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Abstract
A mean of a sequence π = (x1, x2, . . . , xk) of elements of a finite metric

space (X, d) is an element x for which
∑k

i=1 d2(x, xi) is minimum. The function
Mean whose domain is the set of all finite sequences on X and is defined by
Mean(π) = { x | x is a mean of π} is called the mean function on X. In this
note, the mean function on finite trees is characterized axiomatically.

Keywords: Location function, mean function, median function, consensus function,
tree
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1 Introduction

Let (X, d) be a finite metric space and set X∗ =
⋃

k≥1

Xk, where Xk is the k-fold

Cartesian product of X. Elements of X∗ are called profiles and denoted by π =
(x1, x2, . . . , xk) with length |π| = k. A typical problem in location theory and consen-
sus theory is the following: Given a collection of k users (voters, customers, clients,
etc.) with each user having a preferred location point in X, find a set of elements of X
that jointly satisfy the users with respect to some well-defined criteria. Modelling this
situation requires, at the minimum, the notion of a location function on X, which is a
function L : X∗ −→ 2X\{∅}, where 2X denotes the set of all subsets of X. Because
locating points “closest” to a given profile is a natural criterion, three straightforward
examples of location functions are:

(a) The center function Cen with

Cen(π) = {x ∈ X : e(x, π) is minimum}

where e(x, π) = max{d(x, x1), d(x, x2), . . . , d(x, xk)} is the eccentricity of π.

(b) The median function Med with

Med(π) = {x ∈ X : Sπ(x) is minimum}

where Sπ(x) =
∑k

i=1 d(x, x1) is the status of π.

(c) The mean function Mean with

Mean(π) = {x ∈ X : SSπ(x) is minimum}

where SSπ(x) =
∑k

i=1 d2(x, x1) is the square status if π.

Location functions can be viewed as a special instance of consensus functions. A
consensus function is a model to describe a rational process to obtain consensus among
a group of agents or clients. The input of the function consists of certain information
about the agents, and the output concerns the issue, about which consensus should be
reached. The rationality of the process is guaranteed by the fact that the consensus
function satisfies certain “rational” rules or “consensus axioms”. A typical question in
consensus theory is: which set of axioms characterizes a given consensus function. The
theory of consensus is widely studied and used, e.g. in Economics and Social Choice
Theory, see [1, 2], and in Biomathematics, see [6]. Holzman [8] was the first to study
location functions from the axiomatic perspective.

We are concerned with location on finite connected graphs, so let G = (V,E) be
such a graph, and let d be the usual distance function on G, where d(x, y) is the
length of a shortest path between x and y. Clearly (V, d) is a finite metric space.

2



Notice that a profile on a graph G is simply a sequence of vertices where repetitions
are allowed. Among the location functions given above, the median function has been
axiomatically characterized in several contexts, see e.g. [8, 3, 4, 10, 9]. In this note we
consider the case when the graph is a tree T = (V, E), i.e. a connected graph without
cycles. McMorris, Roberts, and Wang [4] gave an axiomatic characterization for the
center function on finite trees, see also [13], but not much is known for more general
finite graphs. With respect to the mean function, Holzman [8] has given the first
characterization of this function for trees in the “continuous case”. Informally, a tree
T has an infinite number of elements in the continuous case , its edges are considered to
be rectifiable curves, with π and L(π) allowed to be located anywhere on edges. In this
context Vohra [14] has given an axiomatic characterization for the median function,
and also a new characterization for the mean function using a set of axioms different
from those used by Holzman. See Foster and Vohra [7] for related results.

Because the optimization criterion for the mean function is just as natural as that
for the median, it is surprising that not much is known about the mean function on
finite metric spaces from the axiomatic point of view. Biagi [5] finds a set of properties
necessarily satisfied by the mean function on finite trees but they are not sufficient to
provide a complete axiomatic characterization for the mean function. We will discuss
this approach below as we move toward the goal of this paper, which is to give an
axiomatic characterization of the mean function on finite trees.

2 Axioms and Preparatory Results

From now on T = (V, E) will be used to represent a finite tree. If π is a profile on
T , then from [5] we know that Mean(π) is a K1 or K2 (one vertex, or two adjacent
vertices).

The following axioms could reasonably be expected to be satisfied by a well-behaved
location function. Indeed in [5] it is noted that the location function Mean satisfies
these properties on a finite tree.

Let L be a location function on T = (V, E).

Faithfulness (F) : L((x)) = {x}, for all x ∈ V .

Middleness (Mid) : Let x, y ∈ V . If d(x, y) is even, then L((x, y)) = K1 where
d(x,K1) = d(y, K1) = d(x, y)/2. If d(x, y) is odd, then L((x, y)) = K2 where
d(x,K2) = d(y, K2).

