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Abstract

We consider a generalisation of the lot-sizing problem that includes an emission

constraint. Besides the usual financial costs, there are emissions associated with

production, keeping inventory and setting up the production process. Because

the constraint on the emissions can be seen as a constraint on an alternative cost

function, there is also a clear link with bi-objective optimisation. We show that

lot-sizing with an emission constraint is NP-hard and propose several solution

methods. First, we present a Lagrangian heuristic to provide a feasible solution

and lower bound for the problem. For costs and emissions for which the zero

inventory property is satisfied, we give a pseudo-polynomial algorithm, which

can also be used to identify the complete Pareto frontier of the bi-objective lot-

sizing problem. Furthermore, we present a fully polynomial time approximation

scheme (FPTAS) for such costs and emissions and extend it to deal with general

costs and emissions. Special attention is paid to an efficient implementation with

an improved rounding technique to reduce the a posteriori gap, and a combination
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of the FPTASes and a heuristic lower bound. Extensive computational tests show

that the Lagrangian heuristic gives solutions that are very close to the optimum.

Moreover, the FPTASes have a much better performance in terms of their gap than

the a priori imposed performance, and, especially if the heuristic’s lower bound is

used, they are very fast.

1 Introduction

In recent years, there has been a growing tendency to not only focus on financial costs
in a production process, but also on its impact on society. This societal impact includes
for instance the environmental implications, such as the emissions of pollutants during
production. Particular interest is paid to the emission of greenhouse gases, such as car-
bon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). By now, there is a general
consensus about the effect that these gases have on global warming. Consequently,
many countries strive towards a reduction of these greenhouse gases, as formalised in
treaties, such as the Kyoto Protocol (United Nations, 1998), as well as in legislation, of
which the European Union Emissions Trading System (European Commission, 2010)
is an important example.

The shift towards a more environmentally friendly production process can be caused
by such legal restrictions, but also by a company’s desire to pursue a ‘greener’ im-
age by reducing its carbon footprint. As Vélazquez-Martı́nez et al. (2011) mention:
“A substantial number of companies publicly state carbon emission reduction targets.
For instance, in the 2011 Carbon Disclosure Project annual report (Carbon Disclosure
Project, 2011), 926 companies publicly commit to a self-imposed carbon target, such
as FedEx, UPS, Wal-Mart, AstraZeneca, PepsiCo, Coca-Cola, Danone, Volkswagen,
Campbell and Ericsson.”

Emissions could be reduced by for instance using less polluting machines or vehi-
cles, or using cleaner energy sources. One should not overlook the potential benefit
that changing operational decisions has on emission reduction. There is no guarantee
that minimising costs of operations will also lead to low emissions. In fact, fashionable
production strategies like just-in-time production, with its frequent less-than-truckload
shipments and frequent change-overs on machines, may lead to emission levels that
are far from optimal.

For these reasons, the classic economic lot-sizing model has been generalised. Be-
sides the usual financial costs, there are emission levels associated with production,
keeping inventory and setting up the production process. Set-up emissions can for
example originate from having fixed per-truckload emissions of an order, or from a
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production process that needs to ‘warm up’, where usable products are not created
until the production process has gone through a set-up phase that is already pollut-
ing. If products need to be stored in a specific way, e.g. refrigerated, then keeping
inventory will also emit pollutants. The lot-sizing model that we consider in this pa-
per minimises the (financial) costs under an emission constraint. This constraint can
be seen as one global restriction over all periods. This problem was introduced by Ben-
jaafar et al. (2011), who integrate carbon emission constraints in lot-sizing models in
several ways. They consider a capacity on the total emissions over the entire problem
horizon, as we do in this paper, but also a carbon tax, a capacity combined with emis-
sions trade, or carbon offsets (where additional emission rights may be bought, but not
sold). Moreover, they study the effect of collaboration between multiple firms within
a serial supply chain. Several insights are derived from the models by experimenting
with the problem parameters. They assume that all cost and emission functions follow
a fixed-plus-linear structure, and no attention is paid to finding good solution methods
yet.

In our paper, we study a lot-sizing problem with an emission constraint under con-
cave cost and emission functions. We will see that this model is also capable of han-
dling multiple production modes. We show that this problem is NP-hard, even if
only production emits pollutants (linearly). Moreover, we show that lot-sizing with
an emission constraint and two production modes in each period is NP-hard, even if
only production emits pollutants (linearly) and either all (financial) costs or all emis-
sions are time-invariant. Then, we develop several solution methods. First, we give a
Lagrangian heuristic that finds both very good solutions and a lower bound in O(T4)
time, where T is the number of time periods. We also prove several structural prop-
erties of an optimal solution that we use while working towards a fully polynomial
time approximation scheme (FPTAS). As a first step, a pseudo-polynomial algorithm
is developed in case the costs and emissions are such that the single-sourcing (zero in-
vertory) property is satisfied. This pseudo-polynomial algorithm is then turned into an
FPTAS, which, in turn, is generalised to deal with costs and emissions that do not sat-
isfy the single-sourcing property. We expect that this technique to construct a pseudo-
polynomial algorithm and an FPTAS can be applied to more problems where one over-
all capacity constraint is added to a problem for which a polynomial time dynamic
programme exists.

Special attention is paid to an efficient practical implementation of these algorithms.
This includes a combination of the lower bound that is provided by the Lagrangian
heuristic with an FPTAS, which results in excellent solutions within short computation
times, as becomes clear from the extensive computational tests of all algorithms that
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have been carried out for this paper. Besides that, our algorithms do not only have
an a priori gap (ε), but they also produce a (smaller) a posteriori gap. To reduce this
gap even further, we develop an improved rounding technique, which we think can be
applied to other FPTASes of the same type. Furthermore, if we compare the algorithms’
solutions to the optima, we see that the gaps are even much smaller.

The model is more general than it looks at first sight, since the emission costs that
we consider do not necessarily need to refer to emissions. They can be any kind of
costs or output, other than those in the objective function, related to the three types
of decisions (i.e., set-up, production and inventory). This makes the relationship with
bi-objective lot-sizing clear. In multi-objective optimisation (and bi-objective optimisa-
tion in particular), one is usually interested in the frontier of Pareto optimal solutions.
Theoretically, finding the optimal costs for all possible emission capacities would result
in finding the Pareto frontier. The multi-objective lot-sizing problem is studied in more
detail by Van den Heuvel et al. (2011), who divide the horizon in several blocks, each
with its own objective function. The case with one block of length T corresponds to
our problem (with fixed-plus-linear costs and emissions). In our paper, we will show
that we can find the whole Pareto frontier in pseudo-polynomial time, if the costs and
emissions are such that the single-sourcing (zero-inventory) property is satisfied.

Besides the works of Benjaafar et al. (2011) and Van den Heuvel et al. (2011), there
are some other papers that integrate carbon emission constraints in lot-sizing prob-
lems. Absi et al. (2011) introduce lot-sizing models with emission constraints of sev-
eral types: periodic, cumulative, global (as we have) and rolling. Furthermore, they
consider multiple production modes, one of which is ‘ecological’. As mentioned, our
model can also handle multiple production modes. Vélazquez-Martı́nez et al. (2011)
study the effect of different levels of aggregation to estimate the transportation car-
bon emissions in the economic lot-sizing model with backlogging. Heck and Schmidt
(2010) discuss lot-sizing with an ‘eco-term’, which they solve heuristically with ‘eco-
enhanced’ Wagner-Whitin and Part Period Balancing, with the possibility of ‘eco-bal-
ancing’. Other papers approach the emission problem from an EOQ point of view,
such as Chen et al. (2011), Hua et al. (2011) and Bouchery et al. (2010).

The remainder of this paper is organised as follows. The next section provides a
formal, mathematical definition of the lot-sizing problem with a global emission con-
straint. In Section 3, we show that this problem, as well as a variant with two pro-
duction modes, is NP-hard under quite general conditions. In Section 4, we prove
several structural properties of an optimal solution, which are used by the algorithms
that are introduced in Section 5. Section 5.1 gives a Lagrangian heuristic. Sections 5.2
and 5.3 present a pseudo-polynomial algorithm, respectively FPTAS, for what we will
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Figure 1: Graphical representation of a lot-sizing problem

define as co-behaving costs and emissions. An FPTAS for general costs and emissions
is derived in Section 5.4. The combination of the heuristic and FPTASes is discussed
in Section 5.5. Section 6 describes and gives the results of the extensive computational
tests and the paper is concluded in Section 7.

2 Problem definition

The model can be formally defined as follows:

min
T

∑
t=1

(pt(xt) + ht(It)) (1)

s.t. It = It−1 + xt − dt t = 1, . . . , T (2)
I0 = 0 (3)

xt, It ≥ 0 t = 1, . . . , T (4)
T

∑
t=1

(
p̂t(xt) + ĥt(It)

)
≤ Ĉ , (5)

where xt is the quantity produced in period t, and It is the inventory at the end of
period t. The demand in period t is given by dt, the length of the problem horizon is
T, and Ĉ is the emission capacity. Furthermore, pt and ht are production and holding
costs functions, and p̂t and ĥt are production and holding emission functions, respec-
tively. We assume that all functions are concave, nondecreasing and nonnegative. This
includes the well-known case with fixed set-up costs and linear production and hold-
ing costs.

Equation (2) gives the inventory balance constraints. There is no initial inventory
(3); the nonnegativity constraints are given by (4), and (5) constrains the emissions over
the whole problem horizon. We shall refer to problem (1)–(5) as ELSEC (Economic Lot-
Sizing with an Emission Constraint).

Of course, p̂t and ĥt don’t necessarily refer to emissions. They can be any kind of
costs other than those in the objective function. Examples of what can be modelled
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by p̂t and ĥt include other types of negative externalities for society, such as other
pollutants or noise resulting from production or carrying inventories. Moreover, we
can impose a maximum on the total or average inventory by choosing ĥt(It) = It and
p̂t(xt) = 0 for all t, and Ĉ equal to the total inventory or T times the average inventory.
Also, we can model a lot-sizing problem with m production modes and T periods by
defining an instance of ELSEC with Tm periods, where periods appear in groups of
m, such that each of these periods corresponds to another production mode, with zero
holding costs within such a group and where demand occurs only in the last of a group
of m periods.

If the costs and emissions follow a fixed-plus-linear structure, then the model can
also be formulated as the standard mixed integer linear programme (6)–(12). We shall
refer to this problem as ELSEC-MILP. See Figure 1 for a graphical representation with
four periods.

min
T

∑
t=1

(Ktyt + ptxt + ht It) (6)

s.t. It = It−1 + xt − dt t = 1, . . . , T (7)

xt ≤ yt

T

∑
s=t

ds t = 1, . . . , T (8)

I0 = 0 (9)
xt, It ≥ 0 t = 1, . . . , T (10)

yt ∈ {0, 1} t = 1, . . . , T (11)
T

∑
t=1

(
K̂tyt + p̂txt + ĥt It

)
≤ Ĉ (12)

Kt and K̂t are the set-up cost and emissions, respectively. Now, pt, p̂t, ht and ĥt refer to
the unit production and holding costs and emissions. yt is a binary variable indicating
a set-up in period t and constraints (8) ensure that production can only take place if
there is a set-up in that period.

3 Complexity results

Van den Heuvel et al. (2011) show that some special cases of ELSEC-MILP can be
solved in polynomial time. Moreover, they show that ELSEC-MILP isNP-complete in
general, even if only set-ups emit pollutants and under Wagner-Whitin (non-speculative)
costs and emissions.

In this section, we will show that another special case of ELSEC-MILP isNP-hard.
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d2 = a1 d4 = a2

p1 = 1, p̂1 = 0, K1 = M p3 = 1, p̂3 = 0, K3 = Mp2 = 0, p̂2 = b1
a1

, K2 = M p4 = 0, p̂4 = b2
a2

, K4 = M

Figure 2: An instance of ELSEC-MILP that corresponds to an instance of KNAPSACK

We will see that a special case of lot-sizing with an emission constraint and two pro-
duction modes is NP-hard as well.

Theorem 1 Lot-sizing with an emission constraint isNP-hard, even if only production emits
pollutants and these emissions are linear in the quantity produced.

Proof We will show that KNAPSACK is a special case of ELSEC-MILP. KNAPSACK

problem (decision version): given a, b ∈ Nn and k, Ĉ ∈ N, does there exist a vector
z ∈ {0, 1}n such that

n

∑
i=1

aizi ≥ k,
n

∑
i=1

bizi ≤ Ĉ?

Define the following instance of ELSEC-MILP (see Figure 2):

T = 2n dt =

{
0 for t odd
a 1

2 t for t even

Kt = M ∀t K̂t = 0 ∀t

ht =

{
0 for t odd
∞ for t even

ĥt = 0 ∀t

pt =

{
1 for t odd
0 for t even

p̂t =


0 for t odd
b 1

2 t

a 1
2 t

for t even

where M is a very large number. Clearly, this reduction can be done in polynomial
time. We will show that the answer to KNAPSACK is positive if and only if ELSEC-
MILP has a solution with costs of at most M · n + ∑ ai − k.

Suppose the answer to KNAPSACK is positive. Then if zi = 1, let x2i = ai and if
zi = 0, let x2i−1 = ai; xt = 0 otherwise. The thus created solution of ELSEC-MILP has
costs:

M · n + ∑
i:zi=1

x2i p2i + ∑
i:zi=0

x2i−1 · p2i−1 = M · n + ∑
i:zi=1

ai · 0 + ∑
i:zi=0

ai · 1
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= M · n +
n

∑
i=1

ai(1− zi) = M · n +
n

∑
i=1

ai −
n

∑
i=1

aizi ≤ M · n + ∑ ai − k.

Moreover, this solution of ELSEC-MILP has emissions:

∑
i:zi=1

x2i p̂2i + ∑
i:zi=0

x2i−1 · p̂2i−1 = ∑
i:zi=1

ai ·
bi

ai
+ ∑

i:zi=0
ai · 0 =

n

∑
i=1

bizi ≤ Ĉ.

Conversely, suppose ELSEC-MILP has a solution with costs of at most M · n +
∑ ai − k. Then we know that there are at most n set-ups, otherwise the costs of ELSEC-
MILP would be at least M · (n + 1) > M · n + ∑ ai − k. Since ht = ∞ for t even, there
must be exactly one set-up in each pair of periods (2i− 1, 2i). Moreover, the produc-
tion quantity in this period must be exactly ai, to satisfy all demand. There is a budget
of ∑ ai − k left to pay for production costs. The production costs equal the sum of ai

over all i for which x2i−1 = ai (and x2i = 0), so

∑
i:x2i−1=ai

ai · 1 + ∑
i:x2i=ai

ai · 0 = ∑
i:x2i−1=ai

ai ≤
n

∑
i=1

ai − k.

It follows that

∑
i:x2i=ai

ai ≥ k.

Now, construct the following solution to KNAPSACK: if x2i = ai, then zi = 1, and if
x2i−1 = ai then zi = 0. The profit of this solution equals

n

∑
i=1

aizi = ∑
i:x2i=ai

ai · 1 ≥ k.

Since the solution of ELSEC-MILP is feasible (by assumption), the following holds
for the emissions:

n

∑
i=1

bizi = ∑
i:x2i=ai

bi = ∑
i:x2i=ai

bi

ai
ai = ∑

t even

b 1
2 t

a 1
2 t

xt =
T

∑
t=1

p̂txt =
T

∑
t=1

(
K̂tyt + p̂txt + ĥt It

)
≤ Ĉ.

�

We can also view the instance from the proof as a lot-sizing problem with an emission
constraint and two different production modes in each period, with a horizon of 1

2 T
periods. The even and odd periods then correspond to these two different production
modes, and we get the following corollary.

Corollary 2 Lot-sizing with an emission constraint and two production modes in each period
is NP-hard, even if only production emits pollutants (linearly) and either all (financial) costs
or all emissions are time-invariant.
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4 Structural properties

Before we introduce our algorithms in Section 5, we prove the correctness of some
structural properties of an optimal solution, which these algorithms will use.

We use the common definition of a block as an interval [t, s] such that It−1 = Is = 0
and Iτ 6= 0 ∀t ≤ τ ≤ s − 1. Furthermore, let a period t be called a double-sourcing
period, if It−1 > 0 and xt > 0, that is, there is both inventory carried over from the
previous period and positive production in period t. Let a period t be called a single-
sourcing period if either It−1 = 0 or xt = 0.

Later, we will want to consider a given solution and find out what happens to the
costs (and emissions) when we shift production from period i to period j and vice
versa. Therefore, it will be convenient to make the following definitions. Let (x, I) be
a given solution. Let xi,j be the quantity produced in period i that is kept in inventory
until at least period j in that solution. Define qi,j as the additional production quantity
in period i (compared to (x, I)) that is kept in inventory until at least period j. We
can interpret xi as the production quantity in period i in the ‘old’ (given) situation and
xi + qi,j as the production quantity in period i in the ‘new’ situation. Similarly, we
can interpret the quantities Ik + qi,j as the inventories in periods k (i ≤ k ≤ j − 1) in
the ‘new’ situation. Now, define Ci,j(qi,j; xi, Ii, . . . , Ij−1) := pi(xi + qi,j) + ∑

j−1
k=i hk(Ik +

qi,j). We will use Ci,j(0) and Ci,j as shorthand for Ci,j(0; xi, Ii, . . . , Ij−1). In this way,
Ci,j(0) gives the production costs in period i plus the holding costs incurred in periods
i through j − 1 in the ‘old’ situation, and Ci,j(qi,j) gives the production and holding
costs in the same periods in the ‘new’ situation. Because of concavity of pi and hk,
it holds that Ci,j is concave (in qi,j) too. Note that Cj,j(qj,j) = pj(xj + qj,j). Similarly,
define Ĉi,j(qi,j; xi, Ii, . . . , Ij−1) := p̂i(xi + qi,j) + ∑

j−1
k=i ĥk(Ik + qi,j), and use Ĉi,j(0) and Ĉi,j

as shorthand for Ĉi,j(0; xi, Ii, . . . , Ij−1). Define

p′i(xi) := lim
h↓0

pi(xi + h)− pi(xi)
h

,

i.e., p′i is the right derivative of pi. Because pi is real-valued and concave, we know that
this right derivative exists for xi > 0.

Similarly, let p̂′i, h′i, ĥ′i, C′i,j, Ĉ′i,j be the right derivatives of their respective functions.
We know that the right derivative of p̂i exists for xi > 0, the right derivatives of hi and
ĥi exist for Ii > 0, and the right derivatives of Ci,j and Ĉi,j exist for qi,j + xi > 0 and
qi,j + Ik > 0 (i ≤ k < j) (i.e., the quantity that is produced less in period i is such that
the remaining production quantity, respectively inventories are positive).

Theorem 3 If, for each pair i ≤ j, either
(

C′i,j(qi,j) ≤ C′j,j(qj,j) and Ĉ′i,j(qi,j) ≤ Ĉ′j,j(qj,j)
)

or(
C′i,j(qi,j) ≥ C′j,j(qj,j) and Ĉ′i,j(qi,j) ≥ Ĉ′j,j(qj,j)

)
holds, for all (x, I) and all (qi,j, qj,j) (such
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that qi,j + xi > 0, qj,j + xj > 0 and qi,j + Ik > 0 (i ≤ k < j)), then there exists an optimal
solution to ELSEC, such that the single-sourcing property holds in all periods.

