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Abstract 

Recent dynamics in iron ore markets are driven by rapid changes in economic activities that affect 

commodity markets, trade flows, and shipping activities. Time series models for the relation between 

these variables in Southeast Asia and the Australasian region are supplemented with models for 

safety and pollution risk. Steel production in China, Japan, and South Korea is related to iron ore 

exports and vessel activity in Australia, with an estimated time lag of about two months. The 

Purchasing Manager Index, which is popular among traders as indicator of economic activity, is 

found to have predictive power both for steel production and for iron ore exports. The growth in 

economic activity and vessel movements is associated with significantly higher risks for ship 

accidents and pollution.  
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1. Introduction 

 

Seaborne trade has more than tripled since 1970 (UNCTAD, 2011). Most of recent trade growth is 

caused by the rapid economic expansion in Asia, especially in China, with related increases in the 

demand for dry bulk commodities like iron ore and coal. The latter two commodity flows have 

grown on average by 5% per year over the period 1984-2010 (UNCTAD, 2011). At the demand side, 

the combined share of China, Japan, and South Korea in global imports in 2010 was 80% for iron 

ore, 49% for coking coal, and 46% for thermal coal (Clarksons, 2012). At the supply side, Australia 

takes a prominent position with global export shares in 2010 of 40% for iron ore, 67% for coking 

coal, and 21% for steaming coal (Clarksons, 2012). The main destinations of Australian iron ore and 

coal are located in Southeast Asia: China, Japan, South Korea, Taiwan, and India. In 2010, the 

combined share of these five countries in Australian exports was 99% for iron ore and 84% for coal 

(derived from data provided by Braemer Seascope, one of the major dry bulk brokers in shipping).  

 

The demand for iron ore and coking coal depends on steel production, whereas the demand for 

thermal coal depends on energy consumption which is influenced by population growth and climate. 

The demand for these dry bulk commodities is further influenced by prices, supply, and proximity of 

supply. Transport from supply to demand countries implies demand for ship capacity, whereas the 

supply of vessels depends on freight rates and on the market balance between ship supply and 

demand (Stopford, 2009), the so-called ship economic cycles. For some of these mechanisms, it 

takes some time until changes in the economy filter through to the various market components. One 

industry hypothesis (based on information from Braemer Seascope) is that changes in the economy 

take about five months to affect ship economic cycles, whereas empirical results indicate time lags of 

between three and six months (Xu et al., 2011a). Previous studies have investigated several aspects 

of dry bulk markets, including trade flow forecasting (Veenstra and Haralambides, 2001), effects of 

freight rates on various drivers of ship economic cycles (Alizadeh and Nomikos, 2003; Tvedt, 2003; 

Adland et al., 2006; Syriopoulous and Roumpis, 2006; Xu et al., 2011b), effects of ship economic 

cycles on maritime safety (Bijwaard and Knapp, 2009), and effects of the recent financial crisis 

(Ching and Lai, 2011).  

 

In this paper, we take a comprehensive approach to provide further insight into the dynamics of dry 

bulk markets by investigating how changes in the economy affect the markets for commodities and 

ship services supply. We evaluate the value of several indicators of economic activity to predict dry 

bulk ship activity, including related safety and pollution risk. The aim is to provide a better insight in 

these markets, which is of interest to maritime regulators, ship brokers, and ship owners. We 
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concentrate mainly on iron ore and on the dominant ship sizes for this dry bulk market, namely 

capesize and panamax vessels. Coking coal was also considered, but recent structural breaks in this 

market complicate a model-based analysis, so that we will only provide a descriptive analysis. As the 

market for steaming is known to be quite different (Warell, 2005), it will not be considered here and 

it is left for future research. 

 

The paper has the following structure. Section 2 presents the data on economic activity, trade flows, 

ship activity, and safety and pollution. Models for these variables are described in Section 3, together 

with our model selection strategy. The results are in Section 4, where we present various relations of 

interest with their interpretation. Section 5 concludes.  

 

2. Data 

 

Table 1 provides an overview of the time series variables considered in our analysis, together with 

the observation period and the data sources. The variables are grouped in four areas of main interest: 

economic activity, commodity markets, ship activity, and safety and pollution. Table 1 contains also 

some auxiliary co-factors of interest, including commodity prices and the Purchasing Manager Index 

(PMI). The PMI is published monthly by the Institute of Supply Management and reflects economic 

sentiment. This index is widely used by brokers and managers in the shipping industry as an overall 

indicator for shipping markets. Until now, it has primarily been used for containers, whereas we will 

consider its potential predictive value for the dry bulk market. The dry bulk vessels that carry iron 

ore and coal are mostly of capesize and panamax size as defined by Braemer Seascope: panamax for 

sizes between 60 and 100 thousand DWT, and capesize for 100 thousand DWT and above. 

 

The accident and pollution data were collected from various sources, as indicated in Table 1. Since 

these data sources employ different classifications of accidents, the data were manually classified 

according to definitions of the IMO (2000) for very serious and serious accidents. Our database 

contains information on ship arrivals in Australia and on accidents in the Australasian and Southeast 

Asian regions. These data are available at the individual ship level and they are aggregated to 

monthly time series. Because of the specific region covered by the ship activity and accident data, we 

restrict the economic activity and commodity flows mainly to the same regions of interest, in 

particular to China, Japan, and South Korea. Because of the large weight of China, we sometimes 

consider the activity of China alone, together with its specific import need for iron ore.  

