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Chapter

1 General Introduction

An important inference framework in statistical methods is based on the likeli-

hood function. First we will review the likelihood theory for independent observa-

tions. Then we use correlated data likelihood modeling concepts to introduce the

h-likelihood framework.

1.1 Estimation based on likelihood

Suppose that a cross-sectional study was set up to examine a specific measure, say

blood pressure, of individuals from a particular population. The purpose is most

often to characterize the distribution of that measure, or an aspect of it such as

the mean, in the population. Usually we assume that the distribution belongs to

a particular class of distributions where each element of that class is specified by a

d-dimensional parameter θ. For the population under consideration we assume that

there exists a true, but unknown value of the parameter denoted by θT . The sample

data from N independent individuals collected with the cross-sectional study, i.e.

y = {y1, . . . , yN}, are assumed to throw light on θT . In statistical inference, the

goal is to establish a mechanism to conclude from the data what the true θT could

be. It must be said that the assumption of a particular distribution fθ(y), may be

too simplistic in practice. But this assumption, if the model is not taken too rigid,

1



2 Chapter 1

allows us to use an important framework of statistical inference. Namely, based on

the model fθ(y) we can define the probability to observe y as a function of θ as

follows:

L(θ|y) =
N∏

i=1

fθ(yi).

The above expression is called the likelihood function for the sample of independent

observations at hand. This function describes the plausibility of each parameter

value θ in the light of the observed data and can therefore be used to provide an

estimate for the unknown parameter of the population. Such an estimate can be

estimated from the value that maximizes the likelihood function, i.e. using the

maximum likelihood estimator (MLE) denoted as θ̂. The MLE θ̂ estimator has the

following properties under regularity conditions:

1. Consistency: The MLE is consistent. This means that, when the sample size

increases, the MLE value tends to the true value θT in probability.

2. Asymptotic distribution: The asymptotic distribution of the MLE is normal

with expectation θT and variance-covariance matrix equal to the inverse of

the information matrix (negative 2nd derivative of the likelihood with respect

to the parameters of interest). This implies that the MLE is asymptotically

unbiased, meaning that for large samples, in repeated experiments the value

given by the MLE will be on average equal to θT . The approximation improves

if the derivative of the log-likelihood is close to linear in a region around the

MLE or equivalently, when close to the MLE value the log-likelihood approxi-

mately quadratic. In Section 1.2 we show how the approximating distribution

is derived.

3. Efficiency: The MLE has asymptotically the highest precision among all un-

biased estimators for large samples. One says that it attains the Cramer-Rao

lower bound. Note that efficiency refers to the precision the estimator exhibits

in detecting θT for a given sample size. Formally precision is the inverse of the

standard error of the estimator. The higher the precision the estimator has,

the more likely is the estimate to be closer to the true value of the parameter

on average.
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The discussion of the above properties, as well as the regularity conditions can be

found in Severini (2000), Schervish (1995) and Pawitan (2001). The versatility of

the likelihood function as a basis of the estimation, and a clear principle how to

use it to obtain estimates combined with the above attractive properties of the

MLE, makes likelihood-based estimation attractive. Further, not only estimation

and properties of estimates might be derived but also statistical hypothesis testing

is easily performed within the likelihood framework. Hypothesis testing based on

the likelihood function is briefly reviewed in next section.

1.2 Hypothesis testing based on likelihood

We present here some main results, and computational aspects of likelihood-based

hypothesis testing. Three tests which can be derived from the likelihood are com-

monly used: the likelihood ratio test, the Wald test and the score test. In this

section we summarize the theory which ensures the validity of these statistical tests

and show their derivation. It is customary to work with the logarithm of the likeli-

hood. The derivative of the log-likelihood is called the score vector, i.e.

S(θ|y) = ∂ logL(θ|y)
∂θ

.