Proof Suppose there exists an optimal solution (x, I) with (at least) one double-sourcing
period. Let v be a double-sourcing period. Suppose that period v’s demand is procured
from two periods, t and s, then it must be that either v = t or v = s. Furthermore, as-
sume that C′t,v(0) ≥ C′s,v(0) and Ĉ′t,v(0) ≥ Ĉ′s,v(0). (Note that this also covers the case
C′t,v(0) ≤ C′s,v(0) and Ĉ′t,v(0) ≤ Ĉ′s,v(0), because we can switch the indices t and s.)
Now, we should produce xt,v units in period s instead of period t, so that we obtain a
solution with single-sourcing in period v. We show that this will decrease both costs
and emissions. Because of concavity, it holds that

Ct,v(0)− Ct,v(−xt,v) ≥ C′t,v(0)xt,v ≥ C′s,v(0)xt,v ≥ Cs,v(xt,v)− Cs,v(0) ,

i.e., the savings are larger than the extra expenses. Completely analogously,

Ĉt,v(0)− Ĉt,v(−xt,v) ≥ Ĉ′t,v(0)xt,v ≥ Ĉ′s,v(0)xt,v ≥ Ĉs,v(xt,v)− Ĉs,v(0) .

If there are any double-sourcing periods left, then repeat the above procedure until
there are only single-sourcing periods left. �

Corollary 4 If both the financial and emission costs satisfy the Wagner-Whitin property (no
speculative motives), then there exists an optimal solution to ELSEC, such that the single-
sourcing property holds in all periods.

Proof By definition, the Wagner-Whitin property means that it is cheapest to procure
products from the most recent production period, i.e.

(
C′i,j ≥ C′j,j and Ĉ′i,j ≥ Ĉ′j,j

)
for

all i ≤ j. �

Note that in our model the single-sourcing property is the same as the zero inventory
(ZIO) property, i.e., there exists an optimal solution such that It−1 = 0 or xt = 0 for all
periods t. In the remainder of this paper, we will refer to all financial and emission costs
that satisfy the conditions in Theorem 3 as co-behaving, because over time, such cost
and emission functions move in the same direction, i.e., if one increases (decreases),
the other increases (decreases) as well.

The following corollary is a direct consequence of Theorem 3:

Corollary 5 If the emission cost functions are time-invariant and the holding emissions are
zero, OR the financial cost functions are time-invariant and the holding costs are zero, then
there exists a solution to ELSEC, such that the single-sourcing property holds in all periods.
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In general, the following property holds:

Theorem 6 There exists an optimal solution to ELSEC, such that the single-sourcing property
holds in all but (at most) one period.

Proof See Appendix A. �

We will refer to the period in which the single-sourcing period is violated as the double-
sourcing period. In this period, say v, it holds that both Iv−1 > 0 and xv > 0.

Finally, we prove the next property, which is used in Section 5.4.

Theorem 7 There exists an optimal solution in which either the full emission capacity is used,
or the single-sourcing property holds.

Proof We need to show that if we have a solution with double-sourcing for which the
emission capacity is not fully used, i.e. ∑T

t=1

(
p̂t(xt) + ĥt(It)

)
< Ĉ, then there exists a

solution with equal or lower costs and emissions that uses the full capacity or does not
have double-sourcing in any period.

Let period v’s demand be produced in periods t and s, where either t = v or s = v.
Assume that C′t,v(0) ≥ C′s,v(0), w.l.o.g. It is cheaper to move a quantity q > 0 from
period t to period s, since because of concavity, it holds that

Ct,v(0)− Ct,v(−q) ≥ C′t,v(0)q ≥ C′s,v(0)q ≥ Cs,v(q)− Cs,v(0) ,

i.e., the savings are larger than the extra expenses.
Try to choose q = xt,v, so that we obtain a solution that satisfies the single-sourcing

property. If the emissions of the new solution are within the emission capacity, then
we are done.

Otherwise, choose 0 < q < xt,v, such that the additional emissions equal the re-
maining emission capacity, i.e., Ĉs,v(q)− Ĉs,v(0) + Ĉt,v(0)− Ĉt,v(−q) = r, where r > 0
is this remaining capacity. Existence of such a q follows from the mean-value theorem,
since Ĉt,v and Ĉs,v are continuous on their interior domains. �

5 Algorithms

We propose several algorithms to solve ELSEC. First, we present a Lagrangian heuristic
that provides an upper and lower bound for the problem. Secondly, we develop an
exact algorithm that solves the co-behaving version of ELSEC in pseudo-polynomial
time. We turn this algorithm into a fully-polynomial approximation scheme (FPTAS).
Next, this FPTAS is extended to deal with more general cost and emission functions.
Finally, we show how the FPTASes can be sped up by using a lower bound, such as the
one given by the Lagrangian heuristic.
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5.1 Lagrangian heuristic

In this section, we present a Lagrangian heuristic that is based on relaxation of the
emission capacity constraint (5). The resulting formulation is given below. This heuris-
tic will give us both a lower bound and a feasible solution.

min
T

∑
t=1

(pt(xt) + ht(It)) + λ
T

∑
t=1

(
p̂t(xt) + ĥt(It)− Ĉ

)
=

T

∑
t=1

(
pt(xt) + λ p̂t(xt) + ht(It) + λĥt(It)

)
− λĈ (13)

s.t. It = It−1 + xt − dt t = 1, . . . , T (14)
xt, It ≥ 0 t = 1, . . . , T (15)

I0 = 0 (16)
λ ≥ 0 (17)

First, suppose that λ is given. Obviously, constraints (14)–(16) are the same as in the
classic (uncapacitated, single-item) lot-sizing problem. Moreover, pt + λ p̂t is a concave
function of xt, because both pt and p̂t are concave, and λ is nonnegative. Similarly,
ht + λĥt is a concave function of It. Furthermore, λĈ is a constant, so we can ignore
it when optimising. Hence, for a given λ, the relaxed problem (13)–(16) is a classic
lot-sizing problem and we can solve it with Wagner and Whitin (1958)’s algorithm.

For any λ ≥ 0, the optimal value of (13) gives a lower bound on ELSEC. Naturally,
we are looking for the best (that is, highest) lower bound. As output, our algorithm
will give an interval that contains the λ∗ for which this best lower bound is attained. It
is easy to see that for λ = 0, the emission constraint (5) will be violated in general. Oth-
erwise, the problem can be solved by simply ignoring the emissions and minimising
costs. If λ is increased, then step by step, the emissions will decrease and the costs will
increase. For some value of λ, say λUB, the solution will satisfy the emission constraint
(5) (provided that a feasible solution exists). We are interested in finding the highest
value of λ, say λLB, for which the solution of (13)–(16) violates the emission constraint
(5). This gives our best lower bound.

We apply Megiddo (1979)’s algorithm for combinatorial problems that involve min-
imisation of a rational objective function to the lot-sizing problem. Gusfield (1983)
showed that this is equivalent to minimising an objective of the form a + λb. See also
Wagelmans (1990) and Megiddo (1983). These papers imply that if, for a given λ, the
relaxed problem can be solved in O(A) (with a ‘suitable’ algorithm) and we can check
in O(B) whether the relaxed constraint is violated or not, then the parametrised prob-
lem (a + λb) can be solved in O(AB). For a given λ, our relaxed problem (13)–(16) can
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be solved in O(T2) with Wagner-Whitin. Moreover, the same algorithm can be used
to determine whether the emission constraint is violated or not. Although Megiddo
(1979) only mentions fractions of linear functions, his algorithm can be generalised to
our problem in a straightforward manner. Hence, we can solve our Lagrangian relax-
ation in O(T2T2) = O(T4).

The intuition behind the algorithm is as follows. We are looking for an interval such
that λ∗ equals one of the endpoints. At λ∗, we are indifferent between two solutions, of
which one is infeasible and the other feasible. The latter will give us an upper bound.
A trivial initial choice for the interval is [0, ∞). We act as if we know λ∗, and solve (13)–
(16) with Wagner-Whitin. View this algorithm as a decision tree. At each node of the
tree, we need to make a decision, say to ‘go left’ or ‘go right’. This decision depends on
a comparison of the form a(X1) + λb(X1) ≤ a(X2) + λb(X2), where a and b are a cost
and an emission function, respectively, and X1 and X2 are (partial) solutions. Suppose
we go left if the statement is true and right otherwise. We compute for which λ we
are indifferent. For this λ, we can solve the relaxed problem in O(T2) with Wagner-
Whitin and know whether the solution is feasible. If so, then this λ provides an upper
bound on our interval; if not, it provides a lower bound. Note that for all λ inside
the (updated) interval, we make the same decisions in each of the decisions nodes that
we already visited. Take a λ inside this interval and check whether a(X1) + λb(X1) ≤
a(X2) + λb(X2) to know if we should go left or right. We continue in this manner until
the last step of the algorithm.

Below, we give pseudocode for Megiddo (1979)’s algorithm applied to our problem.

λLB := 0, λUB := ∞, m(T + 1) := 0, m̂(T + 1) := 0

for t = T until 1 step -1 do

MinimumCosts := ∞, MinimumEmissions := ∞

for s = t until T step 1 do

Costs := c(t, s) + m(s + 1)

Emissions := e(t, s) + m̂(s + 1)

if MinimumCosts < ∞ and MinimumEmissions < ∞ and Emissions

6= MinimumEmissions then

λ := MinimumCosts−Costs
Emissions−MinimumEmissions

if Feasible(λ) then

λUB := min{λ, λUB}
else

λLB := max{λ, λLB}

13



end if

end if

if λUB = ∞ then

λ := λLB + 1

else

λ := 1
2 λLB + 1

2 λUB

end if

if Costs + λ·Emissions < MinimumCosts + λ·MinimumEmissions
then

MinimumCosts := Costs

MinimumEmissions := Emissions

end if

end for

m(t) := MinimumCosts

m̂(t) := MinimumEmissions

end for

Here, c(t, s) := pt (Dt,s) +
s−1

∑
τ=t

hτ (Dτ,s) (18)

e(t, s) := p̂t (Dt,s) +
s−1

∑
τ=t

ĥτ (Dτ,s) , (19)

where Dt,s is defined as ∑s
τ=t dτ.

The function Feasible(λ) checks if the problem is feasible for the given λ by ex-
ecuting the Wagner-Whitin algorithm and checking whether the emission constraint
is violated or not for the obtained solution. Equations (18) and (19) give the costs,
respectively emissions, of procuring all of periods t through s’s demand from period t.

After executing the algorithm, we get an interval [λLB, λUB] that contains λ∗. More-
over, it is known that the same solution, say x

1
2 , would be obtained for any λ ∈

(λLB, λUB). Hence, there are three solutions to consider: xUB, x
1
2 and xLB, correspond-

ing to λUB, (1
2 λLB + 1

2 λUB) and λLB, respectively. Note that these solutions may coin-
cide. By construction of the algorithm, xUB must be a feasible solution (if one exists)
(see pseudocode). If x

1
2 is also feasible, we take the best feasible solution.

Furthermore, suppose that x∗ is an optimal solution of problem (13)–(16) for some
value of λ. Then we can compute ∑T

t=1 (pt(x∗t ) + ht(I∗t ))+ λ∗ ∑T
t=1

(
p̂t(x∗t ) + ĥt(I∗t )− Ĉ

)
,

which is a lower bound for our problem. Observe that both xLB and xUB are optimal
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solutions, for λLB and λUB, respectively. Hence, we can compute that above expression
for both solutions and take the higher lower bound.

5.2 Pseudo-polynomial algorithm for co-behaving costs and emis-

sions

Apart from the heuristic, we also give a dynamic programming algorithm that solves
ELSEC to optimality in case the costs and emissions satisfy the conditions in Theorem
3. We shall see that this algorithm works in pseudo-polynomial time. We construct this
algorithm in such a way that it will be easy to turn it into an FPTAS in the next section.

First, assume that demand and all cost functions are integer, i.e., dt ∈ N and
pt(xt), ht(It) ∈ N for xt, It ∈ N. Note that this does not have to hold for the emis-
sion functions, p̂t and ĥt.

The general idea of the algorithm is as follows: we minimise the emissions under a
(financial) budget constraint. Because of Theorem 3, we know that the single-sourcing
property holds and we can extend Wagner and Whitin’s well-known algorithm for the
classic lot-sizing problem (Wagner and Whitin, 1958) with an extra state variable AC,
which denotes the budget. More precisely, let f (t,AC) denote the minimum emissions
for periods t until T, given budget AC. We define the following recursion:

f (t,AC) = min
s>t: AC≥c(t,s)

{e(t, s) + f (s + 1,AC− c(t, s))} for t ≤ T (20)

f (T + 1,AC) = 0 , (21)

where, c(t, s) and e(t, s) are defined as in (18) and (19), respectively. Now, f (1,AC)
gives the minimum emissions given budget AC. We first compute f (1,AC) for AC = 1.
If f (1, 1) ≤ Ĉ, i.e., the minimum emissions are less than or equal to the emission cap,
then we conclude that AC = 1 is the optimal value. If not, then the budget is raised
to 2, we compute the corresponding minimum emissions f (1, 2) and again compare
this to the emission cap. In this way, we try budgets AC = 1, 2, 3, ... and compute the
corresponding f (1,AC) until f (1,AC) ≤ Ĉ, i.e., the minimum emissions are less than or
equal to the emission cap. The first budget AC for which this holds, is the optimal value.

For each f (t,AC), the optimal s is stored. The production schedule corresponding to
the solution found by the algorithm can then be found through a simple backtracking
procedure.

Running time

It is easy to see that the running time of this dynamic programme is O
(
T2opt

)
, where

opt is the optimal value (of the financial budget).
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Memory

This algorithm needs O(Topt) memory, to store all values f (t,AC) and the correspond-
ing optimal s.

Finding the Pareto frontier

In the process of finding the optimal solution, we construct part of the set of Pareto ef-
ficient solutions. This is because for each budget AC = 1, . . . , opt, we find the minimum
emissions, f (1,AC). This algorithm can be used to find the whole Pareto frontier. We
first minimise emissions regardless of costs. This can be done by executing the (classic)
Wagner-Whitin algorithm with the emission level as the objective (instead of the finan-
cial costs). Denote the corresponding costs by ÃC; it is easy to see that this is polynomial
in the input of a problem instance. Now, we can compute the minimum emissions,
f (1,AC) for each budget AC = 1, . . . , ÃC. This procedure gives the whole Pareto frontier
for co-behaving costs and emissions in O

(
T2ÃC

)
time.

5.3 FPTAS for co-behaving costs and emissions

Clearly, it is the large number of budgets AC to consider that makes the algorithm in the
previous section run in pseudo rather than fully polynomial time. However, it is possible
to turn the pseudo-polynomial algorithm into an FPTAS by reducing the number of
states of AC in a smart way. Instead of all budgets AC = 1, 2, . . ., we now only consider
budgets equal to

∆k :=
(

1 +
ε

(e− 1)(T + 1)

)k
, k ∈N . (22)

(See Figure 3.) This means that in every step of the dynamic programming recursion,
we have to round down the budget to the nearest value of ∆k.

f (t,AC) = min
s>t: AC≥c(t,s)

{e(t, s) + f (s + 1, round(AC− c(t, s)))} for t ≤ T (23)

f (T + 1,AC) = 0 (24)

where round(a) := max
k∈N
{∆k : ∆k ≤ a} (25)

Analogously to what we did before, we try budgetAC = ∆1, ∆2, ∆3, . . . until f (1,AC) ≤ Ĉ,
i.e., the minimum emissions are less than or equal to the emission cap. Again, for each
f (t,AC), the optimal s is stored. The production schedule corresponding to the solution
found by the algorithm can then be found through a simple backtracking procedure.
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The approach in which an exact, but only pseudo-polynomial dynamic programme
is transformed into a FPTAS by trimming the state space is attributable to Woeginger
(2000) and Schuurman and Woeginger (2011) (see also Ibarra and Kim, 1975), as well
as the idea to use a so-called trimming parameter ∆ of the type ∆ := 1 + ε

2gT . The
FPTAS presented in this section takes an approach that is similar to Woeginger (2000).
As far as we know, the FPTAS that is presented in Section 5.4 does not fit within his
framework, because it is not based on a pseudo-polynomial algorithm, but rather on a
generalisation of another FPTAS.

Correctness of the approximation

We verify that the obtained solution is in fact a (1 + ε) approximation of the true opti-
mum. The question is: how much of the budget is ‘wasted’ by repeatedly rounding off
the budget?

In each production period, at most the size of one interval [∆i, ∆i+1) is lost. In the
worst case this is the largest interval. Since there are at most T production periods, the
maximum rounding error equals the size of the T largest intervals. Suppose that for
some budget AC = ∆k+T, the algorithm gives no feasible solution (i.e., f (1, ∆k+T) > Ĉ).
Then we know that ∆k is a lower bound, because we could have lost at most T intervals.
Now, suppose that for the next budget, the algorithm does find a feasible solution (i.e.,
f (1, ∆k+T+1) ≤ Ĉ). So because we raise the budget from ∆k+T to ∆k+T+1 each time
we compute f (1,AC), we may lose one more interval. Hence, the maximum total error
equals the size of the T+1 largest intervals. That means that if the algorithm finds a
solution ∆k+T+1, the optimal value is at least ∆k. We therefore need to show that(

1 +
ε

(e− 1)(T + 1)

)k+T+1

≤
(

1 +
ε

(e− 1)(T + 1)

)k
(1 + ε) .

This holds, because(
1 +

ε

(e− 1)(T + 1)

)k+T+1

=
(

1 +
ε

(e− 1)(T + 1)

)k (
1 +

ε

(e− 1)(T + 1)

)T+1

,

so we need to show that
(

1 + ε
(e−1)(T+1)

)T+1
≤ (1 + ε) . This is true because

(
1 +

ε/(e− 1)
T + 1

)T+1

≤ 1 + (e− 1) · ε

e− 1
= 1 + ε (if 0 < ε ≤ (e− 1)) .

The inequality follows from the fact that
(
1 + z

n
)n ≤ 1 + (e− 1)z, if 0 ≤ z ≤ 1.
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Figure 3: Budgets ∆1, ∆2, . . .

Running time

The pseudo-polynomial algorithm in Section 5.2 has a running time of O(T2opt). In-
stead of opt intervals, the algorithm in this section has at most this many intervals:

⌈
1+ ε

(e−1)(T+1) log(opt)
⌉

=

 ln(opt)

ln
(

1 + ε
(e−1)(T+1)

)
 ≤

⌈(
1 +

(e− 1)(T + 1)
ε

)
ln(opt)

⌉
,

so there are O
(

T max{ln(opt),1}
ε

)
budgets AC to consider. Hence, the total running time is

O
(

T3 max{ln(opt),1}
ε

)
, which is fully polynomial.

Memory

This algorithm needs O
(

T2 max{ln(opt),1}
ε

)
memory, to store all values f (t,AC) and the

corresponding optimal s.

