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Abstract

We consider a generalisation of the lot-sizing problem that includes an emission
constraint. Besides the usual financial costs, there are emissions associated with
production, keeping inventory and setting up the production process. Because
the constraint on the emissions can be seen as a constraint on an alternative cost
function, there is also a clear link with bi-objective optimisation. We show that
lot-sizing with an emission constraint is NP-hard and propose several solution
methods. First, we present a Lagrangian heuristic to provide a feasible solution
and lower bound for the problem. For costs and emissions for which the zero
inventory property is satistied, we give a pseudo-polynomial algorithm, which
can also be used to identify the complete Pareto frontier of the bi-objective lot-
sizing problem. Furthermore, we present a fully polynomial time approximation
scheme (FPTAS) for such costs and emissions and extend it to deal with general
costs and emissions. Special attention is paid to an efficient implementation with

an improved rounding technique to reduce the a posteriori gap, and a combination
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of the FPTASes and a heuristic lower bound. Extensive computational tests show
that the Lagrangian heuristic gives solutions that are very close to the optimum.
Moreover, the FPTASes have a much better performance in terms of their gap than
the a priori imposed performance, and, especially if the heuristic’s lower bound is

used, they are very fast.

1 Introduction

In recent years, there has been a growing tendency to not only focus on financial costs
in a production process, but also on its impact on society. This societal impact includes
for instance the environmental implications, such as the emissions of pollutants during
production. Particular interest is paid to the emission of greenhouse gases, such as car-
bon dioxide (COy), nitrous oxide (N;O) and methane (CHy). By now, there is a general
consensus about the effect that these gases have on global warming. Consequently,
many countries strive towards a reduction of these greenhouse gases, as formalised in
treaties, such as the Kyoto Protocol (United Nations, 1998), as well as in legislation, of
which the European Union Emissions Trading System (European Commission, 2010)
is an important example.

The shift towards a more environmentally friendly production process can be caused
by such legal restrictions, but also by a company’s desire to pursue a ‘greener” im-
age by reducing its carbon footprint. As Vélazquez-Martinez et al. (2011) mention:
“A substantial number of companies publicly state carbon emission reduction targets.
For instance, in the 2011 Carbon Disclosure Project annual report (Carbon Disclosure
Project, 2011), 926 companies publicly commit to a self-imposed carbon target, such
as FedEx, UPS, Wal-Mart, AstraZeneca, PepsiCo, Coca-Cola, Danone, Volkswagen,
Campbell and Ericsson.”

Emissions could be reduced by for instance using less polluting machines or vehi-
cles, or using cleaner energy sources. One should not overlook the potential benefit
that changing operational decisions has on emission reduction. There is no guarantee
that minimising costs of operations will also lead to low emissions. In fact, fashionable
production strategies like just-in-time production, with its frequent less-than-truckload
shipments and frequent change-overs on machines, may lead to emission levels that
are far from optimal.

For these reasons, the classic economic lot-sizing model has been generalised. Be-
sides the usual financial costs, there are emission levels associated with production,
keeping inventory and setting up the production process. Set-up emissions can for

example originate from having fixed per-truckload emissions of an order, or from a



production process that needs to ‘warm up’, where usable products are not created
until the production process has gone through a set-up phase that is already pollut-
ing. If products need to be stored in a specific way, e.g. refrigerated, then keeping
inventory will also emit pollutants. The lot-sizing model that we consider in this pa-
per minimises the (financial) costs under an emission constraint. This constraint can
be seen as one global restriction over all periods. This problem was introduced by Ben-
jaafar et al|(2011), who integrate carbon emission constraints in lot-sizing models in
several ways. They consider a capacity on the total emissions over the entire problem
horizon, as we do in this paper, but also a carbon tax, a capacity combined with emis-
sions trade, or carbon offsets (where additional emission rights may be bought, but not
sold). Moreover, they study the effect of collaboration between multiple firms within
a serial supply chain. Several insights are derived from the models by experimenting
with the problem parameters. They assume that all cost and emission functions follow
a fixed-plus-linear structure, and no attention is paid to finding good solution methods
yet.

In our paper, we study a lot-sizing problem with an emission constraint under con-
cave cost and emission functions. We will see that this model is also capable of han-
dling multiple production modes. We show that this problem is A/P-hard, even if
only production emits pollutants (linearly). Moreover, we show that lot-sizing with
an emission constraint and two production modes in each period is N'P-hard, even if
only production emits pollutants (linearly) and either all (financial) costs or all emis-
sions are time-invariant. Then, we develop several solution methods. First, we give a
Lagrangian heuristic that finds both very good solutions and a lower bound in O(T*)
time, where T is the number of time periods. We also prove several structural prop-
erties of an optimal solution that we use while working towards a fully polynomial
time approximation scheme (FPTAS). As a first step, a pseudo-polynomial algorithm
is developed in case the costs and emissions are such that the single-sourcing (zero in-
vertory) property is satisfied. This pseudo-polynomial algorithm is then turned into an
FPTAS, which, in turn, is generalised to deal with costs and emissions that do not sat-
isfy the single-sourcing property. We expect that this technique to construct a pseudo-
polynomial algorithm and an FPTAS can be applied to more problems where one over-
all capacity constraint is added to a problem for which a polynomial time dynamic
programme exists.

Special attention is paid to an efficient practical implementation of these algorithms.
This includes a combination of the lower bound that is provided by the Lagrangian
heuristic with an FPTAS, which results in excellent solutions within short computation

times, as becomes clear from the extensive computational tests of all algorithms that



have been carried out for this paper. Besides that, our algorithms do not only have
an a priori gap (¢), but they also produce a (smaller) a posteriori gap. To reduce this
gap even further, we develop an improved rounding technique, which we think can be
applied to other FPTASes of the same type. Furthermore, if we compare the algorithms’
solutions to the optima, we see that the gaps are even much smaller.

The model is more general than it looks at first sight, since the emission costs that
we consider do not necessarily need to refer to emissions. They can be any kind of
costs or output, other than those in the objective function, related to the three types
of decisions (i.e., set-up, production and inventory). This makes the relationship with
bi-objective lot-sizing clear. In multi-objective optimisation (and bi-objective optimisa-
tion in particular), one is usually interested in the frontier of Pareto optimal solutions.
Theoretically, finding the optimal costs for all possible emission capacities would result
in finding the Pareto frontier. The multi-objective lot-sizing problem is studied in more
detail by Van den Heuvel et al.| (2011), who divide the horizon in several blocks, each
with its own objective function. The case with one block of length T corresponds to
our problem (with fixed-plus-linear costs and emissions). In our paper, we will show
that we can find the whole Pareto frontier in pseudo-polynomial time, if the costs and
emissions are such that the single-sourcing (zero-inventory) property is satisfied.

Besides the works of Benjaafar et al. (2011) and Van den Heuvel et al.| (2011)), there
are some other papers that integrate carbon emission constraints in lot-sizing prob-
lems. |Absi et al.| (2011) introduce lot-sizing models with emission constraints of sev-
eral types: periodic, cumulative, global (as we have) and rolling. Furthermore, they
consider multiple production modes, one of which is ‘ecological’. As mentioned, our
model can also handle multiple production modes. Vélazquez-Martinez et al. (2011)
study the effect of different levels of aggregation to estimate the transportation car-
bon emissions in the economic lot-sizing model with backlogging. Heck and Schmidt
(2010) discuss lot-sizing with an ‘eco-term’, which they solve heuristically with ‘eco-
enhanced” Wagner-Whitin and Part Period Balancing, with the possibility of ‘eco-bal-
ancing’. Other papers approach the emission problem from an EOQ point of view,
such as Chen et al. (2011), [Hua et al.[{(2011) and Bouchery et al.| (2010).

The remainder of this paper is organised as follows. The next section provides a
formal, mathematical definition of the lot-sizing problem with a global emission con-
straint. In Section 3, we show that this problem, as well as a variant with two pro-
duction modes, is N'P-hard under quite general conditions. In Section 4, we prove
several structural properties of an optimal solution, which are used by the algorithms
that are introduced in Section 5| Section 5.1| gives a Lagrangian heuristic. Sections
and [5.3| present a pseudo-polynomial algorithm, respectively FPTAS, for what we will
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Figure 1: Graphical representation of a lot-sizing problem

define as co-behaving costs and emissions. An FPTAS for general costs and emissions
is derived in Section The combination of the heuristic and FPTASes is discussed
in Section Section [6| describes and gives the results of the extensive computational
tests and the paper is concluded in Section [/}

2 Problem definition

The model can be formally defined as follows:

T
min Y (pe(xe) + e (1)) (1)
t=1
s.t. I = L qy+x—dy t=1,...,T @)
Iy = 0 3)
xt,It Z 0 t=1,...,T (4)
T
Z (ﬁt(xt) + flt(lt)> < C , (5)
t=1

where x; is the quantity produced in period ¢, and I; is the inventory at the end of
period t. The demand in period t is given by d;, the length of the problem horizon is
T, and C is the emission capacity. Furthermore, p; and h; are production and holding
costs functions, and p; and I are production and holding emission functions, respec-
tively. We assume that all functions are concave, nondecreasing and nonnegative. This
includes the well-known case with fixed set-up costs and linear production and hold-
ing costs.

Equation (2) gives the inventory balance constraints. There is no initial inventory
; the nonnegativity constraints are given by (@), and (5) constrains the emissions over
the whole problem horizon. We shall refer to problem (I)-(5) as ELSEC (Economic Lot-
Sizing with an Emission Constraint).

Of course, p; and fi; don’t necessarily refer to emissions. They can be any kind of

costs other than those in the objective function. Examples of what can be modelled
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by p: and /1; include other types of negative externalities for society, such as other
pollutants or noise resulting from production or carrying inventories. Moreover, we
can impose a maximum on the total or average inventory by choosing flt(lt) = I; and
pi(x) = 0 for all t, and C equal to the total inventory or T times the average inventory.
Also, we can model a lot-sizing problem with m production modes and T periods by
defining an instance of ELSEC with Tm periods, where periods appear in groups of
m, such that each of these periods corresponds to another production mode, with zero
holding costs within such a group and where demand occurs only in the last of a group
of m periods.

If the costs and emissions follow a fixed-plus-linear structure, then the model can
also be formulated as the standard mixed integer linear programme (6)—(12). We shall
refer to this problem as ELSEC-MILP. See Figure (1| for a graphical representation with

four periods.
T

min Z (Kt]/t + pext + htft) (6)
t=1
s.t. I = L14+x—dy t=1,...,T (7)
T
xe < oy Y ds t=1,...,T (8)
s=t
Ip = 0 )
x,I; > 0 t=1,...,T (10)
v € {0,1} t=1,...,T (11)
T
Y. (Kfyt + Prxy + htlt> < C (12)
t=1

K; and K; are the set-up cost and emissions, respectively. Now, py, P, hy and hi; refer to
the unit production and holding costs and emissions. y; is a binary variable indicating
a set-up in period t and constraints (8) ensure that production can only take place if
there is a set-up in that period.

3 Complexity results

Van den Heuvel et al. (2011) show that some special cases of ELSEC-MILP can be
solved in polynomial time. Moreover, they show that ELSEC-MILP is NP-complete in
general, even if only set-ups emit pollutants and under Wagner-Whitin (non-speculative)
costs and emissions.

In this section, we will show that another special case of ELSEC-MILP is A/P-hard.



A b o o ~ b -
p=1p=0K=MP=0p=0K=M 4, _1p=0K=MP"Pn=0p=5K=M

hy=h =0 hy = h; =0

dg =

Figure 2: An instance of ELSEC-MILP that corresponds to an instance of KNAPSACK

We will see that a special case of lot-sizing with an emission constraint and two pro-

duction modes is N P-hard as well.

Theorem 1 Lot-sizing with an emission constraint is N"P-hard, even if only production emits

pollutants and these emissions are linear in the quantity produced.

Proof We will show that KNAPSACK is a special case of ELSEC-MILP. KNAPSACK
problem (decision version): given a,b € IN" and k, C € NN, does there exist a vector
z € {0,1}" such that
iﬂizi >k, Zbizi <C?
i=1 i=1
Define the following instance of ELSEC-MILP (see Figure :

n

0 fortodd
T = 2n d =
ay, for t even
K= M vt R =0 Vi
0 fortodd N
e = { oo hy = 0 Vt
oo forteven
1 fortodd . 0 fortodd
0 forteven ﬁ for t even
jt

where M is a very large number. Clearly, this reduction can be done in polynomial
time. We will show that the answer to KNAPSACK is positive if and only if ELSEC-
MILP has a solution with costs of at most M - n 4+ )_a; — k.

Suppose the answer to KNAPSACK is positive. Then if z; = 1, let xp; = 4; and if
z; = 0, let xp,_1 = a;; x; = 0 otherwise. The thus created solution of ELSEC-MILP has
costs:

M-n+ Z X2ip2i + Z Xpi_1*P2ic1 = M-n+ Z a; -0+ Z a;-1

iZZi:1 iZZiZO iZZi:1 i:Zi:O

d_1 = ar



n n n
:M-n+2ai(1—zi):M-n+2ai—2uizigM-n+Zai—k.
i=1 i=1 i=1

Moreover, this solution of ELSEC-MILP has emissions:

b;
Z XiP2i + Z Xoi—1" Pai-1 = Z aj - — + Z ai - O—Zb21§C

. a;
i:z;=1 i:z;=0 iiz;j= ! i:z;=0 =

Conversely, suppose ELSEC-MILP has a solution with costs of at most M - n +
Y_a; — k. Then we know that there are at most n set-ups, otherwise the costs of ELSEC-
MILP would be at least M- (n+1) > M -n+ Y a; — k. Since h; = oo for t even, there
must be exactly one set-up in each pair of periods (2i — 1,2i). Moreover, the produc-
tion quantity in this period must be exactly g;, to satisfy all demand. There is a budget
of ) a; — k left to pay for production costs. The production costs equal the sum of g;
over all i for which x,;_1 = a; (and xy; = 0), so

Z Eli-1+ Z Elz"OZ Z aiSZai—k.

iZX2i_1=11i i:le:ai i:le-_l:a,- i=1

It follows that

Z aiZk.

il.Xzi:ai
Now, construct the following solution to KNAPSACK: if xp; = a;, then z; = 1, and if
Xpi—1 = a; then z; = 0. The profit of this solution equals

n
Zaizi: Z a,--lzk.
=1 i:le‘:ﬂi

Since the solution of ELSEC-MILP is feasible (by assumption), the following holds
for the emissions:

n b: r . . A
Y bizi= ) b= ) —ai= ), —xt Z pexe = Z (Ktyt + pex + htlt) <C
i=1 i:xp;=a; itxp;=a; ai t even Zt

L]

We can also view the instance from the proof as a lot-sizing problem with an emission
constraint and two different production modes in each period, with a horizon of 3T
periods. The even and odd periods then correspond to these two different production

modes, and we get the following corollary.

Corollary 2 Lot-sizing with an emission constraint and two production modes in each period
is N'P-hard, even if only production emits pollutants (linearly) and either all (financial) costs
or all emissions are time-invariant.



4 Structural properties

Before we introduce our algorithms in Section [5, we prove the correctness of some
structural properties of an optimal solution, which these algorithms will use.

We use the common definition of a block as an interval [,s] such that ; 1 = I3 =0
and I; # 0 Vt < v < s —1. Furthermore, let a period t be called a double-sourcing
period, if I;_1 > 0 and x; > 0, that is, there is both inventory carried over from the
previous period and positive production in period t. Let a period ¢ be called a single-
sourcing period if either I;_1 = 0 or x; = 0.

Later, we will want to consider a given solution and find out what happens to the
costs (and emissions) when we shift production from period i to period j and vice
versa. Therefore, it will be convenient to make the following definitions. Let (x,I) be
a given solution. Let x; ; be the quantity produced in period i that is kept in inventory
until at least period j in that solution. Define g;; as the additional production quantity
in period i (compared to (x,I)) that is kept in inventory until at least period j. We
can interpret x; as the production quantity in period i in the ‘old” (given) situation and
x; + q;,; as the production quantity in period i in the ‘new’ situation. Similarly, we
can interpret the quantities Iy + g; ; as the inventories in periods k (i < k < j—1)in
the new’ situation. Now, define C; ;(q; ; xi, Ii, - . ., [j—1) = pi(xi +q;) + Z;(j hi (I +
q:j)- We will use C; ;(0) and C;; as shorthand for C; ;(0;x;, [;, ..., [j_1). In this way,
C;,(0) gives the production costs in period i plus the holding costs incurred in periods
i through j — 1 in the ‘old’ situation, and C;(g;;) gives the production and holding
costs in the same periods in the ‘new” situation. Because of concavity of p; and h,
it holds that C; is concave (in ;) too. Note that C;;(g;,;) = p;(xj + g;;). Similarly,
define éi,j(ﬂi,j} Xi, Liye oo lio1) = pi(xi +qi7) + Z;c: I (I + q:), and use Ci,]-(O) and Ci,j
as shorthand for Ci,j(O; xi, Li,..., Ij_l). Define

pl(x;) = lm pi(xi + h})l — pi(xi)

4

i.e., p}is the right derivative of p;. Because p; is real-valued and concave, we know that
this right derivative exists for x; > 0.
i N
Similarly, let p;, h;, h;, Cz',j’

We know that the right derivative of p; exists for x; > 0, the right derivatives of h; and

C! j be the right derivatives of their respective functions.

h; exist for I; > 0, and the right derivatives of C;; and éi,]- exist for q;; + x; > 0 and
i;+ Ik > 0 (i <k <j) (ie. the quantity that is produced less in period i is such that

the remaining production quantity, respectively inventories are positive).
Theorem 3 If, for each pair i < j, either (C;/].(qi/j) < Cj;(qj;) and Cf,j(%',j) < C]’-/j(qj,j)> or
(C{,j(qi,j) > C; :(q5j) and Ci;(gi ) > C]’.,j(q]-,j)) holds, for all (x,I) and all (q;;,q;;) (such
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that q;; +x; > 0, q;; +xj > 0and q;; + I > 0 (i < k < j)), then there exists an optimal
solution to ELSEC, such that the single-sourcing property holds in all periods.

