Health Impact Assessment (HIA) - the evaluation of policies, projects, or proposals
concerning their effects on human health - becomes increasingly common practice at the
local, national, and EU-level. So far, no standard tool exists to aid the quantification step
in HIA. This thesis proposes dynamic population health modeling as a methodological
foundation for quantitative HIA by motivating and introducing a ready-to-use software tool
for this purpose: DYNAMO-HIA. In addition, selected applications are presented ranging
from the health consequences of an EU-wide tax increase on alcohol to the quantification
of the life-long health benefits of reducing obesity when entering adulthood.
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Introduction

All models are wrong, some are useful.
George E. P. Box

Health impact assessment:
Between technical Exercise and participatory process

The definition most widely used for health impact assessment (HIA) stems
from the Gothenburg consensus paper and states that HIA is a combination of
procedures, methods, and tools by which a policy, program, or project may be judged
as to its potential effects on the health of a population, and the distribution of those
effects within the population.”

HIA typically informs policy options outside the health sector but can
also cover a dedicated health policy. The roots of HIA can be traced to two
prior developments (see Veerman for a detailed overview?). The first root
is the extension of environmental impact assessments (EIA) to include also
health. Particularly in developing countries, it became increasingly apparent
that ambitious infrastructure projects, such as dams or irrigation, have not
only consequences for the environment but also for human health. Adding
health as a dimension when conducting an EIA is now more common but
not standard. The second root stems from a movement that was more con-
cerned with the social and behavioral determinants of health such as the
WHO Healthy Cities Initiative. This approach is holistic and emphasizes the
interaction with affected individuals and communities. Particular attention is
payed to the causes and mitigation of social inequalities in health. These two
different roots and the very diverse field of application (from EU-wide poli-
cies to urban development) partly explain the variety of existing approaches
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and certain tensions within the field. But all HIAs have in common that they
are simply speaking "evaluations before the fact."?

Objectives of HIA

An HIA exercise usually has three main objectives: First, to predict the impact
of a policy, second, to allow participation of stakeholders in the assessment
process, and, third, to inform the decision making process.”

The first objective is close to epidemiological considerations. The causal
pathway by which the policy affects health has to be identified, i.e. which risk
factors are affected. When the causal chain is established, HIA aims to pre-
dict the health changes for the whole population and the distribution within
the population. Not only the net effect is important, but it is also crucial to
identify both winners and losers of a policy. It is necessary to be as thorough
as possible and to detect the negative and the positive effects of the policy on
health.

Some regard the second objective — to make the health assessment of a
policy proposal a participatory endeavor — as a key feature of the HIA pro-
cess. The main arguments are that residents have the right to be informed
and that they are often the best source of information in an assessment. They
know their community best and they are the ones who are affected by the
decision the most.# Critics, though, argue that it is onerous to motivate com-
munity members to participate and for larger projects this becomes impracti-
cable. Certainly, for policy decisions at the national level it will be difficult to
conduct an all-inclusive process.” Yet, for every decision under deliberation
there are different stakeholders with diverse preferences involved and every
HIA must accommodate their legitimate interests by being as transparent as
possible.

Third, an HIA has to inform the decision making process with applica-
ble knowledge. The derived information has to be put into an understand-
able and applicable form for the specific context. Giving a plethora of data
or a simple yes/no answer will not be convincing in the policy arena. This
objective stems partly from the practical observation that the assessment is
normally done by different people than the actual decision taking. Although
HIA is becoming more and more common, many administrative units simply
lack the adequately trained personnel to conduct an HIA.©
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In this thesis we limit the focus on the two technical core tasks of an HIA
(compare for a recent definition?):

¢ supporting decision-makers in choosing between options and

e predicting the future consequences of implementing different options.

Why numbers count

Quantification is desirable in most if not all decision situations. Even in the
situation where two options are compared that are both beneficial, have the
same costs, and the same chance of success, quantifying the outcome allows
choosing the (even) better option. Hence, quantification allows a ranking of
proposals where strictly speaking "doing nothing", i.e. postponing the deci-
sion, is always one of the options. Furthermore, if policies are discussed that
yield both benefits and losses —be it to a group of individuals, be it to the pop-
ulation as a whole — quantification in terms of changes in health allows a more
precise balancing of competing criteria. And, pragmatically speaking, recom-
mendations without quantification have difficulties standing up in the policy
arena; in particular if they are contrary to proposals that promise (quantified)
economic well-being.

For some, the quantification of future health outcomes of the assessed
policy proposals is not necessarily at the core of HIA as they rather stress the
qualitative and participatory elements of HIA. Those are both valid elements
of an HIA. Qualitative assessment of a policy proposal may reveal connec-
tions between the proposal and individual or population health which have
been unknown or ignored when conceiving the policy. Similarly, the partic-
ipatory elements of an HIA, i.e. consulting with affected individuals, health
experts, and other stakeholders, not only helps to reveal such connections;
it also allows — by having deliberative interactions — to find a better policy
outcome for all involved. Nevertheless, a fair and valid quantification of all
proposals under discussion will ceteris paribus only aid a rational decision
process.

Structure of an HIA

HIA is a multi-stage process commonly divided into five steps®Z: Screen-
ing is the assessment of — optimally — any proposal or policy whether it has
an intended or unintended effect on population health and, hence, should be
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subject to an HIA. Scoping refers to the process of identifying the potential
health impacts of a policy, program, or project before they are quantified. Ef-
fect analysis is at the core of an (extensive) HIA detailing and appraising the
potential consequences for population health. Reporting of findings ensures
that the insights gained of an analysis are being fed back into the policy pro-
cess, preferably in a clear and transparent manner, informing all stakeholders
sufficiently. Monitoring and evaluation of the implemented decision allows to
control changes and potentially a gain in knowledge for future HIAs.

Quantification takes place within the stage of effect analysis, consisting of
three different tasks that have to be addressed:

* Description of the baseline situation: The current population health has to
be described and its future development has to be predicted in absence
of the proposal under discussion.

* Estimation of change in exposure to determinants of health: The causal path-
way in HIA assumes that a policy acts on one or more risk factors which
in turn affect health. Hence, the change in the risk factor exposure for
(parts of) the population caused by the policy has to be estimated.

e Estimation of change in health outcomes: The consequences for population
health of the new risk factor prevalence are predicted and compared
with predictions of the baseline situation, i.e. the situation without an
intervention.

Quantification approaches in HIA

Currently, quantification in HIA is attempted seldom (compare Veerman® for
a detailed overview). A review of 31 guidelines!? for HIA showed that usu-
ally two recommendations for quantification are given: Use published evidence
or Commission an expert. Only few guidelines contained explicit recommenda-
tions on quantification. If explicit recommendations are given, then usually
for methods in line of an environmental impact assessment or quantitative
risk assessment (QRA) framework. Scrutinizing published HIAs and also ac-
counting of research that is in the spirit of HIA, i.e. assessing future health
effect of policies, shows the large diversity of approaches used. The approach
to quantification taken is often shaped by the particular research questions at
hand - scope and data availability — and the research traditions of the field
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the conductor of the HIA is most familiar with. Loosely speaking, three ap-
proaches dominate the literature.

First, statistical modeling techniques — such as multiple regression — are of-
ten employed, in particular by economists. The outcome variables are usu-
ally one or more harm indicators (e.g. mortality or sick days) at the popu-
lation level. As explanatory variable some aggregated measure of the expo-
sure variable is used and the effect of changes in the exposure variable on
the outcome variable is quantified, often adjusting for other variables. The
approach is based on well-established, well understood, and often used sta-
tistical /econometrical models. It is relatively modest in data needs as usu-
ally only the population level is modeled. However, detailed individual-level
epidemiological mechanisms are often ignored. The approach rather assumes
that past, aggregate-level relationships hold on to the future. But long time se-
ries may not reflect this relationship anymore; short time series may not con-
tain enough information (too few observations to be statistically significant).
The choice of variables to adjust for (such as income) can be crucial and needs
to be guided by appropriate theory. Furthermore, structural changes could
occur in the future which cannot be modeled or foreseen, such as changes in
preferences, medical treatment, policy, or population composition.

Second, quantitative risk assessment approaches that are the most promi-
nent recommendations in the reviewed HIA guidelines stem from an
(epidemiological based) environmental health impact assessment frame-
work. U2 QRAs explicitly utilize epidemiological evidence such as relative
or absolute risks assuming that the exposure in question causes the health
outcome. The assessment estimates the population attributable proportion of
disease cases or deaths due to the exposure (a family of measures usually de-
scribed in standard epidemiological texts as PAR, PAF, or sometimes PIF1%14)
and the expected change in those numbers due to the proposal in question.
QRA is much more in line with epidemiological considerations and is able to
account for more complex dose-response relationships. But it requires prior
research concerning the strength of the causal connection between risk factor
and health outcomes. An instructive example is available in the final project
report for a health impact assessment for the European Union by Abrahams
et. al’21% that quantifed the population-level effect of changes in employment
policy. This study assessed, inter alia, the effect of a shift from permanent
work contracts to fixed-term work contracts on self-reported health using an

odds-ratio from published literature. 218
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Third, increasingly dynamic population health models are being applied to
HIA or HIA-related questionslg, such as PREVENT# POHEM?%! or AR-
MADAZ. In particular ARMADA, developed by University College Lon-
don (UK), is intended to fit within an environmental/health impact frame-
work. It models real-life populations over time and features a generic disease
model with explicit risk factor states. The methodology is rather heteroge-
neous but usually based on insights of demographic modeling, i.e. life tables.
The population is segmented by risk factor status, which in turn determines
the probability of transitioning to another state (e.g. death, diseased). This
usually requires a larger amount of epidemiological evidence. Thus, models
often try to find a way to mitigate this problem, e.g. PREVENT using PIF or
POHEM using a tailor-made data base. Dynamic population health models
are, in terms of epidemiological and demographic insights, a comparatively
accurate way of modeling. However, dynamic population health models are
usually not only demanding in their data needs but often require specialist
knowledge and/or are only designed for particular risk factors, populations
and/or applications.

This thesis

Need for a standard tool

A tool is a device or procedure that can be used repetitively to achieve a
set of certain tasks or solve a class of problems. Usually, a single-purpose
tool performs comparatively better at its single task than a more general tool
that has to be applicable to a much wider range of tasks. Hence, a standard
tool intended for a given field must be sufficiently generic to be useful for
a large number of problems without neglecting the idiosyncrasy of a par-
ticular problem. Nonetheless, a potential standard tool for quantification in
HIA has several advantages. First, a standardized approach increases ease of
use through repeated experience and, consequently, facilitates routine appli-
cations of such a tool within HIA. Second, the use of a standard tool allows
comparison of results across applications and research teams. Third, the rou-
tine use of a standard tool allows the cumulation of knowledge. And fourth,
an established standard tool accepted as valid increases trust in the results.
Although the exact specification of what a standard tool for HIA should en-
tail is part of this thesis, at the very minimum such a standard tool for HIA
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should be a software that synthesizes epidemiological evidence on risk factor
exposure within a population health framework and should be, in principle,
applicable across countries, populations and risk factors.

Research questions

This thesis is part of a larger research project, DYNAMO-HIA (see Appendix
for details), and the thesis” contributions are conceptually split into two
parts. The first part, Methodological Foundation, addresses the technical core
in which the requirements for a generic quantification tool for HIA are moti-
vated and specified. Furthermore, the technical choices made in implement-
ing the tool into a self-contained software are described and justified. The
second part, Selected Applications, presents three applications to explore the
adequacy of the tool for the various challenges faced in quantifying health
impacts of risk factor modification.
In particular, this thesis aims to answer the following questions:

I. Methodological Foundation

— What requirements must a quantification tool fulfill to be consid-
ered a standard tool for health impact assessment?

— Does a tool already exist that fulfills these criteria and could there-
fore be used as a standard tool for health impact assessment?

— What technical elements are needed for the underlying mathemat-
ical model when constructing a standard tool for health impact
assessment?

II. Selected Applications

— What are potential health gains and losses for three modifiable life-
style-related risk factors across Europe?

— What are the EU-wide potential health gains of an established al-
cohol control policy, i.e. price increase?

- What are the comparative life course health impacts of two com-
plementary, stylized BMI-reducing interventions when utilizing a
cohort perspective?
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Outline

Chapter [2| conceptualizes the requirements a potential standard tool in HIA
should fulfill. These are both, technical and usability criteria ensuring that
the two core tasks of an HIA — to predict and to inform — can be sufficiently
executed. Furthermore, it demonstrates that as of 2008 no tool existed that
could fulfill these criteria. Chapters[3|and @] describe and outline the technical
choices made to satisfy the needs and constraints of the HIA process. The
first of these two chapters explains the technical elements and their rationale
in more detail, in particular the combination of micro- and macro-simulation,
and the reduction in data needs, that are novel for models of such scope. The
latter chapter aims to give an accessible overview of the implemented model
while having a stronger focus on the adequacy of the model for typical HIA
applications.

The following three chapters apply the finished tool to assess its usability
for various realistic research questions while exploring potential limitations.
Chapter 5| quantifies potential health gains and losses in eleven EU-countries
for the risk factors alcohol, BMI, and smoking. To undertake this quantifica-
tion, "worst"- and "best"-practice risk factor prevalences for three risk factors
will be defined and then applied to eleven EU-countries. Chapter [p] applies
DYNAMO-HIA to a current policy question, i.e. the increase of the common
excise tax on alcohol in the EU, by quantifying the potential health conse-
quences for various price scenarios. Chapter[7|compares the outcomes of two
stylized strategies to reduce the levels of obesity using a life course perspec-
tive. DYNAMO-HIA is used to compare an intervention that reduces the o-
besity prevalence when a cohort enters adulthood with an intervention that
reduces the lifetime risk of a cohort to become overweight or obese for a co-
hort.

Chapter [8| summarizes the answers to the research questions succinctly
and discusses limitations of the research findings. Additionally, implications
for further research are presented. Chapter 9] contains both, an English and
Dutsch summary of this thesis. The Appendix contains supplemental infor-
mation on the data used for the applications. Furthermore, the outline of the
DYNAMO-HIA project and the participating collaborators are described.
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No standard tool for quantification in
health impact assessment:
A review!

Abstract

Background The health impact assessment (HIA) of policy proposals is be-
coming common practice. HIA represents a broad approach with quantifica-
tion of the impact of policy options at its core. However, no standard tool is
available and it remains unclear whether any current model can serve as a
standard for the field.

Purpose The aim of this study is to assess whether already existing mod-
els can be used as a standard tool for the quantification step in an HIA.

Method A search in 2008 identified 20 models for HIA of which six are
sufficiently generic to allow for various and multiple diseases and different risk
factors: ARMADA, Global Burden of Disease, POHEM, PREVENT, Propor-
tional Life Table Method, and RIVM-CDM. These were evaluated along three
proposed model structure criteria (real-life population, dynamic projection,
explicit risk factor states) and three usability criteria (modest data require-
ments, rich model output, generally accessible), developed to address the
needs and requirements of the HIA framework.

Results Of the six generic models investigated, none fulfills all the pro-
posed criteria as a standard HIA tool. The models are either technically ad-

fStefan K. Lhachimi, Wilma J. Nusselder, Henrik C. Boshuizen, Johan P. Mackenbach.
No standard tool for quantification in health impact assessment: A review. Am ] Prev Med,
38(1):78-84, 2010 (reprinted with permission from Elsevier).
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vanced with no or limited accessibility, or they are accessible but oversimpli-
fied.

Conclusion Further work on models for HIA with equal emphasis on
technical appropriateness, availability of data, and end-user-friendly imple-
mentation is warranted if the field is to move forward.

Introduction

Health impact assessment (HIA) assesses the effect of a program, project,
or policy on overall population health and the distributional effects within
a population.! The rationale for HIA is that many risk factors for chronic
diseases are affected by policy measures outside the realm of health policy
(e.g. transportation, food, or urban planning). Assessments have been car-
ried out at all governmental levels (e.g. local,?® 1,18
supranational'®) and the number of HIAs is likely to rise due to increased
institutional adoption and political will, in particular at the European Union
level 2220

An HIA can take many forms, ranging from a rapid assessment to es-

regiona national,?* and

tablish if health is affected at all, to a comprehensive HIA that appraises all
health aspects. Generally, an HIA can be divided into five steps (Figure 2.1)).
According to a recent definition? an HIA consists of two core tasks:

¢ supporting decision-makers in choosing between options and
* predicting the future consequences of implementing different options.

To predict future developments of complex systems such as a population,
models are indispensable.?” Despite the increasing role of guidelines in HIA
and the existence of models that allow to quantify the effect of a policy on
population health, there is no commonly accepted practice in the prediction
of the impact of policy on health for HIA purposes.“® Quantification is sel-
dom attempted in HIA?? and standard tools to conduct this are lacking.2*1
However, rational decision-making requires that costs and benefits in terms
of health effects are estimated. 22

A recently established research consortium (DYNAMO-HIA) aims to de-
velop and make available a standard tool to aid the quantification step in
assessing the impact of policy on health by utilizing previously established
modeling approaches. A standard tool for quantification in HIA should be

12
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able to quantify the baseline situation (population health without interven-
tion) and then quantify changes due to one or more policy options. More-
over, it must be readily available, and be suitable for repeated HIA exercises
and for specific questions. Therefore, the tool should be generic in its applica-
bility by allowing for various and multiple diseases, different risk factors, and
take into account the standard causal pathway assumed in HIA. The standard
HIA causal pathway assumes that a policy intervention leads to a change in
risk factor prevalence which, in turn, leads to changes in disease incidence
and disease-related mortality and, therefore, in overall population health.?
Furthermore, it should comply with the needs and objectives of HIA® — to
predict the impact and inform the decision-making process — while equally ac-
counting for the constraints of a decision-making process: time and resources
(in particular modeling expertise and data) are scarce in an applied setting.

The aim of this study is to assess whether already existing models can be
used as a standard tool for the quantification step in an HIA. Consequently,
models were included that have been used or are suggested as possible tools
for HIA, either by modeling experts or HIA practitioners.

13
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Methods

Search strategy

A multi-step procedure was employed (see Figure for details). First, a
search was made in PubMed (for keywords see Figure[2.2). Second, an infor-
mal survey was conducted among modeling and HIA experts, i.e. all mem-
bers of the consortium of the DYNAMO-HIA project (40 persons from 31
institutions in Europe, Australia and North America), asking whether they
knew of any models that are or could be used for HIA. Third, the HIA-
dedicated websites www.who.int/hiaand www.hiagateway.org.uk in-
cluding the links therein were scrutinized: a list of identified models (with a
brief outline of the research aim) was then sent to the mailing lists of HIA-
NET and HIA-NET South East Asia to ask for any additional models (both
are HIA-dedicated international electronic discussion groups). Fourth, three
recent reviews addressing HIA studies were examined for simulation tools:
these articles were an exploratory overview of European HIA studies®?, a
systematic review of HIAs conducted in the US*#, and a systematic review of
quantification in HIA in general®”.

Selection

The present review is restricted to models (e.g. tools that reason and theorize
in the language of mathematics to make predictions®’) that are sufficiently
generic with regard to the varying subject matters of different HIAs. In the
present study, a model is defined as generic for the purpose of HIA if it mod-
els multiple diseases, does not have a pre-set risk factor (e.g. arbitrary risk fac-
tors can be simulated), and takes into account the standard causal pathway
assumed in HIA. The change in risk factor prevalence due to policy interven-
tions is usually not determined within such a model.

In total, twenty models were identified (see Figure ; of these, six were
excluded because they simulate specific diseases and eight because they are
risk factor specific (mostly smoking or air pollution) or have no risk factors
at all. Thus, six models remained for a comparative review.
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1) PubMed Search
(9™ Sept 2008)
Keywords: "health
impact assessment"
AND (model OR
modeling OR
modelling OR
models OR
prediction OR
projection OR
quantification OR
quantitative OR
simulation OR
software)

56 hits with 40
articles

Models found:
AirQ-WHO
ARMADA
INTARESE
PREVENT

2) Expert Survey
40 Experts (Sept. 2007)

3) Internet Search
(14th Feb. 2008)

4) Review Articles

Veerman et al., 2005

UKPDS Outcomes Model

Models found: HIA-NET (16 quantitative studies)
ECOS/HECOS (query included list of

FOS Obesity already identified Wismar et al., 2007
GBD models) (17 case studies from 15
IMPACT and HIA dedicated European countries)
MIAMOD/PIAMOD Websites

MISCAN Dannenberg et al., 2008
POHEM Models found: (27 HIA’s in the USA)
PopMod CHD Model

Proportional Life Table HEAT-Cycling Models found:

Method (MSLT) Hypertension Model ARMADA

PREVENT PREVENT

Quit Benefits

RIVM-CDM

SimSmoke

|

}

Overview of Identified Computer Simulation (20)

AirQ-WHO HEAT-Cycling PREVENT
ARMADA IMPACT Proportional Life Table Method (MSLT)
CHD Model INTARESE Quit Benefits
ECOS/HECOS MIAMOD/PIAMOD RIVM-CDM
FOS Obesity MISCAN SimSmoke
GBD POHEM UKPDS Outcomes Model
Hypertension Model PopMod
Included (6) Excluded (14)

|

Models reviewed (6)

ARMADA
GBD
POHEM
PREVENT

Proportional Life Table Method (MSLT)

RIVM-CDM

Exclusion of disease-centred

simulations (6)

CHD Model
Hypertension Model
IMPACT
MIAMOD/PIAMOD
MISCAN

UKPDS Outcomes Model

Exclusion of simulations with preset
risk factor (8

AirQ-WHO (air pollution)
ECOS/HECOS (smoking)
FOS Obesity (obesity)

—® HEAT-Cycling  (cycling)
INTARESE (air pollution)
PopMod (No risk factor)
Quit Benefits (smoking)
SimSmoke (smoking)

Figure 2.2: Selection procedure for the comparative review.
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Evaluation criteria

To evaluate the selected models for their usefulness as a standard tool for
HIA, a set of criteria was developed. These criteria were extensively dis-
cussed among HIA and modeling experts during the DYNAMO-HIA work-
shop (May 2008, Rotterdam, the Netherlands).

The two objectives of HIA — to predict and inform — address the technical
core of quantification (predict) as well as the context (inform) in which HIA
takes place. Therefore, a tool should aim for technical accuracy in the predic-
tion of the effects of interventions on population health, and also be effective
in the applied setting of an HIA.

We propose six evaluation criteria. The first three criteria (real-life popu-
lation, dynamic projection, and explicit risk factor states) ensure that the model
structure is sufficiently advanced to model changes in risk factor exposure
over time in a real-life population in a transparent way. The last three crite-
ria (modest data requirements, rich model output, and generally accessible) ensure
a wide usability by accounting for the constraints of a decision-making pro-
cess.

Real-life population

A tool must be able to model different populations which vary in age- and
sex-structure. Age and sex are important confounders for many diseases, and
the (re)distribution of health gains and losses within a population is impor-
tant to fully assess the impact of a policy. A simulation at the patient level, or
a simple life table, cannot account for such differences.

Dynamic projection

Changes in population health over time are important for the sustainable as-
sessment of a policy, i.e. apart from information on outcome at a theoretical
steady-state, details on how and when it is reached are also needed. Whereas
it might be acceptable for a long-term health gain to be achieved by a health
decrease in the short term,? this needs to be made explicit in an HIA tool.

Explicit risk factor states

For the sake of transparency, it is preferable that risk factor states are explic-
itly modeled. Therefore, the model should account for the risk factor and
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health status of each simulated individual or subgroup at every time period.
Models using the potential impact fraction (PIF) approach® do not explic-
itly model risk factor states. This technical simplification ignores mortality
selection and may lead to biased estimates.*®

Modest data requirements

The most commonly available data used to assess the effects of risk factors on
population health are population data on incidence, prevalence, mortality, and
relative risk. The collection of additional data is usually not feasible in an ap-
plied setting.”” In particular, data on incidence, prevalence, and mortality by
risk factor status (e.g. for smokers and never-smokers), or on transitions be-
tween risk factor states, are scarce. Therefore, a model should run on readily
available epidemiological data.

Rich model output

HIA informs policy makers about the effect of a policy, and should be done in
an impartial manner.* A summary population measure might imply a value
judgment.38 On the other hand, simply presenting the number of deaths
averted®” or extensive tables of raw outputs without summary measures,
might also be confusing. To enable the end user to choose the appropriate
outcome measures, a broad range should be provided (e.g. disease outcomes,
number of deaths, and summary measures of population health).

Generally accessible

A standard tool should be publicly available and easily accessible. A tool that
requires specialized knowledge is accessible to a limited number of experts
and therefore less useful. Moreover, there is a significant difference between
an internally working model that can be shared with a fellow modeler and a
finished piece of software that can be publicly released without further assis-
tance from the developer. The design of the latter requires substantial addi-
tional resources to ensure that the software runs in a reliable way.

Results

In the present study, six models were identified that are sufficiently generic:
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Table 2.1: Comparison of the reviewed models against the evaluation criteria.

Criterion

Real-life Dynamic Explicit Modest Rich Generally

popula- projection  risk factor data model accessible

tion states require- output

ments

ARMADA + + + - - -
GBD - - - + - +*
POHEM + + + - + -
PREVENT + + - + + -
Proportional Multi- - - - + + +*
state Life Table
(MSLT)
RIVM-CDM + + + -* + -

*with some restrictions

1. ARMADA (Age-Related Morbidity and Death Analysis)
2. GBD (Global Burden of Disease)

3. POHEM (Population Health Modeling)

4. PREVENT

5. MSLT ( Proportional Multi-State Life Table )

6. RIVM-CDM (RIVM Chronic Disease Model)

Table[2.1|shows how these six models perform against the evaluation cri-
teria. Because no model fulfills all the criteria, none of the reviewed tools
qualifies as a standard tool for HIA. In terms of model structure, the range
spans from very complex models that simulate almost all heterogeneity in a
real-life population (POHEM), to very simple ones yielding only an approxi-
mation of the disease burden of a risk factor (GBD). There are no a-priori ad-
vantages of a micro- compared to a macro-implementation: POHEM uses a
micro approach whereas the majority uses a macro approach, with the excep-
tion of RIVM-CDM that includes both. Macro- and micro-implementations
yield (in principle) the same results when designed for the same task.#/!
The former is often easier to implement for less complex population struc-
tures, but becomes burdensome when more sophisticated populations are
modeled. Therefore, simulations that allow for a high degree of population
heterogeneity (e.g. ethnicity, marriage status, risk factor histories, and so on)
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opt for a micro-simulation approach. Details on each model are presented be-
low.

ARMADA

ARMADA, developed by University College London (UK)), is intended to fit
within an environmental/health impact framework (EIA /HIA).2% It models
real-life populations over time and features a generic disease model with ex-
plicit risk factor states. A limitation of ARMADA for broader use is that it
requires explicit specification of transition rates between every disease- and
risk-state combination, thereby increasing data requirements. No summary
measures of population health are included. Furthermore, ARMADA is not
publicly available and its development is currently suspended. It has been
applied to assess the health effects of a planned incinerator plant and traffic
accidents.?

GBD

The GBD model is a methodology rather than a comprehensive computer
simulation and applies the epidemiological effect measure PIF. The model
is static, but has modest data needs. Outcome measures are life years lost,
disability-adjusted life years (DALY) and healthy life expectancy (HALE).
However, the tool has to be implemented by the end user in spreadsheet soft-

ware. The GBD model has been used in several applications.‘lz'44

POHEM

POHEM is a discrete event simulation developed by Michael Wolfson at Sta-
tistics Canada. It models the risk factor and health status of individuals dur-
ing their lifetime that jointly form a real-life population. Tailored to the Cana-
dian context, it uses unique individual (and longitudinal) data on health and
other personal characteristics (e.g. socioeconomic status, income, family sta-
tus). Access to such data is very limited in Europe. POHEM has a broad range
of outcome measures and is not publicly available. It is a comprehensive soft-
ware that has been used in several applications (e.g. cost-effectiveness analy-
sis and policy evaluation for several diseases).2!4>
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PREVENT

PREVENT was developed by Jan Barendregt and models a real-life popu-
lation over time. It is based on an epidemiological multi-state life table of
chronic diseases using PIF to model the effects of interventions on transitions.
Consequently, the data requirements are sufficiently modest but mortality
selection cannot be handled. Outcome measures include disease outcomes,
mortality figures, and summary measures of population health. PREVENT
is available from the developer upon request and is not intended for pub-
lic release. Applications include smoking cessation? and increased physical
activity°.