 

<< Table 1 to be inserted about here. >> 
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Figure 1 shows time series plots of the main variables of interest: steel production, and commodity 

flows for iron ore and coking coal for the main importing countries (China, Japan, and South Korea) 

and for the main exporting countries (Australia, Brazil, and the USA and Canada). As alternative 

indicators of economic activity, we considered also industrial production and blast furnace iron 

production, but steel production turned out to be more useful as it is more directly linked to the 

commodity flows of iron ore and coal. We sometimes consider total export series, consisting of the 

sum total of exports of the countries that are available in our database. For iron ore, the total exports 

are for Australia, Brazil, India, Peru, Russia, South Africa, and the Ukraine, and for coking coal, the 

total exports are for Australia, Canada, and the USA. Steel production shows a more or less 

exponential trend which is nearly exclusively due to China, whereas the combined production of 

Japan, and South Korea is more stable. The same holds true for iron ore imports, with a temporary 

drop in steel production and imports in 2008. Iron ore exports rise steadily, with a rapidly increasing 

share for Australia that is less volatile than the Brazilian share. As compared to iron ore, the export 

of coking coal is smaller (if measured in megaton) and it has a much less pronounced trend. A major 

cause of this finding is that China was able to satisfy its need for coking coal nearly completely from 

its own resources until 2008, after which year imports have risen sharply. Because of this recent 

break in the coking coal market, our analysis will concentrate mostly on iron ore.  

 

<< Figure 1 to be inserted about here. >> 

 

Figure 2 shows capesize and panamax arrivals, in terms of both the number of vessels and their 

combined deadweight (DWT), for Western Australia (major iron ore export region) and also 

combined with Queensland and New South Wales (major coal export regions). Figure 2 shows also 

the safety of capesize and panamax vessels in terms of the regional accidents (serious, very serious, 

and pollution) of these vessels operating in the areas of Australasia, China, Indonesia, Japan, and the 

Philippines. As an alternative indicator of ship activity, we considered global ship employment 

provided by Braemer Seascope. Here ship employment relates to the total dry bulk capacity needed 

to carry the required commodities from their origins (exporting countries) to the destinations 

(importing countries), which incorporates not only the transported volumes but also the transport 

distances and travel times. For our analysis, it turned out that the monthly ship arrival information 

was more useful than ship employment data, possibly also because the latter data are available only 

on a quarterly basis for capesize vessels and on a yearly basis for panamax vessels.  

 

<< Figure 2 to be inserted about here. >> 
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3. Model specification strategy 

 

The main relations of interest are those between economic activity in Southeast Asia and the 

maritime trade flows resulting from this activity, including potential effects on shipping safety. 

Figure 3 provides an overview of the five relations of interest: three relations for direct effects of 

economic activity on commodity markets, ship activity, safety and pollution, and two intermediate 

relations from commodity markets to ship activity and then to safety and pollution. The information 

on safety consists of count data, as the monthly number of accidents is too small to consider them as 

scale variables. The information on the other variables consists of time series of scale variables like 

volumes of production, import, export, and ship freight. Because of this hybrid nature of the data, we 

will use two kinds of models: time series models for the relations between economic activity, trade 

flows, and dry bulk activity, and count data models for safety in terms of economic or ship activity. 

We discuss the model specification strategy for each of these two types of model. These two 

strategies employ standard econometric tools (see, for example, Greene, 2008), for which we used 

the econometric software program EViews (2009). 

 

<< Figure 3 to be inserted about here. >>  

 

For the three types of models where the explained variable is a time series (trade flows or dry bulk 

activity), we take the following six steps in our specification of a time series model.  

 

I. As the variables display exponential trend patterns, we take their (natural) logarithm. This 

transformation is also motivated by the fact that the random variation around the trend is 

roughly proportional to the level of the series, so that the log-transformed series displays a 

more constant variation around the trend. In some cases we also considered non-transformed 

series, but in the end we have always chosen for the log-transformed series, also for ease of 

comparison. 

 

II. We check for the nature of the trend in the log-transformed dependent variable. Visual 

inspection suggests that the log-transformed series have rather stable linear trends, and we 

test for the existence of a unit root by means of an Augmented Dickey-Fuller (ADF) test 

equation with constant and linear trend. The autoregressive lag of the test equation is chosen 

by minimizing the Schwarz information criterion. The presence of a unit root is rejected in 

nearly all cases. Otherwise, we take first differences of the log-transformed variables. 
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III. We test for the predictive power of the proposed factor to explain the dependent variable 

under consideration by means of the Granger causality test. As the log-transformed variables 

have linear trends, we perform the standard (vector autoregression) test after detrending the 

two variables. That is, both log-transformed series are first regressed on a linear trend, and 

then the standard Granger causality test is performed on the two resulting series of residuals. 

Various lag specifications of the vector autoregressive testing model are considered: 1-12, 1-6 

and 12, 1-6, and sometimes also 1-4 (possibly with 12) and shorter. In some cases, both 

variables are mutually Granger causal for each other, in which case the forecast model might 

perhaps become simpler by considering a (lower order) bivariate vector autoregression 

(VAR) instead of a (higher order) single-equation autoregressive model with explanatory 

variable and moving average terms (ARMAX). As a VAR implies an ARMAX model for the 

marginal distribution of the dependent variable conditional on the explanatory factor, we will 

consider an ARMAX model in all cases. 

