shown that as BMI increased more at high than low values, its 
distribution shifted faster to the right, in turn making it less right-skewed237,238. Still, how to 
handle such shifts in a model may not be straightforward. As a result, there is no standard 
method for forecasting BMI levels.

With respect to the data, the majority of forecasting studies have relied on longitudinal 
cohorts with a limited number of measurement time points, which suffer from attrition. 
This is in contrast with health surveys that, in many countries, are conducted on a yearly 
basis with independent sampling (i.e. repeated cross sectional data)239,240. This latter study 
type has the advantages of being more common and as such when combined can provide 
multiple sets of observations of large sample over long periods of time, similar to mortality 
statistics.

In this paper we report a case study on a technical generalization of the Lee-Carter model, 
originally developed to project mortality, in order to forecast BMI31. We present the method 
on an annually repeated cross sectional data set, the Dutch Health Survey (POLS), covering 
years between 1981 and 2008. Applying the Lee-Carter model to BMI implies that the preva-
lence of a particular BMI status is a function of two effects: age and calendar year. There are 
two main features of our approach. First, instead of modelling the prevalence of overweight 
and/or obesity status, this approach models the entire BMI distribution from which the 
distribution of overweight status is derived. It is convenient in that it jointly estimates the 
prevalence of each overweight category. Also, the usual categorization of the BMI distribu-
tion may be crude in light of the discussions about the healthiest BMI value or the ap-
propriate cut-off points defining the healthiest BMI range241. In this respect, modelling the 
whole BMI distribution is a flexible approach because other cut-off points could be defined 
easily without requiring a fundamental change in the modelling strategy. Second, we fitted 
four-parameter Box-Cox power exponential distribution on BMI data that allowed explicit 
modelling of the changes in the shape of the BMI distribution. In previous studies BMI was 
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typically assumed to follow lognormal distribution242,243, however the disadvantage of the 
lognormal distribution is that the skewness and the kurtosis are merely a characteristic of 
the distribution influenced by the mean and the variance.

7.2 Data

BMI was calculated using weight and height data from the Dutch Health Survey (‘POLS 
Gezond’) collected among the community-dwelling population of the Netherlands73. The 
POLS is a nationally representative, ongoing annual cross-sectional survey aiming to pro-
vide information on a broad range of topics concerning the living situation of the Dutch 
non-institutionalized population. Each year of the POLS data is an independent sample of 
records from a centralized municipal registry. In the POLS, self-reported health data are 
collected via face-to-face interviews and written questionnaires. Specifically, interviewers 
visit participants at their home, obtain informed consent, and leave a written (drop-off) 
questionnaire. The annual participation is approximately 9,000 individuals, with response 
rates of around 60% for the questionnaire.

We used 28 years of POLS surveys conducted between 1981 until 2008 (T=28), combining 
data from 248,011 subjects with known age, sex and calculated BMI score. We used data only 
from adults resulting in 64,671 exclusions, i.e. 26.1% of the sample. In addition we excluded 
324 observations (0.2% of the adult sample) with BMI values outside of the 15–50 range 
because these likely represent measurement or documentation errors. Thus, we included 
a final sample size of 183,016 individuals in the analysis. We grouped individuals into 10-
year age groups, x∈{20–29,30–39,...,70+}. Their BMI scores were categorized according to 
WHO guidelines244 into the combined underweight (BMI ≤ 18.5) and normal weight (18.5 < 
BMI ≤ 25) category (below we refer to this merged category as normal weight), overweight 
(25 < BMI ≤ 30) and obese categories (30 < BMI). Table 7.1 presents information on the study 
population by year and sex.
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Table 7.1 Summary data of the study population

Year

POLS 
Gezond:
achieved 
sample 

size

Correspond. 
response %

Study population:
Aged: 20+,

15≤ BMI ≤ 50

OW
(%)

OB
(%)

Average
BMI in

OW

Average 
BMI in OB

1981 9,809 68.0 6,775 30% 6% 26.8 33.6

1982 9,319 66.6 6,553 29% 6% 26.8 33.4

1983 8,712 64.5 6,407 30% 6% 26.8 33.4

1984 9,065 63.4 6,628 29% 6% 26.9 32.9

1985 8,633 63.4 6,319 29% 5% 26.9 33.0

1986 8,716 63.8 6,453 30% 6% 26.9 33.0

1987 7,932 59.0 5,985 31% 6% 26.9 32.6

1988 7,579 58.3 5,711 30% 5% 26.9 33.0

1989 8,007 58.5 5,999 31% 7% 26.9 32.8

1990 7,107 56.3 5,390 30% 7% 26.9 32.6

1991 6,682 56.7 5,157 32% 7% 26.9 32.6

1992 8,482 56.7 6,528 31% 7% 27.0 33.1

1993 8,107 55.0 6,288 31% 7% 27.0 33.1

1994 8,538 56.1 6,557 33% 8% 26.9 32.7

1995 8,980 58.6 6,865 32% 8% 27.0 33.0

1996 8,396 56.6 6,522 32% 8% 26.9 33.0

1997 10,664 59.4 7,785 33% 9% 27.0 32.8

1998 9,075 58.1 6,500 32% 9% 27.0 32.8

1999 9,600 55.9 6,897 35% 9% 27.0 33.2

2000 9,639 55.0 6,927 36% 10% 27.0 33.0

2001 9,349 61.8 6,720 36% 11% 27.0 33.1

2002 9,382 61.2 6,771 36% 11% 27.1 33.1

2003 9,439 58.3 6,762 36% 12% 27.1 32.9

2004 10,657 61.3 7,681 37% 12% 27.1 33.1

2005 9,853 65.0 7,272 35% 12% 27.1 33.1

2006 9,094 66.4 6,836 36% 12% 27.1 33.1

2007 8,219 64.0 6,127 34% 12% 27.1 33.2

2008 8,976 64,4 6,601 37% 12% 27.1 33.3

Sum 248,011 - 183,016

Notes: The corresponding response percentage – for example – in 2008 indicates that 64.4% of the 
original sample size was achieved, and that resulted in a sample of 8,976 individuals with known age, sex 
and BMI values. OW = overweight. OB = obese.
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7.3 Statistical methods

The GAMLSS statistical model
We used Generalized Additive Models for Location, Scale and Shape (GAMLSS) semi-
parametric regression245 to model the probability distribution of BMI. The GAMLSS offers 
a flexible approach to model not only the location but also other parameters (scale and 
shape) of the distribution of the dependent BMI variable as linear parametric and / or 
additive non-parametric functions of explanatory variables. The GAMLSS model assumes 
i=1,…,N independent observations with probability density function f(bmii | θi) where 
θi =(θi1, θi2,..., θip)  is a vector of parameters. In our situation p=4 distribution parameters 
were required that may be interpreted relating to the location, the scale, the skewness and 
the kurtosis, respectively.

Fitting distributions on BMI
Evidence from other countries suggests that changes not only in the mean but also in the 
skewness of the BMI distribution took place 242,243. Consequently it seems wise to choose 
a distribution with more than two parameters that is able to explicitly capture potential 
shifts in the shape of the BMI distribution. For this purpose we selected the Box-Cox power 
exponential (BCPE) distribution that offers to model the BMI distribution with four param-
eters246. The BCPE is defined through the transformed variable Z, which is given by 

for 0<Y<∞, where μ>0 and σ>0. The random variable Z is assumed to follow a standard 
power exponential distribution with continuous power parameter τ. The exact cdf and pdf 
of the BCPE distribution is given in Appendix 7A.

The parameters of the BCPE distribution, μ, σ, υ, τ, were estimated for each age (x) and 
year (t) combination separately, thus we fitted 6 age × 28 year = 168 models for men and 
women (g) each. We denote the estimated parameters by θ̂k(x,g,t) where k=1 may be in-
terpreted relating to the location (median, μ), k=2 to the scale (approximate coefficient of 
variation, σ), k=3 to the skewness (transformation to symmetry, υ), and k=4 to the kurtosis 
(power exponential parameter, τ), however the parameters do not directly indicate varia-
tion, skewness and kurtosis, respectively. Given the estimated distribution parameters, we 
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calculated the expected prevalence of overweight status (normal weight, overweight and 
obese) for each combination of age category and year by partitioning the probability dis-
tributions according to the WHO cut-off points described above. The advantage of such 
partitioning is that the estimated prevalence of overweight status always sums up to one, i.e.  
ϕ̂NW (x,t) + ϕ̂OW (x,t) + ϕ̂OB (x,t)=1 , where the estimated ϕ̂(x,t) is the expected prevalence of 
normal weight (NW), overweight (OW) and obesity (OB) at age x and in year t, respectively.

Forecasting distribution parameters and overweight status
To forecast the prevalence of overweight status we adapted a mortality projection model 
proposed by Lee and Carter31. The original model was used to project age-specific mortality 
rates and corresponding life expectancy based on historical mortality data. In short the bi-
linear Lee-Carter model describes the log of the mortality rates as the sum of an age-specific 
parameter and an interaction between another age-specific and a time-specific parameter. 
The forecasting strategy involves three steps: during the first step the parameters of the 
model are estimated, during the second step the time parameter is projected into the future 
using a standard time series analysis technique, and during the third step the projected 
time parameter is inserted back to the original model holding the age-specific parameters 
constant to obtain future mortality rates. The Lee-Carter model is an elegant approach to 
model and forecast mortality, and has proved to be a very powerful and by now a widely 
adopted model. We refer the interested reader to two extensive reviews of the original and 
further developed methods34,35.