The MLE of θT is found by solving S(θ|y) = 0. It is important to understand that

the score vector is, like the likelihood value, a random variable depending on the

collected sample. The score statistic has the following properties:

E[S(θT |y)] =
∫ [

∂ logL(θ|y)
∂θ

∣∣
θ=θT

]
fθT (y)dy = 0, (1.1)

V ar[S(θT |y)] = E[S(θT |y)− E(S(θT |y))]2 = −E
(
∂2 logL(θ|y)

∂θ∂θT
∣∣
θ=θT

)
. (1.2)

Note that these properties hold under the true value θT . The second expression

defines the variance of the score statistic and is called the (expected) Fisher in-

formation. As a function of θ, the expected information tells how ‘hard’ it is to

estimate θ. Namely, parameters with greater information can be estimated more

easily, requiring a smaller sample size to achieve a required precision. By the ob-
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served Fisher information matrix we mean the negative of the Hessian of the log

likelihood with respect to the parameters θ, denoted by I(θ) = −∂2 logL(θ|y)
∂θ∂θT

. Note

that the observed Fisher information is a realization of a random variable at given

θ, and has a different distribution for every θ.

We first need to see how the asymptotic distribution of the MLE θ̂ is obtained

in order to proceed with the derivation of likelihood-based test statistics. We now

suppress the dependence of S(θ|y) on the sample y for notational convenience.

Expressing S(θT ) around θ̂ by a first order Taylor expansion (justified by the con-

sistency of the MLE) we get:

S(θT ) ≈ S(θ̂) + (θT − θ̂)∂
2 logL(θ)
∂θ∂θT

∣∣
θ=θ̂

.

Note that this approximation is more accurate when the score function is approxi-

mately linear, and is exact when the score function is a linear function of θ. Hence,

the more quadratic the log-likelihood is around θ̂ the better the previous approxi-

mation, and we have:

(θ̂ − θT ) ≈ I−1(θ̂)S(θT ). (1.3)

Hence the score statistic follows, according to the Central Limit Theorem, asymp-

totically a multivariate normal distribution with mean and variance as shown in

(1.1) and (1.2). This implies on its turn that the MLE is asymptotically normally

distributed with mean θT and variance covariance matrix I−1(θ̂). Further, because

the observed Fisher information matrix converges to the expected Fisher informa-

tion matrix and the MLE converges to θT , the variance covariance matrix of the

MLE can be replaced by I(θT ), which is useful in constructing statistical tests. The

aim of a statistical test is to get insight whether there is enough information to

reject a statement about a possible true value of the parameter. We hypothesize

that the value might be θT = θ0 and seek the rejection of the statement from the

statistical test. We start from the derivation of the likelihood ratio (LR) test. The

LR statistic has the following form:

W = 2[logL(θ̂)− logL(θ0)],
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To show the asymptotic distribution of the above statistic we use a Taylor expansion

of L(θ̂) around θ0. This gives:

logL(θ̂) ≈ logL(θ0) + (θ̂ − θ0)S(θ0)− 0.5(θ̂ − θ0)I(θ0)(θ̂ − θ0)

We can use (1.3) and plug in the above expression. In addition we use the fact that

observed information at θ̂ is approximately the observed information at θ0 to get:

logL(θ̂) ≈ logL(θ0) + S(θ0)I−1(θ0)S(θ0)− 0.5S(θ0)I−1(θ0)I(θ0)I
−1(θ0)S(θ0)

We use the latter formula to write down the expression for the likelihood ratio

statistic:

W ≈ S(θ0)I−1(θ0)S(θ0).

We know that the distribution of the score statistic is normal with mean zero and

variance equal to the Fisher information, this implies that the distribution of the LR

test is a chi-square with d degrees of freedom under the null hypothesis H0 : θ = θ0.

The second test derived from the likelihood is the Wald test:

Ww = (θ̂ − θ0)I(θ̂)(θ̂ − θ0).

To prove the distribution of the Wald test under H0, we will use the Taylor formula

for 2[logL(θ̂)− logL(θ0)] around θ̂, this gives:

W ≈ −2[logL(θ̂) + S(θ̂)(θ0 − θ̂) + 0.5(θ0 − θ̂)T
∂2 logL(θ̂)
∂θ∂θT

(θ0 − θ̂)T − logL(θ̂)],

W ≈ (θ̂ − θ0)I(θ̂)(θ̂ − θ0),

therefore the asymptotic distribution of the Wald statistic under H0 is the same as

that of the likelihood ratio statistic. Further, from the asymptotic distribution of

the score statistic we derive the score test:

Ws =
S(θ0)√
I(θ0)

,

which has asymptotically a standard normal distribution under H0. Equivocally,
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W2
s has a chi-square distribution with d degrees of freedom under H0.

The above discussion focussed on the estimation of parameters and hypothesis

tests using the likelihood of independent identically distributed observations. We

now turn to the correlated case.