 

IV. If the dependent variable of interest is denoted by y and the explanatory factor by x, then the 

following ARMAX(p, q, r) model with linear trend is specified: 

 

ln(yt) = α1 + α2 t + β1 ln(yt-1) + ... + βp ln(yt-p) + γ1 ln(xt-1) + ... + γq ln(xt-q)  

   + εt + δ1 εt-1 + ... + δr εt-r 

 

where the ε-terms denote unobserved errors. We start with up to 12 monthly lags to account 

for possible calendar year effects. This model is estimated by maximum likelihood (or least 

squares if no MA terms are present). Next we perform stepwise backward elimination to 

remove insignificant effects. The lags are reduced with special attention for the yearly “sub-

frequencies” at lags 1, 2, 3, 4, 6, and 12. We therefore allow for the removal of intermediate 

lags, so that the resulting model may, for example, have lags 1, 2, and 12. The lag structures 

of the AR, MA, and X parts will in general be different. The model is simplified until all 

remaining coefficients are significant (at 5% level), provided that the two diagnostic tests in 

the next step are reasonably satisfactory. 

 

V. The selected ARMAX model is checked by performing two diagnostic checks, that is, 

absence of serial correlation and normality. We perform the Breusch-Godfrey test for serial 

correlation of the model residuals, and we consider different choices for the maximal lag of 

the residuals in the test equation (ranging from 2 to 12). Sometimes, these test outcomes 

motivate adjustment of the model by including some additional lags until the residual 
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correlation has become acceptably small. We also consider the skewness and excess kurtosis 

of the model residuals. Some of the dependent variables contain outliers, and we accept 

residual leptokurtosis in such cases instead of removing the outliers.  

 

VI. The five foregoing steps (I-V) provide an ARMAX model. This model can be given an 

interpretation in terms of the lag structure, which indicates reaction delays, and in terms of 

the sign and magnitude of the coefficients. Another interpretation is given in terms of the 

dynamic multiplier effects on the dependent variable that are due to changes in the 

explanatory factor. Hereby we compare two scenarios, where the second one is characterized 

by the fact that the explanatory factor is one percent larger than in the first scenario at all 

times from now on. This so-called step-response is computed from the ARMAX model for 

lags 1 to 4 and also for the long run (in the limit for infinite lag). The MA terms are irrelevant 

for this response, and we illustrate the involved computations for a simple ARX model with 

single lags, that is, for an ARMAX model with p = q = 1 and r = 0. The basic relation of 

interest is then given by ln(yt) = β ln(yt-1) + γ ln(xt-1), and we consider a step increase for ln(x) 

of 0.01 from now onwards. The percentage effect on y is zero at lag zero, and at lag 1 it is γ. 

At lag 2, we get βγ + γ = (1 + β)γ; at lag 3: β(1 + β)γ + γ = (1 + β + β2)γ; at lag 4: β(1 + β + 

β2)γ + γ = (1 + β + β2 + β3)γ; and in the long run: (1 + β + β2 + β3 + β4 + ... )γ = γ / (1 – β). 

The computations are similar, though somewhat more cumbersome, for higher lag orders. 

 

The specification strategy for models explaining shipping safety and pollution risks differs from the 

above procedure, as the dependent variable consists of count data whereas the explanatory factors 

consist of time series with trends. The relation between economic or ship activity and safety should 

be modelled as a long-term relation, as the effect of increased activity in terms of accidents will be 

spread out over time. Some types of accidents are quite rare, as the average accident rate per month 

over the period 2001-2010 of very serious accidents is 0.78 and that of pollution accidents is 0.22. 

We therefore do not aim at unravelling a detailed lag structure of the effect of activity on risk, and 

instead we consider long-term effects on the mean. We specify the mean risk in terms of the 

explanatory factor, and for these count data we employ a Poisson count model. As the pollution 

accident data display some over-dispersion (mean 0.22, standard deviation 0.69), we considered also 

alternative specifications like the negative binomial. As these alternative models gave largely similar 

results as the Poisson model, we report only the Poisson results. If the dependent count data variable 

is denoted by y and the explanatory factor by x, then the Poisson model is given by  

 

 Prob(y = k) = exp(–λ) λk / k!  , with  λ = exp(α + β x). 
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Here λ is equal to the expected value of y, so the result has a natural interpretation as exp(α + β x) is 

the expected number of accidents per month for a given level (x) of the explanatory factor. The only 

specification issue remaining is the choice of explanatory factor, and we consider various choices for 

this factor without incorporating any lags, for reasons explained before. The models are estimated by 

maximum likelihood, and the significance of factors is evaluated by conventional Z and Wald tests. 

 

4. Results and discussion 

 

This section is structured as follows. For each of the five relations in Figure 3, we present a detailed 

model for one instance, that is, for a specific choice of dependent variable and explanatory factor. 

We present models for our final choice of variables from the options listed in Table 1. Economic 

activity is measured either by steel production in China, Japan, and South Korea or by means of the 

Purchasing Manager Index. For commodity markets, we consider iron ore exports (from Australia, 

Brazil, and also an aggregate series) as well as iron ore imports (in China, Japan, and South Korea). 

The considered indicator of ship activity consists of the number and (deadweight) volume of arrivals 

in Australia of (capesize and panamax) dry bulk vessels. Finally, ship safety is measured in terms of 

classes of very serious, serious, and pollution accidents, for capesize and panamax dry bulk vessels 

in the areas of Australasia, China, Indonesia, Japan, and the Philippines. The data period is January 

1995 till December 2011, or a sub-period depending on data availability of the considered variables. 

Alternative models with other or additional variables are briefly summarized, with the main results 

(lag structure and step-response) shown in Table 2. We also provide an interpretation and discussion 

of our findings. 