Proof Suppose there exists an optimal solution (x, I) with (at least) one double-sourcing
period. Let v be a double-sourcing period. Suppose that period v’s demand is procured
from two periods, t and s, then it must be that either v = t or v = s. Furthermore, as-
sume that C; ,(0) > C/,(0) and C;,(0) > C[,(0). (Note that this also covers the case
Ci,(0) < C.,(0) and C},(0) < C[,(0), because we can switch the indices t and s.)
Now, we should produce x;, units in period s instead of period ¢, so that we obtain a
solution with single-sourcing in period v. We show that this will decrease both costs

and emissions. Because of concavity, it holds that
Ct,v(o) - Ct,v(_xt,v) > Célv(o)xt,v > C;,z; (O)Xt,v > Cs,v(xt,v> - CS,U(O) ’

i.e., the savings are larger than the extra expenses. Completely analogously,

A

Ct,v(o) - Ct,v(_xt,v) > Célv(o)xt,v > C;,y(o)xt,v > és,v(-xt,v) — G v(o) .

7

If there are any double-sourcing periods left, then repeat the above procedure until
there are only single-sourcing periods left. [

Corollary 4 If both the financial and emission costs satisfy the Wagner-Whitin property (no
speculative motives), then there exists an optimal solution to ELSEC, such that the single-
sourcing property holds in all periods.

Proof By definition, the Wagner-Whitin property means that it is cheapest to procure
i iod, ie. (C/.>C!. 7.>Af..>

products from the most recent production period, i.e (CI,] >C i and Cz,] >C i for

alli <j. O

Note that in our model the single-sourcing property is the same as the zero inventory
(ZI0O) property, i.e., there exists an optimal solution such that I;_; = 0 or x; = 0 for all
periods t. In the remainder of this paper, we will refer to all financial and emission costs
that satisfy the conditions in Theorem 3| as co-behaving, because over time, such cost
and emission functions move in the same direction, i.e., if one increases (decreases),
the other increases (decreases) as well.

The following corollary is a direct consequence of Theorem

Corollary 5 If the emission cost functions are time-invariant and the holding emissions are
zero, OR the financial cost functions are time-invariant and the holding costs are zero, then

there exists a solution to ELSEC, such that the single-sourcing property holds in all periods.
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In general, the following property holds:

Theorem 6 There exists an optimal solution to ELSEC, such that the single-sourcing property
holds in all but (at most) one period.

Proof See Appendix O

We will refer to the period in which the single-sourcing period is violated as the double-
sourcing period. In this period, say v, it holds that both I,_; > 0 and x, > 0.
Finally, we prove the next property, which is used in Section

Theorem 7 There exists an optimal solution in which either the full emission capacity is used,
or the single-sourcing property holds.

Proof We need to show that if we have a solution with double-sourcing for which the
emission capacity is not fully used, i.e. I, (ﬁt(xt) + flt(It)> < C, then there exists a
solution with equal or lower costs and emissions that uses the full capacity or does not
have double-sourcing in any period.

Let period v’s demand be produced in periods t and s, where either t = v or s = v.
Assume that C; ,(0) > C{,(0), w.l.o.g. It is cheaper to move a quantity 4 > 0 from

period t to period s, since because of concavity, it holds that

Civ(0) = Cio(—q) = C;IU(O)q > C;/U(O)q > Csp(q) — Cs,0(0) ,

i.e., the savings are larger than the extra expenses.

Try to choose g = x; 4, so that we obtain a solution that satisfies the single-sourcing
property. If the emissions of the new solution are within the emission capacity, then
we are done.

Otherwise, choose 0 < g < x5, such that the additional emissions equal the re-
maining emission capacity, i.e., Cs »(7) — Cs5(0) + Ct5(0) — Cio(—q) = r, where r > 0
is this remaining capacity. Existence of such a g follows from the mean-value theorem,

since C;, and C; , are continuous on their interior domains. ]

5 Algorithms

We propose several algorithms to solve ELSEC. First, we present a Lagrangian heuristic
that provides an upper and lower bound for the problem. Secondly, we develop an
exact algorithm that solves the co-behaving version of ELSEC in pseudo-polynomial
time. We turn this algorithm into a fully-polynomial approximation scheme (FPTAS).
Next, this FPTAS is extended to deal with more general cost and emission functions.
Finally, we show how the FPTASes can be sped up by using a lower bound, such as the

one given by the Lagrangian heuristic.
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5.1 Lagrangian heuristic

In this section, we present a Lagrangian heuristic that is based on relaxation of the
emission capacity constraint (5). The resulting formulation is given below. This heuris-
tic will give us both a lower bound and a feasible solution.

L A ~
(pe(xe) + 1)) + A ) (ﬁt(xt) + he(It) — C)

1=

min
t=1 t=1
T ~ A
= Z (pt(xt) + /\ﬁt(xt) + ht(It) + /\ht(lt)) — AC (13)
t=1
s.t. L = L q14+x—dy t=1,...,T (14)
xt,It > 0 tZl,...,T (15)
Iy =0 (16)
A >0 (17)

First, suppose that A is given. Obviously, constraints (14)—(16) are the same as in the
classic (uncapacitated, single-item) lot-sizing problem. Moreover, p; + Ap; is a concave
function of x;, because both p; and p; are concave, and A is nonnegative. Similarly,
hy + Al is a concave function of I;. Furthermore, AC is a constant, so we can ignore
it when optimising. Hence, for a given A, the relaxed problem (13)—(16) is a classic
lot-sizing problem and we can solve it with|Wagner and Whitin| (1958)’s algorithm.

For any A > 0, the optimal value of gives a lower bound on ELSEC. Naturally,
we are looking for the best (that is, highest) lower bound. As output, our algorithm
will give an interval that contains the A* for which this best lower bound is attained. It
is easy to see that for A = 0, the emission constraint (5) will be violated in general. Oth-
erwise, the problem can be solved by simply ignoring the emissions and minimising
costs. If A is increased, then step by step, the emissions will decrease and the costs will
increase. For some value of A, say Ap, the solution will satisfy the emission constraint
(provided that a feasible solution exists). We are interested in finding the highest
value of A, say App, for which the solution of — violates the emission constraint
(B). This gives our best lower bound.

We apply Megiddo (1979)’s algorithm for combinatorial problems that involve min-
imisation of a rational objective function to the lot-sizing problem. Gusfield (1983)
showed that this is equivalent to minimising an objective of the form a 4 Ab. See also
Wagelmans (1990) and Megiddo| (1983). These papers imply that if, for a given A, the
relaxed problem can be solved in O(A) (with a ‘suitable” algorithm) and we can check
in O(B) whether the relaxed constraint is violated or not, then the parametrised prob-
lem (a 4 Ab) can be solved in O(AB). For a given A, our relaxed problem (13)-(16) can

12



be solved in O(T?) with Wagner-Whitin. Moreover, the same algorithm can be used
to determine whether the emission constraint is violated or not. Although [Megiddo
(1979) only mentions fractions of linear functions, his algorithm can be generalised to
our problem in a straightforward manner. Hence, we can solve our Lagrangian relax-
ation in O(T?T?) = O(T*).

The intuition behind the algorithm is as follows. We are looking for an interval such
that A* equals one of the endpoints. At A*, we are indifferent between two solutions, of
which one is infeasible and the other feasible. The latter will give us an upper bound.
A trivial initial choice for the interval is [0, o0). We act as if we know A*, and solve (13)—
with Wagner-Whitin. View this algorithm as a decision tree. At each node of the
tree, we need to make a decision, say to ‘go left” or ‘go right’. This decision depends on
a comparison of the form a(X') + Ab(X') < a(X?) + Ab(X?), where a and b are a cost
and an emission function, respectively, and X! and X? are (partial) solutions. Suppose
we go left if the statement is true and right otherwise. We compute for which A we
are indifferent. For this A, we can solve the relaxed problem in O(T?) with Wagner-
Whitin and know whether the solution is feasible. If so, then this A provides an upper
bound on our interval; if not, it provides a lower bound. Note that for all A inside
the (updated) interval, we make the same decisions in each of the decisions nodes that
we already visited. Take a A inside this interval and check whether a(X') + Ab(X!) <
a(X?) + Ab(X?) to know if we should go left or right. We continue in this manner until
the last step of the algorithm.

Below, we give pseudocode for Megiddo|(1979)’s algorithm applied to our problem.

Arg =0, Ayp:=o0, m(T+1):=0, m(T+1):=0
for t =T until 1 step -1 do
MinimumCosts := 00, MinimumEmissions := o0
for s=1* until T step 1 do
Costs:=c(t,s) +m(s+1)
Emissions :=e(t,s) + (s + 1)
if MinimumCosts < o0 and MinimumEmissions < o0 and Emissions

# MinimumEmissions then

A= MinimumCosts—Costs
. Emissions—MinimumEmissions

if Feasible(A) then
Aug = min{/\, /\LIB}
else

)LLB = max{)t, )LLB}

13



end if
end if

if Ayg = oo then

A=Ag+1
else

A= %ALB + %/\UB
end if

if Costs + A-Emissions < MinimumCosts + A-MinimumEmissions

then
MinimumCosts := Costs
MinimumEmissions := Emissions
end if
end for
m(t) := MinimumCosts
#i1(t) := MinimumEmissions
end for
s—1
Here, c(t,s) = p; (Dt,s)—l—ZhT(DT,s) (18)
§
e(t;s) = ;at(Dt,s)+;tsz(DT,s) , (19)

where Dy is defined as Y5, d.

The function Feasible(A) checks if the problem is feasible for the given A by ex-
ecuting the Wagner-Whitin algorithm and checking whether the emission constraint
is violated or not for the obtained solution. Equations and give the costs,
respectively emissions, of procuring all of periods t through s’s demand from period ¢.

After executing the algorithm, we get an interval [Arp, Ayp] that contains A*. More-
over, it is known that the same solution, say x%, would be obtained for any A €

UuB

. . 1
(AL, Aug). Hence, there are three solutions to consider: x“°, x2 and xLB, correspond-

ing to Ay, (%ALB + %)\UB) and App, respectively. Note that these solutions may coin-

cide. By construction of the algorithm, x!8

must be a feasible solution (if one exists)
(see pseudocode). If x? is also feasible, we take the best feasible solution.
Furthermore, suppose that x* is an optimal solution of problem (13)—(16) for some

value of A. Then we can compute YL, (ps(x}) + h(I})) + A* Y1, (ﬁt(xf) + Iy (IF) — C),

which is a lower bound for our problem. Observe that both x;p and x;p are optimal
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solutions, for Arp and Aysp, respectively. Hence, we can compute that above expression

for both solutions and take the higher lower bound.

5.2 Pseudo-polynomial algorithm for co-behaving costs and emis-

sions

Apart from the heuristic, we also give a dynamic programming algorithm that solves
ELSEC to optimality in case the costs and emissions satisfy the conditions in Theorem
We shall see that this algorithm works in pseudo-polynomial time. We construct this
algorithm in such a way that it will be easy to turn it into an FPTAS in the next section.

First, assume that demand and all cost functions are integer, i.e,, d; € IN and
pe(xt), he(I;) € N for x4, I; € IN. Note that this does not have to hold for the emis-
sion functions, p; and hy.

The general idea of the algorithm is as follows: we minimise the emissions under a
(financial) budget constraint. Because of Theorem |3, we know that the single-sourcing
property holds and we can extend Wagner and Whitin’s well-known algorithm for the
classic lot-sizing problem (Wagner and Whitin, [1958) with an extra state variable €,
which denotes the budget. More precisely, let f(t,€) denote the minimum emissions

for periods t until T, given budget €. We define the following recursion:

f(t,€) = trgin(t | {e(t,s)+ f(s+1,€—c(ts))} fort<T (20)
s>t €>c(t,s
f(T+1,€) = 0 , (21)

where, ¢(t,s) and e(t,s) are defined as in and (19), respectively. Now, f(1,€)
gives the minimum emissions given budget €. We first compute f(1,€) for € = 1.
If f(1,1) < C, i.e., the minimum emissions are less than or equal to the emission cap,
then we conclude that € = 1 is the optimal value. If not, then the budget is raised
to 2, we compute the corresponding minimum emissions f(1,2) and again compare
this to the emission cap. In this way, we try budgets € = 1,2, 3, ... and compute the
corresponding f(1,€) until f(1,€) < C, i.e., the minimum emissions are less than or
equal to the emission cap. The first budget € for which this holds, is the optimal value.

For each f(t,€), the optimal s is stored. The production schedule corresponding to
the solution found by the algorithm can then be found through a simple backtracking

procedure.

Running time

It is easy to see that the running time of this dynamic programme is O (T?0pt), where
opt is the optimal value (of the financial budget).
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Memory

This algorithm needs O(Topt) memory, to store all values f(t,€) and the correspond-

ing optimal s.

Finding the Pareto frontier

In the process of finding the optimal solution, we construct part of the set of Pareto ef-
ficient solutions. This is because for each budget € =1, ..., 0pt, we find the minimum
emissions, f(1,€). This algorithm can be used to find the whole Pareto frontier. We
first minimise emissions regardless of costs. This can be done by executing the (classic)
Wagner-Whitin algorithm with the emission level as the objective (instead of the finan-
cial costs). Denote the corresponding costs by €; it is easy to see that this is polynomial
in the input of a problem instance. Now, we can compute the minimum emissions,
£(1,€) for each budget € = 1,...,€. This procedure gives the whole Pareto frontier

for co-behaving costs and emissions in O <T2é> time.

5.3 FPTAS for co-behaving costs and emissions

Clearly, it is the large number of budgets € to consider that makes the algorithm in the
previous section run in pseudo rather than fully polynomial time. However, it is possible
to turn the pseudo-polynomial algorithm into an FPTAS by reducing the number of
states of € in a smart way. Instead of all budgets € = 1,2, ..., we now only consider

budgets equal to

k
Ak:=<1+ )) , keN . (22)

e—1)(T+1

(See Figure 3]) This means that in every step of the dynamic programming recursion,

we have to round down the budget to the nearest value of A*.

f(t,€) = trgin(t : {e(t,s) + f(s+1,round(€ —c(t,s)))} fort < T (23)

s>t: €>c(t,s
f(T+1,€) = 0 (24)
where round(a) := r]g]g({Ak . AF < a} (25)

Analogously to what we did before, we try budget € = AL A2, A3, ... until f(1,€) < G,
i.e., the minimum emissions are less than or equal to the emission cap. Again, for each
f(t,€), the optimal s is stored. The production schedule corresponding to the solution
found by the algorithm can then be found through a simple backtracking procedure.
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The approach in which an exact, but only pseudo-polynomial dynamic programme
is transformed into a FPTAS by trimming the state space is attributable to Woeginger
(2000) and Schuurman and Woeginger| (2011) (see also [Ibarra and Kim, 1975), as well
as the idea to use a so-called trimming parameter A of the type A := 1+ ZgLT. The
FPTAS presented in this section takes an approach that is similar to Woeginger| (2000).
As far as we know, the FPTAS that is presented in Section [5.4f does not fit within his
framework, because it is not based on a pseudo-polynomial algorithm, but rather on a

generalisation of another FPTAS.

Correctness of the approximation

We verify that the obtained solution is in fact a (1 + ¢) approximation of the true opti-
mum. The question is: how much of the budget is ‘wasted’ by repeatedly rounding off
the budget?

In each production period, at most the size of one interval [A?, A*1) is lost. In the
worst case this is the largest interval. Since there are at most T production periods, the
maximum rounding error equals the size of the T largest intervals. Suppose that for
some budget € = AF*T, the algorithm gives no feasible solution (i.e., f(1, A< T) > C).
Then we know that A¥ is a lower bound, because we could have lost at most T intervals.
Now, suppose that for the next budget, the algorithm does find a feasible solution (i.e.,
(1, AM+T+1) < (). So because we raise the budget from AT to AK+T+1 each time
we compute f (1,€), we may lose one more interval. Hence, the maximum total error
equals the size of the T+1 largest intervals. That means that if the algorithm finds a

solution A**T+1 the optimal value is at least A¥. We therefore need to show that

¢ k+T+1 c k
1 < (1 1
(emmary) < emen) 0+
This holds, because

@*xw4iT+n>Hﬁ4:(“*@—UZ#&QkO*Kw4§T+U)Hl'

T+1
so we need to show that (1 + m> < (1+¢) . This is true because

/ -1 T+1 .
(1+%) §1+(e—1)-e_L1:1+s (if0<e<(e—1))

The inequality follows from the fact that (1 + %)n <1+ (e—1)zif0<z<1.
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Figure 3: Budgets Al, A2, ...

Running time

The pseudo-polynomial algorithm in Section 5.2/ has a running time of O(T?opt). In-
stead of opt intervals, the algorithm in this section has at most this many intervals:

I+ a0 10 _ In(opt) DT+
P( 1 g(OPtﬂ L‘ (H(M)E(TH)J < KH . >1 (opt)w ,

T max{In(opt),1} )

so there are O (

O <T3 max{lgn(op DA} > , which is fully polynomial.

budgets € to consider. Hence, the total running time is

Memory

( T2 max{lsn(opt),l} )

This algorithm needs O memory, to store all values f(t,€) and the

corresponding optimal s.

A posteriori gap

As we have shown that the algorithm described in this section is a (1 + €) approxi-
mation, we know that the optimality gap of the obtained solution is at most 100&%.
Previously, we have seen that A* is a lower bound for the optimal value, if AFT+1
is the (final) budget € corresponding to the algorithm’s solution. Afterwards, we
can compute the actual costs of this solution, which we will call vppras. We know

that vppras < AFFTH1. That means that we can compute a smaller optimality gap as
vrprAs—AF

AR

An even better a posteriori gap can be obtained if we round down as much as pos-
sible during the execution of the algorithm. We then round down the budget according
to the following rounding function:

roundmore (Ai - c(t,s),t,s> = max {Ak AR < AT c(t,s)} . (26)
€

So we lose not just (at most) one interval in each block, but (at most) a number of
intervals equal to the length of the block. It follows that the total number of intervals

that we lose by rounding equals the total number of periods (T), as before.
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5.4 FPTAS for general costs and emissions

As the FPTAS in the previous section is based on the single-sourcing property, it cannot
be applied to the problem with general costs and emissions in a straightforward man-
ner. However, Theorem@tells us that there is at most one period with double-sourcing.
This leads to the following idea for a general FPTAS.