Proportional Multi-State Life Table

The proportional multi-state life table is rather a methodology than a com-
plete model and has to be implemented (e.g. in spreadsheet software) by the
end user. It is an extension of a simple life table that incorporates competing
causes of death.*” It models multiple diseases and assesses the effect of in-
terventions using PIFs. Additional weaknesses are lack of dynamic modeling
capabilities and that it does not model a real-life population, i.e. depending
on the chosen interpretation, it simulates either a single cohort over time or a
population in a steady state. However, it is very transparent and uses widely
available data. Outcome measures have sufficient breadth (disease outcomes,
mortality data, and summary measures such as life expectancy). Examples of
applications include the health effects of obesity trends*® and of changes in
agricultural policy®.

RIVM-CDM

The RIVM-CDM model was developed by the RIVM (National Institute for
Public Health and the Environment, the Netherlands) to study the effective-
ness of policies for primary prevention and to conduct burden of disease cal-
culations for the Dutch government.”? It models a real-life population over
time and clearly links explicit risk factor states to multiple diseases and death.
A feature of the RIVM model is that it uses an additional module to calculate
mortality from incidence and prevalence, and estimates transition rates from
cross-sectional data, thus reducing data needs; however, the data required
are specifically tailored to the Dutch context. RIVM-CDM provides a broad
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range of outcome measures, but requires knowledge of a programming lan-
guage and is not publicly available. Applications include modeling smoking
cessation® and obesity>?.

Discussion

The present review identified 20 simulation models, of which six were suffi-
ciently generic to possibly serve as a standard tool. All reviewed tools have
been used to quantify the effects of changes in risk factor prevalence on pop-
ulation health, but none could comply with the proposed criteria reflecting
the needs, objectives, and applied setting of an HIA. With the exception of
ARMADA, none of the reviewed models were developed with the intention
to be used for HIA. ARMADA was intended for a broad user base, but was
not completed due to lack of funding to make the additional changes to ac-
commodate the needs of end users. This demonstrates that the step from an
internally working model to finished, publishable software is considerable.
For example, the design and implementation of a graphical user interface
(generally not required for internal use but essential when used externally) is
time and cost intensive.>?

Similarly, the testing of software is technically demanding and labor in-
tensive. For generally accessible software, testing must be finished prior to
publication and cannot be conducted on demand (as is the case with software
that is internally developed and used). For example, although PREVENT is
available from the developer, it is still undergoing development.”* Both AR-
MADA and PREVENT illustrate that considerable time and resources are
needed to build a model that not only functions for internal use but is suf-
ficiently developed for a broad user base without requiring repeated contact
with its developers.

Furthermore, in the context of HIA, a software model is always a decis-
ion-support tool only. It helps to quantify the expected differences in popu-
lation health given two (or more) different situations: one of them a baseline
situation (without the intervention) and one (or more) with intervention(s).
It does not predict the development of population health as such. Decision-
makers must be constantly aware that real-word phenomena are necessarily
more complex and no model can predict future events with perfect accuracy.
In HIA it might be useful to avoid calling the results of mathematical mod-
els "predictions" but rather projections of "what-if" scenarios in a clearly de-
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fined and simplifying framework. Mathematical models allow to synthesize
current knowledge with clearly-stated assumptions in a logical fashion and,
consequently, can yield useful insights for decision making. The term "pre-
diction" could be reserved for the entire process, in which a software model
is only one element of the evidence base.

Study limitations

In all systematic reviews, publication bias is a notable problem because "grey"
or non-English literature is often not included in standard databases.>> Mod-
els that could be useful for HIA, but have not been publicly used, are there-
fore not covered. In the present study, this limitation was decreased by us-
ing a structured, multi-step approach in the search procedure. The survey
among modelers and HIA practitioners was particularly successful in re-
vealing models not mentioned in the HIA-based literature; e.g. the PubMed
search of HIA-related literature revealed only two models (ARMADA and
PREVENT).

Assessing the validity of the reviewed models is beyond the scope of this
study. Although suggestions are available in the health field, no distinct stan-
dard emerges.”®>” Moreover, it is difficult to evaluate validity without having
full access to the software and extensive experience with the individual mod-
els.

Conclusion

This study shows that no existing model can serve as a standard tool for
quantification in HIA. There is an evident gap between the advanced models
that have no or limited general accessibility (such as POHEM and RIVM-
CDM), and the (over-)simplifying but generally accessible models (such as
GBD and MSLT). This situation probably arises because none of the reviewed
models (except for ARMADA) was initially intended to be a software appli-
cation for wide public use for the (relatively recent) task of quantification
in HIA. In addition, the laudable, but (as yet) partly realized plans for AR-
MADA show that significant resources and a strong focus on usability are
needed to make a model accessible to a wider audience.

This review illustrates that any tool that intends to fill this gap in the
future needs to put equal weight on an appropriate simulation methodol-
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ogy and data requirements that can be widely met while also being end-user
friendly. Consequently, even at the design phase, the DYNAMO-HIA consor-
tium attempted to take into account the needs and capabilities of the targeted
end user and put aside sufficient resources to make an internally working
model ready for public use, whilst also minimizing data needs.>®
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The DYNAMO-HIA model:

An efficient implementation of a risk
factor/chronic disease Markov model
for use in health impact assessment!

Abstract

In health impact assessment (HIA) or priority setting for health policy, ef-
fects of risk factors (exposures) on health need to be modeled, e.g. with a
Markov model, in which exposure influences mortality and disease incidence
rates. As many risk factors are related to a variety of chronic diseases these
Markov models potentially contain a large number of states (risk factor and
disease combinations), providing a challenge, both technically (keeping ex-
ecution time and memory use down) and practically (estimating the model
parameters and retaining transparency).

We propose a combination of micro-simulation of exposure information
with macro-simulation of diseases and survival to handle this task. This al-
lows simulation of exposure detail while avoiding the need for large sim-
ulated populations due to the relative rareness of chronic disease events.
Further efficiency is gained by splitting the disease state space into smaller
spaces each containing a cluster of diseases that is independent of the other
clusters. The challenge of feasible input data requirements is met by includ-
ing parameter calculation routines which use marginal population data to
estimate both the transitions between states and the initial state occupancy.

tHenrik C. Boshuizen, Stefan K. Lhachimi, Pieter van Baal, Rudolf T. Hoogenveen, Jet Smit,
Johan P. Mackenbach, Wilma J. Nusselder (accepted for publication in Demography)

25


mac3
Sticky Note
Marked set by mac3

mac3
Sticky Note
Marked set by mac3


Chapter 3

As an illustration, we present the recently developed DYNAMO-HIA model
implementing this approach.

Introduction

In medical demography, demographic techniques are employed to model
the consequences of morbidity, disability and mortality for the size, com-
position, and structure of the population. Especially, medical demography
is concerned with how changes in the incidence and prevalence of specific
diseases impact the patterns of other co-morbid conditions, disability and
mortality. This can be extended by modeling these changes in incidence or
prevalence as consequences of changes of underlying determinants or risk
factors. Such models have found applications in the field of health impact
assessment (HIA)M2359 and in priority setting for health policy®’®! as they
offer a way to model effects of interventions or policies on population health.
Such modeling proceeds by assuming that policies/interventions change the
prevalence of particular risk factor states in the population (for instance the
proportion of smokers), or change the transition rates between risk factor
states (for instance, the rate of starting or stopping smoking). Demographic
population health models then project the effects of the new risk factor situa-
tion by assuming that the risk factor status influences disease incidence and
mortality rates (Figure[3.I). The effects of the risk factor change (and thus of
the policy/intervention) then can be calculated by comparing the projected
size, composition (especially in terms of health state), and structure of the
population under these new conditions with that modeled under business-as-
usual conditions.

For this type of demographic models, a Markov model is a natural choice.
In such models each person is characterized by a current state (presence or
absence of modeled diseases and risk factor level). The model projects the
future prevalence of states (state occupancy) by repeatedly applying a ma-
trix of transition probabilities to the vector of current state occupancy. Such a
matrix of transition probabilities contains the probabilities of changing from
each current state to each possible next state.

In real-life applications, such Markov models often need a large number
of states, as risk factors such as smoking and obesity are related to multiple
chronic diseases. States are formed by all possible combinations of disease
and risk factor states, and thus increase exponentially with the number of
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Disease
<N

[ » Death

Risk factor status

Healthy

Intervention / policy

Figure 3.1: General idea of a model for health impact assessment or priority setting in health
policy: A policy or intervention will influence the risk factor status of individuals, which in
turn influences their probabilities of becoming diseased or dying.

diseases and risk factors included. Also, the central assumption of a Markov
model (the Markov property) is that the transition probabilities only depend
on the current state, and not on previous states. In practice, however, the
probability of dying from a disease, for instance, can depend on duration
of exposure or time since diagnosis. This can be handled by extending the
number of states (in the example: let state include the aspect exposure time or
time since diagnosis), resulting in a model satisfying the Markov property, but
having more states. Furthermore, many risk factors (like BMI or alcohol con-
sumption) are measured on a continuous scale, and most easily modeled in
the form of a large number of distinct values, also increasing the number of
states. For use in applied settings, as HIA or priority setting, the choice of a
particular simulation methodology is constrained by time and resources (in
particular, modeling expertise and data).®” Hence, designing a model with a
large number of states is disadvantageous in several ways. First, the model
should be fast enough for routine use. Second, with many states, the number
of transitions between states gets extremely large, and getting observational
data on all transition rates individually is not feasible. Therefore, a system
is needed to derive transition rates from more general data. Lastly, despite
increased complexity, transparency should be maximized. Current modeling
either opts for using in-house, computer intensive solutions based on micro-
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simulatiorf**¥, or circumvents these problems by modeling only population

average exposure®?®?, using approximations®® or limiting the scope of the
model®. In this chapter, we propose a set of solutions that can be used in
demographic population health models when a relatively simple and fast
running program is needed for use in applied settings. The first aspect of
our approach is that it combines micro-simulation of risk factor (exposure) in-
formation with macro-simulation of diseases and survival. This allows sim-
ulation of sufficient risk factor detail (e.g. continuous risk factor, time since
exposure started or stopped) while avoiding the need for large simulated
populations. Second, we present an efficient way to split the disease state
space into smaller state spaces, each for an independent cluster of diseases,
which can be updated and inspected separately. This increases not only the
speed of the model but also increases transparency as disease clusters can
be inspected separately. Third, introduction of random noise in the micro-
simulation part is restricted to a minimum by applying variance reduction
techniques. We will illustrate our solutions with a practical application, the
DYNAMO-HIA model, in which these solutions are implemented, including
a description on how data requirements where kept to a minimum. Our so-
lutions made it possible to build software that can include multiple diseases
and detailed information on risk factor exposure, can be filled with available
data and runs with reasonable speed for routine calculations.

Methods for computation

Macro-simulation

In a Markov model, a matrix of transition probabilities is repeatedly applied
to a vector of state probabilities (state occupancies). A deterministic or macro-
simulation approach simply carries out such a repeated application of the tran-
sition matrix. For a model with N states, this needs a NxN transition proba-
bility matrix. When the number of states becomes large, either due to a large
number of diseases or due to use of many different risk factor states, this
approach quickly becomes infeasible. For example, a model of the effects of
smoking including 12 smoking states (never, current, and 10 classes of former
smokers by duration of stopping), 15 smoking-related diseases, 90 categories
for age, and 2 categories for gender, has 12x 2! x90x2 ~ 70 million states, and
a transition matrix with 5x10!° entries. Approximate methods have been de-
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The DYNAMO-HIA Model

veloped to handle such Markov models with many states,®® but they require
some strict assumptions.

Micro-simulation

Another solution is to implement the Markov model as a stochastic or micro-
simulation model. Instead of keeping track of the expected probability (occu-
pancy) of every single state, this approach acknowledges that many of these
states are very rare (e.g. having 4 particular diseases at the same time). Micro-
simulation takes a representative sample of individuals from the state-space,
where the probability that an individual with a particular state is in the sam-
ple is proportional to the probability of that state. The sample could contain
multiple individuals in the same state (when this state is common), while
very rare states are often not included in the sample. Then the life courses
of these individuals are simulated from the transition probabilities: Transi-
tion rates are used to draw (using a random number generator) a next state
for each simulated person (fixed time-step simulation), or to draw a waiting
time to the next change of state (discrete event simulation).

Such a model implements the same Markov model, only the manner of
calculation is different: The macro-simulation model calculates the probability
of every possible state exactly (wasting time on extremely rare states that do
not impact the overall result), while the micro-simulation model simulates
the distribution over the states in a sample of persons. When simulating a
sufficiently large sample, the proportion of simulated persons in a particular
state will represent the probability of that state.

The partial micro-simulation approach

The macro-simulation approach for a model with N states needs the complete
NxN transition rate matrix, while the micro-simulation approach needs the
states of the M simulated persons, and M transition rate vectors of size N at
each moment in time. Therefore, micro-simulation will require less compu-
tational resources than macro-simulation when M<N. However, the random
drawing of states in micro-simulation will add random variation that needs
to be averaged out by using a sufficiently large M.

In our design, we acknowledged that using a micro-simulation approach
seems most suitable for modeling risk factors, as risk factors are character-
ized by a large number of states, either because they are continuous, or be-
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cause of aspects as time since starting or stopping exposure. On the other
hand, a macro-simulation approach is more suitable for modeling diseases, as
incidence rates of many diseases in the general population are low, so large
samples are needed for stable results. Therefore, we propose a combination
of both approaches: partial micro-simulation.

Partial micro-simulation implies that for each simulated individual, the
risk factor history is generated similarly to a fixed time-step micro-simula-
tion. At each moment in time each individual has a risk factor state, and this
state is updated by randomly drawing a new risk factor state using the transi-
tion matrix between risk factor states. In contrast, the disease part uses macro-
simulation. Instead of assigning an individual to either the with disease state
or the without disease state, the individual is assigned a probability of having
the disease. Similarly, death is not simulated by assigning death or alive, but
by assigning a probability of being alive.

In case of multiple diseases, the disease probability consists of a series of
probabilities, one for each combination of all separate disease states. For in-
stance, in case of two diseases A and B there are 4 disease probabilities: the
probability of having neither disease, the probability of having only disease
A, the probability of having only disease B, and the probability of having
both diseases.

For those unaccustomed to working with probabilities, one can also see
this as taking a sample of risk factor histories, and then calculating a multi-
state life table® separately for each risk factor history. An essential condition
for using this approach is that the risk factor transition rates are not influ-
enced by the disease states of an individual. For example, the change in BMI
can not depend on the presence or absence of diseases. In our application,
where incidence of diseases depends only on risk factor status before getting
the disease, this restriction is justified.

After running the simulation, one can average the survival, or the prob-
ability of a particular disease state, over all simulated individuals, or over a
subgroup of simulated individuals (only males, or only 40 year olds), yield-
ing the average probability of the disease state or survival in this group. Also,
at this stage (DALY) weights can be attached to the disease states, which
can similarly be averaged over groups, enabling the calculation of disability-
adjusted life expectancy (DALE).
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Separate handling of disease clusters

With a large number of diseases, the number of disease combinations can
still be quite large. Calculation of multi-state life tables with a large number
of states is time consuming when this needs to be repeated many times, as
in partial micro-simulation. However, as shown in Technical Supplement, if
— conditional on the risk factor history — transition rates for a disease (or for
a cluster of diseases) can be taken to be independent of the transition rates
for another disease (or cluster of diseases), then the multi-state life table can
be split into a series of independent tables: one per disease (or cluster of dis-
eases). Each, now smaller, table can then be updated independently. This re-
duces simulation time and also increases transparency, as instead of one large
table with disease state probabilities, there is a series of smaller, more man-
ageable tables. When a cluster contains only a single disease, this table only
contains the probability of having the disease. This approach was already
proposed by Barendregt*” for single diseases, but can be extended to clusters
of diseases (see Technical Supplement A for proof).

Variance reduction methods

We employ three well-established variance reduction methods to further mit-
igate the random noise of the micro-simulation approach.

First, models for health impact assessment and priority setting for health
policy aim to compare interventions or scenarios. The variance in this com-
parison, i.e. between two or more scenarios, can be reduced by keeping the
random components of the risk factor exposure equal for the same individual
under different scenarios/interventions. This ensures that the random com-
ponent of the risk factor simulation affects the differences between scenarios
only in second order.®

Second, additional variance is introduced when an initial population is
generated using a random generator to draw a risk factor state for each in-
dividual. To minimize this variance, the initial risk factor distribution is not
randomly drawn, but assigned deterministically, making the risk factor dis-
tribution as equal as possible to the targeted risk factor distribution.

Third, for categorical risk factors, any discrepancies between the targeted
risk factor distribution and the realized distribution in the simulated popula-
tion is dealt with by weighting the results, in order to deliver results that at
the start of simulation have exactly the targeted risk factor distribution.
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Table 3.1: Input of the DYNAMO-HIA model.

For simulation For post-processing (scaling to pop-
ulation numbers, and calculation of
summary measures of population
health)

The (marginal) distribution of the risk factor in the population =~ Population Numbers
(e.g. the percentage of smokers, or mean BMI with standard
deviation)

the (marginal) probability of having a particular disease (e.g.  Projected numbers of newborns
the prevalence of heart disease)

the incidence rate of a particular disease (e.g. the incidence of = Daly weights for each disease
heart disease)

The relative risk from the risk factor on each disease Daly weights for the entire popula-
tion

The all-cause mortality rate

The excess mortality rate from each disease

Transition rates for the risk factor

Optionally: The relative risk of a disease on getting another dis-
ease (independent of the effect of the risk factor)

Optionally: The relative risk of the risk factor on all-cause mor-

tality

The DYNAMO-HIA model

As an illustration, we present the recently developed DYNAMO-HIA model,
a model developed with health impact assessment in mind, but which can
also be used for priority setting in the health policy context. DYNAMO-HIA
first projects the population under business-as-usual conditions, and alterna-

tively under one or more scenarios in which the risk factor distribution in
the population has been changed. The model as implemented only allows
for a single, but generic risk factor in the model, which can be freely chosen
by the user. However, the single risk factor could be a combination of risk
factors (as: drinking smokers, non-drinking smokers, drinking non-smokers
and non-drinking, non-smokers). As this example shows, this limitation is a
feature of the current implementation, amendable in the future.

In DYNAMO-HIA, the methods described above were implemented. Fur-
thermore, DYNAMO-HIA applies an epidemiological model that defines the
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Table 3.2: Model parameters to be supplied to the simulation part of the DYNAMO-HIA

model.

Transition to Parameter Description
Another risk factor states Aisj (At =1) 1-year transition probability from risk factor cate-
gory i to risk factor category j (categorical risk factor)
O(At=1) Annual change in risk factor level (continuous risk
factor)
o(At=1) Size of random term that is annually added to the
continuous risk factor in order to increase the vari-
ance with age
Diseased Io; The baseline incidence of disease i, that is the inci-
dence in the state where all relative risks are equal to
1
RR,_q, The relative risk of risk factor state r on disease i
RR.. 4. The relative risk of disease j on disease i
J i
Death Amg; Attributable mortality, that is the mortality due ex-
clusively to disease i
RR,_,oc Relative risk of risk state r on other cause mortality
(other then from the diseases in the model)
My, oc Baseline other cause mortality
Mpy,cF, Baseline fatal incidence rate of disease i

RRr%di RRC]’ —d;

Relative risks for acutely fatal disease, identical to
the relative risks for incidence
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transition rates using only a limited set of parameters, as well as a module
that generates an initial population from marginal population data (Techni-
cal Supplement B). After running a simulation on a simulated sample of the
initial population, in a post-processing step the simulation results are scaled
up towards the population numbers of the real population, and summary
measures of population health, such as life expectancy or disease-free life ex-
pectancy, are calculated. In this step also Disability Weights (DALY-weights)
can be attached to disease states in order to calculate disability-adjusted life
years (DALE; see Technical Supplement C for further details).

Epidemiological model in DYNAMO-HIA

For running a risk factor/disease Markov model, one needs a matrix of tran-
sition rates (e.g. how many smokers with diabetes die, or become smokers
with diabetes and heart disease). In practice it is not feasible nor necessary
for a user interested in doing an HIA to obtain all these data at this level
of detail. Instead of working with an unrestricted matrix of transition rates,
transitions can be parameterized applying an epidemiological model that de-
fines the transition rates based on a limited set of parameters. This epidemio-
logical model defines transition rates in continuous time, i.e. transitions take
place in an infinitely small period of time. Technical Supplement D describes
how these transition rates are converted into transitions over larger time-
steps during the simulation. The epidemiological model of DYNAMO-HIA
parameterizes two transition rates: incidence rates and mortality rates. Re-
mission rates are not included but the model could be extended to include
them.

Incidence rates

The transition rate from not having disease i to having disease i is called the
(non-fatal) incidence rate of 7, and is described by the following equation:

(3.1) L(r,C)=IyiRR.—q, || RRc;=a,

cj=c1

where

34



The DYNAMO-HIA Model

7 is a risk factor state
is a vector of states of the causal diseases, that
is, diseases that are a cause of another disease
with elements {cy,..., ¢y}, e.g. for 5 causal dis-
eases: {0,0,1,0,0}

Ip; is the baseline incidence of disease i, that is,
the incidence in the state where all relative
risks are equal to 1

RR,_.q, is the relative risk of risk factor state r on dis-
ease i

RR.; 4, istherelativerisk of causal disease j on disease
i

In this equation the baseline incidence Iy ; is estimated from the input data
as described in Technical Supplement C, while the relative risks are input to
the program.

Mortality rate
DYNAMO-HIA contains three different disease processes determining mor-

tality:

1. a chronic disease process, which is characterized by a constant (attribu-
table) mortality rate after getting the disease that only depends on age
and gender

2. adisease process in which the disease can be acutely fatal

3. a disease process including a cured fraction

Diseases with constant mortality rate

For these diseases, the transition rate to death given risk factor state r and
disease state D (the mortality rate M(r,D)) is given by:

(3.2) M(r,D) = MyocRR,oc + Y _(Am;d;)
=1

where
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M(r,D)

<

Ami

RR, oc

My .oc

The dependence of the other cause mortality on risk factor status is op-
tional in the model. Without this dependence the other cause mortality is the
same for all simulated subjects, and the risk factor has only an indirect effect

The mortality rate given risk factor state r and
disease state D

is the risk factor state

is a vector of states of diseases with elements
{di,..., dn}

is a model parameter referred to as at-
tributable mortality, giving the mortality rate
due exclusively to disease i

is the relative risk of risk state 7 on other cause
mortality (that is, other than from the diseases
in the model)

is the baseline other cause mortality

on mortality, that is only through its effect on disease incidence.

Diseases that can be acutely fatal

For these diseases, a term for acutely fatal diseases is added to the mortality

rate M (r, D) as given by (3.2):

(3.3) M(r,D) =

where
CF;(r,D)

Cj

My.cr,
RRT‘—)di

RRCj *)dl'

This mortality rate is meant for diseases where the mortality in the first
period after disease onset is much higher than in later periods. The model
assumes that the fatal cases die at or shortly after disease onset, while the non-
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is the baseline fatality rate of disease i
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ease i
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fatal cases are subjected to a constant attributable mortality over time. Those
with non-fatal disease are still at risk of getting fatal disease. This disease
process was introduced with cardiovascular diseases in mind, where fatal
strokes and fatal myocardial infarctions commonly occur in those with earlier
strokes and myocardial infarctions respectively.

Diseases with a cured fraction

A disease with a cured fraction is basically split up at time of diagnosis in two
diseases: a cured disease and a not cured disease. The latter have an increased
mortality rate due to the disease (attributable mortality), which is constant
over time, the former has an attributable mortality of zero. The disease pro-
cess was introduced with cancer in mind. It accommodates a mortality pat-
tern where the attributable mortality slowly declines towards zero with time
since diagnosis.

For both the cured and non-cured disease M (r, D) is given by Equation
setting Am, to zero for the cured disease. The excess mortality of the dis-
ease (user input to the model) is used to calculate the attributable mortality
of the not-cured disease, while the cured disease gets a zero attributable mor-
tality. Cured cases are no longer at risk for getting the disease.

Model input needed

Some of the parameters needed for this epidemiological model, namely the
relative risks on diseases, should be directly given by the user of the model.
Other parameters are estimated by the DYNAMO-HIA parameter-estimation
module from epidemiological population data (as percentage of smokers and
incidence of heart disease). These methods are largely taken from similar pro-
cedures used in the RIVM-CDM® and are described in Technical Supplement
B, together with the way in which an initial population is estimated from
these data.

Example

As an example, we calculate the hypothetical scenario in which the present
(year 2004) average BMI in the Dutch population is reduced to the values of
1990. As the distribution of BMI is slightly skewed (Figure3.2), we modeled
BMI with a log-normal distribution. After preliminary model-selection, we
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Figure 3.2: Distribution of BMI (x-axis) in 1990 (grey) and 2004 (black lines) in percent (y-axis).
Source: Health Interview Survey 1990 and Periodic Survey of the Life Situation 2004 (POLS)
of Statistics Netherlands.

fitted a third grade polynomial model of age with log(BMI) as dependent
variable, separately for both genders, including an interaction term with year
and assuming constant residual error variance on the log(BMI) scale (Figure
3.3).

Transitions rates for BMI were chosen so that the average age-specific BMI
remained constant over time (thus equal to the 2004 and 1990 distributions,
respectively; see Technical Supplement B for details). Diseases in the model
were ischemic heart disease, stroke, diabetes, colorectal-, esophageal-, and
breast-cancer. Diabetes was considered to be a causal disease for ischemic
heart disease and stroke. Stroke and ischemic heart disease were modeled as
diseases that were acutely fatal (see section on epidemiological model), and
no relative risk on total mortality was used. We used disease data and relative
risks from the DYNAMO-HIA tutorial data set.

Figure 3.4 and [3.5| illustrate the parameter calculation procedures used.
Figure 3.4/ shows the input incidence of diabetes in the entire population together
with the parameter baseline incidence of diabetes, that is, the diabetes incidence
in those with a BMI of 22.5 kg/m?. It shows that while around age 70 the
diabetes incidence in the input data is higher in women than in men, this is
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Figure 3.3: Fitted average BMI values by age for men (lower graph) and women (upper graph)
on the data from the Health Interview Survey 1990 and Periodic Survey of the Life Situation
2004 (POLS) of Statistics Netherlands.
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Figure 3.4: Comparison of the incidence rate of diabetes (input of to model) and the parameter
that is calculated from this input (the baseline incidence, in this case the incidence in individ-
uals with a BMI of 22.5.
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Figure 3.5: Comparison of the excess mortality (EM) for diabetes (input of the model) and the
parameter that is calculated from this input, the attributable mortality (AM) for diabetes.
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no longer the case for the baseline incidence: The higher population incidence
of diabetes in women of this age results from their on average higher BML
The slight discontinuities, visible in the baseline incidence around the ages
60 and 75, are due to the discontinuity of the relative risks used, which were
constant in broad age groups (e.g. a single relative risk was used for all ages
60-75).

Figure 3.5/ shows the input excess mortality for diabetes, as well as the
attributable mortality calculated from it. This calculation removes from the
excess mortality the mortality due to the higher prevalence of ischemic heart
diseases (IHD) and stroke in diabetes patients compared to the general pop-
ulation. At young ages, the effect of this exclusion is small, but at higher ages
the attributable mortality is clearly lower than the excess mortality.

Figure 3.6/ shows a result screen of the DYNAMO-HIA model that sum-
marizes the simulated data by displaying a population pyramid at simula-
tion year 20. In this pyramid, the number of persons that have at least one
of the 6 diseases in the model is shown in pink. The number of diseased per-
sons (that is, persons having at least one of the modeled diseases) in excess
of that of the reference scenario (2004) is given in red, while the reduction
in the number of diseased persons relative to the reference scenario is given
in yellow. Similarly, the reduction in the number of persons that are alive
is given in grey, while any excess is given in black. In this example, we see
that reducing the BMI in the population to the 1990 levels at most ages leads
both to less mortality (larger population) and a lower number of diseased
persons in the population. A very close look, shows that at the highest ages
the number of diseased persons is larger under the return-to-1990 BMI-values
scenario (that is, lower BMI). This is because more persons stay alive under
the alternative scenario, and part of those have a disease. From the simulated
data, one can calculate that the cohort life expectancy of a newborn changes
from 77.66 under the business-as-usual scenario to 77.84 under the return-to-
1990 values scenario in men, and from 82.04 to 82.27 years in women, while
the disease-free life expectancy changes from 70.46 to 70.90 in men and from
73.79 to 74.40 in women. As indicated by Figure other plots can be made
in the DYNAMO-HIA user interface to study different aspects of the simu-
lated data. In addition, an option is provided to output the simulated num-
bers for further processing in other programs.
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Discussion

We described an approach, implemented in the DYNAMO-HIA model, com-
bining the best of existing model approaches in order to efficiently program a
Markov-model based disease model. We combined micro-simulation for risk
factor modeling with macro-simulation for calculating disease prevalence in
order to minimize running time for a particular accuracy.