 

4.1 Effect of economic activity on commodity markets 

 

We start our analysis of this relation by considering the effect of the volume of steel production in 

China, Japan, and South Korea on the volume of iron ore exports of Australia. Steel production is 

considered a good indicator of economic activity in Southeast Asia, and Australia is a major provider 

of the iron ore needed in this region for producing steel. The time series plots of the two variables of 

interest in Figure 1 indicate roughly exponential trends, and we take the logarithm of monthly iron 

ore exports from Australia (denoted by LEXIO_A) as the dependent variable and the logarithm of 

monthly steel production in China, Japan, and South Korea (denoted by LSP_CJK) as explanatory 

factor. The estimation sample runs from January 1995 to December 2011. 
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The variable LEXIO_A does not contain a unit root (ADF p-value 0.01). On the other hand, the 

presence of a unit root is not rejected for LSP_CJK (ADF p-value 0.54). The latter time series shows 

a break in slope around 2000 and a level break around 2008, but even on the sub-sample 2000-2007 

the unit root hypothesis is not rejected (ADF p-value 0.09). Further, LSP_CJK is a significant causal 

factor (Granger causality p-value 0.02 for 2 lags). The converse relation is also significant, that is, 

LEXIO_A is significantly Granger causal for LSP_CJK (p-value 0.03 for 2 lags). We considered 

both a VAR and an ARMAX model for the two log-transformed variables, but the resulting models 

are not very satisfactory due to the high collinearity between the various lags of the variable 

LSP_CJK. For this reason, we prefer to take the monthly differences of both variables, so that the 

unit root of LSP_CJK is removed, accepting some over-differentiation of LEXIO_A. We remark that 

the two variables are not cointegrated, as one variable has a unit root whereas the other one is trend 

stationary. The resulting series of monthly growth rates are denoted by DLEXIO_A and DLSP_CJK. 

These series do not contain a unit root anymore (ADF p-value 0.00 for DLEXIO_A and 0.01 for 

DLSP_CJK). The Granger causality test for these two variables indicates explanatory power of 

DLSP_CJK for DLEXIO_A (p-value 0.00), but not the other way round (p-value 0.14). The 

specification procedure described in Section 3 provides the following ARX model, with y = 

DLEXIO_A and x = DLSP_CJK and where all coefficients are significant (at the 5% level), except 

for the constant term (which is included in the model, indicated by 0.00): 

 

yt = 0.00 – 0.61yt-1 – 0.31yt-2 – 0.21yt-3 – 0.18yt-5 – 0.18yt-6 + 0.43xt-2 + 0.36xt-3 + 0.45xt-12 + εt  

 

This equation has an R-squared of 0.39 and does not contain significant serial correlation (Breusch-

Godfrey p-value 0.14 for 2 lags and 0.09 for 12 lags). The residuals are somewhat skewed to the left 

and have some excess kurtosis (skewness -0.83, excess kurtosis 1.35), which is caused by some 

negative outlying residuals. These outliers occur for isolated months with temporary drops in iron ore 

exports, most notably in January 2006, March 2007, November 2008, and February 2011. Such 

temporary disruptions of exports may arise because of adverse weather conditions, since tropical 

cyclones are frequent between November and April, which affects ports in Western Australia such as 

Port Headland and Dampier. 

 

In the above model, we find that changes in the growth rate of steel production affect iron ore exports 

with a delay of two months. If steel production experiences an everlasting increase of 1% point in its 

growth rate as compared to a base scenario, this corresponds to monthly differences in all future 

values for xt of 0.01. The effects on the growth rate of iron ore exports after 1 to 4 months (in 



10 
 

percentages) are respectively 0, 0.43, 0.43 + 0.36 – 0.610.43 = 0.56, and 0.43 + 0.36 – 0.610.56 – 

0.310.43 = 0.35. The long-run effect is (0.43 + 0.36+0.45) / (1 + 0.61 + 0.31 + 0.21 + 0.18) = 0.55.  

The interpretation is that a lasting increase of 1% in the growth rate of steel production in Southeast 

Asia is estimated to lead to an increase in the growth rate of iron ore exports from Australia of about 

0.5%, assuming no port capacity restrictions. 

 

We considered various alternative models for the relation between economic activity and commodity 

flows, and we summarize the main results. For the above variables in non-differenced form, that is, 

using y = LEXIO_A and x = LSP_CJK, we find the following model: yt = 0.00 + 0.21 yt-1 + 0.27 yt-2 

+ 0.26 yt-12 + 0.24 xt-2 + εt. The effect of a step increase of 1% in steel production leads to the 

following percentage increases in iron ore exports after 1 to 4 months: 0, 0.24, 0.29, and 0.37. The 

long run effect on the level of exports is 0.92, and a t-test finds that this does not differ significantly 

from one (p-value 0.48). The interpretation is that a lasting increase in the level of steel production of 

1% starts affecting the level of iron ore exports after a two-month delay and with a long-run effect of 

about 1%, which means that the share of Australia in providing the required iron ore for Southeast 

Asia is rather stable. This finding is in line with the rather constant share over the observation period. 

 

Results similar as the above are obtained for other choices of the variables: steel production for 

China alone, iron ore exports from Brazil (adjusting for a large outlier in June and July of 2002, see 

Figure 1) or from the group of all exporting countries available in the database (see Table 1). Table 2 

provides a summary of the results. We tried also to model the export flows of coking coal instead of 

iron ore, but this did not give results of sufficient interest to report here as this commodity is hard to 

model (see Section 2). 

 

Another variable of particular interest is the Purchasing Manager Index (PMI) as indicator of 

economic sentiment. In the practice of short term forecasting of export flows, it may be hard to 

obtain reliable data on recent steel production that are required for the above models which employ 

steel production as explanatory factor. The PMI is more readily available, and current month changes 

in the PMI are positively correlated with the current month growth rate of steel production in China, 

Japan, and South Korea (correlation 0.17). The PMI has also predictive power in ARMAX models 

for the growth rate of iron ore exports containing first-differenced PMI as external factor with lag 2. 