Consistency (C) : If π1 = (x1, x2, . . . , xk) and π2 = (y1, y2, . . . , ys) are profiles with
L(π1)∩L(π2) 6= ∅, then L(π) = L(π1)∩L(π2) with π = (x1, x2, . . . , xk, y1, y2, . . . , ys).

Anonymity (A) : Let π = (x1, x2, . . . , xk) be a profile on T and let σ be any permu-
tation of {1, 2, . . . , k}, then L(π) = L(πσ), where πσ = (xσ(1), xσ(2), . . . , xσ(p) ).

These four axioms are not independent: Faithfulness follows from Consistency and
Middleness.
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Lemma 1 Let L be a location function on T . If L satisfies axioms (Mid) and (C),
then L satisfies axiom (F ).

Proof. Let z be a vertex of T and let π = (z, z). Since d(z, z) = 0 is even, then by
axiom (Mid) we have

L(π) = L((z, z)) = {z} (1)

On the other hand, L((z)) = L((z)) ∩ L((z)) 6= ∅, so axiom (C) gives

L((z)) ∩ L((z)) = L((z, z)) = L(π) = {z}. (2)

and thus L((z)) = {z}. 2

In light of a similar result for the median function on trees [3], it was natural
to conjecture that (C), (Mid), and (A) characterize Mean among all the location
functions on trees. However, there are examples of location functions that satisfy
axioms (C), (Mid), and (A) that are not equal to the mean function. For instance,
let π = (x1, x2, . . . , xn) be a profile on T and define the cube status of a vertex v with
respect to π as

CSπ(v) =
k∑

i=1

d3(v, xi).

Now define the location function Cube by

Cube(π) = {v ∈ V | CSπ(v) ≤ CSπ(x) ∀x ∈ V }.

It was shown in [5] that Cube satisfies (C), (Mid), and (A). To show that Mean(π) 6=
Cube(π) consider the path P (v1, v10) = v1v2 . . . v10 on ten vertices and the profile
π = (v1, v2, v10) on P (v1, v10). It is straightforward to verify that Mean(π) = {v4} and
Cube(π) = {v5}.

Next, through a series of Lemmas, we establish properties of Mean and location
functions that satisfy some of the previously listed axioms. This allows us to propose
a new technical axiom that enables us to prove our main result in the next section.

The following lemma was proved in [5].

Lemma 2 Let π = (x1, x2, . . . , xn) be a profile on T . If u, v, w are distinct vertices
such that uw,wv ∈ E, then

SSπ(w) < Max{SSπ(u), SSπ(v)}.

Next we prove a lemma that can be viewed as an extension of Lemma 2.

Lemma 3 Let π = (x1, x2, . . . , xn) be a profile on T . If m ∈ Mean(π) and P (m, ys) =
my1y2 . . . ys is a path such that y1 /∈ Mean(π), then

SSπ(m) < SSπ(y1) < SSπ(y2) < · · · < SSπ(ys).
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Proof. We use induction on s. The result is valid for s = 1 because y1 /∈ Mean(π)
implies SSπ(m) < SSπ(y1). Assume the lemma is true for any path that contains at
most s vertices different than m and let

P (m, ys+1) = my1y2 . . . ysys+1

be a path such that y1 /∈ Mean(π). The induction hypothesis implies

SSπ(ys−1) < SSπ(ys). (3)

Since ys is adjacent to both ys−1 and ys+1, then Lemma 2 yields

SSπ(ys) < Max{SSπ(ys−1), SSπ(ys+1)}. (4)

Combining (3) and (4), we obtain SSπ(ys) < SSπ(ys+1). This proves

SSπ(m) < SSπ(y1) < SSπ(y2) < · · · < SSπ(ys) < SSπ(ys+1),

which completes the proof. 2

Since the mean of a profile on a tree is K1 or K2, the following is obvious.

Lemma 4 Let π) be a profile on T . Then Mean(π) = {a, b} if and only if a is adjacent
to b and SSπ(a) = SSπ(b).

The process of finding a vertex x that belongs to the set Mean(π) is a global
property, which requires comparing SSπ(x) against the square status of every vertex
on T . If we know in advance that the mean of π is a set with two elements, then
Lemma 4 gives a method that avoids a lot of calculations. For any given vertex x, we
first obtain the set of neighbors of x, and if we are lucky to find in this set a vertex y
satisfying the condition SSπ(x) = SSπ(y), then we know that Mean(π) = {x, y}.