A posteriori gap

As we have shown that the algorithm described in this section is a (1 + ε) approxi-
mation, we know that the optimality gap of the obtained solution is at most 100ε%.
Previously, we have seen that ∆k is a lower bound for the optimal value, if ∆k+T+1

is the (final) budget AC corresponding to the algorithm’s solution. Afterwards, we
can compute the actual costs of this solution, which we will call vFPTAS. We know
that vFPTAS ≤ ∆k+T+1. That means that we can compute a smaller optimality gap as
vFPTAS−∆k

∆k .
An even better a posteriori gap can be obtained if we round down as much as pos-

sible during the execution of the algorithm. We then round down the budget according
to the following rounding function:

roundmore
(

∆i − c(t, s), t, s
)

:= max
k∈N

{
∆k : ∆k ≤ ∆i−s+t − c(t, s)

}
. (26)

So we lose not just (at most) one interval in each block, but (at most) a number of
intervals equal to the length of the block. It follows that the total number of intervals
that we lose by rounding equals the total number of periods (T), as before.
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5.4 FPTAS for general costs and emissions

As the FPTAS in the previous section is based on the single-sourcing property, it cannot
be applied to the problem with general costs and emissions in a straightforward man-
ner. However, Theorem 6 tells us that there is at most one period with double-sourcing.
This leads to the following idea for a general FPTAS.

All blocks are ‘normal’ single-sourcing blocks, except for one double-sourcing block,
say (t, s). The costs and emissions in the double-sourcing block depend on which pe-
riod between t and s, say v, is the double-sourcing period. This implies that t and v are
the two production periods in this block. The costs and emissions also depend on how
much of the demand in periods v until s is produced in period t and how much in v.
Note that the demand for t, . . . , v − 1, the earlier periods in this block, always has to
be produced in period t. The costs to satisfy all demand in double-sourcing block (t, s)
are between, say, ats and bts. These costs ats and bts can be computed by considering
all double-sourcing periods v and calculating the costs corresponding to the situation
where there is a set-up (if applicable) in both period t and v, but all demand in periods
v until s is produced in either period t or period v. Now, we iterate over a ‘suitable sub-
set’ of all values between ats and bts. These are the ‘double-sourcing block budgets’, $.
For each $, we can compute the corresponding best v and (minimum) emissions in the
double-sourcing block. For all other blocks, the single-sourcing property holds, so we
can use a recursion like in the previous section.

The precise recursion is defined as follows:

g(t,AC) = min
{

min
s≥t : AC≥c(t,s)

{e(t, s) + g(s + 1, round(AC− c(t, s)))} ,

min
s≥t , $∈Bts : AC≥$

{e(t, s, $) + f (s + 1, round(AC− $))}
}

(27)

g(T + 1,AC) = 0 (28)

e(t, s, $) = min
v=t+1,...,s

{e(t, v, s, $)} (29)

e(t, v, s, $) = p̂t (Dt,v−1 + αtvs$Dv,s) + p̂v ((1− αtvs$)Dv,s)

+
v−1

∑
τ=t

ĥτ (Dτ,v−1 + αtvs$Dv,s) +
s

∑
τ=v

ĥτ (Dτ,s) (30)

f (t,AC), c(t, s), e(t, s) and round(•) are exactly the same as in equations (23), (18), (19)
and (25), respectively.

The interpretation of recursion (27) is: g(t,AC) gives the minimum emissions in pe-
riods t until T, given that there is a budget AC and that there may be double-sourcing
(once) in periods t until T. To find the value of g(t,AC), we need to determine whether
the current block should have double-sourcing or not. The first line of (27) corresponds
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Figure 4: Budgets (1 + ε)1, (1 + ε)2, . . . for $

to the situation in which there is no double-sourcing in the current block [t, s]. In that
case, there may be double-sourcing in a later block and we should minimise over all
possible values of the next production period, in a recursion that is similar to the f (t,AC)
recursion (see Section 5.3). If there is double-sourcing in the current block, as in the
second line of (27), then we need to minimise over s and $, where s is the end of the
current block and $ is the amount of money that is spent in double-sourcing block (t, s).
Since there cannot be another block with double-sourcing, the recursion uses the value
f (s + 1,AC) (see Section 5.3) as the minimum emissions of periods s + 1, . . . , T.

The minimum emissions given a budget AC are given by g(1,AC). Try budget AC =
∆1, ∆2, ∆3, . . . until g(1,AC) ≤ Ĉ, i.e., the minimum emissions are less than or equal to
the emission cap, where ∆ is defined as in equation (22).

The suitable subset of double-sourcing block budgets Bts is defined as

Bts =
{

$ : $ = (1 + ε)k, k ∈N, ats ≤ (1 + ε)k ≤ bts

}
, (31)

where ats = min
v=t,...,s

{c(t, v− 1) + c(v, s)} (32)

and bts = max
v=t,...,s

{c(t, v− 1) + c(v, s)} (33)

That is, the double-sourcing block budget $ is equal to (1 + ε)k for some integer k and
has to lie between the minimum and maximum costs in the double-sourcing block. See
Figure 4.

In equation (29), e(t, s, $) gives the minimum emissions in double-sourcing block
(t, s), given a budget $. It is computed by minimising over the all possible double-
sourcing periods v.

In equation (30), e(t, v, s, $) gives the emissions in double-sourcing block (t, v, s) (so
given the double-sourcing period v), if a budget of $ is spent. If the production and
holding emissions are fixed-plus-linear, then this equation reduces to

e(t, v, s, $) = αtvs$ âtvs + (1− αtvs$)b̂tvs , (34)

where âtvs and b̂tvs are the emissions to satisfy demand in the double-sourcing block,
when there is a set-up (if applicable) in both period t and v, but all demand in periods v
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through s is produced in period t, respectively v. αtvs$ gives the fraction of demand in
periods v through s that is produced in period t, if the budget in double-sourcing block
(t, v, s) is $; the remaining (1− αtvs$) is then produced in period v. If the production
and holding emissions are fixed-plus-linear, then this is simply

αtvs$ =
$− btvs

atvs − btvs
,

where atvs and btvs are the costs to satisfy demand in the double-sourcing block, when
there is a set-up (if applicable) in both period t and v, but all demand in periods v
through s is produced in period t, respectively v. In general, αtvs$ is the solution of

pt (Dt,v−1 + αtvs$Dv,s)+ pv ((1− αtvs$)Dv,s)+
v−1

∑
τ=t

hτ (Dτ,v−1 + αtvs$Dv,s)+
s

∑
τ=v

hτ (Dτ,s) = $.

(35)
We assume that this αtvs$ can be found in constant time. This is the case for e.g. fixed-
plus-linear costs, cost functions that are polynomials of degree at most four, and com-
pound functions of which every piece is such a function (as long as the resulting func-
tion is concave for relevant production/inventory quantities). Otherwise, if finding an
αtvs$ takesO(A) time and this is more thanO

(
max{ln(opt),1}

ε

)
, then the time complexity

becomes O
(

T3 max{ln2(opt),1}
ε2 + T3 max{ln(opt),1}

ε · A
)

(see Section ‘Running time’). Note
that we may approximate αtvs$, for instance with a numerical method like bisection.
However, in order for the algorithm to be accurate enough, we may not overestimate
αtvs$. (Here we assume that the lhs in (35) is an increasing function in αtvs$. Otherwise,
define αnew

tvs$ = 1− αtvs$.)
In practice, the algorithm can be sped up, because we know that many triples

(t, v, s) do not have to form a double-sourcing block in an optimal solution. This is
because Theorem 3 tells us that the single-sourcing property holds for a triple (t, v, s),
if it is true that

(
Ct,s ≤ Cv,s and Ĉt,s ≤ Ĉv,s

)
or
(
Ct,s ≥ Cv,s and Ĉt,s ≥ Ĉv,s

)
. Therefore,

it is not necessary to compute the minimum in (29) for the triples for which this holds.

Smart backtracking

The production schedule corresponding to the solution found by the algorithm can be
found through a relatively simple backtracking procedure. For each f (t,AC), we store
the optimal s, as before. For each g(t,AC), we store the optimal s, whether double-
sourcing in block [t, s] is optimal or not, and if so, which budget $ is optimal. We could
also store the optimal double-sourcing period v, but in certain cases, we can choose
an approach to make a solution with lower costs by using as much of the (remaining)
emission capacity as possible.
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Suppose that the backtracking procedure has given the optimal production quan-
tities in all blocks except the double-sourcing block, (t, v, s). We know that if there is
double-sourcing in a period, then it is always best to use the whole emission capacity
Ĉ. (See Theorem 7.) However, because we have rounded the budget $, it is very well
possible that the FPTAS gives a solution in which the emissions are strictly smaller
than the capacity. Therefore, we first compute the total emissions in all single-sourcing
blocks. Then, we re-optimise the double-sourcing period v = t + 1, . . . , s and budget $,
such that as much as possible of the remaining emission capacity is used. (This takes
only O(T) time.)

Correctness of the approximation

As in Section 5.3, we verify that the obtained solution is in fact a (1 + ε) approximation
of the true optimum by answering the question: how much of the budget is ‘wasted’
by repeatedly rounding off the budget?

Rounding values of $ costs at most one ‘big’ (1 + ε)-interval. In the remainder of the
algorithm, at most T + 1 ‘small’ ∆-intervals are lost. In Section 5.3, we have shown that
these small intervals add up to at most one ‘big’ (1 + ε)-interval. Hence, the maximum
total error is ε · opt + ε(1 + ε)opt = (2ε + ε2)opt ≤ 3ε · opt (for 0 ≤ ε ≤ 1). We could
define ε := δ

3 to get a (1 + δ) approximation. In practice, we choose ε =
√

1 + δ− 1 ≥ δ
3 .

That way, ε is the positive solution of 2ε + ε2 = δ.

Running time

As in the FPTAS for co-behaving costs, there are O
(

T max{ln(opt),1}
ε

)
values for AC. Sim-

ilarly, we can show that there areO
(

max{ln(opt),1}
ε

)
intervals for $, because the number

of double-sourcing block budgets $ is at most⌈
1+ε log(opt)

⌉
=
⌈

ln(opt)
ln (1 + ε)

⌉
≤
⌈(

1 +
1
ε

)
ln(opt)

⌉
.

In total, there are O
(

T2 max{ln(opt),1}
ε

)
values of both g(t,AC) and f (t,AC) that need to be

computed. As in Section 5.3, it takes O(T) time to compute one f (t,AC). Computing
one g(t,AC) takes O

(
T + T · max{ln(opt),1}

ε

)
= O

(
T max{ln(opt),1}

ε

)
time, because there

are two minimisations in recursion (27); the first one over periods s; the second one
over periods s and $ ∈ Bts. Hence, the total time needed to compute all g(t,AC) and

f (t,AC) is O
(

T max{ln(opt),1}
ε + T3 max{ln2(opt),1}

ε2

)
= O

(
T3 max{ln2(opt),1}

ε2

)
.

Furthermore, there are O
(

T2 max{ln(opt),1}
ε

)
values of e(t, s, $) that need to be com-

puted. Computing one e(t, s, $) takes O(T) time, so the time needed to compute all
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e(t, s, $) is O
(

T3 max{ln(opt),1}
ε

)
. Since all e(t, s, $) can be computed beforehand, it fol-

lows that the time complexity of the whole FPTAS is O
(

T3 max{ln2(opt),1}
ε2

)
.

Memory

As in the co-behaving case, this algorithm needs O
(

T2 max{ln(opt),1}
ε

)
memory to store

all values f (t,AC) and the corresponding optimal s, and all values g(t,AC) and the cor-
responding optimal s and $. Storing all values e(t, s, $) requires O

(
T3 max{ln(opt),1}

ε

)
memory. Hence, the total required memory is of the same order.

A posteriori gap

As we have shown that the algorithm described in this section is a (1 + ε) approxi-
mation, we know that the optimality gap of the obtained solution is at most 100ε%.
Previously, we have seen that ∆k+T+1

(2ε+ε2) (or even: ∆k+T+1

(1+ε)∆T+1 = ∆k

1+ε ) is a lower bound for

the optimal value, if ∆k+T+1 is the (final) budget AC corresponding to the algorithm’s
solution. Afterwards, we can compute the actual costs of this solution, which we will
call vFPTAS. We know that vFPTAS ≤ ∆k+T+1. That means that we can compute the

optimality gap more sharply as
vFPTAS− ∆k

1+ε

∆k
1+ε

.

As in Section 5.3, an even better a posteriori gap can be obtained if we round down
AC as much as possible during the execution of the algorithm. We round down the
budgetAC according to the roundmore function (see equation (26)). As before, it follows
that the total number of ∆-intervals that we lose by roundingAC equals the total number
of periods (T).

What if 1 is not a trivial LB?

For the FPTAS for co-behaving costs and emissions, it was trivial that 1 was a lower
bound, because demand and cost functions were assumed integer, and production was
always integral, in accordance with Theorem 3. For the general FPTAS described in
this section, this is no longer trivial, as production in the double-sourcing block may
be non-integral. However, the instances with an optimal value lower than 1 all corre-
spond to a very specific situation, which we can easily exclude.

In these instances, costs must equal 0 in all single-sourcing blocks and one of the
sources in the double-sourcing block. Now, iterate over all possible double-sourcing
intervals (at most 1

2 T(T − 1)), such that all other costs equal 0.
Given a double-sourcing block [t, s], we solve two classic lot-sizing problems: we

minimise emissions in [1, t− 1] and in [s + 1, T] with an algorithm such as Wagelmans
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et al. (1992) or Wagner and Whitin (1958), extended with the following tie-breaking
rule. See the algorithm as a decision tree. If somewhere in the tree we must choose
between branches with equal emissions, then choose the branch with lower costs.

Consider all double-sourcing blocks [t, s] such that the emissions in [1, t− 1] ∪ [s +
1, T] are below the capacity and the costs are zero, if any of such intervals exist. Iterate
over all possible second sources v in this interval (t < v ≤ s), such that one of the
sources (t or v) has costs zero. Compute the emission capacity that remains for such a
double-sourcing block (t, v, s), if any of such blocks exist. Now, we know how much
should be produced in each source such that the emissions are within capacity, if this
is possible at all. Compute the costs in the double-sourcing blocks for which this is
possible. If there exists such a double-sourcing block with costs lower than 1, then 1 is
not a lower bound and the costs of the cheapest double-sourcing block is the optimal
value. Otherwise, 1 is a lower bound.

We can check this in O
(
T3).

5.5 Using the heuristic to speed up the FPTAS

In the execution of the FPTASes in Sections 5.3 and 5.4, we encounter many small in-
tervals. For example, we need to compute f (t,AC) for AC = ∆1, ∆2, ∆3, . . ., even though
the optimal value is closer to, say, ∆100. In retrospect, we would not have needed in-
tervals smaller than ε

(e−1)(T+1)opt for AC. Of course, we do not know the optimal value
beforehand. However, we can compute a lower bound (LB) first, so that we know
that we do not need intervals smaller than ε

(e−1)(T+1) LB for AC during the execution
of the FPTAS. We replace all intervals below LB by intervals of size ε

(e−1)(T+1) LB. To
see why this works, we look back at the Correctness of the approximation in Section
5.3. Again, suppose we find a solution when AC = ∆k+T+1 (≥ LB). Also, suppose
we have a lower bound after executing the algorithm, say LBpost. In Section 5.3, this
lower bound equaled ∆k; now, it is LBpost = max{∆k, LB}. If LB ≥ ∆k, then it fol-
lows that we have found a (1 + ε) approximation, because opt − LB ≤ opt − ∆k ≤
∆k+T+1 − ∆k ≤ ∆k(∆T+1 − 1) ≤ ∆k(1 + ε − 1) ≤ LB · ε ≤ opt · ε, where the cor-
rectness of the fourth inequality was shown in Section 5.3. Alternatively, suppose
that ∆k > LB. In the worst case, we have lost the T + 1 intervals due to round-
ing. In the proof in Section 5.3, we have shown that losing the T + 1 biggest inter-
vals still resulted in a (1 + ε) approximation. There, the smallest of the biggest in-
tervals had size ∆k+1 − ∆k = ∆k(∆ − 1) = ∆k · ε

(e−1)(T+1) . In the algorithm in this
section, the intervals above LB are the same as before; the intervals below LB have size

ε
(e−1)(T+1) LB ≤ ε

(e−1)(T+1)∆k. Because the T + 1 biggest intervals that can be lost in this
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Figure 5: Intervals for $ of size at least ε · LB

section have the same size as or are smaller than in Section 5.3, we conclude that we
still have a (1 + ε) approximation.

Similarly, we may use intervals of size at least ε · LB for $ in the FPTAS for general
costs and emissions. We replace all intervals below LB by intervals of size ε · LB. See
Figure 5 for an example with LB = 4ε = (1 + ε)k.

In the computational tests in the next section, we will use the Lagrangian heuristic
from Section 5.1 to compute a lower bound, but of course any method to compute a
nonzero lower bound would do.

Note that, because we use a lower bound in the FPTASes, we do not need integer
demand and cost functions anymore.

Running time

To determine the running times of both FPTASes if we use the minimum interval size
as described above, we must compute the new numbers of values for AC and $.

For the total budget AC, we compute the number of values that we had in the FPTAS
before, subtract the number of values that lay below LB (as these values will not be
used anymore), and add the number of newly created, larger intervals that lie below
LB. We get: ⌈

1+ ε
(e−1)(T+1) log(opt)

⌉
−
⌊

1+ ε
(e−1)(T+1) log(LB)

⌋
+

⌈
LB
ε

(e−1)(T+1) LB

⌉

≤ 1+ ε
(e−1)(T+1) log(opt)−1+ ε

(e−1)(T+1) log(LB) +
(e− 1)(T + 1)

ε
+ 3

= 1+ ε
(e−1)(T+1) log

(
opt
LB

)
+

(e− 1)(T + 1)
ε

+ 3 ,

so there are O
(

T max{ln
(

opt
LB

)
,1}

ε + T
ε

)
= O

(
T max{ln

(
opt
LB

)
,1}

ε

)
values for AC, using the

same argument as in Section 5.3.
For the double-sourcing block budget $, the analysis is similar. We get:⌈

1+ε log(opt)
⌉
−
⌊

1+ε log(LB)
⌋

+
⌈

LB
ε · LB

⌉
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≤ 1+ε log(opt)−1+ε log(LB) +
1
ε

+ 3

= 1+ε log
(

opt
LB

)
+

1
ε

+ 3 ,

so there are O
(

max{ln
(

opt
LB

)
,1}

ε + 1
ε

)
= O

(
max{ln

(
opt
LB

)
,1}

ε

)
values for $, using the same

argument as in Section 5.4.
This gives the following running times:

• O
(

T3 max{ln
(

opt
LB

)
,1}

ε

)
for the FPTAS for co-behaving costs and emissions plus the

running time of the algorithm that provides the lower bound. The Lagrangian
heuristic from Section 5.1 that we use, for instance, has a running time of O

(
T4),

giving a total running time of O
(

T3 max{ln
(

opt
LB

)
,1}

ε + T4

)
. This can be reduced to

O
(

T3 max{ln
(

opt
LB

)
,1}

ε

)
for fixed-plus-linear costs and emissions if anO

(
(T ln T)2)

implementation of the heuristic is used, i.e., one that is based on an O(T ln T)
algorithm for the classic lot-sizing problem, such as Wagelmans et al. (1992).

• O
(

T3 max{ln2
(

opt
LB

)
,1}

ε2

)
for the FPTAS for general costs; again plus the running

time of the algorithm that provides the lower bound.

Memory

It follows that the FPTAS for co-behaving costs and emissions needsO
(

T2 max{ln
(

opt
LB

)
,1}

ε

)

memory and the general FPTAS needs O
(

T3 max{ln
(

opt
LB

)
,1}

ε

)
memory.

