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a b s t r a c t

The Semantic Web aims to extend the World Wide Web with a layer of semantic information, so that
it is understandable not only by humans, but also by computers. At its core, the Semantic Web consists
of ontologies that describe the meaning of concepts in a certain domain or across domains. The domain
ontologies aremostly created andmaintained by domain experts usingmanual, time-intensive processes.
In this paper, we propose a rule-based method for learning ontology instances from text that helps
domain experts with the ontology population process. In thismethodwe define a lexico-semantic pattern
language that, in addition to the lexical and syntactical information present in lexico-syntactic rules, also
makes use of semantic information. We show that the lexico-semantic patterns are superior to lexico-
syntactic patterns with respect to efficiency and effectivity. When applied to event relation recognition
in text-based news items in the domains of finance and politics using Hermes, an ontology-driven
news personalization service, our approach has a precision and recall of approximately 80% and 70%,
respectively.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In today’s information-driven world, many individuals try to
keep up-to-date with the latest developments by reading news
items on the Web. The contents of news items reflect past,
current, and future world conditions, and thus news contains
information valuable for various purposes. For example, being
aware of current market situations is of paramount importance
for investors and traders, who need to make informed decisions
that could have a significant impact on certain aspects such as
profits and market position. However, due to the ever increasing
amount of information, it is virtually impossible to keep track
of all emerging relevant news in an orderly fashion [1,2]. Hence,
automatically filtering news items by means of computers would
alleviate the cumbersome task ofmanually selecting relevant news
messages and extracting information.

In contrast to human beings, machines (e.g., computers) are
merely able to readnews articles, not to understand them.With the
SemanticWeb [3], i.e., a collection of technologies that express and
reason with content metadata, the World Wide Web Consortium
(W3C) provides a framework to add a layer of semantic information
to the Web, thereby offering means to help machines understand
human-created data (e.g., news messages) on the Web. On the
Semantic Web, metadata is defined using semantic information
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that is usually captured in ontologies, which are defined as shared
formal specifications of conceptualizations [4]. Some of the most
popular formats to describe ontologies on the Semantic Web
are the Resource Description Framework (RDF) and RDF Schema
[5,6], and theWebOntology Language (OWL) [7]. Ontologies can be
used to store domain-specific knowledge in the form of concepts
(i.e., classes or instances), together with associated inter-concept
relations. These relations are denoted by triples that consist of a
subject, a predicate, and an object.

Most of the current approaches to news filtering, such as,
for example, the SeAN [8], YourNews [9], and NewsDude [10]
frameworks, are able to retrieve only the news items that contain
terms of the user’s interest, not taking into account indirect
information, which is also deemed relevant, such as competitors of
companies of interest, political parties of politicians, etc. Exploiting
the semantic contextual information related to concepts of interest
enables a more comprehensive overview of relevant news with
respect to certain topics. Therefore, in previous work [11,12],
we introduced the Hermes framework, which provides a method
for personalizing news items that makes use of semantics. The
framework stores lexicalized domain concepts and relations (i.e.,
properties that relate concepts to each other or concepts to
data types) in an ontology. Hence, Hermes stores synonyms or
string representations of domain-specific entities (e.g., companies,
persons, etc.) and their relations (e.g., subsidiary, competitor, etc.).
The ontology is used for retrieving relevant news items in a
semantically-enhanced way. In addition to this, we have proposed
an ontology-based recommendation method that also benefits
from a domain ontology [13]. As adding new information to an
arbitrary but sufficiently large knowledge base requires a domain
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expert to invest a lot of time, in this paper we propose a method
that discovers new information automatically.

Automatic information discovery requires the use of informa-
tion extraction techniques. In the last decades, a vast amount of
research has already been conducted in this area. In general, in-
formation extraction can be done by means of statistics [14–16]
or pattern-based rules [17–19], each method having its own bene-
fits and drawbacks. Statistical methods are mainly data-intensive,
while pattern-based approaches usually are driven by knowledge
more than data. From a user’s point of view, large amounts of data
are not always readily available, while (general) domain knowl-
edge is usually at hand. As pattern-based approaches often re-
quire less training data than statisticalmethods, and also help users
to gain more insight into why a certain relation was found, in
this paper we focus on pattern-based information extraction tech-
niques. Pattern discovery, such as the semantic patterns [20,21]
from OntoEdit [22] or the patterns from the Pattern-based Anno-
tation through Knowledge on theWeb (PANKOW) framework [23]
are outside of the scope of this paper.

The main contribution of this paper is a rule-based language
that uses lexico-semantic patterns for information extraction. In
contrast to lexico-syntactic patterns [17,18,24], which combine
lexical representations (i.e., strings) and syntactical information
(e.g., parts-of-speech), lexico-semantic patterns also allow for the
usage of semantic information such as concepts that are defined
in ontologies. The notion of lexico-semantic patterns has already
been introduced in previous work. In [12,25] we extend the
Hermes news processing framework by adding triple-based lexico-
semantic event rules that make use of ontological concepts, in
order to be able to recognize economic events. After validation,
these events are subsequently coupled to the execution of action
rules which update the underlying ontology. The use of lexico-
semantic patterns for financial events discovery has also been
discussed in [26]. There, we present a rule engine that allows
for pattern creation based on the triple paradigm (i.e., it makes
use of a subject, a predicate, and an optional object), and that
relies on triple conversion to the Java Annotations Pattern Engine
(JAPE) language [27] and SPARQL [28]. Finally, in [29] we present
a semantics-based information extraction pipeline for economic
event detection, which makes use of lexico-semantic patterns that
are defined in the JAPE language.

In the previous work discussed above, we consider mostly
simple lexico-semantic patterns that are merely based on the
triple paradigm, which hence makes it impossible to express more
complex constructions. In this paper,we present amore expressive
language for specifying lexico-semantic patterns that makes use
of regular expressions over ontology concepts. Furthermore, in
our current endeavors, we aim for a simple, easy to use language
for pattern creators. Existing languages like JAPE could easily
result in verbose rules, while we aim for more compact ones. In
addition, we give the formal specifications of our language and
explain its constructs by means of examples, and we give a more
extensive evaluation of the proposed pattern language in which
we analyze the recognition of different types of events in textual
representations.

By using lexico-semantic patterns that employ concepts and re-
lations from a domain ontology, we aim to solve problems caused
by ambiguity and specificity that exist in current approaches
that employ lexico-syntactic patterns. The design of the lexico-
semantic pattern language aims to fulfill the following require-
ments. First, the language should be developed for a SemanticWeb
context, where instances and their relations need to be learned
from text. Then, the language should be accessible and easy to un-
derstand, yet expressive enough to be able to cover the required
information extraction needs. By employing Semantic Web tech-
nologies, our language should remove some of the ambiguities
inherent to lexical approaches, increasing the specifications pre-
cision level. In addition, a semantic approach allows to easily spec-
ify patterns that have many instances, increasing the recall of the
information extraction process.

In this work, we aim to investigate the performance of lexico-
semantic patterns compared to lexico-syntactic ones and for that,
we evaluate the performance of both pattern languages by creating
rules for each one of them that are subsequently applied on
two distinct corpora consisting of news messages on financial
topics and political topics, respectively. Additionally, we compare
the performance of the languages with lexico-semantic patterns
written in JAPE. Performance is measured in terms of construction
times (i.e., efficiency) and precision, recall, and F1 scores (i.e.,
effectivity).

The rest of this paper is organized as follows. Section 2 discusses
the related work, followed by Section 3, which elaborates on the
Hermes Information Extraction Language (HIEL), i.e., the syntax for
defining lexico-semantic patterns. Section 4 describes the Hermes
Information Extraction Engine (HIEE), after which we evaluate our
method in Section 5. Section 6 gives our conclusions and identifies
future work.

2. Related work

In the current body of literature, various pattern grammars
are described that could be of use in for instance news
processing frameworks [30,31] or general purpose information
extraction tools [32–36]. These patterns are based on linguistic
or lexical knowledge, as well as a priori human knowledge
regarding the contents or topic of the text that is to be
processed. We can make a rough distinction between two types
of patterns that can be applied to natural language corpora,
i.e., lexico-syntactic patterns and lexico-semantic patterns. The
former patterns are a combination of lexical representations
and syntactical information, whereas the latter patterns combine
lexical representations with syntactic and semantic information.