We have adopted the strategy of Lee and Carter but instead of modelling the logarithm of 
mortality rates we fitted the bilinear model on the estimated BMI distribution parameters 
that had been obtained by GAMLSS as described above. The model for the kth distribution 
parameter θ̂k (x,g,t), referring to μ, σ, υ, τ, respectively, evaluated at age x and year t took the 
following form:

In the model αk(x,g), βk(x,g) are gender-specific, g ∈ {male, female}, and κk(t) unisex equa-
tion parameters2 that have to be estimated with subject to arbitrarily chosen identifiability 
constraints Σ

t  
κ̂k(t)=0 and Σ

x  
β̂k(x,g)=1 for each g. It can be shown that unless we impose 

constraints on the parameter estimates, the equation in (2) could have infinity many solu-
tions. Therefore, in order to estimate the equation parameters we assume that εk(x,g,t) is 

2 We refer to equation parameters in (2) and distribution parameters in (1).
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normally distributed. With this assumption the maximum likelihood estimator of an equa-
tion parameter is equivalent to the estimator based on the singular value decomposition 
(SVD) of the matrix with elements θ̂k(x,g,t)–α̂k(x,g) when only the leading singular value, 
σ1(θ̂k), the first column with a dimension of [x×1], u1(θ̂k(g)), and the first row with a dimension of 
[1×T], v1(θ̂k), of the SVD are used. In particular, the equation parameter estimates for the kth 
distribution parameter θ̂k (x,g,t) are given by:

The way in which we imposed the constraints on the parameters was for ease of interpre-
tation. Hence for the kth parameter the fitted value α̂(x,g) simply denotes the empirical 
time-average of θ̂k (x,g,t) over T years among people at age x of gender g, whereas β̂k (x,g) 
indicates how large the effect of age is on θ̂k (x,g,t) for a unit change in the latent time index 
κ̂(t) among people in year t.

Take for example males (m) and the first parameter (k=1), the median. Then the value
α̂1(x,g = m) equals the empirical average of the medians estimated for each BMI distribution 
over the T years among men at age x. These age-specific averages delineate an age-profile 
for the average medians of the BMI distribution. Also, straightforward interpretation can 
be given for β̂1(x,g =m) and κ̂1(t). κ̂1(t) indicates how the average median of the BMI 
distribution changes in the whole population, independent of age, between time t=1 and 
t=T. Essentially it represents a common time trend for all ages, and is typically called as the 
trend in the (latent) level of the locations. Usually we observe an increasing time trend in 
the location of the BMI distribution, hence in κ̂1(t). At the same time, this common time 
trend is modulated by the age-specific effect β̂1(x,g =m). β̂1(x,g =m) specifies how fast or 
slow the median of the BMI distribution among men at age x changes compared to the 
changes in the whole population. If β̂1(x,g =m) is negative, it indicates that the median of 
the BMI distribution at age x tends to descent while it growths at other ages. Analogous 
interpretation can be given for the other three parameters.

We used unisex κk(t) to drive both male and female age-specific trends. There are attractive 
reasons for pursuing this strategy: Epidemiologically speaking, a single κk(t) may enforce 
greater consistency of the sex differentials, avoiding potential anomalies such as cross-over 
trends. Statistically speaking, a common κk(t) is a parsimonious way of linking the trends 
while avoiding more complicated time series models. We jointly estimated the κk(t)’s by 
concatenating male and age-specific distribution parameters and subjecting them to SVD. 
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The way in which we imposed the constraints on the parameters was for ease of 
interpretation. Hence for the kth parameter the fitted value � �gx,�̂  simply denotes the 
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Take for example males (m) and the first parameter (k=1), the median. Then the value 

� �mgx �,ˆ1�  equals the empirical average of the medians estimated for each BMI 
distribution over the T years among men at age x. These age-specific averages delineate an 
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1�  and � �t1�̂ . � �t1�̂  indicates how the average 
median of the BMI distribution changes in the whole population, independent of age, 
between time t=1 and t=T. Essentially it represents a common time trend for all ages, and is 
typically called as the trend in the (latent) level of the locations. Usually we observe an 
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2 We refer to equation parameters in (2) and distribution parameters in (1). 
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This process yielded a common κ̂k(t), and two separate sets of α̂k(x,g) and β̂k(x,g), for 
males and females.

An important characteristic of the original Lee-Carter method is that it sees the change 
of the dependent variable only as a function of the time index κ̂k(t) while the age-effect 
parameters, α̂k(x,g) and β̂k(x,g), are considered fixed over time. In particular, the time 
indices are treated as stochastic time series processes that are modelled and forecasted by 
the classic Box-Jenkins methodology247. Once the time indices are forecasted (while the 
age-effects are kept constant), they can be inserted back into equation (2) to obtain fore-
casted BCPE distribution parameters. In our study these forecasted parameters are assumed 
to characterize the future BMI distribution given that the BMI distribution follows BCPE 
distribution.

To model and extrapolate the kth time series of κ̂k(t) several autoregressive integrated mov-
ing average (ARIMA) models can be considered. Lee and Carter proposed the use of the 
ARIMA(0,1,0) model which is essentially a random walk model (trajectory of successive 
random steps) with a drift parameter. Although they suggested that different model speci-
fication might be more appropriate for other data sets their random walk model with drift 
is seen in many applications248. Similarly, although the changes in mortality rates may be 
different from the changes in the BCPE distribution parameters, we follow Lee and Carter 
in adopting the random walk process for our projections because it is a convenient way to 
extrapolate distribution parameters in a joint manner, and because – as we will see – it fits 
the data well.

A separate time series model for each κ̂k(t) series, k=1,2,3,4 denoting the latent time trend 
in the BMI distribution parameters, took the following form:

where δk, known as the drift parameter, and δk2 were estimated from the time series data. 
An unbiased estimator of the drift parameter in the random walk with drift model is simply 
(κ̂k(T)–κ̂k(1))/(T–1)35, whereas the diagonal and off-diagonal elements of the k×k covariance 
matrix, Σ, were estimated one by one taking the pairs of time series of the drift parameters 
as in (4).
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To simulate future parameter estimates of the BCPE distribution we used the last estimated 
values from the data set, θ̂k(x,g,T), to avoid a jump between the last estimated and the first 
forecasted value249. Then the forecasted kth parameter s year ahead from the base year T 
were given by:

where κ̂k(T+s) denotes the forecasted time index s ≥ 1 periods ahead of κ̂k(T).
κ̂k(T+s) had the following conditional multivariate normal distribution:

Finally, given the forecasted parameter estimates, the forecasted prevalence of overweight 
status for age x and year T+s was calculated as follows:

Prevalence of normal weight (8):

Prevalence of overweight (9):

Prevalence of obesity (10):

Model validation
We validated the model by dividing the data set into two parts. The first part, 1981-2003, was 
defined as the training data set, and the rest, 2004-2008, was used for validation purposes. 
We followed the steps described above. That is based on the training data set we fitted a 
GAMLSS model on the individual BMI data for each age and year combination (20×6=120) 
assuming BCPE distribution. Then we fitted Lee-Carter bilinear models on these estimated 
distribution parameters to be able to project them into the future. Finally, we calculated 
the forecasted prevalence of normal weight, overweight and obesity for the years 2004-
2008. We considered our model valid if the prediction intervals contained the observed 
prevalence values in the POLS data.

7.4 Results

Figure 7.1 presents histograms, estimated probability density functions, and quantile-
quantile (Q-Q) plots to visually assess how well the BCPE and the lognormal distribution 
fits individual level BMI data among women aged 20-29 in the first and last year of the 
survey, i.e. in 1981 and 2008. It is apparent that the BCPE distribution with four parameters 
captures the skewness and kurtosis of the BMI distribution much better than the lognor-
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mal distribution does. In contrast to the BCPE distribution, the lognormal distribution 
predicts systematically higher probabilities for larger BMI values than observed, therefore 
the lognormal distribution is suspected to overestimate the true prevalence of overweight 
and obesity. A Q-Q plot presents the relationship between quantiles implied by a specific 
distribution and quantiles as observed in the data. If the two distributions being compared 
are similar, the points in the Q-Q plot will approximately lie on the line 45 degree line. As-
sessment of the graphical view of the Q-Q plots in Figure 7.1 indicates that assuming BCPE 
distribution is more appropriate than assuming a lognormal distribution.

 1 

Majer 
Figure 1: Comparison of lognormal and BCPE distribution fitted on BMI data in women of age 20-29, year 1981 and 2008 
 

 

Figure 7.1  Comparison of lognormal and BCPE distribution fitted on BMI data in women of age 20-29, 
year 1981 and 2008
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It is also apparent from the two left panels of Figure 7.1 that that there has been a change not 
only in the location and variation but also in the shape of the body mass index distribution. 
Furthermore, emphasizing changes over time, the median BMI rose from 24.0 in 1981 to 25.1 
in 2008 (+1.1) for the largest age group, 30-39 years old men, and from 22.2 to 23.8 (+1.6) 
over the same period time in women. The measure of dispersion of the distributions (that 
is the logarithm of the coefficient of variation in this case) has also increased steadily. For 
instance, it increased from 0.13 in 1981 to 0.14 in 2008, and from 0.13 to 0.17 among 30-39 
years old men and women, respectively. Besides the location and scale, important aspects of 
a distribution are the skewness and the kurtosis. Considering for example the BMI distribu-
tion among women, it is much more skewed to the right at younger ages than at older ages, 
and is flatter (platykurtic) at older ages than at younger ages. Explicitly modelling such 
characteristics of the BMI distribution would have not been possible assuming lognormal 
or other distributions with less than four parameters.

Based on the full dataset parameter estimates of the Lee-Carter model as in (3), α̂k(x,g), 
β̂k(x,g) and

  
κ̂k(t) were estimated that determined the various BCPE distribution param-

eters, θ̂k (x,t), k=1,…,4. These are plotted in Figure 7.2. The first row of the graph depicts
α̂k(x,g), the empirical averages of the estimated location, scale and the two shape parameters 
of the BCPE distribution over 28 years for each age group. The second and the third rows 
show β̂k(x,g) and

  
κ̂k(t), respectively. The plots in the third row indicate the overall time 

trend in a particular distribution parameter. If the trend is increasing, a growing pattern 
in that specific parameter is seen. This time trend denoted by

  
κ̂k(t) is modulated by β̂k(x,g); 

the corresponding values are depicted in the second row. These age profiles indicate how 
fast or slow the specific parameter of the BCPE distribution among people at age x changes 
compared to the changes in the whole population. If a particular β̂k(x,g) is negative, it indi-
cates that the parameter of the BMI distribution for that age tends to fall while it increases 
at other ages.