6 Computational tests

6.1 Test set-up

The FPTASes that we developed have some nice theoretical properties regarding their
running times and approximation qualities. However, we are also interested in their
practical performance. Moreover, we would like to know how well the Lagrangian
heuristic performs on a large number of test instances. Therefore, we have randomly
generated 1800 problem instances. These instances are solved with all of the algorithms
that were presented in this paper. More specifically, these are:

26



• the Lagrangian heuristic (‘Megiddo’) from Section 5.1;

• the pseudo-polynomial algorithm for co-behaving costs and emissions (PP-CB)
from section 5.2, if the instance satisfies the conditions for co-behaviour in Theo-
rem 3;

• the FPTAS for co-behaving costs and emissions (FPTAS-CB) from section 5.3,
again only if the instance is co-behaving indeed;

• the FPTAS for co-behaving costs and emissions that uses the lower bound gener-
ated by Megiddo (FPTAS-CB-LB), again only if the instance is co-behaving;

• the general FPTAS (FPTAS-gen);

• the general FPTAS that uses the Megiddo lower bound (FPTAS-gen-LB);

• for comparison purposes, we included the CPLEX 10.1 solver. We used this solver
on the ‘natural’ formulation, as defined in equations (6)-(12), as well as on the
shortest path reformulation. The shortest path reformulation, as introduced by
Eppen and Martin (1987), is known to have a better LP relaxation.

For each of the FPTASes, three values of ε were used: 0.10, 0.05 and 0.01. The FPTASes
that use Megiddo’s lower bound (FPTAS-CB-LB and FPTAS-gen-LB) were executed
even when the feasible solution found by Megiddo was within (1 + ε) from the lower
bound. This was done in order to reduce the a posteriori gap, even though it was not
strictly necessary.

The values of the problem parameters were chosen in the following way. Although
the algorithms are suitable for more general concave functions, all cost and emissions
functions were assumed to have a fixed-plus-linear structure. This is a common cost
structure in the literature. Moreover, it allowed us to also solve the instances with
CPLEX, so that we can compare our algorithms’ solutions with the optimal solution.

The time horizons that we considered were 25, 50 and 100 periods. Horizons as
long as 100 period were considered, because the number of time periods in our model
(T) may correspond to m · T′ for instances with m production modes and T′ periods.

First, we generated instances that satisfy the co-behaviour conditions in Theorem
3. Demand was generated from a discrete uniform distribution with minimum 0 and
maximum 200 (and thus mean 100). Both the set-up costs and emissions were drawn
from three different discrete uniform distributions: DU(500, 1500), DU(2500, 7500) and
DU(5000, 15000) (with means 1000, 5000 and 10000). pt, p̂t, ht and ĥt were all gener-
ated from DU(0, 20), but we only kept those (p, p̂, h, ĥ) that satisfy the conditions in
Theorem 3.
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The second group of instances was generated from the same distributions, with the
same parameters, but we only kept those (p, p̂, h, ĥ) such that exactly d1

2 Te period pairs
(t, s) are eligible for double-sourcing. That is, for d1

2 Te pairs the conditions in Theorem
3 were violated.

The third group of instances was different from the other data sets in the sense
that periods always occurred in (consecutive) pairs, where the even periods have low
production and set-up costs and high production and set-up emissions, and the odd
periods have high costs and low emissions. To be precise, pt was drawn from DU(0, 9)
for t even and from DU(11, 20) for t odd; p̂t was drawn from DU(11, 20) for t even
and from DU(0, 9) for t odd. The low set-up costs and emissions, Kt and K̂s, for t even
and s odd, were drawn from DU(500, 1500). The high set-up costs and emissions, for
t odd and s even, were both drawn from DU(2500, 7500) and DU(5000, 10000). The
holding costs and emissions between two periods within one pair were always zero.
Between two pairs, they were drawn from DU(0, 20). Demand was zero in the first
period of a pair, and in the second period generated from DU(0, 200). The numbers of
periods we considered are 26, 50 and 100. Generating the data in this way corresponds
to a problem with 1

2 T periods, but with two production modes, ‘cheap & dirty’ and
‘expensive & clean’. These instances show similarities with the instance that was used
in the NP-hardness proof (Theorem 1), so we expect that they are difficult to solve.

Ten instances were generated for every combination of the parameter settings that
were described above, giving 600 data sets. Every instance thus generated was com-
bined with three different values of the emission capacity. We let Ĉ = [βĈmin + (1−
β)Ĉmax], where β = 0.25, 0.5, 0.75, Ĉmin is the level of emissions when emissions are
minimised, ignoring costs, and Ĉmax is the level of emissions when costs are minimised,
ignoring emissions. In total, this gave 600 · 3 = 1800 instances.

All algorithms were implemented in a Java programme that was used to solve all
instances on a Windows 7-based PC with an AMD Athlon II X2 B24 processor (2 ×
3000 MHz) and 4 GB RAM.

6.2 Results

A summary of the results of the computational tests can be found in Table 1. Tables
2–8 in Appendix B.1 give more detailed results, for different values of the average set-
up costs and emissions, or emission capacity. Four characteristics are given for each
algorithm:

• the average solution time of the algorithm, where the computation time of Megiddo
was included in the times of the FPTASes that used this lower bound;

28



• the average a posteriori gap, the percentage difference between the algorithm’s
solution and the lower bound that the algorithm found;

• the average true gap, the percentage difference between the algorithm’s solution
and the optimal value that was found by CPLEX (and PP-CB);

• the percentage of instances for which the algorithm’s solution value was exactly
equal to the optimal value.

Below, we will discuss the most important findings.
Tables 2, 3 and 4 give the results for the co-behaving instances, which satisfy the

conditions in Theorem 3, as summarised in the columns marked ‘co-bhv.’ in Table 1.
We see that the heuristic (Megiddo) finds solutions that are very close to the optimum.
For a horizon of 25 periods, it even finds the optimum itself in over 60% of the cases,
and the true gap is less than a half percent on average; its a posteriori gap is 1.5% on
average. It is remarkable to see that if the horizon becomes longer (50 or 100 periods),
these gaps become even smaller.

The set-up emissions (K̂) and emissions capacity (Ĉ) do not appear to have a big in-
fluence on the results, for any of our algorithms. For lower set-up costs (K), Megiddo’s
gaps are smaller.

Looking at the results for the FPTASes for co-behaving costs and emissions (FPTAS-
CB) tells us that they give solutions that are well within the specified precision in a very
short amount of time. The average computation times of FPTAS-CB-LB ranges from
0.39 seconds, for 100 periods and ε = 0.01, down to only 1 millisecond for 25 periods
and ε = 0.1. FPTAS-CB-LB with ε = 0.05 or ε = 0.1 is faster than CPLEX, even on
the shortest path formulation. For 25 and 50 periods, this also holds when ε is 0.01. Of
course, this comes at the expense of ε-optimal solutions instead of the optimal solutions
that were generated by CPLEX. Nonetheless, even when ε = 0.1, the optimum is found
in over two-thirds of the instances, and the average true gaps are below 0.025%. For
ε = 0.01, these are even below 0.0005%.

Comparing the FPTAS-CBs with the general FPTASes, we see that the general FP-
TASes have a higher computation time, as could be expected. However, the increase
appears to be less than of order T ln(opt)

ε , which is what would be expected from the
difference in time complexities (see Sections 5.3 and 5.4). This is because our imple-
mentation of the FPTAS-gen checks whether double-sourcing ‘makes sense’, and, be-
cause these data sets satisfy the conditions in Theorem 3, this is never the case. The
solutions of FPTAS-gen are even better than those of FPTAS-CB, because a smaller ep-
silon (ε =

√
1 + δ− 1) is used, which is unnecessary, because for co-behaving data, the

solution never has double-sourcing.
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T 25 25 26 50 100
data set co-bhv. gen. 2 modes co-bhv. gen. 2 modes co-bhv. gen. 2 modes

Megiddo avg. sol. time (s) <0.001 <0.001 0.002 0.001 0.001 0.004 0.002 0.003 0.016
avg. post. gap (%) 1.5 2.8 12 0.85 1.3 6.2 0.41 0.61 2.8
avg. true gap (%) 0.47 1.2 6.1 0.41 0.74 3.8 0.26 0.41 2.1
solved to opt. (%) 63 43 42 44 31 22 32 21 30

PP-CB avg. sol. time (s) 0.24 1.8 22
FPTAS-CB-LB(0.1) avg. sol. time (s) 0.001 0.007 0.036

avg. post. gap (%) 0.81 0.44 0.17
avg. true gap (%) 0.021 0.024 0.015
solved to opt. (%) 89 79 69

FPTAS-CB-LB(0.05) avg. sol. time (s) 0.001 0.009 0.068
avg. post. gap (%) 0.55 0.34 0.16
avg. true gap (%) 0.0022 0.0067 0.0060
solved to opt. (%) 96 90 83

FPTAS-CB-LB(0.01) avg. sol. time (s) 0.006 0.048 0.39
avg. post. gap (%) 0.15 0.12 0.075
avg. true gap (%) 0.00044 0.00016 0.00014
solved to opt. (%) 98 98 98

FPTAS-CB(0.1) avg. sol. time (s) 0.008 0.052 0.35
avg. post. gap (%) 3.4 3.4 3.5
avg. true gap (%) 0.010 0.020 0.017
solved to opt. (%) 91 80 68

FPTAS-CB(0.05) avg. sol. time (s) 0.018 0.11 0.77
avg. post. gap (%) 1.7 1.7 1.7
avg. true gap (%) 0.0021 0.0054 0.0042
solved to opt. (%) 95 89 84

FPTAS-CB(0.01) avg. sol. time (s) 0.093 0.67 5.2
avg. post. gap (%) 0.33 0.34 0.34
avg. true gap (%) 0.000088 0.00015 0.00015
solved to opt. (%) 99 98 98

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.003 0.005 0.017 0.013 0.029 0.11 0.083 0.20 0.71
avg. post gap (%) 1.0 1.6 3.7 0.45 0.62 2.3 0.16 0.21 0.69
avg. true gap (%) 0.0053 0.063 0.022 0.0066 0.024 0.031 0.0048 0.017 0.0080
solved to opt. (%) 91 72 88 89 75 83 83 63 82

FPTAS-gen-LB(0.05)avg. sol. time (s) 0.004 0.009 0.041 0.025 0.063 0.29 0.16 0.48 2.0
avg. post gap (%) 0.92 1.4 2.3 0.44 0.61 1.9 0.16 0.21 0.69
avg. true gap (%) 0.00082 0.041 0.028 0.0011 0.022 0.039 0.0014 0.014 0.0080
solved to opt. (%) 97 78 97 94 76 90 91 67 88

FPTAS-gen-LB(0.01)avg. sol. time (s) 0.016 0.082 0.57 0.13 0.69 5.5 1.1 5.7 36
avg. post gap (%) 0.41 0.46 0.54 0.32 0.38 0.54 0.15 0.20 0.46
avg. true gap (%) 0.000014 0.011 0.00066 0.000080 0.010 0.011 0.0000090 0.0076 0.0033
solved to opt. (%) 100 87 97 99 82 90 99 71 88

FPTAS-gen(0.1) avg. sol. time (s) 0.022 0.054 0.14 0.13 0.42 1.2 0.94 3.6 11
avg. post gap (%) 6.6 6.6 6.3 6.6 6.6 6.3 6.6 6.6 6.4
avg. true gap (%) 0.0042 0.017 0.014 0.0048 0.012 0.015 0.0046 0.0093 0.010
solved to opt. (%) 94 81 90 89 78 85 83 65 80

FPTAS-gen(0.05) avg. sol. time (s) 0.046 0.14 0.42 0.29 1.2 4.2 2.1 10 36
avg. post gap (%) 3.3 3.3 3.2 3.3 3.3 3.2 3.3 3.3 3.2
avg. true gap (%) 0.00048 0.0081 0.019 0.00084 0.0072 0.015 0.0017 0.0040 0.0038
solved to opt. (%) 98 84 88 95 84 85 90 73 87

FPTAS-gen(0.01) avg. sol. time (s) 0.27 2.1 8.7 1.9 20 90 14 165 691
avg. post gap (%) 0.67 0.66 0.65 0.67 0.66 0.64 0.67 0.67 0.64
avg. true gap (%) 0.000027 0.0014 0.00073 0.000064 0.00052 0.00099 0.000049 0.00089 0.00095
solved to opt. (%) 99 95 95 99 94 95 98 83 92

CPLEX 10.1 Nat. avg. sol. time (s) 0.045 0.041 0.035 0.44 0.38 0.12 – – –
CPLEX 10.1 SP avg. sol. time (s) 0.030 0.031 0.053 0.069 0.076 0.14 0.23 0.27 0.55

Table 1: Summary of all results
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The FPTASes that use the lower bound have a much lower computation time than
the ones that do not, so using the lower bound really makes a difference. The reduc-
tion in computation time varies from about seven times faster than the (already fast)
FPTAS-gen(0.1) for T = 25 (and FPTAS-CB(0.1) for T = 50), up to almost thirty times
faster than FPTAS-gen(0.01) for T = 50 (0.69 vs. 20 seconds). The solutions of the
FPTASes without lower bound have even smaller true gaps than those found by the
FPTASes with lower bounds, since not using the lower bound results in using smaller
intervals than necessary. The a posteriori gaps found by the FPTASes without lower
bounds are larger than those found by the FPTASes with lower bounds, because the
latter can compute the gap with respect to two lower bounds, ∆k−T−1 (see Section 5.3)
and the heuristic’s lower bound. Of course, the higher of the two is used. The a posteri-
ori gaps of FPTAS-CB (without lower bound) are about two thirds less than is required
by ε, and those of FPTAS-gen are about one third less (e.g., an a posteriori gap of 0.67%
when ε = 0.01). Tables 1–8 all give the results that were obtained with the ‘round-
more’ function (see pages 18 and 23). We can compare these with the a posteriori gaps
that were obtained by the algorithms that do not use this improved lower bound, as
can be found in Tables 9–15 in Appendix B.2. We see that in that case the a posteriori
gaps of FPTAS-CB (without lower bound) are half of what is required by ε, and those
of FPTAS-gen are only one quarter less than required by ε (e.g., an a posteriori gap of
0.75% when ε = 0.01).

The pseudo-polynomial algorithm (PP-CB) is still reasonably fast, but not as fast as
the FPTAS-CBs. Moreover, its computation times increase as the set-up costs increase,
since this means that the optimal value increases as well, and its time complexity is
dependent on this optimal value (see Section 5.2).

CPLEX applied to the natural formulation is very sensitive to the size of the set-up
costs. Only for the smallest set-up costs, it is sometimes slightly faster than the shortest
path formulation. Moreover, for 100 periods, we were very often not able to solve the
instances at all, because of memory issues. The results for CPLEX-nat are therefore not
included for T = 100.

The results for the instances with
⌈

1
2 T
⌉

pairs that violate the co-behaviour property
are shown in Tables 5, 6 and 7, and are summarised in the columns marked ‘gen.’ in
Table 1. In general, we see the same patterns as for the co-behaving instances.

Megiddo still gives good solutions in the same amount of time, although the solu-
tions are not as good as in the co-behaving case. This is because the heuristic can only
find solutions that satisfy the single-sourcing property, whereas these non-co-behaving
instances can have an optimal solution with a double-sourcing block (see Theorem 6).
Still, the average true gap is 1.2% for 25 periods, down to less than a half percent for
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100 periods.
The results for the FPTASes are similar to what we have seen before, but the com-

putation times have increased compared to the co-behaving case, because now, we also
need to iterate over the double-sourcing block budgets $ (see Section 5.4) in the d1

2 Te
period-pairs in which double-sourcing might be optimal. However, the solution times
of FPTAS-gen-LB(0.1) are still shorter than CPLEX-SP. Moreover, the true gaps are still
very close to zero for all FPTASes.

Table 8 gives the results for the instances that can be interpreted as having two pro-
duction modes (cheap & dirty and expensive & clean), as summarised in the columns
marked ‘2 modes’ in Table 1. Roughly the same patterns as before are shown. However,
the gaps of the heuristic, and the computation times of the FPTASes are again larger.
Of course, this comes as no surprise, because we specially designed these problem in-
stances to be the hardest to solve for our algorithms. The highest average solution time
is obtained by FPTAS-gen with ε = 0.01: seven and a half minutes for T = 100. On the
other hand, if the heuristic’s lower bound is used in the FPTAS, the average computa-
tion times are below 36 seconds, even for ε = 0.01 and T = 100. If we take a higher
epsilon (ε = 0.1), then the average solution time goes down to 0.71 seconds, while
still obtaining solutions with an average true gap below 0.01%. Unfortunately, this is
slightly slower than CPLEX-SP. However, for T = 25 or T = 50, FPTAS-gen-LB(0.01) is
faster than CPLEX-SP. Moreover, where CPLEX requires the cost and emission functions
to fit in a linear model, our algorithms are able to handle more general concave cost
and emission functions.

7 Conclusions & further research

In this paper, we have considered a lot-sizing problem with a global emission con-
straint. Here, the emissions take the form of a second type of ‘costs’ on production,
set-up and inventory decisions. Of course, these second costs can be any type of
costs other than those in the objective function. We have shown that this problem
is NP-hard (in the weak sense) even if only production emits pollutants (linearly).
From the NP-hardness proof, we learned that our model also entails lot-sizing with
emissions and multiple production modes. We have presented a Lagrangian heuristic
(Megiddo), FPTASes and a pseudo-polynomial algorithm to solve the problem, and
subjected these algorithms to a large number of computational tests. This has shown
that Megiddo gives near-optimal solutions, and we recommend using its lower bound
as input for the FPTASes. Moreover, we have seen that instances are easier to solve
if the costs and emissions satisfy a co-behaviour property (see Theorem 3). This is
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also reflected by the time complexity of the FPTASes; for the co-behaving case, this is

O
(

T3 max{ln(opt/LB),1}
ε

)
, whereas in the general case, it is O

(
T3 max{ln2(opt/LB),1}

ε2

)
. We

have seen that, in practice, the FPTASes have a much smaller gap than the a priori
imposed performance. The FPTASes that use Megiddo’s lower bound (FPTAS-CB-LB
and FPTAS-gen-LB) are very fast, even compared to CPLEX. In case the costs and emis-
sions are co-behaving, they are even faster. We have seen that the instances that are the
hardest to solve, are constructed in such a way that the degree of non-co-behaviour is
very high. Instances with two production modes are the hardest in this regard. How-
ever, recall that our algorithms are able to solve instances with more general concave
cost and emission functions.

Because we have carried out a large number of computational tests, special atten-
tion was paid to an efficient implementation of the FPTASes. We developed an im-
proved rounding technique to reduce the a posteriori gap, and combined an FPTAS in
the style of Woeginger (2000) with a lower bound, which turned out to lead to very
good results. We expect that these techniques can be applied to more FPTASes of this
type.

We think that it may be worthwhile to develop a Lagrangian heuristic for fixed-
plus-linear costs and emissions, following Megiddo’s approach, based on anO(T ln T)
algorithm for the classic lot-sizing problem, such as Wagelmans et al. (1992). Futher-
more, we expect that the technique to construct a pseudo-polynomial algorithm and an
FPTAS can be applied to more problems where one capacity constraint (on a ‘second
objective function’) is added to a problem for which a polynomial time dynamic pro-
gramme exists. In our opinion, another interesting line of future research into lot-sizing
with emission constraints involves extending the lot-sizing model to a production-
distribution system with emissions.
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A Proof of Theorem 6

Theorem 6 There exists an optimal solution to ELSEC, such that the single-sourcing property
holds in all but (at most) one period.

