The role of fibrinogen variants in cardiovascular diseases and wound healing

(1) Combined haplotypes of FGG and FGA are associated with the risk of cardiovascular diseases, but not with fibrinogen levels (this thesis).

(2) Individual SNPs in FGG, FGA and FGB genes are not associated with risk of cardiovascular diseases, but they are associated with risk when combined as haplotypes (this thesis).

(3) Elevated fibrinogen γ/total fibrinogen ratios in patients with various cardiovascular diseases reflect an altered mRNA processing of fibrinogen γ during the acute phase of diseases (this thesis).

(4) The γA and γ fibrin matrices have different structural and functional characteristics, and alter the in vitro tube formation and fibrinolytic activity of endothelial cells (this thesis).

(5) Fibrinogen elastase degradation products may contribute to stroke pathogenesis (this thesis).

(6) Health professionals should use DNA information to give customized advice, tailored to an individual person’s unique genetic make-up (NIH, 2011).

(7) Not only large, but also small cohorts are of interest for genetic association studies (Nature Rev. Genet. 2010, 11:241-246).

(8) New wound care techniques should still not be used before conservative and time-honored methods of wound care are attempted (NEJM 1999, 341:738-746).

(9) Without animal research and testing, there would be no new drugs (European Federation of Pharmaceutical Industries and Associations, 2011).

(10) Fibrinogen γ chain plays an important role in wound healing because it serves as a depot for fibroblast growth factor-2 (Curr Opin Hematol 2004, 11:151–155).

(11) Life is like riding a bicycle. To keep your balance you must keep moving (Albert Einstein, 1879–1955).

Elim Cheung
Rotterdam, 26 June 2012