All blocks are ‘normal’ single-sourcing blocks, except for one double-sourcing block,
say (t,s). The costs and emissions in the double-sourcing block depend on which pe-
riod between t and s, say v, is the double-sourcing period. This implies that t and v are
the two production periods in this block. The costs and emissions also depend on how
much of the demand in periods v until s is produced in period t and how much in v.
Note that the demand for ¢,...,v — 1, the earlier periods in this block, always has to
be produced in period t. The costs to satisfy all demand in double-sourcing block (¢, s)
are between, say, a;s and bys. These costs ats and bys can be computed by considering
all double-sourcing periods v and calculating the costs corresponding to the situation
where there is a set-up (if applicable) in both period t and v, but all demand in periods
v until s is produced in either period f or period v. Now, we iterate over a ‘suitable sub-
set” of all values between a;; and by;. These are the “double-sourcing block budgets’, $.
For each $, we can compute the corresponding best v and (minimum) emissions in the
double-sourcing block. For all other blocks, the single-sourcing property holds, so we
can use a recursion like in the previous section.

The precise recursion is defined as follows:

2t €) = min{ min  {e(t,s) + g(s + 1, round(€ — c(£,5)))},

s>t :€>c(t,9)

SZt,$ré1§tr:: s {e(t,s,%$) + f(s + 1, round (€ — $))}} (27)
g(T+1,€) =0 (28)
e(t,s,$) = —ﬁiln {e(t,v,s,%)} (29)
e(t/ o,s, $) = Iat (Dt,v—l + “tvs$Dv,s) + ﬁv ((1 - “tos$)Dv,s)
v—1 S
+ Y he (Drp-1+ tppssDos) + ) he (Drs) (30)
T=t =0

f(t,€), c(t,s), e(t,s) and round(e) are exactly the same as in equations (23), (18),
and (25), respectively.

The interpretation of recursion (27) is: g(t,€) gives the minimum emissions in pe-
riods t until T, given that there is a budget € and that there may be double-sourcing
(once) in periods t until T. To find the value of (¢, €), we need to determine whether
the current block should have double-sourcing or not. The first line of corresponds
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Figure 4: Budgets (1 +¢)!, (1 +¢)?,... for $

to the situation in which there is no double-sourcing in the current block [t,s]. In that
case, there may be double-sourcing in a later block and we should minimise over all
possible values of the next production period, in a recursion that is similar to the f (¢, €)
recursion (see Section [5.3). If there is double-sourcing in the current block, as in the
second line of , then we need to minimise over s and $, where s is the end of the
current block and $ is the amount of money that is spent in double-sourcing block (¢, s).
Since there cannot be another block with double-sourcing, the recursion uses the value
f(s+1,€) (see Section[5.3) as the minimum emissions of periodss +1,...,T.

The minimum emissions given a budget € are given by g(1,€). Try budget € =
AL A% A3, .. until g(1,€) < C, i.e., the minimum emissions are less than or equal to
the emission cap, where A is defined as in equation (22).

The suitable subset of double-sourcing block budgets By is defined as

Bie —= {$:$:(1—|—€)k,k€N,ats§(1+€)k§bts} , (31)

where a;; = rr}in {c(t,v = 1) +c(v,5)} (32)
v=t,...,s

and by, = max {c(t,v —1) +c(v,5)} (33)
v=t,...,s

That is, the double-sourcing block budget $ is equal to (1 + &) for some integer k and
has to lie between the minimum and maximum costs in the double-sourcing block. See
Figure

In equation (29), e(t,s,$) gives the minimum emissions in double-sourcing block
(t,5), given a budget $. It is computed by minimising over the all possible double-
sourcing periods v.

In equation , e(t,v,s,$) gives the emissions in double-sourcing block (¢,v, s) (so
given the double-sourcing period v), if a budget of $ is spent. If the production and

holding emissions are fixed-plus-linear, then this equation reduces to
e(t, 0,8, $) = ‘xtvs$atvs + (1 - D‘tvs$)l;fvs ’ (34)

where d;ys and Etvs are the emissions to satisfy demand in the double-sourcing block,
when there is a set-up (if applicable) in both period t and v, but all demand in periods v
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through s is produced in period ¢, respectively v. w54 gives the fraction of demand in
periods v through s that is produced in period ¢, if the budget in double-sourcing block
(t,v,s) is $; the remaining (1 — a,s4) is then produced in period v. If the production
and holding emissions are fixed-plus-linear, then this is simply

$ - btvs

Atvs — Dros

7

Kipsg =

where a5 and b5 are the costs to satisfy demand in the double-sourcing block, when
there is a set-up (if applicable) in both period t and v, but all demand in periods v

through s is produced in period ¢, respectively v. In general, a;,s4 is the solution of

v—1 S
pt (Dt,v—l + “tvs$DU,S) + Po ((1 - “tvs$)Dv,s) + Z hT (DT,ZJ—I + (xtvs$Dv,s) + Z hr (Dr,s)
T=t =0

(35)
We assume that this «a;,54 can be found in constant time. This is the case for e.g. fixed-
plus-linear costs, cost functions that are polynomials of degree at most four, and com-
pound functions of which every piece is such a function (as long as the resulting func-
tion is concave for relevant production/inventory quantities). Otherwise, if finding an
X4ys6 takes O(A) time and this is more than O <M> , then the time complexity

3 2 3
becomes O (T max{l; (opt) 1} + I max{lgn (opt),1} -A> (see Section ‘Running time’). Note

that we may approximate a;,qg, for instance with a numerical method like bisection.

However, in order for the algorithm to be accurate enough, we may not overestimate
Atysg- (Here we assume that the lhs in (35) is an increasing function in a;,sg. Otherwise,
define aj e = 1 — yyg5.)

In practice, the algorithm can be sped up, because we know that many triples
(t,v,5) do not have to form a double-sourcing block in an optimal solution. This is
because Theorem 3| tells us that the single-sourcing property holds for a triple (t,v,s),
if it is true that (Cps < Cys and Cis < Cv,s) or (Cts > Cys and Cis > év,s)- Therefore,

it is not necessary to compute the minimum in for the triples for which this holds.

Smart backtracking

The production schedule corresponding to the solution found by the algorithm can be
found through a relatively simple backtracking procedure. For each f(t,€), we store
the optimal s, as before. For each g(t,€), we store the optimal s, whether double-
sourcing in block [¢, s] is optimal or not, and if so, which budget $ is optimal. We could
also store the optimal double-sourcing period v, but in certain cases, we can choose
an approach to make a solution with lower costs by using as much of the (remaining)

emission capacity as possible.
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Suppose that the backtracking procedure has given the optimal production quan-
tities in all blocks except the double-sourcing block, (t,v,s). We know that if there is
double-sourcing in a period, then it is always best to use the whole emission capacity
C. (See Theorem @) However, because we have rounded the budget $, it is very well
possible that the FPTAS gives a solution in which the emissions are strictly smaller
than the capacity. Therefore, we first compute the total emissions in all single-sourcing
blocks. Then, we re-optimise the double-sourcing period v = t +1,...,s and budget $,
such that as much as possible of the remaining emission capacity is used. (This takes
only O(T) time.)

Correctness of the approximation

As in Section5.3] we verify that the obtained solution is in fact a (14 €) approximation
of the true optimum by answering the question: how much of the budget is ‘wasted’
by repeatedly rounding off the budget?

Rounding values of $ costs at most one ‘big’ (1 + ¢)-interval. In the remainder of the
algorithm, at most T 4 1 ‘small’ A-intervals are lost. In Section 5.3, we have shown that
these small intervals add up to at most one ‘big’ (1 + ¢)-interval. Hence, the maximum
total error is ¢ - opt + &(1 + €)opt = (2e + e2)opt < 3e-opt (for 0 < e < 1). We could
define e := % to geta (1+ ) approximation. In practice, we choose e = /1 +6 —1 > %.
That way, ¢ is the positive solution of 2¢ + &2 = 6.

Running time

T max{In(opt),1}
€

As in the FPTAS for co-behaving costs, there are O
max{In(opt),1} )
€

) values for €. Sim-

ilarly, we can show that there are O ( intervals for $, because the number

of double-sourcing block budgets $ is at most

etgtopn] = [ 2292 ) [ (1) ]

In total, there are O ( r max{lsn (op t)’1}> values of both g(t,€) and f(t,€) that need to be
computed. As in Section it takes O(T) time to compute one f(t,€). Computing
one g(t,€) takes O <T+ T- M) =0 (M) time, because there

are two minimisations in recursion (27); the first one over periods s; the second one

over periods s and $ € B;;. Hence, the total time needed to compute all (¢, €) and
f(t,€) iS O (TmaX{IH(OPt)/l} + T3maX{ln2(opt),1}> _ O (Tsmax{lrf(opt),l})

€ €2 €

T2 max{In(opt),1}
€

Furthermore, there are O ( ) values of e(t,s,$) that need to be com-

puted. Computing one e(t,s,$) takes O(T) time, so the time needed to compute all
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e(t,s,$) is O (T3 max{In(opt) 1} ) Since all e(t,s,$) can be computed beforehand, it fol-

€

lows that the time complexity of the whole FPTAS is O <T3 max{lrf(w 01} > :

€

Memory

T2 max{In(opt),1}
€

As in the co-behaving case, this algorithm needs O ( ) memory to store

all values f(t,€) and the corresponding optimal s, and all values g(t,€) and the cor-
T3 max{In(opt),1} )

responding optimal s and $. Storing all values e(t,s,$) requires O ( -

memory. Hence, the total required memory is of the same order.

A posteriori gap

As we have shown that the algorithm described in this section is a (1 + €) approxi-

mation, we know that the optimality gap of the obtained solution is at most 100e%.
. Ak+T+1 . Ak+T+1
Previously, we have seen that er) (or even: Ate)ATsT

the optimal value, if A¥*T*1 is the (final) budget € corresponding to the algorithm’s

k.
= 1A—+S) is a lower bound for

solution. Afterwards, we can compute the actual costs of this solution, which we will

Ak+T+1

call vppras. We know that vpprags < That means that we can compute the

A
UFPTAS ~ 1+¢
Ak :

optimality gap more sharply as
1+e

As in Section an even better a+posteriori gap can be obtained if we round down

€ as much as possible during the execution of the algorithm. We round down the

budget € according to the roundmore function (see equation (26)). As before, it follows

that the total number of A-intervals that we lose by rounding € equals the total number

of periods (T).

What if 1 is not a trivial LB?

For the FPTAS for co-behaving costs and emissions, it was trivial that 1 was a lower
bound, because demand and cost functions were assumed integer, and production was
always integral, in accordance with Theorem {3, For the general FPTAS described in
this section, this is no longer trivial, as production in the double-sourcing block may
be non-integral. However, the instances with an optimal value lower than 1 all corre-
spond to a very specific situation, which we can easily exclude.

In these instances, costs must equal 0 in all single-sourcing blocks and one of the
sources in the double-sourcing block. Now, iterate over all possible double-sourcing
intervals (at most 1 T(T — 1)), such that all other costs equal 0.

Given a double-sourcing block [t,s], we solve two classic lot-sizing problems: we

minimise emissions in [1, t — 1] and in [s + 1, T| with an algorithm such as[Wagelmans
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et al| (1992) or Wagner and Whitin| (1958), extended with the following tie-breaking
rule. See the algorithm as a decision tree. If somewhere in the tree we must choose
between branches with equal emissions, then choose the branch with lower costs.

Consider all double-sourcing blocks [t, s] such that the emissions in [1, — 1] U [s +
1, T| are below the capacity and the costs are zero, if any of such intervals exist. Iterate
over all possible second sources v in this interval (t < v < s), such that one of the
sources (t or v) has costs zero. Compute the emission capacity that remains for such a
double-sourcing block (t,v,s), if any of such blocks exist. Now, we know how much
should be produced in each source such that the emissions are within capacity, if this
is possible at all. Compute the costs in the double-sourcing blocks for which this is
possible. If there exists such a double-sourcing block with costs lower than 1, then 1 is
not a lower bound and the costs of the cheapest double-sourcing block is the optimal
value. Otherwise, 1 is a lower bound.

We can check this in O (T°).

5.5 Using the heuristic to speed up the FPTAS

In the execution of the FPTASes in Sections [5.3|and we encounter many small in-
tervals. For example, we need to compute f(t, €) for € = Al,A%,A3,..., even though
the optimal value is closer to, say, A'%. In retrospect, we would not have needed in-
tervals smaller than m
beforehand. However, we can compute a lower bound (LB) first, so that we know

opt for €. Of course, we do not know the optimal value

that we do not need intervals smaller than —(3—1)8(T )

of the FPTAS. We replace all intervals below LB by intervals of size W(TH)LB' To
see why this works, we look back at the Correctness of the approximation in Section
Again, suppose we find a solution when € = AT+l (> LB). Also, suppose
we have a lower bound after executing the algorithm, say LBpost- In Section this
lower bound equaled A*; now, it is LBpost = max{A¥, LB}. If LB > A, then it fol-
lows that we have found a (1 + &) approximation, because opt — LB < opt — AF <
AFTHL AR < ARATHT — 1) < A¥(1+e—1) < LB-¢ < opt-¢, where the cor-

rectness of the fourth inequality was shown in Section Alternatively, suppose

LB for € during the execution

that A* > LB. In the worst case, we have lost the T + 1 intervals due to round-
ing. In the proof in Section we have shown that losing the T + 1 biggest inter-
vals still resulted in a (1 4 €) approximation. There, the smallest of the biggest in-
tervals had size AF1 — AF = AF(A — 1) = AF. m In the algorithm in this
section, the intervals above LB are the same as before; the intervals below LB have size

WLB < WA". Because the T + 1 biggest intervals that can be lost in this
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Figure 5: Intervals for $ of size at least ¢ - LB

section have the same size as or are smaller than in Section we conclude that we
still have a (1 + ¢) approximation.

Similarly, we may use intervals of size at least ¢ - LB for $ in the FPTAS for general
costs and emissions. We replace all intervals below LB by intervals of size ¢ - LB. See
Figure 5| for an example with LB = 4¢ = (1 +¢)*.

In the computational tests in the next section, we will use the Lagrangian heuristic
from Section |5.1| to compute a lower bound, but of course any method to compute a
nonzero lower bound would do.

Note that, because we use a lower bound in the FPTASes, we do not need integer

demand and cost functions anymore.

Running time

To determine the running times of both FPTASes if we use the minimum interval size
as described above, we must compute the new numbers of values for € and $.

For the total budget €, we compute the number of values that we had in the FPTAS
before, subtract the number of values that lay below LB (as these values will not be
used anymore), and add the number of newly created, larger intervals that lie below
LB. We get:

i o] - [ |2 ]
e—1)(T+1

I+ oy log(opt) _ log(LB) + (e—1)(T+1)

_ e log (0—w> Lz HIT+Y g

IN

+3

7

LB €

€ 3 €

Tmax{In( % ) 1 Tmax{In( %) 1
so there are O | —— {in(1%) }+I) = (’)< max{in( 1) }> values for €, using the

same argument as in Section
For the double-sourcing block budget $, the analysis is similar. We get:

P*S log(opt)—‘ — {HS log(LB)J + {%—‘
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so there are O M + %) =0 (M> values for $, using the same

argument as in Section
This gives the following running times:

€

T3max{h1<%t>,l} . L
o« O for the FPTAS for co-behaving costs and emissions plus the

running time of the algorithm that provides the lower bound. The Lagrangian

heuristic from Section that we use, for instance, has a running time of O (T4) ,

T8 max{ln(%t 1

)' ’ + T4> . This can be reduced to

giving a total running time of O

€

T3 max{In( %¢ hl
O ( > <LB> }> for fixed-plus-linear costs and emissions if an O ((T In T)Z)

implementation of the heuristic is used, i.e., one that is based on an O(TInT)

algorithm for the classic lot-sizing problem, such asWagelmans et al. (1992).

T3 rnax{ln2 (%’g),l} . .
o« O 2 for the FPTAS for general costs; again plus the running

time of the algorithm that provides the lower bound.

Memory

T2 max{ln(%),l}
€

It follows that the FPTAS for co-behaving costs and emissions needs O

T3 max{ln(%) A}
memory and the general FPTAS needs O . memory.

6 Computational tests

6.1 Test set-up

The FPTASes that we developed have some nice theoretical properties regarding their
running times and approximation qualities. However, we are also interested in their
practical performance. Moreover, we would like to know how well the Lagrangian
heuristic performs on a large number of test instances. Therefore, we have randomly
generated 1800 problem instances. These instances are solved with all of the algorithms

that were presented in this paper. More specifically, these are:
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e the Lagrangian heuristic (‘Megiddo’) from Section

e the pseudo-polynomial algorithm for co-behaving costs and emissions (PP-CB)
from section 5.2}, if the instance satisfies the conditions for co-behaviour in Theo-

rem 3]

e the FPTAS for co-behaving costs and emissions (FPTAS-CB) from section
again only if the instance is co-behaving indeed;

o the FPTAS for co-behaving costs and emissions that uses the lower bound gener-
ated by Megiddo (FPTAS-CB-LB), again only if the instance is co-behaving;

e the general FPTAS (FPTAS-gen);
e the general FPTAS that uses the Megiddo lower bound (FPTAS-gen-LB);

e for comparison purposes, we included the CPLEX 10.1 solver. We used this solver
on the ‘natural” formulation, as defined in equations @-, as well as on the
shortest path reformulation. The shortest path reformulation, as introduced by
Eppen and Martin|(1987), is known to have a better LP relaxation.

For each of the FPTASes, three values of ¢ were used: 0.10, 0.05 and 0.01. The FPTASes
that use Megiddo’s lower bound (FPTAS-CB-LB and FPTAS-gen-LB) were executed
even when the feasible solution found by Megiddo was within (1 + ¢) from the lower
bound. This was done in order to reduce the a posteriori gap, even though it was not
strictly necessary.