The median BMI was higher among young and middle aged men than among women of 
the same age. Differences in the average BMI however vanished at ages 60 and above (top 
left plot in Figure 7.2). Both sexes exhibited a roughly linear increase of the median BMI 
over time (bottom left plot in Figure 7.2). Important differences between men and women 
were observed in terms of the skewness and kurtosis parameters (third and fourth column 
in Figure 7.2). While the BMI distribution was more skewed to the right especially among 
women, the higher the age was the less right skewed the distribution appeared. The skew-
ness parameter was relatively stable over time (third row third column). Concerning the 
kurtosis of the BMI distributions, it became less flat and more close to the normal distribu-
tion among both genders. The trend in kurtosis parameter seemed to be unbroken and near 
linear.
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It is important to note that there is hardly any interaction between calendar year and age 
in the Lee-Carter models that are fitted on the BMI distribution parameters (middle row of 
Figure 7.2). This is true for both men and women. Practically, it means that the estimated  
β̂k(x,g) are relatively constant across the ages, and that consequently, the trends are the same 
for everybody.

Various statistics are shown in Table 7.2. The R2, that is the proportion of variance explained 
by the Lee-Carter model fitted on the estimated distribution parameters, are shown in the 
first column. Except for the fourth distribution parameter, the explained variance was at 
least around 80% indicating a very good overall model fit.

The estimated drift parameters, δ̂k, their standard error, √V(δ̂k), and the estimated correla-
tions between the trends are also presented in Table 7.2. The estimated drift parameters were 
always positive indicating an increasing trend in the BCPE distribution parameters with 
mild or weak correlations between the changes.
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Figure 2: Parameter estimates of the Lee-Carter model 
 

 
 
Notes: θ1 may be interpreted relating to the location (median, μ), θ2 to the scale (approximate 
coefficient of variation, σ), θ3 to the skewness (transformation to symmetry, υ), and θ4 to the 
kurtosis (power exponential parameter, τ). 
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exponential parameter, τ).
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In Figure 7.3 estimated (for the first and last survey year, 1981 and 2008, respectively) and 
forecasted (for the year 2020) BMI distributions are shown for men and women at age 20-29 
and 40-49. In Table 7.3 detailed results are provided for the prevalence of overweight and 
obesity in men and women for 1981 and every 20 years afterwards, that is for 2000 and for 
2020. Assuming that past trends will continue in the future our model predicted a stable or 
slow increase in the prevalence of overweight among men until 2020. For example, accord-
ing to the central estimate of the model the prevalence of overweight will increase to 44.0% 
among 30-39 years old men. However, there is substantial uncertainty around this future 
estimate. There is a 5% chance that the prevalence will increase to 47.9% or decrease to 
39.3%. Comparing the prevalence estimates of overweight with obesity, larger increases are 
expected for the latter, especially among middle aged men. The largest increase is expected 

Table 7.2 Parameter Estimates in the Time Trends of the Lee-Carter Model
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Figure 3: Estimated and forecasted BMI distribution for men and women at age 20-29 and 40-49 in various years 
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for people aged 50-59 for whom the prevalence of obesity is expected to increase from 14.4% 
in 2008 to 20.2% by 2020. Very similar trends stand out for women. While the prevalence of 
overweight is likely to stabilize in the future, the prevalence of obesity is expected to further 
increase with considerable uncertainty: 17.1% (CI: 15.0%, 19.8%) by 2020. For illustrative 
purposes we present two further figures in Figure 7.4 and Figure 7.5 on how the prevalence 
of obesity and the uncertainty around the estimates is anticipated to develop over time for 
men and women aged 30-39.

We evaluated the proposed model by forecasting the prevalence of overweight and obesity 
based on the training data set (years: 1981-2003) and validating the forecasted points by 
comparing them to the observed ones in POLS. We considered our model valid because 

Table 7.3 Estimated and forecasted prevalence and 95% prediction interval of overweight and obesity 
for men and women

Age Men Women

1981 2000 2020 1981 2000 2020

Overweight

20-29 19.7
(16.9-22.5)

23.7
(20.1-27.2)

27,6
(25.8-29.6)

10.7
(8.5-12.9)

18.9
(15.7-22.2)

23.9
(21.1-27.6)

30-39 30.6
(27.4-33.8)

36.1
(32.6-39.5)

44,0
(39.3-47.9)

15.3
(12.8-17.8)

24.9
(21.9-27.9)

28.6
(24.8-33.0)

40-49 39.5
(35.5-43.5)

45.1
(41.4-48.9)

43,9
(40.6-46.9)

24.8
(21.2-28.4)

30.4
(27.1-33.7)

31.1
(27.7-34.7)

50-59 42.7
(38.5-46.9)

52.1
(48.2-56.0)

47,9
(43.7-52.0)

36.1
(32.1-40.1)

35.9
(32.3-39.7)

34.8
(32.5-36.9)

60-69 43.8
(39.0-48.7)

51.4
(46.6-56.2)

51.0
(47.6-53.4)

37.3
(32.8-41.9)

42.9
(38.2-47.6)

38.9
(37.0-41.3)

70+ 43.6
(37.8-49.4)

45.7
(40.5-50.9)

51.6
(45.8-56.7)

37.9
(32.6-43.1)

40.3
(35.6-45.0)

40.2
(37.5-42.1)

Obese

20-29 2.2
(1.2-3.2)

3.3
(1.8-4.8)

5.8
(4.2-7.7)

2.2
(1.2-3.3)

5.5
(3.6-7.4)

10.2
(7.1-13.8)

30-39 5.3
(3.7-6.9)

6.9
(5.0-8.7)

12.4
(9.3-15.8)

3.6
(2.3-4.9)

8.0
(6.1-9.9)

17.2
(12.4-22.9)

40-49 6.0
(4.1-8.0)

10.4
(8.1-12.7)

14.9
(12.1-18.4)

6.2
(4.2-8.2)

10.6
(8.4-12.8)

14.9
(11.4-18.9)

50-59 7.1
(4.9-9.2)

14.5
(11.8-17.3)

20.2
(15.8-25.0)

11.7
(9.0-14.4)

14.8
(12.0-17.6)

17.1
(15.0-19.8)

60-69 6.8
(4.4-9.3)

11.0
(8.0-14.0)

19.0
(14.4-24.4)

14.9
(11.6-18.3)

14.8
(11.4-18.2)

20.2
(17.8-22.5)

70+ 7.9
(4.7-11.0)

7.1
(4.4-9.8)

9.8
(5.5-14.5)

11.5
(8.0-14.9)

15.8
(12.3-19.3)

19.0
(16.6-22.3)
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the prediction intervals for the years 2004-2008 consistently included the point estimates 
of those based on the POLS survey. Although the predicted overweight prevalences were 
below the actual percentages for some ages - making the model somewhat optimistic in 
terms of the forecasts, the confidence interval around the point estimates always overlapped 
with the prediction interval around the forecast. We present these results in Figure 7.6 for 
men and in Figure 7.7 for women in Appendix 7B.
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Figure 7.4 Estimated and forecasted prevalence of obesity among men aged 30-39, 1981-2020
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Figure 7.5 Estimated and forecasted prevalence of obesity among women aged 30-39, 1981-2020
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7.5 Discussion

We have modelled and forecasted the BMI distribution of the Dutch adult population by 
assuming that individual level BMI follows a BCPE distribution. The advantage of fitting 
BCPE distribution was that it allowed modelling not only the location and the scale but also 
other parameters of that, i.e. parameters that may be interpreted relating to the skewness 
and kurtosis. In addition, important changes in the shape of the distribution would not have 
been captured if we had assumed, for example, lognormal distribution as is often done238,243. 
Although it has already been acknowledged that the BMI distribution is characterized by 
large increases at the upper end of the distribution237,238, it has not been modelled explic-
itly before. Our method was also novel in the way we extrapolated the BMI distribution, 
and consequently, any quantity that depends on the distribution such as the prevalence of 
overweight and obesity. We adapted the Lee-Carter model, which was originally developed 
to forecast mortality, to model the distribution parameters of the BMI distribution. Each 
distribution parameter was a function of age, time and an interaction between these two. 
We forecasted the four BCPE distribution parameters that were assumed to characterize 
the future BMI distributions, and derived the corresponding projected prevalences of 
overweight and obesity.

There are a few favourable features of our forecasting strategy. First, it is easy to imple-
ment and is based on a well-established method for forecasting mortality. Compared to 
smoothing methods, that have been used to forecast mortality250, the Lee-Carter offers the 
advantage of having parameters with easy interpretation. Second, uncertainty around the 
forecasts are estimated by standard time series analysis techniques in a manner that take 
into account the sampling variation of the historical data on that the model is fitted. Finally, 
future predictions of the prevalence of overweight and obesity consider the joint tendency 
of the background parameters over time that characterizes the distribution of BMI.

Comparison to other approaches
Previous studies typically have used data from large scale longitudinal surveys in which indi-
viduals were followed over time. In contrast, our study was based on repeated cross sectional 
survey data, i.e. data in each year was an independent sample. One of the main advantages 
of using longitudinal survey data compared to repeated cross sectional data is that, usually, 
the estimated trends exhibit less variation because the observations within individuals are 
positively correlated. We could not benefit from the advantages of good quality longitudinal 
data, and our trend estimates were surrounded by substantial uncertainty due to sampling 
variation. This uncertainty rolled into and was reflected in the projections as well. Most of 
the time, however, good quality longitudinal data is not available and researchers have to 
rely on independent cross sectional survey data. For such situations our modeling strategy, 
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based on the idea of the Lee-Carter model developed for forecasting life expectancy from 
annually observed mortality statistics, is a novel, straightforward, and a flexible approach.