Proof Suppose there exists an optimal solution with (at least) two periods with two
arcs with positive inflow. We will show that there must exist a solution with single-
sourcing in all but at most one period, at equal or lower costs.

First, suppose that period v’s demand is procured from periods t and s (i.e., v is a
double-sourcing period), and C′t,v(0) ≥ C′s,v(0) and Ĉ′t,v(0) ≥ Ĉ′s,v(0). (Note that this
also covers the case C′t,v(0) ≤ C′s,v(0) and Ĉ′t,v(0) ≤ Ĉ′s,v(0), because we can switch the
indices t and s.) It was shown in the proof of Theorem 3 that there must exist a solution
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with at most one period with double-sourcing and lower or equal costs and emissions.

Now, suppose that both periods with double-sourcing, say v1 and v2, are in separate
blocks. The case with three or more sources in one block is treated later.

Suppose that period v1’s demand is procured from periods t1 and s1 and that period
v2’s demand is procured from periods t2 and s2. Let vi := max{si, ti}, for i = 1, 2.

We may assume that C′t1,v1
(0) ≥ C′s1,v1

(0), Ĉ′t1,v1
(0) < Ĉ′s1,v1

(0), C′t2,v2
(0) ≥ C′s2,v2

(0)
and Ĉ′t2,v2

(0) < Ĉ′s2,v2
(0), w.l.o.g., because we may swap t1 and s1, or t2 and s2.

Now, define the following notation:

C′i,j(0)− C′k,j(0)

Ĉ′k,j(0)− Ĉ′i,j(0)
,

which denotes the financial savings per additional unit of emissions, if we produce
(some of) period j’s demand in period k instead of period i, near qi,j = 0 and qj,j = 0
(given that j = i or j = k). Suppose

C′t1,v1
(0)− C′s1,v1

(0)

Ĉ′s1,v1
(0)− Ĉ′t1,v1

(0)
≥

C′t2,v2
(0)− C′s2,v2

(0)

Ĉ′s2,v2
(0)− Ĉ′t2,v2

(0)
,

again w.l.o.g., because we can swap the indices 1 and 2.
We show that it is cheaper and cleaner to move items from period t1 to s1 and from

s2 to t2 until nothing is produced in period t1 or s2. We decide to move a quantity
q1 > 0 from period t1 to s1 and to move a quantity q2 > 0 from period s2 to t2. Let

q2 :=
Ĉ′s1,v1

−Ĉ′t1,v1
Ĉ′s2,v2−Ĉ′t2,v2

q1. Moreover, we can choose q1 such that q1 = xt1,v1 or q2 = xs2,v2 . In

other words: such that one of the two blocks has only one source.
First, we show that the costs of the thus constructed solution are lower or equal.

Ct1,v1(0)− Ct1,v1(−q1) + Cs2,v2(0)− Cs2,v2(−q2)

≥ C′t1,v1
(0)q1 + C′s2,v2

(0)q2

=

(
C′t1,v1

+ C′s2,v2

Ĉ′s1,v1
− Ĉ′t1,v1

Ĉ′s2,v2
− Ĉ′t2,v2

)
q1

≥
(

C′s1,v1
+ C′t2,v2

Ĉ′s1,v1
− Ĉ′t1,v1

Ĉ′s2,v2
− Ĉ′t2,v2

)
q1

= C′s1,v1
(0)q1 + C′t2,v2

(0)q2

≥ Cs1,v1(q1)− Cs1,v1(0) + Ct2,v2(q2)− Ct2,v2(0)

That is, the savings are larger than the extra expenses. The first and last inequality
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follow from concavity. The middle inequality is true, because q1 > 0 and we know that

C′t1,v1
− C′s1,v1

Ĉ′s1,v1
− Ĉ′t1,v1

≥
C′t2,v2

− C′s2,v2

Ĉ′s2,v2
− Ĉ′t2,v2

⇒ C′t1,v1
− C′s1,v1

≥
(
C′t2,v2

− C′s2,v2

) Ĉ′s1,v1
− Ĉ′t1,v1

Ĉ′s2,v2
− Ĉ′t2,v2

⇒ C′t1,v1
+ C′s2,v2

Ĉ′s1,v1
− Ĉ′t1,v1

Ĉ′s2,v2
− Ĉ′t2,v2

≥ C′s1,v1
+ C′t2,v2

Ĉ′s1,v1
− Ĉ′t1,v1

Ĉ′s2,v2
− Ĉ′t2,v2

In a similar way, we show that the emissions are lower or equal.

Ĉt1,v1(0)− Ĉt1,v1(−q1) + Ĉs2,v2(0)− Ĉs2,v2(−q2)

≥ Ĉ′t1,v1
(0)q1 + Ĉ′s2,v2

(0)q2

=

(
Ĉ′t1,v1

+ Ĉ′s2,v2

Ĉ′s1,v1
− Ĉ′t1,v1

Ĉ′s2,v2
− Ĉ′t2,v2

)
q1

=

(
Ĉ′s1,v1

+ Ĉ′t2,v2

Ĉ′s1,v1
− Ĉ′t1,v1

Ĉ′s2,v2
− Ĉ′t2,v2

)
q1

= Ĉ′s1,v1
(0)q1 + Ĉ′t2,v2

(0)q2

≥ Ĉs1,v1(q1)− Ĉs1,v1(0) + Ĉt2,v2(q2)− Ĉt2,v2(0)

The middle equality follows from:

Ĉ′t1,v1
− Ĉ′s1,v1

= −(Ĉ′s1,v1
− Ĉ′t1,v1

) =
(
Ĉ′t2,v2

− Ĉ′s2,v2

) Ĉ′s1,v1
− Ĉ′t1,v1

Ĉ′s2,v2
− Ĉ′t2,v2

⇒ Ĉ′t1,v1
+ Ĉ′s2,v2

Ĉ′s1,v1
− Ĉ′t1,v1

Ĉ′s2,v2
− Ĉ′t2,v2

= Ĉ′s1,v1
+ Ĉ′t2,v2

Ĉ′s1,v1
− Ĉ′t1,v1

Ĉ′s2,v2
− Ĉ′t2,v2

.

Suppose that we have a solution with one block with three production periods.
Let P denote the set of production periods in this block and let u (v) be the first (last)
production period in this block. We will show that there must exist a solution with only
two production periods in this block and equal or lower costs and emissions, following
a similar reasoning.

We may assume, w.l.o.g., that

p′t(xt) +
v−1

∑
k=t

h′k(Ik) ≥ p′s(xs) +
v−1

∑
k=s

h′k(Ik) ≥ p′r(xr) +
v−1

∑
k=r

h′k(Ik) and

p̂′t(xt) +
v−1

∑
k=t

ĥ′k(Ik) < p̂′s(xs) +
v−1

∑
k=s

ĥ′k(Ik) < p̂′r(xr) +
v−1

∑
k=r

ĥ′k(Ik) ,
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where t, s, r ∈ P, t 6= s 6= r 6= t. We will compare the financial savings per additional
unit of emissions, if we produce (some of) period v’s demand in period s instead of
period t, with the financial savings per additional unit of emissions, if we produce
(some of) period v’s demand in period r instead of period s (near xt, xs, xr and Ik∀k ∈
{min{t, s, r}, . . . , v}).

We distinguish between two cases:

Case 1: We assume that

p′t(xt) + ∑v−1
k=t h′k(Ik)− p′s(xs)−∑v−1

k=s h′k(Ik)
p̂′s(xs) + ∑v−1

k=s ĥ′k(Ik)− p̂′t(xt)−∑v−1
k=t ĥ′k(Ik)

≥
p′s(xs) + ∑v−1

k=s h′k(Ik)− p′r(xr)−∑v−1
k=r h′k(Ik)

p̂′r(xr) + ∑v−1
k=r ĥ′k(Ik)− p̂′s(xs)−∑v−1

k=s ĥ′k(Ik)
.

(Note that both fractions are nonnegative.) We show that it is cheaper and cleaner
to move items from period t to s and from r to s until nothing is produced in
period t or r. We decide to move a quantity q1 > 0 from period t to s and to

move a quantity q2 > 0 from period r to s. Let q2 := Ĉ′s,v−Ĉ′t,v
Ĉ′r,v−Ĉ′s,v

q1. Moreover, we can
choose q1 such that q1 = xt,v or q2 = xr,v. In other words: such that there are only
two sources in this block.

Case 2: Assume that

p′t(xt) + ∑v−1
k=t h′k(Ik)− p′s(xs)−∑v−1

k=s h′k(Ik)
p̂′s(xs) + ∑v−1

k=s ĥ′k(Ik)− p̂′t(xt)−∑v−1
k=t ĥ′k(Ik)

<
p′s(xs) + ∑v−1

k=s h′k(Ik)− p′r(xr)−∑v−1
k=r h′k(Ik)

p̂′r(xr) + ∑v−1
k=r ĥ′k(Ik)− p̂′s(xs)−∑v−1

k=s ĥ′k(Ik)
.

(Note that both fractions are nonnegative.) We show that it is cheaper and cleaner
to move items from period s to t and from s to r until nothing is produced in
period s. We decide to move a quantity −q1 > 0 from period s to t and to move

a quantity −q2 > 0 from period s to r. Again, let q2 := Ĉ′s,v−Ĉ′t,v
Ĉ′r,v−Ĉ′s,v

q1. Moreover, we
can choose q1 such that −q1 − q2 = xs,v. In other words: such that there are only
two sources in this block.

Note that in both cases, we move a quantity q1 from period t to s and a quantity q2

from period r to s, but q1 and q2 may both be negative depending on the case we are
in. Regardless of which case we are in, define I∗k := Ik − q1δkt − q2δkr + (q1 + q2)δks ,

where δij =

{
1 if i ≥ j
0 otherwise

.

Before we show that the costs and emissions of the thus constructed solution are lower
or equal, we make two claims:

Claim 8

pt(xt− q1)− pt(xt)+ pr(xr− q2)− pr(xr)+ ps(xs + q1 + q2)− ps(xs)+
v−1

∑
k=u

(hk(I∗k )− hk(Ik))
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≤ −
(

p′t(xt) +
v−1

∑
k=t

h′k(Ik)

)
q1−

(
p′r(xr) +

v−1

∑
k=r

h′k(Ik)

)
q2 +

(
p′s(xs) +

v−1

∑
k=s

h′k(Ik)

)
(q1 + q2)

Proof This follows from concavity and the fact that we can rewrite ∑v−1
k=u

(
hk(I∗k )− hk(Ik)

)
.

Note that the holding emissions (ĥ) can be rewritten in the same manner.
Suppose u = t < s < r = v. This also proves the case where r < s < t, because, in

the proof, we can switch r and t, and their corresponding q1 and q2.

v−1

∑
k=u

(hk(I∗k )− hk(Ik)) =
s−1

∑
k=t

(hk(Ik − q1)− hk(Ik)) +
v−1

∑
k=s

(hk(Ik + q2)− hk(Ik))

≤ −
s−1

∑
k=t

h′k(Ik)q1 +
v−1

∑
k=s

h′k(Ik)q2 −
v−1

∑
k=s

h′k(Ik)q1 +
v−1

∑
k=s

h′k(Ik)q1

= −
v−1

∑
k=t

h′k(Ik)q1 +
v−1

∑
k=s

h′k(Ik)(q1 + q2)

The term ∑v−1
k=r h′k(Ik)q2 is absent, since r = v.

Suppose u = t < r < s = v. This also proves the case where r < t < s.

v−1

∑
k=u

(hk(I∗k )− hk(Ik)) =
r−1

∑
k=t

(hk(Ik − q1)− hk(Ik)) +
v−1

∑
k=r

(hk(Ik − q1 − q2)− hk(Ik))

≤ −
r−1

∑
k=t

h′k(Ik)q1 −
v−1

∑
k=r

h′k(Ik)(q1 + q2)

= −
v−1

∑
k=t

h′k(Ik)q1 −
v−1

∑
k=r

h′k(Ik)q2

Suppose u = s < t < r = v. This also proves the case where s < r < t.

v−1

∑
k=u

(hk(I∗k )− hk(Ik)) =
t−1

∑
k=s

(hk(Ik + q1 + q2)− hk(Ik)) +
v−1

∑
k=t

(hk(Ik + q2)− hk(Ik))

≤
t−1

∑
k=s

h′k(Ik)(q1 + q2) +
v−1

∑
k=t

h′k(Ik)q2 +
v−1

∑
k=t

h′k(Ik)q1 −
v−1

∑
k=t

h′k(Ik)q1

=
v−1

∑
k=s

h′k(Ik)(q1 + q2)−
v−1

∑
k=t

h′k(Ik)q1

�

Claim 9 (
C′s,v − C′t,v +

(
C′s,v − C′r,v

) Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

)
q1 ≤ 0
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Proof In Case 1: q1 > 0 and by assumption, we know that:

C′t,v − C′s,v

Ĉ′s,v − Ĉ′t,v
≥

C′s,v − C′r,v

Ĉ′r,v − Ĉ′s,v

⇒
C′s,v − C′t,v
Ĉ′s,v − Ĉ′t,v

≤
C′r,v − C′s,v

Ĉ′r,v − Ĉ′s,v

⇒ C′s,v − C′t,v ≤
(
C′r,v − C′s,v

) Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

⇒ C′s,v − C′t,v +
(
C′s,v − C′r,v

) Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

≤ 0

In Case 2: q1 < 0 and by assumption, we know that:

C′t,v − C′s,v

Ĉ′s,v − Ĉ′t,v
<

C′s,v − C′r,v

Ĉ′r,v − Ĉ′s,v

⇒
C′s,v − C′t,v
Ĉ′s,v − Ĉ′t,v

>
C′r,v − C′s,v

Ĉ′r,v − Ĉ′s,v

⇒ C′s,v − C′t,v >
(
C′r,v − C′s,v

) Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

⇒ C′s,v − C′t,v +
(
C′s,v − C′r,v

) Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

> 0

�

Now, we show that the costs of the constructed solution are lower or equal:

pt(xt− q1)− pt(xt)+ pr(xr− q2)− pr(xr)+ ps(xs + q1 + q2)− ps(xs)+
v−1

∑
k=u

(hk(I∗k )− hk(Ik))

≤ −
(

p′t(xt) +
v−1

∑
k=t

h′k(Ik)

)
q1 −

(
p′r(xr) +

v−1

∑
k=r

h′k(Ik)

)
q2 +

(
p′s(xs) +

v−1

∑
k=s

h′k(Ik)

)
(q1 + q2)

= −C′t,vq1 − C′r,vq2 + C′s,v · (q1 + q2)

= −C′t,vq1 − C′r,v
Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

q1 + C′s,v

(
q1 +

Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

q1

)

=

(
C′s,v − C′t,v +

(
C′s,v − C′r,v

) Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

)
q1

≤ 0 ,

where the first inequality follows from Claim 8 and the last inequality from Claim 9.
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In a similar way, we show that the emissions are lower or equal.

p̂t(xt− q1)− p̂t(xt)+ p̂r(xr− q2)− p̂r(xr)+ p̂s(xs + q1 + q2)− p̂s(xs)+
v−1

∑
k=u

(
ĥk(I∗k )− ĥk(Ik)

)

≤ −
(

p̂′t(xt) +
v−1

∑
k=t

ĥ′k(Ik)

)
q1 −

(
p̂′r(xr) +

v−1

∑
k=r

ĥ′k(Ik)

)
q2 +

(
p̂′s(xs) +

v−1

∑
k=s

ĥ′k(Ik)

)
(q1 + q2)

= −Ĉ′t,vq1 − Ĉ′r,vq2 + Ĉ′s,v · (q1 + q2)

= −Ĉ′t,vq1 − Ĉ′r,v
Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

q1 + C′s,v

(
q1 +

Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

q1

)

=

(
Ĉ′s,v − Ĉ′t,v +

(
Ĉ′s,v − Ĉ′r,v

) Ĉ′s,v − Ĉ′t,v
Ĉ′r,v − Ĉ′s,v

)
q1

=
(
Ĉ′s,v − Ĉ′t,v − Ĉ′s,v + Ĉ′t,v

)
q1

= 0 ,

where the first inequality follows from the analogy of Claim 8 for emissions instead of
costs.

We conclude that there exists an optimal solution to ELSEC, such that the single-
sourcing property holds in all but (at most) one period. �

B Tables of results

B.1 Results with improved lower bound

Tables 2–8 present the results of the computational tests of the algorithms that use the
improved lower bound, as described in Sections 5.3 and 5.4.
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K 1000 5000 10000 Ĉ
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000 25% 50% 75%

Megiddo avg. sol. time (s) <0.001 0.001 <0.001 0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
avg. post. gap (%) 0.85 0.67 0.73 1.8 1.6 1.9 2.5 1.6 1.9 1.9 1.5 1.1
avg. true gap (%) 0.29 0.21 0.18 0.47 0.51 0.48 0.88 0.50 0.69 0.53 0.52 0.36
solved to opt. (%) 57 63 63 80 67 67 53 70 50 60 60 70

PP-CB avg. sol. time (s) 0.12 0.12 0.13 0.25 0.26 0.22 0.34 0.34 0.34 0.26 0.23 0.22
FPTAS-CB-LB(0.1) avg. sol. time (s) 0.001 0.001 <0.001 0.002 <0.001 0.002 0.001 <0.001 0.003 0.001 0.001 0.001

avg. post. gap (%) 0.58 0.51 0.57 0.87 0.88 0.89 1.1 0.91 0.98 0.97 0.83 0.63
avg. true gap (%) 0.012 0.051 0.036 0.0032 0.0045 0 0.010 0.015 0.060 0.015 0.015 0.035
solved to opt. (%) 83 70 83 93 97 100 90 93 90 92 90 84

FPTAS-CB-LB(0.05) avg. sol. time (s) 0.002 0.001 <0.001 0.002 0.001 0.002 0.002 0.001 0.003 0.001 0.002 0.001
avg. post. gap (%) 0.50 0.40 0.44 0.54 0.57 0.56 0.71 0.59 0.59 0.63 0.58 0.43
avg. true gap (%) 0.0033 0.011 0.0013 0.0032 0 0 0.00048 0 0 0.0017 0.00059 0.0041
solved to opt. (%) 90 90 93 93 100 100 97 100 100 97 97 94

FPTAS-CB-LB(0.01) avg. sol. time (s) 0.005 0.004 0.007 0.008 0.005 0.004 0.008 0.007 0.005 0.007 0.005 0.005
avg. post. gap (%) 0.17 0.13 0.18 0.13 0.14 0.15 0.16 0.14 0.14 0.16 0.15 0.14
avg. true gap (%) 0.0013 0 0.0013 0 0.00073 0 0.00048 0.00012 0 0.00022 0.00038 0.00072
solved to opt. (%) 97 100 93 100 97 100 97 97 100 99 98 97

FPTAS-CB(0.1) avg. sol. time (s) 0.006 0.008 0.007 0.009 0.009 0.008 0.008 0.008 0.010 0.009 0.008 0.008
avg. post. gap (%) 3.8 3.8 3.8 3.1 3.3 3.2 3.2 3.1 3.1 3.4 3.4 3.4
avg. true gap (%) 0.0061 0.029 0.020 0.00012 0.0019 0 0.0048 0.0050 0.026 0.0072 0.0061 0.018
solved to opt. (%) 87 80 83 97 90 100 93 93 93 93 92 87