This approach, although still flexible, is more limited than a full micro-
simulation approach. In partial micro-simulation a simulated individual is not
assigned a disease state but only a disease probability. Therefore, modeling
situations where the transition rates depend on time since disease onset or
where risk factor changes depend on the disease state are problematic. For
mortality, the first restriction is alleviated in the DYNAMO-HIA model by
providing two disease processes (with cured fraction and acutely fatal) that
model a) the case where excess mortality due to a disease declines exponen-
tially with time since diagnosis, and b) the case where there is a short window
of high mortality immediately after diagnosis, respectively. For other situa-
tions, where transition rates depend on time since diagnosis, full micro-sim-
ulation might be more appropriate.

The risk factor histories, however, are simulated using micro-simulation,
and here transitions can depend on the length of time in a particular risk
factor state. In the current DYNAMO-HIA software this is only implemented
for a single risk factor class, but conceptually this can easily be extended.

In partial micro-simulation, each combination of diseases forms a differ-
ent state. We avoid the curse of dimensionality by splitting the disease-space
into disease clusters that are mutually independent, given the risk factor. This
assumes that such independent clusters exist. Although in theory many de-
pendencies between diseases could exist, in practice many are weak (e.g.
cancer seems to be largely independent of that of cardiovascular diseases,
conditional on joint risk factors®”) and/or data to quantify the amount of
dependence is lacking. Hence, modeling them as independent is the most
reasonable option. In order to explore the consequence of unjustly assuming
independence, we also carried out our example calculation without the cor-
relation between diabetes, stroke, and IHD. The years with disease changed
by less than 4%, and the difference in disease-free years between scenarios by
only 1%. As the dependency between diabetes, stroke, and IHD is stronger
than the dependency between most other diseases, this indicates that the as-
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sumption of independence will not unduly influence results.

A Markov model projects both future disease states (disease prevalence),
and future transition rates (incidence and mortality). Projecting future preva-
lence rates of disease is relatively rare in chronic disease modeling: many
models only project incidence and mortality. Projecting prevalence, however,
is necessary in order to calculate summary measures of population health
like health expectancy or DALEs that are useful both in the HIA context and
for priority setting. The reason for the scarcity of models that project preva-
lence into the future is that such a projection requires mutually consistent
prevalence, incidence and excess mortality data in order to prevent unrealis-
tic projections. Checking data quality and consistency is thus a prerequisite
for models projecting prevalence. The DisMod II software®® has been devel-
oped to check such consistency. Although requiring consistency complicates
the process of getting input data for the model, this requirement is not par-
ticular to our model: for example, methods for calculating DALYs require
disease duration as input, which is based on equivalent DisMod calculations.

Most of the data used in modeling are subject to uncertainty. Probabilistic

2072 can be used to estimate the uncer-

(or Monte-Carlo) uncertainty analysis
tainty in model outcomes from the uncertainty in the data. To facilitate use
of such methods, the DYNAMO-HIA model can be run in batch mode, mak-
ing it possible to automate rerunning it many times on data sets generated in
such a Monte-Carlo approach.

In summary, we believe our approach is a good compromise between flex-
ibility, reasonably short running times and realistic data needs. Therefore, the
approach was implemented in the DYNAMO-HIA model for use in health

impact assessment.
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Figure 3.6: DYNAMO-HIA output: the population pyramid after simulating 20 years under
the alternative return-to-1990 scenario.

44



The DYNAMO-HIA model: Technical Supplement

Technical Supplement A:
Partitioning the calculation of the transition probability
matrix for clusters of independent diseases

In the proposed model, there is for every simulated individual a transition
state probability matrix IT(At) that describes the transition rates between all
disease states for a time-step At. This matrix is given by:

(3.4) TI(At) = Q4!

where Q is the matrix of transition rates. Q has a dimension (2"+1)x(2"+1),
where 2" is the number of distinct disease states in the model (n being the
number of diseases), and death is the last, absorbing, state.
Q is of the form:

qu1 412 413 d1(2n+1)
q21 422 Q23 q2(2n+1)
431 432 433 43(2n+1)
Q=] . : , :
q2n1 g2n2  q2n3 d2n(2n+1)
0 0 0 0 0 ]

with Zj ¢ij =0and ¢;; <0and ¢;; > 0fori # j
To construct this matrix, only the 2" x2" upper left matrix, further referred
to as T, is needed, as the remaining entries can be derived using Zj gij = 0.
Given the definition of the matrix exponential,

k:ool 1 1
Q_7 —QF=1 Q24 ZQ3 4
e +k§:1 k:!Q +Q+2Q +6Q +

it is clear that IT(At) will be of the form
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[ T M2 M3 ... Ti@eqn) |
21 T22  T23 ... T(2n41)
m31  M32  TM33 ...  T3(2n41)
II(At) =
Togny1 Tong T92n3 ... 7T2n(2n+1)
0 0 0 0 1 |

with 37 m;; = 1, as the last row of Q? (and thus also other powers of Q)
will only contain zeros and its other rows will sum to 0. Entries in the last
column of Q will only influence the entries in the last column of Q? (and
other powers of Q), and thus the upper left 2" x2" matrix of II(At), further
referred to as S(At), is equal to the matrix exponential of TAt. Given S(At)
and the constraints >°, m;; = 1, the matrix II(At) can be derived and, thus,
the problem of finding IT(At) from Q can be simplified to finding S(At) from
T.

As a first step, calculation of S(At) is partitioned into separate calcula-
tion of 1) the effect of other cause mortality (OC), that is mortality that does
not depend on the particular disease state, and 2) disease-related transitions.
As mortality rates only cause transitions out of the current state (into death,
which is not part of the states in T), mortality rates will contribute only to the
diagonal terms of T. As OC does not depend on the disease state, all diago-
nal terms of T contain the same term — OC, and the transition rate matrix T
thus can be written as T* — OCT, where I is the 2" x2" identity matrix, and T*
the transition rate matrix without the OC terms, containing only terms from
incidence, recovery and disease attributable mortality rates. For commuting
matrices A and B it holds that eA*B = ¢A + ¢B. It can easily be seen that T*
and — OC I are commuting, and thus

¢T — ,~OCI T+ _ ,—OC T+

therefore partitioning the calculation of S(At) in calculating ¢T* and e~9¢

separately.

As a next step, we will show that calculation of e!* can further be par-
titioned in multiplying separate matrices for mutually independent clusters
of diseases. We will show this below for two clusters of diseases. Given that
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this is true for two clusters of diseases, it is clear that it is also true for any ar-
bitrary number of diseases: One can first combine the matrices from the first
two disease clusters if the property holds for two disease clusters. This yields
a matrix for the two clusters together (a new first cluster), and this then can
be combined with the third cluster, and so on.

Let there be two independent clusters of diseases: cluster 1, containing
the set of disease states C' with elements ¢, and cluster 2, containing the set
of disease states D with elements d,,. The overall set of states comprises all
combinations cid,,. Independence of the clusters of diseases means that:

1. The transition rate between state of c;d,, and ¢;d,, is the same for all
m, and similarly the transition between c;d,, and c;d,, is the same for
all k. In other words, incidence, recovery and attributable mortality of
diseases in a cluster do not depend on the presence or absence of a
disease or disease-combination in the other cluster.

2. The prevalences of the diseases are independent of that of the diseases
in the other cluster, i.e. (conditional on being alive) the probability of
being in state c;, of cluster 1 and in state d, of cluster 2 is given by:

Pr(cx Ndp,) = Pr(cx) Pr(dy,)

Note that as the transition rates all apply to a single individual, the require-
ment of independence only implies independence conditional on risk factor
status.

Furthermore, as we are dealing with rates, all transitions should take
place in an infinitely small time period. Therefore, only a single transition
is possible within this period, so it is not possible to acquire more than one
disease, and all transitions between states that differ by the presence of two
(or more) diseases are zero. This implies that for both k# 1 and m#n the tran-
sition between c;d,,, and ¢;d,, is zero.

We will illustrate our proof with an example where we let cluster 1 be
arbitrary, and cluster 2 contain two diseases. From this example, however,
we will generalize to many diseases in cluster 2.

The first cluster, A, is the matrix of the transition rates between the states
¢k, where the number of diseases is N and their mutual dependence is not
further specified. The second contains two diseases, the states d,,, are: 00 (both
diseases absent), 01 (disease 1 present), 10 (disease 2 present), and 11 (both
diseases present). The matrix A, of the transition rates between the states
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within cluster 2 is then of the form:

_)‘11 )‘12 )‘13 0
>‘21 _)‘22 0 )‘24
>‘31 0 7)‘33 )‘34

0 )‘42 )‘43 _>‘44

For illustration we also give this matrix, replacing \;; with the corresponding
epidemiological parameter:

—incy — inc reci recs 0
—incy —incg — amy — recy 0 recy
—incy 0 —incg — ama — recy recs
0 —incs —incy —ams3 — recs — recy

where
inci: incidence rate of disease 1 in those without disease 2

incg: incidence rate of disease 2 in those without disease 1
incg: incidence rate of disease 1 in those with disease 2

incy: incidence rate of disease 2 in those with disease 1

reci: recovery rate of disease 1 in those without disease 2
recy: recovery rate of disease 2 in those without disease 1
recs: recovery rate of disease 1 in those with disease 2

recs: recovery rate of disease 2 in those with disease 1

amy: attributable mortality in those with disease 1

amy: attributable mortality in those with disease 2

ams: attributable mortality in those with both disease 1 and 2

The overall matrix of transition rates (between all disease states combin-
ing both clusters of diseases) is an Nx4 matrix, which we can arrange in
blocks with similar states of cluster 2 diseases. As transition rates can only
be non-zero when there is only a single change between states, cluster 1 tran-
sitions are zero in all off diagonal blocks (which already imply a change in
cluster 2 diseases), and the block will consist of A;;I, as A;; is the same for
all states ¢, in this block due to the independence between the clusters. Sim-
ilarly, the off-diagonal elements of the diagonal blocks will not contain any
cluster 2 transitions while the diagonals of these blocks will be equal to the
corresponding entries of A;. Only on the diagonal of the matrix transitions
are possible concerning both clusters, comprising the diagonal elements of
Aj and A\;1. So the resulting matrix can be written as:
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A =MD Al Al 0
T — Aoy A1 — Ay 0 Agq
AT 0 Ay = Aggl g, I
0 Al A Ay — AT

This matrix can be written as the sum of 2 matrices, each containing only
transition rates from one of the two clusters:

A ARl ARl 0 A, 0 0 0
Ayt —Agy O Mg L]0 A0 0
Al 0 =gl A I 0 0 A 0

0 Apl Al =)l 0 0 0 A4

More generally, we can write for two transition matrices A; and A, with
dimensions N and M respectively:

T=A2IN+IM®A;1 =As DAy

where @ stands for the Kronecker sum, and thus

eT = A2®A1 _ A2 o A1

Next, we will prove, that when independent clusters of diseases have
prevalence rates that are mutually independent at the start of the simulation
(to), the prevalence rates will remain independent during simulation. With
independence of prevalence we mean that:

Pr(ex Ndpylalive) = Pr(cg|alive) Pr(d,,|alive)

where c;, and d,, are particular disease states within disease cluster 1 and 2,
respectively.

We will now use the symbol pi(t) here for the vector of probabilities
Pr(cg|alive) (the vector of prevalence rates of cluster 1 disease states) and
similarly p(t) for the vector Pr(cy N d,|alive)).

At the start of the simulation, all subjects are alive, and the vector of state
probabilities P(t;) is equal to p(tg) and can thus be written as:
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P(to) = Pg(to) (%) Pl(to)

where P (tp) is the vector of state ¢, probabilities for the first cluster of
disease, and P(to) is the vector of state d,,, probabilities for the second cluster
of disease.

The probability P(t;) with t;=top+At is then given by:

P(t1) = TP (1)
= ¢~OCAL(A2AL g (AAL) (P, (10) ) P (1))
— e OCM (AP (1)) @ (A1AP (1)

= eiOCAtPQ(h) @ Pi(t1)

where Py(t1) is introduced as shorthand for eA22¢Py(tg) and can be in-
terpreted as the probabilities of states in the second cluster of diseases at t=t;
in the hypothetical case that only mortality from this cluster would occur.
To calculate p(t;) we need to divide P(t;) by the survival at time t;, which is
equal to e OCAt  survy X surve with surv, = >k Pak(t1), where pg (t1) is
the k" element of vector P, (1).

In thus calculating surv, and survy, we use the fact that the state death is
not part of P, so that the columns of the transition matrices A; and As do
not add up to 1 but to something smaller, implying that with every update
the size of P1(¢) and P2 (¢) will diminish due to death related to the cluster
diseases.

Dividing P(t;) by the survival at time ¢ yields

e~ OCAt Pg(t1) 2 Pl(tl)

3.5 t1) =
(35) p(t1) e~ OCAL gyru, survy

= p2(t1) ® p1(t1)

Therefore, in order to run the model, one does not need to store all N x
M disease states in P(t), but it is sufficient to store the disease states pi(t)
and p2(t) (N+M states), and additionally keep track of the overall survival.
Similarly, one does not need to exponentiate the (NxM) x (NxM) disease
state matrix T, but can update p; (¢) and p2(¢) independently with the smaller
matrices A; (NxN) and Ay (MxM).
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Technical Supplement B:
Estimation of initial state occupancy and model pa-
rameters from marginal data

In this section, we describe how the DYNAMO-HIA model uses marginal
data on risk factor and disease prevalence, incidence and mortality to esti-
mate

1. the initial occupancy of states, and

2. the parameters for the transition rates between states.

The methods used are largely taken from similar methods used in the
RIVM-CDM.® All calculations as described below are performed separately
by age and gender.

Initial occupancy of states

The central assumption used for converting marginal distributions of the in-
dividual components of a state (that is the distribution of the risk factor and
of diseases) into a joint distribution is that the prevalence odds ratio of hav-
ing a disease, conditional on all other aspects of the state (that is risk factor
status or the presence/absence of other diseases), is equal to the relative risk
of this disease. The justification for this is that under certain conditions the ra-
tio of the prevalence odds of a disease equals the ratio of incidences.”>”# The
assumption is inspired by a similar assumption used in the RIVM-CDM, %
where, however, this assumption is made for the ratio of the prevalence.

In the case of diseases that only depend on the risk factor state r (we fur-
ther refer to those as independent diseases), we solve the baseline odds of
disease 7 iteratively from:

RR,_,4, * Baseline odds; Pr(R = r)

.6) Pr(d; =1) =
(36) Pr( ) Z RR,_.4, * Baseline odds; + 1 '

T

where
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Pr(d;=1) (marginal) prevalence of disease i (input to the
model)

Pr(R=r) (marginal) probability of the risk factor state r
(input to the model)

RR,_,4, relative risk of risk factor state r on disease i
(input to the model)

With these baseline odds we then can calculate the joint prevalence of
risk factor states and independent diseases. If we then define a new risk fac-
tor state r* as the joint risk-factor independent disease state, we can repeat
the procedure for diseases that depend on other diseases (referred to as de-
pendent diseases ) using r*. Although in theory one could proceed like this,
adding extra layers of new dependent diseases in each step, the current im-
plementation of the DYNAMO-HIA model is restricted to a single layer of
dependent diseases.

The joint distribution of all risk factor and disease states is used to initial-
ize the simulated population. For this, first, risk factor states are assigned un-
til the number of simulated persons assigned almost (or completely) reaches
the expected number under the intended distribution. Second, the remaining
simulated persons are randomly assigned a risk factor value based on the dif-
ference between the realized and the targeted risk factor distribution. Given
the assigned risk factor, the disease state is then calculated based on Equation
(including the relation between independent and dependent disease).

Transition Rates

Table[3.T|gives an overview of the input needed in the DYNAMO-HIA model,
and Table [3.2] of the parameters that govern the transition rates in the DY-
NAMO-HIA. The parameters RR, 4, and RR., .4, need to be given directly
by the user, while \;_,;(At) and 9(At) can either be given directly by the user
or can be calculated by the program such that the age-specific prevalence
stays constant over time (so called net-transition rates). All other parameters
need to be estimated from the input (Table .

Transitions between risk factor states
()\iﬁj,(At = 1), 8(At = 1),O'<At = 1))

Transition probabilities for risk factors can either be given directly by the user,
or the program can estimate the minimal transitions needed in order to let the
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age-specific prevalence stay constant over time (net-transitions). For categor-
ical risk factors this method was described before.”” For normally distributed
continuous risk factors, the risk factor level L at age a + At is given by:

L(a+ At) = L(a) + 0(At) + o(At)e,

where ¢ is a random number with distribution N (0, 1).

For net-transitions, (At = 1) is simply the difference of the average
risk factor level L in the population at age a+1 and age a: 9(At = 1) =
L(a+1) — L(a). Similarly, (At = 1) is estimated from the increase in vari-
ance in the population with age. If the variance decreases with age, (At = 1)
is made zero; o (At = 1) is always calculated by the program, also when the

user supplies O(At = 1). Relative risks on all-cause mortality are used to ad-
just these parameters for selective mortality before calculating net-transition
rates.

Estimation of the baseline incidence (I ;)

As the population incidence is the average of the state-specific incidence,
using the joint distribution of states in the initial population (as estimated
above), we can estimate I ; from the marginal incidence rate as:

I(1 - FF)

3.7) Iy; =
G2 1o, >or ECeX RR,qPr(C,R = r|d; = 0) [Li:c;=1 RRc,—a

where
FF; fatal fraction (user supplied)

C is a vector of states of the causal diseases
(e.g. for 5 causal diseases: [0,0,1,0,0]), with ele-
ments {cq,..., ¢y}

X the set of all possible vectors C (all possible
combinations of presence/absence of causal
diseases)

I; the (marginal) incidence rate of (non-fatal)
disease i (user-supplied)

The overall incidence I; and the fatal fraction FF; are directly supplied by
the user. For diseases that are not directly fatal, the fatal fraction is zero.
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Estimation of the attributable mortality (Am;),
baseline other cause mortality (M, oc),
and relative risks for other cause mortality (RR,_,0c)

The mortality rate, given risk factor state r and disease states D, is given by:

(3.8) M(r,D)= > Am;+ MyocRR,0oc + Y _ CFi(r,D)
ird;=1 i

where CFi(r,D) =My .cr,RR,—q, szcj:l RR.;q4;- Here we have multi-
ple unknowns: The attributable mortalities Am; for each disease, the relative
risks RR,_,oc for risk factor value  on other cause mortality, and the base-
line other cause mortality M oc. The marginal population data available for
estimating these parameters are the all-cause mortality M, the prevalence of
disease i (Pr(d; = 1)), the relative risks of each risk factor state on all-cause
mortality RR,_, 3 and the excess mortality rates E;.

The excess mortality for disease ¢ is defined as the observed difference
of mortality in the group with the disease and the group without the dis-
ease. This is not equal to the attributable mortality Am;, as excess mortality
includes mortality that results from more co-morbidity and higher risk fac-
tor exposure in those with the disease, while attributable mortality does not
include those effects. In many situations, however, the difference is small.

To estimate these parameters, first RR,_,); and M are used to calculate
M(R=r), the all-cause mortality in risk factor state r. Second, for each disease
the excess mortality E;, the prevalence of disease i and the total all-cause mor-
tality M are used to calculate the all-cause mortality in those with disease i,

Third, we write down equations for M(d;=1) and M(R=r) in terms of the
parameters that have to be estimated:
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i
(3.9) + Mooc > RR,ocPr(R=r|d;=1)

+> CFy(d; =1)

(3.10) M(r) =Y Am;Pr(d; =1|R =7)+ MyocRR,—oc + Y _ CFj(r)
J J

where

CFj(d; =1) = Mycr, Y > Pr(x =C,R=r|d; = 1)RR,_q,

Cex 7
x I RRea,CF;(R=1)
kicp=1
= MO,CFJ' Z PY(X = C’R = /r.)RRT")dj H RRCk%dj
CGX k:ckzl

CFj(d; =1) incidence of acutely fatal disease j, given that
disease i is present

CF;(R=r) incidence of acutely fatal disease i, given risk
factor state r

C vector of causal disease states with elements
Ck
X the set of all possible vectors C (all possible

combinations of causal disease states)

Using the joint distribution of all risk factor and disease states as esti-
mated before when defining the initial occupancy of states, all conditional
probabilities — such as Pr(d; = 1|d; = 1), Pr(d; = 1|R =r), P(x = C|R = 1)
and P(x = C,R = r|d; = 1) — are known. Given these known terms, with L
diseases and N risk factor states we then have a linear system of L+N equa-
tions with L+N unknowns (L Am-terms, N-1 RR,_,oc-terms, as RR,_,o¢ is
set to 1 for the reference group, and My o¢), which can be solved using stan-
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dard linear algebra.

Using RR,_,oc is optional: if this option is not used, risk factors only
influence mortality through causing more disease. In that case, there are only
L+1 equations to solve:

M(d; = 1) = Am;+ Y Am;Pr(d; = 1|d; = 1) + Mooc + > CFj(d; = 1)
J#i J

M = Z Am;P(d; = 1) + My oc + Z > CF(R=r)Pr(R=r)

7 T

Estimation of the baseline fatal incidence rate (M, cr,)

The baseline incident M, ¢ can be estimated by:

FFI;

3.11) M, =
( ) 0.CFs 2o ZCEX RRy g4, PI‘(R =nX= C) Hk:ckzl RRCk%di

where F'F; is the fatal fraction of disease ¢ (user input). Again, the joint
distribution of all risk factor and disease states, as estimated before when
defining the initial occupancy of states, is used to supply P(x = C,R =
T‘di = 1).

Technical Supplement C:
Definition of DALY weights in DYNAMO-HIA

The DALY-weights are defined as the percentage of decrease of the value
of life due to the disease. The DALY-weight () attached to a particular disease
state D is calculated as:

(312) Q=1-(1-Qo) [] 1-@)

ird. =1

k3
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Qo DALY-weight for a person without any of the
diseases in the model
where: . . .
Qi DALY-weight due to the disease (supplied by
user)

The DALY-weight Q) for a person without any diseases is calculated from
the overall DALY-weight for the entire population @ as:

(1-0Q)

3.13 =1-
(3.13) Qo S pee PE€=D)[Tig 1 (1 - Qi)

¢  Set of all possible disease states D

d; state of disease i in D

where:

Again, all these calculations are carried out separately for age and gender
and P({ = D) is estimated in the same way as described in the section on
defining the initial occupancy of states.

Technical Supplement D:
Justification of the numerical methods used

Fixed time-step simulation implies that a process in continuous time is simu-
lated in discrete time, and thus transition probabilities (from the states at the
beginning of the time-step to the states at the end of the time-step) have to be
calculated from the continuous time transition rates. Several approaches are
being used for this in disease models.

Many models, e.g. the RIVM-CDM®® use the Euler forward method, basi-
cally ignoring the difference between rates and probabilities. If time-steps or
rates are small or if the uncertainty about the rates (due to data uncertainty)
is much larger than the error from this approximation, this is a defendable
approach. Others”® use more sophisticated numerical methods of forward
integration. Analytical solutions to Equation [3.2] are available when transi-
tion rates Q(At)are assumed constant within the time-step At, as the matrix
of transition probabilities IT(At) in that case is equal to the matrix exponen-
tial of AtQ(At) (see Technical Supplement A). However, for all but the most
simple cases it is more convenient to compute the matrix exponential using
numerical methods, as done in the ARMADA model.?? Lastly, if transitions
are in one direction only, constant within the time-step, and depend only on
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the disease state at the beginning of the time-step, one can calculate the prob-
ability of going from state A to state B somewhere during the time-step as
1 — e, where « is the transition rate from A to B. For transitions to absorb-
ing states these probabilities are the probabilities that are needed. For other
states the probabilities can be calculated from these probabilities using prob-
ability calculus. This method is often used in multi-state life table models and
is used as far as we understand it in the UKPDS model.””

The first two methods are general methods while the last two use the
structure of the problem at hand, a system of first order linear differential
equations, and the additional assumption of constant rates within the time-
step. Intuition would be that tailored methods might be more efficient than
using more general methods. However, solving a matrix exponential can also
be time consuming, as time increases with the square of the dimension of
the matrix. Also numerical problems abound,”® Gallivan et al. published an
algorithm specifically tuned to the case of Markov disease models.” Time de-
mand can be further reduced by splitting up the matrix into separate matri-
ces for independent clusters of diseases (see Technical Supplement A), where
in practice many of these clusters consist of a single disease for which the
matrix exponential can be solved exactly. DYNAMO-HIA therefore uses the
third method, the algorithm of Gallivan et al.”? for calculating the matrix ex-
ponential for clusters of more than one disease, and the exact solution for
single diseases (both simple and with a cured state).
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Introducing DYNAMO-HIA:
A dynamic modeling tool for generic
health impact assessments!

Abstract

Background Currently, no standard tool is publicly available that allows re-
searchers or policy makers to quantify the impact of policies using epidemi-
ological evidence within the causal framework of health impact assessment
(HIA). A standard tool should comply with six criteria to be useful in the
applied setting of HIA. With DYNAMO-HIA, we introduce such a generic
software tool specifically designed to facilitate quantification in the assess-
ment of the health impacts of policies.

Methods and Results

DYNAMO-HIA quantifies the impact of user-specified risk factor changes
on multiple diseases and in turn on overall population health, clearly com-
paring one reference scenario with one or more intervention scenarios. The
Markov-based modeling approach allows for explicit risk factor states and
simulation of a real-life population. A built-in parameter estimation mod-
ule ensures that only standard population-level epidemiological evidence,
i.e. data on incidence, prevalence, relative risks, and mortality is required.
DYNAMO-HIA provides a rich output of summary measures (e.g. life ex-
pectancy and disease-free life expectancy) and detailed data (e.g. prevalences
and mortality/survival rates) by age, sex, and risk factor status over time.

tStefan K. Lhachimi, Wilma J. Nusselder, Jet Smit, Pieter van Baal, Paolo Baili, Kathleen
Bennett, Esteve Ferndndez, Margarete C. Kulik, Tim Lobstein, Joceline Pomerleau, Johan P.
Mackenbach, Henrik C. Boshuizen (submitted for publication)

59



Chapter 4

DYNAMO-HIA is controlled via a graphical user interface and is publicly
available from the internet ensuring general accessibility. We illustrate the
use of DYNAMO-HIA with two example applications: a policy causing an
overall increase in alcohol consumption and quantifying the disease-burden
of smoking.

Conclusion By combining modest data needs with general accessibility
and user friendliness within the causal framework of HIA, DYNAMO-HIA
is a potential standard tool for health impact assessment based on epidemio-
logical evidence.

Introduction

Health impact assessment (HIA) is a combination of procedures, methods,
and tools that judges the effect of a (planned) program, project, or policy on
overall population health and the distributional effects within a population.’
The rationale behind HIA is that many risk factors for chronic diseases are
affected by policy measures outside the realm of health policy (e.g. trans-
portation, food, or urban planning). Health impact assessments have been
carried out at all governmental levels (e.g. local, 23 regional,18 national ** and
supranational’®). The number of HIAs is likely to rise due to increased insti-
tutional adoption®® and political will, in particular at EU level.2¢ Currently,
there is a diversity of approaches to the quantification of policy interven-
tions.? However, for the quantification step in HIA a generic modeling tool
- i.e. allowing for various and multiple chronic diseases and arbitrary risk
factor — that takes into account the standard causal pathway assumed in HIA
has been lacking.®? The standard HIA causal pathway assumes that a policy
intervention leads to a change in risk factor prevalence which in turn leads
to changes in disease incidence and disease-related mortality.” The two ob-
jectives of HIA — to predict future consequences of implementing different
options and to inform decision-makers in choosing between options* — ad-
dress the technical core of quantification (predict) as well as the context (in-
form) in which an HIA takes place. Hence, a potential standard tool should
aim for technical accuracy in the prediction of the effects of interventions on
population health and yet be effective in the applied setting of an HIA, where
time and resources are scarce. These objectives were operationalized into six
criteria that a generic model should fulfill to be useful as a standard tool.®?
The first three criteria (real-life population, dynamic projection, and explicit
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risk factor states) ensure that the model structure is sufficiently accurate in
modeling changes in risk factor exposure over time in a real-life population
in a transparent way. The last three criteria (modest data requirements, rich
model output, and generally accessible) ensure a wide usability by account-
ing for the constraints of a decision-making process. This article proposes a
software - DYNAMO-HIA (DYNAmic MOdeling for health impact assess-
ment) — as a standard tool for the quantification of user-specified policy in-
terventions within the HIA-framework.