1.3 Likelihood inference and random effects models

Correlated data arise when sampling is performed within clusters, which have their

own specific characteristics. Clusters might be hospitals in a clinical trial, herds of

animals, patients who are followed up over time. In Diggle et al. (2002) three types

of models for correlated data are discussed: marginal models, random effects models

and transition models. In this thesis we are concerned with random effects models

which exploit the likelihood as the basis for estimation and inference.

The class of random effects models assumes that the correlation between mea-

surements is due to unobserved latent variables (random effects), which are respon-

sible for heterogeneity between subjects not explained by the fixed effects. In other

words, having observed all the qualities of subjects under the study, we still cannot

explain all characteristics pertaining to a cluster by these covariates. These unob-

served features, are the basis for the correlation between measurements within a

given cluster, in addition to the observed covariates.

The latent variables in a random effects model are assumed have a distribution

and are therefore coined as random. In contrast, the fixed effects are parameters in

the model, which are believed to have a unique value in the non-Bayesian framework.

In a random effects model one assumes that the observed data are generated in two

steps. First, random effects v are sampled from the assumed distribution fλ(v).

In a second step, given realized values of the random effects v∗, the observed data

are sampled from fβ,λ(y|v∗). Therefore, given the value of the latent variable, the

probability to observe the data is given by L(β,λ|yi·)|vi=v∗

i
=
∏ni
j=1 fβ,λ(yij |vi =

v∗
i ). Of course, we can obtain the same observed data under different values of

latent variables vi. Therefore, the total likelihood to observe the data yi is the sum

of all conditional likelihoods for every different value of latent variables, weighted

by the probability to actually have this value of the latent variable. This reasoning



1.3 Likelihood inference and random effects models 7

leads to the marginal likelihood, which is a standard objective function to estimate

the parameters of a random effects model:

LM (β,λ|y) =
∫
. . .

∫ N∏

i=1

ni∏

j=1

fβ,λ(yij |vi)fλ(vi)dv1 . . . dvN , (1.4)

with N being a number of clusters and ni number of observations in the i − th

cluster. To compute the marginal likelihood one needs to solve the above integral,

which often does not have a closed form solutions and numerical methods need

to be invoked. Observe that when N increases, the number of latent variables

increases, but the number of parameters in the marginal likelihood remains the same.

This allows the application of standard results of likelihood theory developed for

independent observations, except for some specific designs. However, the marginal

likelihood does not contain any information about the individual random effects.

Inference on the individual random is based on empirical Bayes (EB) estimation.

In a Bayesian approach we treat all parameters as random variables. Based on this

assumption the joint likelihood of all parameters assuming that they are independent

(where appropriate or necessary) needs to be established. Hence, the joint likelihood

is:

f(y,β,v,λ) = f(y|β,v,λ)f(β)f(v)f(λ),

where f(β), f(v), and f(λ) are priors. In an empirical Bayes approach, we will use

the estimated values of parameters β and λ from a maximum likelihood procedure.

Therefore the MLE value of these parameters is assumed to occur with probability

one, while other values have probability zero. This allows us to write down the joint

distribution of observed and latent data, given the estimated parameters, as follows:

f
β̂,λ̂(y,v) = f

β̂,λ̂(y|v)fλ̂(v).

This forms the basis for the posterior calculation of the random effects:

f
β̂,λ̂(v|y) =

f
β̂,λ̂(y|v)fλ̂(v)
f
β̂,λ̂(y)

.

Because the plug-in is used the method is called empirical Bayes. In a Bayesian



8 Chapter 1

context one says that the EB estimate is the mode of the posterior distribution

(Molenberghs and Verbeke, 2005). For the meaning of the posterior distribution, we

refer to the above explanation of the marginal likelihood. We noted that the same

observed data might be obtained under different true values of the latent variable,

therefore the posterior distribution evaluates what is the probability of the value of

latent variable given the data has been obtained. Clearly random effects are treated

as random parameters in this approach.

The class of mixed models, where the response variable is assumed to follow

a Gaussian distribution, has been generalized to allow for Poisson, Binomial or

other types of distributions. In these models the random components are typically

assumed to follow (multivariate) normal distribution.