2.1. Lexico-syntactic patterns

Hearst [17,18] proposes the use of lexico-syntactic patterns for
information extraction. This approach aims to find hyponym and
hypernym relations by discovering regular expression patterns in
free text. An example is the application of the following pattern
to the sentence ‘‘... works by such authors as Herrick, Goldsmith, and
Shakespeare’’:

such NP as {NP,}* {(or|and)} NP (Rule 1)

In this pattern, ‘‘NP’’ indicates a proper noun. Other text (i.e.,
‘‘such’’, ‘‘as’’, ‘‘or’’, and ‘‘and’’) is used for lexical matching, while
‘‘(’’ and ‘‘)’’ contain conjunction and disjunction statements to be
evaluated, in this case a disjunction (denoted as ‘‘|’’). Also, ‘‘*’’ is a
repetition parameter that indicates the sequence between braces
(‘‘{’’ and ‘‘}’’) is allowed to repeat zero to an infinite number of
times. The rule presented above results in the following discovered
relationships:
hyponym("author", "Herrick")
hyponym("author", "Goldsmith")
hyponym("author", "Shakespeare")

These patterns are often easy to comprehend by regular users, yet
defining the right patterns to mine corpora to obtain unknown
information is not a trivial task. Hearst stresses that, in order
to return desired results successfully, patterns should be defined
in such a way that they occur frequently and in many text
genres. Also, they should often indicate the relation of interest and
should be recognizable with little or no pre-encoded knowledge.
Furthermore, all existing syntactic variations have to be included
into a complex pattern to ensure its proper working.
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2.2. Lexico-semantic patterns

Lexico-semantic patterns on the other hand are less cumber-
some to define, as they make use of concepts instead of merely
lexical representations, hereby alleviating the time-consuming
process of pattern definition. One of the first works introducing
lexico-semantic patterns is [19], where the authors propose a sys-
tem that processes text prior to normal left-to-right syntactic pars-
ing. The patterns may include terms and operators like lexical
features, logical combinations,wildcards, and repetition,which are
mostly adopted from the regular expression language. An example
of a rule that will classify the verb phrase ‘‘left dead’’ as to express
death or injury, is as follows:

?PIVOT=(or found left shot)
?OBJ =* ?EFFECT=dead

=> (mark-activator
murder d-vp) ;

(Rule 2)

This sentence would also match ‘‘found dead’’ and ‘‘shot dead’’.
Next to standard elements such as repetition and wildcards, the
rule presented here contains features like variable assignment on
the left-hand side (LHS) (where words preceded by ‘‘?’’ denote
variables) and on the right-hand side (RHS) macros such as
‘‘mark-activator’’, which uses the results of the pattern match,
including variable assignments, along with some other constants,
such as ‘‘murder’’ and ‘‘d-vp’’, to tag and segment the text. The
main advantage of such lexico-semantic patterns is that they take
into account the domain semantics which help the parser cope
with the complexity and flexibility of real text [19].

The Conceptual Annotations for Facts, Events, Terms, Individual
Entities, and RElations (CAFETIERE) framework as introduced
by Black et al. [33] is a rule-based system for ontology-driven
text mining, which makes use of lexico-semantic patterns.
CAFETIERE applies several preprocessing techniques to the text,
i.e., tokenization, Part-Of-Speech (POS) tagging, and gazetteer
lookup. To extract information from text, a rule notation is defined.
A rule has the following form:

A => B \ C / D (Rule 3)

where ‘‘A’’ represents the phrase that is recognized, ‘‘B’’ (optional)
represents the text prior to ‘‘C’’, ‘‘C’’ defines the text elements that
are part of the phrase, and ‘‘D’’ (optional) is the neighboring text
immediately following ‘‘C’’. A basic example of a rule that would
match an expression like ‘‘40mg’’ is:

[syn=NP, sem=QTY] =>
\[syn=CD], [sem=measure]/;

(Rule 4)

In this pattern, one is able to denote the characteristics of a
matching token group, i.e., its syntactic category (i.e., a noun)
and its semantic meaning (i.e., a quantity). In order to match an
expression, the text should contain a token which is a cardinal
digit, followed by a token that represents a measure. CAFETIERE
also takes into account the ordering of the rules. When one rule
matches the text and annotates the text, the original annotation
might no longer be visible to the next rule.

Another information extraction rule language that includes
domain semantics isWHISK [37]. This language is based on regular
expressions and can be used for extracting information from semi-
structured text as well as free text. An example of a rule that
extracts the number of bedrooms and the associated price for a
rental ad is written as such:

Pattern:: * ( Digit ) ‘BR’ * ‘$’
( Number )

Output:: Rental
{Bedrooms $1}
{Price $2}

(Rule 5)
Whenever the pattern of the extraction rule matches a sentence,
the syntactical elements that are enclosed by round brackets are
being used as variables in the output statement. The first element
‘‘Digit’’ is assigned to ‘‘$1’’ and the second element ‘‘Number’’
is assigned to ‘‘$2’’. In WHISK rules, the ‘‘*’’ symbol represents
a wildcard, i.e., it is used to indicate an arbitrary sequence of
characters without limitations to size and contents until the
occurrence of the subsequent term in the pattern.

In [38–40] a MUlti-Source Entity recognition system (MUSE)
is proposed. This system employs the General Architecture
for Text Engineering (GATE) [41] software, which is a Java-
based environment supporting the research and development of
language processing software, in order to extract information
from text. The main focus is on the extraction of information
from multiple sources and retain a certain robustness. The system
consists of a number of components, including a tokenizer,
gazetteer, sentence splitter, POS tagger, semantic tagger, and an
orthographical matcher. The semantic tagging comprises a set of
grammar rules based on the JavaAnnotations Pattern Engine (JAPE)
language [27]. An example of such a rule is:

Rule: GazLocation
(

{Lookup.majorType == location}
)
:loc --> :loc.Location =

{kind = "unknown",
rule = "GazLocation"}

(Rule 6)

In general, the LHS contains the pattern to be matched, whereas
the RHS defines the action that is to be executed once a match has
been found. This rule is fired (executed)when the gazetteer lookup
results in a location. If this is the case, the patternwill be annotated
with the type ‘‘Location’’ and two attributes, ‘‘kind’’ and ‘‘rule’’.

2.3. Our contribution

The pattern language proposed in this paper differswith respect
to several aspects from the languages presented above. The lexico-
syntactic patterns proposed by Hearst [17,18] are often easy to
comprehend by regular users, which is also one of our goals when
designing our pattern language. However, Hearst’s patterns do not
capture the semantic context of the text, while our approach aims
for a semantic description of the context.

The lexico-semantic pattern language proposed by the authors
of [19] is similar to ours, since it also employs patterns for detecting
semantics in text. Their framework is implemented in the GE
NLToolset [42], which is a set of text interpretation tools. In our
framework we benefit from the natural language processing steps
performed by GATE [41] and the underlying OWL ontologies. The
software allows for easy extension and customization, in contrast
to the GE NLToolset. In addition, we propose patterns that are
easier to specify and comprehend by the end user than the patterns
proposed in [19].

In order to maintain readability, we aim for a notation similar
to the one presented in [17,18]. Even though our patterns add
semantic functionalities, they strictly adhere to the standard POS
tags [43] (in contrast to the patterns used in [19]). Furthermore,
our patterns require less keywords compared to the ones proposed
in [19], as they omit mark and pattern activators. Our intent is
to explore the possibilities of adding semantics to the patterns by
using SemanticWeb technologies, and thus tomake use of existing
ontologies and support tools (e.g., reasoners, editors, readers,
writers, etc.).

In our work, we benefit from the research that has been done in
the CAFETIERE project, e.g., by reusing parts of the rule notation.
A limitation within the CAFETIERE framework is that rules are
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defined on a specific lexico-semantic level, i.e., semantic concepts
are derived from an ontology (knowledge base) described in
Narrative Knowledge Representation Language (NKRL) [44]. NKRL
is a knowledge representation language which has been defined
before the Semantic Web era, and has no formal semantics. Hence,
the approach fails to properly describe domain semantics. Both
the gazetteer and the lexico-semantic rules could benefit from
an ontology-based approach, abstracting from the low-level and
sometimes ambiguous lexical representations.