We would like to have a similar local procedure that we can apply when |Mean(π)| =
1. Notice that if u ∈ Mean(π), then

SSπ(u) ≤ SSπ(z) ∀z ∈ V.

In particular
SSπ(u) ≤ SSπ(z)

for any vertex z adjacent to u. This suggests that in trying to discover if a vertex x is
in the set Mean(π), we could first verify that SSπ(x) is less or equal than the square
status of every neighbor of x. If that conditions holds, then x is a good candidate to
be in the mean of π. This argument motivates the following definition.

Definition 1 Let π be a profile on T . A vertex u satisfies the mean condition with
respect to π if

SSπ(u) ≤ SSπ(z)

for any vertex z adjacent to u.
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The following lemma shows that the elements of the set Mean(π) are precisely the
vertices that satisfy the mean condition with respect to π.

Lemma 5 Let π be a profile on T . Then u ∈ Mean(π) if and only if u satisfies the
mean condition with respect to π.

Proof. It is clear that if u ∈ Mean(π), then u satisfies the mean condition with respect
to π. Conversely, let u be a vertex satisfying the mean condition with respect to π
and assume u /∈ Mean(π). Let x ∈ Mean(π) be a vertex such that d(Mean(π), u) =
d(x, u), and let

P (x, u) = xv1v2 . . . vsu

be the path from x to u. By Lemma 3 we obtain

SSπ(x) < SSπ(v1) < SSπ(v2) < · · · < SSπ(vs) < SSπ(u).

We see that vs is adjacent to u and SSπ(vs) < SSπ(u). However, this contradicts that
u satisfies the mean condition with respect to π. This shows that u ∈ Mean(π). 2

Let π = (x1, x2, . . . , xn) be a profile on T , and let z ∈ V . Define the profile π ¦ z as
follows

π ¦ z = (x1, x2, . . . , xn, z).

Lemma 6 Let π = (x1, x2, . . . , xn) be a profile on T . Let L be a location function
satisfying axioms (F ) and (C). If z ∈ L(π), then L(π ¦ z) = {z}.

Proof. Define the profile β = (z), and notice that axioms (F ) and (C) imply

L(π ¦ z) = L(π) ∩ L(β) = {z},

and we are done. 2

The next lemma shows that the mean function satisfies also the converse of Lemma 6.

Lemma 7 Let π be a profile on T . If y is a vertex such that Mean(π ¦ y) = {y}, then
y ∈ Mean(π).

Proof. Let z be a vertex adjacent to y, and observe that Mean(π ¦ y) = {y} implies

SSπ¦y(y) < SSπ¦y(z).

Note that

SSπ¦y(y) = SSπ(y),

SSπ¦y(z) = SSπ(z) + 1,
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which means
SSπ(y) ≤ SSπ(z).

Since this is true for any vertex z adjacent to y, it follows that y satisfies the mean
condition with respect to π. By Lemma 5, we have y ∈ Mean(π). 2

In the search for mean vertices we might proceed as follows. We are at vertex a
and compare the square status of a with that of an adjacent vertex b. If the square
status of b is smaller than that of a we “improve” our position by moving to b. Now
we compare the square status of b with that of a new vertex c adjacent to b. Thus we
have to compare the square status of adjacent vertices but also of three consecutive
vertices on a path of length 2. Therefore, we introduce the following notation.

Let π = (x1, x2, . . . , xn) be a profile on T and assume ab, bc ∈ E. Denote by πab the
profile that contains the elements x of π (in the same order) that are closer to a than
to b, that is, satisfy the condition

d(a, x) + 1 = d(b, x).

Notice that the vertex x appears in πab as many times as it appears in π.
Similarly, denote by πabc the profile that contains the elements x of π that satisfy the
following conditions

d(b, x) + 1 = d(a, x),

d(b, x) + 1 = d(c, x).

We use these profiles to define two quantities. The first could be considered as a surplus
when comparing the square status of the adjacent vertices a and b. The second one
could be considered as an indifference count with respect to a and c by computing the
distance sum of all the vertices having equal distance to a and c. The use of these
quantities will become clear in the following computations.

Rπ(a, b) =
∑

x∈πba

d(b, x)−
∑

x∈πab

d(b, x),

Dπ(a, b, c) = 2
∑

x∈πabc

d(b, x).

By Anonymity we may write

π = πabπba as well as π = πabπabcπcb.

The representation of π as π = πabπba leads to the following relationship between
Rπ(a, b), SSπ(b), and SSπ(a).