1.4 H-likelihood estimation and inference

Lee and Nelder (1996) proposed to use another approach to the estimation of corre-

lated data model avoiding the computation of the marginal likelihood. In the same

paper they coined a term hierarchical generalized linear models (HGLM), which can

be handled by their approach. The HGLM model is an extension of a generalized

linear model whereby the random effects can follow a conjugate Bayesian distribu-

tion. The proposed method uses the extended likelihood as the basis of estimation

and inference, which is termed hierarchical likelihood or h-likelihood. This func-

tion is readily available from the definition of the model in contrast to the marginal

likelihood and can be written as follows:

LE(β,λ,v|y,v) =
N∏

i=1

ni∏

j=1

fβ,λ(yij |vi)fλ(vi). (1.5)

Because we observe only y one can imagine that there could be different forms

of v which later lead to the realization of the observed data. Suppose random

effects v follow assumed distribution f(v), and the response is generated from the

distribution f(y|η). Now we can choose for different η. Suppose η1 = Xβ + v and



1.4 H-likelihood estimation and inference 9

η2 = Xβ × exp(v). Therefore we can have two likelihood functions:

L1(β,λ,v|y,v) = f(y|η1)f(v),

and

L2(β,λ,v|y,v) = f(y|η2)f(v),

these are two examples of extended likelihood and the question is which one shall

we use for the statistical estimation and inference. By definition h-likelihood is one

of the extended likelihoods when parameter v is canonical. The random effects v

are canonical when they don’t interfere with an estimation of fixed effects. This

means that the marginal likelihood gives the same inference about fixed effects as

this extended likelihood. Further, the weak canonical scale is defined the scale

when random effects combine additively with fixed effects in a linear predictor as

in L1(β,λ,v|y,v). This is also by definition h-likelihood even in cases when the

canonical scale does not exist. Detailed discussion can be found in Lee et al. (2006).

The likelihood L1(β,λ,v|y,v) is called a hierarchical likelihood, as the random

effects enter linearly in the linear predictor, and we use h = log(L1) to denote the

log h-likelihood.

The expression of the extended likelihood contains three types of parameters:

fixed β and random v parameters in the mean structure and variance components λ.

However, expression (1.5) cannot be used to estimate directly all parameters. In Lee

and Nelder (1996) it is shown that an adjusted profile likelihood function is needed

to estimate the variance components. The adjusted profile likelihood function is

obtained from the extended likelihood by adding a correction as follows:

pβ,v(h) = h(β,λ,v)|
β=β̂,v=v̂

− 0.5 log

∣∣∣∣
D [h, (β,v)]

2π

∣∣∣∣
β=β̂,v=v̂

, (1.6)

with

D[h, (β,v)] = −
(

∂2h(β,λ,v)
∂β∂βT

∂2h(β,λ,v)
∂β∂vT

∂2h(β,λ,v)
∂v∂βT

∂2h(β,λ,v)
∂v∂vT

)
.

The adjusted profile likelihood is maximized with respect to λ to obtain λ̂. The

adjustment term is used in order to approximate a restricted marginal likelihood.
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Maximization of unadjusted profile likelihood would provide solution equivalent to

the extended likelihood for variance components. This extends the REML estima-

tion and inference to the class of generalized linear mixed models (Noh and Lee,

2007). It can be shown that in case of linear mixed models this function provides

exactly the restricted maximum likelihood. Given estimated variance components,

one could use the extended likelihood to find the estimates of β and v. This works

well, however in some instances (especially binary data) one needs another adjusted

profile likelihood to find the fixed effects β, i.e.

pv(h) = h(β,λ,v)|v=v̂ − 0.5 log

∣∣∣∣
D(h,v)

2π

∣∣∣∣
v=v̂

, (1.7)

where D(h,v) = −∂2h(β,λ,v)
∂v∂vT

. After estimates of λ and β are obtained one might

use expression (1.5) to find the values of v.

The class of HGLM contains models where the response is allowed to follow

exponential family, while independent random components are assumed have a con-

jugate Bayesian distribution. For this class of models an extension of a Iterative

Weighted Least Squares (IWLS) algorithm has been developed, which allows to es-

timate the fixed and random effects as well as variance components. This approach

allows the analysis of complex designs of experiments and the inclusion of covariates

in the variance component part or non-Gaussian random effects.