The main advantage of using GAMLSS semi-parametric regressions was that the parameters 
provided a good overview of the changes in the BMI distribution by age groups, gender 
and over time, assuming that BMI follows BCPE distribution. However, the GAMLSS is a 
versatile statistical model and allows for many different distributions to be fit. In the case 
of our study, it may be that a distribution other than the BCPE distribution, e.g. Box-Cox 
t distribution, fits the BMI data similarly well, or a more parsimonious model with fewer 
parameters could be constructed. We did not experiment with finding a possible better 
candidate for the BMI distribution as the BCPE distribution has been already shown to 
describe BMI well246.

There are several ways how the presented model may be further explored. For example a 
GAMLSS semi-parametric regression model could be fitted on the whole data set, i.e. on the 
individual BMI values, including all ages, years and sexes in the same analysis. Such a model 
would likely result in smoother predicted time trends of the distribution parameters than 
the time trends we obtained by the presented approach. Such, smoother time trend can be 
an attractive feature in the context of forecasting. A potential difficulty of the GAMLSS re-
gression, however, is that the interpretation of the parameters becomes involved if multiple 
additive (smoothing) regressors are included, and the risk of overfitting the model requires 
cautiousness as well. In our case this was not an issue because we fitted separate models on 
each age-year combination separately and did not estimate the effect of age and year in one 
single regression.

Another path of further developing the model is offered by inspecting Figure 7.2, in that the 
age interaction parameters of the Lee-Carter model, β(x), seem to provide only very little 
additional information to explaining the variation in the BMI distribution parameters. In 
other words, the β’s exhibit a relatively constant pattern across age. If in reality the true β’s 
are constant, a simpler, additive model without the age interaction parameter could fit the 
data just as good as a model specified by equation (2). We did not investigate the presence 
of nested models since the purpose of this paper was to show how the original Lee-Carter 
model can be applied to forecasting the prevalence of overweight and obesity. Addition-
ally, estimating the parameters of such models would have required different estimation 
procedure whose description may have diluted the focus of this paper.

Robustness of the results
We have performed a number of different analyses to compare the model with other ap-
proaches. Results of the comparisons are presented below.
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In Figure 7.4 and Figure 7.5 the last five-six data points may seem a result of an unexpected 
shift in the time series of obesity prevalence, as after 2003 the trend appear to flatten out 
compared to preceding years. To formally test whether there was a structural break in the 
time trend in 2003 we ran a Chow test on the medians of the BCPE distribution. The P 
value of the test indicated the lack of a potential shift (P value = 0.430). However, because 
there were only 6 data points after 2003, the test had little power. Hence, we performed a 
further analysis. We specified a different time series model to the one in (3) by adding a 
dummy variable that took the value one if the time series data corresponded to 2003 or 
later, and zero if it corresponded to 2002 or previous years. Such time series model is called 
an ARIMAX model. Forecasts of the prevalence of obesity resulted in lower values than in 
our original model but the relative difference in the central estimates between the original 
model and this analysis were less than 5%.

A second analysis was carried out to compare our model with a multinomial logistic regres-
sion approach, and to check how much difference it would make if instead of modelling 
the prevalence of BMI status through BMI distribution indirectly, we would use such con-
ventional approach on the prevalences directly. Thus, we estimated a multinomial logistic 
regression model with dummy variables for the age groups and a continuous year variable, 
and made deterministic forecasts assuming that the age effects would remain the same in 
the future. While the forecasts for the prevalence of overweight matched the forecasts of the 
stochastic model quite well, predictions for the prevalence of obesity seemed exaggerated. 
For instance, our original stochastic forecasts estimated the prevalence of obesity to be 
17.1% by 2020 among 50-59 women, whereas the multinomial logistic regression approach 
predicted it to 22.7%, a 5.6% difference.

Finally, we assessed the sensitivity of our model to reporting bias. It is known that people 
underreport weight and overreport height rendering the BMI variable somewhat biased. 
In principle this type of bias could have affected the results of our model because in the 
POLS survey self-reported weight and height values were recorded. In a study of Dekkers 
et al.251, the Dutch working population was found to underreport the body weight by 1.4 kg 
on average, and overreport the height by 0.7 cm. To investigate how seriously our results 
could be biased we added random values to the reported weight and height records with 
mean and standard deviation as reported in Dekkers et al. We then repeated our stochastic 
forecast analysis, and found that reporting bias had virtually no effect on our forecasts. 
However, it must be noted that our assessment was based on two naïve assumptions, namely 
that under- and overreporting was uniform irrespective of the weight or height, and that it 
did not change over time. Contrary to these assumptions, it has been shown that the most 
important determinant of underreporting BMI is a high BMI itself252, and that there might 
be a diminishing pattern in the reporting bias in BMI over time253. Results of these studies 
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imply that uniform corrections of BMI over time and by BMI itself may not be appropri-
ate. Hence, predictions of future overweight and obesity based on trends in self-reported 
information may not be accurate, as the reporting bias may affect the apparent increase in 
self-reported BMI.

Relevance of forecasting overweight and obesity
A vast literature documents that obesity is associated with a number of negative outcomes, 
from potentially life-threatening conditions to nonfatal chronic illnesses. Although a com-
plete review is beyond the scope of our article, some key findings includes the following. 
It has been demonstrated that overweight and obesity are associated with increased preva-
lence of type 2 diabetes mellitus, gallbladder disease, coronary heart disease, high blood 
cholesterol level, high blood pressure, osteoarthritis254 and various forms of cancer, includ-
ing colon255, breast256, renal257 and endometrium258. Besides diseases high individual BMI 
is related to increased mobility disability258, ADL disability98, more years of life expectancy 
with disability102,259 and reduced self-rated health status260. Overall, the effect of overweight 
and obesity on health and economic factors has become a key topic of public policy in many 
developed countries. Forecasting future levels of the obesity and informing policy makers 
about its impact in terms of the health burden is therefore of high importance.

Conclusion
Our study suggests that the strategy to model the BMI distribution directly and derive 
corresponding prevalence estimates is superior to modelling BMI categories because of 
the changes in the shape of the BMI distributions. In turn, forecasting the prevalence of 
overweight and obesity by extrapolating the distribution parameters using the Lee-Carter 
methodology appears to be an insightful  and flexible strategy.
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Appendix 7A The box-Cox power exponential distribution (bCPE)

Let Y be a positive random variable having a Box-Cox t distribution246, denoted by 
BCPE(μ,σ,ν,τ), defined through the transformed random variable Z given by (2), where the 
random variable Z is assumed to follow a truncated standard power exponential distribu-
tion with power parameter, τ > 0, treated as a continuous parameter.

The pdf of Y ,a BCPE(μ,σ,ν,τ) random variable, is given by

for y > 0, where μ > 0, σ > 0 and −∞ < ν < ∞, and where z is given by (2) and fT (t) and FT(t) 
are respectively the pdf and cumulative distribution function of a random variable T having 
a standard power exponential distribution, i.e. T ~ PE(0,1,τ). If the truncation probability  
            is negligible, the variable Y has median μ.
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Appendix 7b

 

Figure 7.6 Predicted prevalence of overweight and obesity for the last five years 2004-2008 based on 
1981-2003, Men

 

Figure 7.7 Predicted prevalence of overweight and obesity for the last five years, 2004-2008, based on 
1981-2003, Women
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Appendix 7C

Figure 7.8–Observed versus fitted BCPE prevalence, Men 

 
Notes: 1st row: Normal weight, 2nd row: Overweight; 3rd row: Obese  
 

Figure 7.8 Observed versus fitted BCPE prevalence, Men
Notes: 1st row: Normal weight, 2nd row: Overweight; 3rd row: Obese

Figure 7.9–Observed versus fitted BCPE prevalence, Women 
 

 
Notes: 1st row: Normal weight, 2nd row: Overweight; 3rd row: Obese  
 Figure 7.9 Observed versus fitted BCPE prevalence, Women

Notes: 1st row: Normal weight, 2nd row: Overweight; 3rd row: Obese                  
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In this chapter key findings of the thesis are discussed and main conclusions are drawn that 
follow the organization of the thesis. Firstly, the findings that augment the understanding 
of how risk factors are associated with health expectancy are summarized (based on Part I). 
Secondly, the results of the studies that relate to forecasts of health expectancy are reviewed 
(based on Part II). The summary of the core findings is followed by an evaluation of the 
methods, and what this thesis adds to the already existing literature. Finally, a number of 
implications are outlined that this thesis may have on future research and policy making.

8.1. Overview of findings with reference to risk factors associated with health 
expectancy

Results of Chapter 2 suggest that the relationship between disability and all-cause mortality 
in the general population is substantial. At any age, disabled persons face a higher risk 
of mortality than the non-disabled. The magnitude of the relationship, however, varies by 
disability measure. Our empirical results showed that severe measures of disability, i.e. ADL 
and mobility disability were strongly associated with death, but that a mild disability mea-
sure, i.e. OECD disability indicator, expressed a less significant elevation in death risk. A 
large proportion of the excess mortality risk associated with disability could be explained by 
risk factors preceding the onset of disability. Whereas for mild disability this risk difference 
could be explained by chronic diseases and other risk factors related to socio-demographic 
status, i.e. education, marital status, and lifestyle, i.e. smoking but not overweight, an inde-
pendent effect of more severe disabilities on mortality could not be ruled out.

In Chapter 3, the relationship between overweight status, smoking status and both total life 
expectancy and life expectancy with disability in Western-Europe was explored. It was dem-
onstrated that overweight people can expect to live slightly longer than those with normal 
weight, which – as suggested by other studies – might be a consequence of the protective 
effect of being overweight on mortality in disabled populations. In contrast, overweight and 
obese people can expect to live considerably longer with disability. Smoking had a different 
relationship with life expectancy and life expectancy with disability. Smoking was associ-
ated with a lower total life expectancy, but with an unchanged life expectancy with disability 
compared to non-smoking. Similar patterns were observed for men and women, and for low 
and high educated populations.