Methods

Implementation of Requirements for a Standard Tool

We designed DYNAMO-HIA to satisfy the six criteria a generic standard tool
for HIA should fulfill. DYNAMO-HIA models a closed real-life population,
i.e. stratified by sex and age in 1-year age categories up to the age of 95 with-
out migration (including the expected number of newborns). The model is
dynamic in 1-year time-steps and projects reference and (several) interven-
tion scenario(s) over time. DYNAMO-HIA has explicit risk factor states, i.e.
at every time-step of the simulation each simulated individual is classified
into a specific risk factor category. This ensures an accurate, unbiased estima-
tion and increases the transparency of the simulation and the resulting output
data.

DYNAMO-HIA has a parameter estimation module, mostly using meth-
ods taken from the RIVM-CDM, reducing data needs substantially. 60l Tnci-
dence and prevalence of a disease is only needed at the population level, i.e.
specified by age and sex and not by each risk factor state. The module back-
calculates the risk factor specific values using the relative risk from each risk
factor state on diseases. The user can inspect these intermediate results when
desired, thus improving transparency. DYNAMO-HIA provides rich simula-
tion output available in three forms: first, raw output data allowing detailed
analysis by age, sex, and risk factor status. This raw data either gives the co-
hort disease life table for every simulated cohort or the period data for every
simulated year; second, several dynamic plots, e.g. population pyramids or
survival rates, based on the data that contrast key information between the
reference scenario and the intervention scenario; third, a range of summary
outcome measures, e.g. cohort-, period-, or disease-free life expectancy. The
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graphical user interface allows general accessibility; no programming or ad-
vanced computing skills are required.

Model Core

DYNAMO-HIA is a Markov-type model based on a multi-state model
(MSM). The change of the state depends only on current characteristics (i.e.
age, sex, risk factor status, and health status). The MSM is implemented as
a partial micro-simulation combining a stochastic micro-simulation to project
risk factor behavior with a deterministic macro approach for the disease life
table.® In the micro-simulation module large numbers of distinctive risk-
factor biographies are simulated: Given the age- and sex-specific transition
probabilities between risk factor states, the risk factor status of each simu-
lated individual is updated in annual increments (see Figure {4.1|for details).
In the macro-module, as many disease life tables are constructed as there
are risk-factor biographies. These disease life tables account for competing
risks and multiple morbidity.*” The exact configuration of the disease life
tables, i.e. the number and kind of diseases, can be specified by the user
(see Figure for details). For every risk-factor biography, the probability
of disease incidence and mortality over time is calculated, accounting for the
current age, risk factor, and disease status (see Figure for details). These
biography-specific life tables are calculated for each birth-cohort, i.e. all in-
dividuals that are born in the same calendar year. For example, for a cohort
of newborns, first, the risk-factor biographies are projected and then disease
life tables are calculated. Older cohorts, i.e. born before the first simulation
year, already start out having the disease prevalence as specified by the input
data, which is then similarly updated. Population values are obtained by ag-
gregating the individual biography/diseases life tables: either across cohorts
at a given simulation time point to obtain period measures or along cohorts
to obtain cohort specific measures (see Figure f.4for details). The split into a
micro- and a macro-module is done purely for computational convenience,
micro- and macro-simulations yield the same result when used with the same
data.**®I'However, time and memory requirements in macro-simulations rise
exponentially when the number of simulated states increases and micro-sim-
ulations — unlike customary multi-state life tables — do not require the a priori
specification of all theoretically possible combinations of diseases/risk fac-
tor states, but only those states that are actually occupied. But for simulating
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risk-factor Age

biography X x+1 x+2 x+3 x+4
1 — N —» P —» p —» 0
2 o —» o =—» p —> N — N
3 p —> P — N —> N — N
4 N > N —» p — o —/ o
5 N — N — p —> 0o — 0
6 P — p —» p —>» p —> p
7 N —> P — p —> p —> p
8 N —> P — o —™> o — o
9 N —> N —» N — N — N
10 N —> P — pPp —» N —> N

N= Normal Weight, P=Overweight, O= Obese

Figure 4.1: Example of risk-factor biographies for a risk-factor with three categories. DYNA-
MO-HIA simulates individuals and projects their risk-factor biographies. The risk-factor sta-
tus is being updated in one-year increments, given age- and sex-specific transition probabi-
lities. The age- and sex-specific risk-factor status determines the relative risk of a person to
contract a disease or to die. DYNAMO-HIA allows one risk factor per scenario. This risk fac-
tor can be either categorical (up to ten categories), duration dependent (up to ten categories
of which one is duration dependent, i.e. the risk on disease in this category depends on how
long a person is in the category), or a continuous distribution (normal or log-normal, specified
by entering mean, standard deviation, and, in the case of the log-normal, skewness).

rare events — e.g. lung cancer at young ages — micro-simulations require the
simulation of large numbers of individuals, offsetting the savings in time and
memory requirements.

The epidemiological model uses relative risks by risk factor class, i.e. in-
cidences in exposed risk factor classes are a multiple of the incidence in the
non-exposed. The total mortality, i.e. population level mortality by age and
sex, is being decomposed in the mortality due to the diseases included in the
model and other cause mortality. This decomposition assumes additive mor-
tality: The total mortality rate in the population is explained as the sum of the
mortality rate of the included diseases and other-cause mortality, i.e. mortal-
ity from all causes/diseases that are not explicitly included in the model.
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Incidence Mortality

Disease 1
and
Intermediate
Di 1

Inter mediate
Disease 1

<I-Hr>»mI
O>»mOo

Other Cause Mortality (no explicitly modeled disease)

Figure 4.2: Stylized structure of disease life table. The disease life tables contain disease clus-
ters. Each disease cluster consists of one or more diseases. Within disease clusters, intermedi-
ate diseases — that increase the risk of getting another disease — can be specified (e.g. having
diabetes increases the risk of getting IHD). All diseases are chronic diseases, i.e. excess mor-
tality depends on age and sex and not on time since onset of disease. However, acutely fatal
and/or cured fraction can be specified for diseases. The disease life table assumes indepen-
dence between disease clusters. The user can freely specify the relative risks from risk factor
to disease, from risk factor to death, and from intermediate disease to other diseases.
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Stylized Multi-State Life Tables for a given Cohort

Age Risk Factor Biography 1 Risk Factor Biography 2 Risk Factor Biography 3
e
Normal Weight Normal Weight Normal Weight
"
——potho— -« Pt ot
< Healthy - |— Diseased Healthy  — [~ Diseased Healthy —‘ Diseased
HHead Mo HHpead Hopead " "
Deas pssa IoDead
> Dead 4= L Dead J =$ Dead 4=
A ~ oo Mo Aoo Mo oo
Normal Weight Normal Weight Normal Weight
Pt Dot Aot
- Healthy |— Diseased Healthy Diseased Healthy —l r Diseased
T
x Hrosss oo Hrossa Hopess
eax ead MHDead HoDead
— Dead 4— =" Dead 4 5 Dead  «
Mo - Mo Mo Moo Mo oo
Normal Weight Preobese l Preobese
ot “RRprecbese( o+ Io ) “8RRerccbese(Por* o)}
Healthy Diseased Healthy Diseased Healthy Diseased
B 7 r
> HHDead. - Hopeas RRepreoese roead RRerecbese”Hopeas RRerecbese"HrpeacRRereobese Hooead
O Dead 4 Dead 3 Dead 4=
Ao Moo Mo Moo Mo Ao
Normal Weight l l Obese l l Preobese l
- ot ~@-RRosese(Por+ o “8RRerccbese(PorH o)
P Healthy Diseased Healthy Diseased Healthy Diseased
x
Hrpead “Hopeas RRosese™MHpeas  RRobese Moveas RRerwo00s0"HHpeacRRproobeseHopead
=$  Dead 4— = Dead 4= = Dea o~
A A A
l Normal Weight l i Obese l l Obese l
< oyt “-RRovese(Port o) B “-RRopese(Por o) B
Vv Healthy Diseased Healthy Diseased Healthy Diseased
x 1
Hrpead HoDeas RROgess"peas RRopese"Honesd RRoese"Hinsas RRopessHopess
= Dead 4— =$  Dead =% Dead 4=

Apo=From Diseased in x to Diseased in x+i pg,=Remission from Diseased to Healthy Woossd=Transition from Diseased to Dead RRerectess=Change in Transition Risk given Preobesity
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Figure 4.3: Stylized cohort life tables (with only one disease, three different biographies, and
five time-steps). For every risk-factor biography, a disease life table is constructed. Disease
incidence, i.e. transition from healthy to a disease, equals the baseline incidence, i.e. incidence
when in a risk-factor class with a relative risk of one for the particular age- and sex-category,
times the relative risk due to the given risk-factor and, in the case of an intermediate disease,
diseases status. The transition from healthy to dead equals the baseline other-cause mortality
of the healthy, i.e. age- and sex-specific total mortality rate minus the excess mortality rate
of the diseases included in the disease life table, multiplied by the relative risk due to the
given risk-factor status on other cause mortality. The transition from diseased to dead equals
the sum of the excess mortality of the disease (given age and sex) and the baseline other
cause mortality of the healthy, multiplied by the relative risk in the given risk-factor status.
Remission is not explicitly modeled, but for diseases with cured fraction the excess mortality
is zero in a "cured", i.e. user-specified, fraction. Partly acutely fatal diseases, i.e. diseases with
very high mortality immediately after contracting the disease while for those who survive this
critical period the excess mortality only depends on age and sex, are modeled by specifying
the fraction of the incidence cases that die immediately.
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Figure 4.4: Schematic overview of the dimension of a multi-cohort, multi-state life table. Each
plane is a distinct cohort with varying starting ages for cohorts already existing at the start-
ing year of the simulation and starting age zero for cohorts born during the simulation run.
The cohort life tables, consisting of the set of individual risk-factor biographies, follow every
already existing birth cohort until the cohort reaches 105 years of age. In addition, every year
of the simulation a cohort of newborns is created and — after simulating individual risk-factor
biographies for them — is followed through the appropriate disease life tables as well. This al-
lows collecting health data for each cohort according to their risk-factor status (longitudinal)
or the health status of the population by age, sex, and risk-factor status by each year of the
simulation (cross-sectional).
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Modeling policies with DYNAMO-HIA

The goal of HIA is to compare the effect of several policies/interventions
on future population health, keeping the status quo as the reference sce-
nario. Within DYNAMO-HIA, policies can be modeled in two ways (both
approaches can be applied simultaneously and/or targeted at selected parts
of the population only). The first approach is to define a counterfactual risk
factor prevalence that is assumed to be reached after a successful one-time,
sustained intervention, e.g. a reduction in alcohol consumption caused by a
tax increase or a ban on consumption in public. The approach of defining
counterfactual risk factor prevalences is akin to epidemiological methods,
where total or partial eradication of a risk factor is quantified. DYNAMO-
HIA does this quantification dynamically, i.e. effects are projected over time.
The second approach is to alter the transition probabilities between differ-
ent risk factor states, i.e. changing the risk factor behavior of the population.
This approach is closer to the reality of many health interventions that try
to influence life style choices of individuals, e.g. halving the future number
of teenagers that become obese. The specification of the transition probabili-
ties influences greatly the future development of the risk factor prevalence,
which is always debatable. As an option DYNAMO-HIA provides the use
of net-transition probabilities: DYNAMO-HIA estimates internally the tran-
sition probabilities that keep the age-specific risk factor prevalence constant,
ignoring any future cohort effects.

Illustration

To illustrate the usability of DYNAMO-HIA, we present two stylized exam-
ple applications. The first illustration projects the consequences of a policy-
induced increase in alcohol consumption and resembles a prospective HIA.
The second illustration quantifies the changes in population health when
smoking would be eradicated and resembles a burden of disease study. In
both applications, we model the effect of risk factors on total mortality and
nine diseases — ischemic heart disease (IHD), stroke, diabetes, chronic ob-
structive pulmonary disease (COPD), breast-, lung-, esophageal-, colorectal-,
and oral-cancer — and keep the age-specific risk factor prevalence constant
over time by using net-transition probabilities between risk factor classes, i.e.
ignoring any future cohort effects. Hence, the difference between the refer-
ence scenarios and the intervention scenarios depends solely on the different
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initial risk factor prevalences. The data sources and the relative risk used are
shown in detail in the Appendix.

Liberalizing access to alcohol: The Swedish case

In 2004, Sweden had to lift her ban on private alcohol imports.®? Prospec-
tive studies were forecasting an increase in overall alcohol consumption and,
consequently, a worsening of a number of alcohol-related harm indicators.
In our reference scenario, we keep the alcohol consumption prevalence ob-
served in 2002 constant during the projection period and assume a one-time
change in the consumption of pure alcohol by 1L per capita, producing a
counterfactual risk factor prevalence as seen in Figure4.5|for the intervention
scenario. We project both scenarios for 25 years in the future (see Table .1).
The annual excess number of deaths due to increased alcohol consumption
is on average approx. 170 deaths, accruing to some 4,300 additional deaths
over the 25-year-period. This projected difference in overall population mor-
tality also reflects all other effects a risk factor has on other-cause mortality
accounting for not included diseases and — more salient in the case of alco-
hol — injuries/accidents via the relative risk of a risk factor on total mortality.
This absolute number is rather small compared to the overall population of
some 9 million; hence, the effect on total life expectancy and, similarly, the
overall difference in disease-free life expectancies between the reference and
the intervention scenario are negligible.

Alcohol intake has a pronounced effect on a number of diseases that are
projected by the model. In projection year 25, the biggest difference in abso-
lute cases is for diabetes with approx. 6,600 more cases, followed by stroke
with an excess prevalence of approx. 1,700 cases. Ischemic heart disease, the
most prevalent of the included diseases, is overall less affected by the change
in alcohol intake. The population prevalence differs only marginally over the
simulation period, but still accounts for approx. 700 less cases; this is partly
caused by the beneficial effect of moderate drinking for some age groups (see
Table for the corresponding relative risks). From the five included can-
cers, the increase in breast cancer is the most notable: in projection year 25,
the excess prevalence is approx. 1,800 cases in the intervention scenario. For
the other cancers, the increases in prevalence cases are relatively minor: for
oral cancer approx. 750, for colorectal cancer approx. 280 cases, and for eso-
phageal cancer approx. 60 additional cases in the counterfactual scenario. The
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number of COPD cases show a slight decrease although it is not causally re-
lated to alcohol intake. This is due to the higher number of deaths, thus there
are less persons alive to contract this disease.

Total elimination of smoking: A projection with UK data

Smoking is a major public health concern. This illustration quantifies the
gain in population health obtainable if an entire population would consist
of never smokers compared to a real-life population that keeps the currently
observed smoking behavior unchanged. Smoking is measured in three cat-
egories (never-, former-, current-smoker). The data for this illustration are
from the UK and projected 25 years into the future (see Table d.1jand 4.2). In
the counterfactual, the whole population consists of never smokers and no
uptake of smoking. After 25 years, the population of never-smokers is pro-
jected to have approx. 1,510,000 more individuals than a population keeping
the current smoking behavior. This translates into a total life expectancy of
81.4 years for the counterfactual compared to 79.0 years for the reference sce-
nario. This gain in life expectancy is substantially larger for men than for
women: For men the difference is more than 3 life years (76.9 in the reference
scenario compared to 80.0 in the intervention scenario) and women 1.8 years
(81.0 compared to 82.8). The projected life expectancies clearly demonstrate
that in DYNAMO-HIA no autonomous trends are assumed, e.g. a secular
increase in life expectancy that one may expect over the next 25 years. Smok-
ing also has a causal effect on a number of diseases. The biggest reduction
in the modeled diseases is for COPD. In projection year 25, the average life
years lived with COPD is approx. 0.9 years less in the intervention scenario
than in the reference scenario, more than halving population prevalence from
1.7% to .5%. The next biggest reduction is for IHD with approx. half a year
less expected life years with this disease, a difference in prevalence of 1 per-
centage point. Similarly, the prevalence of stroke goes down by approx. 0.4
percentage points (from 2.3% to 1.9%). The three included cancers that are
related to smoking are reduced as well (lung cancer by approx. 87,000 cases,
esophageal cancer by approx. 38,000, and oral cancer by approx. 9,200 cases,
respectively). However, other included diseases that are not causally related
to smoking (diabetes, breast-, and colorectal cancer) increase in prevalence
thanks to the larger number of surviving individuals that are now at risk of
contracting those diseases.
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Table 4.2: Period based total life expectancy and expected number of years with a disease for
the UK example application

Women Men
year Reference  Difference Inter- Reference  Difference Inter-
Scenario between vention Scenario between vention
Scenarios ~ Scenario Scenarios ~ Scenario

total life 1 81.3 0.2 81.5 77 0.8 77.8
expectancy 25 81 1.8 82.8 76.9 3.1 80
IHD 1 3.3 0 3.3 4.3 0.2 4.5

25 3 -0.4 2.6 3.8 -0.6 3.2
Stroke 1 1.9 0 1.9 1.8 0.1 1.9

25 1.8 -0.2 1.6 1.8 -0.2 1.6
Diabetes 1 2.3 0 2.3 2.6 0.1 2.7

25 2.1 0.1 22 25 0.3 2.8
Lung 1 0.1 0 0.1 0.2 0 0.2
Cancer 25 0.1 -0.1 0 0.2 -0.2 0
Oral 1 0.1 0 0.1 0.1 0 0.1
Cancer 25 0.1 -0.1 0 0.1 -0.1 0
Esophageal 1 0 0 0 0 0 0
Cancer 25 0 0 0 0 0 0
Colorectal 1 04 0 04 0.5 0 0.5
Cancer 25 0.4 0.1 0.5 0.5 0.1 0.6
Breast 1 1.7 0 1.7 n/a n/a n/a
Cancer 25 1.7 0.1 1.8 n/a n/a n/a
COPD 1 0.8 0 0.8 0.9 0.1 1.0

25 1.3 -0.9 0.4 1.2 -0.9 0.3
With at 1 8.9 0.8 8.8 8.4 0.3 8.7
least one 25 8.7 0.8 7.8 8.2 -0.9 7.3
disease
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Discussion

Within the rapidly developing field of HIA, no standard method on quan-
tification has emerged yet,"! but three approaches predominate the field:
regression-based methods, quantitative risk assessment, and population
health models. The regression-based methods originate in econometrics and
usually estimate the long term relationship between exposure (e.g. per capita
consumption) or proxy variables (e.g. tax rate on alcohol) and health out-
comes of interest on an aggregate level adjusting for further variables as sug-
gested by (economic) theory. This approach usually takes only limited no-
tice of underlying epidemiological mechanisms. Quantitative risk assessment
originating from (environmental) exposure assessment of toxic substances
makes explicit use of dose-response relationships derived through epidemi-
ological studies. These approaches are usually static, i.e. not accounting for
changes over time in real-life populations. Population health models combine
epidemiological evidence and insights on causality to dynamically quantify
the effect of risk factors on population health.

DYNAMO-HIA fills a gap among the already existing population health
models that are suggested for application in HIA.®2%3 Compared to existing
models, DYNAMO-HIA strikes a balance between being sufficiently techni-
cally accurate and ensuring wide usability. Technically equal or more com-
plex models — e.g. POHEM, ARMADA, RIVM-CDM - allow a greater flexi-
bility in modeling, but are not publicly available and they require highly spe-
cialized input data, and, moreover, proficiency in specialized programming
languages (except ARMADA). More accessible models — e.g. PREVENT, Pro-
portional Multi-state Life Table (MSLT), GBD —lack dynamic projection capa-
bilities (except PREVENT and multiple cohort versions of the MSLT#*) and
do not have explicit risk factor states, this technical simplification ignores
mortality selection and may lead to biased estimates.

DYNAMO-HIA is specially designed to fit within the standard frame-
work of HIA synthesizing elements of already well-established modeling ap-
proaches. Our approach allows for a flexible risk factor configuration (cate-
gorical, duration dependent, continuous), generic chronic diseases as speci-
fied by the user (with intermediate diseases, partially fatal diseases, and/or
diseases with a cured fraction), arbitrary specification of age- and sex-specific
— relative risks, and minimal data needs by requiring only population level
data. Furthermore, a mouse-driven graphic user interface allows straightfor-
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ward handling of the software, i.e. no knowledge of a programming language
is required. In addition to exporting the existing, partly customizable, graphs
into files — e.g. detailed plots of mortality rates or prevalences of risk factors
or diseases, both over time and age-specific — most calculated data can be
exported for use in separate software (e.g. Excel). This raw output data al-
lows further analysis such as grouping diseases into categories (e.g. IHD and
stroke or all cancers), to include costs, or to construct graphs.

DYNAMO-HIA simulates the effect of a single risk factor on a population
without migration. However, the categorical risk factor can be used to parti-
tion the population in up to ten distinctive categories. For example, a popula-
tion could be partitioned along a risk factor — say, never-smokers and smokers
— and socioeconomic status — say, with and without college education — hav-
ing in total four different groups assessing a policy that is more successful
for people with certain socioeconomic status. The possibility of partitioning
a population also allows to quantify the effect of an environmental hazard. In
this case, for example, the population is partitioned according to their prox-
imity to the hazard source — say, noise exposure or air pollution due to a new
airport — with 5% of the total population living less than 5km from the hazard
source, 5% to 10% living less than 10km and so on. This requires, of course,
sufficient insight into which part of the population is affected and knowl-
edge of the relative risks of the modeled exposure on the included diseases
and total mortality.

A category may also stand for a combination of known risk factors: For
example, smoking status ( smoking/non-smoking) and BMI (normal-/over-
weight/obese) could be modeled by partitioning the population into six dis-
tinctive risk factor categories. However, it requires knowledge about the rel-
ative risk of the combined risk factor class — say, relative risk of being obese
and a smoker on the included diseases and total mortality.

The overall performance of a model crucially depends on the quality of
the input data. In particular for dynamic models, the epidemiological data
has to be mutually consistent,®®> otherwise projected changes in the preva-
lences might be caused by mismatching data and not by the changes in the
risk factors. A limitation is that an autonomous trend in the rates, e.g. an-
nual reduction in overall mortality or disease incidence, cannot be specified.
Autonomous trends are often observed for past time periods and caused by
a number of factors; chief among them are improved curative interventions
and changed risk factor behavior. In a risk-factor based model, however, the
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specification of a future autonomous trend must be net of any underlying
risk factor behavior as this is already specified explicitly at some other place
in the model. Such specific data on future trends is hardly reliably available,
if at all, and would in most cases only modestly affect the difference between
reference and intervention scenarios. Hence, an ordinal ranking of policy al-
ternatives would be rarely affected and still reveal the most effective inter-
vention.

In health impact assessment, three criteria are used to assess validity: for-
mal validity, plausibility, and predictive validity.*® Formal validity assesses the
degree to which correct methods are applied correctly. The model structure
of DYNAMO-HIA is well founded in epidemiological evidence — incidence,
prevalence, and excess mortality — and demographic modeling practice, i.e.
a multi-state Markov-type model of chronic disease with explicit risk factor
states and inclusion of intermediate diseases. Plausibility assesses the degree
to which an observer deems that the theoretical framework is understand-
able, applicable, and plausible. Hence, DYNAMO-HIA deliberately restricts
itself on the well-established causal chain risk factor exposure — incidence —
prevalence — disease-related mortality — overall population health and requires
only data that is available in sufficient quality for the most common diseases
(e.g. cancer, CVD, diabetes, COPD) and risk factors (e.g. smoking, BMI, al-
cohol) in developed countries. In the Swedish example application, our re-
sults for the number of excess death is slightly lower than estimates based on
a regression approach utilizing historical relationships and aggregate-data
pooled from several Nordic countries.® One reason for this difference lies
in the relative risks on all-cause mortality used in our illustration. Those
are taken from epidemiological studies and capture only the effect of in-
dividual exposure, i.e. drinking behavior. Consequently, our results do not
account for broader effects that a change in alcohol consumption has on pop-
ulation health, i.e. abstainers or moderate drinkers become victims of increas-
ing alcohol-induced violence or accidents, caused by the increased number of
intoxicated drinkers.

Plausibility and well-established formal methods should not be mistaken
with constantly delivering expected results. Dynamic projections may re-
veal counterintuitive, yet plausible results and, hence, lead to important in-
sights. In the smoking application, for example, the number of breast cancer
cases in the never-smoker scenario is larger than in the reference scenario
although smoking has — in this application — no causal link to breast can-
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cer incidence. This seemingly unexpected result is caused by an increase in
overall longevity of a healthier living population and, hence, increased num-
ber of females that are susceptible to breast cancer. This phenomenon is well
known among modelers of health care costs, where dynamic analysis showed
repeatedly that a population level reduction in obesity or smoking may lead
to higher health care costs in the long run.>2¢/

Predictive validity is the degree to which predictions are confirmed by facts;
Veerman et al, however, list several reasons why this criterion usually cannot
be established in the context of HIA. We emphasize that a software model
like DYNAMO-HIA is always a decision-support tool only. It helps to quan-
tify the expected differences in population health given two (or more) differ-
ent scenarios: one of them a baseline scenario (without the intervention) and
one (or more) scenario(s) with intervention(s). It does not predict the devel-
opment of future population health as such. Decision-makers must be con-
stantly aware that real-world phenomena are necessarily more complex and
no model can predict future events accurately. In HIA it might be useful to
avoid calling the results of mathematical models "predictions", but rather pro-
jections of what-if scenarios in a clearly defined and simplifying framework.
The term "prediction” should be reserved for the entire process, in which a
software model is only one element of the used evidence. 025

Internal validity was extensively tested. To allow future thorough check-
ing of cross validity also by outside experts, the software and the source code
are publicly available (www.DYNAMO-HIA.eu). DYNAMO-HIA allows in its
current form for unproblematic one- and multi-way sensitivity analysis by
easy manipulation of all input parameters. Like most other population health
models, however, the current version of DYNAMO-HIA does not include a
probabilistic sensitivity analysis (PSA). Implementing a PSA in population
health models is time and cost intensive. Moreover, the extra data needed
to conduct a PSA is difficult to obtain and preparing them requires expert
knowledge. However, DYNAMO-HIA can be used in batch mode, allowing
users with sufficient computing skills to build a PSA shell around the soft-
ware when desired.

DYNAMO-HIA is available for free download. Furthermore, DYNAMO-
HIA includes a data set covering a large number of EU-countries. This inter-
nally consistent data set has prevalence data for three risk factors (smoking,
BMI, alcohol), nine diseases (incidence, prevalence, excess mortality), and
population data (e.g. total mortality, projected number of newborns). This
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data set allows instant use of DYNAMO-HIA for the covered countries. How-
ever, DYNAMO-HIA is also usable with external data on other countries,
(sub-)populations, disease, or risk factors. Furthermore, the already included
data set can be easily updated when more recent data becomes available.

Conclusion

DYNAMO-HIA differs from other population health models for HIA®® in
several important aspects. From the outset, it has been designed for public
use within HIA-applications by featuring a user-friendly graphical interface
and employing a model structure that ensures accurate simulation using epi-
demiological evidence while having modest data needs.
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5 Benchmarking potential health gains
and health losses in eleven EU-countries
attributable to the life-style-related risk
factors alcohol, BMI, and smoking†


Health impacts of increasing the
European Union-wide excise duty on
alcohol: A dynamic projection'

Abstract

Background Western Europe has high levels of alcohol consumption, with
corresponding adverse health effects. There is clear evidence that increased
alcohol prices reduce alcohol consumption. Currently, a major revision of the
EU excise tax regime is under discussion. We seek to quantify some of the
potential health consequences of increasing price on alcohol by varying tax
rates.

Data and Methods Using alcohol consumption data for eleven member
states covering 80% of the EU-27 population, and corresponding country-
specific disease data (incidence, prevalence, and case-fatality rate of alcohol
related disease), we projected the expected changes in selected measures of
population health that might arise from changes in alcohol price.