Even though WHISK [37] does properly include domain
semantics, the applicability of the language is limited. The support
for wildcards creates flexibility in the patterns to be matched, but
it is fairly restrained compared to for instance regular expressions.
It is not possible to state a specific range of characters or
words. Differently than WHISK, our language contains additional
repetition operators, so that more expressive extraction rules can
be created.

Similar to our approach, MUSE [38–40] employs GATE. Our
work distinguishes itself from this approach by proposing a
language with a higher level of abstraction, which is easier to
read for regular users. In addition to that, we focus on semantic
patterns and aim to determine relations between concepts, rather
than solely focusing on recognizing entities.

3. Hermes information extraction language

The Hermes Information Extraction Language (HIEL) employs
semantic concepts from an ontology. The language is evaluated
in the context of extracting events and relations from news,
as an extension to the existing Hermes news personalization
framework [11,12]. This section continues by briefly explaining
the characteristics of the Hermes framework as well as the usage
of ontologies within the framework in Section 3.1. Subsequently,
Section 3.2 introduces HIEL for semi-automatic information
extraction from news items, of which the Extended Backus Naur
Form (EBNF) grammar is given in Appendix A. Last, Section 3.3
elaborates on the usage of ontology elements within our language.

3.1. Hermes

Hermes [11,12] is a framework that can be used for building a
personalized news service. The framework enables users to select
concepts from a knowledge base.Whenever these concepts, which
could be instances like Microsoft or Google, or related concepts,
such as competitors, appear in an arbitrary news item, the news
item is presented to the user. Hence, the userwill only be presented
news items that match the user’s interest.

Concept selection is done by means of user-defined patterns.
Similarly to CAFETIERE, Hermes is based on GATE and employs
lexico-semantic patterns. However, these patterns use information
from an OWL ontology that contains a schema of concepts and
relations of various nature, thusmaking use of a standard language
supported by many reasoners. Knowledge is stored in a separate
ontological database that contains instances. Each time a news
message is processed, the ontology might be updated with new
facts, so that the knowledge base remains up-to-date [12].

The current knowledge base of Hermes is maintained by a
manual approach. The domain ontologies are developed by domain
experts. The process of developing the ontology is an incremental
middle-out approach [11]. Since news events can change the state
of the world, each time such a change happens, the knowledge
base should be updated. Because updating the ontology manually
is a cumbersome process, it is preferred to do this at least semi-
automatically. Therefore, we propose an information extraction
language that can extract new instances of concepts and relations
from news items.
3.2. Language syntax

The patterns previously proposed by Hearst [17,18] serve as an
inspiration for HIEL, as these lexico-syntactic patterns are easily
comprehensible. Furthermore, these patterns provide the user
with valuable insights into the reasons behind the extraction of
certain information. Therefore, we aim to propose a language that
approaches this simplicity, i.e., a language with which one is able
to make patterns that are intuitive and easy to understand, but
which also addresses the required expressivity. In this regard, it
should have at least the expressivity of regular expressions. Our
language can be characterized by supporting syntactic features,
orthographic features, concepts, relations between concepts,
logical operators, repetition, and wildcards. In this subsection, we
explore the syntax of the language.

3.2.1. Language definition
Typically, in HIEL, each pattern is described by a left-hand side

(LHS) and a right-hand side (RHS). Once the RHS has beenmatched
in the text to be processed, it is annotated as described by the
LHS of the pattern. The LHS describes a relation between a subject
(sub) and an object (obj) by using a predicate (pred). For example,
IsCompetitorOf is a relation between the concepts Microsoft and
Google. We denote the LHS of a pattern as follows:

(sub, pred, obj) :- RHS (Rule 7)

The RHS on the other hand describes a pattern that has to be
identified in text. We define a pattern as an ordered collection of
tokens that are divided by spaces, which indicates the sequence in
which the target tokens have to appear in text. The RHS of a HIEL
pattern is not limited to one sentence, but is matched against the
full news article text. In order to limit a rule to a sentence, one has
to specifically define this constraint in the pattern.

3.2.2. Literals
As shown in Section 2, pattern grammars typically support

literals, i.e., text strings. Literals can be written as a (compound)
word surrounded by quotes, e.g., ‘‘John F. Kennedy’’. In HIEL,
tokens on the RHS of patterns can be of various types, amongst
which literals. Whenever literals are used within patterns, the
(compound) word between quotes has to match exactly with the
text.

3.2.3. Lexical category
Like many other lexico-syntactic and lexico-semantic pattern

languages, our language supports a set of syntactic categories to
describe the lexical category of the token, i.e., its part of speech.
The possible values of the lexical category are shown in Table 1.
In general, we distinguish between various verbs and nouns,
prepositions, adjectives, coordinating conjunctions (e.g., ‘‘as well
as’’), cardinal numbers, and interjections (e.g., ‘‘well’’ as in ‘‘well,
that depends’’).

3.2.4. Orthographic category
In addition to the word lexical category, the language distin-

guishes four orthographic categories. Note that the field of orthog-
raphy spans hyphenation, capitalization, word breaks, emphasis,
and punctuation. We define orthography as describing (defining)
the set of symbols used in tokens. More specifically, we focus on
capitalization. TheupperInitial category is used for tokens that
start with an uppercase character. When referring to capitalized
words, allCaps should be used. In addition, lowerCase indi-
cates a tokenwithout uppercase characters. Finally, mixedCaps is
used inwords with varying capitalization. Orthographic categories
can especially be useful when identifying names or abbreviations.
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Table 1
Common lexical categories.

Category Description

CC Coordinating conjunction
CD Cardinal number
IN Preposition
JJ Adjective
NN Noun
NNP Proper Noun
PP Pronoun
RB Adverb
UH Interjection
VB Verb, base form
VBZ Verb, 3rd person singular present

3.2.5. Labels
The subject, relation, and object described in the LHS need to

be identified in the RHS in order to provide a link between text
and a new extracted fact. This can be done using labels, which
are represented as words preceded by a ‘‘$’’ and followed by a
colon and an equality sign, as well as a description of the attached
token.Whenever theRHSmatcheswith a sentence, the tokenswith
associated labels are filled in the LHS of the rule. An example rule
with labels is:

($sub, kb:hasProduct, $obj) :-
$sub:=‘Google’ ‘launches’
$obj:=upperInitial

(Rule 8)

Note that ‘‘kb:’’ represents a namespace, which in our case
refers to a knowledge base (ontology) in which the predicate
‘‘hasProduct’’ has been specified.

3.2.6. Logical operators
The language supports three of the most common types of

logical operators as defined in [45], i.e., and (‘‘&’’), or (‘‘|’’), and
not (‘‘!’’). The disjunction and conjunction are used in combination
with grouping parentheses in the RHS. An example of such a rule
is:

($sub, rdf:typeOf, $obj) :-
$sub:=(NN & upperInitial)
$obj:=(NN | CD)

(Rule 9)

Here, ‘‘rdf:’’ points to the namespace of RDF, which – amongst
others – contains the ‘‘typeOf’’ property. Negation can be used
almost everywhere in the RHS of a rule, except in front of a label,
e.g.:

($sub, rdf:typeOf, $obj) :-
$sub:=(!NN)
$obj:=(!(NN | CD))

(Rule 10)

3.2.7. Repetition
Another feature that is often used in many languages is

repetition, which is employed as an indication that a certain
pattern can be found a number of times. In HIEL, we distinguish
between four types of repetition operators: zero or more
(‘‘*’’), once or more (‘‘+’’), zero or once (‘‘?’’), and a range
(‘‘{min[,[max]]}’’). The latter indicates that the foregoing
patternmust occur at least min times and nomore than max times.
The comma and the maximum are optional. When a maximum
has not been defined, the pattern must occur at least min times.
Leaving out the comma as well indicates that the specified pattern
must occur exactly min times. An example of a rule utilizing a
range operator is:
($sub, rdf:typeOf, $obj) :-
$sub:=NNP (VBZ | NN){1,3}
$obj:=NNP