The relation between overweight and mortality has been a controversial topic. In Chapter 
3 it was shown that overweight is associated with protection for dying among the disabled, 
while the relationship between obesity and mortality is modest, especially among men. 
These results reaffirm recent doubts about overstated concerns of overweight and obesity 
in terms of excess mortality124. Possible explanations for the small but protective mortality 
effect of overweight include improved survival of overweight persons from major diseases 
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of developed societies, e.g. heart failure125 or CVD126, and a better nutritional status provid-
ing necessary reserves during chronic disease127. Recent studies confirmed the protective 
effect of overweight as well documenting that increased BMI protects against mortality after 
hospitalisation128.

In addition to the effect of lifestyle, in Chapter 4, educational differences in health expec-
tancy and life expectancy before and after official retirement age were quantified across 10 
countries in Western Europe. Populations with a higher level of education can expect to live 
more years free of disability before retirement, suggesting fewer problems in reaching pen-
sion age in good health. People with a higher educational level can also expect to live longer 
after retirement, implying that they represent a greater liability for pension funds. For life 
expectancy, larger differences were found among men than among women, whereas differ-
ences in health expectancy were alike for both men and women. Similar patterns emerged 
in all countries, although the differences tended to be larger in southern states. These find-
ings are well in line with and complementary to the results documented in Chapter 2, where 
it was found that lower educated people had higher risk of death than the higher educated 
ones. In Chapter 4 results were presented not only in terms of mortality and consequent life 
expectancy but also on health status and health expectancy. Higher educated populations 
were found not only to live longer but also to live longer in good health.

8.2 Overview of findings with reference to forecasting health expectancy

Chapters of Part II presented projections of health expectancy, long-term care expenditure 
and prevalence of obesity. These quantities are all related to disability, a form of poor health 
status. Health expectancy was defined in terms of life expectancy with and without disability, 
receipt of long-term care is largely determined by disability status, and obesity is strongly 
related to disability as well. Another common feature of the chapters is the methodology 
behind the projections; each was an adaptation of the Lee-Carter model that was originally 
developed to project mortality31.

To forecast health expectancy a theoretical framework for a multistate life table model was 
proposed, in which the transition probabilities depended on age and calendar time. In 
Chapter 5 it was described how to model and project these transition rates by the Lee-Carter 
method, and illustrated how it could be used to forecast future health expectancies with 
prediction intervals. The model was applied to the Dutch population aged 55 and older, 
and health expectancies were forecasted up until the year 2030. Additionally, the dynamic 
relationship between disability-free life expectancy and life expectancy was analyzed, and 
probability distributions were attached to different future scenarios of compression or 
expansion of disability. The results showed that both total life expectancy and disability-free 
life expectancy, measured in terms of OECD disability, are likely to increase till 2030 among 
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men and women. According to the central estimates of the model, LE will increase from 
24.2 in 2005 to 26.8 years by 2020 and to 28.2 years by 2030. The projected increase in LE 
for women was somewhat smaller, from 28.2 in 2005 to 29.8 and 30.6 by 2020 and 2030, 
respectively. DFLE among men (women) was anticipated to increase from 19.1 (17.7) in 2005 
to 21.9 (20.4) and 23.4 (21.5) years by 2020 and 2030, respectively. DFLE relative to LE was 
forecasted to rise from 78.9% (62.7%) in 2005 to 81.7% (68.4%) and to 82.8% (68.4%) during 
the same period for men (women). There was substantial uncertainty around the forecasts: 
by 2030, the width of the 95% prediction interval of DFLE was about 10 years for both men 
and women. When compression of disability over the projection period was measured in 
number of years, the probability of a compression was approximately 50% for men, and 60% 
for women. If compression of disability was measured in a relative sense, i.e. disability-free 
life years as a proportion of total life expectancy, then a compression was more likely to 
occur; the probability of compression was around 65% for the two sexes.

In Chapter 6 the impact that population aging will possibly exert on future levels of ag-
gregate long-term care expenditures was forecasted. For that, a further developed version of 
the model in Chapter 5 was made use of. This model projected life expectancy without dis-
ability, life expectancy with mild and life expectancy with severe disability, and it attached 
expenditures of home care and institutional care use to the health expectancies. Accord-
ingly, the model accounted for the likely future changes in health expectancy. Whereas both 
total life expectancy and life expectancy with mild disability were forecasted to increase, 
life expectancy with severe disability was projected to remain constant as the years lived 
with severe disability were postponed to higher ages. Consequently, home care spending, 
associated with mild disability was expected to grow, while the substantially more expensive 
institutional long-term care expenditure, related to severe disability, was likely to remain 
fairly stable. Population aggregated long-term care expenditure for the 55+ Dutch popula-
tion was projected to rise by approximately 56% by 2030. However, this increase was mainly 
due to the ageing of the baby boom cohort, and not due to increasing per capita long-term 
care costs.

In Chapter 7 the BMI distribution of the Dutch adult population was modelled and fore-
casted by explicitly taking into account the shape of the distributions. The median BMI 
rose from 24.0 in 1981 to 25.1 in 2008 (+1.1) for 30-39 years old men, and from 22.2 to 23.8 
(+1.6) over the same period time in women. With respect to the BMI distribution among 
women, it is much more skewed to the right at younger ages than at older ages, and is flatter 
(platykurtic) at older ages than at younger ages. Based on the projected BMI distribution, 
future prevalences of overweight and obesity were derived. Assuming that past trends will 
continue in the future a stable but slow increase was predicted for the prevalence of over-
weight until 2020 among men and women. Concerning the prevalence of obesity, larger 
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increases were expected especially among middle aged people. For men aged 50-59 the 
prevalence of obesity was expected to increase from 16.6% in 2008 to 20.2% by 2020. Very 
similar trends were found for women.

8.3 Methodological considerations

Some important factors influencing the validity of the results in this thesis should be carefully 
considered. The potential impacts of the limitations were discussed in detail in Chapters 2-7. 
Here we highlight some of the limitations that are not specific to the individual chapters.

Strengths and weakness of data
In Chapter 3 and Chapter 4 we made comparisons of health expectancy between groups 
with certain risk factors using the European Community Household Panel (ECHP)107, a 
large international database of Western European countries comprising information on 
disability, mortality and various risk factors. This large international study allowed for a 
comprehensive overview assessing the magnitude of the association between the several 
risk factors and health expectancy.

A main advantage of the ECHP was the availability of the large number of observations 
using an identical survey design and survey questionnaire for all participating countries. 
These common questions ensured a much higher degree of comparability between countries 
than would be possible using national data sources. International comparability of data in 
health expectancy is, however, imperfect. There were a number of differences between the 
countries that persisted despite efforts at standardization. The main differences were caused 
(1) by cross-national variations in the data collection, (2) by variations in factors such as 
people’s perception of health problems, and (3) by their propensity to report perceived health 
problems. These differences among the countries (or even within the countries) require 
caution by interpreting the results. Keeping the limitations in mind, it was recommended to 
focus on the patterns common to all countries, rather than on the cross-national variations.

Since ECHP is a longitudinal data, non-response and attrition might have been a problem 
if they were related to the risk factors or to the outcome variables disability and mortality. 
A few studies have explored the association between attrition and disability status in the 
ECHP. For example, analyses on attrition showed a positive relationship with worsening 
health status118 and a weak relationship with educational level119. Besides these studies as-
sessing the data quality, we assessed the probability of dropout in relation to characteristics 
at the last wave in which the respondent participated. The odds of loss to follow-up for other 
reasons than death or institutionalization was found to be hardly related to disability status, 
sex, overweight status or educational level (relative differences were about 10 per cent or 
less). Slightly higher risk of attrition in former and daily smokers was found though (relative 
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difference 15 per cent). These findings imply that differential retention was unlikely to have 
a major impact on our life expectancy and health expectancy estimates.

In Chapter 2 of Part I and in all the chapters of Part II, data from a repeated cross sectional 
surveys were used covering information of the community-dwelling population of the 
Netherlands between 1981 and 2008. Non-inclusion of the institutionalized population was 
a limitation in all of these studies, introducing some bias in the outcomes. In Chapter 2, 
however, where the outcome was a relative measure, the relative risk of mortality among 
disabled and non-disabled, we expected the bias to be of little concern87. In the chapters 
of Part II, where the outcome was measured in absolute terms, i.e. life years, prevalence or 
BMI, sensitivity analyses indicated that the possible bias was negligible compared to the 
uncertainty around the central estimates of the outcome.

The POLS survey contained information on many aspects of health, however the data was 
self-reported. By data collection face-to-face interviews were made and written question-
naires were filled in, which can result in either under- or over-reporting of the variables of 
interest, and eventually may cause biased outcomes. In our studies three particular outcome 
variables were of primary interest: disability status, weight and height of the participating 
individuals.

The possibility of over- or underreporting the prevalence of disability could not be ex-
cluded, however measurement of functional limitations by self-report are documented to 
be consistently associated with performance and reflect similar assessment of function86,113. 
With regard to the individuals’ weight and height it is known that people tend to under-
report weight and over report height rendering the BMI variable somewhat biased115,117. 
In principle reporting bias could affect the results in our projection model of future obesity 
levels in Chapter 7. To address it, the potential impact that the average magnitude of report-
ing bias – elicited by a study of Dekkers et al.251 – could cause to the results was assessed. 
Assuming that the patterns of reporting bias did not change over time, virtually no effect on 
the future obesity prevalence estimates was found.