Results Even a modest price increase of 20% leads to fewer cases of
stroke, diabetes and cancer, and fewer deaths in both men and women. Effects
are larger in men. An increase in alcohol prices towards those currently in
Finland (the highest in the EU) would postpone approx. 54,000 male and ap-
prox. 26,000 female deaths. Moreover, the prevalence of a number of chronic
diseases would be reduced, in men by approx. 97,850 individuals with stroke,

fStefan K. Lhachimi, Katie Cole, Jet Smit, Pieter van Baal, Paolo Baili, Kathleen Bennett, Es-
teve Fernandez, Margarete C. Kulik, Tim Lobstein, Joceline Pomerleau, Martin McKee, Wilma
J. Nusselder, Johan P. Mackenbach, Henrik C. Boshuizen (submitted for publication)
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65,850 with diabetes, and 62,000 with cancer, and in women by approx. 19,100
(stoke), 23,450 (diabetes), and 27,000 (cancer), respectively.

Conclusion Curbing excessive drinking throughout the EU completely
would lead to substantial gains in population health, with harmonization of
prices to the level seen in Finland achieving some of those gains. The dynamic
modeling tool DYNAMO-HIA, despite its inherently conservative estimates,
can inform the current debate on revision of tax rates in the EU and supports
a substantial price increase.

Introduction

The European Union has an alcohol problem.?" The 2004 Global Burden of
Disease Study estimated that, in EURO-A (corresponding to Western Eu-
rope), 11.1% of the burden of disease among men was attributable to alcohol,
as well as 1.6% of the burden among women, while the corresponding fig-
ures for EURO-B (central Europe) were 10.2% among men and 2.5% among
women.!W Although alcohol-related deaths have been falling in some coun-
tries, such as France, they have been rising rapidly in others, such as the
United Kingdom. 1!

At a population level, the major determinants of alcohol consumption are
access (in terms of density of outlets, opening hours, and age restrictions on
purchases), advertising, and price. There is now an extensive volume of re-
search on the last of these, with the most recent meta-analysis reporting that
a 10% increase in price is associated, on average, with a 4.6% reduction in
consumption of beer, with the corresponding figures 6.9% for wine, and 8%
for spirits.1%? Historically, in most European Union countries taxation of al-
cohol has been used primarily as a means of raising revenue, with the health
effects somewhat as an afterthought (the Nordic countries are exceptions103 ).
However, this is now changing, exemplified by the recent unsuccessful at-
tempt by the Scottish government to introduce a minimum price per unit of
alcohol, drawing on research undertaken in England showing that this would

be highly effective, 104

especially in the face of massive discounting by super-
markets, many of which sell alcohol at below cost price as loss-leaders.
Within the EU, overall taxation levels are determined nationally. There is
a binding minimum excise duty rate but this was last agreed in 1992 and is a
fixed monetary sum per volume of pure alcohol. Its value has long since been

eroded by inflation. Simply to adjust for inflation, this rate would have to rise
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Table 6.1: Data sources for alcohol consumption data.

Country

Name of survey, Year

Number of respondents

Age range of raw data*

Denmark
Finland

France

Germany

Ireland

Italy

Netherlands

Poland
Spain
Sweden

UK

Danish National Health Inter-
view Survey, 2005

Finnish Drinking Habits Sur-
vey, 2008

Enquete Nationale Nutrition
Sante (National Health and Nu-
trition Survey), 2006-2007
German Epidemiological Sur-
vey of Substance Abuse (ESA),
2006

Survey of Lifestyles, Atti-
tudes and Nutrition in Ireland
(SLAN), 2007

Everyday Life in 2007: Multi-
purpose Survey on Households
Permanent Survey on Liv-
ing Conditions (POLS) -
Health  Interview Survey,
2005/2006/2007

National Multicenter Health
Survey (WOBASZ), 2005
Spanish National Health Sur-
vey (SNHS), 2006

The  (Alcohol)  Monitoring
Study, 2002

UK General Household Survey,
2006

N=14,468

N=2,725

N=2,640

N=7,571

N=7964

N=41,491

N=17,93

N=13,256

N=28,628

N="18,000

N=13,503

16+

15-69

20-74

18-64

18+

15+

15+

20-74

16+

16-80

16+

*Higher ages have been extrapolated using SHARE data; see Method section for details.

Table 6.2: Values for price level indicator (PLI) in 2009 and factor to reach highest price level.

Country

PLI  Price increase necessary to reach Finnish price level

EU-27 countries
DK
DE
IE
ES
FR
1T
NL
PL
FI
SE
UK

100
134.8
90.5
166.9
84.3
95
112.4
98.9
89
169.8
137.6
117.2

70.0%
26.0%
88.0%
2.0%*
101.0%
79.0%
51.0%
72.0%
91.0%
n/a
23.0%
45.0%

Source: Eurostat

*set to zero in the respective scenario
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by 44%. Decisions about national tax levels are, however, influenced by con-
cerns, often encouraged by the alcohol industry, about the ability of individ-
uals to transport large quantities of alcohol freely across borders for personal
use, as when the Finnish government reduced taxes in response to pressure
from the domestic alcohol industry following the accession of neighboring
Estonia, where prices are much lower, to the European Union. Nevertheless,
prices vary markedly, with the highest prices in Finland, at 70% above the EU
average, and the lowest in Romania, at 30% below it.

The taxation regime for alcohol within the EU is at last being revisited.
However, the discussions are being driven in large part by considerations of
the impact of different tax regimes on the functioning of the internal mar-
ket rather than on public health. We argue that the health consequences of
any changes should at least be considered but this is not easy in the absence
of information on what might happen as a result of any changes. Previous
attempts to quantify this have largely been restricted to one country.1037107
For this reason, we describe the results obtained from a newly developed dy-
namic modeling tool that can estimate the effect of a range of alcohol price
increases on selected chronic diseases and on total mortality in the EU popu-
lation. We have been able to obtain data from eleven countries, covering some
80% of the EU population, and can look at the effect of different price regimes
for nine chronic diseases: IHD, stroke, diabetes, COPD, breast-, lung-, esopha-
geal-, oral-, and colorectal-cancer.

Methods

The analysis was undertaken using the dynamic population health modeling
tool DYNAMO-HIA which combines three pieces of evidence: a) country-
specific data on patterns of alcohol consumption in the EU to determine pop-
ulation-level exposure; b) price elasticity of alcohol demand to predict the ex-
pected change in alcohol consumption when prices increase; and c) country-
specific data on current population structure and projected births, disease-
incidence, -prevalence, and -mortality, the corresponding relative risks, and
on total mortality.
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Alcohol consumption prevalence

In developing the DYNAMO-HIA data base, we obtained age- and sex-spe-
cific prevalence data on alcohol consumption for eleven EU-member states,
covering 80% of the EU-27 population. These data is derived from popula-
tion-based surveys of individual self-reported consumption (Table 6.T). The
original data were collected in various formats, although most often either
quantity-frequency or within dietary surveys using food frequency or period
recall methods. These were used to derive consumption in grams of pure
alcohol consumed per person per day (g/d), using national conversion fac-
tors where available but otherwise estimating a "standard" drink as 12g of
ethanol. We attempted to adjust for under-reporting by combining survey
and sales data but identified problems with this approach that, as far as we
know, have not previously been reported, '’ so that we generated implausi-
ble results. 1%

For both sexes, the same five consumption levels were categorized:
<.25g/d, .25-20g/d, 20-40g/d, 40-60g/d, and over 60g/d. Following the stan-
dard approach taken in earlier modeling exercises, a uniform distribution of
consumption was assumed within each category, giving a category-specific
mean consumption of .125g/d, 9.875¢g/d, 30g/d, 50g/d, and 90g/d, respec-
tively.1%8 It was necessary to transform the available data into one-year-age
intervals. To do this, the available data were smoothed and, where data were
missing for higher age groups, they were extrapolated using data on the rate
of change in consumption with age derived from the Survey of Health, Age-
ing and Retirement in Europe (SHARE). For details see Table 6.1} Figure
and the corresponding work package report.”

Price elasticities

The effect of price changes on consumption is modeled via price elasticities.
Price elasticity measures the average proportional reduction in consumption
when the price of a commodity increases. Those elasticities are estimated em-
pirically. Estimates of price elasticity of alcohol consumption vary and in in-
dividual studies seem to be influenced by a range of variables — such as the
country studied, the type of alcohol (beer, wine, or spirits), and, at an indi-
vidual level, age and current consumption level. However, it was not possi-
ble to produce a generalizable formula that could be used to calculate spe-
cific elasticities in the diverse settings we were studying. Hence, as a recent
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Figure 6.1: Example of change in age- and sex-specific alcohol consumption prevalence caused
by a 88% price increase (absolute numbers are for 30 year old German males, left bar reference
scenario, right bar "Finnish" scenario). The price increase leads to a decrease in Cat III to Cat
V and an increase in Cat I and Cat II.

meta-analysis reported a fairly similar overall median elasticity for alcohol
applicable across populations and beverage types of approx. -0.5, whereby a
price increase of 20% leads to an average reduction in alcohol consumption
of 10%, we used this figure. ¢

As noted above, the magnitude and precise structure of any future Euro-
pean excise regime are still under discussion. Given the different pricing poli-
cies available, levels of consumption, purchasing parities, and duty levels in
EU-countries, it would be extremely complex to assess the health impact of
absolute changes in price between different countries. Hence, we opted for a
series of illustrative scenarios in which we applied a range of percentage in-
creases in current alcohol prices. We used four different scenarios, comprising
20%, 40%, 60%, and 80% increases in alcohol prices. In addition, we estimated
the effects of a "Finnish" scenario where we quantify for each country a new
level of consumption that corresponds to adoption of the highest price level
currently observed in the EU, that is Finland’s price level (Table . In this
scenario, every individual would have to spend the same amount to obtain
an identical basket of alcoholic drinks.t
For each country in our analysis, we estimated five new alcohol consump-

tion prevalences as a consequence of these price changes. Using the age- and
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females

.

males

09 05 oy 08 Oz oo 09 05 o 0z o o o s o ok s o

Buwogz o) dn Bog 0} dn Bwosz Boy 0} dn 6oz 609 0} dn Bot aiow pue 609

Figure 6.2: Alcohol population prevalence in percent for all countries combined (reference
scenario black line, 80% scenario dashed line, light grey dotted lines are all other scenarios,
i.e. 20% scenario, 40% scenario, 60% scenario, and Finnish scenario); y-scales vary by category.
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sex-specific distribution across and within the five alcohol categories, we as-
signed every individual a corresponding daily alcohol consumption level and
adjusted this according to the expected consequences of the price change,
e.g. a 20% price increase with a price elasticity of -0.5 leads to a 10% reduc-
tion in individual consumption. Then we grouped the individuals back into
the age- and sex-specific age categories according to their new consumption
level (compare Figure[6.I). Where there were small changes in price, most in-
dividuals stayed in their current category. For example, if consumption was
reduced from 33g/d to 30g/d, the category for this individual is in both cases
20-40g/d. Abstainers are only very marginally affected by the existing price
level, as price is not likely to affect the share of drinkers significantly but
rather the amount drinkers consume. Only approx. 1% of abstainers cite price
as the main reason for abstaining.12

Finally, we constructed for each country a scenario whereby the age- and
sex-specific share of abstainers stays constant but all current consumers of al-
cohol are light drinkers, i.e. a consumption of 250mg-20g/d. This scenario
serves as the theoretical upper bound of the health improvements that a
population-wide alcohol control policy can achieve through tax changes, i.e.
only altering prices and not drinking ages or modes of drinking.

Epidemiological data

In developing the DYNAMO-HIA package, we compiled data on population
structure and patterns of disease (see Appendix |C|for details). For each of
the countries in our analysis, we use age- and sex-specific data on the pop-
ulation, i.e. size, projected birth numbers, and total mortality rate. Further-
more, we used country-specific data on nine major chronic diseases: IHD,
diabetes, COPD, stroke, and lung-, breast-, colorectal-, oral-, and esophageal-
cancer. Each disease is characterized in terms of age- and sex-specific inci-
dence, prevalence, and excess mortality. For stroke and IHD, excess mortality
is a combination of two factors: a) an age- and sex-dependent increase in indi-
vidual mortality when having those diseases, and b) an acute but temporary
increased mortality when the disease occurs, to reflect how mortality from
these diseases is higher at their onset. Where appropriate, missing data were
back-calculated using the DisMod II software. This utilized the mathematical
relationship between incidence, prevalence, and excess mortality for chronic
diseases within a given population.®” In addition, DisMod II was used to en-
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sure smooth and internally consistent data. Lastly, we use data on age- and
sex-specific relative risks causally connecting alcohol consumption to disease
incidence and all-cause mortality. Additionally, the increased relative risk of
IHD- and stroke-incidence when having diabetes is included.

Dynamic Modeling

The DYNAMO-HIA package quantifies the effects of changing risk factor
exposure on population health (see Chapters [3| and [ for details). Specifi-
cally, it quantifies the effects of changes in risk factor prevalence on different
health outcomes, including: prevalence of specific diseases, overall mortal-
ity, and summary measures of population health including life expectancy
and disease-free life expectancy. The term "dynamic" is used to describe how
it uses actual population data and, hence, accounts for changing population
compositions, risk factor prevalences, and disease burden in each country.

At its core, DYNAMO-HIA simulates a population (birth, death, and zero
migration) and projects its future exposure to a risk factor. By applying the
corresponding relative risks for disease incidence and mortality given indi-
vidual risk factor and health status, future prevalences of chronic diseases
and corresponding mortalities are calculated. This Markov-type approach ac-
counts for competing mortality risk, i.e. despite multiple risks of dying an
individual only dies once. Using a dynamic model allows us to assess the de-
velopment of population health over time, i.e. in every additional year pro-
jected, mortality and disease incidence and the resulting disease prevalences
are calculated for the entire population, taking account of age, sex, and risk
factor prevalence. Such a dynamic approach recognizes how a) changes at the
individual level take time to become visible at the population level, and that
b) population composition is constantly changing.?>

To specify a scenario, DYNAMO-HIA requires the initial risk factor preva-
lence, the new prevalences resulting from a price increase, and information
on the future development of the risk factor exposure. For every new year,
DYNAMO-HIA applies to each age- and sex-group the probability that in-
dividuals will stay in this risk factor group or will move to another one, e.g.
how many will remain abstainers and how many will become light or moder-
ate drinkers in the next age and calendar year. Over time, the specification of
these (future) transition probabilities influences greatly the development of
the risk factor prevalence. Bearing in mind that future individual behavior is
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always subject to uncertainty and considering the short time span of our pro-
jection (10 years) we use the option of net-transition probabilities provided by
DYNAMO-HIA. Net-transition probabilities keep the age-specific risk factor
prevalence constant and do not take into account any future cohort effects.

In total, for each country seven scenarios are calculated. The reference
scenario keeps the current level of consumption constant, thus estimating the
pattern of population health in 10 years from now in the absence of interven-
tion. This reference scenario, referred to as "business-as-usual”, is the bench-
mark with which to compare the five alternative price scenarios, i.e. price
increases of 20%, 40%, 60%, 80%, and matching the Finnish price level. The
sixth scenario, where abstainers remain abstinent but all others become light
drinkers, serves as the upper boundary, quantifying the potential gains of an
alcohol policy solely based on pricing.

Results

Table |6.3|shows the number of deaths postponed, i.e. the difference between
population size in year 10 when migration is zero and fertility the same across
all scenarios, for males and females. For all scenarios and for all countries, a
price increase leads to a postponement of deaths for both genders, though the
effect is larger among males. The number of deaths postponed ranges from
approx. 100 for a small country like Ireland experiencing a price increase of
20% up to approx. 20,000 for a large country like Germany, should it adopt the
Finnish scenario. For all countries combined, approx. 28,000 male and 15,000
female deaths could be postponed if a 40% price increase was adopted. In
the Finnish scenario, this would increase to approx. 54,000 (male) and 26,000
(female) deaths postponed.

Table shows the reduction in the number of individuals with the dif-
ferent diseases, i.e. observed at year 10 as compared to the reference scenario
across all countries included. In all scenarios, the number of individuals with
disease is reduced relative to the reference scenario, but for men the greatest
decrease is for stroke and diabetes, whilst for women the prevalence of can-
cer is affected most. For instance, in the Finnish scenario, after 10 years, the
number of men with stroke is reduced by 97,850, while those with diabetes
are 65,850 lower and those with cancer are 62,000 lower. In women the cor-
responding figures are 19,100 (stoke), 23,450 (diabetes), and 27,000 (cancer),
respectively.
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Table 6.4: Reduction in cases of selected diseases in all countries as a result of increases in alcohol price compared to the reference scenario,

projected 10 years into the future (by gender).

a)Absolute Difference to Reference Scenario (Rounded)

Males Females
Stroke  Diabetes  Cancers IHD Stroke  Diabetes  Cancers IHD
20% price increase 14,650 20,450 12,450 8,650 7,050 4,600 6,800 400
40% price increase 33,600 46,850 28,800 19,750 15,800 10,350 15,150 1,100
60% price increase 57,850 80,400 49,500 34,250 27,100 17,700 25,800 1,900
80% price increase 84,850 114,600 71,400 51,450 38,950 25,700 37,900 2,350
Finnish Scenario 65,850 97,850 62,150 27,100 23,450 19,100 27,100 300
Most Light Drinkers 161,500 263,050 134,050 69,600 66,550 57,800 69,600 6,450
b) Difference as Percentage of the Difference between Reference Scenario and
Most Light Drinkers Scenario
Males Females
Stroke  Diabetes  Cancers IHD Stroke  Diabetes  Cancers IHD
20% price increase 9.10% 7.80% 9.30% 10.00% 10.60% 8.00% 9.80% 6.20%
40% price increase 20.80% 17.80% 21.50% 22.80% 23.70% 17.90% 21.80% 17.10%
60% price increase 35.80% 30.60% 36.90% 39.50% 40.70% 30.60% 37.10% 29.50%
80% price increase 52.50% 43.60% 53.30% 59.40% 58.50% 44.50% 54.50% 36.40%
Finnish Scenario 40.80% 37.20% 46.40% 38.90% 35.20% 33.00% 38.90% 4.70%
Most Light Drinkers ~ 100.00% 100.00%  100.00%  100.00% 100.00% 100.00%  100.00%  100.00%
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The "Most-Light-Drinkers" scenario, i.e. where the share of abstainers in
the population remains unchanged but all drinkers consume less than 20g/d,
serves as the theoretical upper bound of the effect of policy on the average
amount of alcohol consumed. The potential gains in terms of death post-
poned are substantial: approx. 127,150 male and 63,300 female deaths over
a ten-year period. The Finnish scenario already achieves more than 40% of
the potential postponement of deaths that could be reached if all excessive
drinking was curbed. Similarly, a large burden of chronic disease could be
avoided, accounting for approx. 263,500 men and 57,800 women with dia-
betes and approx. 161,500 men and 66,550 women with strokes.

Discussion

Main findings

Using a dynamic population health modeling tool, we have been able to
quantify, for the first time, the effect of increasing the price of alcohol in re-
ducing the burden of a range of alcohol-attributable diseases in the EU. The
dynamic nature of the model allowed individuals to transition through risk
categories over time. This produced a robust estimate of the health impact of
a limited range of alcohol-attributable harms. Even a modest increase of alco-
hol prices would lead to an overall reduction in the incidence of diseases and
number of deaths, even allowing for the protective effect of alcohol against
ischaemic heart disease at some ages. The most extreme scenario, involving
harmonizing prices to the Finnish level, would reduce the burden of disease
substantially. Although extremely conservative (see section on Limitations
below), we estimate that the minimal health benefits range from approx. 100
fewer deaths over a 10-year period for a minimal 20% price increase in a
small country, such as Ireland, to 20,000 fewer deaths in a large country, such
as Germany, should it increase alcohol prices to those in Finland. As males
carry the larger burden of alcohol-related disease, in this model, mortality,
and morbidity improvements from alcohol price increases were greater for
men than for women for all included conditions except breast cancer.

Limitations

All models are simplified versions of reality and this is no exception. The ef-
fects of alcohol on health are especially difficult to model, data on exposure,

115



Chapter 6

and in particular drinking patterns, are limited, and the association between
exposure and some important adverse health outcomes is uncertain, not least
because it is influenced by context. Although our estimates of all-cause mor-
tality are based on published relative risks associated with different levels of
consumption, thereby including deaths from causes beyond the specific ones
examined here, and in particular injuries and violence, we were not able to in-
corporate pattern of consumption. Nor were we able to include the effects on
those who are harmed by others who have consumed alcohol. These include,
among others, rape, assaults, domestic violence, child abuse, and injuries oc-
curring during crimes, road traffic injuries, and sexually transmitted infec-
tions. Nor were we able to quantify certain conditions specifically associated
with alcohol, including cirrhosis, certain other cancers, neuropsychological
conditions, prenatal alcohol exposure, and acute alcohol poisoning.

In calculating the consequences of the price change, we used a mean price
elasticity of demand, derived from a recent meta-analysis, for all age, sex,
and exposure groups, which did not differentiate by type of beverage (e.g.
beer, wine, liquor), mode of consumption (e.g. on-trade, off-trade) or country.
Whilst estimates of elasticities are known to be affected by these variables,#
we were unable to produce with confidence a formula that could be used to
adapt the elasticities to each country or, ideally, to each sex and age group.
Nor could we take into account cross-price elasticities, that is, the effect on
consumption on one beverage as a result of price increases on another. In our
calculations we assume an increase in the price of pure alcohol consumed
in grams per day and do not differentiate by beverage type or mode of con-
sumption. Similarly, we did not account for potential changes in individual
behavior intended to evade the effect of alcohol price increases, such as alco-
hol smuggling or home brewing.

The pattern of drinking, e.g. binge drinking, is only captured indirectly as
only health effects of average consumption are reflected. It is uncertain how
a change in consumption caused by price increases might affect, for example,
youth initiation or binge drinking patterns and the resulting harm indicators.
We assumed a uniform distribution of consumption in each different con-
sumption level in the absence of evidence of either a uniform or non-uniform
distribution, which may have weakened the observed estimate of effect. Our
use of consumption categories meant that we could only measured the health
benefits arising from transitioning between categories. However, there may
be substantial health gains for people who moved from the upper to lower
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ends of a given category.

Given that most of these limitations tend to underestimate the effects of
price increases, our estimates must be seen as the minimum differences in
effects with different scenarios.

A further limitation of DYNAMO-HIA is the absence of data on histori-
cal trends on incidence and prevalence of the diseases included in the model,
which would be needed to predict future trends in the absence of interven-
tions. Trend-free data were used, estimated using DisMod II software, as a
neutral option.®” However, this is less important as the limitation will apply
equally to all scenarios.

Conclusion

Even with our very cautious assumptions, the health gains in terms of death
postponed and chronic diseases cases reduced when harmonizing prices to
the Finnish level are substantial. Nevertheless, even more modest increases
in alcohol prices, mediated through taxation across Europe, offer the scope to
prevent many premature deaths and much morbidity from a range of chronic
conditions, demonstrating the harmful effects of excessive alcohol consump-
tion. While there is much more to be done to capture the full effects of alcohol
on health, the use of a dynamic population projection model contributes to
the current EU dialog and provides support for measures that achieve both a
substantial increase in, and harmonization of, the minimum duty on alcohol.
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7 Modeling obesity interventions:
Is a drastic reduction in prevalence
when entering adulthood or a small
reduction in transition probability
through adulthood the better strategy?†





Discussion and Conclusion

A tool which has many purposes is not usually as efficient for anyone of them as a
specialized tool developed solely for a single purpose.
M. G. Kendall

Findings

A quantification tool that is adequate to function as a standard tool in HIA
must satisfy at least six criteria. The first three criteria — real-life population,
dynamic projection, explicit risk factor states — warrant that the technical core
of the model sufficiently lives up to the standards of established scientific
modeling practice. The last three criteria — modest data requirements, rich
model output, generally accessible — ensure a wide usability of the tool ac-
counting for the limited resources of a decision making process.

Such a standard tool did not exist as of 2008, the year in which the system-
atic review took place. Of the six models identified to be sufficiently generic,
i.e. allowing for various and multiple diseases and different risk factors, none
could be considered a potential standard tool. There is an evident gap be-
tween the advanced models that have no or limited general accessibility (such
as POHEM and RIVM-CDM), and the (over-)simplifying but more accessible
models (such as GBD, MSLT and partly PREVENT). This situation proba-
bly arises because none of the reviewed models (except for ARMADA) was
initially intended to be a software application for wider public use for the
(relatively recent) task of quantification in HIA. Furthermore, the systematic
review demonstrates that any tool that intends to fill this gap in the future
needs to put equal weight on appropriate simulation methodology as well as
data requirements that can be widely met while also being end-user friendly.
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DYNAMO-HIA synthesizes several methodological elements, satisfying
the aforementioned criteria: A micro-simulation of exposure information with
macro-simulation of diseases and survival. This allows generic simulation of
detailed and complex individual risk-factor biographies while avoiding the
need for large simulated populations due to the relative rareness of chronic
disease events, reducing calculation time considerably. The challenge of keep-
ing the input data requirements feasible is met by including parameter calcu-
lation routines which use marginal population data to estimate both the tran-
sitions between states and the initial state occupancy. By combining feasible
data needs with general accessibility and user friendliness within the causal
framework of HIA, DYNAMO-HIA is a potential standard tool for health
impact assessment based on epidemiological evidence. As it is intended for
a broad user base, it comes with a detailed documentation clearly describing
practical application and the underlying model structure.

Quantifying the potential health gains and losses across risk factors, i.e.
alcohol, BMI, and smoking, for several countries requires the definition of a
sensible benchmark. No single-best approach exists. Hence, a policy-making
perspective was chosen to select feasible, i.e. observed, "worst"- and "best"-
practice risk factor prevalences. The relative comparison showed that smok-
ing is still the risk factor with the largest potential for health gains and health
losses across the analyzed eleven EU-countries, while BMI has a compara-
tively large effect on morbidity. Applying the best practice smoking preva-
lence would yield the largest gains in life expectancy with 0.4 years for males
and 0.3 years for females, while the worst practice smoking prevalence would
lead to the largest losses with 1.2 years for males and 1.4 years for females.
In terms of morbidity, the results differ by gender. For males, the best prac-
tice smoking prevalence would increase the disease-free life years the high-
est with 0.4 life years, whereas for females the best practice BMI prevalence
promises the largest gains with an additional 0.7 disease-free life years.

Increasing the common excise taxes on alcohol sales across all EU-
countries, as it is currently debated, would lead to an overall reduction in con-
sumption and in turn to a reduction in morbidity and mortality attributable
to alcohol consumption. Harmonizing alcohol prices to the Finnish level
could postpone approx. 54,000 male and approx. 26,000 female deaths and
reduce the prevalence of a number of chronic diseases over the next 10 years.
Moreover, curbing excessive drinking completely could lead to substantial
population health gains.
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Reducing either the prevalence of overweight/obesity at age 18 or reduc-
ing the lifelong probability of becoming overweight/obese has a detectable
effect in reducing the overall BMI level of the cohort, and in turn reducing
the prevalence of chronic diseases and improving life expectancy. But even
a small increase in the transition probability of becoming overweight/obese
throughout the life course would offset a substantial reduction in prevalence
when entering adulthood. In the example cohort, reducing the prevalence of
overweight/obese at age 18 by 100% could increase cohort life expectancy
by 0.22 life years whereas a reduction in transition probabilities to become
overweight/obese by 100% could increase cohort life expectancy by 0.51 life
years.

Challenges in quantification using DYNAMO-HIA

In the second part of the this thesis the usefulness of DYNAMO-HIA was
tested on different real-life policy applications. Conducting these applications
generated several insights concerning methodology, data availability, effects
of policy and, more generally, validity of quantification in health impact as-
sessment.

Methodological considerations

DYNAMO-HIA’s methodology is strongly founded in demographic theory,
i.e. that population composition changes through (mortality-, fertility-, and
migration-) transition rates. U3 Hence, a characteristic of DYNAMO-HIA as
compared to a number of other population health models is the use of ex-
plicit risk factor states that allow the specification of transitions between dif-
ferent (health) states. This improves the formal accuracy of the model and
avoids bias through mortality selection.®® But it also increases plausibility as
this approach does not fix a future prevalence which may require unrealistic
transitions in the simulated population.

A minor limitation of DYNAMO-HIA is that in its current stage it does not
allow the specification of a fertility rate but only the number of births per year
and that it assumes a closed population, i.e. zero migration. Both limitations
have been accepted deliberately as those elements require additional data
but would affect the comparisons between scenarios for the same population
in most cases merely slightly.1}¥ Similarly, DYNAMO-HIA does not allow
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time-trends in the specification of transitions, e.g. an autonomous decline in
mortality by 5% each calendar year. Again, this has been a deliberate choice
as this would increase data demands while such an autonomous trend would
affect all scenarios in a given comparison.

