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Background. Feasibility of genotyping of hundreds and thousands of single nucleotide polymorphisms (SNPs) in thousands of
study subjects have triggered the need for fast, powerful, and reliable methods for genome-wide association analysis. Here we
consider a situation when study participants are genetically related (e.g. due to systematic sampling of families or because a
study was performed in a genetically isolated population). Of the available methods that account for relatedness, the
Measured Genotype (MG) approach is considered the ‘gold standard’. However, MG is not efficient with respect to time taken
for the analysis of genome-wide data. In this context we proposed a fast two-step method called Genome-wide Association
using Mixed Model and Regression (GRAMMAR) for the analysis of pedigree-based quantitative traits. This method certainly
overcomes the drawback of time limitation of the measured genotype (MG) approach, but pays in power. One of the major
drawbacks of both MG and GRAMMAR, is that they crucially depend on the availability of complete and correct pedigree data,
which is rarely available. Methodology. In this study we first explore type 1 error and relative power of MG, GRAMMAR, and
Genomic Control (GC) approaches for genetic association analysis. Secondly, we propose an extension to GRAMMAR i.e.
GRAMMAR-GC. Finally, we propose application of GRAMMAR-GC using the kinship matrix estimated through genomic marker
data, instead of (possibly missing and/or incorrect) genealogy. Conclusion. Through simulations we show that MG approach
maintains high power across a range of heritabilities and possible pedigree structures, and always outperforms other
contemporary methods. We also show that the power of our proposed GRAMMAR-GC approaches to that of the ‘gold standard’
MG for all models and pedigrees studied. We show that this method is both feasible and powerful and has correct type 1 error
in the context of genome-wide association analysis in related individuals.
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INTRODUCTION
Most of the complex genetic diseases have risk factors that are

quantitative in nature. For instance, cholesterol level is a risk factor

for myocardial infarction, Body mass index is a risk factor for type

2 diabetes. These quantitative traits (QTs) often have strong

genetic determinants. It is therefore, of considerable interest to

map the genes underlying QTs [1]. For most QTs relevant for

human health and disease a large proportion–ranging from 30 to

80%–of variation is explained by genetic factors. Multiple genes

are expected to contribute to this variation. The proportion of

variation explained by a single gene is expected, however, to be

small (less than 5%). For example, one of most known quantitative

trait loci (QTLs), APOE is strongly and consistently associated

with increased total cholesterol levels. Yet it explains only about 2–

5% of the variation of this trait [2,3]. When effects of specific

common variants are expected to be small, association analysis

provides a powerful approach to identify the gene compared to

linkage analysis [4]. Genome-wide association analysis is a

powerful tool to disentangle the complexity of quantitative traits,

even in family based studies.

For pedigree-based association analysis several methods and

software packages have been developed that utilize information

about transmission of alleles, such as the orthogonal test for within-

family variation [5] and family-based association test [6,7]. As

these methods analyze within-family variation, they are robust to

population stratification. However, these methods ignore a large

proportion of information provided by the between-family

variation leaving room for improvement.

A conventional polygenic model of inheritance, which is a

statistical genetics’ ‘‘gold standard’’, is a mixed model

y~mzGze,

where m is the overall mean, G is the vector of random polygenic

effect, and e is the vector of random residuals. This model may be

extended to study association by including a kg term, where k is the

marker genotype effect, and g is the vector of genotypes. Such a

model is known as the measured genotype (MG) model [8]. The

MG approach, implemented using (restricted) maximum likeli-

hood, is a powerful tool for the analysis of QTs when ethnic

stratification can be ignored [9,10] and pedigrees are small or

when there are few dozens or hundreds of candidate polymor-

phisms to be tested. This approach, however, is not efficient in

terms of computation time. This hampers the application of MG

in genome-wide association analysis.

We proposed a fast two-step approximation to MG, a Genome

Wide Rapid Association using Mixed Model and Regression

(GRAMMAR) [11] . In the first step the individual environmental
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residuals are estimated, using additive polygenic model. Then the

test of association is performed using these familial correlation-free

residuals with a rapid least squares or score method. Though the

two-step method is indeed computationally efficient and outper-

forms family based approaches like FBAT and QTDT in terms of

power and speed, it loses power compared to MG [11]. The test

becomes increasingly conservative and less powerful with the

increase in the number of large full-sib families and increased

heritability of the trait. Interestingly, empirical power of

GRAMMAR is very close to that of MG.