SSπ(a)− SSπ(b) = 2Rπ(a, b) + |π|. (5)
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Using the identity SSπ(a)−SSπ(b) = −[SSπ(b)−SSπ(a)] and (5) we get the following
connection between Rπ(a, b) and Rπ(b, a):

Rπ(a, b) = −Rπ(b, a)− |π|. (6)

Similarly, from π = πabπabcπcb we obtain

SSπ(a)− SSπ(b) = −2
∑

x∈πab

d(b, x) + 2
∑

x∈πabc

d(b, x) + 2
∑
x∈πcb

d(b, x) + |π| (7)

SSπ(c)− SSπ(b) = 2
∑

x∈πab

d(b, x) + 2
∑

x∈πabc

d(b, x)− 2
∑
x∈πcb

d(b, x) + |π|. (8)

Next we prove two lemmas that we need later.

Lemma 8 Let π = (x1, x2, . . . , xn) be a profile on T . If ab, bc ∈ E, then

Rπ(a, b) + Rπ(c, b) = Dπ(a, b, c).

Proof. Adding (7) and (8), we get

[SSπ(a)− SSπ(b)] + [SSπ(c)− SSπ(b)] = 4
∑

x∈πabc

d(b, x) + 2|π|. (9)

From (5) we obtain

SSπ(a)− SSπ(b) = 2Rπ(a, b) + |π|,
SSπ(c)− SSπ(b) = 2Rπ(c, b) + |π|.

Notice also that
4

∑
x∈πabc

d(b, x) = 2Dπ(a, b, c).

When we substitute these identities in (9), we obtain

Rπ(a, b) + Rπ(c, b) = Dπ(a, b, c),

which completes the proof. 2

Lemma 9 Let π = (x1, x2, . . . , xn) be a profile on T . If |π| is odd, then |Mean(π)| = 1.

Proof. Assume Mean(π) = {a, b}, then SSπ(b) = SSπ(a). Since a is adjacent to b,
it follows from (5) that

SSπ(b)− SSπ(a) = 2Rπ(b, a) + |π| = 0.

This means that |π| is even, and contradicts the assumption that |π| is odd. Conse-
quently, we have |Mean(π)| = 1. 2

Our next result will be used to define a special property for location functions.
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Lemma 10 Let π be a profile on T . If ab, bc ∈ E and SSπ(a) < SSπ(b) < SSπ(c),
then Rπ(b, a) + Rπ(c, b) > Dπ(a, b, c).

Proof. From (7) we obtain

SSπ(b)− SSπ(a) = 2
∑

x∈πab

d(b, x)− 2
∑

x∈πabc

d(b, x)− 2
∑
x∈πcb

d(b, x)− |π|. (10)

Adding (10) and (8), we get

[SSπ(b)− SSπ(a)] + [SSπ(c)− SSπ(b)] = 4
∑

x∈πab

d(b, x)− 4
∑
x∈πcb

d(b, x). (11)

Since SSπ(a) < SSπ(b), then (10) implies

2
∑

x∈πab

d(b, x)− 2
∑

x∈πabc

d(b, x)− 2
∑
x∈πcb

d(b, x)− |π| > 0.

2
∑

x∈πab

d(b, x)− 2
∑
x∈πcb

d(b, x) > 2
∑

x∈πabc

d(b, x) + |π|.

We use this to rewrite (11) in the following way

[SSπ(b)− SSπ(a)] + [SSπ(c)− SSπ(b)] > 4
∑

x∈πabc

d(b, x) + 2|π|. (12)

From (5) we obtain

SSπ(b)− SSπ(a) = 2Rπ(b, a) + |π|,
SSπ(c)− SSπ(b) = 2Rπ(c, b) + |π|.

Substituting this in (12), we get

[2Rπ(b, a) + |π|] + [2Rπ(c, b) + |π|] > 2Dπ(a, b, c) + 2|π|,
so, finally, we get

Rπ(b, a) + Rπ(c, b) > Dπ(a, b, c).

2

The following result is a simple corollary of Lemma 10.

Corollary 1 Let π be a profile on T . If Mean(π) = {a}, then Rπ(b, a) + Rπ(c, b) >
Dπ(a, b, c) whenever ab, bc ∈ E.

Corollary 1 is the motivation for the definition of the following property for a
location function.
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Figure 1: Mean does not satisfy converse of (Z)

Property (Z) : Let π = (x1, x2, . . . , xn) be a profile and L be a location function on
T . If L(π) = {a}, then Rπ(b, a) + Rπ(c, b) > Dπ(a, b, c) whenever ab, bc ∈ E.

To get a feeling for this condition, note that the converse of property (Z) does not
necessarily hold when L is the mean function for trees. We will give an example of a
tree T and a profile π for which the converse of property (Z) fails for the mean function.