The values of the problem parameters were chosen in the following way. Although
the algorithms are suitable for more general concave functions, all cost and emissions
functions were assumed to have a fixed-plus-linear structure. This is a common cost
structure in the literature. Moreover, it allowed us to also solve the instances with
CPLEX, so that we can compare our algorithms’ solutions with the optimal solution.

The time horizons that we considered were 25, 50 and 100 periods. Horizons as
long as 100 period were considered, because the number of time periods in our model
(T) may correspond to m - T for instances with m production modes and T’ periods.

First, we generated instances that satisfy the co-behaviour conditions in Theorem
Demand was generated from a discrete uniform distribution with minimum 0 and
maximum 200 (and thus mean 100). Both the set-up costs and emissions were drawn
from three different discrete uniform distributions: DU(500, 1500), DU(2500, 7500) and
DU(5000, 15000) (with means 1000, 5000 and 10000). p¢, p¢, hy and flt were all gener-
ated from DU(0, 20), but we only kept those (p, p, h, /1) that satisfy the conditions in
Theorem 3|
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The second group of instances was generated from the same distributions, with the
same parameters, but we only kept those (p, , 1, 1) such that exactly f%T] period pairs
(t,s) are eligible for double-sourcing. That is, for [3T] pairs the conditions in Theorem
Blwere violated.

The third group of instances was different from the other data sets in the sense
that periods always occurred in (consecutive) pairs, where the even periods have low
production and set-up costs and high production and set-up emissions, and the odd
periods have high costs and low emissions. To be precise, p; was drawn from DU(0, 9)
for t even and from DU(11, 20) for t odd; p; was drawn from DU(11, 20) for t even
and from DU(0, 9) for t odd. The low set-up costs and emissions, K; and K;, for t even
and s odd, were drawn from DU(500, 1500). The high set-up costs and emissions, for
t odd and s even, were both drawn from DU(2500, 7500) and DU(5000, 10000). The
holding costs and emissions between two periods within one pair were always zero.
Between two pairs, they were drawn from DU(0, 20). Demand was zero in the first
period of a pair, and in the second period generated from DU(0, 200). The numbers of
periods we considered are 26, 50 and 100. Generating the data in this way corresponds
to a problem with 3T periods, but with two production modes, ‘cheap & dirty” and
‘expensive & clean’. These instances show similarities with the instance that was used
in the N"P-hardness proof (Theorem [l)), so we expect that they are difficult to solve.

Ten instances were generated for every combination of the parameter settings that
were described above, giving 600 data sets. Every instance thus generated was com-
bined with three different values of the emission capacity. We let C = [BCpin + (1 —
,B)Cmax], where f = 0.25,0.5,0.75, Cinin is the level of emissions when emissions are
minimised, ignoring costs, and Cmax is the level of emissions when costs are minimised,
ignoring emissions. In total, this gave 600 - 3 = 1800 instances.

All algorithms were implemented in a Java programme that was used to solve all
instances on a Windows 7-based PC with an AMD Athlon II X2 B24 processor (2 X
3000 MHz) and 4 GB RAM.

6.2 Results

A summary of the results of the computational tests can be found in Table (I} Tables
in Appendix [B.T|give more detailed results, for different values of the average set-
up costs and emissions, or emission capacity. Four characteristics are given for each

algorithm:

o the average solution time of the algorithm, where the computation time of Megiddo
was included in the times of the FPTASes that used this lower bound;
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e the average a posteriori gap, the percentage difference between the algorithm’s

solution and the lower bound that the algorithm found;

e the average true gap, the percentage difference between the algorithm’s solution
and the optimal value that was found by CPLEX (and PP-CB);

e the percentage of instances for which the algorithm’s solution value was exactly

equal to the optimal value.

Below, we will discuss the most important findings.

Tables and [ give the results for the co-behaving instances, which satisfy the
conditions in Theorem |3, as summarised in the columns marked ‘co-bhv.” in Table
We see that the heuristic (Megiddo) finds solutions that are very close to the optimum.
For a horizon of 25 periods, it even finds the optimum itself in over 60% of the cases,
and the true gap is less than a half percent on average; its a posteriori gap is 1.5% on
average. It is remarkable to see that if the horizon becomes longer (50 or 100 periods),
these gaps become even smaller.

The set-up emissions (K) and emissions capacity (C) do not appear to have a big in-
fluence on the results, for any of our algorithms. For lower set-up costs (K), Megiddo’s
gaps are smaller.

Looking at the results for the FPTASes for co-behaving costs and emissions (FPTAS-
CB) tells us that they give solutions that are well within the specified precision in a very
short amount of time. The average computation times of FPTAS-CB-LB ranges from
0.39 seconds, for 100 periods and ¢ = 0.01, down to only 1 millisecond for 25 periods
and ¢ = 0.1. FPTAS-CB-LB with ¢ = 0.05 or ¢ = 0.1 is faster than CPLEX, even on
the shortest path formulation. For 25 and 50 periods, this also holds when ¢ is 0.01. Of
course, this comes at the expense of e-optimal solutions instead of the optimal solutions
that were generated by CPLEX. Nonetheless, even when ¢ = 0.1, the optimum is found
in over two-thirds of the instances, and the average true gaps are below 0.025%. For
e = 0.01, these are even below 0.0005%.

Comparing the FPTAS-CBs with the general FPTASes, we see that the general FP-
TASes have a higher computation time, as could be expected. However, the increase
M, which is what would be expected from the
difference in time complexities (see Sections [5.3]and [5.4). This is because our imple-

mentation of the FPTAS-gen checks whether double-sourcing ‘makes sense’, and, be-

appears to be less than of order

cause these data sets satisfy the conditions in Theorem 3| this is never the case. The
solutions of FPTAS-gen are even better than those of FPTAS-CB, because a smaller ep-
silon (¢ = V1+6— 1) is used, which is unnecessary, because for co-behaving data, the
solution never has double-sourcing.
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T 25 25 26 50 100
dataset | co-bhv. gen.2modes| co-bhv. gen.2modes| co-bhv. gen.2 modes
Megiddo avg. sol. time (s) | <0.001 <0.001  0.002 0.001 0.001  0.004 0.002 0.003  0.016
avg. post. gap (%) 1.5 2.8 12 0.85 1.3 6.2 0.41 0.61 2.8
avg. true gap (%) 0.47 12 6.1 041 0.74 3.8 026 041 21
solved to opt. (%) 63 43 42 44 31 22 32 21 30
PP-CB avg. sol. time (s) 0.24 1.8 22
FPTAS-CB-LB(0.1) avg. sol. time (s) 0.001 0.007 0.036
avg. post. gap (%) 0.81 0.44 0.17
avg. true gap (%) 0.021 0.024 0.015
solved to opt. (%) 89 79 69
FPTAS-CB-LB(0.05) avg. sol. time (s) 0.001 0.009 0.068
avg. post. gap (%) 0.55 0.34 0.16
avg. true gap (%) 0.0022 0.0067 0.0060
solved to opt. (%) 96 90 83
FPTAS-CB-LB(0.01) avg. sol. time (s) 0.006 0.048 0.39
avg. post. gap (%) 0.15 0.12 0.075
avg. true gap (%) | 0.00044 0.00016 0.00014
solved to opt. (%) 98 98 98
FPTAS-CB(0.1) avg. sol. time (s) 0.008 0.052 0.35
avg. post. gap (%) 34 34 3.5
avg. true gap (%) 0.010 0.020 0.017
solved to opt. (%) 91 80 68
FPTAS-CB(0.05)  avg. sol. time (s) 0.018 0.11 0.77
avg. post. gap (%) 1.7 1.7 1.7
avg. true gap (%) 0.0021 0.0054 0.0042
solved to opt. (%) 95 89 84
FPTAS-CB(0.01) avg. sol. time (s) 0.093 0.67 5.2
avg. post. gap (%) 0.33 0.34 0.34
avg. true gap (%) |0.000088 0.00015 0.00015
solved to opt. (%) 99 98 98
FPTAS-gen-LB(0.1) avg. sol. time (s) 0.003 0.005 0.017 0.013  0.029 0.11 0.083  0.20 0.71
avg. post gap (%) 1.0 1.6 3.7 045  0.62 2.3 016 021 0.69
avg. true gap (%) 0.0053 0.063  0.022| 0.0066 0.024 0.031 0.0048 0.017 0.0080
solved to opt. (%) 91 72 88 89 75 83 83 63 82
FPTAS-gen-LB(0.05)avg. sol. time (s) 0.004 0.009  0.041 0.025 0.063 0.29 016 048 2.0
avg. post gap (%) 0.92 14 2.3 044 061 19 016 021 0.69
avg. true gap (%) | 0.00082 0.041  0.028| 0.0011 0.022  0.039 0.0014 0.014 0.0080
solved to opt. (%) 97 78 97 94 76 90 91 67 88
FPTAS-gen-LB(0.01)avg. sol. time (s) 0.016  0.082 0.57 013  0.69 5.5 1.1 5.7 36
avg. post gap (%) 0.41 046 0.54 032 0.38 0.54 015 0.20 0.46
avg. true gap (%) |0.000014 0.011 0.00066 | 0.000080 0.010  0.011 | 0.0000090 0.0076 0.0033
solved to opt. (%) 100 87 97 99 82 90 99 71 88
FPTAS-gen(0.1) avg. sol. time (s) 0.022 0.054 0.14 013 042 1.2 0.94 3.6 11
avg. post gap (%) 6.6 6.6 6.3 6.6 6.6 6.3 6.6 6.6 6.4
avg. true gap (%) 0.0042 0.017 0.014| 0.0048 0.012 0.015 0.0046 0.0093  0.010
solved to opt. (%) 94 81 90 89 78 85 83 65 80
FPTAS-gen(0.05) avg. sol. time (s) 0.046 0.14 0.42 0.29 12 4.2 2.1 10 36
avg. post gap (%) 3.3 33 3.2 3.3 3.3 3.2 3.3 3.3 32
avg. true gap (%) | 0.00048 0.0081  0.019| 0.00084 0.0072  0.015 0.0017 0.0040 0.0038
solved to opt. (%) 98 84 88 95 84 85 90 73 87
FPTAS-gen(0.01)  avg. sol. time (s) 0.27 2.1 8.7 1.9 20 90 14 165 691
avg. post gap (%) 0.67  0.66 0.65 0.67  0.66 0.64 0.67  0.67 0.64
avg. true gap (%) |0.000027 0.0014 0.00073 | 0.000064 0.00052 0.00099 | 0.000049 0.00089 0.00095
solved to opt. (%) 99 95 95 99 94 95 98 83 92
CPLEX 10.1 Nat. avg. sol. time (s) 0.045 0.041  0.035 044  0.38 0.12 - - -
CPLEX 10.1 SP avg. sol. time (s) 0.030 0.031  0.053 0.069 0.076 0.14 023 027 0.55

Table 1: Summary of all results
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The FPTASes that use the lower bound have a much lower computation time than
the ones that do not, so using the lower bound really makes a difference. The reduc-
tion in computation time varies from about seven times faster than the (already fast)
FPTAS-gen(0.1) for T = 25 (and FPTAS-CB(0.1) for T = 50), up to almost thirty times
faster than FPTAS-gen(0.01) for T = 50 (0.69 vs. 20 seconds). The solutions of the
FPTASes without lower bound have even smaller true gaps than those found by the
FPTASes with lower bounds, since not using the lower bound results in using smaller
intervals than necessary. The a posteriori gaps found by the FPTASes without lower
bounds are larger than those found by the FPTASes with lower bounds, because the
latter can compute the gap with respect to two lower bounds, AT~ (see Section
and the heuristic’s lower bound. Of course, the higher of the two is used. The a posteri-
ori gaps of FPTAS-CB (without lower bound) are about two thirds less than is required
by ¢, and those of FPTAS-gen are about one third less (e.g., an a posteriori gap of 0.67%
when ¢ = 0.01). Tables all give the results that were obtained with the ‘round-
more’ function (see pages[18/and 23). We can compare these with the a posteriori gaps
that were obtained by the algorithms that do not use this improved lower bound, as
can be found in Tables in Appendix We see that in that case the a posteriori
gaps of FPTAS-CB (without lower bound) are half of what is required by ¢, and those
of FPTAS-gen are only one quarter less than required by ¢ (e.g., an a posteriori gap of
0.75% when ¢ = 0.01).

The pseudo-polynomial algorithm (PP-CB) is still reasonably fast, but not as fast as
the FPTAS-CBs. Moreover, its computation times increase as the set-up costs increase,
since this means that the optimal value increases as well, and its time complexity is
dependent on this optimal value (see Section [5.2).

CPLEX applied to the natural formulation is very sensitive to the size of the set-up
costs. Only for the smallest set-up costs, it is sometimes slightly faster than the shortest
path formulation. Moreover, for 100 periods, we were very often not able to solve the
instances at all, because of memory issues. The results for CPLEX-nat are therefore not
included for T = 100.

The results for the instances with HTW pairs that violate the co-behaviour property
are shown in Tables 5] [f|and [7, and are summarised in the columns marked ‘gen.” in
Table|l} In general, we see the same patterns as for the co-behaving instances.

Megiddo still gives good solutions in the same amount of time, although the solu-
tions are not as good as in the co-behaving case. This is because the heuristic can only
tind solutions that satisfy the single-sourcing property, whereas these non-co-behaving
instances can have an optimal solution with a double-sourcing block (see Theorem [6).

Still, the average true gap is 1.2% for 25 periods, down to less than a half percent for
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100 periods.

The results for the FPTASes are similar to what we have seen before, but the com-
putation times have increased compared to the co-behaving case, because now, we also
need to iterate over the double-sourcing block budgets $ (see Section in the [%T}
period-pairs in which double-sourcing might be optimal. However, the solution times
of FPTAS-gen-LB(0.1) are still shorter than CPLEX-SP. Moreover, the true gaps are still
very close to zero for all FPTASes.

Table 8| gives the results for the instances that can be interpreted as having two pro-
duction modes (cheap & dirty and expensive & clean), as summarised in the columns
marked ‘2 modes’ in Table[T} Roughly the same patterns as before are shown. However,
the gaps of the heuristic, and the computation times of the FPTASes are again larger.
Of course, this comes as no surprise, because we specially designed these problem in-
stances to be the hardest to solve for our algorithms. The highest average solution time
is obtained by FPTAS-gen with ¢ = 0.01: seven and a half minutes for T = 100. On the
other hand, if the heuristic’s lower bound is used in the FPTAS, the average computa-
tion times are below 36 seconds, even for ¢ = 0.01 and T = 100. If we take a higher
epsilon (¢ = 0.1), then the average solution time goes down to 0.71 seconds, while
still obtaining solutions with an average true gap below 0.01%. Unfortunately, this is
slightly slower than CPLEX-SP. However, for T = 25 or T = 50, FPTAS-gen-LB(0.01) is
faster than CPLEX-SP. Moreover, where CPLEX requires the cost and emission functions
to fit in a linear model, our algorithms are able to handle more general concave cost

and emission functions.

7 Conclusions & further research

In this paper, we have considered a lot-sizing problem with a global emission con-
straint. Here, the emissions take the form of a second type of ‘costs” on production,
set-up and inventory decisions. Of course, these second costs can be any type of
costs other than those in the objective function. We have shown that this problem
is AP-hard (in the weak sense) even if only production emits pollutants (linearly).
From the NP-hardness proof, we learned that our model also entails lot-sizing with
emissions and multiple production modes. We have presented a Lagrangian heuristic
(Megiddo), FPTASes and a pseudo-polynomial algorithm to solve the problem, and
subjected these algorithms to a large number of computational tests. This has shown
that Megiddo gives near-optimal solutions, and we recommend using its lower bound
as input for the FPTASes. Moreover, we have seen that instances are easier to solve

if the costs and emissions satisfy a co-behaviour property (see Theorem [3). This is
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also reflected by the time complexity of the FPTASes; for the co-behaving case, this is
O (Tmax{in(opt/ LB)’1}> whereas in the general case, it is O <T3 max{lnz(fp Z LB)’1}> We
€ 4 ’ e .
have seen that, in practice, the FPTASes have a much smaller gap than the a priori
imposed performance. The FPTASes that use Megiddo’s lower bound (FPTAS-CB-LB

and FPTAS-gen-LB) are very fast, even compared to CPLEX. In case the costs and emis-

sions are co-behaving, they are even faster. We have seen that the instances that are the
hardest to solve, are constructed in such a way that the degree of non-co-behaviour is
very high. Instances with two production modes are the hardest in this regard. How-
ever, recall that our algorithms are able to solve instances with more general concave
cost and emission functions.

Because we have carried out a large number of computational tests, special atten-
tion was paid to an efficient implementation of the FPTASes. We developed an im-
proved rounding technique to reduce the a posteriori gap, and combined an FPTAS in
the style of Woeginger (2000) with a lower bound, which turned out to lead to very
good results. We expect that these techniques can be applied to more FPTASes of this
type.

We think that it may be worthwhile to develop a Lagrangian heuristic for fixed-
plus-linear costs and emissions, following Megiddo’s approach, based onan O(T'InT)
algorithm for the classic lot-sizing problem, such as Wagelmans et al.| (1992). Futher-
more, we expect that the technique to construct a pseudo-polynomial algorithm and an
FPTAS can be applied to more problems where one capacity constraint (on a ‘second
objective function’) is added to a problem for which a polynomial time dynamic pro-
gramme exists. In our opinion, another interesting line of future research into lot-sizing
with emission constraints involves extending the lot-sizing model to a production-

distribution system with emissions.
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A Proof of Theorem [6

Theorem 6 There exists an optimal solution to ELSEC, such that the single-sourcing property
holds in all but (at most) one period.

Proof Suppose there exists an optimal solution with (at least) two periods with two
arcs with positive inflow. We will show that there must exist a solution with single-

sourcing in all but at most one period, at equal or lower costs.

First, suppose that period v’s demand is procured from periods ¢t and s (i.e., v is a
double-sourcing period), and C;,(0) > C},(0) and C},(0) > C/,(0). (Note that this
also covers the case C},(0) < C},(0) and C},(0) < C ,(0), because we can switch the

indices t and s.) It was shown in the proof of Theorem [3]that there must exist a solution
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with at most one period with double-sourcing and lower or equal costs and emissions.