The coefficient of the two-month lagged changes in PMI is 0.01, both for Australian exports and for 

the total available exports. This means that, if the PMI rises with 1 unit, we expect iron ore exports to 

rise by 1% after two months (the monthly changes of the PMI ranged between -5.9 and 4.8 over the 

observation period). 
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We considered also models with more than one explanatory factor, including combinations of the 

PMI, commodity prices, and interest rates. The Chinese short term interest rate can be seen as an 

indicator of economic activity, but it did not provide additional information in modelling iron ore 

export flows. The price of iron ore (in dollar per ton) has gone up very sharply since 2008, with 

yearly means below 20 until 2004, below 40 until 2007, and climbing from 62 in 2008 to 80 in 2009, 

147 in 2010, and 168 in 2011. These sharp price increases reflect the market stress of recent years, 

and we were not well able to exploit price as a reliable indicator of iron ore trade flows.  

 

<< Table 2 to be inserted about here. >> 

 

4.2 Effect of commodity markets on ship activity 

 

In line with the preceding analysis, we now consider the relation between iron ore commodity flows 

in Southeast Asia and ship activity in Australia. More in particular, we consider the effect of iron ore 

imports in China, Japan, and South Korea (in logarithms, denoted by LIMIO_CJK) on the number of 

arrivals of capesize and panamax ships in Western Australia (also in logarithms and denoted by 

LCPX_WA), as this is the main export region for iron ore from Australia. The arrival data are 

available only from 2001 onwards, and the observation sample is therefore restricted to the period 

from January 2001 to December 2011. As Figure 2 shows, the arrival data for Western Australia 

show some isolated downward outliers that are related to adverse weather conditions. We will not 

remove these outliers and we will accept negative skewness and excess kurtosis of model residuals. 

Closer inspection of these arrival data reveals a change in trend, which is reasonably linear until 2007 

and becomes more irregular and somewhat exponential afterwards. We will therefore estimate 

models both for the period 2001-2011 and for the period 2007-2011. 

 

For the full data period, both variables do not contain a unit root (ADF p-values of 0.00 for both 

LIMIO_CJK and LCPX_WA). Further, LIMIO_CJK is Granger causal for LCPX_WA (p-value 0.01 

for 4 lags), but the reverse causality is not significant (p-value 0.34 for 4 lags). The ARMAX model 

resulting from the specification procedure described in Section 3 provides the following ARX model, 

with y = LCPX_WA and x = LIMIO_CJK:  

 

yt = 1.16 + 0.0043 t + 0.24yt-1 + 0.16yt-2 + 0.19(xt-1 –xt-2) + εt  

 

This equation has an R-squared of 0.93 and does not contain significant serial correlation (Breusch-

Godfrey p-value 0.31 for 2 lags and 0.74 for 12 lags). The residuals are skewed to the left and have 
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excess kurtosis (skewness -1.14, excess kurtosis 3.07), for reasons explained before. These (negative) 

residuals are not due to shocks in iron ore imports, but to disruptions in arrivals. The main outlier 

(five standard deviations below the mean) occurs for November 2008, with smaller outliers (about 

three standard deviations below the mean) for March 2007 and February 2011. The multiplier effects 

of a step increase of 1% in iron ore imports on capesize and panamax arrivals in Western Australia 

are shown in Table 2, with a long-run multiplier of 0. If we consider the sub-period from 2007 

onwards, we get a very simple model: yt = 0.94 + 0.0083 t + 0.32xt-1 – 0.21xt-2 + εt, with long-run 

multiplier 0.11. 

 

We considered also an alternative model to explain the ship carrying (deadweight) capacity of 

capesize and panamax arrivals in Western Australia, instead of the number of these arrivals. Recently 

built ships of these categories are much larger than older ones, and the yearly average size per arrival 

has increased from about 147 million DWT in 2001 to 165 million DWT in 2011. The results are 

very similar to those obtained before for the number of arrivals, and Table 2 shows the results for the 

period 2007-2011. We also tried to model the effect of coking coal imports in China, Japan, and 

South Korea on ship arrivals in Queensland and New South Wales, the two main Australian coal 

exporting regions. We were not able to find a significant relation between these variables, due to the 

irregular behaviour of the coking coal import series (see Figure 1). 

 

4.3 Effect of economic activity on ship activity 

 

In the two foregoing sections, we considered links from economic activity to commodity trade flows 

and then onwards to ship activity. We now consider the direct relation between economic activity 

and ship activity without the intermediate link that runs via the commodity markets. To keep in line 

with the analysis in preceding sections, we take as dependent variable of interest the number of 

arrivals of capesize and panamax ships in Western Australia (in logarithms, y = LCPX_WA) and as 

driving factor we consider steel production in China, Japan, and South Korea (in logarithms, x = 

LSP_CJK). 

 

If we consider the sub-period from 2007 onwards, containing 60 observations, both variables do not 

contain a unit root (ADF p-values of 0.00 for LCPX_WA and 0.01 for LSP_CJK). The two variables 

are only weakly related, as Granger causality tests (with 4 lags) have p-values of 0.l1 for forecasting 

ship activity from economic activity and of 0.69 for the reverse relation. Still, we can specify a very 

simple ARMAX model that contains only a single lag of the driving factor:  
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yt = 0.97 + 0.0068 t + 0.28xt-1 + εt.  