Using the tree T given in Fig. 1, define the profile π = (w1, w2, w3, w4, w5, w6, w7, w8),
and notice that Mean(π) = {w2, w3}. For vertex w2 we have

w2w3, w3w4 ∈ E,

Rπ(w3, w2) = −4,

Rπ(w4, w3) = 8,

Dπ(w2, w3, w4) = 2,

then
Rπ(w3, w2) + Rπ(w4, w3) > Dπ(w2, w3, w4).

Notice that
Rπ(w4, w3) = Rπ(w6, w3) = Rπ(w8, w3) = 7,

this implies

Rπ(w3, w2) + Rπ(w6, w3) > Dπ(w2, w3, w6),

Rπ(w3, w2) + Rπ(w8, w3) > Dπ(w2, w3, w8).

From this we have that w2 satisfies the condition:

Rπ(a, w2) + Rπ(b, a) > Dπ(w2, a, b) whenever w2a, ab ∈ E.

If we assume that the converse of property (Z) is true, then Mean(π) = {w2}, and
this contradicts that Mean(π) = {w2, w3}.

Notice that a location function L defined on the tree (K2) cannot get any additional
features from property (Z) because this property involves three distinct vertices. The
next result shows that if L satisfies axioms (Mid), (C), and (A), then it should be the
mean function on K2.
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Lemma 11 Let T be a tree, and assume ab ∈ E. Let π be a profile containing only
vertices in the set {a, b}. If L is a location function that satisfies axioms (Mid), (C),
and (A), then L(π) = Mean(π).

Proof. By Lemma 1, L also satisfies axiom (F ). Let π be a profile containing only
vertices in the set {a, b}. If π contains an equal number of vertices a and b, then we
use the elements of π to define the profile

α = α1α2 . . . αn

where αi = (a, b). Since L satisfies (C) and (Mid), then

L(α) = L(α1) ∩ L(α2) ∩ . . . ∩ L(αn) = {a, b}

and we also have

Mean(α) = Mean(α1) ∩Mean(α2) ∩ . . . ∩Mean(αn) = {a, b}.

By axiom (A) we obtain L(α) = L(π) = Mean(π). On the other hand, if π contains
more vertices a that vertices b, we define the profile

α = α1α2 . . . αnβ

where αi = (a, b) and β = (a, a, . . . , a). From axioms (C), (Mid), and (F ) we have

L(α) = L(α1) ∩ L(α2) ∩ . . . L(αn) ∩ L(β) = {a}

and

Mean(α) = Mean(α1) ∩Mean(α2) ∩ . . . Mean(αn) ∩Mean(β) = {a}.

We use now axiom (A) to conclude L(α) = L(π) = Mean(π). Similarly, we can show
that if π contains more vertices b that vertices a, then L(π) = Mean(π). 2

The next objective is to show that if |L(π)| = |Mean(π)| = 1 for some profile π,
then L(π) = Mean(π) whenever L satisfies axioms (C), (Mid), (A), and property (Z).
In proving this result, we need to consider the cases when the vertex in Mean(π) is a
leaf or is not a leaf of T . First we prove that if Mean(π) = {x} and L(π) = {y}, then
x and y are close to each other in T . Property (Z) is the main ingredient in the proof
of this result.

Lemma 12 Let L be a location function on T that satisfies axioms (Mid), (A), and
(C). Let π = (x1, x2, . . . , xn) be a profile on T . If Mean(π) = {x}, L(π) = {y}, and
x 6= y, then d(x, y) ≤ 1.
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Proof. Assume d(x, y) > 1, and let P (x, y) = xv1v2 . . . vs−1vsy be the path from x to
y. By Lemma 3 we have that

SSπ(vs−1) < SSπ(vs) < SSπ(y), (13)

Since L satisfies axiom (Z), we have

Rπ(vs, y) + Rπ(vs−1, vs) > Dπ(y, vs−1, vs). (14)

From (5) we obtain

Rπ(vs, y) =
SSπ(vs)− SSπ(y)− |π|

2
,

Rπ(vs−1, vs) =
SSπ(vs−1)− SSπ(vs)− |π|

2
.

If we substitute this in (14) and simplify we get

SSπ(vs−1)− SSπ(y) > 2Dπ(y, vs−1, vs) + 2|π| > 0.

This implies that SSπ(y) < SSπ(vs−1), and this contradicts (13). So we have d(x, y) ≤
1. 2

From the previous result it follows that if we would have Mean(π) = {v}, L(π) =
{u}, and u 6= v, then u would be adjacent to v. Now, we prove that if v is not a leaf,
then u = v.