Both classical MG and GRAMMAR approaches rely heavily on

the availability, completeness, and correctness of genealogical

information. When these assumptions are violated, the most likely

outcome is inflation in type 1 error. Practically, genealogical

information may often be available only for a limited number of

generations, it may be inaccurate, and it may become increasingly

inaccurate back in time. This may be taken as an argument for

application of underpowered TDT-like methods to avoid false

positive or negative results.

We and others reason that genomic data can be used to correct

for the (only partly observed) true genealogy. With the new array

technologies, large numbers of markers can be typed over the

genome. These provide information on ‘genomic background’,

which can be used to infer population (sub)structure and relations

between study participants, which is classically done using the

genealogy. In a recent study of type 2 diabetes, genomic control

(GC) was applied to control for relatedness among cases and

controls from Icelandic population [12], However, the type 1 and

2 errors of GC were not yet systematically investigated in the

context of pedigree data analysis. In this study we aim to exploit

the ideas of genomic background to extend our work on family

based association [11] and determine how powerful and efficient

the method for genome-wide association analysis of QTs in

samples of related individuals is.

METHODS
Only minor proportion of markers in a genome-wide association

study is expected to be truly associated with an analysis trait, and a

vast majority of the markers may be thought of as realizations

under the null hypothesis and can be used to characterize the null

distribution of the test statistics. This idea follows that of Genomic

Control (GC) method [13], which was introduced in the context of

association analysis in population-based studies, where population

stratification and cryptic relatedness may be present.

Following Devlin and Roeder [13,14] we suggest estimation of

the test statistic inflation factor l by regressing the trait on N loci.

From each regression analysis, estimate Ti
2 = bi

2/Var(bi), where bi

is the effect of the i-th SNP (i from 1 to N) and Var(bi) is the

variance of the estimate. Inflation factor is estimated as

l~Median (T2
1 ,T2

2 ,:::,T2
N )=0:456

where 0.456 is the median of the x1
2 distribution with a non-

central variance equal to w. The number of loci used, N, in a

genome-wide association study is typically reflecting all loci

investigated or the ones generating lowest 95% of test statistics

[15,16]. It should be noted that the value of l in conventional GC

is constrained to be greater than one as values less than one have

no theoretical meaning.

We propose use of GC to correct for conservativeness of the

GRAMMAR approach outlined earlier. This method which we

call GRAMMAR-GC involves three steps: (a) trait heritability is

estimated by using trait and pedigree data using the following

mixed model

yi~mz
X

j

bj cijzGizei

where bj is the effect of jth covariate , cij is the value of jth covariate

and m, G, and e are defined earlier. And environmental residuals

are estimated as

y�i ~y{(m̂mz
X

j

bj cijzĜGi)

(b) the markers are tested for association with these residuals using

simple linear regression

y�i ~mzkgizei

where k and g are defined earlier

(c) GC procedure is applied to correct the test statistic. The

deflation factor f is estimated by regressing residuals from step (a)

on each of the k null loci and from each regression analysis

T2
k~b̂2

k=var(b̂k) is estimated, where b̂k is the effect of the kth SNP.

The deflation factor f is estimated as f̂~median(T2
1 ,T2

2 ,:::,T2
K )=

0:456. Then T2/f̂ is compared with x2
(1) to determine whether the

locus is significantly associated with the QT [14].

Steps (a) and (b) comprise the original GRAMMAR approach,

leading to a conservative test. In step (c), GC is used to estimate the

deflation factor f. This deflation factor is estimated in exactly the

same way Bacanu et al. [14] estimate inflation factor l for

quantitative traits. The only difference is that f,1 in contrast to l
in conventional GC methods which is constrained to be .1. This

difference comes from the fact that residuals from step (a) are

regressed on null loci to obtain the estimate of f instead of original

trait data as in conventional GC.

The original GRAMMAR relies on the availability of a precise

and complete pedigree structure for heritablity estimation in step (a).