FPTAS-CB(0.05) avg. sol. time (s) 0.017 0.016 0.016 0.020 0.018 0.017 0.018 0.018 0.019 0.019 0.018 0.016
avg. post. gap (%) 1.9 1.8 1.8 1.5 1.7 1.6 1.6 1.6 1.5 1.7 1.7 1.7
avg. true gap (%) 0.0068 0.0082 0.0013 0.00012 0.00073 0 0.0020 0.00012 0 0.0029 0.0025 0.0010
solved to opt. (%) 87 87 93 97 97 100 97 97 100 96 94 94

FPTAS-CB(0.01) avg. sol. time (s) 0.086 0.084 0.085 0.099 0.095 0.097 0.099 0.094 0.099 0.097 0.093 0.090
avg. post. gap (%) 0.38 0.36 0.38 0.31 0.33 0.32 0.32 0.31 0.31 0.33 0.33 0.34
avg. true gap (%) 0 0 0.00067 0.00012 0 0 0 0 0 0.00022 0 0.000041
solved to opt. (%) 100 100 97 97 100 100 100 100 100 99 100 99

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.003 0.002 0.002 0.003 0.003 0.003 0.002 0.003 0.004 0.002 0.003 0.002
avg. post gap (%) 0.58 0.49 0.55 1.4 1.0 1.4 1.5 1.1 1.2 1.3 0.98 0.73
avg. true gap (%) 0.0061 0.013 0.0095 0.0032 0.0056 0 0.0055 0.0050 0 0.0042 0.0039 0.0079
solved to opt. (%) 87 80 87 93 90 100 93 93 100 93 94 87

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.002 0.002 0.004 0.003 0.003 0.005 0.007 0.003 0.004 0.004 0.003 0.004
avg. post gap (%) 0.58 0.47 0.55 1.2 0.99 1.1 1.2 1.0 1.1 1.1 0.94 0.67
avg. true gap (%) 0.0032 0 0.0038 0.00012 0.00028 0 0 0 0 0.00063 0.00023 0.0016
solved to opt. (%) 90 100 90 97 97 100 100 100 100 98 99 94

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.014 0.012 0.011 0.019 0.014 0.016 0.018 0.020 0.019 0.017 0.015 0.015
avg. post gap (%) 0.39 0.31 0.34 0.42 0.44 0.42 0.50 0.42 0.45 0.47 0.43 0.33
avg. true gap (%) 0 0 0 0.00012 0 0 0 0 0 0 0 0.000041
solved to opt. (%) 100 100 100 97 100 100 100 100 100 100 100 99

FPTAS-gen(0.1) avg. sol. time (s) 0.021 0.020 0.021 0.022 0.024 0.022 0.023 0.022 0.021 0.022 0.022 0.021
avg. post gap (%) 6.8 6.8 6.8 6.5 6.6 6.5 6.5 6.5 6.4 6.6 6.6 6.6
avg. true gap (%) 0.0032 0.015 0.017 0.00012 0 0 0.0024 0 0 0.0021 0.0056 0.0050
solved to opt. (%) 90 87 80 97 100 100 93 100 100 97 93 92

FPTAS-gen(0.05) avg. sol. time (s) 0.046 0.043 0.043 0.050 0.046 0.047 0.047 0.045 0.049 0.049 0.045 0.045
avg. post gap (%) 3.4 3.4 3.4 3.3 3.3 3.3 3.3 3.2 3.2 3.3 3.3 3.3
avg. true gap (%) 0.0013 0.00077 0.0013 0.00012 0.00073 0 0 0 0 0.00022 0.00023 0.00098
solved to opt. (%) 97 97 93 97 97 100 100 100 100 99 99 96

FPTAS-gen(0.01) avg. sol. time (s) 0.26 0.25 0.25 0.29 0.28 0.28 0.28 0.28 0.29 0.28 0.27 0.26
avg. post gap (%) 0.69 0.68 0.69 0.65 0.66 0.66 0.66 0.65 0.65 0.67 0.67 0.66
avg. true gap (%) 0 0 0 0.00012 0 0 0 0.00012 0 0 0 0.000081
solved to opt. (%) 100 100 100 97 100 100 100 97 100 100 100 98

CPLEX 10.1 Nat. avg. sol. time (s) 0.034 0.025 0.025 0.052 0.050 0.053 0.056 0.061 0.055 0.048 0.045 0.044
CPLEX 10.1 SP avg. sol. time (s) 0.036 0.030 0.024 0.031 0.026 0.026 0.036 0.031 0.030 0.030 0.032 0.028

Table 2: 25 periods, satisfies conditions in Theorem 3
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K 1000 5000 10000 Ĉ
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000 25% 50% 75%

Megiddo avg. sol. time (s) <0.001 <0.001 <0.001 0.001 <0.001 0.001 0.002 0.002 0.001 0.001 <0.001 0.001
avg. post. gap (%) 0.42 0.45 0.36 0.89 0.98 0.98 1.2 1.3 1.1 1.2 0.74 0.63
avg. true gap (%) 0.20 0.21 0.17 0.44 0.46 0.43 0.67 0.64 0.43 0.54 0.34 0.34
solved to opt. (%) 50 30 30 53 40 47 47 53 47 37 44 51

PP-CB avg. sol. time (s) 0.84 0.81 0.89 1.8 1.8 1.7 2.7 2.8 2.7 1.9 1.7 1.6
FPTAS-CB-LB(0.10) avg. sol. time (s) 0.005 0.005 0.006 0.006 0.009 0.006 0.007 0.008 0.007 0.007 0.005 0.008

avg. post. gap (%) 0.25 0.30 0.24 0.41 0.52 0.54 0.54 0.52 0.60 0.59 0.41 0.31
avg. true gap (%) 0.040 0.055 0.048 0.012 0.0023 0.012 0.0094 0 0.035 0.016 0.029 0.026
solved to opt. (%) 73 43 47 90 97 87 93 100 80 87 76 74

FPTAS-CB-LB(0.05) avg. sol. time (s) 0.007 0.008 0.006 0.010 0.007 0.009 0.011 0.012 0.011 0.010 0.009 0.008
avg. post. gap (%) 0.22 0.27 0.20 0.33 0.42 0.40 0.42 0.40 0.42 0.43 0.33 0.26
avg. true gap (%) 0.0098 0.021 0.0071 0.0067 0.0023 0.0029 0.00033 0 0.010 0.0046 0.0072 0.0083
solved to opt. (%) 87 67 80 93 97 93 97 100 93 94 88 87

FPTAS-CB-LB(0.01) avg. sol. time (s) 0.038 0.039 0.039 0.045 0.049 0.048 0.057 0.059 0.059 0.051 0.048 0.046
avg. post. gap (%) 0.13 0.13 0.13 0.11 0.12 0.11 0.11 0.11 0.1 0.13 0.12 0.10
avg. true gap (%) 0 0.00043 0.00086 0 0 0.00015 0 0 0 0.00025 0 0.00024
solved to opt. (%) 100 93 93 100 100 97 100 100 100 98 100 97

FPTAS-CB(0.10) avg. sol. time (s) 0.046 0.045 0.046 0.055 0.056 0.053 0.056 0.056 0.056 0.054 0.051 0.051
avg. post. gap (%) 3.9 3.9 3.8 3.3 3.4 3.3 3.2 3.2 3.2 3.4 3.4 3.4
avg. true gap (%) 0.038 0.031 0.036 0.0035 0.025 0.037 0 0 0.0083 0.017 0.025 0.018
solved to opt. (%) 63 63 57 97 77 70 100 100 93 82 79 79

FPTAS-CB(0.05) avg. sol. time (s) 0.092 0.093 0.093 0.11 0.11 0.11 0.12 0.12 0.12 0.11 0.11 0.10
avg. post. gap (%) 1.9 1.9 1.9 1.7 1.7 1.6 1.6 1.6 1.6 1.7 1.7 1.7
avg. true gap (%) 0.0080 0.014 0.018 0.0013 0 0.0061 0.0018 0 0 0.0033 0.0067 0.0062
solved to opt. (%) 93 67 60 97 100 90 97 100 100 92 89 87

FPTAS-CB(0.01) avg. sol. time (s) 0.58 0.57 0.57 0.69 0.71 0.71 0.73 0.74 0.75 0.71 0.67 0.64
avg. post. gap (%) 0.38 0.38 0.37 0.33 0.33 0.32 0.31 0.31 0.31 0.34 0.34 0.34
avg. true gap (%) 0 0.00084 0.00036 0 0 0.00015 0 0 0 0.000051 0.000088 0.00031
solved to opt. (%) 100 87 97 100 100 97 100 100 100 99 99 96

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.011 0.013 0.010 0.014 0.013 0.012 0.013 0.017 0.015 0.015 0.013 0.011
avg. post gap (%) 0.23 0.26 0.21 0.45 0.52 0.54 0.56 0.61 0.63 0.64 0.40 0.30
avg. true gap (%) 0.013 0.016 0.013 0.0061 0 0.00015 0.0011 0 0.010 0.0034 0.0070 0.0094
solved to opt. (%) 83 70 67 93 100 97 97 100 93 94 88 84

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.019 0.019 0.020 0.022 0.025 0.024 0.031 0.029 0.031 0.026 0.024 0.024
avg. post gap (%) 0.22 0.25 0.20 0.45 0.52 0.54 0.56 0.61 0.63 0.64 0.40 0.29
avg. true gap (%) 0.0027 0.0019 0.0026 0 0 0.00015 0 0 0.0030 0.00069 0.0015 0.0012
solved to opt. (%) 90 80 83 100 100 97 100 100 97 96 96 91

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.10 0.10 0.11 0.12 0.13 0.13 0.15 0.16 0.15 0.14 0.13 0.12
avg. post gap (%) 0.21 0.24 0.18 0.31 0.38 0.34 0.39 0.40 0.39 0.39 0.31 0.24
avg. true gap (%) 0 0.00057 0 0 0 0.00015 0 0 0 0.000051 0.000050 0.00014
solved to opt. (%) 100 90 100 100 100 97 100 100 100 99 99 98

FPTAS-gen(0.1) avg. sol. time (s) 0.12 0.11 0.12 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.13 0.13
avg. post gap (%) 6.8 6.8 6.8 6.6 6.6 6.6 6.5 6.5 6.5 6.6 6.6 6.6
avg. true gap (%) 0.0058 0.013 0.017 0 0.0020 0.0034 0.0018 0 0 0.0037 0.0037 0.0069
solved to opt. (%) 83 70 57 100 97 93 97 100 100 91 90 84

FPTAS-gen(0.05) avg. sol. time (s) 0.25 0.25 0.26 0.30 0.30 0.30 0.31 0.32 0.31 0.30 0.29 0.28
avg. post gap (%) 3.4 3.4 3.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
avg. true gap (%) 0.0027 0.00073 0.0039 0 0 0.00015 0 0 0 0.00099 0.00035 0.0012
solved to opt. (%) 90 87 80 100 100 97 100 100 100 96 98 91

FPTAS-gen(0.01) avg. sol. time (s) 1.7 1.6 1.7 1.9 2.0 2.0 2.0 2.1 2.1 2.0 1.9 1.8
avg. post gap (%) 0.69 0.69 0.68 0.66 0.66 0.66 0.66 0.66 0.66 0.67 0.67 0.67
avg. true gap (%) 0 0.00058 0 0 0 0 0 0 0 0 0.000050 0.00014
solved to opt. (%) 100 90 100 100 100 100 100 100 100 100 99 98

CPLEX 10.1 Nat. avg. sol. time (s) 0.066 0.075 0.064 0.38 0.32 0.26 0.86 0.97 0.97 0.63 0.48 0.22
CPLEX 10.1 SP avg. sol. time (s) 0.061 0.063 0.065 0.070 0.069 0.072 0.076 0.067 0.075 0.073 0.069 0.064

Table 3: 50 periods, satisfies conditions in Theorem 3
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K 1000 5000 10000 Ĉ
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000 25% 50% 75%

Megiddo avg. sol. time (s) 0.001 0.001 0.002 0.003 0.003 0.002 0.003 0.004 0.005 0.003 0.003 0.002
avg. post. gap (%) 0.21 0.22 0.22 0.40 0.41 0.48 0.55 0.60 0.64 0.64 0.39 0.21
avg. true gap (%) 0.15 0.16 0.15 0.24 0.22 0.31 0.31 0.36 0.44 0.42 0.25 0.11
solved to opt. (%) 23 27 30 37 33 30 40 40 30 21 28 48

PP-CB avg. sol. time (s) 14 14 14 22 21 21 31 30 30 23 22 21

FPTAS-CB-LB(0.10) avg. sol. time (s) 0.029 0.029 0.029 0.037 0.036 0.036 0.042 0.044 0.046 0.038 0.035 0.036
avg. post. gap (%) 0.090 0.080 0.090 0.17 0.20 0.20 0.25 0.24 0.20 0.23 0.16 0.12
avg. true gap (%) 0.029 0.018 0.021 0.0083 0.016 0.021 0.016 0.0035 0.0033 0.010 0.014 0.022
solved to opt. (%) 43 60 50 73 73 67 73 93 87 77 70 60

FPTAS-CB-LB(0.05) avg. sol. time (s) 0.054 0.051 0.057 0.071 0.067 0.070 0.079 0.083 0.080 0.071 0.068 0.064
avg. post. gap (%) 0.060 0.060 0.090 0.16 0.19 0.18 0.23 0.22 0.20 0.21 0.15 0.11
avg. true gap (%) 0.0029 0.0055 0.017 0.0027 0.0057 0.0045 0.0097 0.0050 0.00079 0.0031 0.0059 0.0089
solved to opt. (%) 83 77 57 80 93 87 87 90 90 88 80 80

FPTAS-CB-LB(0.01) avg. sol. time (s) 0.29 0.28 0.29 0.39 0.38 0.40 0.48 0.49 0.48 0.41 0.38 0.37
avg. post. gap (%) 0.060 0.060 0.070 0.090 0.080 0.090 0.080 0.070 0.080 0.086 0.075 0.065
avg. true gap (%) 0 0 0.000080 0.00064 0 0.00023 0 0 0.00034 0.00023 0.00018 0.000012
solved to opt. (%) 100 100 97 93 100 97 100 100 93 98 97 99

FPTAS-CB(0.10) avg. sol. time (s) 0.29 0.29 0.29 0.36 0.36 0.37 0.40 0.41 0.41 0.37 0.35 0.34
avg. post. gap (%) 3.9 3.9 3.9 3.4 3.4 3.3 3.2 3.2 3.2 3.5 3.5 3.5
avg. true gap (%) 0.039 0.035 0.027 0.0077 0.015 0.011 0.011 0.0038 0.0053 0.019 0.014 0.018
solved to opt. (%) 37 50 47 80 73 70 77 93 83 69 66 69

FPTAS-CB(0.05) avg. sol. time (s) 0.62 0.61 0.63 0.80 0.78 0.80 0.90 0.91 0.90 0.81 0.77 0.75
avg. post. gap (%) 1.9 1.9 1.9 1.7 1.7 1.7 1.6 1.6 1.6 1.7 1.7 1.7
avg. true gap (%) 0.0083 0.010 0.0063 0.0021 0.00084 0.0043 0.0037 0.00053 0.0014 0.0044 0.0039 0.0042
solved to opt. (%) 80 67 67 83 93 83 93 97 90 84 83 83

FPTAS-CB(0.01) avg. sol. time (s) 4.3 4.1 4.3 5.5 5.3 5.5 6.1 6.2 6.1 5.5 5.2 5.1
avg. post. gap (%) 0.37 0.38 0.38 0.34 0.34 0.33 0.32 0.31 0.32 0.34 0.34 0.34
avg. true gap (%) 0 0.00081 0.00010 0 0 0.00014 0 0 0.00030 0.00015 0.000013 0.00028
solved to opt. (%) 100 97 90 100 100 97 100 100 97 97 99 98

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.068 0.066 0.068 0.084 0.081 0.085 0.098 0.10 0.099 0.086 0.082 0.082
avg. post gap (%) 0.07 0.06 0.08 0.16 0.19 0.18 0.25 0.24 0.20 0.22 0.15 0.10
avg. true gap (%) 0.013 0.0054 0.0063 0.0010 0.00066 0.0016 0.0089 0.0035 0.0028 0.0030 0.0054 0.0059
solved to opt. (%) 57 77 67 93 93 90 90 93 87 87 80 82

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.13 0.13 0.13 0.17 0.16 0.17 0.19 0.20 0.19 0.17 0.16 0.16
avg. post gap (%) 0.06 0.06 0.08 0.16 0.19 0.18 0.24 0.24 0.20 0.22 0.15 0.10
avg. true gap (%) 0.0021 0.0032 0.0017 0.0013 0.00058 0.0017 0.00035 0.0012 0.00034 0.00076 0.0019 0.0015
solved to opt. (%) 90 87 83 93 93 90 97 97 93 94 87 93

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.88 0.84 0.86 1.2 1.1 1.2 1.4 1.4 1.4 1.2 1.1 1.1
avg. post gap (%) 0.06 0.06 0.07 0.16 0.19 0.18 0.23 0.23 0.20 0.21 0.15 0.099
avg. true gap (%) 0 0 0.000078 0 0 0 0 0 0 0 0.000013 0.000013
solved to opt. (%) 100 100 93 100 100 100 100 100 100 100 99 99

FPTAS-gen(0.1) avg. sol. time (s) 0.78 0.76 0.78 0.96 0.95 0.98 1.1 1.1 1.1 0.98 0.93 0.91
avg. post gap (%) 6.8 6.8 6.8 6.6 6.6 6.6 6.5 6.5 6.5 6.6 6.6 6.6
avg. true gap (%) 0.0058 0.0053 0.014 0.0035 0.0036 0.0064 0.0013 0.00097 0.00034 0.0038 0.0053 0.0046
solved to opt. (%) 77 83 53 83 90 77 93 97 93 86 81 82

FPTAS-gen(0.05) avg. sol. time (s) 1.8 1.7 1.8 2.2 2.2 2.2 2.5 2.5 2.5 2.3 2.1 2.1
avg. post gap (%) 3.4 3.4 3.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
avg. true gap (%) 0.0027 0.0043 0.0043 0.0016 0.00029 0.0011 0.0011 0 0.00030 0.0016 0.0019 0.0017
solved to opt. (%) 87 77 77 87 97 93 93 100 97 89 88 92

FPTAS-gen(0.01) avg. sol. time (s) 11 11 11 14 14 14 15 16 15 14 14 13
avg. post gap (%) 0.69 0.69 0.69 0.67 0.67 0.66 0.66 0.66 0.66 0.67 0.67 0.67
avg. true gap (%) 0 0 0.00018 0 0 0.00023 0 0 0.000037 0.000007 0.00013 0.000012
solved to opt. (%) 100 100 87 100 100 97 100 100 97 99 96 99

CPLEX 10.1 SP avg. sol. time (s) 0.18 0.19 0.20 0.23 0.25 0.24 0.24 0.25 0.25 0.26 0.22 0.18

Table 4: 100 periods, satisfies conditions in Theorem 3
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K 1000 5000 10000 Ĉ
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000 25% 50% 75%

Megiddo avg. sol. time (s) <0.001 <0.001 0.001 <0.001 <0.001 0.001 0.001 0.001 0.001 <0.001 <0.001 0.001
avg. post gap (%) 2.5 2.4 2.0 2.4 3.1 3.4 3.7 2.9 2.6 3.4 2.5 2.3
avg. true gap (%) 1.5 1.4 1.2 0.95 0.98 1.7 1.2 0.74 0.75 1.5 0.84 1.2
solved to opt. (%) 23 23 23 70 63 27 63 50 47 33 44 52