(Rule 11)

3.2.8. Wildcards
The patterns defined in the RHS of rules can be very specific. The

order of the tokens is fixed and no other words between the tokens
are allowed. In order to enable some flexibility in patterns, we
allow the user to employ wildcards. These wildcards can be used
to state that any word may be found in the text and are inspired
by the wildcards of the database query language SQL. Within our
language, the user is allowed to specify that zero or more words
may be skipped (‘‘%’’) or exactly one word may be skipped (‘‘_’’).
An example rule that makes use of wildcards is:

($sub, rdf:typeOf, $obj) :-
$sub:=(NN & upperInitial) %
$obj:=NN

(Rule 12)

3.3. Employing ontology elements in the rules

By employing ontology elements, we are adding semantics to
the rules. For instance, if there is a news article about kb:Google
introducing a new product, e.g., kb:Chrome, and kb:Google already
has an entry in the knowledge base, it is possible to annotate the
lexical representation of kb:Chrome as a product and add a product-
relation between kb:Chrome and kb:Google. When ontologies are
employed in the rules, potentially one rule can be used to describe
multiple lexical representations. In this example three features
of an ontology occur. First, company is a class. Second, kb:Google
and the product (kb:Chrome) are instances of classes, and third,
the relationship between kb:Google and the product represents an
object property. We now continue by discussing how these three
features of the ontology can be employed in information extraction
rules.

3.3.1. Concepts
Classes are groups of individuals that share the same proper-

ties [7]. For example, kb:Google and kb:Microsoft both belong to
the same class, i.e., kb:Company. Other examples of classes are
kb:Product, kb:Person, and kb:Country. In information extraction it
is useful to look for specific instances in the text. Instances aremore
specific than classes and are generally used on the RHS of the rule.

In the language we make a distinction between classes and
instances. If the rule is to recognize a specific instance of a certain
concept it is denoted by the instance itself. The following rule
shows an example:

($sub, kb:hasProduct, $obj) :-
$sub:=kb:Google kb:Buys
$obj:=mixedCaps

(Rule 13)

This rule contains two instances, namely kb:Google and kb:Buys,
and are matched to a sentence like ‘‘Google Inc. acquires YouTube,’’
because ‘‘Google Inc.’’ is a lexical representation of the instance
kb:Google and in a similarmanner is ‘‘acquires’’ a lexical representa-
tion of kb:Buys. By employing classes instead of specific instances,
the rules become more generic. An example of a rule using classes
is:

($sub, rdf:typeOf, kb:Company) :-
[kb:Company] (‘,’ | ‘and’)
$sub:=(NNP{1,})

(Rule 14)

In the above rule, a list of companies is recognized. The square
parentheses denote all the instances of the enclosed type. Each
instance has associated lexical representations as we have
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Fig. 1. Overview of the Hermes processing pipeline.
previously seen. In this example, the proper nouns (NNP) will be
annotated as an instance of a company. Assuming that Google is
already known as a concept, in order to recognize other companies,
we canmatch the rule on the sentence ‘‘A Big-Picture Look at Google,
Microsoft Corporation, Apple and Yahoo!’’. The first time this is done,
‘‘Microsoft Corporation’’ will be annotated as a company, while in
order to recognize ‘‘Apple’’ and ‘‘Yahoo!’’ as well, the rule needs to
be run a second and a third time.

3.3.2. Relations between concepts
As stated earlier, the LHS of the HIEL patterns is used

for recognizing concepts, and it is a triple that describes the
relationship between a subject and an object. By using labels, we
can refer in the LHS to a concept found on the RHS. For instance, a
rule such as

($sub, kb:hasSubsidiary, $obj) :-
$sub:=[kb:Company] kb:Buys
$obj:=[kb:Company]

(Rule 15)

can be employed in order to extract the kb:hasSubsidiary relation
between two companies. The concept kb:Buys has various syn-
onyms such as: ‘‘buy’’, ‘‘acquire’’, and ‘‘take over ’’. If we apply this
rule to the sentence ‘‘Google buys YouTube for $1.65 billion’’, itwould
extract the kb:Buys relation between kb:Google and kb:YouTube.
This information can then be used in order to update the ontol-
ogy, and for instance remove the existing competitor relationship
between the companies.

4. Hermes information extraction engine

Based on the language defined in this paper, we have
implemented the Hermes Information Extraction Engine (HIEE).
In this section, we first discuss the Hermes News Portal (HNP)
in Section 4.1, followed by Section 4.2 that briefly touches upon
the general framework that lies underneath the HNP and the
HIEE plug-in. Subsequently, Section 4.3 presents the preprocessing
of the news items. Section 4.4 discusses the rule engine and
Section 4.5 illustrates the plug-in for the Hermes News Portal.

4.1. Hermes news portal

The implementation of the Hermes framework is the Hermes
News Portal (HNP), which allows users to formulate queries and
execute them on the domain ontology in order to retrieve relevant
news items. The HNP application is a stand-alone, Java-based tool
which makes use of various Semantic Web technologies.

The internal knowledge base is in fact a domain ontology
constructed by domain experts, represented in OWL [7]. While
populated ontologies are typically queried by the Semantic Web’s
standard query language SPARQL [28], querying within HNP is
done by means of extended SPARQL queries. Because within
the Hermes News Portal time-specific features are exploited,
time functionalities were added to SPARQL, which resulted in
tSPARQL [11,12].WithinHNP, the classification of the news articles
is done using GATE [41] and the WordNet [46] semantic lexicon.
The classification occurs prior to the rules execution that extract
information from news.

4.2. General framework

We developed a general framework that supports our Hermes
Information Extraction Engine (HIEE) plug-in. Fig. 1 presents the
architecture of the processing pipeline that lies underneath our
implementation. The framework consists of two main parts, i.e.,
the preprocessing stage and the rule engine. These parts and their
individual components are executed in a specific order, and are
discussed in more detail in the following subsections.

In short, preprocessing – which is described in more detail in
Section 4.3 – is done using the existing HNP natural language
processing pipeline, which classifies news items using the GATE
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architecture [41]. Most of the components stem from the A Nearly-
New Information Extraction (ANNIE) system, which is a selection
of standard GATE components. In addition, an ontology-enabled
gazetteer is employed.

In contrast to most preprocessing components, the rule engine,
which is described in more detail in Section 4.4, makes use of
ontologies. The engine consists of two core components, i.e., lexico-
semantic pattern (rule) compilation and matching. The compiler
and matcher make use of semantic components, i.e., concepts and
individuals stored in the main ontology, and syntactic elements,
such as Part-Of-Speech (POS) tags that are generated in the
preprocessing stage.

4.3. Preprocessing

Before the rules can be employed to match patterns in text,
a few processing tasks need to be performed, like tokenization,
sentence splitting, and Part-Of-Speech (POS) tagging, which are
dealt with by the GATE architecture [41]. GATE provides a pipeline
consisting of different components, each of which handles a
different aspect of the language processing. The components that
are part of the pipeline, and come with GATE by default, are in
order of usage: Document Reset, ANNIE English Tokenizer, ANNIE
Gazetteer, ANNIE Sentence Splitter, ANNIE Part-Of-Speech Tagger, and
OntoGazetteer.

The Document Reset component is used for resetting the
document, in this case a news item, to its original state. The
document is cleared from all its current annotations, enabling
the pipeline to re-annotate the text. This is especially useful
when running the document through a pipeline several times, as
it is undesirable to use a document with previous annotations
in an information extraction process. Subsequently, the ANNIE
English Tokenizer splits the corpus into tokens, such as numbers,
punctuation, and words of different types. A distinction is made
between words in uppercase and lowercase, and between certain
types of punctuation.