Lemma 13 Let L be a location function on T that satisfies axioms (Mid), (A), (C),
and property (Z), and let π = (x1, x2, . . . , xn) be a profile on T . If v is not leaf,
|L(π)| = 1, and Mean(π) = {v}, then L(π) = {v}.

Proof. Assume L(π) = {z} and v 6= z, then Lemma 12 implies d(v, z) ≤ 1. If
d(v, z) = 1, then there is a vertex u such that uv, vz ∈ E. By Lemma 8 we have

Rπ(u, v) + Rπ(z, v) = Dπ(u, v, z). (15)

Now L satisfies axiom (Z), hence

Rπ(v, u) + Rπ(z, v) > Dπ(u, v, z). (16)

Subtracting (16) from (15), we obtain

Rπ(u, v)−Rπ(v, u) < 0

Rπ(u, v)− (−Rπ(u, v)− |π|) < 0 by (6)

2Rπ(u, v) + |π| < 0

SSπ(u)− SSπ(v) < 0 by (5).
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This means that SSπ(u) < SSπ(v), which contradicts that Mean(π) = {v}. Therefore,
we conclude that L(π) = {v}. 2

We would like to extend this result to the case when v is a leaf, but this requires us
to prove some preparatory results. The next lemma shows that if the mean of a profile
π is a vertex that is a leaf, then this vertex is included in π.

Lemma 14 Let π = (x1, x2, . . . , xn) be a profile on T . Let v be a vertex that is a leaf
and assume Mean(π) = {v}, then v is an element of π.

Proof. If v is not an element of π, let w be the vertex adjacent to v. Notice that

d(v, xi) = d(w, xi)− 1 ∀ i ∈ {1, 2, . . . n}.

This implies SSπ(w) < SSπ(v) which contradicts that Mean(π) = {v}. Hence, v is
included in π. 2

Next we characterize the profiles π having the property that their mean contains
two vertices, and one of these vertices is a leaf.

Lemma 15 Let π = (x1, x2, . . . , xn) be a profile on T . If Mean(π) = {v, x} and v is
a leaf of T , then the only vertices in π are x and v. Moreover, π contains an equal
number of vertices x and v.

Proof. If w is a vertex that belongs to π and is different from x and v, then d(v, w) =
d(x,w) + 1. This implies that SSπ(v) < SSπ(x), which contradicts Mean(π) = {v, x}.
Consequently, π cannot contain any vertex different from x and v. Notice that if π
does not contain an equal number of x and v, then |Mean(π)| = 1, which contradicts
|Mean(π)| = 2. 2

If L is a location function that satisfies axioms (Mid), (A), and (C), then Lemmas
11 and 15 provide the following corollary that characterizes the set L(π) when this set
contains two elements and one of them is a leaf.

Corollary 2 Let L be a location function on T that satisfies axioms (Mid), (A), and
(C). Let π = (x1, x2, . . . , xn) be a profile on T and assume v is a leaf. If Mean(π) =
{v, x}, then L(π) = {v, x}.

The next result tells us that the sets Mean(π) and L(π) are equal when the set Mean(π)
contains a leaf of T .

Lemma 16 Let L be a location function on T that satisfies axioms (Mid), (A), and
(C), and let π = (x1, x2, . . . , xn) be a profile on T . If y is a leaf of T such that
y ∈ Mean(π), then Mean(π) = L(π).
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Proof. To prove the result, we use induction on |π|. If |π| = 1, then π = (y),
and in this case Mean(π) = {y} and, by Faithfulness, we have L(π) = {y}. Assume
the result is true for any profile with at most n vertices, and let π be a profile with
n + 1 vertices such that y ∈ Mean(π) and y is a leaf. Assume Mean(π) = {y} and
denote by α the profile that contains all the vertices of π except for one occurrence of
y. Since Mean(α ¦ y) = {y}, Lemma 7 implies that y ∈ Mean(α). From Lemma 14 it
follows that y occurs in α. Since α contains n vertices, the induction hypothesis yields
Mean(α) = L(α). Now we use Lemma 6 to conclude that L(π) = L(α ¦ y) = {y} =
Mean(π). On the other hand, it follows from Corollary 2 that if Mean(π) = {y, x},
then L(π) = {y, x}. 2

We are now in position to show that the sets Mean(π) and L(π) are the same when
the mean of π is a leaf, L satisfies property (Z), and |Mean(π)| = |L(π)| = 1.

Lemma 17 Let L be a location function on T that satisfies axioms (Mid), (A), (C),
and property (Z), and let π = (x1, x2, . . . , xn) be a profile on T . If y is a leaf and
|Mean(π)| = |L(π)| = 1, then Mean(π) = {y} if and only if L(π) = {y}.
Proof. By Lemma 16, we know that Mean(π) = {y} and implies L(π) = {y}.