Now, suppose that both periods with double-sourcing, say v; and v, are in separate
blocks. The case with three or more sources in one block is treated later.

Suppose that period v;1’s demand is procured from periods t; and s; and that period
vp’s demand is procured from periods f; and s;. Let v; := max{s;, t;}, fori =1, 2.

We may assume that C; , (0) > C[ ., (0), ¢ , (0) < Cf ,,(0),Cf . (0) > CL,,,(0)
and C .
Now, define the following notation:

(0) < €., ,,(0), wlo.g. because we may swap t; and s1, or t; and s,.

which denotes the financial savings per additional unit of emissions, if we produce
(some of) period j’s demand in period k instead of period i, near g;; = 0 and g;; = 0
(given that j =i or j = k). Suppose

Cél 01 (O) Cél 01 (0) Cil'z (%) (0) Céz (%) (O)
Cél 01 (O) Ci/’ /01 (O) N Céz () (0) C£2 (%] (O) '

again w.l.o.g., because we can swap the indices 1 and 2.
We show that it is cheaper and cleaner to move items from period t; to s; and from
sy to t; until nothing is produced in period t; or s;. We decide to move a quantity

g1 > 0 from period t; to s; and to move a quantity go > 0 from period s; to t,. Let
¢, —C
1 h

12 = Cé2 2 Céz )
other words: such that one of the two blocks has only one source.

g1. Moreover, we can choose g; such that g; = x¢, 4, Or g2 = Xs,0,. In

First, we show that the costs of the thus constructed solution are lower or equal.

Cf1,01 (O) - Ctlrvl (_lh) + CSzfvz (0) 52 Uz( q2)
Z Cil'l,vl (O)ql + Céz,vz (O)qz

&
= (Ci{llvl + Céz 02 Cil - — C/1 = ) q1

52,02 £2,02

A C;
> t 51 /U1 1,01 ) 0
( 51'01 s Céz vy C;z vy
= C ql + Cl’z (%) (O)qZ
> C (‘71) 51 141 (0) + Ctz %) (qZ) szfvz (O)

That is, the savings are larger than the extra expenses. The first and last inequality
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follow from concavity. The middle inequality is true, because q; > 0 and we know that

/ /
Cfl 41 Csl U1

/ /
CSl 41 Ctl 4]

/ /
= Cflfvl CSl U1

C/ _ C/
! ! 51,01 t1,01

= Cfl,vl + CSz 1% C/ C/
S2,02 ty, 0o

/ /
Ci’2 Vo CSZ ()
- / /
CSZ 02 Ctz vy
Af Al
> (C/ c! ) CSLUl Ctlﬂil
2,02 2,92/ A _
52,02 t2,02
all o é/
$1,01 1,01
> / /
= CSLUl + t2,02 é/ C/
52,02 £2,02

In a similar way, we show that the emissions are lower or equal.

Ctl U1 (O) - Ctl (4] (_ql) + CSerz (O) ASz,Uz( 672)
2 Ctl z}l O ql + CS2 Z)z( )qz
A/ . é/
— C Sl U1 tl,z)l
( t1, vl sz vy Céz oy — ng N q1
A/ Af
_ Ct
— + Ct S1 01 1%1) 71
( e o CSz %) ng 1)
= C ql + Ci’z (03 (O)qz
> (‘71) 51101 (0) + Ctzlvz (qZ) - Ctzﬂz (O)
The middle equality follows from:
é’ C/ . C/ C/ - é’ C/ Cél U1
1,01 51,01 ( 51,01 tllvl) - ( t2,02 2, Uz) Il
52,02
¢! . A; Af . A;
= C/ + C/ 51,01 91 C/ + é/ 51,01 1,01
t1,01 52,02 Céz by — CZZ o 51,01 ta,02 C§2 vy — C£2 o

C/

1,01

C/

t2, 02

Suppose that we have a solution with one block with three production periods.

Let P denote the set of production periods in this block and let u (v) be the first (last)

production period in this block. We will show that there must exist a solution with only

two production periods in this block and equal or lower costs and emissions, following

a similar reasoning.
We may assume, w.l.o.g., that

v—1 v—

ps(xs) + kZ i (Ii)

pi(xe) + kZ () >

v—1
pr(xe) + ) (L) <

v—1
ﬁ;(xs) + Z hllc(lk)
k=t k=

1 v—1

> p(xr) + ) ()
oh
< prla) + ) (L)
5 k=r
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where t,s,r € P,t # s # r # t. We will compare the financial savings per additional
unit of emissions, if we produce (some of) period v’s demand in period s instead of
period t, with the financial savings per additional unit of emissions, if we produce
(some of) period v’s demand in period r instead of period s (near xy, x5, x, and [;Vk €
{min{t,s,r},...,v}).

We distinguish between two cases:

Case 1: We assume that

pi(xe) + X0 (L) — ph(xs) — S0 g (I K o pslxs) T Ei () = pr(xr) — o (k)
PL(xs) + Timg I (lo) = py(xe) — E02 i (Te) — Py (aer) ++ 0 (i) — Pi(oes) — = I (T)

(Note that both fractions are nonnegative.) We show that it is cheaper and cleaner
to move items from period t to s and from r to s until nothing is produced in

period t or r. We decide to move a quantity q; > 0 from period ¢ to s and to

Al /
5,0

Clo— Cé v
choose g1 such that g1 = x¢, or g2 = x; . In other words: such that there are only

move a quantity g, > 0 from period r to s. Let g5 := “g1. Moreover, we can

two sources in this block.

Case 2: Assume that
phae) & S ) = phs) = R0 i) ph(xe) & S () — pilv) — K (1)

Pu(xs) + X0 i (Ie) = P (xe) — T2y (B prCer) + 4 T (Ik) — pi(es) — =g I (T) -

(Note that both fractions are nonnegative.) We show that it is cheaper and cleaner
to move items from period s to t and from s to r until nothing is produced in

period s. We decide to move a quantity —q; > 0 from period s to t and to move
Al Al

Cf” e “q1. Moreover, we

can choose ¢q; such that —q; — g2 = x,,. In other words: such that there are only

a quantity —g, > 0 from period s to r. Again, let g, :=

two sources in this block.

Note that in both cases, we move a quantity g; from period t to s and a quantity ¢4
from period r to s, but q; and g, may both be negative depending on the case we are
in. Regardless of which case we are in, define I}’ := Iy — 105 — 920k + (91 + 92)ks ,
1 ifi>j

0 otherwise -

Before we show that the costs and emissions of the thus constructed solution are lower

where J;; =

or equal, we make two claims:

Claim 8
v—1
pr(xe —q1) — pe(xe) + pr(xr — q2) — pr(xr) + ps(xs + g1 +42) — ps(xs) +k¥ (e (L¢) — hye(Ix))
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v—1 v—1 v—1
z—(muo+zan0qr—Qﬁm%+2hﬂ@)w+<%&»+2?ﬂ&0<%+@)
k=t k=r k=s
Proof This follows from concavity and the fact that we can rewrite Zz;l{ (e (L) — hye(Ik)) -
Note that the holding emissions () can be rewritten in the same manner.
Suppose u =t < s < r = v. This also proves the case where r < s < t, because, in

the proof, we can switch r and ¢, and their corresponding g4; and ¢5.

v—1 s—1 v—1

Yo (L) — (L)) = Y (e(Ie — qu) — hi(I)) + Y (e (T + 92) — hye(Ie))
k=u k=t k=s
s—1 v—1 v—1 v—1
< - kZ, e (I)q1 + kg e (Ix) g2 — kg W (I) g1 + kZ, e (Ie)

v—1 v—1
= =) g+ Y () (g1 + q2)
k=t k=s

The term Z,f;rl h (I )q2 is absent, since r = v.
Suppose u =t < r < s = v. This also proves the case where r < t < s.

v—1 — v—1
Y (L) — (L)) = Z he(Ie — q1) — he(Ie)) + Y (hie(Ie — g1 — g2) — hie (L))
k=u k=t k=r
r— l
< =) (L) — th Ir) (91 + 92)
it
v—1
= =) h(l)n - Z (1) g2
k=t k=r

Suppose u = s < t < r = v. This also proves the case wheres < r < t.

v—1 t—1 v—1

Yo () — (L)) = Y (me(Ie+ g1+ 92) — he(Ie)) + Y (hie(Ie + g2) — hie(Iy))
k=u k:s k=t
< th ) (g1 + g92) + th I Q2+th L )gr — th I )q
I = =
1
==ZWM%+M—Z%@M
k=s k=t
]
Claim 9

é/ __é/
<C;/U - Cg,v + (Cé,v - C;,v) %) g1 <0
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Proof In Case 1: q; > 0 and by assumption, we know that:

/ /
Ct,v - Cs,z;

S >
Cs,v - Ct,z)
C.,—C
, t,o
&,-¢, -
S,0 t,v
=C,—C, <
5,0 to =
¢, —¢
! / ! / s,0 5
= Cs,v - Ct,v + (Cs,v - Cr,v) A <

/ all
Cr,v - Cs,v

In Case 2: g1 < 0 and by assumption, we know that:

= Cip —

Cio+

cl —C!
t,o s,
= A <
Cs,v - Ct,v
ct —Cl
S,0 t,o
= A >
Cs,v - Ct,v
! !
= Csp—Cip >
Al é/
/ / 5,0 t,o
(Cs,v o Cr,v) Ay I >
ro - s

! /
Cs,v - Cr,v

Ay Ay
Cr,v - Cs,v
! /
Cr,v - Cs,v
Ay Ay
Cr,v - Cs,v
~ A
(C/ _c! ) CS,U to
r,o S, é’ _ C,
7,0 S,
0
! !
Cs v Cr v
! /
Cr v Cs v
! !
Cr v Cs v
! /
Cr v Cs v
Al A
(C/ C/ ) Cs,v Ct,v
s,0) A A;
Cr,v - Cs,v
0

Now, we show that the costs of the constructed solution are lower or equal:

v—1
pr(xe—q1) — pe(xe) + pr(xr = 2) — pr(x) 4+ ps (s +q1+92) — ps(x5) + ), (e (If)
k=u
. v—1 . , v—1 , , v—1 ,
< - (Pt(xt) +) hkUk)) a1 — (Pr(xr) +) hkUk)) q2 + <Ps(xs) + ) (k)
k=t k=r k=s
= _Cé,vql - C;,qu + Cé,v ) (5]1 + qZ)
A A/ co_ e
_ _C/ e s,0 + C + As,v At,v
todl — Crp —C —Cqul 1 —C;,f,v_cé,vql
A é;
S0 0
= (C;,v - g,z; + (C;,U - Cilf,z;) & ) q1
o S0
< 0,

— (1))

) (91 + q2)

where the first inequality follows from Claim [8|and the last inequality from Claim 9]
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In a similar way, we show that the emissions are lower or equal.

v—1

pr(xe —q1) — Pe(xe) + pr(xr — q2) — Pr(xr) + Ps (x5 + 41+ 92) _ﬁS(xS)+kg (f‘k(llf) _flk(lk)>

IN

k=t
= _CZ,UQI - érl’,qu + C;,v ) (ql + qz)

. ., Cl—C ¢, —C
= —Clom — €= +Cl, <‘71 + ‘h)

0 Ay Ay
Cr,v - Cs,v

v—1 v—1 v—1
—Gmw+zmw0%—@mw+;%w0@+Qmm+;%waﬁm>

=(%~%+@rqfijﬁyl
= (éé,v - éé,v - éé,v + é;,v) q1
=0 ,

where the first inequality follows from the analogy of Claim [§|for emissions instead of
costs.

We conclude that there exists an optimal solution to ELSEC, such that the single-
sourcing property holds in all but (at most) one period. ]

B Tables of results

B.1 Results with improved lower bound

Tables present the results of the computational tests of the algorithms that use the
improved lower bound, as described in Sections[5.3|and
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K 1000 5000 10000 C

K 1000 5000 10000 1000 5000 10000 1000 5000 10000 25%  50% 75%

Megiddo avg. sol. time (s) | <0.001 0.001 <0.001| 0.001 <0.001 0.001 | <0.001 <0.001 <0.001 | <0.001 <0.001 <0.001
avg. post. gap (%) 0.85 067 073 1.8 1.6 19 2.5 1.6 1.9 1.9 1.5 1.1

avg. true gap (%) 0.29 0.21 0.18 047 051 048 0.88 050  0.69 0.53 0.52 0.36

solved to opt. (%) 57 63 63 80 67 67 53 70 50 60 60 70

PP-CB avg. sol. time (s) 0.12 0.12 0.13 0.25 026 0.22 0.34 034 034 0.26 0.23 0.22
FPTAS-CB-LB(0.1)  avg. sol. time (s) 0.001 0.001 <0.001| 0.002 <0.001 0.002 0.001 <0.001 0.003 0.001  0.001 0.001
avg. post. gap (%) 0.58 0.51 0.57 087 0.88 0.89 1.1 091 098 097 083 0.63

avg. true gap (%) 0.012 0.051 0.036| 0.0032 0.0045 0 0.010 0.015 0.060 0.015 0.015 0.035

solved to opt. (%) 83 70 83 93 97 100 90 93 90 92 90 84

FPTAS-CB-LB(0.05) avg. sol. time (s) 0.002 0.001 <0.001| 0.002 0.001 0.002 0.002 0.001 0.003 0.001  0.002 0.001
avg. post. gap (%) 0.50 0.40 0.44 0.54 0.57 0.56 0.71 059 0.59 0.63 0.58 0.43

avg. true gap (%) | 0.0033 0.011 0.0013 | 0.0032 0 0 |0.00048 0 0 0.0017 0.00059 0.0041

solved to opt. (%) 90 90 93 93 100 100 97 100 100 97 97 94

FPTAS-CB-LB(0.01) avg. sol. time (s) 0.005 0.004 0.007| 0.008 0.005 0.004 0.008 0.007 0.005 0.007  0.005 0.005
avg. post. gap (%) 0.17 0.13 0.18 0.13 0.14 0.15 0.16 014 0.14 0.16 0.15 0.14

avg. true gap (%) | 0.0013 0 0.0013 0 0.00073 0 {0.00048 0.00012 0| 0.00022 0.00038 0.00072

solved to opt. (%) 97 100 93 100 97 100 97 97 100 99 98 97

FPTAS-CB(0.1) avg. sol. time (s) 0.006 0.008 0.007| 0.009 0.009 0.008 0.008 0.008 0.010 0.009  0.008 0.008
avg. post. gap (%) 3.8 3.8 3.8 31 33 32 32 3.1 3.1 34 34 34

avg. true gap (%) | 0.0061 0.029 0.020 | 0.00012 0.0019 0 | 0.0048 0.0050 0.026| 0.0072 0.0061 0.018

solved to opt. (%) 87 80 83 97 90 100 93 93 93 93 92 87

FPTAS-CB(0.05) avg. sol. time (s) 0.017 0.016 0.016| 0.020 0.018 0.017 0.018 0.018 0.019 0.019 0.018 0.016
avg. post. gap (%) 1.9 1.8 1.8 15 1.7 1.6 1.6 1.6 15 1.7 17 17

avg. true gap (%) | 0.0068 0.0082 0.0013 | 0.00012 0.00073 0 | 0.0020 0.00012 0 0.0029 0.0025 0.0010

solved to opt. (%) 87 87 93 97 97 100 97 97 100 96 94 94

FPTAS-CB(0.01) avg. sol. time (s) 0.086 0.084 0.085| 0.099 0.095 0.097 0.099 0.094 0.099 0.097 0.093 0.090
avg. post. gap (%) 0.38 0.36 0.38 0.31 033 0.32 0.32 031 031 0.33 0.33 0.34

avg. true gap (%) 0 0 0.00067 | 0.00012 0 0 0 0 0 || 0.00022 0 0.000041

solved to opt. (%) 100 100 97 97 100 100 100 100 100 99 100 99

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.003 0.002 0.002| 0.003 0.003 0.003 0.002 0.003 0.004 0.002  0.003 0.002
avg. post gap (%) 0.58 0.49 0.55 1.4 1.0 14 1.5 1.1 1.2 1.3 0.98 0.73

avg. true gap (%) | 0.0061 0.013 0.0095| 0.0032 0.0056 0 | 0.0055 0.0050 0| 0.0042 0.0039 0.0079

solved to opt. (%) 87 80 87 93 90 100 93 93 100 93 94 87
FPTAS-gen-LB(0.05) avg. sol. time (s) 0.002 0.002 0.004| 0.003 0.003 0.005 0.007 0.003 0.004 0.004 0.003 0.004
avg. post gap (%) 0.58 047 0.55 1.2 099 1.1 1.2 1.0 1.1 1.1 0.94 0.67

avg. true gap (%) | 0.0032 0 0.0038 | 0.00012 0.00028 0 0 0 0 || 0.00063 0.00023  0.0016

solved to opt. (%) 90 100 90 97 97 100 100 100 100 98 99 94
FPTAS-gen-LB(0.01) avg. sol. time (s) 0.014 0.012 0.011| 0.019 0.014 0.016 0.018 0.020 0.019 0.017 0.015 0.015
avg. post gap (%) 0.39 0.31 0.34 0.42 044 042 0.50 042 045 047 043 0.33

avg. true gap (%) 0 0 0] 0.00012 0 0 0 0 0 0 0 0.000041

solved to opt. (%) 100 100 100 97 100 100 100 100 100 100 100 99

FPTAS-gen(0.1) avg. sol. time (s) 0.021 0.020 0.021| 0.022 0.024 0.022 0.023 0.022 0.021 0.022 0.022 0.021
avg. post gap (%) 6.8 6.8 6.8 6.5 6.6 6.5 6.5 6.5 6.4 6.6 6.6 6.6

avg. true gap (%) | 0.0032 0.015 0.0170.00012 0 0 | 0.0024 0 0 0.0021 0.0056 0.0050

solved to opt. (%) 90 87 80 97 100 100 93 100 100 97 93 92

FPTAS-gen(0.05) avg. sol. time (s) 0.046 0.043 0.043| 0.050 0.046 0.047 0.047 0.045 0.049 0.049 0.045 0.045
avg. post gap (%) 34 34 34 3.3 33 33 3.3 32 32 33 3.3 3.3

avg. true gap (%) | 0.0013 0.00077 0.0013 | 0.00012 0.00073 0 0 0 0| 0.00022 0.00023 0.00098

solved to opt. (%) 97 97 93 97 97 100 100 100 100 99 99 96

FPTAS-gen(0.01) avg. sol. time (s) 0.26 0.25 0.25 0.29 028 0.28 0.28 028 0.29 0.28 0.27 0.26
avg. post gap (%) 0.69 0.68 0.69 0.65 0.66 0.66 0.66 0.65 0.65 0.67  0.67 0.66

avg. true gap (%) 0 0 0] 0.00012 0 0 0 0.00012 0 0 0 0.000081

solved to opt. (%) 100 100 100 97 100 100 100 97 100 100 100 98

CPLEX 10.1 Nat. avg. sol. time (s) 0.034 0.025 0.025| 0.052 0.050 0.053 0.056 0.061 0.055 0.048 0.045 0.044
CPLEX 10.1 SP avg. sol. time (s) 0.036 0.030 0.024| 0.031 0.026 0.026 0.036 0.031 0.030 0.030 0.032 0.028