1.5 Aim of the thesis

This thesis focusses on the use of likelihood and h-likelihood methods to the esti-

mation of complex models. In the first chapter a mixture model for cross-sectional

data is scrutinized. A new approach to the mixture modeling is proposed where

prior probabilities are fixed, while we change the dimension of the multinomial dis-

tribution. Further, the conditional distributions, the mean and the variance vary as

a function of covariates by an application of splines.

The second chapter deals with ordinal data modelling using marginal likelihood

techniques. Different random effects models for Bounded Outcome Scores (BOS) are

compared in the study. BOS responses can have J-shaped or U-shaped distributions,
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which may require transformation in order to apply standard generalized random

effects models.

The third chapter discusses the general theory of h-likelihood. It describes fur-

ther the use of the package HGLMMM to estimate hierarchical generalized linear

models with h-likelihood. These models were developed in Lee and Nelder (1996),

Lee and Nelder (2001) and Noh and Lee (2007). Numerous examples are used for

the illustration of the procedures.

In the fourth chapter, we present a further discussion of the h-likelihood approach

to random effects models and contrast it to the marginal likelihood. Further, an

extension of existing h-likelihood methods is presented to the estimation of hurdle

models. These types of models allow handling of the zero-inflated count data.

In Chapter 5 h-likelihood methods are extended to allow for joint estimation

of several HGLMs, which are linked by correlated Gaussian random effects. We

also incorporate the use of Newton-Raphson procedures to estimate the correlation

parameters, which is blended with existing h-likelihood algorithms.
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Chapter

2 Finite Mixture Models with Fixed

Weights Applied to Growth Data

Based on:

Molas M. and Lesaffre E. (2012). Finite Mixture Models with Fixed Weights Ap-

plied to Growth Data. Submitted to Biometrical Letters.

Abstract

To model cross-sectional growth data the LMS method (Cole and Green, 1992) is

widely applied.

Here, we propose an alternative approach based on fitting finite mixture models

(McLachlan and Peel, 2000) with K components which may perform better than

the LMS method in case the data show an unusual distribution. Further, we explore

fixing the weights of the mixture components in contrast to the standard approach

where weights are estimated. Having fixed weights improves the speed of computa-

tion and the stability of the solution. In addition, fixing the weights provides almost

as good fit as when the weights are estimated.

Our methodology combines Gaussian mixture modelling and spline smoothing

13
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(Eilers and Marx, 1996, Ramsay,1988). The estimation of the parameters is based

on the joint modeling of mean and dispersion proposed in Nelder and Pregibon

(1987).

We illustrate the methodology on the Fourth Dutch Growth Study, which is

a cross-sectional study that contains information on the growth of 7303 boys as

a function of age. This information is used to construct centile curves so called

growth curves, which describe the distribution of height as a smooth function of

age. Further, we analyze simulated data showing a bimodal structure at some time

point.

In its full generality, the approach allows for the replacement of the Gaussian

components by any parametric density. Further, different components of the mixture

can have a different probabilistic (multivariate) structure allowing for censoring and

truncation.

2.1 Introduction

The Fourth Dutch Growth Study is a cross-sectional study which recorded several

variables for a sample of boys and girls conducted in the Netherlands in 1997. Here

we consider the height of 7303 boys, and we aimed to estimate centile curves of

height as a function of age. The age ranges from 0.032 to 21.7 years, with a mean

of 9.29 years. The median height is 145 cm with range 48.5 - 205.8 cm. Further

details of the study can be found in van Buuren and Fredriks (2001).

The standard method for estimating growth curves is the LMS method (Cole

and Green, 1992). This method transforms the data to normality, and models

the median, the coefficient of variation and the skewness as a smooth function of

covariates, e.g. age. It performs well in most situations. However, when the data

exhibits a special structure, such as being bimodal, at some ages, and unimodal at

other ages, the LMS method might not be optimal. Such data can arise when the

total population splits up into subgroups that have different growth spurts.

Another approach useful in the presence of mixtures is available in the R package

gamlss.mx (Rigby and Stasinopoulos, 2005). This package allows for a mixture of

distributions to be fitted, where means and standard deviations might depend on
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age and the contributions of each mixture component are estimated.