 

This equation has an R-squared of 0.80, and it does not contain significant serial correlation 

(Breusch-Godfrey p-value 0.45 for 2 lags and 0.78 for 12 lags). The residuals are skewed to the left 

and have excess kurtosis (skewness -1.75, excess kurtosis 4.53), which is caused by three negative 

outliers in arrivals for March 2007, November 2008, and February 2011 (the same outliers were 

found in the previous section). The step-response has a lag of one month and a size of 0.28. 

Therefore, a 1% change in steel production translates to about 0.28% change in arrivals of capesize 

and panamax vessels in Western Australia one month later. 

 

As steel production causes also exports of coking coal from Australia, we consider also the effect on 

capesize and panamax arrivals in all ports of Australia (denoted by CPX_A) for the period from 

January 2001 to December 2011. In this way, arrivals in the regions of Queensland and New South 

Wales that carry iron ore and coking coal are also included. We consider the growth rates of both 

variables (first difference of log-transformed series). This gives stationary variables with 

unidirectional causality from economic activity to ship activity, and the resulting model (with y = 

DLCPX_A and x = DLSP_CJK) is given by yt = 0.00 + 0.33yt-12 + 0.33xt-2 + εt – 0.76εt-1. As an 

alternative, arrivals are also measured in terms of the volume (in million DWT) instead of the 

number of monthly ship arrivals. The results are very similar, as the number and the volume of 

arrivals are tightly related (their correlation is 0.99 in levels and 0.96 for growth rates). The 

corresponding multipliers are shown in Table 2. The long-run multiplier is about 0.5, which means 

that a lasting increase of one percent point in the growth rate of steel production leads to an increase 

in the growth rate of dry bulk arrivals of about 0.5%. The PMI as indicator of economic activity was 

not found to have predictive power for ship activity. 

 

4.4 Effects of economic activity and ship activity on safety 

 

The rapid increase in trade flows and ship activities over recent years may have consequences for 

maritime safety and pollution. As motivated in Section 3, we will consider Poisson count models for 

the number of ship accidents in terms of explanatory factors measuring activity. We distinguish three 

types of accidents: pollution, very serious accidents (including total loss), and serious accidents. The 

available data cover accidents over the period from January 2001 to December 2010 in the regions of 

Australasia, China, Indonesia, Japan, and the Philippines. The driving activity factors are also related 

to this area, as we consider arrival data from Australia and steel production data from China, Japan, 
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and South Korea. The arrival and accident data are restricted to dry bulk vessels in the capesize and 

panamax class. 

 

The lower part of Table 2 summarizes the outcomes of various Poisson count models. If the accident 

count variable is denoted by y and the explanatory factor by x, then the predicted number of 

accidents per month is equal to exp(α + β x), where the constant α and the multiplier β are shown in 

the bottom right part of Table 2. We find a significant positive association between ship activity and 

accident risk for all three types of accidents. The multiplier for arrival volume (in million DWT) is 

about 7-8 times as large as that for arrivals, which is explained by the fact that arrivals over the 

considered period have an average size of 127 thousand DWT (so that one million DWT corresponds 

to about 8 arrivals). We will discuss only the results for the number of arrivals, as the results for 

arrival volume are very similar. We will in particular consider the number of accidents predicted by 

the models for the last two years of the observation sample, that is, 2009-2010. The average number 

of arrivals per month over this period was 490, and the average number of accidents per month was 

0.92 for pollution, 1.17 for very serious accidents, and 4.29 for serious accidents. 

 

The model predictions are as follows: for pollution exp(-8.02 + 0.01526×490) = 0.58, for very 

serious accidents exp(-1.89 + 0.00418×490) = 1.17, and for serious accidents exp(-0.63 + 

0.00446×490) = 4.74. Therefore, the prediction is quite accurate for very serious accidents, whereas 

the risk is under-estimated for pollution and somewhat over-estimated for serious accidents. The 

limited predictive power for pollution accidents is explained by the fact that these accidents were 

very rare in the period 2001-2008 (5 accidents in total) but much more numerous in 2009-2010 (22 

accidents). The average ship activity was 358 arrivals per month in 2001-2008 and 490 per month in 

2009-2010, so that the increase of the number of pollution accidents is far more dramatic than that of 

ship activity (37%). The number of pollution accidents in the period 2009-2010 may well be an 

exception from the general trend. The other types of accident have increased more or less 

proportional to ship activity, for very serious accidents from 96 in 2001-2008 to 28 in 2009-2010 

(yearly mean rose from 12 to 14, an increase of 17%) and for serious accidents from 271 in 2001-

2008 to 103 in 2009-2010 (yearly mean rose from 33.9 to 51.5, an increase of 52%). 

 

The above results relate to arrivals and accidents of dry bulk vessels in the capesize and panamax 

classes. We compare the results for pollution accidents with those that are obtained by incorporating 

arrival and pollution accident data for the same region of all ship types, including smaller dry bulk 

ships as well as container ships, tankers, general cargo ships, and others. If we take the volume of 

arrivals (in million DWT) as driving factor (x), then the Poisson count model provides the following 
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expression for the expected number of pollution accidents: exp(-9.16 + 0.14431 x), as compared to 

exp(-7.58 + 0.11104 x) in Table 2. The two slope coefficients are similar (in the sense that the 95% 

confidence intervals overlap), so that an increase in arrival ship DWT has roughly similar effects on 

pollution risk for all ship types. The constant terms differ to correct for scale effects, as the average 

monthly volume of all arrivals is about twice as large as that of dry bulk arrivals in the capesize and 

panamax classes (48.4 million DWT for capesize and panamax, and 46.6 million DWT for all other 

ship types). 