After these basic operations, the ANNIE Gazetteer looks up
words from gazetteer lists (i.e., lists with names of, for example,
cities, countries, companies, days of the week, world leaders, etc.)
in order to be able to classify them. In our implementation, the
latter task is limited to some basic and static lists, such as days of
the week, months of the year, etc. After gazetteering, the ANNIE
Sentence Splitter is employed, which identifies sentences, required
for the ANNIE Part-Of-Speech Tagger. This tagger is a modified
version of the Brill tagger [47], which produces a POS tag as an
annotation to each word or symbol. The POS tags, e.g., the ones
described in Table 1, can be used in the rules to describe certain
patterns.

Finally, the OntoGazetteer component is executed, which has
similaritieswith the ANNIE Gazetteer. The biggest difference lies in
the fact that the OntoGazetteer is an ontology-enabled component,
i.e., it utilizes terms stored in an ontology instead of plain gazetteer
lists for classification. The component still utilizes lists in order to
perform its tasks, but in addition provides a mapping definition
between the lists and the ontology classes. The OntoGazetteer
searches the corpus for occurrences of OWL annotation properties
– these are the concept lexical representations – of the classes and
instances of the ontology. The found matches are annotated with
the name of the OWL instance (or class) against which the piece
of text is matched. In order to assure a good performance, one
should make sure that the ontology has an extensive list of lexical
representations associated to each depicted concept or relation.
After annotation using OntoGazetteer, tokens have been linked to
the ontology, and hence can be used in lexico-semantic patterns.
A sentence like ‘‘The conference will be attended by CEOs like Steve
Ballmer and Steve Jobs’’, gives us the opportunity to recognize ‘‘Steve
Ballmer ’’ and ‘‘Steve Jobs’’ as CEOs.
Fig. 2. Rule tree template.

4.4. Rule engine

After preprocessing a news corpus, the Hermes Information
Extraction Rule Engine compiles the rules in the Rule Compiler and
matches these rules to the text using the Rule Matcher. Because
we use news items, employing the extracted information it is
possible to adapt the underlying ontology based on certain events.
For instance, ‘‘Eric Schmidt leaves Google’’, informs us that ‘‘Eric
Schmidt ’’ is no longer the CEO of ‘‘Google’’ and hence results in an
ontology update. Note that in order for the rule engine to be able
to run as a stand-alone application, we do not create dependencies
with respect to GATE’s default JAPE language. Hence, because no
conversion is made to JAPE rules, we enable one to employ the rule
enginewithin other information extraction frameworks as a stand-
alone component. Also, we have to take into consideration that
JAPE might not be suitable to support possible future extensions
to HIEL.

The Rule Compiler is created using the Java Compiler Com-
piler [48], developed by Sun Microsystems. The Java Compiler
Compiler generates a compiler for the grammar defined in Sec-
tion 3, Appendix A. During the compilation, Java objects are being
created that represent the various parts of a rule. The right-hand
side (RHS) of a rule can be represented as a tree, as shown in Fig. 2.
Components in this tree are of two main types: internal nodes and
leaf nodes. Internal nodes consist of one or more internal nodes
or leaf nodes and include sequences, logical operators, and repeti-
tions. Leaf nodes are nodes that do not have any child nodes and in-
clude literals, concepts, orthographical categories, Part-of-Speech
categories, andwildcards. After the rules are compiled, thematcher
tries to match the rules onto the text.

In order to match the compiled rules to the text, each tree node
performs its own task. In our recursive algorithm which starts at
the tree’s root node, child node procedure calls are performed.
These children try to match as many tokens as possible. Non-leaf
nodes, i.e., nodes that contain child nodes, keep performing calls
to their children until a leaf node has been reached. Subsequently,
leaf nodes check whether the token at the current position is a
match. Each child node reports to its parent the number of tokens
it was able to match until the root of the tree is reached. If the
root returns a value which is equal or greater than the value of the
position it started with, the rule has beenmatched to the text. This
process is repeated until the last token of the text has been reached.
After matching a rule, tokens on the right-hand side are bound
to labels to be used in the left-hand side of the rule. This allows
for determining which tokens belong to the subject, predicate, and
object of the computed triple.

In Fig. 3 an example tree of Rule 14 is shown. If we consider the
following sentence: ‘‘ASUS andMicrosoft Corporation become official
partners for Windows Phone 7’’, where ASUS is a known instance
of Company in the ontology and Microsoft Corporation is not, the
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Fig. 3. Rule tree example of Rule 14.

process is as follows. Sequence sends a getNextMatch() call
to kb:Company, which returns 1, indicating that one token has
been matched. Subsequently, after receiving the response, the
Sequence sends a getNextMatch() call to the OR which passes
it on to the literal ‘‘and’’ which returns 1. Finally, the Repetition
tries to match the NNP as many times as possible, which results
in 2, as ‘‘Microsoft Corporation’’ has two words. Note that the
tokens matched by the Repetition, ‘‘Microsoft Corporation’’, are
assigned to the left-hand side (LHS) entity sub.

Regarding speed, the Hermes Information Extraction Rule
Engine is able to run on a real-time basis, as both rule compilation
and executing rules for one news message have subsecond
performance. We did not encounter any speed issues that can be
attributed to OWL operations on the underlying ontology, as we
only deal simple inferences based on the typeOf relations.

4.5. Hermes plug-in

In order to be able to evaluate the usability and expressivity
of the proposed information extraction language, the HIEE plug-in
for the Hermes framework was created. This plug-in allows one to
create, edit, use, and evaluate extraction rules, and is composed of
three different parts, i.e., the rule editor, the annotation validator,
and the manual annotator.

The rule editor, as displayed in Fig. 4, allows users to create
their own personal information extraction rules. These rules can be
divided into so-called rule groups, enabling clustering of different
rules of the same type (i.e., they discover the same type of event).
After creating a rule, the user is given the option to validate
and save the rule. Whenever syntactical mistakes – such as
typographical errors, but in worse cases violations of the grammar
as defined in this paper – are made by the user, the built-in
compiler will detect them and display informativemessages to the
user. A rule cannot be saved if it is not valid, ensuring the validity
of the rules by construction.

The annotation validator, as depicted in Fig. 5, displays the
resulting annotations after applying the user-defined extraction
rules to the existing news items. Each result is described by
the extracted triple defined in the left-hand side of a rule, a
number indicating the number of occurrences of the triple in the
evaluated news items, and a check-box to allow for user validation,
resulting in knowledge base updating. After marking the correctly
extracted facts as valid, a new annotation run can be executed. The
previously extracted factswill be stored in the knowledge base and
Fig. 4. Rule editor.



W. IJntema et al. / Web Semantics: Science, Services and Agents on the World Wide Web 15 (2012) 37–50 45
Fig. 5. Annotation validation.
subsequently, new information can be extracted using these new
facts.

The manual annotator is used for evaluating the current rule
set. For each news item, the user is able to manually annotate
tokens from the news item. When selecting a token, its current
classified annotations, such as the Part-Of-Speech (POS) tag, the
orthographical category, and the ontology concepts are displayed.
If new ontology annotations are preferred, a concept can be
selected from a list with existing concepts from the ontology.
Events can be described by selecting the subject, predicate, and
object in the text and annotate them with the corresponding
ontology concepts.

5. Evaluation

In order to evaluate the effectiveness of our approach, we have
implemented a test method and built a test environment. First we
discuss the evaluation setup in Section 5.1, followed by the results,
in Section 5.2.

5.1. Evaluation setup

For testing the performance of the extraction language, we
assembled news messages from financial news feeds, totaling
500 items with an average length of 4,200 words and multiple
paragraphs. News messages are written in English using an
extensive vocabulary. These news items are divided into two sets,
i.e., a training set consisting of 300 news items, and a test set
consisting of 200 news items. The gathered news items originate
from Reuters Business and Technology News and from The New
York Times Business News. Next, an ontology is provided to
domain experts (i.e., colleagues with an expertise in finance) that
are asked to annotate the news messages and to develop event
extraction rules. A similar approach is followed for a second data
set containing 100 political newsmessages, with an average length
of 700 words, mainly gathered from Reuters Politics News and
Yahoo! Politics News.

The ontologies employed in our experiments contain major
domain concepts and their most common representations, and
are not overly detailed. It is not within the scope of this paper
to develop large, complete, and exhaustive ontologies for the
specific domains as we merely explore the functionalities of our
language by means of concepts within a particular financial or
political context. The developed ontologies allow domain experts
to annotate texts with common concepts from finance and politics,
and to recognize frequently occurring financial and political
events.