In the chapters of this thesis, the pattern of reporting bias was assumed to be constant 
over time. Such assumption however may be too restrictive as a study by Salomon et al.261 
reported inconsistent trends of health status in nationally representative surveys in the U.S., 
offering an important reminder that caution is warranted in using self-rated health measure 
to monitor trends in population health. In another study that focused on reporting bias in 
self-reported BMI it was shown that the most important determinant of underreporting 
BMI is a high BMI  itself, and that there is a likely diminishing pattern in the reporting bias 
in BMI over time252. Results of these studies imply that uniform corrections of misreporting 
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over time may not be appropriate. Consequently, predictions of future quantities based on 
trends in self-reported health status or BMI may not be accurate, as the reporting bias may 
non-uniformly affect the outcomes.

Method of forecasting
The methodology behind the projection studies in Part II was based on the Lee-Carter model 
that was originally developed to forecast mortality. There are a few important assumptions 
behind the Lee-Carter model that may have an effect on the two groups of variables of 
interest, i.e. transition rates connecting health states, and distribution parameters of the 
body mass index probability distribution.

Every model is a simplification of reality and therefore certain assumptions are made during 
the construction of the model. One of the assumptions made in the Lee-Carter model, and 
consequently in our adaptations as well, is that the future evolution of the trend associated 
with the variable of interest, is a function of the observed historical data on which the model 
is fitted. As a result the central estimates of the predictions are in some way extrapolations 
of the past, and the uncertainty around these estimates, the prediction intervals, reflect the 
variability in the historical trends. If there is a clear trend in the historical data then the 
prediction intervals are suggestive, that is relatively narrow. Such a situation was seen at 
mortality rates and at the BMI distribution parameters in Chapter 5-7. However, if there is a 
less clear trend in the data, the prediction intervals are relatively wide providing moderately 
useful information with regard to the future. Such a situation was seen at incidence rates in 
Chapter 5.

Once a model has been developed and its parameters have been estimated, it is important 
to consider whether it is a good model or not. For stochastic mortality forecasting models, 
Cairns et al.32 proposed a checklist of criteria against which a model can be evaluated. 
Among many technical criteria concerning how projections are carried out, the checklist in-
cludes that the model should be consistent with historical data, the parameter estimates and 
the model forecasts should be robust and long-term trends should be biologically plausible. 

A specific assumption of the Lee-Carter model concerning the constant age parameters 
needs to be addressed. In particular, the postulate of time-fixed age-specific parameters has 
been criticized for being unrealistic if the time horizon of the historical data on which the 
model is fitted, is long262. Critics say that the contribution of a given age to the changes of 
mortality may vary over time due to complex changes in, for example, medical technology, 
population health or living environment. It is indeed quite often the case with mortality 
models that long time series data are used where the age parameters are subject to changes. 
In the studies of Part II the time horizon was moderate or short compared to mortality 
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studies, and hence non-constant age effects were less of a concern. Furthermore, the time 
window of the forecasts was also relatively short compared to what it has generally been for 
mortality forecasts, causing smaller potential problems in our forecasts.

The Lee-Carter methodology roots in the analysis and extrapolation of cross sectional data. 
In general, a different approach could be based on utilizing information from longitudinal 
data in that individuals are followed over time. One of the main advantages of using longi-
tudinal survey data compared to repeated cross sectional data is that, usually, the estimated 
trends exhibit less variation because the observations within individuals are positively 
correlated. In our studies the trend estimates were surrounded by substantial uncertainty 
due to sampling variation in the surveys. This uncertainty rolled into and was reflected in 
the projections as well. Most of the time, however, good quality longitudinal data is not 
available and researchers have to rely on independent cross sectional survey data. For such 
situations the idea (and application) of the Lee-Carter model is a novel, straightforward, 
and a flexible approach.

8.4 What this thesis adds to the literature

In this section I overview what this thesis adds to the literature in terms of content and 
methodology.

Part I.
Most often disability has been assessed in cross-sectional studies without information on 
mortality209. The few longitudinal studies that have been conducted tend to emphasise inci-
dent disability rather than the trajectory of disability following onset. Thus, while the onset 
of disability has been extensively researched59-67, there has been far less investigation into 
the mortality risk associated with disability. In Chapter 2 the association between mortality 
and disability was assessed and the extent to which this relationship can be explained by risk 
factors associated with the disablement was quantified.

In Chapter 3 life expectancy and life expectancy with disability was estimated among normal 
weight, overweight and obese smokers and non-smokers in Western-Europe. Early studies 
of U.S. populations found large effects of being overweight and obese on both premature 
death risk and disability prevalence98,99. However, these effects reflect life histories of older 
cohorts and there is evidence that the excess risk of higher body mass index on mortality has 
diminished over time100,101. Studies using more recent data from the U.S. showed smaller 
impacts on life expectancy, but still large effects on disability-free life expectancy102,103. The 
evidence on the impact of overweight status on life expectancy and the burden of disability 
in Europe was largely incomplete. Previous studies were based on small sample sizes and 
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were restricted to single countries105,106. We provided a general picture of the population 
health associated with overweight status in Western European countries as a whole.

In Chapter 4 the level of socioeconomic differences in life expectancy and health expec-
tancy in Western-Europe was assessed. Estimates of socioeconomic differences in health 
expectancy are available for an increasing number of European countries61,129-134. How-
ever estimates from national studies are not comparable due to large variations in the 
data sources used, the age ranges covered, and the health and socioeconomic indicators 
employed. Therefore an overview of the magnitude of socioeconomic differences in total 
and healthy life years at old age in Europe was lacking. Our study estimated the magnitude 
of educational differences in disability-free life expectancy between age 50 and 65, and in life 
expectancy and disability-free life expectancy after age 65.

Part II.
In Chapter 5 a multistate life table model framework was presented that can be used to 
forecast total life expectancy and health expectancy of an individual. In the demographic 
literature a large number of multistate projection studies can be found, however these 
models forecast the size of a population. These projections are typically based on cohort 
components of demographic change including births, deaths, and migration. The transitions 
between the modelled states are based on transition rates that may change in time166 and / 
or may vary between subpopulations. Projections for sub-populations have been performed 
by region167, educational status168, household status169, labour force participation170 as well 
as by health / disability status171. Recently a large-scale research project has been completed 
in the European Union172. One of the goals of the research was to provide the size and age 
structure of future populations with and without disability. The crucial difference between 
the demographic projection studies and our forecasting model is that while demographic 
studies forecasted the size of the population by a multistate method we forecasted the ele-
ments of a multistate life table. In other words, our method generates forecasts of a MSLT 
itself.

In Chapter 6 we investigated the impact that population aging will likely exert on future 
levels of long-term care spending. While past disability trends have been investigated 
abundantly39,199,201-205, only a few studies have exploited the trends to forecast LTC use or 
spending. We forecasted lifetime and aggregate annual LTC spending for the Dutch 55+ 
population until 2030 accounting for changing disability patterns that has not been done 
before.

In Chapter 7 we forecasted the prevalence of overweight and obesity for the Dutch adult 
population until 2020. Although our study was not the first one to forecast overweight status, 
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we proposed a new approach. A previous study, for example, estimated annual proportional 
changes of the mean BMI by age, sex and race, and projected these changes several years 
ahead233. Another study used quantile regressions to model the increase of BMI for each 
of the 1st through 99th BMI percentiles, and extrapolated the trends234. Other projections 
used techniques that model BMI status directly, i.e. either based on longitudinal data esti-
mating transitions probabilities and making cohort-wise projections, or transforming the 
categorical data into multivariate normal distribution and fitting a time series model235,236. 
Although it has already been acknowledged that the BMI distribution was becoming less 
skewed237,238, it has not been modelled explicitly before. Unlike these previous approaches 
our method explicitly took into account changes in the shape of the BMI distribution. In 
addition, modelling the BMI distribution itself and deriving prevalence estimates indirectly 
seems to be a better choice than modelling the prevalence of overweight status directly 
because of the changes within these categories. 

8.5 Implication for future research and policy relevance

In Chapter 4 it was argued that the systematic reforms aimed at increasing pension(able) 
age should take into account the trend of rising life expectancy, and – as shown in Chapter 
5 – rising health expectancy. However, such restructuring rarely acknowledges the differ-
ences in life and health expectancies between socio-economic groups, for example groups 
of different educational level. Educational inequalities favouring the higher educated exist 
on both sides of the retirement age. Although being disabled does not necessarily mean 
being unable to work, and being non-disabled does not necessarily mean being able to 
work; good health does increase the likelihood of participation in the labour force and 
decreases the probability and need of early retirement156. We suggest that efforts should be 
put into studying opportunities to decrease the educational differences in life expectancy 
and health expectancy. More importantly, policy makers should investigate the possibility 
and consequences of making the retirement age more flexible by allowing for differential 
official retirement age for different educational status groups.

In Chapter 5 it was claimed that the Lee-Carter model is generalizable to multistate set-
tings and it was demonstrated for disability-free life expectancy. This approach could be 
used for forecasting working or active life expectancy as well because these measures are 
estimated by similar multistate life table models. Forecasts of life and health expectancy for 
different socioeconomic groups should be prepared as well because such projections might 
contribute to alleviating the tension around social security systems, including the pension 
systems in the Netherlands and in Europe38.

In Chapter 6 it was demonstrated that long-term care expenditures are likely to increase by 
56% in the Netherlands in the next twenty years. It is therefore important that policy makers 
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are prepared for the financial consequences and for the increase of LTC demand in terms of 
health care provision facilities and equipment. Follow-up studies should be carried out to 
investigate how to mitigate these likely changes and their impact on the health care sector. 
Because increasing costs of LTC are almost purely the result of the ageing of the baby boom 
generation, increasing longevity has little influence on the demand for future LTC since 
the period of severe disability is postponed, not extended. Stimulating further compression 
of disability, however, is one of the possibilities that could alleviate the consequences of 
population aging on the long-term care spending growth. The findings in Chapter 2 indicate 
that postponing the occurrences of chronic diseases can be a successful strategy for which 
prevention, health promotion, or screening programmes may be needed.