 

Whereas the relation between ship activity and ship safety is a direct one, the relation between 

economic activity and ship safety is more indirect as it involves the intermediate effects on 

commodity trade flows and shipping. The results in Table 2 show that steel production in China, 

Japan, and South Korea has explanatory power for the number of pollution accidents and the number 

of serious accidents, but not for very serious accidents. For practitioners, the PMI is more readily 

available than production figures, but we find that the PMI has predictive power only for pollution 

accidents and not for the other two types of accident. These findings confirm that safety is best 

explained by factors related to immediate causes, that is, intensity of maritime traffic, and less well 

by underlying deeper factors like economic activity and sentiment. 

 

As a final step in our analysis, we will provide a projection of the number of accidents for the period 

2011-2015. Such an extrapolation should be interpreted with due reservation, as the models are 

estimated over the period 2001-2010 where activity increased considerably, see Figure 2. For future 

scenarios, the driving factor will move ever more outside of the sample range, and it is well-known 

that extrapolation beyond the sample range may be very unreliable, especially for nonlinear models 

like our count data models. We take the models with the volume of arrivals as our forecast models, 

and we use a simple linear trend extrapolation of this volume (in million DWT per month) obtained 

by regressing yearly totals over the period 2001-2010 on a linear trend. The predicted monthly 

volumes (in million DWT) are 66.6 for 2011, 69.9 for 2012, 73.2 for 2013, 76.5 for 2014, and 79.8 

for 2015, from which projected numbers of accidents per month are obtained by the models in Table 

2. When aggregated to yearly totals, we obtain the following projected numbers of accidents per 

year: for pollution respectively 10, 14, 21, 30, and 43, for very serious accidents 16, 17, 19, 21, and 

23, and for serious accidents 62, 68, 75, 83, and 92. As compared to 2010, with 16 pollution 

accidents, 13 very serious accidents, and 47 serious accidents, the accident risks for 2015 are roughly 

twice as large. These results should merely be seen as an indication that future ship accident risks 

may increase considerably if ship activities continue to expand as rapidly as in the first decade of this 

century. 
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5. Conclusions 

 

We analysed how changes in economic activity affect commodity markets and ship activity with 

related impacts on safety and pollution. Insight in these relations may be helpful for planning by ship 

brokers and ship owners and for the evaluation by policy makers of ship economic cycles and risks 

of accidents and pollution. Our analysis focused mostly on Southeast Asia and Australia, where the 

most important players on the demand and supply side for iron ore and coking coal are located.  

 

We obtained the following main results. The combined steel production of China, Japan, and South 

Korea has predictive power for iron ore exports and for capesize and panamax arrivals in Australia. It 

takes about two months before an increase in steel production starts affecting iron ore exports and 

ship arrivals. The Purchaser Manager Index (PMI) has predictive power for steel production, and this 

indicator of economic sentiment could provide useful information for industry stakeholders such as 

brokers, ship owners, and regulators if steel production figures are not readily available. Commodity 

prices are positively related to exports, reflecting considerable market stress of recent years.  

 

Accident risks are positively related to economic activity and to ship activity, both for very serious 

accidents and for serious accidents, and also for pollution. This positive association was analysed for 

capesize and panamax vessels trading between Southeast Asia and Australia, and the results indicate 

potential sharp risk increases if ship activities continue to expand as rapidly as in the first decade of 

this century. The PMI has also predictive power for pollution accidents, but not for the considered 

classes of serious and very serious accidents. The results for pollution risk of all ship types are 

comparable to those obtained for capesize and panamax vessels.  

 

We restricted the attention almost exclusively to iron ore, and we suggest using similar 

methodologies for steaming coal, and later also for coking coal (long enough after the break in this 

market around 2008). Accident and pollution risks were evaluated for dry bulk vessels of capesize 

and panamax class in Australasia and Southeast Asia. An analysis of the pollution risk of other ship 

types is also relevant, especially for oil tankers, but such an analysis is complicated by the limited 

availability of sufficiently detailed ship arrival data for the major import countries of crude oil. 
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Figure 1: Economic activity and commodities (in megaton) 
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Figure 2: Arrivals and accidents of capesize and panamax vessels 
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Figure 3: Relations in the dry bulk market 
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Table 1: Overview of data 
 

Variable Units Region Period Source 
 

Economic activity 
    

  Steel production Mt China, Japan, South Korea 1995-2011 SIN 
  Industrial production Mt China, Japan, South Korea 1995-2011 SIN 
  Blast furnace iron production Mt China, Japan, South Korea 1998-2011 SIN 
  Purchasing manager index Index Global 1995-2011 ISM 
  China short term interest rate Rate China 1997-2011 OECD 
 

Commodity markets 
    

  Iron ore import Mt China, Japan, South Korea 1999-2011 SIN 
  Iron ore export Mt Total b  1998-2011 SIN 
  Coking coal import Mt China, Japan 2002-2011 SIN 
  Coking coal export Mt Total c 1996-2011 SIN 
  Iron ore / coking coal production Mt China 1995-2011 BS 
  Iron ore / coking coal price $/t -- 1995-2011 IMF / SIN 
 

Ship activity 
    

  Dry bulk arrivals (cpx)  Nr a / MDwt a Australia d 2001-2011 AMSA 
  Ship employment dry bulk MDwt Global 2001-2011 BS 
 

Safety and pollution 
    

  Accidents and pollution (cpx) Nr a Australasia and SE Asia e 1995-2010 IMO, IHSF, 
    LMIU, AMSA 
 