This can, however, be done by using kinship coefficients estimated

from genomic data where the genomic estimate of kinship for a pair

of individuals i and j is obtained using the formula [17]

fij~
1

n

Xn

k~1

(gik{pk)(gjk{pk)

pk(1{pk)

where gik is the genotype of the i-th person at the k-th SNP of the

(coded as 0, 1/2 and 1, for rare allele homozygote, heterozygote and

common homozygote, respectively), pk is the frequency of the major

allele, and n is the number of SNPs used for kinship estimation.

Heritability is then estimated by maximizing the log-likelihood

of the data

log L~{
1

2
loge Sj jz(y{m)TS{1(y{m)
� �

where y is the vector of trait values, m is the mean and

S=WsG
2+Ise

2 is the variance-covariance matrix. Here, W is the

relationship matrix whose elements are defined as 2 fij, sG
2 is the

additive genetic variance due to polygenes, I is the identity matrix

and se
2 is the residual variance. Trait environmental residuals

were obtained as

y�~ŝs2
e ŜS{1 (y{m̂m)

To avoid confusion we refer to the new method as Pedigree

GRAMMAR-GC (PedGR-GC) when in step (a) heritability is

estimated from the genealogy, and Genomic GRAMMAR-GC

Genome-Wide Association Map
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(GenGR-GC) when the heritability is estimated from the genomic

data. For PedGR-GC, environmental residuals were estimated

using ASReml [18]. All other computations were performed using

freely available R software (http://www.r-project.org); computa-

tions associated with GenGR-GC were facilitated by GenABEL

package for R [19], implementing procedures to compute genomic

kinship, maximize polygenic models and compute the residuals.

Pedigrees used
To investigate type 1 error and power of the proposed methods we

used three different pedigree structures representing three different

study scenarios. For example, Nuclear pedigrees (NP) simulated a

study performed in the outbred population, the Erasmus Rucphen

Family study (ERF) population is a study of a genetically isolated

population and Idealized Pig Population (IPP) simulates a livestock

population.

NP: 337 sib-trios each having 3 phenotyped and genotyped

siblings; in total, 1011 individuals were available for the analysis.

The founders in each pedigree were assumed to be unrelated.

ERF: 1010 phenotyped and genotyped individuals all related to

each other in a single large complex pedigree of about 10,000

individuals. The pedigree extends up to 23 generations and

contains thousands of loops. The phenotyped individuals are a

part of Erasmus Rucphen Family (ERF) study, performed in a

young genetically isolated Dutch population [20].

IPP: idealized pig population, consisting of 10 sires, each mated

with 10 dams, nine of which have 10 and one 11 measured

offspring. Thus each sire has 101 half-sib offspring in families of 10

full-sibs. In total 1010 phenoytped individuals were available for

the analysis.

Genetic data was simulated using each of these pedigrees under

several models. The SNP that was analyzed for association had a

minor allele frequency of 10%. For studying type 1 error this SNP

was not associated with the trait while for studying power this SNP

explained 1, 2, or 3% of the total trait variation and acted in an

additive manner. The total heritability of the trait was set to 30,

50, and 80% and this included the variation due to the QTL

studied. To enable genomic control, we also simulated 200

unlinked SNPs for each realization.

These pedigrees and models were used to evaluate original

GRAMMAR and thus we can directly compare type 1 error and

power of the suggested methods to these evaluated by Aulchenko

et al [11], namely, MG, DFS (linear regression which does not take

family structure into account), QTDT and FBAT.

RESULTS
Table 1 shows the 95th percentile of the test statistic and type 1 error

(proportion of simulations that resulted in a x2$3.84 and x2$6.64,

corresponding to tabulated a = 0.05 and 0.01 respectively) for GC

and PedGR-GC and GRAMMAR. For GC and PedGR-GC type 1

error is close to the nominal a while GRAMMAR is conservative

and this conservativeness increases with the increase in the number

of sibships and the heritability of the trait.

Supplementary Table S1 and Figure 1 illustrate the power of

the proposed (GC and PedGR-GC) and previous methods (MG

and GRAMMAR). In the Figure 1, power to reach x2$6.64

(a = 0.01) is depicted with circles. From the available evaluation

points we also estimated the slope of linear regression of non-

centrality parameter on proportion of variance explained and used

this slope to derive power curves.

