Role of Oct6 in Peripheral Nerve Myelination

1. A short 35bp conserved element, called C1, within the Oct6 Schwann cell specific enhancer is essential for enhancer function (this thesis).

2. DNA dependent dimeric, but not monomeric binding of Sox10 to C1 is essential for enhancer activity of the SCE (this thesis).

3. The Sox10 dependent regulation of Oct6 in differentiating Schwann cells does not provide a ready explanation for the temporally controlled expression of Oct6 (this thesis).

4. The zinc finger transcription factor Krox20 is the major transcriptional target of Oct6 in the peripheral nervous system (this thesis).

5. The physical interaction between Oct6 and Capicua suggests a direct link between neuregulin1 signalling and transcriptional control of myelination (this thesis).

6. Enhancer analysis through transient luciferase reporter assays, though efficient and relatively cheap, do not reflect regulation in a chromatin context and can therefore be misleading (this thesis).

7. To fully understand how protein-protein and protein-DNA interaction networks and transcription regulatory networks contribute to development, function, and pathology, it is important to unravel where, when and which parts of the network are active and what the biological consequences of this activity are (Davidson et al., Science, 2002).

8. The suggestion by He and colleagues that YY1 provides a link between neuregulin signaling and initiation of myelination in the peripheral nervous system through control of Krox20 is not substantiated by their experiments (He et al., Nat neuroscience 2010).

9. Scientific knowledge can reach the most common people, only when it is told in simple words in their mother tongue.

10. Science has proof without any certainty. Creationists have certainty without any proof (Ashley Montague).

11. We must accept finite disappointment, but never lose infinite hope (Martin Luther King Jr.)

Noorjahan Jagalur Basheer 18th May, 2011