Our financial ontology contains a small subset of commonly
used, well-known, financial entities. Examples of ontology con-
cepts are: companies, products, persons, currencies, CEOs, etc.
These concepts have associated lexical representations, e.g., the
CEO concept has associated ‘‘CEO’’, ‘‘Chief Executive Officer ’’, ‘‘Chief
Executive’’, etc. The ontology consists of 65 classes, 18 object prop-
erties, 11 data properties, and 1,167 individuals, which can be used
for annotation and event detection.

The ontology that is used for event discovery in political news
items is also a high-level ontology, yet considerably smaller than
the financial ontology. Our political ontology contains 14 classes,
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Table 2
Relations and events for the financial domain, used for evaluation purposes.

Name Subject Relation Object

CEO Company hasCEO Person
Product Company hasProduct Product
Shares Company hasShareValue Literal
Competitor Company hasCompetitor Company
Profit Company hasProfit Literal
Loss Company hasLoss Literal
Partner Company hasPartner Company
Subsidiary Company hasSubsidiary Company
President Company hasPresident Person
Revenue Company hasRevenue Literal

Table 3
Relations and events for the political domain, used for evaluation purposes.

Name Subject Relation Object

Election Person isElectedAs Function
Visit Person visits Country
Sanction Country sanctions Country
Join Country joins Union
Resignation Person resignsFrom Function
Investment Country investsIn Country
Riots Country hasRiots N/A
Collaboration Country collaboratesWith Country
Provocation Country provokes Country
Help Country helps Country

12 object properties, 5 data properties, and 391 individuals. Most
individuals are associated with countries. Also, we included many
lexical representations of politics-related nouns and verbs, e.g.,
those linked to elections, provocations, meetings, etc.

For each data set, three domain experts manually annotate the
events and relations that we take into account in our evaluation,
based on an inter-annotator agreement of at least 66% (i.e., at least
two out of three annotators should agree). During the evaluation
we focus on the extraction of ten events and relations from the
financial domain and ten events and relations from the political
domain. Each of these events are described in Tables 2 and 3, by a
name, subject, relation, and an optional object. Based on the events
and relations that exist in the news items in the training sets, we
let three domain experts construct a set of information extraction
rules, where we take the conjunction of the three constructed rule
sets. The constructed rules are subsequently matched to the news
items in the test sets, in order to measure the performance.

In our experiments, for each rule group we compare the
performance of lexico-syntactic patterns (our baseline) to the
performance of lexico-semantic patterns written in HIEL and in
JAPE in terms of construction time (i.e., efficiency) and in terms of
precision and recall (i.e., expressivity). The latter twomeasures are
often employed in the information extraction field, i.e., precision P
and recall R. These measurements are defined as follows:

P =
|{Relevant} ∩ {Found}|

|Found|
, (1)

R =
|{Relevant} ∩ {Found}|

|Relevant|
, (2)

where Relevant is the set of relevant annotations (events) and
Found is the set of found annotations. There is a trade-off between
precision and recall, and hence we compute the F1 measure. The
F1 measure is applied to compute an even combination, i.e., the
harmonic mean of precision and recall:

F1 =
2 × Precision × Recall

Precision + Recall
. (3)
Table 4
Creation times (in seconds) of lexico-syntactic and lexico-semantic rule groups in
HIEL, and lexico-semantic rule groups in JAPE, using the financial test set (F1 ≥ 0.5).

Name HIEL JAPE
Lex-Syn Lex-Sem Lex-Sem

CEO 8424 281 738
Product 9428 132 312
Shares 2403 648 703
Competitor 9116 133 850
Profit 1923 416 1027
Loss 5991 313 589
Partner 4924 185 474
Subsidiary 6620 776 1851
President 4239 179 722
Revenue 5317 498 798

Overall 5839 356 806

Table 5
Creation times (in seconds) of lexico-syntactic and lexico-semantic rule groups in
HIEL, and lexico-semantic rule groups in JAPE, using the political test set (F1 ≥ 0.5).

Name HIEL JAPE
Lex-Syn Lex-Sem Lex-Sem

Election 1517 232 689
Visit 4238 543 913
Sanction 4013 419 1247
Join 3986 297 405
Resignation 1259 366 540
Investment 5162 781 2304
Riots 1734 306 451
Collaboration 1103 137 719
Provocation 1428 530 828
Help 1987 211 362

Overall 2643 382 846

Wemeasure the rule creation times by averaging the individual
rule set creation times of our domain experts. We evaluate the
average time it takes for the F1 measures to become equal to or
higher than 0.5. Such a value would be large enough to rule out
randomness, as the F1 measure for a random classifier (based on
prior occurrence probability) is a lot less than 0.5 due to the fact
that events seldom occur in a news item (when comparing the
likelihood of a specific event occurrence with the absence of a
specific event with respect to a possible event word sequence in
a news item). In theory, creating patterns with an F1 performance
of 0.5 should be manageable within a reasonable amount of time.
Additionally, with F1 scores of 0.5, one avoids the risk of overfitting
patterns to a specific data set.

We hypothesize that the creation of well-performing lexico-
syntactic rule groups requires more time than the creation of
the equivalent lexico-semantic ones. In a second experiment, rule
quality, indicated by the precision, recall, and F1 measures is
evaluated for lexico-syntactic, HIEL, and JAPE rule groups given
a fixed time in which our domain experts are allowed to create
and improve the individual rules. We allow the domain experts
to improve their (HIEL and JAPE) lexico-semantic rule groups up
until the time it took for creating the equally performing lexico-
syntactic rule groups.

5.2. Evaluation results

The construction times presented in Tables 4 and 5 confirm
our hypothesis that the creation of lexico-syntactic rules requires
more time than the creation of equally performing lexico-semantic
rules, both in HIEL and in JAPE. The tables display rule group
creation times in seconds for the lexico-syntactic and lexico-
semantic variants,which are obtained on our test setswhile aiming
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for an F1 score of at least 0.5. For our financial data set, on average,
equally well-performing lexico-semantic rule groups are created
up to 5 to 70 times faster than their lexico-syntactic counterparts.
For JAPE patterns, creation times are considerably lower than for
lexico-syntactic rules, yet they are higher than those for HIEL
lexico-semantic patterns. Additionally, for our political data set
we observe similar results, although the measured differences are
regularly smaller.

The major cause of the construction time reduction that
is measured when switching from lexico-syntactic to lexico-
semantic patterns lies within the fact that concepts used in
HIEL and JAPE lexico-semantic rules, e.g., persons and companies,
are conveniently described in an ontology (containing classes,
instances, and their associated lexical representations), thus
enabling easy reuse. For lexico-syntactic rules however, it is
difficult and cumbersome to create rules that distinguish names of
persons from companies, products, months, days, etc. Additionally,
the verbosity of lexico-syntactic rules and the use of literals to
exclude commonwords (e.g., months) contribute to a considerable
amount of extra creation time.

Let us consider a rule that extracts provocation events,
where one country provokes another. When solely utilizing
lexico-syntactic elements within the pattern, one would need to
intelligently combine lexicographic and orthographic categories.
For instance, a country could be defined as a series of nouns and
adjectives that contain capitals, i.e., ((JJ | NNS | NNP | NNPS
| NN) & (upperInitial | allCaps | mixedCaps))+,
matching phrases like ‘‘Spain’’, ‘‘United States’’, etc. Additionally,
this could be extended so that it would also match strings like
‘‘U.S.’’ by adding an extra condition, resulting in (((JJ | NNS
| NNP | NNPS | NN) & (upperInitial | allCaps |
mixedCaps)) (‘.’ NNP ‘.’?)?)+. However, finding the right
combination of nouns and conditions in order to match countries
and not persons, companies, etc., is a tedious task. An example of a
lexico-syntactic provocation discovery rule is:

($sub, kb:provokes, $obj) :-
$sub:=(

(
(JJ | NNS | NNP | NNPS | NN) &

(upperInitial | allCaps | mixedCaps)
)
(‘.’ NNP ‘.’?)?