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.006 0.004 0.004 0.004 0.007 0.004 0.006 0.006 0.007 0.005 0.004 0.006
avg. post gap (%) 1.1 1.0 1.1 1.5 1.9 1.7 2.4 2.1 1.8 1.9 1.7 1.2
avg. true gap (%) 0.20 0.073 0.20 0.015 0.0072 0.027 0.024 0.012 0.0044 0.081 0.074 0.034
solved to opt. (%) 43 30 43 87 93 80 90 93 87 64 71 80

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.009 0.007 0.009 0.006 0.007 0.012 0.012 0.009 0.010 0.011 0.009 0.007
avg. post gap (%) 0.97 1.0 1.0 1.3 1.5 1.5 1.7 1.7 1.5 1.6 1.4 1.0
avg. true gap (%) 0.10 0.066 0.17 0.00044 0.0072 0.014 0.012 0 0.0021 0.067 0.026 0.030
solved to opt. (%) 47 47 43 97 93 83 97 100 93 70 78 86

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.096 0.072 0.084 0.070 0.082 0.093 0.091 0.079 0.076 0.098 0.082 0.068
avg. post gap (%) 0.38 0.51 0.42 0.43 0.49 0.48 0.47 0.53 0.41 0.50 0.49 0.39
avg. true gap (%) 0.014 0.044 0.030 0 0 0.011 0 0 0.0011 0.016 0.012 0.0046
solved to opt. (%) 73 53 67 100 100 90 100 100 97 82 86 92

FPTAS-gen(0.1) avg. sol. time (s) 0.065 0.055 0.061 0.048 0.055 0.053 0.049 0.046 0.051 0.060 0.053 0.048
avg. post gap (%) 6.7 6.8 6.8 6.5 6.6 6.5 6.5 6.5 6.5 6.6 6.6 6.6
avg. true gap (%) 0.045 0.042 0.047 0.0057 0.0017 0.0081 0 0 0.0032 0.024 0.020 0.0071
solved to opt. (%) 57 43 57 97 97 90 100 100 90 78 81 87

FPTAS-gen(0.05) avg. sol. time (s) 0.19 0.15 0.17 0.12 0.14 0.14 0.13 0.12 0.12 0.16 0.14 0.13
avg. post gap (%) 3.4 3.4 3.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
avg. true gap (%) 0.020 0.023 0.0015 0 0 0.010 0 0 0.0044 0.0064 0.013 0.0053
solved to opt. (%) 73 50 67 100 100 80 100 100 87 83 81 88

FPTAS-gen(0.01) avg. sol. time (s) 3.2 2.4 2.9 1.7 2.0 2.1 1.7 1.6 1.7 2.5 2.1 1.9
avg. post gap (%) 0.66 0.67 0.67 0.66 0.66 0.66 0.66 0.65 0.65 0.66 0.66 0.66
avg. true gap (%) 0.00081 0.048 0.0074 0 0 0 0 0 0 0.0026 0.0012 0.00059
solved to opt. (%) 93 83 77 100 100 100 100 100 100 91 96 98

CPLEX 10.1 Nat. avg. sol. time (s) 0.028 0.025 0.025 0.044 0.046 0.053 0.050 0.053 0.045 0.045 0.042 0.035

CPLEX 10.1 SP avg. sol. time (s) 0.036 0.029 0.025 0.032 0.031 0.031 0.036 0.030 0.030 0.036 0.029 0.028

Table 5: 25 periods with 13 pairs that violate the co-behaviour property
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K 1000 5000 10000 Ĉ
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000 25% 50% 75%

Megiddo avg. sol. time (s) <0.001 <0.001 <0.001 0.001 0.001 0.001 0.001 0.001 0.001 <0.001 0.001 0.001
avg. post gap (%) 1.2 0.93 0.91 1.4 1.4 1.7 1.4 1.3 1.7 1.6 1.5 0.90
avg. true gap (%) 0.83 0.60 0.59 0.87 0.78 1.0 0.76 0.50 0.69 0.86 0.88 0.48
solved to opt. (%) 6.7 20 20 27 33 47 53 50 27 30 21 43

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.027 0.027 0.023 0.030 0.027 0.027 0.034 0.034 0.033 0.032 0.029 0.027
avg. post gap (%) 0.44 0.38 0.36 0.58 0.60 0.67 0.66 0.84 1.0 0.79 0.63 0.43
avg. true gap (%) 0.090 0.050 0.042 0.016 0.0077 0.0029 0 0.0058 0.0055 0.032 0.020 0.021
solved to opt. (%) 27 47 53 87 87 83 100 93 97 64 76 84

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.058 0.058 0.055 0.060 0.061 0.064 0.072 0.069 0.074 0.070 0.063 0.058
avg. post gap (%) 0.44 0.39 0.36 0.58 0.60 0.67 0.66 0.83 0.99 0.79 0.63 0.42
avg. true gap (%) 0.085 0.046 0.037 0.012 0.0066 0.0029 0 0.078 0 0.030 0.021 0.014
solved to opt. (%) 27 37 60 87 90 83 100 97 100 66 76 86

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.66 0.68 0.64 0.64 0.64 0.64 0.76 0.75 0.81 0.77 0.68 0.62
avg. post gap (%) 0.33 0.32 0.30 0.42 0.36 0.40 0.43 0.42 0.47 0.45 0.40 0.30
avg. true gap (%) 0.033 0.023 0.019 0.0067 0.0053 0.0022 0 0 0 0.018 0.0084 0.0036
solved to opt. (%) 47 53 60 93 93 93 100 100 100 70 83 93

FPTAS-gen(0.1) avg. sol. time (s) 0.44 0.45 0.43 0.42 0.40 0.43 0.40 0.41 0.40 0.46 0.41 0.39
avg. post gap (%) 6.8 6.8 6.7 6.6 6.6 6.6 6.5 6.5 6.4 6.6 6.6 6.6
avg. true gap (%) 0.045 0.026 0.0083 0.0011 0.011 0.0060 0.0019 0.0050 0 0.014 0.012 0.0086
solved to opt. (%) 37 47 70 97 80 83 97 93 100 71 79 84

FPTAS-gen(0.05) avg. sol. time (s) 1.3 1.4 1.3 1.2 1.1 1.2 1.1 1.1 1.1 1.3 1.2 1.1
avg. post gap (%) 3.4 3.4 3.4 3.3 3.3 3.3 3.2 3.3 3.2 3.3 3.3 3.3
avg. true gap (%) 0.025 0.014 0.010 0.0083 0.0054 0.0022 0 0 0 0.012 0.0058 0.0036
solved to opt. (%) 57 63 63 90 90 93 100 100 100 76 86 91

FPTAS-gen(0.01) avg. sol. time (s) 25 26 24 19 18 20 17 16 16 22 20 18
avg. post gap (%) 0.67 0.68 0.68 0.66 0.66 0.67 0.65 0.65 0.65 0.66 0.66 0.66
avg. true gap (%) 0.0011 0.0015 0.0010 0.00039 0 0.00066 0 0 0 0.00065 0.00069 0.00021
solved to opt. (%) 80 87 87 97 100 97 100 100 100 90 94 98

CPLEX 10.1 Nat. avg. sol. time (s) 0.049 0.049 0.049 0.27 0.25 0.21 0.88 1.0 0.63 0.51 0.43 0.19

CPLEX 10.1 SP avg. sol. time (s) 0.066 0.065 0.065 0.080 0.079 0.078 0.067 0.075 0.072 0.074 0.075 0.066

Table 6: 50 periods with 25 pairs that violate the co-behaviour property
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K 1000 5000 10000 Ĉ
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000 25% 50% 75%

Megiddo avg. sol. time (s) 0.001 0.002 0.002 0.002 0.002 0.005 0.004 0.004 0.006 0.004 0.003 0.002
avg. post gap (%) 0.55 0.36 0.44 0.75 0.81 0.66 0.52 0.74 0.63 0.84 0.58 0.40
avg. true gap (%) 0.44 0.24 0.34 0.48 0.60 0.44 0.31 0.45 0.39 0.60 0.39 0.24
solved to opt. (%) 3.3 13 0 23 20 37 33 33 27 12 23 28

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.17 0.18 0.17 0.21 0.21 0.20 0.22 0.23 0.23 0.22 0.20 0.19
avg. post gap (%) 0.14 0.15 0.16 0.28 0.23 0.22 0.21 0.28 0.24 0.26 0.20 0.18
avg. true gap (%) 0.033 0.031 0.053 0.0097 0.017 0.0023 0.00050 0.0011 0.0047 0.024 0.012 0.015
solved to opt. (%) 7 27 7 83 80 93 93 90 83 56 66 67

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.40 0.42 0.40 0.49 0.50 0.48 0.53 0.55 0.57 0.53 0.47 0.45
avg. post gap (%) 0.13 0.14 0.15 0.28 0.23 0.22 0.21 0.28 0.24 0.26 0.20 0.17
avg. true gap (%) 0.022 0.026 0.048 0.0091 0.016 0.0011 0.00050 0.0011 0.000077 0.023 0.0098 0.0082
solved to opt. (%) 13 37 13 87 83 93 93 90 97 56 69 78

FPTAS-gen-LB(0.01) avg. sol. time (s) 4.8 5.4 4.9 5.6 5.8 5.6 6.0 6.4 6.5 6.3 5.6 5.2
avg. post gap (%) 0.12 0.13 0.13 0.28 0.21 0.22 0.21 0.26 0.24 0.24 0.19 0.17
avg. true gap (%) 0.013 0.019 0.026 0.0090 0.00045 0.00032 0.00050 0.00061 0.000077 0.012 0.0049 0.0062
solved to opt. (%) 20 40 20 90 90 97 93 97 97 59 76 80

FPTAS-gen(0.1) avg. sol. time (s) 3.3 3.6 3.5 3.7 3.7 3.7 3.6 3.8 3.9 4.0 3.6 3.4
avg. post gap (%) 6.8 6.8 6.8 6.6 6.6 6.5 6.5 6.5 6.5 6.6 6.6 6.6
avg. true gap (%) 0.019 0.019 0.025 0.012 0.0022 0.0011 0.0017 0.00065 0.0029 0.013 0.0076 0.0069
solved to opt. (%) 13 37 13 80 83 93 90 93 80 52 70 72

FPTAS-gen(0.05) avg. sol. time (s) 10 11 11 10 11 10 10 11 11 11 10 9.7
avg. post gap (%) 3.4 3.4 3.39 3.3 3.3 3.29 3.27 3.27 3.25 3.3 3.3 3.3
avg. true gap (%) 0.0081 0.012 0.012 0.0013 0.00065 0.00032 0.00017 0.00065 0.00075 0.0062 0.0035 0.0022
solved to opt. (%) 23 43 33 90 87 97 93 93 93 62 77 79

FPTAS-gen(0.01) avg. sol. time (s) 172 196 184 160 163 159 140 154 158 180 162 153
avg. post gap (%) 0.68 0.68 0.68 0.66 0.66 0.66 0.66 0.66 0.65 0.66 0.67 0.67
avg. true gap (%) 0.0025 0.00097 0.0026 0.00013 0.00045 0.00032 0.00015 0.00061 0.00024 0.0013 0.00084 0.00055
solved to opt. (%) 37 87 57 97 90 97 97 97 93 77 87 87

CPLEX 10.1 SP avg. sol. time (s) 0.24 0.22 0.22 0.32 0.28 0.30 0.25 0.27 0.28 0.33 0.24 0.22

Table 7: 100 periods with 50 pairs that violate the co-behaviour property
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T 26 50 100
K̄even and ¯̂Kodd 5000 10000 5000 10000 5000 10000

Megiddo avg. sol. time (s) 0.002 0.002 0.002 0.006 0.013 0.018
avg. post. gap (%) 11 13 5.8 6.6 2.6 3.1
avg. true gap (%) 5.3 6.8 3.9 3.7 1.9 2.3
solved to opt. (%) 37 47 17 27 23 37

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.018 0.016 0.10 0.12 0.68 0.73
avg. post. gap (%) 3.8 3.6 1.9 2.7 0.64 0.74
avg. true gap (%) 0.038 0.0060 0.032 0.030 0.014 0.0018
solved to opt. (%) 80 97 73 93 67 97

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.047 0.035 0.28 0.31 2.0 2.1
avg. post. gap (%) 2.3 2.3 1.7 2.0 0.64 0.74
avg. true gap (%) 0.049 0.0060 0.048 0.030 0.014 0.0018
solved to opt. (%) 80 97 73 93 67 97

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.71 0.44 5.2 5.8 35 37
avg. post. gap (%) 0.51 0.57 0.53 0.54 0.45 0.46
avg. true gap (%) 0.0013 0 0.021 0 0.0047 0.0018
solved to opt. (%) 93 100 80 100 80 97

FPTAS-gen(0.1) avg. sol. time (s) 0.17 0.11 1.3 1.2 12 11
avg. post. gap (%) 6.3 6.3 6.4 6.3 6.4 6.4
avg. true gap (%) 0.027 0.0014 0.028 0.0011 0.011 0.0090
solved to opt. (%) 83 97 73 97 70 90

FPTAS-gen(0.05) avg. sol. time (s) 0.52 0.32 4.3 4.0 37 34
avg. post. gap (%) 3.2 3.2 3.2 3.2 3.2 3.2
avg. true gap (%) 0.032 0.0060 0.028 0.0011 0.0077 0
solved to opt. (%) 80 97 73 97 73 100

FPTAS-gen(0.01) avg. sol. time (s) 11 5.9 94 87 726 656
avg. post. gap (%) 0.65 0.65 0.65 0.64 0.65 0.64
avg. true gap (%) 0.0015 0 0.0020 0 0.0019 0
solved to opt. (%) 90 100 90 100 83 100

CPLEX 10.1 Nat. avg. sol. time (s) 0.037 0.032 0.11 0.13

CPLEX 10.1 SP avg. sol. time (s) 0.065 0.042 0.13 0.14 0.55 0.56

Table 8: Two production modes
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B.2 Results without improved lower bound

Tables 9–15 present the results of the computational tests of the algorithms that do not
use the improved lower bound, as described in Sections 5.3 and 5.4.
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K 1000 5000 10000
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000

FPTAS-CB-LB(0.1) avg. sol. time (s) 0.001 0.001 0.002 0.001 <0.001 <0.001 0.001 0.001 0.001
avg. post gap (%) 0.62 0.49 0.58 1.3 1.0 1.3 1.5 1.1 1.2
avg. true gap (%) 0.041 0.014 0.032 0.00012 0.0017 0 0.011 0.00012 0.0023
solved to opt. (%) 77 87 83 97 93 100 83 97 97

FPTAS-CB-LB(0.05) avg. sol. time (s) 0.002 0.002 0.001 0.002 0.002 0.003 0.001 0.002 0.003
avg. post gap (%) 0.58 0.48 0.54 1.1 0.97 1.1 1.2 1.0 1.1
avg. true gap (%) 0.0036 0.0062 0.00068 0 0.0031 0 0.0034 0.00012 0.0023
solved to opt. (%) 97 90 97 100 87 100 93 97 97

FPTAS-CB-LB(0.01) avg. sol. time (s) 0.006 0.003 0.005 0.004 0.007 0.004 0.006 0.008 0.006
avg. post gap (%) 0.30 0.24 0.29 0.38 0.38 0.37 0.44 0.38 0.41
avg. true gap (%) 0 0.00077 0 0 0.00073 0 0.00048 0.00012 0
solved to opt. (%) 100 97 100 100 97 100 97 97 100

FPTAS-CB(0.1) avg. sol. time (s) 0.007 0.008 0.008 0.009 0.007 0.009 0.009 0.011 0.008
avg. post. gap (%) 5.0 5.0 5.1 5.5 5.4 5.5 5.5 5.6 5.6
avg. true gap (%) 0.034 0.026 0.015 0.00012 0.0024 0.0049 0.0089 0.00012 0.0074
solved to opt. (%) 83 87 83 97 90 93 87 97 93

FPTAS-CB(0.05) avg. sol. time (s) 0.015 0.015 0.016 0.018 0.019 0.018 0.018 0.017 0.019
avg. post. gap (%) 2.5 2.5 2.5 2.7 2.7 2.7 2.7 2.8 2.8
avg. true gap (%) 0.0063 0.0095 0.0091 0 0.0017 0 0.0091 0.00012 0.0023
solved to opt. (%) 90 90 90 100 93 100 87 97 97

FPTAS-CB(0.01) avg. sol. time (s) 0.087 0.082 0.083 0.098 0.092 0.092 0.094 0.091 0.091
avg. post. gap (%) 0.49 0.5 0.5 0.53 0.53 0.53 0.55 0.55 0.54
avg. true gap (%) 0 0.0015 0 0.00012 0.00073 0 0.00048 0.00012 0
solved to opt. (%) 100 93 100 97 97 100 97 97 100

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.002 0.002 0.002 0.002 <0.001 0.002 0.002 0.002 0.001
avg. post gap (%) 0.58 0.47 0.56 1.4 1.0 1.4 1.6 1.1 1.2
avg. true gap (%) 0.0029 0.0015 0.015 0 0.0024 0 0.0060 0.00012 0.0023
solved to opt. (%) 97 93 87 100 90 100 90 97 97

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.003 0.002 0.002 0.002 0.004 0.005 0.005 0.005 0.003
avg. post gap (%) 0.58 0.47 0.54 1.3 1.0 1.2 1.3 1.1 1.2
avg. true gap (%) 0 0.00077 0.00068 0 0.0016 0 0 0.00012 0
solved to opt. (%) 100 97 97 100 93 100 100 97 100

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.016 0.012 0.015 0.016 0.015 0.016 0.018 0.018 0.020
avg. post gap (%) 0.43 0.34 0.37 0.51 0.54 0.53 0.62 0.51 0.55
avg. true gap (%) 0 0 0 0 0 0 0.00048 0.00012 0
solved to opt. (%) 100 100 100 100 100 100 97 97 100

FPTAS-gen(0.1) avg. sol. time (s) 0.018 0.020 0.019 0.021 0.021 0.020 0.022 0.021 0.021
avg. post gap (%) 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.7 7.7
avg. true gap (%) 0.0062 0.0015 0.012 0.00012 0.0024 0 0.0055 0.00046 0.0023
solved to opt. (%) 90 93 87 97 90 100 90 93 97

FPTAS-gen(0.05) avg. sol. time (s) 0.043 0.039 0.042 0.044 0.041 0.043 0.047 0.048 0.045
avg. post gap (%) 3.7 3.7 3.7 3.8 3.8 3.8 3.9 3.8 3.9
avg. true gap (%) 0.0029 0.00077 0.0013 0.00012 0.0024 0 0.00048 0.00046 0
solved to opt. (%) 97 97 93 97 90 100 97 93 100

FPTAS-gen(0.01) avg. sol. time (s) 0.25 0.25 0.24 0.28 0.27 0.27 0.28 0.27 0.28
avg. post gap (%) 0.74 0.75 0.75 0.77 0.76 0.77 0.77 0.77 0.77
avg. true gap (%) 0 0 0.00067 0 0 0 0 0.00012 0
solved to opt. (%) 100 100 97 100 100 100 100 97 100

Table 9: 25 periods, satisfies conditions in Theorem 3
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K 1000 5000 10000
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000

FPTAS-CB-LB(0.1) avg. sol. time (s) 0.002 0.002 0.004 0.007 0.005 0.005 0.008 0.007 0.004
avg. post gap (%) 0.24 0.28 0.25 0.46 0.53 0.55 0.56 0.61 0.64
avg. true gap (%) 0.023 0.034 0.054 0.016 0.0080 0.0050 0.0074 0 0.020
solved to opt. (%) 67 60 37 87 87 93 93 100 87