On the other hand, assume L(π) = {y} and |Mean(π)| = 1. If Mean(π) = {z}
and z is a leaf, then Lemma 16 implies z = y. If z is not a leaf then Lemma 13 implies
that z = y. Therefore we have Mean(π) = {y}. 2

A consequence of Lemmas 13 and 17 is the following generalization of Lemma 17.

Lemma 18 Let L be a location function on T that satisfies axioms (Mid), (A), (C),
and property (Z), and let π = (x1, x2, . . . , xn) be a profile on T . If |Mean(π)| =
|L(π)| = 1, then Mean(π) = {y} if and only if L(π) = {y}.

Finally we prove that if π is a profile having an even number of vertices, and L is
a location function that satisfies axioms (Mid), (C), (A), and property (Z), then the
sets L(π) and Mean(π) are equal.

Lemma 19 Let π = (x1, x2, . . . , xn) be a profile on T , and let L be a location function
that satisfies axioms (Mid), (C), (A), and property (Z). If |π| is even, then L(π) =
Mean(π).

Proof. Note that if all the elements of π belong to the set {a, b} and ab ∈ E, then
Lemma 11 implies that L(π) = Mean(π). Now, assume π contains at least three
distinct vertices and also assume L(π) = {a1, a2, . . . , ak}. By Lemma 6, we get

L(π ¦ a1) = {a1},
L(π ¦ a2) = {a2},

...

L(π ¦ as) = {ak}.
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Since |π| is even, |π ¦ ai| is odd, and, by Lemma 9, we have

|Mean(π ¦ ai)| = 1 ∀ 1 ≤ i ≤ k.

From Lemma 18 we get

L(π ¦ ai) = Mean(π ¦ ai) ∀ 1 ≤ i ≤ k. (17)

Observe that (17) and Lemma 7 yield {a1, a2, . . . , ak} ⊆ Mean(π). This implies that
k ≤ 2, since |Mean(π)| ≤ 2. If L(π) = {a1, a2}, we have L(π) = Mean(π) = {a1, a2}.
On the other hand, if |L(π)| = |Mean(π)| = 1, then, by Lemma 18, we get L(π) =
Mean(π).

To finish the proof we just need to show that |L(π)| = 1 forces |Mean(π)| = 1. So
assume L(π) = {c} and |Mean(π)| = 2. By Lemma 6 we have L(π¦c) = {c}, and, since
|π¦c| is odd, we have |Mean(π¦c)| = 1. Lemma 18 implies that Mean(π¦c) = L(π¦c) =
{c}, and Lemma 7 shows that c ∈ Mean(π). This means that Mean(π) = {b, c}, for
some vertex b distinct from c, and also that b and c are adjacent. First assume that b is
a leaf of T . Then, by Corollary 2, we have L(π) = {c, b}, which contradicts L(π) = {c}.
So b cannot be a leaf of T , and we can find a vertex z such that cb, bz ∈ E. Because L
satisfies property (Z), we get

Rπ(b, c) + Rπ(z, b) > Dπ(c, b, z). (18)

Moreover, Lemma 8 shows

Rπ(c, b) + Rπ(z, b) = Dπ(c, b, z).

If we substitute this in (18) and simplify, we get

Rπ(b, c) > Rπ(c, b). (19)

On the other hand, since Mean(π) = {c, b}, we have SSπ(c) = SSπ(b). From (5) we
obtain

SSπ(c)− SSπ(b) = SSπ(b)− SSπ(c)

2Rπ(c, b) + |π| = 2Rπ(b, c) + |π|
Rπ(c, b) = Rπ(b, c). (20)

It is clear that (20) contradicts (19). This final contradiction implies that |Mean(π)| =
2 is not possible. Therefore it follows that if |L(π)| = 1, then |Mean(π)| = 1, which
concludes the proof. 2

3 The Main Result and Independence of Axioms

Finally, we put the above results together in the proof of our main result.
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Theorem 1 Let L be a location function on a finite tree T . Then L is the mean
function if and only if L satisfies axioms (A), (Mid), (C), and property (Z).

Proof. It is immediate that if L is the mean function, then L satisfies axioms (A),
(Mid), (C), and property (Z). On the other hand, assume that L satisfies axioms (A),
(Mid), (C), and property (Z). By Lemma 19, we have L(π) = Mean(π) whenever |π|
is even. In the case that |π| is odd we have |Mean(π)| = 1, by Lemma 9. Hence, by
Lemma 18, we have L(π) = Mean(π), and we are done. 2

Next, we establish the independence of the axioms (A), (Mid), (C), and property (Z).