Table 2: 25 periods, satisfies conditions in Theorem 3|
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K 1000 5000 10000 C

R 1000 5000 10000| 1000 5000 10000 1000 5000 10000 25% 50%  75%

Megiddo avg. sol. time (s) | <0.001 <0.001 <0.001| 0.001 <0.001 0.001 0.002 0.002 0.001 0.001 <0.001 0.001
avg. post. gap (%) 042 045 036 089 098 098 12 13 11 12 074  0.63

avg. true gap (%) 020 021 017 044 046 043 0.67 0.64 043 0.54 034 034

solved to opt. (%) 50 30 30 53 40 47 47 53 47 37 44 51

PP-CB avg. sol. time (s) 084 081 0.8 1.8 1.8 17 27 28 27 19 17 1.6
FPTAS-CB-LB(0.10) avg. sol. time (s) | 0.005 0.005 0.006| 0.006 0.009 0.006 0.007 0.008 0.007 0.007  0.005 0.008
avg. post. gap (%) 025 030 024 041 052 054 054 052 0.60 0.59 041 031

avg. true gap (%) | 0.040 0.055 0.048| 0.012 0.0023 0.012 | 0.0094 0 0.035 0.016  0.029 0.026

solved to opt. (%) 73 43 47 90 97 87 93 100 80 87 76 74

FPTAS-CB-LB(0.05) avg. sol. time (s) | 0.007 0.008 0.006| 0.010 0.007 0.009 0.011 0.012 0.011 0.010  0.009 0.008
avg. post. gap (%) 022 027 020 033 042 040 042 040 042 0.43 033 026

avg. true gap (%) | 0.0098 0.021 0.0071|0.0067 0.0023 0.0029 |0.00033 0 0.010| 0.0046 0.0072 0.0083

solved to opt. (%) 87 67 80 93 97 93 97 100 93 94 88 87

FPTAS-CB-LB(0.01) avg.sol. time (s) | 0.038 0.039 0.039| 0.045 0.049 0.048 0.057 0.059 0.059 0.051  0.048 0.046
avg. post. gap (%) 013 013 013 011 012 011 011 011 01 0.13 012 010

avg. true gap (%) 0 0.00043 0.00086 0 0 0.00015 0 0 0|l 0.00025 0 0.00024

solved to opt. (%) 100 93 93 100 100 97 100 100 100 98 100 97

FPTAS-CB(0.10) avg. sol. time (s) | 0.046 0.045 0.046| 0.055 0.056 0.053 0.056 0.056 0.056 0.054  0.051 0.051
avg. post. gap (%) 3.9 3.9 3.8 3.3 3.4 3.3 32 32 32 3.4 3.4 3.4

avg. true gap (%) | 0.038 0.031 0.036|0.0035 0.025 0.037 0 0 0.0083 0.017  0.025 0.018

solved to opt. (%) 63 63 57 97 77 70 100 100 93 82 79 79

FPTAS-CB(0.05) avg. sol. time (s) | 0.092 0.093 0.093| 011 011 011 012 012 0.12 0.11 011  0.10
avg. post. gap (%) 1.9 1.9 1.9 1.7 1.7 1.6 16 16 16 1.7 1.7 17

avg. true gap (%) | 0.0080 0.014 0.018|0.0013 0 0.0061 | 0.0018 0 0| 0.0033 0.0067 0.0062

solved to opt. (%) 93 67 60 97 100 90 97 100 100 92 89 87

FPTAS-CB(0.01) avg. sol. time (s) 058 057 057 069 071 071 073 074 075 0.71 0.67  0.64
avg. post. gap (%) 038 038 037 033 033 032 031 031 0.31 0.34 034 034

avg. true gap (%) 0 0.00084 0.00036 0 0 0.00015 0 0 0 || 0.000051 0.000088 0.00031

solved to opt. (%) 100 87 97 100 100 97 100 100 100 99 99 96

FPTAS-gen-LB(0.1) avg. sol. time (s) | 0.011 0.013 0.010| 0.014 0.013 0.012 0.013 0.017 0.015 0.015  0.013 0.011
avg. post gap (%) 023 026 021 045 052 054 0.56 0.61 0.63 0.64 040 030

avg. true gap (%) | 0.013 0.016 0.013|0.0061 0 0.00015 | 0.0011 0 0.010| 0.0034 0.0070 0.0094

solved to opt. (%) 83 70 67 93 100 97 97 100 93 94 88 84
FPTAS-gen-LB(0.05) avg. sol. time (s) | 0.019 0.019 0.020| 0.022 0.025 0.024 0.031 0.029 0.031 0.026  0.024 0.024
avg. post gap (%) 022 025 020 045 052 054 056 0.61 0.63 0.64 040 029

avg. true gap (%) | 0.0027 0.0019 0.0026 0 0 0.00015 0 0 0.0030 || 0.00069 0.0015 0.0012

solved to opt. (%) 90 80 83 100 100 97 100 100 97 96 96 91
FPTAS-gen-LB(0.01) avg. sol. time (s) 010 010 011 012 013 013 015 0.16 015 0.14 013 012
avg. post gap (%) 021 024 018 031 038 034 0.39 040 0.39 0.39 031 024

avg. true gap (%) 0 0.00057 0 0 0 0.00015 0 0 0 || 0.000051 0.000050 0.00014

solved to opt. (%) 100 90 100 100 100 97 100 100 100 99 99 98

FPTAS-gen(0.1) avg. sol. time (s) 012 011 012 014 014 014 014 014 015 0.14 013 013
avg. post gap (%) 6.8 6.8 6.8 6.6 6.6 6.6 65 65 65 6.6 6.6 6.6

avg. true gap (%) | 0.0058 0.013 0.017 0 0.0020 0.0034 | 0.0018 0 0| 0.0037 0.0037 0.0069

solved to opt. (%) 83 70 57 100 97 93 97 100 100 91 90 84

FPTAS-gen(0.05) avg. sol. time (s) 025 025 026 030 030 030 031 032 031 0.30 029 028
avg. post gap (%) 34 34 3.4 3.3 3.3 3.3 33 33 33 3.3 3.3 3.3

avg. true gap (%) | 0.0027 0.00073 0.0039 0 0 0.00015 0 0 0|l 0.00099 0.00035 0.0012

solved to opt. (%) 90 87 80 100 100 97 100 100 100 96 98 91

FPTAS-gen(0.01) avg. sol. time (s) 17 1.6 17 1.9 2.0 2.0 20 21 21 2.0 19 1.8
avg. post gap (%) 069 069 068 066 066 0.66 0.66 0.66 0.66 0.67 0.67  0.67

avg. true gap (%) 0 0.00058 0 0 0 0 0 0 0 0 0.000050 0.00014

solved to opt. (%) 100 90 100 100 100 100 100 100 100 100 99 98

CPLEX 10.1 Nat. avg. sol. time (s) | 0.066 0.075 0.064| 038 032 0.26 086 097 0.97 0.63 048 022
CPLEX 10.1 SP avg. sol. time (s) | 0.061 0.063 0.065| 0.070 0.069 0.072 0.076 0.067 0.075 0.073  0.069 0.064

Table 3: 50 periods, satisfies conditions in Theorem 3]
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K 1000 5000 10000 ¢
R | 1000 5000 10000 1000 5000 10000| 1000 5000 10000 25%  50%  75%
Megiddo avg. sol. time (s) | 0.001 0.001  0.002| 0003 0003 0002 0003 0004 0005| 0003 0003 0.002
avg. post. gap (%) | 021 022  022| 040 041 048] 055 060  0.64 064 039 021
avg. truegap (%) | 015 016  015| 024 022 031| 031 036 044 042 025 011
solved to opt. (%) 23 27 30 37 33 30 40 40 30 21 28 48
PP-CB avg. sol. time (s) 4 14 14 2 21 2 31 30 30 23 22 21
FPTAS-CB-LB(0.10) avg. sol. time (s) | 0.029 0.029 0029| 0037 0036 0036 0042 0044 0046] 0038 0035 0.036
avg. post. gap (%) | 0.090 0080 0.090| 017 020 020 025 024 020 023 016 012
avg. true gap (%) | 0029 0018 0021 00083 0016 0021 0016 00035 00033| 0010 0014  0.022
solved to opt. (%) 43 60 50 73 73 67 73 93 87 77 70 60
FPTAS-CB-LB(0.05) avg. sol. time (s) | 0.054 0051 0057| 0071 0067 0070 0079 0083 0080] 0071 0068  0.064
avg. post. gap (%) | 0.060 0060 0.090| 016 019 018| 023 022 020 021 015 011
avg. true gap (%) |0.0029 0.0055  0.017 | 0.0027 0.0057 0.0045| 0.0097 0.0050 0.00079 || 0.0031 0.0059  0.0089
solved to opt. (%) 83 77 57 80 93 87 87 90 90 88 80 80
FPTAS-CB-LB(0.01) avg. sol. time(s) | 029 028  029] 039 038 040 048 049 048 041 038 037
avg. post. gap (%) | 0.060 0060 0070 0090 0080 0090 0080 0070 0080| 008 0075 0.065
avg. true gap (%) 0 0 0.000080 | 0.00064 0 0.00023 0 0 0.00034 || 0.00023 0.00018 0.000012
solved toopt. (%) | 100 100 97 93 100 97| 100 100 93 98 97 99
FPTAS-CB(0.10)  avg.sol time(s) | 029 029 029 036 036 037 040 041 041 037 035 034
avg. post. gap (%) 39 39 3.9 34 34 33 32 32 3.2 35 35 35
avg. true gap (%) | 0.039 0035  0.027| 00077 0015 0011| 0011 0.0038 00053| 0019 0014 0018
solved to opt. (%) 37 50 47 80 73 70 77 93 83 69 66 69
FPTAS-CB(0.05)  avg. sol. time(s) | 0.62 061 063 080 078 080 090 091 090 081 077 075
avg. post. gap (%) 19 19 1.9 7 17 17 16 16 1.6 1.7 17 1.7
avg. true gap (%) |0.0083 0.010 0.0063 | 0.0021 0.00084 0.0043 | 0.0037 0.00053 0.0014 || 0.0044 00039 0.0042
solved to opt. (%) 80 67 67 83 93 83 93 97 90 84 83 83
FPTAS-CB(0.01)  avg. sol. time (s) 43 41 43 55 53 55 61 62 6.1 55 52 5.1
avg. post. gap (%) | 037 038  038| 034 034 033 032 031 032 034 034 034
avg. true gap (%) 0 0.00081 0.00010 0 0 0.00014 0 0 0.00030|| 0.00015 0.000013 0.00028
solved toopt. (%) | 100 97 90| 100 100 97| 100 100 97 97 99 98
FPTAS-gen-LB(0.1) avg. sol. time (s) | 0.068 0.066 0068| 0.084 0081 0085 009 010 0099] 008 0082  0.082
avg. postgap (%) | 007 006 008 016 019 018 025 024 020 022 015 010
avg. true gap (%) | 0.013 0.0054 0.0063 | 0.0010 0.00066 0.0016 | 0.0089 0.0035 0.0028 || 0.0030 0.0054 0.0059
solved to opt. (%) 57 77 67 93 93 9% 90 93 87 87 80 82
FPTAS-gen-LB(0.05) avg. sol. time (s) | 0.3 013  013] 017 016 017 019 020 019 017 016 016
avg. postgap (%) | 006 006 008 016 019 018 024 024 020 022 015 010
avg. true gap (%) |0.0021 0.0032 0.0017 | 0.0013 0.00058 0.0017 | 0.00035 0.0012 0.00034|| 0.00076 0.0019  0.0015
solved to opt. (%) 90 87 83 93 93 9 97 97 93 94 87 93
FPTAS-gen-LB(0.01) avg. sol. time (s) | 0.88 0.84 0386 12 11 12 14 14 14 12 11 11
avg. postgap (%) | 006 006  007| 016 019 018 023 023 020 021 015  0.099
avg. true gap (%) 0 0 0.000078 0 0 0 0 0 0 0 0.000013 0.000013
solved toopt. (%) | 100 100 93| 100 100 100 100 100 100 100 99 99
FPTAS-gen(0.1)  avg.sol. time(s) | 078 076 078 096 095 098 11 11 11 098 093 091
avg. post gap (%) 68 68 6.8 66 66 66 65 65 65 6.6 6.6 6.6
avg. true gap (%) |0.0058 0.0053  0.014 | 0.0035 0.0036 0.0064 | 0.0013 0.00097 0.00034|| 0.0038 0.0053  0.0046
solved to opt. (%) 77 83 53 8 90 77 93 97 93 86 81 82
FPTAS-gen(0.05)  avg. sol. time (s) 18 17 18 22 22 22 25 25 25 23 2.1 21
avg. post gap (%) 34 34 3.4 33 33 33 33 33 33 33 33 33
avg. true gap (%) |0.0027 0.0043 0.0043 | 0.0016 0.00029 0.0011 | 0.0011 0 0.00030| 00016 0.0019 0.0017
solved to opt. (%) 87 77 77 87 97 93 93 100 97 89 88 92
FPTAS-gen(0.01)  avg. sol. time (s) 1 11 1 4 14 14 15 16 15 14 14 13
avg. postgap (%) | 069 069  069| 067 067 066| 066 066  0.66 067 067 067
avg. true gap (%) 0 0 0.00018 0 0 0.00023 0 0 0.000037 || 0.000007 0.00013 0.000012
solved toopt. (%) | 100 100 87| 100 100 97| 100 100 97 99 9% 99
CPLEX 10.1 SP avg.sol. time(s) | 0.8 019  020] 023 025 024 024 025 025 026 022 018

Table 4: 100 periods, satisfies conditions in Theorem
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K 1000 5000 10000 C

K 1000 5000 10000 1000 5000 10000 | 1000 5000 10000 25%  50%  75%

Megiddo avg. sol. time (s) | <0.001 <0.001 0.001| <0.001 <0.001 0.001 |0.001 0.001 0.001 | <0.001 <0.001 0.001
avg. post gap (%) 25 24 20 24 31 34| 37 29 26 34 25 23

avg. true gap (%) 15 14 1.2 0.95 0.98 1.7 1.2 074 0.75 1.5 0.84 1.2

solved to opt. (%) 23 23 23 70 63 27 63 50 47 33 44 52

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.006 0.004 0.004| 0.004 0.007 0.004|0.006 0.006 0.007| 0.005 0.004 0.006
avg. post gap (%) 1.1 1.0 1.1 15 1.9 1.7 24 21 1.8 1.9 1.7 1.2

avg. true gap (%) 0.20 0.073 0.20 0.015 0.0072 0.027 | 0.024 0.012 0.0044 0.081 0.074 0.034

solved to opt. (%) 43 30 43 87 93 80 90 93 87 64 71 80
FPTAS-gen-LB(0.05) avg. sol. time (s) 0.009 0.007 0.009| 0.006 0.007 0.012{0.012 0.009 0.010|| 0.011 0.009 0.007
avg. post gap (%) 0.97 1.0 1.0 1.3 1.5 1.5 1.7 17 1.5 1.6 1.4 1.0

avg. true gap (%) 0.10 0.066 0.17|0.00044 0.0072 0.014 | 0.012 0 0.0021 0.067 0.026 0.030

solved to opt. (%) 47 47 43 97 93 83 97 100 93 70 78 86
FPTAS-gen-LB(0.01) avg. sol. time (s) 0.096 0.072 0.084 0.070 0.082 0.093 |0.091 0.079 0.076 0.098 0.082 0.068
avg. post gap (%) 038 051 042 043 049 048] 047 053 041 050 049 0.39

avg. true gap (%) 0.014 0.044 0.030 0 0 0.011 0 0 0.0011 0.016 0.012 0.0046

solved to opt. (%) 73 53 67 100 100 90| 100 100 97 82 86 92

FPTAS-gen(0.1) avg. sol. time (s) 0.065 0.055 0.061 0.048 0.055 0.053|0.049 0.046 0.051 0.060 0.053 0.048
avg. post gap (%) 6.7 68 6.8 6.5 66 65| 65 65 65 6.6 6.6 6.6

avg. true gap (%) 0.045 0.042 0.047| 0.0057 0.0017 0.0081 0 0 0.0032| 0.024 0.020 0.0071

solved to opt. (%) 57 43 57 97 97 90| 100 100 90 78 81 87

FPTAS-gen(0.05) avg. sol. time (s) 0.19 0.15 0.17 0.12 0.14 0.14| 013 0.12 0.12 0.16 0.14 0.13
avg. post gap (%) 34 34 34 33 33 33| 33 33 33 33 33 33

avg. true gap (%) 0.020 0.023 0.0015 0 0 0.010 0 0 0.0044 || 0.0064 0.013 0.0053

solved to opt. (%) 73 50 67 100 100 80| 100 100 87 83 81 88

FPTAS-gen(0.01) avg. sol. time (s) 3.2 24 29 1.7 2.0 2.1 1.7 1.6 1.7 2.5 2.1 1.9
avg. post gap (%) 0.66 0.67 0.67 0.66 0.66 0.66| 0.66 065 0.65 0.66 0.66 0.66

avg. true gap (%) |0.00081 0.048 0.0074 0 0 0 0 0 01 0.0026 0.0012 0.00059

solved to opt. (%) 93 83 77 100 100 100| 100 100 100 91 96 98

CPLEX 10.1 Nat. avg. sol. time (s) 0.028 0.025 0.025| 0.044 0.046 0.053|0.050 0.053 0.045|| 0.045 0.042 0.035
CPLEX 10.1 SP avg. sol. time (s) 0.036 0.029 0.025| 0.032 0.031 0.031|0.036 0.030 0.030|| 0.036 0.029 0.028