Strongly related to a possible compression of disability (and is largely influenced by) the 
future changes in the prevalence of overweight and obesity. In Chapter 3 it was demon-
strated that overweight and obesity are strongly associated with disability compared to 
normal weight. If the changes in the prevalence of obesity keep continuing as it did in the 
past 30 years, the goal of compressing disability will be very difficult to reach. However, 
awareness of obesity is much greater now than it was before, and lessons can be learnt from 
other countries, especially the U.S. and U.K., where the prevalence of obesity is already 
particularly high229,263. Nonetheless, it should be researched whether, and if yes, how large 
the impact of increasing prevalence of overweight and obesity will have on future mortality, 
incidence of diseases, future health care needs or even on the health insurance industry. 
We have no doubt that obesity research including understanding the causes, consequences, 
prevention and treatment will continue to play a major role in public health research. When 
it comes to implementing all of this work, one of Mahatma Ghandhi’s sentences comes to 
my mind when he was asked what he thought of Western civilization. He said: „I think it 
would be a good idea”.
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English 

People today in the Western world live longer than previous generations did. The dramatic 
increase of life expectancy, the expected remaining years of life at a given age, in the last 
century is considered as one of the great achievements of modern societies. Between 1970 
and 2009 the average length of life in the old EU member states increased from 68.7 to 
78.0 among men and from 74.9 to 83.5 among women. Contrary to the length of life, the 
length of the healthy fraction of life is much more difficult to quantify because there is no 
harmonized way of expressing and measuring health. In the last two decades considerable 
efforts have been put into the development of summary measures of population health. 
One class of these measures is health expectancies that not only summarize information of 
mortality alone but combines information of mortality with health outcomes. In general, 
health expectancy is an estimate of the number of remaining life years that a person at a 
certain age is expected to live with or without ill-health. In its most commonly employed 
form health expectancy is a functional health status measure, yielding the disability-free life 
expectancy and the life expectancy with disability.

So far the main focus of health expectancy research has been put on the trends of health 
expectancy in a given country or on cross-country comparisons between countries at a 
given period of time. Less emphasis has been placed on determinants of health expectancy, 
such as obesity, smoking or educational level. The first part of this thesis presents studies 
that estimate the extent to which these risk factors are related to health expectancy. In age-
ing populations it is also an important question whether increases in life expectancy will be 
accompanied with greater or lesser increases in life years spent in poor health in the future. 
There may be several implications of a potentially increasing health expectancy, for example 
retirement policies may be revised or the demand for health care may change. The second 
part of this thesis presents projections of health expectancy, long term care expenditure and 
prevalence of overweight and obesity.

The relationship between disability and mortality
In Chapter 2 we estimated the strength of the relationship between disability and mortality 
and investigated the extent to which this relationship can be explained by risk factors of 
disability onset. Our results suggest that the relationship between disability and all-cause 
mortality in the general population is substantial. At any age, disabled persons face a higher 
risk of mortality than the non-disabled. The magnitude of the relationship, however, varies 
by disability measure. We also showed that severe measures of disability, i.e. activities of 
daily living and mobility disability were strongly associated with death, but less severe dis-
ability measure, i.e. the OECD disability indicator, expressed a less significant elevation in 
death risk. A large proportion of the excess mortality risk associated with disability could 
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be explained by risk factors preceding the onset of disability. Whereas for mild disability 
this risk difference could be explained by chronic diseases and other risk factors related 
to socio-demographic status, i.e. education, marital status, and lifestyle, i.e. smoking but 
not overweight, an independent effect of more severe disabilities on mortality could not be 
ruled out.

The relationship between overweight status, smoking status and health expectancy
In Chapter 3, the relationship between overweight status, smoking status and both total life 
expectancy and life expectancy with disability in Western-Europe was explored. We dem-
onstrated that overweight people can expect to live slightly longer than those with normal 
weight, which – as suggested by other studies - might be a consequence of the protective 
effect of overweight on mortality in disabled populations. In contrast, overweight and obese 
people can expect to live considerably more years with disability than people with normal 
weight. Smoking had a different relationship with health expectancy. Smoking was associ-
ated with lower total life expectancy, but with an unchanged life expectancy with disability 
compared with non-smoking.

The relationship between educational status and health expectancy
In addition to the effect of lifestyle, in Chapter 4, educational differences in health expec-
tancy and life expectancy before and after official retirement age were quantified across 10 
countries in Western Europe. We showed that populations with a higher level of education 
can expect to live more years free of disability before retirement, suggesting fewer problems 
in reaching pension age in good health. People with a higher educational level can also 
expect to live longer after retirement, implying that they represent a greater liability for 
pension funds. For life expectancy larger differences were found among men than among 
women, whereas differences in health expectancy were alike for both men and women. 

Forecasting health expectancy
To forecast health expectancy we proposed a theoretical framework for a multistate life table 
model, in which the transition probabilities depended on age and calendar time. In Chapter 
5 we described how to model and project these transition rates by the Lee-Carter method, 
and illustrated how it could be used to forecast future health expectancies with prediction 
intervals. The model was applied to the Dutch population aged 55 and older, and health 
expectancies were forecasted up until the year 2030. Additionally, the dynamic relationship 
between disability-free life expectancy, measured in terms of the OECD disability indicator, 
and life expectancy was analyzed, and probability distributions were attached to different 
future scenarios of compression or expansion of disability. Our results showed that both 
total life expectancy and disability-free life expectancy are likely to increase till 2030 among 
men and women but the prediction intervals were wide.
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Forecasting long-term care expenditures
In Chapter 6 we forecasted the impact that population aging will possibly exert on future 
levels of aggregate long-term care expenditures. For that we used an extended version of 
the model of Chapter 5. This extended model projected life expectancy without disability, 
life expectancy with mild and life expectancy with severe disability; it attached expendi-
tures of home care and institutional care use to the health expectancies. Whereas both 
total life expectancy and life expectancy with mild disability were forecasted to increase, 
life expectancy with severe disability was projected to remain constant as the years lived 
with severe disability were postponed to higher ages. Consequently, home care spending, 
associated with mild disability was expected to grow, while the substantially more expensive 
institutional long-term care expenditure, related to severe disability, was likely to remain 
fairly stable. We projected that population aggregated long-term care expenditure for the 
55+ Dutch population is to rise by about 56% by 2030, that was mainly due to the ageing of 
the baby boom cohort and not due to increasing per capita long-term care costs.

Forecasting the distribution of body mass index
In Chapter 7 we modelled the BMI distribution of the Dutch adult population and fore-
casted by explicitly taking into account the changes in the shape of the BMI distribution. 
Although it has already been acknowledged that the BMI distribution was becoming less 
skewed over the years, this phenomenon has not been modelled and forecasted before. 
Based on the projected BMI distribution we derived future prevalences of overweight and 
obesity. Assuming that past trends will continue in the future we predicted a stable but slow 
increase for the prevalence of overweight until 2020 among men and women. Concerning 
the prevalence of obesity larger increases were expected, especially among middle aged 
people. For men aged 50-59 the prevalence of obesity was expected to increase from 16.6% 
in 2008 to 20.2% by 2020. Very similar trends were found for women.

Conclusion
There is a substantial heterogeneity in life expectancy and health expectancy in subgroups of 
a population. Our results imply that tobacco control is still highly relevant to the prevention 
of premature death. Furthermore, interventions aimed at addressing the obesity epidemic 
are important if an increase of life expectancy with disability is to be stopped as life expec-
tancy continues to grow. Our results also showed that people with higher educational level 
expect to live more years free of disability before retirement. Therefore those at the bottom 
of the socioeconomic ladder could be affected disproportionately if the official retirement 
age is raised.

The steadily increasing life expectancy in the developed countries is a great achievement, 
but at the same time raises the question of whether living longer lives will be accompanied 
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by a decrease or an increase of disability during old age. Although there is a concern that 
the obesity epidemic may, in the long run, increase the prevalence of disability in ageing 
populations, disability-free life expectancy is still expected to increase. Our results suggest 
that the obesity epidemic will likely not lower life expectancy and not increase the years 
lived with severe disability, however it may contribute to the likely increase of the years 
lived with mild disability. Given that long-term care costs are mainly determined by severe 
disability, increased years lived with mild disability will likely not increase the per capita 
demand for long-term care considerably.
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Dutch

Tegenwoordig leven mensen –met name in westerse landen– gemiddeld veel langer dan 
vroeger ooit het geval was. De aanzienlijke stijging in de levensverwachting gedurende de 
afgelopen eeuw wordt dan ook beschouwd als een van de grootste verworvenheden van de 
hedendaagse samenleving. Tussen 1970 en 2009 steeg de gemiddelde levensverwachting in 
de EU-15 lidstaten van 68,7 (74,9) naar 78,0 (83,5) jaar bij mannen (vrouwen). De toename 
in het aantal gezonde levensjaren is daarentegen veel moeilijker te kwantificeren, omdat er 
geen eenduidige manier bestaat om gezondheid te definiëren én meten. In de afgelopen twee 
decennia is er echter veel vooruitgang geboekt in de ontwikkeling van gezondheidsmaten 
die niet alleen gebaseerd zijn op mortaliteit, maar ook op morbiditeit. Zo is het gangbaar ge-
worden om de gezonde levensverwachting te definiëren als het verwachte aantal resterende 
levensjaren dat een persoon vanaf een bepaalde leeftijd in goede gezondheid verkeert (d.w.z. 
zonder gezondheidsproblemen). In de praktijk wordt de gezonde levensverwachting vaak 
geoperationaliseerd als de resterende levensverwachting zonder beperkingen.