Figure 1 shows that the power of PedGR-GC (blue dashed line)

is very close to the power of the ‘gold standard’ measured genotype

approach (red line) for all scenarios. These two methods appear to

be the most powerful of all methods for all pedigree structures and

genetic models evaluated. The power of GC (pink dashed line) is

close to that of MG and PedGR-GC when the heritability is low

but its’ power declines when the heritability of the trait increases or

when pedigrees with large number of full-sib families (IPP) are

investigated. GRAMMAR (green line) performs similar to GC in a

sample of nuclear families and in the ERF sample, but is more

powerful when IPP pedigree is investigated.

To study the potential of described methods on genome-wide

scale we used 695 people who are a part of the ERF pedigree and

who were genotyped using Illumina 6K SNP linkage panel. Based

on pedigree records, the 695 people formed 471 pairs of first-, 311

pairs of second-, 681 pairs of third- and 1,105 pairs of forth-degree

relatives and 223,578 pairs of more distant relationship.

We generated 500 replicas for each of the models assuming total

trait heritability of 30, 50 and 80%. In each replica, we selected

five hundred random SNPs each explaining equal proportion of

variance amounting to the total heritability minus 4%, and one

random SNP explaining 4% of the phenotypic variance. The

analysis trait was obtained as a sum of the SNP effects and a

random number from the Normal distribution with mean zero and

variance 0.7, 0.5 or 0.2 for total trait heritabilities of 30, 50 and

80%, respectively.

Type one error was estimated as the proportion of non-

associated SNPs (.2.5 million tests in total) showing association P-

value of 5% or less. The statistical power was estimated as the

proportion of replicas in which the SNP explaining 4% of variance

passed genome-wide significant threshold (Bonferroni-corrected P-

value 0.05/5524 = 961026).

For analysis, we used GC, PedGR-GC and GenGR-GC. For

GenGR-GC, the kinship matrix used was estimated from genomic

information on 5524 autosomal SNPs typed in 695 members of

the ERF study.

All methods showed a genome-wide type 1 error which was very

close, but lower than the pre-specified threshold of 5% (Figure 2A).

The methods tended to be more conservative at higher

heritabilities. These results are consistent with the observations

of others, that GC is conservative, and can be explained by the fact

that all SNPs, some of which were associated with the trait, are

used to estimate the null distribution of the test statistic.

DISCUSSION
In this work we aimed to develop fast and powerful methods for

genome-wide association analysis in samples of related individuals

by exploiting the ideas of genomic background for correction of

the distribution of the test statistics and for inferring the relation

between study subjects. We show that methods, which exploit only

genomic background, such as Genomic Control (GC) and

GRAMMAR-GC using genomic kinship, are powerful and

genome-wide feasible methods. Moreover, genomic GRAM-

MAR-GC, which infers genetic relations from genomic data,

may be superior to the methods that use pedigree information in

an exact manner.

Our simulations show that GC is a valid method to study data

coming from samples of related individuals. GC can be a powerful

tool for the analysis of pedigree based quantitative trait loci. It

outperforms traditional family based approaches like QTDT and

FBAT (cf. Table 1 & Table 2 of Aulchenko et. al.[11]). The power

of GC is close to that of the ‘gold standard’ measured genotype

approach when trait heritability is low or moderate and human

pedigrees are studied. However, the power of GC drops notably

with high trait heritability and when pedigrees involve very large

sibships, which are likely to be observed in animal pedigrees.

Genome-Wide Association Map
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The results that GC was less powerful, than GRAMMAR-GC

based methods, and tended to lose power at higher heritabilites

(Figure 2B), are not surprising and are consistent with our previous

findings [11]. Interestingly enough in a study of real Genome-wide

data in ERF pedigree, GenGR-GC was consistently more powerful

than pedigree-based GRAMMAR-GC (PedGR-GC), and the power

advantage became more pronounced at higher heritabilities.

We proposed an extension to the GRAMMAR method [11],

which increases its’ power, maintains a nominal type 1 error and

also does not require the precise knowledge of pedigree structure.