)+
(!‘.’ & !‘(’ & !‘)’ & !‘-’){0,3}
(‘angers’ | ‘angered’ | ‘accuses’ |

‘accused’ | ‘insult’ | ‘insulted’ |
‘provokes’ | ‘provoked’ | ‘threatens’ |
‘threatened’)

(!‘.’ & !‘(’ & !‘)’ & !‘-’){0,3}

(Rule 16)

$obj:=(
(

(JJ | NNS | NNP | NNPS | NN) &
(upperInitial | allCaps | mixedCaps)

)
(‘.’ NNP ‘.’?)?

)+

Here, the subject and object are defined as series of capitalized
nouns, possibly representing countries. Additionally, verbs related
to provocation are required. These are enumerated as literals.
Finally, the pattern allows up to three non-punctuation tokens in
between the countries and the verb.
When replacing lexical categories and literals with concepts
stemming from our political ontology, we obtain the following
lexico-semantic rule in HIEL:

($sub, kb:provokes, $obj) :-
$sub:=([kb:Country] | [kb:Continent] |

[kb:Union])
(!‘.’ & !‘(’ & !‘)’ & !‘-’){0,3}

(kb:toAnger | kb:toAccuse | kb:toInsult |
kb:toProvoke | kb:toThreaten)

(!‘.’ & !‘(’ & !‘)’ & !‘-’){0,3}
$obj:=([kb:Country] | [kb:Continent] |

[kb:Union])

(Rule 17)

The rule ismuch cleaner and takes considerably less effort towrite.
As concepts like countries, continents, and unions are conveniently
described in the ontology, the user merely needs to refer to them
and avoids the hassle of trying to find optimal combinations
of lexicographic and orthographic categories, keywords, etc.
Moreover, lexico-semantic rules exploit the typeOf hierarchy,
i.e., because of the inference that can be applied to ontological
concepts, the user can suffice with using concepts like Country,
instead of their subclasses US, UK, etc., that have associated lexical
representations.

Even though JAPE is more expressive than HIEL as it supports
templates (macros) as well as the usage of any Java code – which
is useful for removing temporary annotations, percolating and
manipulating features from previous annotations, etc. – HIEL rules
offer more accessibility to the user. Let us consider the following
rule, which is an exact JAPE copy of our previously introduced HIEL
rule:

Rule: Geo_provokes_Geo
(

(
{Lookup.classURI == "Country"} |
{Lookup.classURI == "Continent"} |
{Lookup.classURI == "Union"}

):sub
({!Token.string ==~ "[.()-]"})[0,3]
(

{Lookup.URI == "toAnger"} |
{Lookup.URI == "toAccuse"} |
{Lookup.URI == "toInsult"} |
{Lookup.URI == "toProvoke"} |
{Lookup.URI == "toThreaten"}

)
({!Token.string ==~ "[.()-]"})[0,3]
(

{Lookup.classURI == "Country"} |
{Lookup.classURI == "Continent"} |
{Lookup.classURI == "Union"}

):obj
)
:match --> :match.provokes =

{sub = :sub.Lookup.propertyValue,
obj = :obj.Lookup.propertyValue}

(Rule 18)

Even without employing the extra features that JAPE rules offer,
we already obtain a rule that is more verbose. Therefore, this rule
takes considerably longer towrite than lexico-semantic HIEL rules.
On the other hand, due to the availability of ontology concepts also
the creation of lexico-semantic JAPE rules requires less effort than
constructing plain lexico-syntactic rules.

In Table 6, the experimental results of lexico-semantic rules on
the test set are displayed for the financial data set. After allowing
the domain experts to improve the lexico-semantic ruleswritten in
HIEL up until the time it took for creating the equally performing
lexico-syntactic rules (e.g., [2,403 − 648 =] 1,755 extra seconds
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Table 6
Results of lexico-syntactic and lexico-semantic rule groups on the political test set (within fixed time), displaying precision (P), recall (R), and F1 scores, as well as the number
of items found (+) and the number of items missed (−).

Name Lex-Syn HIEL Lex-Sem HIEL Lex-Sem JAPE
P R F1 + − P R F1 + − P R F1 + −

CEO 0.5217 0.6000 0.5581 69 24 0.8966 0.8667 0.8814 58 8 0.9412 0.5333 0.6808 34 28
Product 0.6667 0.4118 0.5091 84 80 0.8607 0.7721 0.8140 122 31 0.8558 0.6544 0.7417 104 47
Shares 0.4286 0.6667 0.5218 70 15 0.9000 0.8000 0.8471 40 9 0.8889 0.7111 0.7901 36 13
Competitor 0.5333 0.4800 0.5052 45 26 0.7600 0.7600 0.7600 50 12 0.7568 0.5600 0.6437 37 22
Profit 0.7500 0.4545 0.5660 20 18 0.8800 0.6667 0.7586 25 11 0.9375 0.4545 0.6122 16 18
Loss 0.6471 0.4074 0.5000 17 16 0.8125 0.4815 0.6047 16 14 0.9231 0.4444 0.6000 13 15
Partner 0.3864 0.7391 0.5075 44 6 0.8000 0.8696 0.8333 25 3 0.7619 0.6957 0.7273 21 7
Subsidiary 0.7500 0.3913 0.5143 24 28 0.9063 0.6304 0.7436 32 17 0.9091 0.4348 0.5883 22 26
President 0.4333 0.5909 0.5000 30 9 0.6667 0.6364 0.6512 21 8 0.8462 0.5000 0.6286 13 11
Revenue 0.6429 0.4091 0.5000 14 13 0.7143 0.6818 0.6977 21 7 0.7059 0.5455 0.6154 17 10

Overall 0.5492 0.4935 0.5199 417 235 0.8390 0.7414 0.7872 410 120 0.8530 0.5754 0.6872 313 197
Table 7
Results of lexico-syntactic and lexico-semantic rule groups on the financial test set (within fixed time), displaying precision (P), recall (R), and F1 scores, aswell as the number
of items found (+) and the number of items missed (−).

Lex-Syn HIEL Lex-Sem HIEL Lex-Sem JAPE
Name P R F1 + − P R F1 + − P R F1 + –

Election 0.4615 0.5455 0.5000 13 5 1.0000 0.8182 0.9000 9 2 0.8182 0.8182 0.8182 11 2
Visit 0.6774 0.4038 0.5060 31 31 0.7027 0.5000 0.5843 37 26 0.6944 0.4808 0.5682 36 27
Sanction 0.5263 0.4918 0.5085 57 31 0.7857 0.7213 0.7521 56 17 0.6774 0.6885 0.6829 62 19
Join 0.7222 0.4063 0.5200 18 19 0.8125 0.8125 0.8125 32 6 0.7917 0.5938 0.6786 24 13
Resignation 0.9091 0.3846 0.5405 11 16 0.8000 0.9231 0.8572 30 2 0.7333 0.8462 0.7857 30 4
Investment 0.5208 0.4808 0.5000 48 27 0.7778 0.6731 0.7217 45 17 0.7500 0.5192 0.6136 36 25
Riots 0.5200 0.5200 0.5200 50 24 0.7069 0.8200 0.7593 58 9 0.6863 0.7000 0.6931 51 15
Collaboration 0.4250 0.6538 0.5151 40 9 0.7143 0.7692 0.7407 28 6 0.5000 0.6923 0.5806 36 8
Provocation 0.7727 0.4250 0.5484 22 23 0.7857 0.5714 0.6616 28 18 0.7778 0.5250 0.6269 27 19
Help 0.5510 0.4737 0.5094 49 30 0.7541 0.8070 0.7797 61 11 0.7273 0.7018 0.7143 55 17

Overall 0.5664 0.4694 0.5134 339 215 0.7630 0.7164 0.7390 384 114 0.7011 0.6308 0.6641 368 149
for shares discovery), the overall precision and recall are 84% and
74%, respectively, resulting in an F1 score of approximately 79%.
With measured precision, recall, and F1 scores of 85%, 58%, and
69%, respectively, the lexico-semantic rules that are written in
JAPE perform notably better than the lexico-syntactic rules, which
have a precision, recall, and F1 measure of 55%, 49%, and 52%,
respectively, yet their performance is consistently worse than the
performance of lexico-semantic HIEL rules.