Tot nu toe is bij onderzoek naar de gezonde levensverwachting de nadruk gelegd op trends 
in de gezonde levensverwachting in een bepaald land of op vergelijkingen tussen landen 
in een bepaalde periode. Veel minder aandacht wordt er besteed aan determinanten van 
de gezonde levensverwachting, zoals overgewicht, roken of opleidingsniveau. Het eerste 
deel van dit proefschrift presenteert dan ook studies die de mate waarin deze risicofactoren 
samenhangen met gezonde levensverwachting in kaart brengen. Daarnaast resteert bin-
nen het onderzoek de vraag in hoeverre de toekomstige stijging van de levensverwachting 
gepaard zal gaan met een stijging van levensjaren doorgebracht in een goede dan wel slechte 
gezondheid. Een stijging van de gezonde levensverwachting heeft namelijk potentieel ver-
strekkende gevolgen. Zo vraagt dit wellicht om een ander pensioenbeleid om het pensioen 
te waarborgen, of om een andere organisatie en financiering van de gezondheidszorg om 
met een toenemende vraag naar de zorg om te gaan. Het tweede deel van dit proefschrift 
schetst een beeld van een aantal gevolgen, door prognoses te geven van de gezonde levens-
verwachting, langdurige zorguitgaven, en de prevalentie van overgewicht en obesitas.

De relatie tussen beperkingen en sterfte
In hoofdstuk 2 hebben we de mate waarin beperkingen en sterfte gerelateerd zijn in kaart 
gebracht, en onderzocht in hoeverre deze relatie verklaard kan worden door risicofactoren 
voor het optreden van beperkingen. Onze resultaten suggereren dat de samenhang tus-
sen beperkingen en sterfte in de algemene bevolking sterk is. Deze samenhang is echter 
afhankelijk van de maat die wordt gebruikt om beperkingen te operationaliseren. Maten 
voor ernstige beperkingen (zoals een maat die activiteiten uit het dagelijks leven en mobilit-
eitsbeperkingen meten) laten een sterke relatie tussen beperkingen en sterfte zien maar voor 
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maten van minder ernstige beperkingen (zoals bijvoorbeeld de OECD beperkingen indica-
tor) is deze relatie veel minder sterk. Een groot deel van het additionele risico op sterfte als 
gevolg van beperkingen kan worden verklaard door de aanwezigheid van risicofactoren 
voorafgaand aan het ontstaan van beperkingen.

De relatie tussen de mate van overgewicht, rookgedrag en een gezonde levensverwachting
In hoofdstuk 3 werden de gevolgen van overgewicht en rookgedrag voor zowel de totale lev-
ensverwachting als de levensverwachting met een beperking in West-Europa onderzocht. 
We hebben aangetoond dat mensen met overgewicht een iets langere levensverwachting 
hebben dan mensen met een normaal gewicht, wat - zoals gesuggereerd is in andere stud-
ies – wellicht een gevolg is van het beschermende effect van overgewicht op de sterfte van 
mensen met een beperking. Mede als gevolg daarvan kunnen mensen met overgewicht 
of obesitas aanzienlijk meer jaren leven met een beperking dan mensen met een normaal 
gewicht. Rookgedrag had daarentegen een andere relatie met de gezonde levensverwacht-
ing. Rokers werden geassocieerd met een lagere totale levensverwachting, maar hadden een 
gezonde levensverwachting die vergelijkbaar was met die van niet-rokers.

De relatie tussen opleidingsniveau en gezonde levensverwachting
In hoofdstuk 4 zijn verschillen tussen opleidingsniveau in termen van (gezonde) levensver-
wachting gekwantificeerd vóór en na de pensioengerechtige leeftijd in tien West-Europese 
landen. We hebben aangetoond dat populaties met een hoger opleidingsniveau meer lev-
ensjaren zonder beperking kunnen verwachten, hetgeen suggereert dat hoger opgeleiden 
vaker de pensioengerechtigde leeftijd bereiken in goede gezondheid. Van hoger opgeleiden 
is tevens de verwachting dat ze langer leven na het bereiken van deze leeftijd. Verschillen 
in levensverwachting tussen opleidingsniveaus waren groter binnen mannen dan binnen 
vrouwen onderling, terwijl de verschillen in gezonde levensverwachting gelijk waren bin-
nen mannen en vrouwen.

Voorspellingen van de gezonde levensverwachting
Om de gezonde levensverwachting te voorspellen hebben we in hoofdstuk 5 een theoretisch 
kader voor een zogenaamde multistate model geformuleerd, waarin transitiekansen tussen 
verschillende gezondheidstoestanden in opeenvolgende levensjaren worden gemodelleerd. 
Deze kansen werden afhankelijk veronsteld van leeftijd en kalendertijd. We tonen aan hoe 
de zogenaamde Lee-Carter methode kan worden gebruikt om de gezonde levensverwacht-
ing te voorspellen en bijbehorende predictieintervallen te construeren. Dit model wordt 
geïllustreerd  door de gezonde levensverwachting voor de Nederlandse bevolking van 55 
jaar en ouder te voorspellen tot het jaar 2030. Onze resultaten laten zien dat zowel de totale 
levensverwachting en de levensverwachting zonder beperkingen waarschijnlijk tot 2030 
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stijgen bij zowel mannen en vrouwen, maar dat bijbehorende  predictieintervallen groot 
zijn, hetgeen suggereert dat deze schattingen vrij onzeker zijn voor de lange termijn.

Voorspellingen van langdurige zorguitgaven
In hoofdstuk 6 hebben we onderzocht welke impact de vergrijzing mogelijk heeft op de 
toekomstige langdurige zorguitgaven. Daarvoor hebben we een uitgebreide versie van het 
model uit hoofdstuk 5 gebruikt, waarin de levensverwachting zonder beperkingen, met 
lichte beperkingen en met ernstige beperkingen werd voorspeld. Uitgaven voor de thuis-
zorg en institutionele zorg werden gekoppeld aan deze voorspellingen. Zowel voor de totale 
levensverwachting als voor de levensverwachting met lichte beperkingen werd een toename 
voorspeld; voor de levensverwachting met ernstige beperkingen werd daarentegen geen 
verandering voorspeld doordat de levensjaren met ernstige beperking werden uitgesteld tot 
op een hogere leeftijd. Als gevolg werd een toename in de uitgaven aan thuiszorg voorspeld 
– die gekoppeld zijn aan de gestegen levensverwachting met lichte beperkingen – terwijl de 
uitgaven aan de aanzienlijk duurdere institutionele zorg – die in verband worden gebracht 
met de levensverwachting met ernstige beperking – werden voorspeld redelijk stabiel te 
blijven. Er wordt verwacht dat de totale langdurige zorguitgaven voor de Nederlandse bev-
olking van 55+ tot 2030 zal stijgen met ongeveer 56%, welke grotendeels het gevolg is van de 
vergrijzing van bevolking, en slechts in kleine mate het gevolg is van toenemende per capita 
langdurige zorguitgaven.

Voorspellingen van de BMI verdeling
In hoofdstuk 7 hebben we de BMI verdeling van de volwassen bevolking in Nederland 
gemodelleerd en voorspeld. Hierbij hebben we expliciet rekening gehouden met de verand-
eringen van de vorm van de BMI verdeling. Hoewel al bekend is dat de BMI verdeling door 
de jaren heen steeds minder scheef wordt, is dit fenomeen niet gemodelleerd of voorspeld. 
Op basis van de verwachte BMI verdeling hebben we de toekomstige prevalenties van 
overgewicht en obesitas afgeleid. Ervan uitgaande dat patronen uit het verleden zich voortz-
etten in de toekomst, voorspelden we een gelijkmatige  –doch langzame – toename van de 
prevalentie van overgewicht bij mannen en vrouwen tot 2020. Wat betreft de prevalentie 
van obesitas werden grotere stijgingen verwacht, met name onder mensen van middelbare 
leeftijd. Zo is de verwachting dat bij mannen van 50-59 jaar de prevalentie van obesitas 
toeneemt van 16,6% in 2008 tot 20,2% in 2020. Zeer vergelijkbare trends in obesitas werden 
er voor vrouwen gevonden.

Conclusie
Grote verschillen in zowel levensverwachting als gezonde levensverwachting vonden wij 
tussen groepen mensen in de bevolking. Ten eerste zijn de verschillen in levensverwachting 
tussen rokers en niet-rokers groot. Onze resultaten impliceren dat de bestrijding van tabaks-
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gebruik nog steeds zeer relevant is voor het voorkomen van voortijdige sterfte. Ten tweede 
zijn er verschillen tussen mensen met en zonder obesitas (overgewicht). In tegenstelling 
tot de bestrijding van tabaksgebruik, zijn interventies die gericht zijn op het verminderen 
van obesitas voornamelijk van belang voor het voorkomen van beperkingen. Tenslotte 
vonden we ook verschillen tussen opleidingsniveaus. Hoogopgeleide mensen brengen naar 
verwachting  zowel voor als na hun pensionering minder jaren met beperkingen door dan 
laagopgeleiden. Een verhoging van de pensioengerechtigde leeftijd zou daarom andere 
gevolgen kunnen hebben voor de groep mensen met een lage sociaal economische status.

De toenemende levensverwachting in ontwikkelde landen is een grote verworvenheid 
op zich, maar tegelijkertijd dringt de vraag zich op of langer leven gepaard zal gaan met 
een stijging van de (functionele) beperkingen. In het bijzonder bestaan er zorgen over de 
lange-termijn gevolgen van de obesitas-epidemie voor het voorkomen van beperkingen in 
de bevolking. Onze resultaten geven een beeld van de mogelijke gevolgen. Zo neemt de lev-
ensverwachting zonder beperkingen waarschijnlijk toe. Hoewel de levensverwachting met 
lichte beperkingen ook zal toenemen als gevolg van de obesitas-epidemie, zal de levensver-
wachting met ernstige beperkingen waarschijnlijk niet veranderen. Aangezien de vraag naar 
langdurige zorg vooral wordt bepaald door het voorkomen van ernstige beperkingen, zal 
een toenemende levensverwachting derhalve waarschijnlijk niet resulteren in een explosie 
van de vraag naar langdurige zorg, hetgeen voorheen altijd werd gedacht.
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