Table 5: 25 periods with 13 pairs that violate the co-behaviour property
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K 1000 5000 10000 C

K 1000 5000 10000 1000 5000 10000| 1000 5000 10000 25%  50%  75%

Megiddo avg. sol. time (s) | <0.001 <0.001 <0.001| 0.001 0.001 0.001| 0.001 0.001 0.001|f <0.001 0.001 0.001
avg. post gap (%) 1.2 093 091 14 14 1.7 14 1.3 1.7 1.6 1.5 0.90

avg. true gap (%) 083 0.60 0.59 0.87 078 1.0| 076 050 0.69 0.86 0.88 0.48

solved to opt. (%) 6.7 20 20 27 33 47 53 50 27 30 21 43

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.027 0.027 0.023| 0.030 0.027 0.027| 0.034 0.034 0.033 0.032  0.029 0.027
avg. post gap (%) 044 038 036 0.58 0.60 0.67| 066 0.84 1.0 0.79 0.63 0.43

avg. true gap (%) 0.090 0.050 0.042| 0.016 0.0077 0.0029 0 0.0058 0.0055 0.032 0.020 0.021

solved to opt. (%) 27 47 53 87 87 83 100 93 97 64 76 84
FPTAS-gen-LB(0.05) avg. sol. time (s) 0.058 0.058 0.055| 0.060 0.061 0.064| 0.072 0.069 0.074 0.070 0.063 0.058
avg. post gap (%) 044 039 036 0.58 0.60 0.67| 066 0.83 0.99 0.79 0.63 0.42

avg. true gap (%) 0.085 0.046 0.037| 0.012 0.0066 0.0029 0 0.078 0 0.030 0.021 0.014

solved to opt. (%) 27 37 60 87 90 83 100 97 100 66 76 86
FPTAS-gen-LB(0.01) avg. sol. time (s) 066 0.68 0.64 0.64 0.64 0.64| 076 075 0.81 077  0.68 0.62
avg. post gap (%) 033 032 0.30 042 0.36 040 043 042 047 0.45 0.40 0.30

avg. true gap (%) 0.033 0.023 0.019| 0.0067 0.0053 0.0022 0 0 0 0.018 0.0084 0.0036

solved to opt. (%) 47 53 60 93 93 93 100 100 100 70 83 93

FPTAS-gen(0.1) avg. sol. time (s) 044 045 043 042 040 0.43| 040 041 040 0.46 0.41 0.39
avg. post gap (%) 6.8 6.8 6.7 6.6 6.6 6.6 6.5 6.5 6.4 6.6 6.6 6.6

avg. true gap (%) 0.045 0.026 0.0083| 0.0011 0.011 0.0060 | 0.0019 0.0050 0 0.014 0.012 0.0086

solved to opt. (%) 37 47 70 97 80 83 97 93 100 71 79 84

FPTAS-gen(0.05) avg. sol. time (s) 1.3 1.4 1.3 1.2 1.1 1.2 1.1 1.1 1.1 1.3 1.2 1.1
avg. post gap (%) 34 34 34 3.3 33 3.3 32 3.3 32 3.3 3.3 3.3

avg. true gap (%) 0.025 0.014 0.010| 0.0083 0.0054 0.0022 0 0 0 0.012 0.0058 0.0036

solved to opt. (%) 57 63 63 90 90 93 100 100 100 76 86 91

FPTAS-gen(0.01) avg. sol. time (s) 25 26 24 19 18 20 17 16 16 22 20 18
avg. post gap (%) 0.67 0.68 0.68 0.66 0.66 0.67| 065 0.65 0.65 0.66 0.66 0.66

avg. true gap (%) | 0.0011 0.0015 0.0010 | 0.00039 0 0.00066 0 0 0[] 0.00065 0.00069 0.00021

solved to opt. (%) 80 87 87 97 100 97 100 100 100 90 94 98

CPLEX 10.1 Nat. avg. sol. time (s) 0.049 0.049 0.049 027 025 021| 0.88 1.0 0.63 0.51 043 0.19
CPLEX 10.1 SP avg. sol. time (s) 0.066 0.065 0.065| 0.080 0.079 0.078| 0.067 0.075 0.072 0.074 0.075 0.066

Table 6: 50 periods with 25 pairs that violate the co-behaviour property
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K 1000 5000 10000 C

K 1000 5000 10000 1000 5000 10000 1000 5000 10000 25%  50%  75%

Megiddo avg. sol. time (s) | 0.001 0.002 0.002| 0.002 0.002 0.005| 0.004 0.004 0.006| 0.004 0.003 0.002
avg. post gap (%) 055 036 044 075 081 0.66 052 074 0.63 0.84 058 040

avg. true gap (%) 044 024 034 048 060 044 0.31 0.45 0.39 060 039 024

solved to opt. (%) 33 13 0 23 20 37 33 33 27 12 23 28

FPTAS-gen-LB(0.1) avg. sol. time (s) 017 018 0.17 0.21 0.21 0.20 022 023 0.23 022 020 019
avg. post gap (%) 014 015 0.16 028 023 022 021 028 0.24 026 020 018

avg. true gap (%) | 0.033 0.031 0.053| 0.0097 0.017 0.0023|0.00050 0.0011 0.0047 | 0.024 0.012 0.015

solved to opt. (%) 7 27 7 83 80 93 93 90 83 56 66 67
FPTAS-gen-LB(0.05) avg. sol. time (s) 040 042 040 049 050 048 0.53 055 0.57 053 047 045
avg. post gap (%) 013 014 0.15 028 023 022 0.21 0.28 0.24 026 020 0.17

avg. true gap (%) | 0.022 0.026 0.048| 0.0091 0.016 0.0011|0.00050 0.0011 0.000077 || 0.023 0.0098 0.0082

solved to opt. (%) 13 37 13 87 83 93 93 90 97 56 69 78
FPTAS-gen-LB(0.01) avg. sol. time (s) 4.8 54 49 5.6 5.8 5.6 6.0 6.4 6.5 6.3 5.6 5.2
avg. post gap (%) 012 013 0.13 028 021 0.22 0.21 0.26 0.24 024 019 017

avg. true gap (%) | 0.013 0.019 0.026 | 0.0090 0.00045 0.00032 | 0.00050 0.00061 0.000077 || 0.012 0.0049 0.0062

solved to opt. (%) 20 40 20 90 90 97 93 97 97 59 76 80

FPTAS-gen(0.1) avg. sol. time (s) 3.3 3.6 3.5 3.7 37 3.7 3.6 3.8 3.9 4.0 3.6 3.4
avg. post gap (%) 6.8 6.8 68 6.6 6.6 6.5 6.5 6.5 6.5 6.6 6.6 6.6

avg. true gap (%) | 0.019 0.019 0.025| 0.012 0.0022 0.0011| 0.0017 0.00065 0.0029 || 0.013 0.0076 0.0069

solved to opt. (%) 13 37 13 80 83 93 90 93 80 52 70 72

FPTAS-gen(0.05) avg. sol. time (s) 10 11 11 10 11 10 10 11 11 11 10 9.7
avg. post gap (%) 3.4 34 339 3.3 33 329 327 327 3.25 3.3 3.3 3.3

avg. true gap (%) [0.0081 0.012 0.012| 0.0013 0.00065 0.00032 | 0.00017 0.00065 0.00075 || 0.0062 0.0035 0.0022

solved to opt. (%) 23 43 33 90 87 97 93 93 93 62 77 79

FPTAS-gen(0.01) avg. sol. time (s) 172 196 184 160 163 159 140 154 158 180 162 153
avg. post gap (%) 0.68  0.68 0.68 0.66 066  0.66 0.66  0.66 0.65 0.66 067  0.67

avg. true gap (%) |0.0025 0.00097 0.0026 | 0.00013 0.00045 0.00032 | 0.00015 0.00061 0.00024 || 0.0013 0.00084 0.00055

solved to opt. (%) 37 87 57 97 90 97 97 97 93 77 87 87

CPLEX 10.1 SP avg. sol. time (s) 024 022 022 032 028 030 025 027 0.28 033 024 022

Table 7: 100 periods with 50 pairs that violate the co-behaviour property
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T 26 50 100
Reoven and Koy 5000 10000 | 5000 10000 | 5000 10000
Megiddo avg. sol. time (s) | 0.002 0.002| 0.002 0.006 | 0.013 0.018
avg. post. gap (%) 11 13 58 6.6 26 31
avg. true gap (%) 53 638 39 37 1.9 23
solved to opt. (%) 37 47 17 27 23 37
FPTAS-gen-LB(0.1) avg. sol. time (s) | 0.018 0.016| 0.10 0.12| 0.68 0.73
avg. post. gap (%) 38 36 19 27| 064 074
avg. true gap (%) | 0.038 0.0060 | 0.032 0.030| 0.014 0.0018
solved to opt. (%) 80 97 73 93 67 97
FPTAS-gen-LB(0.05) avg. sol. time (s) | 0.047 0.035| 028 0.31 20 21
avg. post. gap (%) 2.3 2.3 1.7 20| 064 074
avg. true gap (%) | 0.049 0.0060 | 0.048 0.030| 0.014 0.0018
solved to opt. (%) 80 97 73 93 67 97
FPTAS-gen-LB(0.01) avg. sol. time (s) 071 044 5.2 5.8 35 37
avg. post. gap (%) 051 057| 053 054 045 046
avg. true gap (%) |0.0013 0] 0.021 010.0047 0.0018
solved to opt. (%) 93 100 80 100 80 97
FPTAS-gen(0.1) avg. sol. time (s) 0.17 0.11 1.3 1.2 12 11
avg. post. gap (%) 63 63 64 63 64 64
avg. true gap (%) | 0.027 0.0014 | 0.028 0.0011 | 0.011 0.0090
solved to opt. (%) 83 97 73 97 70 90
FPTAS-gen(0.05) avg. sol. time (s) 052 032 43 4.0 37 34
avg. post. gap (%) 32 32 32 32 32 32
avg. true gap (%) | 0.032 0.0060 | 0.028 0.0011 | 0.0077 0
solved to opt. (%) 80 97 73 97 73 100
FPTAS-gen(0.01) avg. sol. time (s) 11 59 94 87 726 656
avg. post. gap (%) 0.65 065| 0.65 064| 065 0.64
avg. true gap (%) |0.0015 010.0020 010.0019 0
solved to opt. (%) 90 100 90 100 83 100
CPLEX 10.1 Nat. avg. sol. time (s) | 0.037 0.032| 0.1 0.13
CPLEX 10.1 SP avg. sol. time (s) | 0.065 0.042| 0.13 0.14| 055 056

Table 8: Two production modes
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B.2 Results without improved lower bound

Tables [9H15| present the results of the computational tests of the algorithms that do not
use the improved lower bound, as described in Sections [5.3|and
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K 1000 5000 10000

K | 1000 5000 10000 1000 5000 10000 1000 5000 10000

FPTAS-CB-LB(0.1) avg. sol. time (s) | 0.001 0.001 0.002| 0.001 <0.001 <0.001 0.001  0.001 0.001
avg. post gap (%) 062 049 058 1.3 1.0 13 15 1.1 12

avg. true gap (%) | 0.041 0.014 0.032|0.00012 0.0017 0 0.011 0.00012 0.0023

solved to opt. (%) 77 87 83 97 93 100 83 97 97

FPTAS-CB-LB(0.05) avg. sol. time (s) | 0.002 0.002 0.001| 0.002 0.002 0.003 0.001  0.002 0.003
avg. post gap (%) 0.58 0.48 0.54 1.1 0.97 1.1 1.2 1.0 1.1

avg. true gap (%) |0.0036 0.0062 0.00068 0 0.0031 0 | 0.0034 0.00012 0.0023

solved to opt. (%) 97 90 97 100 87 100 93 97 97

FPTAS-CB-LB(0.01) avg. sol. time(s) | 0.006 0.003 0.005| 0.004 0.007 0.004 0.006  0.008 0.006
avg. post gap (%) 030 024 029 038 038 037 044 038 041

avg. true gap (%) 0 0.00077 0 0 0.00073 0 10.00048 0.00012 0

solved to opt. (%) 100 97 100 100 97 100 97 97 100

FPTAS-CB(0.1) avg. sol. time (s) | 0.007 0.008 0.008| 0.009 0.007 0.009 0.009 0.011 0.008
avg. post. gap (%) 5.0 5.0 5.1 5.5 5.4 5.5 5.5 56 56

avg. true gap (%) | 0.034 0.026 0.015|0.00012 0.0024 0.0049 | 0.0089 0.00012 0.0074

solved to opt. (%) 83 87 83 97 90 93 87 97 93

FPTAS-CB(0.05) avg. sol. time (s) | 0.015 0.015 0.016| 0.018 0.019 0.018 0.018 0.017 0.019
avg. post. gap (%) 2.5 2.5 2.5 2.7 2.7 2.7 2.7 28 28

avg. true gap (%) |0.0063 0.0095 0.0091 0 0.0017 0 | 0.0091 0.00012 0.0023

solved to opt. (%) 90 90 90 100 93 100 87 97 97

FPTAS-CB(0.01) avg. sol. time (s) | 0.087 0.082 0.083| 0.098 0.092 0.092 0.094 0.091 0.091
avg. post. gap (%) 0.49 0.5 0.5 053 053 053 055 055 0.54

avg. true gap (%) 0 0.0015 00.00012 0.00073 0 10.00048 0.00012 0

solved to opt. (%) 100 93 100 97 97 100 97 97 100

FPTAS-gen-LB(0.1) avg. sol. time (s) | 0.002 0.002 0.002| 0.002 <0.001 0.002 0.002  0.002 0.001
avg. post gap (%) 0.58 047 056 14 1.0 1.4 1.6 1.1 12

avg. true gap (%) |0.0029 0.0015 0.015 0 0.0024 0 | 0.0060 0.00012 0.0023

solved to opt. (%) 97 93 87 100 90 100 90 97 97
FPTAS-gen-LB(0.05) avg. sol. time (s) | 0.003 0.002 0.002| 0.002 0.004 0.005 0.005 0.005 0.003
avg. post gap (%) 0.58 0.47 0.54 1.3 1.0 1.2 1.3 1.1 1.2

avg. true gap (%) 0 0.00077 0.00068 0 0.0016 0 0 0.00012 0

solved to opt. (%) 100 97 97 100 93 100 100 97 100
FPTAS-gen-LB(0.01) avg. sol. time (s) | 0.016 0.012 0.015| 0.016 0.015 0.016 0.018 0.018 0.020
avg. post gap (%) 043 034 037 051 054 053 062 051 0.55

avg. true gap (%) 0 0 0 0 0 0 | 0.00048 0.00012 0

solved to opt. (%) 100 100 100 100 100 100 97 97 100

FPTAS-gen(0.1) avg. sol. time (s) | 0.018 0.020 0.019| 0.021 0.021 0.020 0.022  0.021 0.021
avg. post gap (%) 74 7.4 7.5 7.6 7.6 7.7 7.7 77 77

avg. true gap (%) |0.0062 0.0015 0.012 | 0.00012 0.0024 0 | 0.0055 0.00046 0.0023

solved to opt. (%) 90 93 87 97 9 100 90 93 97

FPTAS-gen(0.05) avg. sol. time (s) | 0.043 0.039 0.042| 0.044 0.041 0.043 0.047 0.048 0.045
avg. post gap (%) 3.7 3.7 3.7 3.8 3.8 3.8 3.9 38 39

avg. true gap (%) |0.0029 0.00077 0.0013 | 0.00012 0.0024 0 | 0.00048 0.00046 0

solved to opt. (%) 97 97 93 97 90 100 97 93 100

FPTAS-gen(0.01) avg. sol. time (s) 025 025 024 028 027 027 028 027 028
avg. post gap (%) 074 075 075 077 076 077 077 077 077

avg. true gap (%) 0 0 0.00067 0 0 0 0 0.00012 0

solved to opt. (%) 100 100 97 100 100 100 100 97 100

Table 9: 25 periods, satisfies conditions in Theorem 3|
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K 1000 5000 10000