An important consideration in modeling is how statistical uncertainty
in the input data is accounted for. The standard approach in health deci-
sion models is to conduct a probabilistic sensitivity analysis (PSA). A PSA
is very demanding on both data requirements and computational resources
and, hence, onerous to implement as a standard option. In its current form,
however, DYNAMO-HIA can be run via batch mode enabling a competent
user to conduct such a PSA.1191120

Data availability

The more accurate a model aims to mirror a real-life process (and by that im-
proving formal validity), the more data is needed. But even at the national
level, comprehensive health data is not readily available (see Table for
details). For example, in the collection of risk factor exposure data on smok-
ing, alcohol consumption, and BMI, the DYNAMO-HIA project was not able
to locate such data for over a third of all EU-27 countries. Although the prob-
lem is more pronounced for new member states and smallers countries, it is
still widely spread. In a number of cases, regional data or data from neigh-
boring countries is used as proxies.

Furthermore, the quality of the available data is often problematic. For ex-
ample, the disease data needed for DYNAMO-HIA - consisting of incidence,
prevalence, and excess mortality — can be inconsistent when taken directly
from the data sources. That means, the reported incidence data does not cor-
respond to the reported levels of prevalence or excess mortality or vice versa.
However, such inconsistencies, inter alia caused by shortcomings in the data
collection process or through time trends in the data, must be corrected for to
obtain reliable results. This can be done by employing the IPM framework as
outlined in Appendix |B| requiring often disease-specific expertise. This has
been done for all the data prior to inclusion into DYNAMO-HIA, i.e. the in-
cluded data is consistent.

For the purpose of HIA, which is not only interested in the overall effects
but also their distribution within a population, more detailed data on (social-
)inequality is needed. These are in particular risk factor exposure, the cor-
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responding relative risks, and data on disease prevalence/incidence/excess
mortality by socioeconomic status. The modeling approach taken by DYNA-
MO-HIA is in principle able to account for health developments by socioeco-
nomic status, but the data to do so is often lacking.

Effects of policy on exposure often unknown

A recurring challenge in all applications of DYNAMO-HIA is to conceptual-
ize and quantify the effect a policy has on the risk factor that is being mod-
eled. In particular, how does the risk factor prevalence change within the
population (who improves, who worsens, by how much), when does this
change occur, and is this a lasting or a one-time effect?

Currently, only sporadic knowledge of effects of policies on health be-
havior exists. For selected policies directed towards alcohol and tobacco, e-
conomists do research into the subsequent change in consumption. Yet, often
those results are not detailed enough to be applied when modeling a popula-
tion stratified by age and sex. Identifying and quantifying such relationships
will be an ongoing core task of HIA. This requires a multi-disciplinary ap-
proach as many relationships defy orthodox thinking.

But DYNAMO-HIA allows to go the other way: Quantifying health bene-
fits of several risk factor prevalences and by that identifying those which are
desirable; policy makers could then use a variety of policy tools at their dis-
posal to direct a population towards these desirable risk factor prevalences.

Validity in Health Impact Assessment

A model is always a simplified version of reality, and in that sense a model
should not be classified as right or wrong but judged as valid for the problem
it is applied to. For the purpose of judging quantitative models for HIA, va-
lidity can be conceptually split into three elements: formal validity, plausibility,
and predictive validity.?

The first element, formal validity, assesses whether correct methods have
been applied correctly. DYNAMO-HIA is deliberately based on formal de-
mographic theory of population change and uses standard epidemiological
"dose-effect” relationships. 1?12l In doing so it utilizes established epidemio-
logical theory to causally model the effect of risk factor exposure on chronic
disease incidence and mortality.
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The second element, plausibility, refers to the degree to which an observer
deems the theoretical framework as understandable, applicable, and plausi-
ble. The design of the model structure of DYNAMO-HIA has been conducted
in consultation with both modeling experts and HIA practitioners. Further-
more, the applications to real-life policy problems — in close collaboration
with established experts for the risk factors question — demonstrate that DY-
NAMO-HIA makes a valuable and accepted addition to the particular re-
search field.

The third element, predictive validity, is the degree to which predictions
are confirmed by (future) facts. Prediction validity is the holy grail of social
science and most difficult to establish, if at all. It is (prohibitively) time con-
suming to check the results of a prediction model. For example, the effect
of an intervention on cohort life-expectancy would take some 100 years of
waiting. Moreover, the counterfactual cannot be observed, i.e. what would
the reality be if another course of action would have been taken. Lastly, the
Oedipus-effect might materialize, i.e. knowing the future changes the behavior
in such a way as to make the prediction invalid.14>

What does DYNAMO-HIA add?

Currently, quantification in HIA is (too) seldom attempted and those studies
that try to quantify lack uniformity in their approach.? Chapter 2 demon-
strated that so far no publicly available potential standard tool for quantifi-
cation in health impact assessment existed. This changed with the advent
of DYNAMO-HIA, being designed for this purpose from the onset. How-
ever, quantitative HIA is a field of rapidly growing interest with new mod-
els being designed,’* such as the Impact Calculation Tool (ICT) that is part
of the INTARESE/HEIMTA project that solely focuses on environmental ex-
posure.12#12J Furthermore, software models are often subject to ongoing or
sporadic changes. For example, PREVENT implemented a cohort option al-
lowing to model inter alia smoking status explicitly for at least part of the
population. 120

Another major addition of DYNAMO-HIA is the accompanying, ready-
to-use data set. This comparatively comprehensive data set covers all EU-27
countries. It contains data on three major life-style-related risk factors — alco-
hol consumption, BMI, and smoking — and causally connected major chronic
diseases, such as IHD, several cancers, COPD, and diabetes. When some data
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Table 8.1: Updated comparison of the reviewed models against the evaluation criteria.

Criterion

Real-life Dynamic Explicit Modest Rich Generally

popula- projection  risk factor data model accessible

tion states require- output

ments

ARMADA + + + - - -
GBD - - - + - +*
POHEM + + + - + -
PREVENT + + - + + -
RIVM-CDM + + + -+ + -
Proportional Multi- - - - + + +*
state Life Table
(MSLT)
DYNAMO-HIA + + + + + +

*with some restrictions

is missing for a particular country, it implies that — at least at the time of the
data collection — this data virtually did not exist. This unique data set allows
now for the first time a comparatively rapid assessment of the consequences
of changes in risk factor exposure for many EU-countries, making DYNA-
MO-HIA truly a ready-to-use tool.

But DYNAMO-HIA is not a one-stop-tool. A quantification tool is only
one element in a longer process that is needed to asses the impact of a policy
or intervention on health. A lot of decisions have to be taken before and after
the use of the tool that influence the results. And for some, more specialized
applications — such as the health effects of the local dispersion patterns of fine
particulate matter — more specialized tools are recommendable.’?” Neverthe-
less, DYNAMO-HIA is certainly a first-stop-tool, allowing the quantification
of a large range of salient scenarios. And even more specialized research
questions could be first analyzed with DYNAMO-HIA to gauge whether the
possible magnitude of the effects warrant a more detailed analysis. Such a
tool increases the uniformity and comparability of results.
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Implications

Implications for modeling

The main bottleneck in population health modeling is not lack of more com-
plex mathematical models, but rather scarcity and inconsistencies of the avail-
able health data.128 Hence, a focus of modeling work should lie in improving
our understanding and, subsequently, use of the available data. Tools such as
DisMod II are aiming to extract more information from incomplete or incon-
sistent data.® Moreover, population health models themselves should aim
to reduce the data needs without sacrificing accuracy, such as the parameter
estimation module in DYNAMO-HIA. Lastly, the modeling of uncertainty of
the input data is a potential area of improvement. In particular, population
health models should aim to increase the ease of use for practitioners.

Implications for data collection

The data collection efforts revealed several shortcomings of the availability
within the EU-27 countries. For a surprising number of member states, data
on risk factor prevalence or diseases is only partly or not at all available. In
some cases, data is only based on regional surveys or is already somewhat
dated and, hence, not fully representative. Furthermore, some age groups
are often under-represented or not covered at all and, additionally, disease
data often showed inconsistencies affecting the overall quality. The responsi-
ble public health institutions should increase their efforts in the collection of
timely and consistent data, at least for major risk factors — such as tobacco,
alcohol, or BMI - and for chronic diseases that contribute substantially to the
morbidity or mortality burden.

Another, more ambitious implication for the current practice of public
health data collection is a stronger incorporation of data about social inequali-
ties.12? Epidemiology demonstrates increasingly that a number of health con-
sequences due to risk factor exposure vary not only by age and sex but are
also influenced by social gradient or life course exposure. Yet, even at the na-
tional level basic data is hard to get. This problem is even more pronounced
for regional data, which might often be necessary as regions within a nation
can vary substantially in their health profile for various reasons.
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Implications for health impact assessment

The field of health impact assessment has profited greatly from epidemio-
logical insights and evidence. The causal chain between risk factor exposure
and individual health is for many applications already sufficiently strong. An
area of research that is still underdeveloped is the connection between poli-
cies and changes in individual risk factor exposure. A comprehensive theory
for this question is impossible to achieve as it always depends on a number of
factors, such as the risk factors in question, the policy tool used, and the con-
text — as many relationships between policy and risk factor exposure are not
stable over space and time. Nevertheless, some aim to ameliorate this prob-
lem by providing guidelines on how to quantify the most salient policies,
such as the Tobacco Toolkit of the World Bank, possibly leading to a library of
standard policies. There is utmost need for an increase in evaluation studies,
assessing the efficacy and effectiveness of standard policies and their appli-
cability across different contexts. A promising avenue for this is the increased
access to longitudinal data by social epidemiologists and sociologists. Those
data sets should be scrutinized increasingly to identify factors that lead to
a change in individual risk factor behavior. This should be done while also
paying attention to what moderating variables, such as income or eduction,
contribute.

Implications for policy

The three applications of DYNAMO-HIA yield implications for policy. Quan-
tifying potential future health gains and losses due to life-style-related risk
factors require an understanding of an applicable benchmark. Deriving such
benchmarks is a non-trivial task and will require on-going discussion as a
given approach always makes (implicitly or explicitly) a value judgment. The
benchmark developed in this thesis shows that reducing smoking should still
be high on the EU-policy agenda. But obesity will likely become increasingly
important, calling for policies that are effective through the whole life course.
Clearly, also an overall reduction in alcohol consumption will lead to signifi-
cant health gains throughout the EU. The EU exhibits a wide variety of price
levels across countries as measured by the consumer price index. A worth-
while goal is to harmonize existing alcohol prices to a higher level. But price
policy can only be one aspect of alcohol policy as the context in which drink-
ing takes place is of importance as well. The analysis of the life course devel-
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opment of the BMI of a cohort demonstrates that potential health gains of an
childhood focused eradication of overweight/obesity can be quickly offset by
a small, constant increase in the lifelong risk of becoming overweight/obese.

Conclusion

DYNAMO-HIA, fulfilling all criteria for a potential standard tool for quan-
tification and already being equipped with a unique data set, is an useful
addition to the field of HIA. Selected applications demonstrate the applica-
bility, plausibility, and usefulness of DYNAMO-HIA and its results. DYNA-
MO-HIA, being designed for this purpose from the onset, may improve the
number of quantitative HIAs significantly.
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English

This thesis originated from and contributed to the DYNAMO-HIA project.
The aim of the DYNAMO-HIA project was to construct a publicly available,
potential standard tool for health impact assessment (HIA), collect and make
available the necessary EU-wide data for the standard tool, and apply this
new tool to selected policy questions.

HIA is evaluation of policies, projects or proposals concerning their ef-
fects on human health. HIA differs from other approaches in its focus on all
policies or proposals, i.e. it is not solely focused on health policies but on
any policy area. An HIA exercise usually has three main objectives: First, to
predict the impact of a policy, second, to allow participation of stakeholders
in the assessment process, and, third, to inform the decision making process.
Quantification of the policy options under discussion, i.e. the expected future
health changes, are done in the stage of effect analysis. Within this stage, three
distinctive tasks have to be addressed: 1) Description of the baseline situation,
i.e. what is the future situation without the policy, 2) estimation of change in
exposure to determinants of health, i.e. how does the policy affect risk factor
exposure, and 3) estimation of change in health outcomes, i.e. how does the
change in risk factor exposure affect population health.

Part I: Methodological Foundation

Currently, quantification in HIA is seldom undertaken due to the lack of a
standard tool. A tool should aim for technical accuracy in the prediction of
the effects of interventions on population health, and also be effective in the
applied setting of an HIA. Hence, six criteria were deduced a potential stan-
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dard tool must fulfill. The first three criteria (real-life population, dynamic pro-
jection, and explicit risk factor states) ensure that the model structure is suf-
ficiently advanced to model changes in risk factor exposure over time in a
real-life population in a transparent way. The last three criteria (modest data
requirements, rich model output, and generally accessible) ensure a wide usability
by accounting for the constraints of a decision-making process.

A systematic review showed, that of 2008, no existing model can serve as
a standard tool for quantification in HIA. There is an evident gap between
the advanced models that have no or limited general accessibility (such as
POHEM and RIVM-CDM), and the (over-)simplifying but more accessible
models (such as GBD, MSLT and partly PREVENT). This situation proba-
bly arises because none of the reviewed models (except for ARMADA) was
initially intended to have a software application for wide public use for the
(relatively recent) task of quantification in HIA.

Conventional Markov models for risk factor exposure on chronic disease
potentially contain a large number of states (risk factor and disease combi-
nations), providing a challenge both technically (keeping execution time and
memory use down) and practically (estimating the model parameters and re-
taining transparency). Hence, for the DYNAMO-HIA model we proposed a
combination of micro-simulation of exposure information with macro-simula-
tion of diseases and survival. This allows simulation of exposure detail while
avoiding the need for large simulated populations due to the relative rareness
of chronic disease events. Further efficiency is gained by splitting the disease
state space into smaller spaces, each containing a cluster of diseases that is in-
dependent of the other clusters. The challenge of feasible input data require-
ments is met by including parameter calculation routines that use marginal
population data to estimate both the transitions between states and the initial
state occupancy.

The DYNAMO-HIA model can simulate risk factor exposure in three dif-
ferent forms: continuous, in classes (up to 10 categories), and in classes where
for one class the duration of class membership has health consequences. The
model accommodates up to three different diseases: chronic diseases, partly
acutely fatal diseases, and diseases where the excess mortality depends on the
duration of the diseases. The policy-induced change in risk factor prevalence
and/or risk factor transition rates will be determined by the user. Hence, the
tool can be used after the user has specified the effect of policies on health de-
terminants. Several population-based health outcome measures — such as life
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expectancy or disability-adjusted life expectancy — are readily available to
quantify the difference between the reference and the different policy scenar-
i0s.

The model is available with internally consistent incidence, prevalence,
and disease mortality (IPM) data by age and sex for nine diseases (IHD, dia-
betes, stroke, COPD, breast-, colorectal-, lung-, oral-, and esophageal-cancer).
Furthermore, data on three risk factor prevalences (BMI, smoking, alcohol
consumption) and relative risks quantifying the association between the risks
factors, the diseases, and total mortality are included. The collected data has
been compiled from already existing data sources. The objective was to col-
lect these data for each EU member state. However, availability of data varied
tremendously but for almost 80% of the EU population complete coverage
was possible.

Part II: Selected Applications

The first application focuses on a cross-country comparison of modifying
the exposure to the life-style-related risk factors alcohol, BMI, and smoking
in eleven EU-countries, covering approx. 80% of the EU-27 population. Ef-
fective policy-making requires quantification of realistic gains and losses in
population health, but the population-level health effects of these three risk
factors often depend on a range of population-specific characteristics. Ap-
plying the DYNAMO-HIA model, we dynamically projected for every coun-
try the effects of potential health gains and health losses using feasible, i.e.
observed elsewhere, risk factor prevalence for three different risk factors as
benchmarks. The effects of the "worst practice”, "best practice", and the cur-
rently observed risk factor prevalence on population health are projected
for 10 years into the future and changes in life expectancy, disease-free life
years, disease prevalences, and cumulative mortality are reported. Applying
the best practice smoking prevalence would yield the largest gains in life ex-
pectancy with 0.4 years for males and 0.3 years for females while the worst
practice smoking prevalence would also lead to the largest losses with 1.2
years for males and 1.4 years for females. In terms of morbidity, the results
differ by gender. For males the best practice smoking prevalence would in-
crease the disease-free life years the highest with 0.4 life years whereas for
females the best practice BMI prevalence promises the largest gains with an
additional 0.7 disease-free life years. Smoking is still the risk factor with the
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largest potential health gains and losses, with the exception of the effect of
BMI female disease-free life expectancy.

The second application focuses on the high level of alcohol consumption
in Western Europe and corresponding adverse health effects. There is clear
evidence that increased alcohol prices reduce alcohol consumption. We quan-
tified some of the potential health consequences of increasing price on alco-
hol by projecting varying tax rates for 10 years into the future. Using alcohol
consumption data for eleven EU-countries, covering 80% of the EU-27 popu-
lation, we projected the expected changes in selected measures of population
health that might arise from changes in alcohol price. Even a modest price in-
crease of 20% leads to fewer cases of stroke, diabetes, and cancer, and fewer
deaths in both men and women. Effects are larger in men. An increase in al-
cohol prices towards those currently in Finland (the highest in the EU) would
postpone approx. 54,000 male and approx. 26,000 female deaths. Moreover,
the prevalence of a number of chronic diseases would be reduced, in men by
approx. 97,850 individuals with stroke, 65,850 with diabetes and 62,000 with
cancer, and in women by about 19,100 (stroke), 23,450 (diabetes), and 27,000
(cancer), respectively. Completely curbing excessive drinking throughout the
EU would lead to substantial gains in population health, while harmonizing
prices to the level seen in Finland achieving some of those gains.

The third application compares the long-term health consequences of two
different strategies of reducing obesity, i.e. childhood interventions that re-
duce the share of overweight/obese when entering adulthood and policies
focusing on the risk of becoming overweight or obese throughout the life
course. Using the case of a cohort of English males followed throughout their
life course, we simulated the effect of either a) reducing the share of over-
weight/obese when entering adulthood, b) reducing the probability of be-
coming overweight/obese throughout their adult life, and c) combinations
of both interventions. By employing the dynamic population health model
DYNAMO-HIA, we projected the development of the share of overweight/o-
bese and the resulting health consequences in terms of prevalence of related
major chronic diseases, disease-free life years, and cohort life expectancy.
Changing either policies can have a lifelong effect in reducing the overall
BMI level of the cohort, and, in turn, reducing the prevalence of chronic dis-
eases and improving life expectancy. A given percentage reduction in transi-
tion probability of becoming overweight/obese and not changing the initial
prevalence of overweight/obese has a larger magnitude on the lifelong re-
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duction of obesity and, hence, on health than same percentage reduction of
prevalence at age 18 only. Furthermore, even a small increase in the proba-
bility of becoming overweight/obese throughout the life course would offset
a substantial reduction in prevalence of overweight/obesity when entering
adulthood.

Conclusion

So far, quantification in HIA is (too) seldom attempted and those studies that
try to quantify lack uniformity in their approach. DYNAMO-HIA, being de-
signed for this purpose from the onset, may improve the number of quantita-
tive HIAs significantly. The possible use of generic risk factors and the accom-
panying, ready-to-use data set allows now for the first time a comparatively
rapid assessment of the consequences of changes in risk factor exposure for
many EU-countries, making DYNAMO-HIA a ready-to-use tool. DYNAMO-
HIA, fulfilling all criteria for a potential standard tool for quantification and
already being equipped with a unique data set, is an useful addition to the
field of HIA. Selected applications demonstrate the applicability, plausibility,
and usefulness of DYNAMO-HIA and its results.

Dutch

Dit proefschrift is ontstaan uit en heeft bijgedragen aan het DYNAMO-HIA
project. De doelen van het DYNAMO-HIA project waren het ontwikkelen
van een publiek toegankelijk, potentieel standaard instrument voor gezond-
heidseffectschatting (GES, in het Engels "Health Impact Assessment”), het
verzamelen en beschikbaar maken van de noodzakelijke EU-brede gegevens
voor het standaard instrument, en het toepassen van dit instrument om gese-
lecteerde beleidsvragen te beantwoorden. GES evalueert beleid, projecten of
voorstellen met betrekking tot hun effecten op de gezondheid van de mens.

GES verschilt van andere benaderingen omdat het niet alleen gericht is op
gezondheidsbeleid maar op alle beleidsterreinen of voorstellen. Een GES ex-
ercitie heeft meestal drie hoofddoelstellingen: ten eerste, om de impact van
het beleid te voorspellen, ten tweede om de participatie van de belanghebben-
den bij het evaluatie proces mogelijk te maken, en ten derde om de besluit-
vorming te informeren. Het kwantificeren van de beleidsopties, dat wil zeg-
gen de verwachte veranderingen in de gezondheidstoestand ten gevolge van
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de beleidsoptie, wordt uitgevoerd in de effect analyse fase. Tijdens deze fase
moeten drie verschillende taken uitgevoerd worden: 1) beschrijving van de
nul situatie (toekomstige situatie zonder het beleid), 2) schatting van de ve-
randering in de blootstelling aan determinanten van gezondheid, dat wil
zeggen hoe het beleid de risicofactorblootstelling verandert, en 3) bepaling
van veranderingen in gezondheid, dat wil zeggen hoe de verandering in de
risicofactorblootstelling gezondheid van de bevolking beinvloedt.

Deel I: Methodologische onderbouwing

Momenteel vindt kwantificering in GES zelden plaats omdat een standaard
instrument ontbreekt. Een dergelijk instrument moet streven naar technis-
che nauwkeurigheid bij het voorspellen van de effecten van interventies op
de volksgezondheid. Verder moet het instrument ook bruikbaar zijn in de
toegepaste setting van een GES. Hiervoor zijn zes criteria opgesteld waaraan
een standaard instrument moet voldoen. De eerste drie criteria (gebruik van
werkelijke bevolkingsaantallen, dynamische projectie en expliciete risicofac-
tortoestanden) moeten ervoor zorgen dat de modelstructuur voldoende gea-
vanceerd is om veranderingen in de risicofactorblootstelling op opeenvol-
gende tijdstippen in de bevolking op een transparante wijze te modelleren.
De laatste drie criteria (bescheiden gegevensvereisten, rijke model uitvoer
en algemene toegankelijkheid) zorgen voor een brede inzetbaarheid, reken-
inghoudend met de aanwezige beperkingen binnen een besluitvormingspro-
ces.

Een systematische review toonde aan dat per 2008 geen bestaand model
kan dienen als een standaard instrument voor de kwantificering van GES. Er
is een duidelijke kloof tussen de geavanceerde modellen die niet of beperkt
algemeen toegankelijk zijn (zoals POHEM en RIVM-CDM), en de (over-) ver-
eenvoudigde, maar beter toegankelijke modellen (zoals GBD, MSLT). Deze
situatie ontstaat waarschijnlijk omdat van de onderzochte modellen (met uit-
zondering van ARMADA) geen enkel model aanvankelijk een softwareap-
plicatie heeft ontwikkeld die kan dienen voor een breed publiek om GES te
kwantificeren.

Conventionele Markov modellen die de blootstelling van risicofactoren
op chronische ziekte modelleren kunnen een groot aantal toestanden (risico-
factor en ziekte combinaties) bevatten. Dit betekent zowel een uitdaging in
een technisch opzicht (het beperken van de rekentijd en geheugengebruik)
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als in een praktisch opzicht (het schatten van de modelparameters en het
behoud van transparantie). Om deze reden hebben wij voor het DYNAMO-
HIA model een combinatie van microsimulatie van risicofactor blootstelling
met macrosimulatie van ziekten en overleving voorgesteld. Dit maakt het
simuleren van de blootstelling aan een risicofactor in detail mogelijk, terwijl
het de noodzaak vermijdt grote gesimuleerde bevolkingen te gebruiken die
nodig zouden zijn gegeven de relatieve zeldzaamheid van chronische ziekte
gebeurtenissen. Verdere efficiéntie wordt verkregen door het splitsen van de
ruimte met ziektetoestanden in kleinere ruimtes, die elk een cluster van ziek-
ten bevatten die onafhankelijk is van de andere clusters. Aan de uitdaging
van beschikbare input data wordt voldaan door het opnemen van parameter
schattingsroutines waarin de marginale bevolking wordt gebruikt om zowel
de overgangen tussen toestanden en de verdeling van de initiéle toestanden
te schatten.

In het DYNAMO-HIA instrument kan risicofactorblootstelling op drie
verschillende wijzen worden opgenomen: continue, in klassen (tot 10 cate-
gorieén), en in klassen met voor één van die klassen de duur van het verblijf
in die klasse. Het model biedt plaats aan maximaal drie verschillende ziek-
ten: chronische ziekten, deels acuut dodelijke ziekten, en ziekten waarvoor
de oversterfte athankelijk is van de duur van de ziekten. Beleidgeinduceerde
veranderingen in risicofactor prevalentie en/of risicofactortransities worden
bepaald door de gebruiker van het model. Daarom kan de tool gebruikt wor-
den nadat de gebruiker heeft opgegeven wat het effect is van beleidsmaa-
tregelen op de risicofactor. Verschillende volksgezondheid uitkomstmaten
- zoals levensverwachting of "disability-adjusted" levensverwachting - zijn
direct beschikbaar om het verschil tussen de referentie en de verschillende
beleidsscenario’s te kwantificeren.

Het model bevat intern consistente incidentie, prevalentie en sterfte (IPM)
gegevens naar leeftijd en geslacht voor negen ziekten (IHD, diabetes, beroer-
te, COPD, borst-, colorectum-, long-, slokdarm- en mond kanker ). Bovendien
bevat het model gegevens over de blootstelling aan drie risicofactoren (BMI,
roken en alcoholgebruik) en relatieve risico’s die de relatie tussen de risico-
factoren, incidentie van ziekten en totale mortaliteit kwantificeren. De verza-
melde gegevens zijn ontleend aan bestaande gegevensbronnen. Het doel was
om deze gegevens voor elke EU-lidstaat te verzamelen, echter, de beschik-
baarheid van gegevens varieerde enorm. Voor bijna 80% van de EU-bevol-
king was een volledige dekking mogelijk.
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Deel II: geselecteerde toepassingen

De eerste toepassing richt zich op een internationale vergelijking van gezond-
heidseffecten die gepaard gaan met het wijzigen van de blootstelling aan de
leefstijl gerelateerde risicofactoren alcohol, BMI en roken in elf EU-landen
(samen ca. 80% van de EU-27 bevolking). Effectief beleid vraagt om kwantifi-
cering van realistische winsten en verliezen in de gezondheid van de bevolk-
ing, maar de effecten op de gezondheid van deze drie risicofactoren zijn
vaak afhankelijk van een aantal bevolkingsspecifieke kenmerken. Met be-
hulp van DYNAMO-HIA, hebben we voor elk land de gezondheidswinsten
en verliezen van mogelijke, dat wil zeggen elders waargenomen, risicofac-
tor prevalentie dynamisch geprojecteerd. De effecten van de "worst practice”,
"best practice”, en de momenteel waargenomen risicofactor prevalentie op
de volksgezondheid zijn geprojecteerd voor 10 jaar in de toekomst. Tevens
zijn de veranderingen in de levensverwachting, ziektevrije levensjaren, ziekte
prevalentie en de cumulatieve sterfte gerapporteerd. Het toepassen van de
"best practice" prevalentie van roken zou de grootste winst in levensverwach-
ting met 0,4 jaar voor mannen en 0,3 jaar voor vrouwen opleveren, terwijl
de "worst practice" rook prevalentie ook zou leiden tot de grootste verliezen
van 1,2 jaar voor mannen en 1,4 jaar voor vrouwen. In termen van mor-
biditeit verschillen de resultaten naar geslacht. De "best practice" prevalen-
tie van roken zou voor mannen ook de hoogste toename van de ziektevrije
levensverwachting betekenen (met 0,4 jaar), terwijl voor vrouwen de "best
practice” BMI prevalentie tot de grootste winst met een extra 0,7 ziektevrije
levensjaren leidt. Roken is nog steeds de risicofactor met de grootste mogeli-
jke gezondheidswinsten en verliezen, met uitzondering van het effect van
BMI op de ziektevrije levensverwachting van vrouwen.