FPTAS-CB-LB(0.05) avg. sol. time (s) 0.009 0.009 0.007 0.008 0.008 0.009 0.010 0.011 0.011
avg. post gap (%) 0.23 0.25 0.21 0.45 0.52 0.54 0.56 0.61 0.63
avg. true gap (%) 0.0081 0.0038 0.010 0.00062 0.0048 0 0.00033 0 0.0030
solved to opt. (%) 80 87 70 97 93 100 97 100 97

FPTAS-CB-LB(0.01) avg. sol. time (s) 0.034 0.033 0.039 0.041 0.045 0.041 0.052 0.052 0.051
avg. post gap (%) 0.19 0.22 0.17 0.29 0.35 0.32 0.37 0.39 0.37
avg. true gap (%) 0.00035 0.00027 0 0 0.00061 0 0 0 0
solved to opt. (%) 93 97 100 100 97 100 100 100 100

FPTAS-CB(0.1) avg. sol. time (s) 0.044 0.044 0.045 0.051 0.051 0.053 0.053 0.056 0.056
avg. post. gap (%) 5.1 5.2 5.2 5.5 5.5 5.5 5.6 5.7 5.6
avg. true gap (%) 0.028 0.035 0.047 0.0062 0.0079 0.0078 0 0 0.0047
solved to opt. (%) 53 50 33 93 90 90 100 100 97

FPTAS-CB(0.05) avg. sol. time (s) 0.091 0.089 0.089 0.10 0.11 0.11 0.12 0.11 0.11
avg. post. gap (%) 2.5 2.5 2.5 2.7 2.7 2.7 2.8 2.8 2.8
avg. true gap (%) 0.015 0.0086 0.014 0.0013 0.0032 0.00015 0 0 0
solved to opt. (%) 70 83 73 97 93 97 100 100 100

FPTAS-CB(0.01) avg. sol. time (s) 0.56 0.57 0.56 0.68 0.69 0.69 0.72 0.72 0.73
avg. post. gap (%) 0.50 0.50 0.50 0.54 0.53 0.54 0.55 0.55 0.55
avg. true gap (%) 0.00020 0.0080 0 0 0 0 0 0 0
solved to opt. (%) 97 97 100 100 100 100 100 100 100

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.010 0.009 0.009 0.014 0.010 0.011 0.015 0.013 0.012
avg. post gap (%) 0.23 0.25 0.21 0.45 0.52 0.55 0.56 0.61 0.63
avg. true gap (%) 0.0072 0.0051 0.017 0.0041 0.0026 0.0026 0 0 0.0018
solved to opt. (%) 80 83 63 97 97 97 100 100 97

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.017 0.019 0.018 0.019 0.022 0.020 0.026 0.026 0.027
avg. post gap (%) 0.22 0.25 0.20 0.45 0.52 0.54 0.56 0.61 0.62
avg. true gap (%) 0.00091 0.0019 0.0057 0 0 0 0 0 0
solved to opt. (%) 90 90 80 100 100 100 100 100 100

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.095 0.093 0.098 0.11 0.12 0.12 0.14 0.15 0.14
avg. post gap (%) 0.21 0.24 0.19 0.35 0.45 0.40 0.46 0.46 0.46
avg. true gap (%) 0 0 0 0 0 0 0 0 0
solved to opt. (%) 100 100 100 100 100 100 100 100 100

FPTAS-gen(0.1) avg. sol. time (s) 0.11 0.12 0.12 0.13 0.13 0.14 0.14 0.14 0.14
avg. post gap (%) 7.5 7.5 7.5 7.7 7.7 7.7 7.7 7.7 7.7
avg. true gap (%) 0.0047 0.015 0.014 0.0013 0 0.0024 0 0 0
solved to opt. (%) 83 80 63 97 100 93 100 100 100

FPTAS-gen(0.05) avg. sol. time (s) 0.25 0.25 0.25 0.28 0.29 0.30 0.31 0.30 0.30
avg. post gap (%) 3.7 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.9
avg. true gap (%) 0.00074 0.0019 0.0049 0 0 0 0 0 0
solved to opt. (%) 93 87 83 100 100 100 100 100 100

FPTAS-gen(0.01) avg. sol. time (s) 1.6 1.6 1.6 1.8 1.9 1.9 2.0 2.0 2.0
avg. post gap (%) 0.75 0.75 0.75 0.77 0.77 0.77 0.77 0.78 0.77
avg. true gap (%) 0.00026 0.00031 0 0 0 0 0 0 0
solved to opt. (%) 97 93 100 100 100 100 100 100 100

Table 10: 50 periods, satisfies conditions in Theorem 3
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K 1000 5000 10000
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000

FPTAS-CB-LB(0.1) avg. sol. time (s) 0.025 0.028 0.025 0.031 0.031 0.033 0.038 0.038 0.036
avg. post gap (%) 0.078 0.078 0.094 0.17 0.20 0.18 0.25 0.24 0.20
avg. true gap (%) 0.017 0.019 0.020 0.012 0.013 0.0092 0.010 0.0042 0.0049
solved to opt. (%) 60 47 43 57 67 80 80 90 83

FPTAS-CB-LB(0.05) avg. sol. time (s) 0.047 0.047 0.047 0.062 0.061 0.059 0.071 0.074 0.070
avg. post gap (%) 0.064 0.069 0.081 0.16 0.19 0.18 0.24 0.24 0.20
avg. true gap (%) 0.0027 0.0098 0.0072 0.0046 0.0033 0.00023 0.0039 0 0.0025
solved to opt. (%) 87 60 57 77 83 97 87 100 83

FPTAS-CB-LB(0.01) avg. sol. time (s) 0.27 0.26 0.27 0.36 0.35 0.37 0.44 0.45 0.44
avg. post gap (%) 0.061 0.059 0.074 0.16 0.19 0.17 0.23 0.22 0.20
avg. true gap (%) 0 0 0.00032 0.00035 0.00064 0 0 0 0 0.00055
solved to opt. (%) 100 100 87 97 93 100 100 100 90

FPTAS-CB(0.1) avg. sol. time (s) 0.28 0.27 0.28 0.34 0.34 0.35 0.38 0.38 0.38
avg. post. gap (%) 5.2 5.2 5.1 5.5 5.6 5.6 5.6 5.6 5.6
avg. true gap (%) 0.027 0.043 0.041 0.0050 0.026 0.0081 0.0020 0.0064 0.0014
solved to opt. (%) 50 40 43 77 50 87 93 87 87

FPTAS-CB(0.05) avg. sol. time (s) 0.60 0.58 0.60 0.76 0.74 0.76 0.85 0.86 0.85
avg. post. gap (%) 2.5 2.5 2.5 2.7 2.7 2.7 2.8 2.8 2.8
avg. true gap (%) 0.0071 0.0097 0.011 0.0023 0.0016 0.0024 0.033 0 0.00055
solved to opt. (%) 80 73 60 87 83 87 87 100 90

FPTAS-CB(0.01) avg. sol. time (s) 4.1 3.9 4.1 5.2 5.1 5.2 5.8 5.8 5.8
avg. post. gap (%) 0.50 0.50 0.50 0.54 0.54 0.54 0.55 0.55 0.55
avg. true gap (%) 0 0.0015 0.00058 0 0.000092 0.00037 0.00035 0 0.000037
solved to opt. (%) 100 90 83 100 97 93 97 100 97

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.060 0.059 0.059 0.075 0.071 0.072 0.086 0.090 0.083
avg. post gap (%) 0.071 0.068 0.082 0.16 0.19 0.18 0.24 0.24 0.20
avg. true gap (%) 0.0097 0.0092 0.0087 0.0018 0.0011 0.00037 0.00041 0.0033 0.0012
solved to opt. (%) 63 67 53 87 87 93 97 93 87

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.12 0.11 0.12 0.15 0.14 0.15 0.17 0.17 0.17
avg. post gap (%) 0.063 0.060 0.076 0.16 0.19 0.18 0.24 0.24 0.20
avg. true gap (%) 0.0014 0.0011 0.0030 0.00067 0.0012 0.00037 0.00036 0 0.00055
solved to opt. (%) 90 93 73 93 87 93 97 100 90

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.80 0.76 0.79 1.0 1.0 1.1 1.3 1.3 1.3
avg. post gap (%) 0.061 0.059 0.074 0.16 0.19 0.18 0.24 0.23 0.20
avg. true gap (%) 0 0 0.00012 0 0.000092 0 0 0 0.000037
solved to opt. (%) 100 100 90 100 97 100 100 100 97

FPTAS-gen(0.1) avg. sol. time (s) 0.75 0.74 0.76 0.93 0.92 0.94 1.0 1.0 1.0
avg. post gap (%) 7.5 7.5 7.5 7.7 7.7 7.7 7.7 7.7 7.7
avg. true gap (%) 0.011 0.0070 0.013 0.0021 0.0012 0.0015 0.0040 0 0.00055
solved to opt. (%) 63 77 60 87 87 93 90 100 90

FPTAS-gen(0.05) avg. sol. time (s) 1.7 1.6 1.7 2.1 2.0 2.1 2.3 2.3 2.3
avg. post gap (%) 3.7 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.9
avg. true gap (%) 0.0015 0.0022 0.0024 0.00035 0.0021 0.00044 0.00058 0 0.00025
solved to opt. (%) 87 87 83 97 83 97 97 100 93

FPTAS-gen(0.01) avg. sol. time (s) 11 10 11 13 13 13 15 15 15
avg. post gap (%) 0.75 0.75 0.75 0.77 0.77 0.77 0.77 0.77 0.77
avg. true gap (%) 0 0 0.00012 0 0 0.00014 0 0 0.000037
solved to opt. (%) 100 100 93 100 100 97 100 100 97

Table 11: 100 periods, satisfies conditions in Theorem 3
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K 1000 5000 10000
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.004 0.005 0.003 0.004 0.001 0.005 0.004 0.003 0.003
avg. post gap (%) 1.1 0.99 1.1 1.4 2.0 1.7 2.5 2.1 1.8
avg. true gap (%) 0.20 0.058 0.19 0.00044 0.0017 0.021 0 0.0060 0.0083
solved to opt. (%) 43 37 40 97 97 83 100 97 87

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.007 0.006 0.007 0.007 0.007 0.010 0.009 0.010 0.007
avg. post gap (%) 1.0 1.0 1.0 1.4 1.7 1.6 2.0 1.9 1.6
avg. true gap (%) 0.10 0.068 0.16 0.00044 0 0.0090 0 0 0.0010
solved to opt. (%) 50 43 40 97 100 87 100 100 97

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.090 0.067 0.079 0.063 0.075 0.086 0.083 0.071 0.071
avg. post gap (%) 0.43 0.58 0.49 0.54 0.61 0.61 0.58 0.66 0.51
avg. true gap (%) 0.014 0.033 0.030 0 0 0.011 0 0 0
solved to opt. (%) 73 57 67 100 100 90 100 100 100

FPTAS-gen(0.1) avg. sol. time (s) 0.063 0.053 0.059 0.047 0.053 0.053 0.047 0.044 0.046
avg. post gap (%) 7.4 7.5 7.4 7.6 7.7 7.6 7.7 7.7 7.7
avg. true gap (%) 0.031 0.051 0.043 0.00044 0.0051 0.0091 0 0.0060 0.0033
solved to opt. (%) 60 43 63 97 93 83 100 97 90

FPTAS-gen(0.05) avg. sol. time (s) 0.18 0.15 0.16 0.12 0.13 0.14 0.12 0.11 0.12
avg. post gap (%) 3.7 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.9
avg. true gap (%) 0.025 0.022 0.014 0.00044 0 0.010 0 0 0
solved to opt. (%) 73 63 70 97 100 80 100 100 100

FPTAS-gen(0.01) avg. sol. time (s) 3.2 2.4 2.8 1.7 2.0 2.1 1.7 1.5 1.7
avg. post gap (%) 0.73 0.74 0.73 0.76 0.77 0.77 0.77 0.77 0.77
avg. true gap (%) 0.00081 0.0028 0.0057 0 0 0.0012 0 0 0
solved to opt. (%) 93 83 80 100 100 97 100 100 100

Table 12: 25 periods with 13 pairs that violate the co-behaviour property
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K 1000 5000 10000
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.025 0.024 0.024 0.026 0.025 0.024 0.028 0.031 0.029
avg. post gap (%) 0.44 0.38 0.37 0.57 0.60 0.67 0.66 0.83 1.0
avg. true gap (%) 0.085 0.049 0.042 0.012 0.013 0.0029 0.0046 0.0014 0
solved to opt. (%) 23 40 47 87 77 83 93 97 100

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.054 0.056 0.052 0.054 0.054 0.055 0.062 0.062 0.065
avg. post gap (%) 0.44 0.39 0.36 0.57 0.59 0.67 0.66 0.83 1.0
avg. true gap (%) 0.085 0.051 0.039 0.0093 0.0054 0.0041 0 0.00078 0
solved to opt. (%) 23 40 50 90 90 80 100 97 100

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.62 0.63 0.60 0.59 0.59 0.60 0.71 0.69 0.76
avg. post gap (%) 0.35 0.34 0.32 0.48 0.42 0.47 0.51 0.54 0.59
avg. true gap (%) 0.033 0.022 0.019 0.0067 0.0054 0.0022 0 0 0
solved to opt. (%) 47 57 60 93 90 93 100 100 100

FPTAS-gen(0.1) avg. sol. time (s) 0.43 0.44 0.42 0.40 0.38 0.41 0.39 0.39 0.38
avg. post gap (%) 7.5 7.5 7.5 7.7 7.7 7.7 7.7 7.7 7.7
avg. true gap (%) 0.044 0.020 0.016 0.0027 0.0053 0.0029 0.0018 0 0.0054
solved to opt. (%) 37 53 50 93 87 83 97 100 93

FPTAS-gen(0.05) avg. sol. time (s) 1.3 1.3 1.2 1.1 1.1 1.2 1.1 1.1 1.0
avg. post gap (%) 3.7 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.9
avg. true gap (%) 0.0058 0.013 0.0097 0.0067 0.0054 0.0041 0 0.00078 0
solved to opt. (%) 67 57 67 93 90 80 100 97 100

FPTAS-gen(0.01) avg. sol. time (s) 25 25 24 18 17 19 17 16 15
avg. post gap (%) 0.75 0.75 0.75 0.77 0.77 0.77 0.77 0.77 0.77
avg. true gap (%) 0.0020 0.0015 0.0011 0.00040 0 0.00066 0 0 0
solved to opt. (%) 77 87 83 97 100 97 100 100 100

Table 13: 50 periods with 25 pairs that violate the co-behaviour property
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K 1000 5000 10000
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.16 0.16 0.15 0.18 0.18 0.18 0.19 0.20 0.21
avg. post gap (%) 0.13 0.14 0.16 0.28 0.23 0.22 0.21 0.28 0.24
avg. true gap (%) 0.027 0.027 0.054 0.011 0.015 0.0029 0.0012 0.00065 0.0024
solved to opt. (%) 17 30 7 80 80 93 90 93 83

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.37 0.39 0.36 0.44 0.46 0.43 0.48 0.50 0.52
avg. post gap (%) 0.13 0.14 0.15 0.28 0.23 0.22 0.21 0.28 0.24
avg. true gap (%) 0.022 0.024 0.042 0.0093 0.015 0.00083 0.0012 0.0011 0.00024
solved to opt. (%) 13 37 17 83 87 93 87 90 93

FPTAS-gen-LB(0.01) avg. sol. time (s) 4.6 5.0 4.6 5.3 5.5 5.2 5.5 6.0 6.1
avg. post gap (%) 0.12 0.13 0.13 0.28 0.21 0.22 0.21 0.27 0.24
avg. true gap (%) 0.013 0.019 0.024 0.0092 0.00045 0.00032 0.00017 0.00061 0.000077
solved to opt. (%) 17 40 20 87 90 97 93 97 97

FPTAS-gen(0.1) avg. sol. time (s) 3.2 3.5 3.4 3.6 3.6 3.5 3.5 3.7 3.8
avg. post gap (%) 7.5 7.5 7.5 7.7 7.7 7.7 7.7 7.7 7.7
avg. true gap (%) 0.012 0.025 0.025 0.00091 0.0020 0.00083 0.0036 0.00061 0.0035
solved to opt. (%) 10 30 17 87 87 93 80 97 87

FPTAS-gen(0.05) avg. sol. time (s) 9.7 11 10 10 10 10 9.6 10 11
avg. post gap (%) 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9
avg. true gap (%) 0.0099 0.012 0.0093 0.00088 0.00045 0.00032 0.00052 0.00061 0.00024
solved to opt. (%) 20 40 37 90 90 97 90 97 93

FPTAS-gen(0.01) avg. sol. time (s) 169 193 181 157 160 156 137 151 155
avg. post gap (%) 0.75 0.75 0.75 0.77 0.77 0.77 0.77 0.78 0.77
avg. true gap (%) 0.0025 0.00016 0.0024 0.00017 0.00045 0.00032 0.00017 0.00061 0.000077
solved to opt. (%) 40 93 57 93 90 97 93 97 97

Table 14: 100 periods with 50 pairs that violate the co-behaviour property
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T 26 50 100
K̄even and ¯̂Kodd 5000 10000 5000 10000 5000 10000

FPTAS-gen-LB(0.1) avg. sol. time (s) 0.018 0.010 0.092 0.098 0.59 0.63
avg. post. gap (%) 4.3 4.1 1.9 2.8 0.65 0.74
avg. true gap (%) 0.038 0.0060 0.028 0.030 0.016 0.0018
solved to opt. (%) 80 97 73 93 67 97

FPTAS-gen-LB(0.05) avg. sol. time (s) 0.042 0.030 0.25 0.28 1.8 1.9
avg. post. gap (%) 2.8 2.7 1.8 2.4 0.64 0.74
avg. true gap (%) 0.038 0.0060 0.044 0.029 0.014 0.0018
solved to opt. (%) 80 97 73 97 70 97

FPTAS-gen-LB(0.01) avg. sol. time (s) 0.66 0.41 5.0 5.5 33 35
avg. post. gap (%) 0.66 0.73 0.71 0.74 0.54 0.57
avg. true gap (%) 0.0013 0 0.021 0 0.0047 0.0018
solved to opt. (%) 93 100 80 100 80 97

FPTAS-gen(0.1) avg. sol. time (s) 0.16 0.11 1.2 1.1 11 10
avg. post. gap (%) 7.6 7.6 7.7 7.7 7.8 7.8
avg. true gap (%) 0.038 0.0060 0.050 0 0.014 0.0029
solved to opt. (%) 83 97 70 100 70 93

FPTAS-gen(0.05) avg. sol. time (s) 0.50 0.31 4.1 3.9 36 33
avg. post. gap (%) 3.8 3.8 3.8 3.8 3.9 3.9
avg. true gap (%) 0.032 0.0060 0.028 0 0.0077 0
solved to opt. (%) 80 97 77 100 73 100

FPTAS-gen(0.01) avg. sol. time (s) 11 5.7 91 84 705 639
avg. post. gap (%) 0.77 0.77 0.77 0.77 0.77 0.77
avg. true gap (%) 0.0013 0 0.0020 0 0.0017 0
solved to opt. (%) 93 100 90 100 87 100

Table 15: Two production modes
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