Our method (GRAMMAR-GC) involves three steps which

include removing the correlation from the data using relationship

matrix estimated from either the pedigree or the genome

(derivation of environmental residuals), using the correlation-free

residuals from step 1 as the trait to perform association analysis,

and then applying GC to correct the test statistic. We show

through simulations that our proposed method performs very

similar to the Measured Genotype (MG) approach with respect to

type 1 error and power yet it is fast and feasible for genome-wide

association analysis. By analysis of real genome-wide SNP data we

showed that when the genomic data is used to estimate the

relationship matrix (GenGR-GC) instead of the estimate obtained

from genealogy, the power might be even improved.

One of our conclusions is that in genome-wide association

studies of related individuals genomic background based methods

such as genomic GRAMMAR-GC should be preferred over the

ones exploiting known pedigree structure, such as pedigree

GRAMMAR-GC or MG approach. There are two reasons why

we believe that GenGR-GC should be preferred over its’ pedigree

analog.

First, errors in genealogy such as mis-specification of relations

can lead to either false positives or negatives. Secondly,

relationship coefficient computed from a pedigree is an expecta-

tion of the proportion of genome shared identical by descent (IBD)

under the infinitesimal model, assuming infinite number of

unlinked loci. The true proportion of genome shared, however,

may deviate from this expectation [17]. For example, for remote

relatives there is a fair chance of not sharing any genomic loci

IBD. We may speculate that kinship estimated based on marker

data can reflect the true unobserved genomic sharing better then

the expectation computed from even a correct pedigree. If this is

true, under the polygenic model we should expect that methods

based on kinship estimated from marker data will be more

powerful than the methods estimating kinship from the pedigree.

We however leave a more detailed investigation of effects of

pedigree error and precision of genomic kinship estimates on type

1 error and power to future works.

Another advantage of the GRAMMAR-GC is that the

environmental residuals used for the analysis are free from familial

correlations. Therefore the structure of the data becomes

exchangeable. This means that permutation techniques may be

applied to derive empirical measures of significance. In the

analysis of data where adjacent SNPs are correlated due to linkage

disequilibrium, thresholds set via permutation will account for

these correlations and result in less stringent thresholds than those

set by Bonferroni correction. This will become more and more
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Figure 1. Power of MG (red line), GRAMMAR (green line), PedGR-GC (blue dashed line), and GC (pink dashed line) to detect association under
different heritability models and pedigree structures. The three rows show the power under different heritability models (from 30% to 80%) and
the three columns show power achieved in different pedigrees namely nuclear pedigrees (NP), Erasmus Rucphen Family (ERF), and idealized pig
population (IPP). The y-axis of each panel shows power while the x-axis shows the proportion of variance explained by the QTL under study. The red
(for MG), green (for GRAMMAR), blue (for PedGR-GC), and pink (for GC) circles show the empirical power estimates. The power estimates are based on
a = 0.01. The empirical power estimates are based on 1000 simulations for NP, and IPP, and 100 simulations for ERF.
doi:10.1371/journal.pone.0001274.g001
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important in the future, when denser marker maps with millions of

SNPs will be applied to do association studies. Another attractive

feature is that a range of new methods developed for classical

‘‘unrelated individuals’’ design can be applied to polygenic

residuals obtained at the first stage of the analysis. In recent

years, much progress was made in development of powerful

methods and software which are robust to possible allelic

heterogeneity through utilization of haplotype clustering and

population genetic coalescence modeling [21,22].

Finally, GRAMMAR-GC is easily extendable: for example, it is

easy to include covariates, interactions with sex and environment,

gene-gene interactions and parent of origin effects.

To conclude, GRAMMAR-GC is a fast powerful approach for

genome-wide association analysis of quantitative traits in samples

of related individuals, which does not require precise knowledge of

pedigree structure. This method is implemented as part of the

GenABEL package, available at http://cran.r-project.org/.

SUPPORTING INFORMATION

Table S1 Mean x2 statistics and proportion of the test statistics

$tabular critical value.

Found at: doi:10.1371/journal.pone.0001274.s001 (0.05 MB

DOC)
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