De tweede toepassing richt zich op overmatig alcoholgebruik in West-
Europa en de bijpbehorende negatieve effecten op de gezondheid. Er zijn dui-
delijke aanwijzingen dat een toename van alcohol prijzen het alcoholgebruik
verlaagt. We hebben een aantal van de mogelijke gevolgen van prijsstijgin-
gen voor de gezondheid gekwantificeerd door de gezondheidseffecten van
verschillende belastingtarieven voor 10 jaar in de toekomst te projecteren.
Met behulp van alcoholgebruik gegevens van elf EU-landen, die 80% van
de EU-27 bevolking omvatten, hebben we de verwachte gezondheidsveran-
deringen geprojecteerd die kunnen voortvloeien uit wijzigingen in de alcohol
prijs. Zelfs een bescheiden prijsstijging van 20% leidt tot minder gevallen van
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beroertes, diabetes en kanker, en het leidt tot minder sterfte bij zowel mannen
als vrouwen. De effecten zijn groter bij mannen. Een stijging van de prijzen
van alcohol gelijkstaand aan de prijzen van Finland (de hoogste in de EU)
leidt tot het uitstellen van ca. 54.000 sterftevallen onder mannen en ca. 26.000
sterftevallen onder vrouwen. Bovendien zou de prevalentie van een aan-
tal chronische ziekten worden verlaagd, bij mannen met ca. 97.850 gevallen
voor beroerte, 65.850 voor diabetes en 62.000 voor kanker, bij vrouwen met
ongeveer 19.100, 23.450 en 27.000, respectievelijk. Volledige terugdringen van
overmatig drinken in de hele EU zou leiden tot een substantiéle winst in
gezondheid van de bevolking. Met de harmonisatie van de prijzen op het
niveau van Finland zou een deel van deze winsten bereikt kunnen worden.
De derde toepassing vergelijkt de lange termijn gezondheidseffecten van
twee verschillende strategieén die overgewicht proberen te verminderen, na-
melijk: interventies onder kinderen en adolescenten die het aandeel van over-
gewichtobesitas bij het bereiken van volwassen leeftijd verminderen en het
beleid gericht op het verminderen van het risico op overgewicht of obesitas
gedurende het volwassen leven. Gebruikmakend van gegevens van een co-
hort van Engelse mannen hebben we de volgende effecten gesimuleerd: a) de
vermindering van het aandeel van overgewicht/obesitas op het moment van
bereiken van de volwassen leeftijd bij beide interventies, b) de verminder-
ing van de kans op overgewicht/obesitas gedurende hun volwassen leven
bij beide interventies, en c) de effecten bij een combinatie van beide inter-
venties. Door gebruik te maken van het dynamische volksgezondheid model
DYNAMO-HIA, hebben wij de ontwikkeling van het aandeel van overge-
wicht/obesitas en de daaruit voortvloeiende gevolgen voor de gezondheid in
termen van de prevalentie van gerelateerde ernstige chronische ziekten, ziek-
tevrij levensjaren, en de levensverwachting geprojecteerd. Alle typen inter-
venties hebben een levenslang effect, ze verminderen het totale BMI niveau
van het cohort, en daardoor verminderen ze de prevalentie van chronische
ziekten en verbeteren ze de levensverwachting. Een bepaalde procentuele
vermindering in de kans op overgewicht/obesitas gedurende het volwassen
leven (zonder verandering in de prevalentie van overgewicht/obesitas op het
bereiken van de volwassen leeftijd) heeft een groter effect op de levenslange
vermindering van obesitas, en dus op de gezondheid, dan eenzelfde pro-
centuele vermindering van de prevalentie op 18 jarige leeftijd. Bovendien zou
zelfs een kleine toename in de kans op overgewicht/obesitas gedurende het
volwassen leven een aanzienlijke vermindering van de prevalentie van over-
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gewicht/obesitas op het bereiken van de volwassen leeftijd teniet doen.

Conclusie

Tot nu toe heeft kwantificering in GES (te) weinig plaatsgevonden en de stud-
ies die dit wel hebben getracht missen een uniforme aanpak. DYNAMO-HIA,
dat van begin af aan was ontworpen voor dit doel, kan het aantal kwanti-
tatieve GES aanzienlijk doen toenemen. Generieke risicofactoren en de bijbe-
horende kant-en-klare dataset maken nu voor het eerst een relatief snelle beo-
ordeling van de gevolgen van veranderingen in de blootstelling aan risicofac-
toren voor veel EU-landen mogelijk. Dit maakt DYNAMO-HIA een kant-en-
klare gebruiksvriendelijke tool. DYNAMO-HIA, dat voldoet aan alle criteria
voor een mogelijk standaard instrument voor kwantificering en reeds uit-
gerust met een unieke dataset, is een waardevolle aanvulling op het gebied
van GES. Geselecteerde toepassingen tonen de toepasbaarheid, plausibiliteit,
en het nut van DYNAMO-HIA en de resultaten ervan aan.
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DYNAMO-HIA project

This thesis originated from and contributed to the DYNAMO-HIA project.
The DYNAMO-HIA project was an international research project funded by
the Executive Agency for Health and Consumers (EAHC, formerly known
as PHEA) as part of the EU Public Health Program 2003-2008 of the Euro-
pean Commission’s Directorate General for Health and Consumer Affairs
(DG SANCO), with co-financing from Erasmus Medical Center Rotterdam (the
Netherlands), Institute of Public Health and the Environment (the Netherlands),
Catalan Institute of Oncology, International Obesity Task Force, London School for
Hygiene and Tropical Medicine, Haughton Institute in Dublin, and Instituto Tu-
mori in Milan (Italy).

The aim of the DYNAMO-HIA project was to develop and build an in-
strument to quantify the health impact of changes in health determinants as
a result of different policies and apply it to selected life-style related health
determinants and resulting diseases across EU-countries. The research project
had three specific objectives. First, to develop and implement a stand-alone
software tool (DYNAMO-HIA) to estimate the health impact of policies by
comparing the population health impact of one or more policy interventions
with a baseline scenario. Second, to compile and make publicly available data
sets (consistent across EU-countries) on selected health determinants/risk
factors (smoking, obesity, and alcohol consumption) and their effects on se-
lected diseases. Third, to illustrate the tool by assessing the health effects of
several health-relevant policy options with regard to these health determi-
nants.

The DYNAMO-HIA project was structured into eleven work packages:

1. Coordination of Project: Wilma Nusselder, Johan Mackenbach

2. Dissemination of the Results: Jet Smit, Lea den Broeder
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10.

11.

Evaluation of the Project: Wilma Nusselder

Model Specification: Wilma Nusselder, Stefan K. Lhachimi, Hendriek C.
Boshuizen, Pieter van Baal

Construction of Software Tool: Hendriek C. Boshuizen, Stefan K. Lhachimi,
Rene Mondeel, Jan de Bruin

Smoking: Estevez Fernandez, Jose Maria Martinez-Sanchez, Esther Carabasa
Overweight/Obesity: Tim Lobstein, Rachel Jackson-Leach

Alcohol: Martin McKee, Joceline Pomerleau, Kate Charlesworth

CVD and diabetes: Kathleen Bennett, Tom O'Hara

Cancer: Andrea Micheli, Paolo Baili

Definition of Scenarios: Wilma Nusselder, Johan Mackenbach, Stefan K.
Lhachimi, Margarete Kulik, Hendriek C. Boshuizen

I have to thank all those who collaborated within the DYNAMO-HIA
project, making it such a success. Without this joint effort, this thesis could

not have been finished in the current form. In addition, I would like to ex-

tend my thanks to all those who have provided suggestions to the model
specification during the design phase (at the DYNAMO-HIA workshop on
23rd of May, 2008, and by personal communication).
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IPM-Framework for chronic disease
data

Epidemiological data is often plagued with incompleteness and inconsis-
tency. An incidence-prevalence-mortality (IPM) framework utilizes the (math-
ematical) connection between related disease variables. This allows to check
for inconsistencies and/or to estimate missing data. Within the IPM-frame-
work the widely used software DisMod II can assist discovering and correct-
ing for such flaws. However, expert knowledge of the disease in question
is still indispensable. DisMod 1II is a stand-alone Windows program that is
publicly available. Originally, it has been developed for the Global Burden of
Disease (GBD) project and is currently widely in use. %%

DisMod II assumes a single-disease model (see Figure[B.T). An individual
is in either of four different states: healthy, diseased, dead from the disease, or
dead from all-other causes. The main assumption is that all-other-cause mor-
tality (m) is equal for diseased (D) and healthy (H), i.e. an additive mortality
model. Furthermore, the transition rates between these states are assumed to
be constant. In such a closed system, the figures in question just become an ex-
ercise in book keeping. Therefore, the application of an IPM-model is rather
straightforward: the missing variable(s) can be estimated using the knowl-
edge of the other variables. In the case of inconsistencies things are more dif-
ficult. Several reasons are conceivable for flawed epidemiological data, e.g.
figures are from different regional contexts or have been measured differently
(see for further discussion Kruijshaar et al.?*). Another reason for inconsisten-
cies is a possible violation of the steady state assumption. As prevalence is a
stock variable and incidence is a flow variable, the basic IPM-model assumes
that all rates are constant over time. This is often unlikely as incidence but
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also mortality data often follow a time trend. An IPM-based software cannot
automatically recognize and correct such errors. For this expert knowledge
about the disease and the country in question is necessary. However, a soft-
ware assists in identifying and diagnosing potential problems in epidemio-
logical data.

Another requirement for input data in disease models is smoothness.
Smoothness refers to the application of statistical procedures to transform
the existing data into a shape that is less "rough". In an extreme case, smooth-
ing would mean that the existing data is transformed into a single, flat line.
Of course, this would mean that almost all information in the data has been
"smoothed away" and this is not intended. But it shows clearly there is a
trade-off between having "rough" and "spiky" raw-data versus an (over-
)smoothed version of it. In the case of DYNAMO-HIA, the rationale for
smoothing the input data is twofold. First, raw data exhibits often a lot of

spikes, jumps, or outlying data which is a sign of inconsistencies, measure-
ment errors, unusual observations, or just a result of (too) small sample sizes.
Second, for modeling within DYNAMO-HIA these abrupt changes can dis-
tort the results of the calculation, leading to even larger and, hence, even more
implausible jumps in the output than in the input.

s, . M,

(other causes)

C, ‘ D,

(disease)

Figure B.1: The conceptual disease model of the IPM-Framework:*? S:= number of healthy
people, i.e. without the disease under consideration, C:= number of diseased people, D:=
number of people dead from the disease, and M:= number of people dead from all other
causes, with the subscript , denotes the age group. There are four transition hazards: i:= inci-
dence, r:= remission, f:= case fatality, and m:= all other mortality.
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Data overview

The software tool DYNAMO-HIA is equipped with an extensive data set of
disease data, risk factor data, and the corresponding relative risks by gender
and single year of age. This chapter displays the data (for simplification ag-
gregated into age groups) collected within the DYNAMO-HIA project by the
involved work packages (see Appendix [A| for details). The following Table
shows for which of the EU-27 countries data was available. The design of
the tool allows to enter further data for other countries and/or diseases and
risk-factors. More details, in particular concerning the sources of the raw data
and further adjustment procedures, are given in the work package documen-
tation (available at www.DYNAMO-hia.eu).
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Table C.1: Overview of available population-level data in DYNAMO-HIA (Y=Yes, N=No)

Incidence, prevalence,
and excess mortality (IPM) data

Risk factor
exposure data

Diabetes IHD Stroke COPD Cancers Obesity Alcohol Smoking

Austria N N Y N Y Y N N
Belgium N N Y Y Y Y N Y
Bulgaria N N N N Y N N N
Cyprus N N Y N N N N N
Czech Republic N N Y Y Y Y Y Y
Denmark Y Y Y Y Y Y Y Y*
Estonia N N Y Y Y N Y Y*
Finland Y Y Y Y Y Y Y Y*
France Y Y Y Y Y Y Y Y

Germany Y Y Y Y Y Y Y Y

Greece N N Y Y N N Y N
Hungary N N N Y N N N Y

Ireland Y Y Y Y Y Y Y Y*
Italy Y Y Y Y Y Y Y Y

Latvia N N Y Y Y N Y Y*
Lithuania N N Y Y Y N N Y
Luxembourg N N Y N N N N N
Malta N N Y N Y N Y N
Netherlands Y Y Y Y Y Y Y Y

Poland Y Y Y Y Y Y Y N
Portugal N N Y Y Y Y N Y

Romania N N N N N N N N
Slovakia N N N Y Y N N Y*
Slovenia N N Y N Y N N N
Spain Y Y Y Y Y Y Y Y

Sweden Y Y Y Y Y Y Y Y*
United Kingdom Y Y Y Y Y Y Y Y

*No information on time since quitting
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C.1 Disease Data

The DYNAMO-HIA project aimed to cover nine major chronic diseases: is-
chemic heart diseases (IHD), chronic obstructive pulmonary disease (COPD),
stroke, diabetes, breast-, lung- colorectal-, esophageal-, and oral-cancer. The
following Table shows the disease prevalence for each covered country
by sex aggregated into six age groups.

Table C.2: Overview of disease prevalences by country used in DYNAMO-HIA aggregated by
age (in percent). La0nlod

Breast Colo. COPD Diab. Eso. IHD Lung Oral Stroke

Can- Can- Can- Can- Can-
cer cer cer cer cer
Austria  0-15 M 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0

16-30 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.1
46-60 0.0 0.4 n/a n/a 0.0 n/a 0.1 0.2 1.1
61-75 0.0 1.7 n/a n/a 0.0 n/a 0.5 0.5 5.1
76+ 0.0 39 n/a n/a 0.1 n/a 0.8 0.8 13.8
0-15 F 00 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.3 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.1
46-60 1.8 0.3 n/a n/a 0.0 n/a 0.1 0.1 0.6
61-75 42 1.0 n/a n/a 0.0 n/a 0.2 0.1 34
76+ 6.4 2.5 n/a n/a 0.0 n/a 0.3 0.2 11.0

Belgium  0-15 M 00 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0

16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.0 0.0 0.1 n/a 0.0 n/a 0.0 0.0 0.1
46-60 0.0 0.3 0.9 n/a 0.0 n/a 0.1 0.2 1.1
61-75 0.0 1.7 4.1 n/a 0.1 n/a 0.5 0.5 5.1
76+ 0.0 3.9 5.4 n/a 0.1 n/a 0.8 0.8 12.2
0-15 F 00 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.6 0.0 0.1 n/a 0.0 n/a 0.0 0.0 0.1
46-60 29 0.3 1.1 n/a 0.0 n/a 0.0 0.1 0.7
61-75 6.5 1.2 3.6 n/a 0.0 n/a 0.1 0.1 3.6
76+ 8.8 2.5 34 n/a 0.0 n/a 0.1 0.2 10.1
Bulgaria 0-15 M 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 n/a
16-30 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 n/a
31-45 0.0 0.1 n/a n/a 0.0 n/a 0.0 0.0 n/a
46-60 0.0 0.3 n/a n/a 0.0 n/a 0.2 0.2 n/a

Continued on next page. ..
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Breast Colo. COPD Diab. Eso. IHD Lung  Oral Stroke
Can-  Can- Can- Can-  Can-
cer cer cer cer cer
61-75 0.0 1.2 n/a n/a 0.1 n/a 0.8 0.6 n/a
76+ 0.0 2.4 n/a n/a 0.1 n/a 1.2 0.9 n/a
0-15 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 n/a
16-30 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 n/a
31-45 0.3 0.0 n/a n/a 0.0 n/a 0.0 0.0 n/a
46-60 14 0.2 n/a n/a 0.0 n/a 0.0 0.0 n/a
61-75 3.0 0.8 n/a n/a 0.0 n/a 0.1 0.1 n/a
76+ 4.1 15 n/a n/a 0.0 n/a 0.1 0.2 n/a
Cyprus  0-15 n/a n/a n/a n/a n/a n/a n/a n/a 0.0
16-30 n/a n/a n/a n/a n/a n/a n/a n/a 0.0
31-45 n/a n/a n/a n/a n/a n/a n/a n/a 0.1
46-60 n/a n/a n/a n/a n/a n/a n/a n/a 1.2
61-75 n/a n/a n/a n/a n/a n/a n/a n/a 5.1
76+ n/a n/a n/a n/a n/a n/a n/a n/a 12.9
0-15 n/a n/a n/a n/a n/a n/a n/a n/a 0.0
16-30 n/a n/a n/a n/a n/a n/a n/a n/a 0.0
31-45 n/a n/a n/a n/a n/a n/a n/a n/a 0.1
46-60 n/a n/a n/a n/a n/a n/a n/a n/a 0.7
61-75 n/a n/a n/a n/a n/a n/a n/a n/a 3.5
76+ n/a n/a n/a n/a n/a n/a n/a n/a 9.5
Czech 0-15 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
Rep. 16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.1
46-60 0.0 0.4 1.1 n/a 0.0 n/a 0.2 0.2 1.9
61-75 0.0 2.0 3.1 n/a 0.0 n/a 0.5 0.4 9.9
76+ 0.0 4.2 3.1 n/a 0.1 n/a 0.8 0.6 27.9
0-15 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.2 0.0 0.1 n/a 0.0 n/a 0.0 0.0 0.1
46-60 14 0.3 1.1 n/a 0.0 n/a 0.0 0.1 0.9
61-75 3.2 1.2 2.7 n/a 0.0 n/a 0.1 0.1 6.8
76+ 4.8 2.3 1.4 n/a 0.0 n/a 0.2 0.2 219
Den- 0-15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mark 16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.1 1.7 0.0 0.2 0.0 0.0 0.2
46-60 0.0 0.3 1.3 6.7 0.0 2.9 0.1 0.2 1.6
61-75 0.0 1.3 4.8 13.4 0.0 10.1 0.3 0.6 5.6
76+ 0.0 33 6.1 15.3 0.1 18.4 0.6 0.9 13.2
0-15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
31-45 0.3 0.0 0.1 2.3 0.0 0.1 0.0 0.0 0.1
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Data Ouverview

Breast Colo. COPD Diab. Eso. IHD Lung  Oral Stroke
Can-  Can- Can- Can-  Can-
cer cer cer cer cer
46-60 2.1 0.3 1.4 5.0 0.0 1.4 0.1 0.1 0.8
61-75 5.0 1.1 47 10.0 0.0 6.0 0.3 0.2 33
76+ 7.6 25 45 13.7 0.0 13.4 0.4 0.4 9.8
Estonia  0-15 M 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.0 0.0 0.1 n/a 0.0 n/a 0.0 0.0 0.2
46-60 0.0 0.2 0.9 n/a 0.0 n/a 0.2 0.1 2.2
61-75 0.0 1.0 3.0 n/a 0.1 n/a 0.7 0.3 10.1
76+ 0.0 2.2 42 n/a 0.1 n/a 0.9 0.4 222
0-15 F 00 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.2 0.0 0.1 n/a 0.0 n/a 0.0 0.0 0.1
46-60 1.1 0.2 0.9 n/a 0.0 n/a 0.0 0.0 1.1
61-75 2.3 0.9 24 n/a 0.0 n/a 0.1 0.1 6.7
76+ 3.2 1.7 2.2 n/a 0.0 n/a 0.2 0.2 18.8
Finland  0-15 M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.1 0.6 0.0 0.4 0.0 0.0 0.2
46-60 0.0 0.2 1.1 4.1 0.0 52 0.1 0.1 1.5
61-75 0.0 0.9 4.0 10.2 0.0 19.5 0.4 0.4 6.2
76+ 0.0 2.5 5.7 12.3 0.1 36.9 0.9 0.8 15.0
0-15 F 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.3 0.1 0.1 0.4 0.0 0.2 0.0 0.0 0.1
46-60 2.1 0.3 1.0 2.2 0.0 2.6 0.0 0.1 0.7
61-75 5.4 0.9 3.2 7.3 0.0 12.0 0.1 0.2 3.8
76+ 8.0 2.1 3.6 11.9 0.0 27.0 0.3 0.4 11.7
France 0-15 M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.0 1.2 0.0 0.1 0.0 0.1 0.1
46-60 0.0 0.4 1.0 6.4 0.0 1.5 0.1 0.6 1.1
61-75 0.0 1.8 4.0 15.2 0.2 59 0.4 1.6 43
76+ 0.0 43 5.2 16.2 0.4 10.5 0.6 24 10.1
0-15 F 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.4 0.0 0.1 1.0 0.0 0.0 0.0 0.0 0.1
46-60 2.6 0.3 0.9 4.1 0.0 0.6 0.0 0.1 0.4
61-75 6.3 1.1 2.6 9.5 0.0 3.1 0.1 0.3 24
76+ 8.8 2.6 24 11.0 0.0 6.7 0.1 0.4 7.2
Germany 0-15 M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Appendix C

Breast Colo. COPD Diab. Eso. IHD Lung  Oral Stroke
Can-  Can- Can- Can-  Can-
cer cer cer cer cer
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.1 1.3 0.0 0.3 0.0 0.0 0.1
46-60 0.0 0.4 1.0 5.6 0.0 3.6 0.1 0.3 1.0
61-75 0.0 1.8 3.8 12.6 0.1 14.5 0.7 0.7 5.0
76+ 0.0 4.2 5.5 13.6 0.2 27.1 1.4 1.0 13.8
0-15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.3 0.0 0.1 1.3 0.0 0.1 0.0 0.0 0.1
46-60 1.8 0.3 0.9 5.7 0.0 1.7 0.0 0.1 0.5
61-75 4.4 1.1 2.5 12.7 0.0 8.4 0.1 0.2 3.0
76+ 6.5 2.8 2.4 13.2 0.0 19.1 0.2 0.3 10.7
Greece 0-15 n/a n/a 0.0 n/a n/a n/a n/a n/a 0.0
16-30 n/a n/a 0.0 n/a n/a n/a n/a n/a 0.0
31-45 n/a n/a 0.2 n/a n/a n/a n/a n/a 0.1
46-60 n/a n/a 1.1 n/a n/a n/a n/a n/a 1.7
61-75 n/a n/a 5.6 n/a n/a n/a n/a n/a 94
76+ n/a n/a 9.2 n/a n/a n/a n/a n/a 27.1
0-15 n/a n/a 0.0 n/a n/a n/a n/a n/a 0.0
16-30 n/a n/a 0.0 n/a n/a n/a n/a n/a 0.0
31-45 n/a n/a 0.1 n/a n/a n/a n/a n/a 0.1
46-60 n/a n/a 0.6 n/a n/a n/a n/a n/a 0.8
61-75 n/a n/a 4.1 n/a n/a n/a n/a n/a 6.4
76+ n/a n/a 5.4 n/a n/a n/a n/a n/a 23.6
Hun- 0-15 n/a n/a 0.0 n/a n/a n/a n/a n/a 0.0
gary 16-30 n/a n/a 0.0 n/a n/a n/a n/a n/a 0.0
31-45 n/a n/a 0.0 n/a n/a n/a n/a n/a 0.2
46-60 n/a n/a 0.9 n/a n/a n/a n/a n/a 2.3
61-75 n/a n/a 2.6 n/a n/a n/a n/a n/a 10.1
76+ n/a n/a 3.2 n/a n/a n/a n/a n/a 22.8
0-15 n/a n/a 0.0 n/a n/a n/a n/a n/a 0.0
16-30 n/a n/a 0.0 n/a n/a n/a n/a n/a 0.0
31-45 n/a n/a 0.1 n/a n/a n/a n/a n/a 0.1
46-60 n/a n/a 0.9 n/a n/a n/a n/a n/a 1.1
61-75 n/a n/a 2.0 n/a n/a n/a n/a n/a 5.3
76+ n/a n/a 14 n/a n/a n/a n/a n/a 12.6
Ireland  0-15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.1 0.9 0.0 0.3 0.0 0.0 0.1
46-60 0.0 0.3 1.1 4.1 0.0 4.2 0.1 0.1 1.1
61-75 0.0 1.7 3.7 8.4 0.1 16.3 0.4 0.4 5.0
76+ 0.0 4.1 5.1 9.2 0.1 30.0 0.8 0.6 134
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Data Ouverview

Breast Colo. COPD Diab. Eso. IHD Lung  Oral Stroke
Can-  Can- Can- Can-  Can-
cer cer cer cer cer
0-15 F 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.3 0.0 0.1 1.0 0.0 0.1 0.0 0.0 0.1
46-60 2.0 0.3 1.1 3.2 0.0 2.0 0.1 0.0 0.9
61-75 4.8 1.2 3.9 6.4 0.0 9.5 0.2 0.1 4.0
76+ 6.9 2.8 3.6 8.1 0.1 21.2 0.4 0.2 11.3
Italy 0-15 M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.0 1.0 0.0 0.2 0.0 0.0 0.1
46-60 0.0 0.4 1.2 42 0.0 25 0.1 0.2 1.0
61-75 0.0 2.0 4.6 12.2 0.1 9.8 0.7 0.6 5.2
76+ 0.0 49 5.5 17.5 0.1 17.5 1.3 1.0 15.8
0-15 F 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
31-45 0.4 0.1 0.1 0.9 0.0 0.1 0.0 0.0 0.0
46-60 2.6 0.4 0.9 3.6 0.0 1.2 0.1 0.1 0.5
61-75 5.9 14 2.6 12.5 0.0 59 0.3 0.2 33
76+ 8.6 3.2 25 18.1 0.0 12.8 0.5 0.3 12.3
Latvia 0-15 M 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.0 0.0 0.1 n/a 0.0 n/a 0.0 0.0 0.2
46-60 0.0 0.1 0.6 n/a 0.0 n/a 0.1 0.1 2.5
61-75 0.0 0.7 2.1 n/a 0.1 n/a 0.6 0.5 13.1
76+ 0.0 1.5 34 n/a 0.2 n/a 0.8 0.7 33.2
0-15 F 00 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.2 0.0 0.1 n/a 0.0 n/a 0.0 0.0 0.0
46-60 1.0 0.1 0.6 n/a 0.0 n/a 0.0 0.0 0.0
61-75 2.2 0.7 1.1 n/a 0.0 n/a 0.1 0.1 0.1
76+ 3.1 14 0.8 n/a 0.0 n/a 0.1 0.1 0.3
Lithuania 0-15 M 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.1
46-60 0.0 0.2 0.8 n/a 0.0 n/a 0.2 0.1 1.5
61-75 0.0 0.8 24 n/a 0.1 n/a 0.8 0.3 7.3
76+ 0.0 2.0 3.6 n/a 0.1 n/a 1.4 0.6 16.3
0-15 F 00 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.2 0.0 0.1 n/a 0.0 n/a 0.0 0.0 0.1
46-60 1.0 0.2 0.6 n/a 0.0 n/a 0.0 0.0 1.0
61-75 2.2 0.7 1.3 n/a 0.0 n/a 0.1 0.1 54
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Appendix C

Breast Colo. COPD Diab. Eso. IHD Lung  Oral Stroke
Can-  Can- Can- Can-  Can-
cer cer cer cer cer
76+ 3.1 1.3 1.1 n/a 0.0 n/a 0.2 0.2 12.9
Luxem-  0-15 M n/a n/a n/a n/a n/a n/a n/a n/a 0.0
bourg 16-30 n/a n/a n/a n/a n/a n/a n/a n/a 0.0
31-45 n/a n/a n/a n/a n/a n/a n/a n/a 0.1
46-60 n/a n/a n/a n/a n/a n/a n/a n/a 1.1
61-75 n/a n/a n/a n/a n/a n/a n/a n/a 5.8
76+ n/a n/a n/a n/a n/a n/a n/a n/a 15.1
0-15 F n/a n/a n/a n/a n/a n/a n/a n/a 0.0
16-30 n/a n/a n/a n/a n/a n/a n/a n/a 0.0
31-45 n/a n/a n/a n/a n/a n/a n/a n/a 0.1
46-60 n/a n/a n/a n/a n/a n/a n/a n/a 0.9
61-75 n/a n/a n/a n/a n/a n/a n/a n/a 4.6
76+ n/a n/a n/a n/a n/a n/a n/a n/a 13.0
Malta 0-15 M 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.0 0.1 n/a n/a 0.0 n/a 0.0 0.0 0.1
46-60 0.0 0.3 n/a n/a 0.0 n/a 0.1 0.2 1.3
61-75 0.0 0.9 n/a n/a 0.0 n/a 0.4 0.5 6.4
76+ 0.0 1.9 n/a n/a 0.1 n/a 0.6 1.0 16.2
0-15 F 00 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.2 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.1
46-60 1.7 0.2 n/a n/a 0.0 n/a 0.0 0.1 0.7
61-75 3.7 0.8 n/a n/a 0.0 n/a 0.1 0.2 4.2
76+ 5.6 19 n/a n/a 0.0 n/a 0.1 0.4 12.6
Nether-  0-15 M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
lands 16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.1 1.3 0.0 0.3 0.0 0.0 0.1
46-60 0.0 0.3 1.5 5.7 0.0 35 0.1 0.2 0.9
61-75 0.0 1.7 5.0 12.7 0.1 13.6 0.4 0.5 45
76+ 0.0 4.1 6.6 159 0.1 28.2 0.8 0.9 12.6
0-15 F 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.5 0.0 0.1 1.0 0.0 0.1 0.0 0.0 0.1
46-60 2.6 0.3 1.9 4.2 0.0 1.6 0.1 0.1 0.7
61-75 5.7 1.3 4.8 11.7 0.0 7.8 0.2 0.3 3.5
76+ 8.6 3.0 53 17.4 0.0 18.9 0.2 0.4 10.1
Poland 0-15 M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.5 3.2 0.0 0.3 0.0 0.0 0.1
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Data Ouverview