• (Mid), (A), and (C) are independent from property (Z).
The cube function satisfies axioms (Mid), (A), and (C). Consider the path
P (v1, v10) = v1v2 . . . v10 and the profile π = (v1, v2, v10). It is not difficult to
verify that Mean(π) = {v4} and Cube(π) = {v5}. Notice that v5v4 and v4v3 are
edges of P (v1, v10) and that Dπ(v5, v4, v3) = 0. Then we have

Rπ(v4, v5) + Rπ(v3, v4) = −2 + 1 = −1 < Dπ(v5, v4, v3).

Since Rπ(v4, v5) + Rπ(v3, v4) < Dπ(v5, v4, v3), the cube function does not satisfies
property (Z).

• (C), (A), and property (Z) are independent from (Mid). Consider the
path P (v0, v3) = v0v1v2v3, and let π be a profile on P (v0, v3). Define the following
location function

L(π) =





Mean(π) if |Mean(π)| = 1.

{v1} if Mean(π) = {v0, v1}.
{v2} if Mean(π) = {v2, v3}.
{v1, v2} if Mean(π) = {v1, v2}.

Because the mean function satisfies axioms (A) and (C), function L satisfies
these axioms too. Notice also that L satisfies property Z for profiles π for which
|Mean(π)| = 1. If Mean(π) = {v0, v1}, then the definition of L indicates L(π) =
{v1}. We need to verify property (Z) in this case. Mean(π) = {v0, v1} implies π
contains an equal number k of vertices v0 and v1. We can see that v2 and v3 are
the unique vertices satisfying v1v2, v2v3 ∈ E(P (v0, v3)). Furthermore,

Rπ(v2, v1) + Rπ(v3, v2) = k + 3k > Dπ(v1, v2, v3) = 0,

then L satisfies property (Z) for this π.

A similar argument can be used to prove that L satisfies property (Z) for profiles
π with Mean(π) = {v2, v3}. This establishes that L satisfies (A), (C), and
property (Z); however, it does not satisfies (Mid) because L((v0, v1)) 6= {v0, v1}.

16



• (Mid), (A), and property (Z) are independent from (C). We will use the
tree T defined in Fig. 1 above. Denote by β the profile on T having each vertex
of T an equal number of times. Let π be a profile on T and define the following
location function

L(π) =

{
{w2} if π contain every vertex of T an equal number of times.

Mean(π) otherwise.

We have determined above that w2 satisfies the condition

Rπ(b, w2) + Rπ(c, b) > Dπ(w2, b, c) whenever w2b, bc ∈ E.

Consequently, L satisfies property (Z) if π is a profile containing every vertex
of T an equal number of times. L satisfies property (Z) for any other profile
because the mean function does satisfies this axiom. From the definition of L we
obtain

Mean((w1, w4)) = L((w1, w4))= {w2, w3},
Mean((w5, w8)) = L((w5, w8))= {w2, w3},
Mean((w7, w6)) = L((w7, w6))= {w2, w3},
Mean((w2, w3)) = L((w2, w3))= {w2, w3}.

Assume L satisfies axiom (C), then

L((w1, w4, w2, w3)) = L((w1, w4)) ∩ L((w2, w3)),

L((w1, w4, w2, w3, w7, w6)) = L((w1, w4, w2, w3)) ∩ L((w7, w6)),

L((w1, w4, w2, w3, w7, w6, w5, w8)) = L((w1, w4, w2, w3, w7, w6)) ∩ L((w5, w8)).

Note that all these sets are equal to {w2, w3}. Nevertheless, according to the
definition of L we have

L((w1, w4, w2, w3, w7, w6, w5, w8)) = {w2}.
From this we conclude that L does not satisfies (C).

• (C), (Mid), and property (Z) are independent from (A).
Consider the tree T = ab with only two vertices. Let π be a profile on T . We say
that π satisfies condition (W ) if
(i) |π| > 2,

(ii) π contains an equal number of a′s and b′s,
(iii) if π = β1β2 . . . βk, then L(β1) ∩ L(β2) ∩ · · · ∩ L(βk) = ∅.

An example of a profile that satisfies condition (W ) is π = (a, a, b, b). Define the
following location function

L(π) =





Mean(π) if π contains more a′s than b′s or more b′s than a′s.

{a, b} if π = (a, b)

{a} if π satisfies condition W .
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We see that L satisfies axioms (C), (Mid), and property (Z). It does not satisfies
(A) and it is not equal to the mean function because
L((a, a, b, b)) = {a} 6= {a, b} = Mean((a, a, b, b)).
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