K 1000 5000 10000 1000 5000 10000 1000 5000 10000

FPTAS-CB-LB(0.1)  avg. sol. time (s) 0.002 0.002 0.004| 0.007 0.005 0.005 0.008 0.007 0.004
avg. post gap (%) 024 028 025 046 053 055 0.56 0.61 0.64

avg. true gap (%) 0.023 0.034 0.054| 0.016 0.0080 0.0050 | 0.0074 0 0.020

solved to opt. (%) 67 60 37 87 87 93 93 100 87

FPTAS-CB-LB(0.05) avg. sol. time (s) 0.009 0.009 0.007| 0.008 0.008 0.009 0.010 0.011 0.011
avg. post gap (%) 023 025 021 045 052 054 0.56 0.61 0.63

avg. true gap (%) | 0.0081 0.0038 0.010 | 0.00062 0.0048 0 |0.00033 0 0.0030

solved to opt. (%) 80 87 70 97 93 100 97 100 97

FPTAS-CB-LB(0.01) avg. sol. time (s) 0.034 0.033 0.039| 0.041 0.045 0.041 0.052 0.052 0.051
avg. post gap (%) 019 022 017 029 035 032 037 039 0.37

avg. true gap (%) | 0.00035 0.00027 0 0 0.00061 0 0 0 0

solved to opt. (%) 93 97 100 100 97 100 100 100 100

FPTAS-CB(0.1) avg. sol. time (s) 0.044 0.044 0.045| 0.051 0.051 0.053 0.053 0.056 0.056
avg. post. gap (%) 5.1 52 52 5.5 5.5 5.5 56 57 56

avg. true gap (%) 0.028 0.035 0.047| 0.0062 0.0079 0.0078 0 0 0.0047

solved to opt. (%) 53 50 33 93 90 90 100 100 97

FPTAS-CB(0.05) avg. sol. time (s) 0.091 0.089 0.089 010 011 011 0.12 011 011
avg. post. gap (%) 2.5 25 25 2.7 2.7 2.7 28 28 28

avg. true gap (%) 0.015 0.0086 0.014| 0.0013 0.0032 0.00015 0 0 0

solved to opt. (%) 70 83 73 97 93 97 100 100 100

FPTAS-CB(0.01) avg. sol. time (s) 056 057 0.56 068 069  0.69 072 072 0.73
avg. post. gap (%) 050 050 0.50 054 053 054 0.55 0.55 0.55

avg. true gap (%) |0.00020 0.0080 0 0 0 0 0 0 0

solved to opt. (%) 97 97 100 100 100 100 100 100 100

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.010 0.009 0.009| 0.014 0.010 0.011 0.015 0.013 0.012
avg. post gap (%) 023 025 021 045 052 0.55 0.56 0.61 0.63

avg. true gap (%) | 0.0072 0.0051 0.017| 0.0041 0.0026 0.0026 0 0 0.0018

solved to opt. (%) 80 83 63 97 97 97 100 100 97
FPTAS-gen-LB(0.05) avg. sol. time (s) 0.017 0.019 0.018| 0.019 0.022 0.020 0.026 0.026 0.027
avg. post gap (%) 022 025 020 045 052 054 0.56 0.61 0.62

avg. true gap (%) |0.00091 0.0019 0.0057 0 0 0 0 0 0

solved to opt. (%) 90 90 80 100 100 100 100 100 100
FPTAS-gen-LB(0.01) avg. sol. time (s) 0.095 0.093 0.098 011 012 012 014 015 0.14
avg. post gap (%) 021 024 019 035 045 040 046 046 046

avg. true gap (%) 0 0 0 0 0 0 0 0 0

solved to opt. (%) 100 100 100 100 100 100 100 100 100

FPTAS-gen(0.1) avg. sol. time (s) 011 012 012 013 013 0.14 0.14 014 0.14
avg. post gap (%) 7.5 75 75 7.7 7.7 7.7 77 77 77

avg. true gap (%) | 0.0047 0.015 0.014| 0.0013 0 0.0024 0 0 0

solved to opt. (%) 83 80 63 97 100 93 100 100 100

FPTAS-gen(0.05) avg. sol. time (s) 025 025 025 028 029 030 0.31 030 0.30
avg. post gap (%) 3.7 37 37 3.8 3.8 3.8 39 39 39

avg. true gap (%) |0.00074 0.0019 0.0049 0 0 0 0 0 0

solved to opt. (%) 93 87 83 100 100 100 100 100 100

FPTAS-gen(0.01) avg. sol. time (s) 1.6 1.6 1.6 1.8 1.9 1.9 20 20 2.0
avg. post gap (%) 075 075 0.75 077 077 077 077 078 0.77

avg. true gap (%) | 0.00026 0.00031 0 0 0 0 0 0 0

solved to opt. (%) 97 93 100 100 100 100 100 100 100

Table 10: 50 periods, satisfies conditions in Theorem
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K 1000 5000 10000

K | 1000 5000 10000 1000 5000 10000 1000 5000 10000

FPTAS-CB-LB(0.1) avg. sol. time (s) | 0.025 0.028 0.025| 0.031  0.031 0.033 0.038 0.038  0.036
avg. post gap (%) | 0.078 0.078 0.094 0.17 020 018 025 0.24 0.20

avg. true gap (%) | 0.017 0.019 0.020| 0.012  0.013 0.0092 0.010 0.0042  0.0049

solved to opt. (%) 60 47 43 57 67 80 80 90 83

FPTAS-CB-LB(0.05) avg. sol. time (s) | 0.047 0.047 0.047| 0.062  0.061 0.059 0.071 0.074  0.070
avg. post gap (%) | 0.064 0.069 0.081 0.16 019 018 024 024 0.20

avg. true gap (%) |0.0027 0.0098 0.0072| 0.0046 0.0033 0.00023 | 0.0039 0 0.0025

solved to opt. (%) 87 60 57 77 83 97 87 100 83

FPTAS-CB-LB(0.01) avg. sol. time (s) 027 026 027 0.36 035 037 044 045 0.44
avg. post gap (%) | 0.061 0.059 0.074 0.16 019 017 023 022 0.20

avg. true gap (%) 0 0 0.00032 | 0.00035 0.00064 0 0 00 0.00055

solved to opt. (%) 100 100 87 97 93 100 100 100 90

FPTAS-CB(0.1) avg. sol. time (s) 028 027 028 0.34 034 035 0.38 0.38 0.38
avg. post. gap (%) 52 52 5.1 5.5 5.6 5.6 56 56 5.6

avg. true gap (%) | 0.027 0.043 0.041| 0.0050  0.026 0.0081 | 0.0020 0.0064 0.0014

solved to opt. (%) 50 40 43 77 50 87 93 87 87

FPTAS-CB(0.05) avg. sol. time (s) 0.60 058  0.60 0.76 074 076 0.85 0.86 0.85
avg. post. gap (%) 25 25 2.5 2.7 2.7 2.7 28 28 2.8

avg. true gap (%) |0.0071 0.0097 0.011| 0.0023 0.0016 0.0024 0.033 0 0.00055

solved to opt. (%) 80 73 60 87 83 87 87 100 90

FPTAS-CB(0.01) avg. sol. time (s) 41 39 4.1 5.2 5.1 5.2 58 58 5.8
avg. post. gap (%) 050 050 050 0.54 054 054 0.55 0.55 0.55

avg. true gap (%) 0 0.0015 0.00058 0 0.000092 0.00037 | 0.00035 0 0.000037

solved to opt. (%) 100 90 83 100 97 93 97 100 97

FPTAS-gen-LB(0.1) avg. sol. time (s) | 0.060 0.059 0.059| 0.075  0.071 0.072 0.086 0.090  0.083
avg. post gap (%) | 0.071 0.068 0.082 0.16 019 018 024 024 0.20

avg. true gap (%) |0.0097 0.0092 0.0087| 0.0018 0.0011 0.00037 |0.00041 0.0033  0.0012

solved to opt. (%) 63 67 53 87 87 93 97 93 87
FPTAS-gen-LB(0.05) avg. sol. time (s) 012 011 012 0.15 014 015 017 017 0.17
avg. post gap (%) | 0.063 0.060 0.076 0.16 019 018 024 024 0.20

avg. true gap (%) |0.0014 0.0011 0.0030 | 0.00067  0.0012 0.00037 | 0.00036 0 0.00055

solved to opt. (%) 90 93 73 93 87 93 97 100 90
FPTAS-gen-LB(0.01) avg. sol. time (s) 0.80 076  0.79 1.0 1.0 11 1.3 13 13
avg. post gap (%) | 0.061 0.059 0.074 0.16 019 018 024 023 0.20

avg. true gap (%) 0 0 0.00012 0 0.000092 0 0 0 0.000037

solved to opt. (%) 100 100 90 100 97 100 100 100 97

FPTAS-gen(0.1) avg. sol. time (s) 075 074 076 0.93 092 094 1.0 1.0 1.0
avg. post gap (%) 75 75 7.5 7.7 7.7 7.7 77 77 7.7

avg. true gap (%) | 0.011 0.0070 0.013| 0.0021 0.0012 0.0015 | 0.0040 0 0.00055

solved to opt. (%) 63 77 60 87 87 93 90 100 90

FPTAS-gen(0.05) avg. sol. time (s) 1.7 1.6 1.7 2.1 2.0 2.1 2.3 2.3 2.3
avg. post gap (%) 37 37 3.7 3.8 3.8 3.8 39 39 3.9

avg. true gap (%) |0.0015 0.0022 0.0024 | 0.00035 0.0021 0.00044 | 0.00058 0 0.00025

solved to opt. (%) 87 87 83 97 83 97 97 100 93

FPTAS-gen(0.01) avg. sol. time (s) 11 10 11 13 13 13 15 15 15
avg. post gap (%) 075 075 075 0.77 077 077 077 077 0.77

avg. true gap (%) 0 0 0.00012 0 0 0.00014 0 0 0.000037

solved to opt. (%) 100 100 93 100 100 97 100 100 97

Table 11: 100 periods, satisfies conditions in Theorem 3]
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K 1000 5000 10000

K 1000 5000 10000 1000 5000 10000 | 1000 5000 10000

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.004 0.005 0.003| 0.004 0.001 0.005 |0.004 0.003 0.003
avg. post gap (%) 1.1 099 11 14 20 17 25 21 1.8

avg. true gap (%) 0.20 0.058 0.19|0.00044 0.0017 0.021 0 0.0060 0.0083

solved to opt. (%) 43 37 40 97 97 83 | 100 97 87
FPTAS-gen-LB(0.05) avg. sol. time (s) 0.007 0.006 0.007| 0.007 0.007 0.010 |0.009 0.010 0.007
avg. post gap (%) 1.0 10 10 14 1.7 16 20 19 16

avg. true gap (%) 0.10 0.068 0.16 | 0.00044 0 0.0090 0 0 0.0010

solved to opt. (%) 50 43 40 97 100 87 | 100 100 97
FPTAS-gen-LB(0.01) avg. sol. time (s) 0.090 0.067 0.079| 0.063 0.075 0.086 |0.083 0.071 0.071
avg. post gap (%) 043 058 049 054 061 061 | 058 0.66 0.51

avg. true gap (%) 0.014 0.033 0.030 0 0 0.011 0 0 0

solved to opt. (%) 73 57 67 100 100 90 | 100 100 100

FPTAS-gen(0.1) avg. sol. time (s) 0.063 0.053 0.059| 0.047 0.053 0.053 |0.047 0.044 0.046
avg. post gap (%) 74 75 74 76 77 76 77 77 77

avg. true gap (%) 0.031 0.051 0.043|0.00044 0.0051 0.0091 0 0.0060 0.0033

solved to opt. (%) 60 43 63 97 93 83 | 100 97 90

FPTAS-gen(0.05) avg. sol. time (s) 018 015 0.16 012 013 014 | 012 011 0.12
avg. post gap (%) 37 37 37 38 38 38 39 39 39

avg. true gap (%) 0.025 0.022 0.014 | 0.00044 0 0.010 0 0 0

solved to opt. (%) 73 63 70 97 100 80 | 100 100 100

FPTAS-gen(0.01) avg. sol. time (s) 32 24 2.8 1.7 2.0 21 1.7 1.5 1.7
avg. post gap (%) 073 074 073 076 077 077 | 077 077 077

avg. true gap (%) |0.00081 0.0028 0.0057 0 0 0.0012 0 0 0

solved to opt. (%) 93 83 80 100 100 97 | 100 100 100

Table 12: 25 periods with 13 pairs that violate the co-behaviour property
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K 1000 5000 10000

K | 1000 5000 10000 1000 5000 10000 | 1000 5000 10000

FPTAS-gen-LB(0.1) avg. sol. time (s) | 0.025 0.024 0.024| 0.026 0.025 0.024 | 0.028 0.031 0.029
avg. post gap (%) 044 038 037 0.57 0.60  0.67 066 083 1.0

avg. true gap (%) | 0.085 0.049 0.042| 0.012 0.013 0.0029 |0.0046 0.0014 0

solved to opt. (%) 23 40 47 87 77 83 93 97 100
FPTAS-gen-LB(0.05) avg. sol. time (s) | 0.054 0.056 0.052| 0.054 0.054 0.055 | 0.062 0.062 0.065
avg. post gap (%) 044 039 036 057 059  0.67 066 083 1.0

avg. true gap (%) | 0.085 0.051 0.039| 0.0093 0.0054 0.0041 0 0.00078 0

solved to opt. (%) 23 40 50 90 90 80 100 97 100
FPTAS-gen-LB(0.01) avg. sol. time (s) 0.62 0.63 0.60 059 059 0.60 071 069 0.76
avg. post gap (%) 035 034 032 048 042 047 051 054 0.59

avg. true gap (%) | 0.033 0.022 0.019| 0.0067 0.0054 0.0022 0 0 0

solved to opt. (%) 47 57 60 93 90 93 100 100 100

FPTAS-gen(0.1) avg. sol. time (s) 043 044 042 040 038 041 039 039 0.38
avg. post gap (%) 75 75 75 77 77 7.7 7.7 77 77

avg. true gap (%) | 0.044 0.020 0.016| 0.0027 0.0053 0.0029 |0.0018 0 0.0054

solved to opt. (%) 37 53 50 93 87 83 97 100 93

FPTAS-gen(0.05) avg. sol. time (s) 13 13 12 11 11 12 1.1 11 1.0
avg. post gap (%) 37 37 37 38 38 3.8 3.9 39 39

avg. true gap (%) |0.0058 0.013 0.0097 | 0.0067 0.0054 0.0041 0 0.00078 0

solved to opt. (%) 67 57 67 93 90 80 100 97 100

FPTAS-gen(0.01) avg. sol. time (s) 25 25 24 18 17 19 17 16 15
avg. post gap (%) 075 075 0.75 077 077 077 077 077 077

avg. true gap (%) |0.0020 0.0015 0.0011 | 0.00040 0 0.00066 0 0 0

solved to opt. (%) 77 87 83 97 100 97 100 100 100

Table 13: 50 periods with 25 pairs that violate the co-behaviour property
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K 1000 5000 10000

K | 1000 5000 10000 1000 5000 10000 1000 5000 10000

FPTAS-gen-LB(0.1) avg. sol. time (s) 016 016 0.15 018 018 0.18 019 020 0.21
avg. post gap (%) 013 014 0.16 028 023 022 021 028 0.24

avg. true gap (%) | 0.027 0.027 0.054| 0.011 0.015 0.0029 | 0.0012 0.00065 0.0024

solved to opt. (%) 17 30 7 80 80 93 90 93 83
FPTAS-gen-LB(0.05) avg. sol. time (s) 037 039 036 044 046 043 0.48  0.50 0.52
avg. post gap (%) 013 014 0.15 028 023 022 021 028 0.24

avg. true gap (%) | 0.022 0.024 0.042| 0.0093 0.015 0.00083 | 0.0012 0.0011 0.00024

solved to opt. (%) 13 37 17 83 87 93 87 90 93
FPTAS-gen-LB(0.01) avg. sol. time (s) 4.6 50 46 53 55 52 55 6.0 6.1
avg. post gap (%) 012 013 0.13 028 021 022 021 027 0.24

avg. true gap (%) | 0.013 0.019 0.024| 0.0092 0.00045 0.00032 |0.00017 0.00061 0.000077

solved to opt. (%) 17 40 20 87 90 97 93 97 97

FPTAS-gen(0.1) avg. sol. time (s) 3.2 35 34 3.6 3.6 3.5 3.5 37 3.8
avg. post gap (%) 7.5 75 75 7.7 7.7 7.7 7.7 7.7 7.7

avg. true gap (%) | 0.012 0.025 0.025|0.00091 0.0020 0.00083 | 0.0036 0.00061  0.0035

solved to opt. (%) 10 30 17 87 87 93 80 97 87

FPTAS-gen(0.05) avg. sol. time (s) 9.7 11 10 10 10 10 9.6 10 11
avg. post gap (%) 3.8 38 38 3.8 3.8 3.8 3.9 3.9 3.9

avg. true gap (%) |0.0099 0.012 0.0093 | 0.00088 0.00045 0.00032 |0.00052 0.00061 0.00024

solved to opt. (%) 20 40 37 90 90 97 90 97 93

FPTAS-gen(0.01) avg. sol. time (s) 169 193 181 157 160 156 137 151 155
avg. post gap (%) 075 075 075 077 077 077 077 078 0.77

avg. true gap (%) |0.0025 0.00016 0.0024 | 0.00017 0.00045 0.00032 |0.00017 0.00061 0.000077

solved to opt. (%) 40 93 57 93 90 97 93 97 97

Table 14: 100 periods with 50 pairs that violate the co-behaviour property
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T 26 50 100
Reoven and Ky 5000 10000 | 5000 10000 | 5000 10000
FPTAS-gen-LB(0.1) avg. sol. time (s) | 0.018 0.010| 0.092 0.098| 0.59 0.63
avg. post. gap (%) 43 41 1.9 28| 065 074
avg. true gap (%) | 0.038 0.0060 | 0.028 0.030 | 0.016 0.0018
solved to opt. (%) 80 97 73 93 67 97
FPTAS-gen-LB(0.05) avg. sol. time (s) | 0.042 0.030 0.25 0.28 1.8 1.9
avg. post. gap (%) 28 27 1.8 24| 064 074
avg. true gap (%) | 0.038 0.0060 | 0.044 0.029 | 0.014 0.0018
solved to opt. (%) 80 97 73 97 70 97
FPTAS-gen-LB(0.01) avg. sol. time (s) 0.66 041 50 55 33 35
avg. post. gap (%) 066 073| 071 074 054 057
avg. true gap (%) |0.0013 0| 0.021 01]0.0047 0.0018
solved to opt. (%) 93 100 80 100 80 97
FPTAS-gen(0.1) avg. sol. time (s) 0.16 0.11 1.2 11 11 10
avg. post. gap (%) 76 76 77 77 78 7.8
avg. true gap (%) | 0.038 0.0060 | 0.050 0| 0.014 0.0029
solved to opt. (%) 83 97 70 100 70 93
FPTAS-gen(0.05) avg. sol. time (s) 050 0.31 41 39 36 33
avg. post. gap (%) 38 38 38 3.8 39 39
avg. true gap (%) | 0.032 0.0060 | 0.028 010.0077 0
solved to opt. (%) 80 97 77 100 73 100
FPTAS-gen(0.01) avg. sol. time (s) 11 57 91 84 705 639
avg. post. gap (%) 077 077| 077 077} 077 077
avg. true gap (%) |0.0013 00.0020 010.0017 0
solved to opt. (%) 93 100 90 100 87 100

Table 15: Two production modes
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