Breast Colo. COPD Diab. Eso. IHD Lung  Oral Stroke
Can-  Can- Can- Can-  Can-
cer cer cer cer cer
46-60 0.0 0.2 2.3 8.2 0.0 35 0.1 0.1 1.6
61-75 0.0 0.8 8.8 12.5 0.0 14.3 0.4 04 7.6
76+ 0.0 1.7 8.8 12.6 0.0 252 0.5 0.7 15.0
0-15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
31-45 0.2 0.0 0.7 3.2 0.0 0.1 0.0 0.0 0.1
46-60 1.2 0.2 2.2 9.5 0.0 1.8 0.1 0.1 0.9
61-75 3.1 0.7 49 16.1 0.0 9.4 0.2 0.1 49
76+ 44 1.1 49 16.7 0.0 19.2 0.4 0.2 11.7
Portugal 0-15 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.0 0.1 0.0 n/a 0.0 n/a 0.0 0.1 0.3
46-60 0.0 0.4 1.0 n/a 0.0 n/a 0.1 0.3 3.0
61-75 0.0 1.8 35 n/a 0.1 n/a 0.3 0.6 14.3
76+ 0.0 3.6 3.7 n/a 0.1 n/a 0.4 1.0 37.8
0-15 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.4 0.1 0.0 n/a 0.0 n/a 0.0 0.0 0.1
46-60 1.8 0.3 0.3 n/a 0.0 n/a 0.0 0.1 1.3
61-75 3.6 1.1 1.1 n/a 0.0 n/a 0.1 0.2 8.1
76+ 5.0 22 1.0 n/a 0.0 n/a 0.1 0.3 27.0
Romania 0-15 n/a n/a n/a n/a n/a n/a n/a n/a n/a
16-30 n/a n/a n/a n/a n/a n/a n/a n/a n/a
31-45 n/a n/a n/a n/a n/a n/a n/a n/a n/a
46-60 n/a n/a n/a n/a n/a n/a n/a n/a n/a
61-75 n/a n/a n/a n/a n/a n/a n/a n/a n/a
76+ n/a n/a n/a n/a n/a n/a n/a n/a n/a
0-15 n/a n/a n/a n/a n/a n/a n/a n/a n/a
16-30 n/a n/a n/a n/a n/a n/a n/a n/a n/a
31-45 n/a n/a n/a n/a n/a n/a n/a n/a n/a
46-60 n/a n/a n/a n/a n/a n/a n/a n/a n/a
61-75 n/a n/a n/a n/a n/a n/a n/a n/a n/a
76+ n/a n/a n/a n/a n/a n/a n/a n/a n/a
Slovakia 0-15 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.0 0.1 0.0 n/a 0.0 n/a 0.0 0.1 0.1
46-60 0.0 0.4 0.9 n/a 0.0 n/a 0.2 04 1.0
61-75 0.0 1.9 2.7 n/a 0.1 n/a 0.6 0.9 5.6
76+ 0.0 3.9 3.0 n/a 0.1 n/a 0.8 1.1 12.3
0-15 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 0.0 n/a 0.0 n/a 0.0 0.0 0.0
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Appendix C

Breast Colo. COPD Diab. Eso. IHD Lung  Oral Stroke
Can-  Can- Can- Can-  Can-
cer cer cer cer cer
31-45 0.2 0.0 0.1 n/a 0.0 n/a 0.0 0.0 0.0
46-60 1.2 0.2 0.8 n/a 0.0 n/a 0.0 0.0 0.5
61-75 2.7 1.0 1.5 n/a 0.0 n/a 0.1 0.1 3.1
76+ 3.7 1.9 1.0 n/a 0.0 n/a 0.1 0.2 7.7
Slovenia 0-15 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.1
46-60 0.0 0.3 n/a n/a 0.0 n/a 0.2 0.3 1.1
61-75 0.0 1.6 n/a n/a 0.1 n/a 0.8 0.8 5.2
76+ 0.0 3.2 n/a n/a 0.1 n/a 1.2 1.2 13.5
0-15 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
16-30 0.0 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.0
31-45 0.2 0.0 n/a n/a 0.0 n/a 0.0 0.0 0.1
46-60 1.5 0.2 n/a n/a 0.0 n/a 0.1 0.1 0.6
61-75 3.3 1.0 n/a n/a 0.0 n/a 0.2 0.2 3.5
76+ 4.8 1.9 n/a n/a 0.0 n/a 0.3 0.3 10.6
Spain 0-15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.0 1.7 0.0 0.1 0.0 0.1 0.1
46-60 0.0 0.3 1.2 7.5 0.0 1.9 0.2 0.4 1.0
61-75 0.0 1.4 4.0 18.6 0.1 7.6 0.6 1.2 5.0
76+ 0.0 3.3 44 16.0 0.1 13.3 0.9 2.0 12.6
0-15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
31-45 0.3 0.0 0.1 1.6 0.0 0.1 0.0 0.0 0.0
46-60 1.7 0.2 1.1 49 0.0 0.9 0.0 0.1 0.5
61-75 3.8 0.9 3.6 14.1 0.0 4.7 0.1 0.2 3.0
76+ 54 1.9 39 17.5 0.0 10.0 0.1 0.3 9.8
Sweden  0-15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.0 1.9 0.0 0.3 0.0 0.0 0.1
46-60 0.0 0.2 1.2 6.0 0.0 3.9 0.1 0.1 1.0
61-75 0.0 1.1 43 12.7 0.0 14.2 0.2 0.3 48
76+ 0.0 3.0 5.0 16.4 0.1 27.0 0.3 0.7 14.1
0-15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
31-45 0.3 0.0 0.1 14 0.0 0.1 0.0 0.0 0.0
46-60 2.1 0.2 13 3.8 0.0 1.9 0.1 0.1 0.6
61-75 5.3 1.0 4.0 9.6 0.0 8.3 0.2 0.2 3.0
76+ 8.0 24 3.7 14.5 0.0 19.2 0.1 0.4 10.7
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Breast Colo. COPD Diab. Eso. IHD Lung  Oral Stroke

Can-  Can- Can- Can-  Can-

cer cer cer cer cer

UK 0-15 M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.0 0.0 0.0 0.7 0.0 0.3 0.0 0.0 0.1
46-60 0.0 0.2 0.8 4.0 0.0 3.9 0.1 0.1 1.1
61-75 0.0 1.4 34 9.9 0.1 14.9 0.5 0.4 5.2
76+ 0.0 37 5.9 119 0.1 27.7 1.3 0.7 13.8
0-15 F 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16-30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31-45 0.3 0.0 0.1 0.8 0.0 0.1 0.0 0.0 0.1
46-60 2.1 0.2 0.8 2.8 0.0 1.9 0.1 0.1 0.7
61-75 5.0 1.0 2.8 6.9 0.0 8.6 0.3 0.2 3.9
76+ 7.6 2.6 3.7 9.1 0.1 19.5 0.7 0.3 12.4

C.2 Risk factor data

The DYNAMO-HIA project aimed to cover three major life-style-related risk
factors: alcohol consumption, BMI, and smoking. The following Table
shows country-specific data by sex aggregated into six age groups. For alco-

hol, the table shows the share of heavy drinkers, i.e. a daily consumption of

40 grams of pure alcohol or more. For BMI, the table shows the share of obese
people, i.e. a BMI of 30 or more. For smoking, the table shows the share of
smokers in the population.

Table C.3: Overview of the population-level prevalence of risk factors used in DYNAMO-HIA

aggregated by age (in percent

) 10911331134

Alcohol BMI Smoking
(heavy drinkers) (obese) (smokers)
Age M F M F M F
Austria 0-15 n/a n/a 4.4 4.1 n/a n/a
16-30 n/a n/a 13.1 6.6 n/a n/a
31-45 n/a n/a 21.6 114 n/a n/a
46-60 n/a n/a 24.4 23.0 n/a n/a
61-75 n/a n/a 24.3 28.3 n/a n/a
76+ n/a n/a 26.2 14.9 n/a n/a
Belgium 0-15 n/a n/a 4.4 41 0.0 0.0
16-30 n/a n/a 4.1 3.1 39.7 30.0
31-45 n/a n/a 8.7 7.4 42.3 31.9

Continued on next Page. ..
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Alcohol BMI Smoking
(heavy drinkers) (obese) (smokers)
Age M F M F M F
46-60 n/a n/a 14.7 14.9 333 21.2
61-75 n/a n/a 17.2 17.3 20.8 8.4
76+ n/a n/a 18.5 13.1 115 35
Bulgaria 0-15 n/a n/a n/a n/a n/a n/a
16-30 n/a n/a n/a n/a n/a n/a
31-45 n/a n/a n/a n/a n/a n/a
46-60 n/a n/a n/a n/a n/a n/a
61-75 n/a n/a n/a n/a n/a n/a
76+ n/a n/a n/a n/a n/a n/a
Cyprus 0-15 n/a n/a n/a n/a n/a n/a
16-30 n/a n/a n/a n/a n/a n/a
31-45 n/a n/a n/a n/a n/a n/a
46-60 n/a n/a n/a n/a n/a n/a
61-75 n/a n/a n/a n/a n/a n/a
76+ n/a n/a n/a n/a n/a n/a
Czech 0-15 0.1 0.2 3.1 2.5 0.0 0.0
Republic 16-30 5.5 1.8 8.2 8.0 439 26.5
31-45 11.5 1.2 18.4 15.9 43.3 344
46-60 12.8 1.3 32.2 24.7 33.2 23.2
61-75 9.7 1.0 32.6 39.2 18.9 9.8
76+ 6.3 0.7 27.7 214 14.5 1.2
Denmark 0-15 1.0 0.3 1.5 2.3 0.0 0.0
16-30 145 34 45 4.1 38.3 344
31-45 14.4 33 8.0 3.2 40.6 39.0
46-60 17.3 47 12.1 8.8 425 36.5
61-75 16.7 4.2 12.1 12.6 36.2 30.1
76+ 14.8 33 12.6 6.3 26.6 14.6
Estonia 0-15 0.4 0.0 n/a n/a 0.0 0.0
16-30 55 0.5 n/a n/a 55.2 324
31-45 6.7 0.6 n/a n/a 58.0 30.4
46-60 6.6 0.5 n/a n/a 50.8 20.7
61-75 3.7 0.2 n/a n/a 40.4 11.0
76+ 1.0 0.0 n/a n/a 32.3 8.5
Finland 0-15 0.3 0.1 3.3 3.9 0.0 0.0
16-30 59 0.8 6.5 5.4 39.3 324
31-45 6.9 0.9 14.0 11.5 375 254
46-60 6.7 1.3 239 274 29.2 19.8
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Alcohol BMI Smoking
(heavy drinkers) (obese) (smokers)
Age M F M F M F
61-75 8.1 0.6 33.0 35.6 24.1 12.8
76+ 9.7 0.1 34.2 19.4 224 11.5
France 0-15 0.1 0.0 3.3 3.6 0.0 0.0
16-30 5.1 0.5 5.9 49 35.9 27.7
31-45 11.6 0.7 9.6 9.4 322 25.5
46-60 17.3 1.0 13.5 16.8 23.7 12.1
61-75 13.5 1.5 15.3 18.3 10.5 4.5
76+ 8.2 1.2 15.8 11.6 7.2 1.2
Germany 0-15 0.9 0.2 44 4.1 0.0 0.0
16-30 9.3 1.7 10.6 8.4 479 325
31-45 7.8 1.3 15.6 16.4 37.8 26.8
46-60 9.6 15 255 22.8 39.7 15.2
61-75 10.6 1.6 30.2 32.5 29.8 7.8
76+ 8.8 1.3 23.2 20.1 25.2 6.3
Greece 0-15 1.0 0.0 n/a n/a n/a n/a
16-30 13.8 0.6 n/a n/a n/a n/a
31-45 14.4 0.5 n/a n/a n/a n/a
46-60 14.7 0.5 n/a n/a n/a n/a
61-75 11.3 0.3 n/a n/a n/a n/a
76+ 6.5 0.2 n/a n/a n/a n/a
Hungary 0-15 n/a n/a n/a n/a 0.0 0.0
16-30 n/a n/a n/a n/a 47.7 37.3
31-45 n/a n/a n/a n/a 47.3 39.0
46-60 n/a n/a n/a n/a 34.6 21.4
61-75 n/a n/a n/a n/a 17.4 6.6
76+ n/a n/a n/a n/a 11.2 3.3
Ireland 0-15 0.7 0.1 6.3 7.2 0.0 0.0
16-30 10.1 14 11.3 7.8 35.6 35.5
31-45 9.2 1.1 20.8 13.3 36.7 29.2
46-60 8.9 0.7 24.4 25.0 24.8 259
61-75 5.7 0.3 24.0 33.2 25.1 22.8
76+ 1.3 0.3 25.6 17.8 25.3 94
Italy 0-15 0.0 0.0 6.1 6.4 0.0 0.0
16-30 5.4 0.7 10.8 6.0 37.0 21.7
31-45 11.9 14 12.5 9.7 38.3 25.1
46-60 16.1 2.0 20.6 24.3 29.9 15.8
61-75 15.1 1.7 19.4 29.0 18.4 6.3

Continued on next Page. ..
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Alcohol BMI Smoking
(heavy drinkers) (obese) (smokers)
Age M F M F M F
76+ 11.9 1.3 22.1 17.2 9.3 2.0
Latvia 0-15 0.1 0.0 n/a n/a 0.0 0.0
16-30 3.0 0.4 n/a n/a 58.9 354
31-45 4.6 0.3 n/a n/a 60.0 249
46-60 3.8 0.2 n/a n/a 46.5 10.3
61-75 2.9 0.1 n/a n/a 31.7 2.2
76+ 1.7 0.0 n/a n/a 27.0 1.7
Lithuania 0-15 n/a n/a n/a n/a 0.0 0.0
16-30 n/a n/a n/a n/a 50.7 27.3
31-45 n/a n/a n/a n/a 54.7 22.5
46-60 n/a n/a n/a n/a 39.8 9.7
61-75 n/a n/a n/a n/a 31.9 4.1
76+ n/a n/a n/a n/a 27.1 3.3
Luxem 0-15 n/a n/a n/a n/a n/a n/a
bourg 16-30 n/a n/a n/a n/a n/a n/a
31-45 n/a n/a n/a n/a n/a n/a
46-60 n/a n/a n/a n/a n/a n/a
61-75 n/a n/a n/a n/a n/a n/a
76+ n/a n/a n/a n/a n/a n/a
Malta 0-15 1.5 0.6 n/a n/a n/a n/a
16-30 16.3 4.5 n/a n/a n/a n/a
31-45 13.1 1.5 n/a n/a n/a n/a
46-60 11.5 0.8 n/a n/a n/a n/a
61-75 8.3 0.6 n/a n/a n/a n/a
76+ 4.3 0.7 n/a n/a n/a n/a
Nether- 0-15 0.6 0.1 2.2 2.8 0.0 0.0
lands 16-30 9.0 1.1 4.7 5.2 39.1 32.6
31-45 10.2 1.8 8.5 9.6 40.1 32.1
46-60 11.5 3.0 15.1 144 33.8 25.7
61-75 8.9 2.3 10.2 19.0 25.0 17.0
76+ 4.3 1.7 10.4 10.4 19.2 8.4
Poland 0-15 0.4 0.0 5.0 4.8 n/a n/a
16-30 4.3 0.1 4.2 3.4 n/a n/a
31-45 4.1 0.2 15.0 139 n/a n/a
46-60 3.8 0.2 239 25.6 n/a n/a
61-75 2.6 0.1 18.8 40.4 n/a n/a
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Alcohol BMI Smoking
(heavy drinkers) (obese) (smokers)
Age M F M F M F
76+ 1.2 0.0 21.0 23.2 n/a n/a
Portugal 0-15 n/a n/a 8.7 8.4 0.0 0.0
16-30 n/a n/a 9.0 54 44.8 194
31-45 n/a n/a 17.2 15.1 44.2 139
46-60 n/a n/a 20.4 22.3 28.3 4.3
61-75 n/a n/a 19.3 27.7 14.4 1.0
76+ n/a n/a 23.2 23.5 6.8 0.7
Romania 0-15 n/a n/a n/a n/a n/a n/a
16-30 n/a n/a n/a n/a n/a n/a
31-45 n/a n/a n/a n/a n/a n/a
46-60 n/a n/a n/a n/a n/a n/a
61-75 n/a n/a n/a n/a n/a n/a
76+ n/a n/a n/a n/a n/a n/a
Slovakia 0-15 n/a n/a n/a n/a 0.0 0.0
16-30 n/a n/a n/a n/a 443 31.7
31-45 n/a n/a n/a n/a 45.8 30.6
46-60 n/a n/a n/a n/a 30.7 13.3
61-75 n/a n/a n/a n/a 16.4 3.0
76+ n/a n/a n/a n/a 13.8 2.2
Slovenia 0-15 n/a n/a n/a n/a n/a n/a
16-30 n/a n/a n/a n/a n/a n/a
31-45 n/a n/a n/a n/a n/a n/a
46-60 n/a n/a n/a n/a n/a n/a
61-75 n/a n/a n/a n/a n/a n/a
76+ n/a n/a n/a n/a n/a n/a
Spain 0-15 0.1 0.1 9.0 7.6 0.0 0.0
16-30 4.2 1.0 6.7 3.3 40.9 29.0
31-45 8.9 1.1 10.7 10.8 415 314
46-60 124 14 18.3 29.2 32.2 21.8
61-75 10.8 1.0 25.1 37.0 13.9 14.7
76+ 7.7 0.1 31.0 40.0 54 20.6
Sweden 0-15 0.7 0.2 3.9 3.6 0.0 0.0
16-30 9.9 2.0 5.2 6.4 14.2 19.7
31-45 9.3 2.0 13.4 10.3 19.2 23.5
46-60 6.6 1.7 13.2 10.9 21.5 24.8
61-75 4.4 1.0 22.0 16.6 134 13.1

Continued on next Page. ..
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Alcohol BMI Smoking
(heavy drinkers) (obese) (smokers)
Age M F M F M F
76+ 3.7 0.5 22.8 8.5 47 52
UK 0-15 1.6 1.1 6.4 8.9 0.0 0.0
16-30 26.4 13.9 11.4 14.8 347 324
31-45 31.0 13.0 24.8 243 28.7 27.9
46-60 315 13.1 28.6 28.8 223 221
61-75 24.0 84 279 30.9 154 15.7
76+ 16.3 53 16.4 21.3 7.0 6.2

C.3 Relative risks

The following tables report the relative risk that connect the three risk factors
causally to disease incidence and total mortality. In addition, the relative risk
for stroke and IHD for diabetes patients are shown.

In addition, the DYNAMO-HIA model can use relative risks to the tar-
get disease by time since stopping (by age and sex). To derive the necessary
values, we implemented the approach used by Hoogenveen et al.*! The sta-
tistical model is defined for the relative risks of former smokers compared
to never smokers as a function of the time since smoking cessation. These
relative risks comprise both all-cause mortality and incidence of chronic dis-
eases. The relative risks of former smokers decrease over time since cessation,
meaning that the effect of past smoking behavior gradually disappears. We
made the following assumptions:

¢ The relative risk of quitters equals the relative risk of current smokers.

¢ The relative risk of former smokers approaches the relative risk of never
smokers, i.e. value 1.

¢ Relative risks of former smokers show a time-constant proportional de-
crease.

* The proportionality coefficients that describe the rate of decrease over
time of the relative risks decrease proportionally over age.

These assumptions result in the following formulas for the relative risk:
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Table C.4: Overview of relative risks from diabetes to IHD and stroke in DYNAMO-HIA 13517

Males Females

Diabetes to IHD
Persons aged up to 55 2.66 3.53
Persons aged 56+ 1.93 2.59
Diabetes to stroke
Persons aged up to 49 2 2.9
Persons aged 50+ 1.8 2.2

RRfm"mer(a’ 8) =1+ (RRcurrent(a) - 1)6(77((1)5)

where
ax* (a)

S

~
n

RRcurrent (a)
RRformer(a)

Y(a) = y0e7

ax(a))

age

transformation of a ; a * (a) = (a — 50)™: the
non-negative value of a-50

time since smoking cessation

regression coefficient of time dependency
regression coefficient of age dependency
relative risks of current smokers at age a

mean relative risks of all former smokers at
age a

The values for 7 and 6 are taken from Hoogenveen et al.bl
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Table C.5: Relative risks of smoking on mortality and diseases used in DYNAMO-HIA 1241

Outcome Males aged 35 and above Females aged 35 and above

Never Current Former Never Current Former

All-cause mortality

Persons aged 35+ 1 2.07 1.35 1 1.74 1.23
Oral Cancer
Persons aged 35+ 1 10.89 3.4 1 5.08 2.29
Esophagus Cancer
Persons aged 35+ 1 6.76 4.46 1 7.75 2.79
Lung cancer
Persons aged 35-39 1 1.3 1 1 2 1
Persons aged 40-44 1 1 1 1 1 1
Persons aged 45-49 1 5.78 2.37 1 18.08 8.07
Persons aged 50-54 1 2497 10.7 1 11.14 3.28
Persons aged 55-59 1 34.02 11.66 1 17.87 5.33
Persons aged 60-64 1 3147 11.71 1 13.32 491
Persons aged 65+ 1 28.4 9.7 1 17.49 5.54
IHD
Persons aged 35-39 1 3.25 1.21 1 1 1.44
Persons aged 40-44 1 4.71 1.15 1 1.89 2.25
Persons aged 45-49 1 5.85 2.03 1 7.71 2.08
Persons aged 50-54 1 3.69 1.93 1 5.69 295
Persons aged 55-59 1 2.71 1.64 1 3.06 1.19
Persons aged 60-64 1 2.39 1.58 1 2.56 1.08
Persons aged 65+ 1 1.91 14 1 2.48 1.22
Stroke
Persons aged 35-39 1 1 1 1 2 1
Persons aged 40-44 1 1.05 1 1 5.67 2.25
Persons aged 45-49 1 3.75 1 1 8.22 1.19
Persons aged 50-54 1 6.08 2.24 1 4.58 1.38
Persons aged 55-59 1 3.96 1.14 1 5.77 1.22
Persons aged 60-64 1 2.55 1.01 1 2.76 1.28
Persons aged 65+ 1 2.69 1.29 1 2.58 1.14

COPD
Persons aged 35-49 1 1
Persons aged 50-54 1 8.13 3.06 1 12.92 7.39
Persons aged 55-59 1 9.8 8.25 1 9.47 5.55
Persons aged 60-64 1 13.21 12.65 1 11.19 6.63
Persons aged 65+ 1 18.93 11.92 1 14.72 9.73
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Table C.6: Relative risks of BMI (categorical) on mortality and diseases used in DYNAMO-

HIA. 1161142H170:

Outcome

(x = multiplier of differential risk for age ad-

justment)

RR overweight
BMI 25-29.9

Normal weight =1

RR obesity

BMI 30 or more

Normal weight =1

males females  males females
All-cause mortality 1.2 1.15 1.55 15
x 0.98 from age 50
x 0.95 from age 60
x 0.90 from age 70
IHD 1.35 1.35 2 2
x 0.70 from age 65
Stroke 12 12 15 1.55
x 0.75 from age 65
Diabetes 2.25 2.3 5.5 7
x 0.92 from age 60
x 0.90 from age 75
COPD 1 1 1 1
Lung cancer 0.8 0.88 0.65 0.7
Breast cancer n/a 1 n/a 1
over age 50 1.12
Oral cancer 0.8 0.88 0.65 0.7
Colorectal cancer 1.2 1.08 1.4 1.1
x 0.90 from age 45
Esophagal cancer 1 1 1 1
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Table C.7: Relative risks of BMI (continuous) on mortality and diseases used in DYNAMO-
HIA TI61224170

Outcome RR per unit BMI
above BMI 22
(x = multiplier of differential risk for age adjustment) males  females
All-cause mortality 1.07 1.03
x 0.98 from age 50
x 0.95 from age 60
x 0.90 from age 70
IHD 1.07 1.1
x 0.70 from age 65
Stroke 1.04 1.04
x 0.75 from age 65
Diabetes 1.18 1.22
x 0.92 from age 60
x 0.90 from age 75
COPD 1 1
Lung cancer 0.97 0.98
Breast cancer n/a 1

x 1.02 from age 50

Oral cancer 0.97 0.98

Colorectal cancer 1.04 1.02
x 0.90 over age 45

Esophagal cancer 1 1

(all forms combined)
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PhD-Portfolio

Obtained academic degrees

Diplom-Politologe (Freie Universitidt zu Berlin, 2003)
Bachelor of Science in Statistics (Humboldt Universitat Berlin, 2004)
Master in Public Policy (Duke University, 2006)

Postgraduate Diploma in Social Science Data Analysis (University of
Essex, 2007)

European Research Master in Demography (Max-Planck-Institute for
Demographic Research, 2007)

Master of Science in Statistics (Humboldt Universitit zu Berlin, 2008)

General courses

Biomedical English Writing and Communication (Erasmus University,
2009, 4 ECTS)

Specific courses

Health Technology Assessment (Erasmus University, 2009, 5 ECTS)
Advanced Economic Evaluation (Erasmus University, 2009, 5 ECTS)
CVD Epidemiology and Modeling (Marie Curie course, 2008, 37.5hrs)
Major Determinants and Major Diseases (NIHES, 2008, 1.4 ECTS)

Multi-state models and models for competing risks (Erasmus MC, 2010,
0.6 ECTS)

Craft of Smoothing (Erasmus MC, 2010, 0.6 ECTS)

Health Issues in Humanitarian Crises (University Bielefeld, 2010, 1.5
ECTS)
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Seminars and workshops

¢ Invited presentation at Quantitative HIA workshop at EUPHA 09 (Lodz,
2009, 40 hours)

* DYNAMO-HIA consortium meeting (Rotterdam, 2008, 40 hours)

* DYNAMO-HIA workshop at HIA 09 (Rotterdam, 2009, 40 hours)

* DYNAMO-HIA workshop at EUPHA 10 (Amsterdam, 2010, 40 hours)

Other
¢ Convenor of MMDV-Meetings at Erasmus MC 2008-2010 (60 hours)

Presentations

¢ "Spatial Modeling of all-cause mortality", Methodology Seminar (Eras-
mus MC, 2008, 20 hours)

e '"Pitfalls of PIF", Methodology Seminar (Erasmus MC, 2009, 20 hours)

¢ MGZ Research Seminar (Erasmus MC, 2011, 20 hours)

(Inter)national conferences

¢ Paper presented at HIA 08 conference (Liverpool, 2008, 40 hours)

¢ Paper presented at German Statistical Week (Cologne, 2008, 40 hours)
Key note lecture (co-authored) at HIA 10 (Rotterdam, 2010, 40 hours)
¢ Paper presented at EUPHA 09 (Lodz, 2009, 40 hours)

Poster presented at EUPHA 10 (Amsterdam, 2010, 40 hours)

¢ Paper presented at DGEpi (Berlin, 2010, 40 hours)

Lecturing

¢ "Global Burden of Disease study" (Lecture and in-class exercise), Inter-
national Institute of Social Studies (Den Haag, 2011, 40 hours)

* Medical Demography (Lecture), NIHES (Rotterdam, 2010, 20 hours)

* Medical Demography (Lecture), NIHES (Rotterdam, 2011, 40 hours)

Supervising practicals and excursions, Tutoring

¢ "Global Burden of Disease study" (in-class exercise), International Insti-
tute of Social Studies (Den Haag, 2010, 20 hours)
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