Notes  
- All data are observed monthly, except for ship employment that is observed quarterly. 
- Units: Mt = megaton; MDwt = deadweight in millions; $/t = US dollar per ton; a = restricted to cpx, that is, capesize 

and panamax. 
- Regions: b = Australia, Brazil, India, Peru, Russia, South Africa, Ukraine, and USA; c = Australia, Canada, USA; d = 

New South Wales, Queensland, Western Australia; e = Australasia, China, Indonesia, Japan, and the Philippines. 
- Sources:  SIN = Ship Intelligence Network of Clarksons; ISM = Institute of Supply Management; OECD = 

Organisation for Economic Development and Co-operation; BS = Braemer Seascope; IMF = International 
Monetary Fund; AMSA = Australian Maritime Safety Authority; IMO = International Maritime Organization; IHSF 
= Information Handling Services Fairplay; LMIU = Lloyd’s Maritime Intelligence Unit. 
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Table 2: Model outcomes 
 

     ARMAX  Multipliers 

 Dependent (y) Region Factor (x) Region p q Tot  1 2 3 4 Long 

 
Economic activity to Commodity markets 

          

 Iron ore export (Mt) b Aus Steel production (Mt) b  CJK 6 12 8  0 0.43 0.56 0.35 0.55 

 Iron ore export (Mt) a Aus Steel production (Mt) a  CJK 12 2 4  0 0.24 0.29 0.37 0.92 

 Iron ore export (Mt) a Aus Steel production (Mt) a C 12 12 6  0 0.30 0.39 0.12 0.67 

 Iron ore export (Mt) a Bra Steel production (Mt) a C 1 2 3  0 0.21 0.32 0.38 0.45 

 Iron ore export (Mt) a Tot Steel production (Mt) a CJK 12 2 6  0 0.48 0.48 0.48 0.21 
 

Commodity markets to Ship activity 
          

 Dry bulk (Ncpx) c WAus Iron ore import (Mt) a CJK 2 2 3  0.19 0.05 0.05 0.02 0.00 

 Dry bulk (Ncpx) d WAus Iron ore import (Mt) a CJK 0 2 2  0.32 0.11 0.11 0.11 0.11 

 Dry bulk (Dcpx) d WAus Iron ore import (Mt) a CJK 0 2 2  0.32 0.17 0.17 0.17 0.17 
 

Economic activity to Ship activity 
          

 Dry bulk (Ncpx) d WAus Steel production (Mt) a CJK 0 1 1  0 0.28 0.28 0.28 0.28 

 Dry bulk (Ncpx) b c Aus Steel production (Mt) b CJK 12 2 2  0 0.33 0.33 0.33 0.50 

 Dry bulk (Dcpx) b c  Aus Steel production (Mt) b CJK 12 2 2  0 0.33 0.33 0.33 0.51 

              

 Dependent (y) Region Factor (x) Region Const     Multiplier p-value   

              

Ship activity to Safety and pollution           

 Pollution (Ncpx) ACJ Dry bulk (Ncpx) Aus -8.02 0.01526 0.000   

 Pollution (Ncpx) ACJ Dry bulk (Dcpx) Aus -7.58 0.11104 0.000   

 Very serious (Ncpx) ACJ Dry bulk (Ncpx) Aus -1.89 0.00418 0.001   

 Very serious (Ncpx) ACJ Dry bulk (Dcpx) Aus -1.76 0.03045 0.001   

 Serious (Ncpx) ACJ Dry bulk (Ncpx) Aus -0.63 0.00446 0.000   

 Serious (Ncpx) ACJ Dry bulk (Dcpx) Aus -0.40 0.03056 0.000   
          

Economic activity to Safety and pollution           

 Pollution (Ncpx) ACJ Steel production (Mt) CJK -5.55   0.08030 0.000   

 Pollution (Ncpx) ACJ PMI Global -6.30   0.08520 0.035   

 Very serious (Ncpx) ACJ Steel production (Mt) CJK -0.06   0.00075 0.869   

 Very serious (Ncpx) ACJ PMI Global   0.43 -0.00909 0.507   

 Serious (Ncpx) ACJ Steel production (Mt) CJK -0.84   0.03935 0.000   

 Serious (Ncpx) ACJ PMI Global   0.88 -0.00198 0.830   

           

Notes 
- Regions: CJK = China, Japan, and South Korea; C = China; Aus = Australia; WAus = Western Australia; Bra = Brazil; ACJ 

= Australasia, China, Indonesia, Japan, and the Philippines. For iron ore export, “Tot” is total from Australia, Brazil, India, 
Peru, Russia, South Africa, Ukraine, and the USA. 

- Units: Mt = megaton; Ncpx = number of capesize and panamax arrivals or accidents; Dcpx = million deadweight (DWT) of 
capesize and panamax arrivals. The class of very serious accidents includes total loss. 

- For ARMAX, “Tot” is the total number of AR, MA and X lagged terms included in the model; for example, the first model in 
the table contains AR terms at lags 1, 2and  12, and a single X term at lag 2, so 4 lagged terms in total. 

- All variables for the relations between economic activity, commodity markets, and ship activity are taken in logarithms 
(denoted by a), and sometimes in first differences of logarithms, that is, in growth rates (denoted by b). Multipliers are step-
responses to a 1% growth in the factor level (case a) or to a 1% point increase in the factor growth rate (case b). The 
estimation period for these relations is 1995-2011 if not indicated otherwise (by c for 2001-2011 and by d for 2007-2011). 

- In the models for safety and pollution, all variables (accidents, dry bulk arrivals, and economic activity) are in levels, and the 
estimation period is 2001-2010. 