For both lexico-semantic pattern languages, the highest recalls
are obtained for CEO, Shares, and Partner relations. This is
mainly due to the homogeneous sentence structures related to
these relations. Judging from the low recalls, the subsidiary and
president relations were harder to discover in the text. This could
be caused by overfitted rules, which means that it was difficult to
create generic rules on the training set that would match many
different instances of these relations. The same can be said for the
precision and recall (and hence the F1 value) of the discovery of a
company’s loss. Another notable observation is the high number of
product relations that are discovered in our data set, which can be
explained by the fact thatmany news items discuss companies and
their products.

For our political data set, we observe similar overall perfor-
mances, as depicted in Table 7. Generally, lexico-semantic pat-
terns written in HIEL perform better than those written in JAPE.
While we observe a precision and recall of 76% and 72%, respec-
tively, for lexico-semantic HIEL rule sets, JAPE rules measure re-
spective scores of 70% and 63%. With F1 scores of 74% and 66%,
this is still considerably better than the 51% accomplished by the
lexico-syntactic rules. High precisions and recalls are observed in
rules covering elections, resignations, and riots, as these events can
usually be found in non-complex sentences where key terms are
closely located near one another. Political visits and provocations
suffer from low recall values, caused by the wide structural variety
and complexity of sentences denoting these events.

On a side note, within our framework it is relatively straightfor-
ward to obtain high recall scores. For instance, it would be likely for
a rule such as

($sub, kb:hasProduct, $obj) :-
$sub:=[kb:Company] %
$obj:=[kb:Product]

(Rule 19)

to discover each and every existing product relation. However,
there is a tradeoff between high recall and high precision. In order
to obtain high scores for both measures (expressed in a high
F1 score), rules need to be far more sophisticated. In texts that
contain product relations, often several different companies are
mentioned,whichmakes it difficult tomatch only the right product
with the right company.

Based on the evaluation results, we validated the requirements
set for our approach in Section 1. Our proposed language, HIEL, is
more easy to use for expressing lexico-semantic patterns than the
current state-of-the-art JAPE language. Also, we have shown the
superiority of lexico-semantic approaches over lexico-syntactic
ones with respect to both precision and recall.

6. Conclusion

As structuring data on theWeb is a tedious and time consuming
process, in this paper, we proposed a method to extract relations
and events in news articles. The contribution to the existing body
of knowledge is twofold.

Firstly, our proposed method relies on the Hermes Information
Extraction Language (HIEL), i.e., a lexico-semantic pattern language
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that not only makes use of lexical and syntactical elements, but
also employs ontology concepts and relations. These patterns are
based on regular expressions, which enhance the expressivity of
the rules. In this paper, we have provided a formal syntax for the
lexico-semantic rules.

Secondly, in order to show how the proposed rule-based ex-
traction method can be applied in practice, we have implemented
the approach in the Hermes News Portal (HNP) as the Hermes In-
formation Extraction Engine (HIEE) plug-in. Combined with stan-
dard text preprocessing tasks performed by the GATE framework,
as well as a central knowledge base expressed in an OWL ontology,
events and relations that occur in news items are extracted.

In order to assess the performance of our proposed method,
we have evaluated the implementation by building rules and
measuring the performance of the extraction of events and
relations by using these rules. On two separate data sets and
corresponding ontologies from the financial and political domains,
this resulted in a precision of approximately 80% and a recall of 70%,
as the lexico-semantic patterns are superior to lexico-syntactic
patterns with respect to expressivity. Additional experiments
show that,when compared to lexico-semantic rules in JAPE, lexico-
semantic HIEL rules obtain higher precision and recall scores than
their JAPE equivalents.

Furthermore, our experiments showed that creating lexico-
semantic rules requires significantly less time than creating
equally performing lexico-syntactic rules, as lexico-semantic rule
group creation times were in general one degree of magnitude
smaller than lexico-syntactic rule group creation times. We argue
that lexico-syntactic rules requiremore development timebecause
of the larger amount of effort needed for entering the individual
literals, resulting in low precision. Also, lexico-semantic rules
exploit the inference capabilities of ontologies. This underlines
the advantage of using lexico-semantic rules. Moreover, we have
demonstrated that lexico-semantic HIEL rules are less verbose
than their JAPE equivalents, resulting in less construction time and
contributing to higher precision and recall values.

While we have focused on finding new information and
identifying events and relations in news articles, as future research
we suggest to focus on automatically processing the information
that was found and updating the ontology. Additionally, in our
approach, we can only extract one triple per rule (the left-hand
side of the rule), while events often consist of more than a
subject, predicate, and an object. For instance, time can play a
role in the event. Also we want to increase the expressivity of
our lexico-semantic patterns by making use of the relationships
stored in the ontology, or going one step further by employing the
expressivity of one-dimensional SPARQLqueries. Finally,wewould
like to investigate how to automatically discover and construct
new rules [49] by searching for certain patterns in the text, trained
by using relations and events we have previously identified.
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Appendix A. Hermes information extraction language gram-
mar

This section contains a formal grammar description in Extended
Backus Naur Form (EBNF) of the Hermes Information Extraction
Language (HIEL) that is presented in this paper. Appendix A.1
presents an overview of the non-terminals used in our language,
whereas Appendix A.2 summarizes all terminals used in HIEL.
A.1. Non-terminals

Start ::= Lhs SETS Rhs
Lhs ::= PL SPACE∗ LhsP SPACE∗ COMMA SPACE∗ LhsP

SPACE∗ (COMMA SPACE∗ LhsP)?SPACE∗ PR
Rhs ::= Label? (RhsP | RhsCP) (SPACE+ Label? (RhsP |

RhsCP))∗
RhsCP ::= NOT? PL SPACE∗ (RhsP | RhsCP) SPACE∗ ((OR |

AND) SPACE∗)? (RhsP | RhsCP) SPACE∗ PR
RepOp?

RhsP ::= (NOT? (Element RepOp?)) | WILDCARD
LhsP ::= (DOLLAR? Name) | Element
Label ::= DOLLAR Name COL_EQ
Element ::= String_Lit | SYN | ORTH | Class | Inst
Class ::= BL Name BR
Inst ::= Name
Name ::= Ns? CHAR (CHAR | NUMBER)∗
Ns ::= CHAR (CHAR | NUMBER)∗ COLON
RepOp ::= REP | (AL NUMBER (COMMA NUMBER?)? AR)
String_Lit ::= String_Lsq | String_Ldq
String_Lsq ::= ‘’’ Seq ‘’’
String_Ldq ::= ‘’’’ Seq ‘’’’
Seq ::= (NUMBER | CHAR | HEX | ESC)∗

A.2. Terminals

NUMBER ::= [0-9]+
CHAR ::= [A-Z] | [a-z]
HEX ::= ‘\x’ ([0-9] | [A-F] | [a-f]) ([0-9] | [A-F] | [a-f])

(([0-9] | [A-F] | [a-f]) ([0-9] | [A-F] | [a-f]))?
ESC ::= ‘\’’ | ‘\’’’ | ‘\\’
SYN ::= ‘CC’ | ‘CD’ | ‘IN’ | ‘JJ’ | ‘NN’ | ‘NNP’ | ‘PP’ | ‘RB’|,‘UH’ |

‘VB’ | ‘VBZ’
ORTH ::= ‘upperInitial’ | ‘allCaps’ | ‘lowerCase’ |

‘mixedCaps’
PL ::= ‘(’
PR ::= ‘)’
AL ::= ‘{’
BL ::= ‘[’
BR ::= ‘]’
AR ::= ‘}’
COMMA ::= ‘,’
COLON ::= ‘:’
COL_EQ ::= ‘:=’
SETS ::= ‘:-’
OR ::= ‘|’
AND ::= ‘&’
NOT ::= ‘!’
DOLLAR ::= ‘$’
SPACE ::= ‘ ’
REP ::= ‘+’ | ‘∗’ | ‘?’
WILDCARD ::= ‘%’ | ‘_’
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