We explore in this paper a simplified finite mixture modelling approach (McLach-

lan and Peel, 2000), where weights are fixed to be equal. This speeds up the com-

putation time, and offers more stability of the solution. The disadvantage of the

simplified computational approach is a less than optimal fit. The observed loss of

fit is often minimal, and can even be avoided by adding some extra mixture compo-

nents. Further, by the addition of splines we can allow for the smooth change of the

density along the covariates, where means and variances of the component densities

can be expressed as a non-linear function of covariates. Further, one can tune the

approach with respect to the number of components, and the flexibility of splines

in each part of the model. Decision about the final model is based on the Akaike

Information Criterion (AIC).

In the next section we first review the estimation process of finite mixture models,

using the standard case of Gaussian mixtures. Generalization to exponential family

densities, multivariate distributions and censoring follows. In Section 2.3 we present

an application of the modelling approach to the Fourth Dutch Growth data. A

limited numerical study is performed in Section 2.4. Finally, we give some concluding

remarks.

2.2 Mixture models

2.2.1 Mixtures of Gaussian Distributions

Throughout this section we will use indices: k = 1, . . . ,K for the number of mixture

components, i = 1, . . . , N for the number of observations, p = 1, . . . , Pβ index is

used for both fixed parameters in the mean structure and p = 1, . . . , Pγ for the

parameters in the dispersion structure. A mixture model evaluated in data point yi

is given by:

g(yi) =
K∑

k=1

wkfk(yi), (2.1)

with fk(yi), (k = 1, . . . ,K) the mixture components.

In a Gaussian mixture model each fk(yi) is assumed to be a normal density
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with a mean µk and variance φk ≡ σ2k. Further, each mixture component fk(yi)

contributes to the total density via weight wk. Suppose that the density described

in (2.1) changes over a range of known factors (which can be continuous such as

age, or discrete such as treatment). Denote by zi a set of factors pertaining to

observation yi, whereby, the location parameters µk are a function of xi, and the

variances φk are a function of ri, with xi and ri subsets of zi, then we obtain the

following model:

g(yi|x, r) =
K∑

k=1

wkfk(yi|xi, ri), (2.2)

where g(yi|xi, ri) is the distribution of the response yi. We assume that the param-

eters in each of the K components are allowed to be distinct. This is of interest

for the Fourth Dutch Growth Study as we wish to allow for a change of the dis-

tributional shape of the mixture along with covariates. The log-likelihood of all N

subjects is

logL(β1, . . . ,βK ,γ1, . . . ,γK , w1, . . . , wk;y) =
N∑

i=1

log

[
K∑

k=1

wk · fk(yi|µk(xi), φk(ri))
]
,

(2.3)

We distinguish three types of the parameters in the above likelihood: (1) location pa-

rameters µk(xi) = xTi βk, (2) scale parameters φk(ri) = exp(rTi γk), and (3) weights

wk. The score equations with respect to β are expressed as follows:

∂ logL

∂βkp
=

N∑

i=1


 wk

∂fk(yi|xi,ri)
∂βkp∑K

k=1wk · fk(yi|xi, ri)


 =

N∑

i=1

cki
∂ log(fk(yi|xi, ri))

∂βkp
, (2.4)

with cki =
wk·fk(yi|xi,ri)∑K
k=1 wk·fk(yi|xi,ri)

, and p = 1, . . . , Pβ . Same score equations are obtained

for the parameters of the Pγ dimensional γk vectors with entries γkp, p = 1, . . . , Pγ .

Similarly we can derive the score equations for weights wk:

∂ logL

∂wk
=

N∑

i=1

cki
∂ log(wk)

∂wk
−

N∑

i=1

cKi
∂ log(wk)

∂wk
, (2.5)

which are the score equations of a multinomial model where the parameters are wk
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given the estimated posterior weights cki. When weights do not depend on covariates

the solution for wk has a closed form, i.e.

ŵk =

∑N
i=1 cki
N

. (2.6)

However, when the weights are functions of covariates, iterative procedures are

necessary.

We propose here to keep weights fixed and equal wk = w. Then equations

(2.5) do not need to be solved but we estimate only location and scale parameters.

This speeds up the convergence, as no iteration for weights is needed and by fixing

weights problems as an infinite likelihood (McLachlan and Peel, 2000)[pp. 94-97]

are avoided. Thus fixing to equal weights, estimation is speeded up and numerical

stability of the solution is improved. We refer to this approach as the “FMIX”

approach.

For fk(yi|xi, ri) a Gaussian probability density function:

fk(yi|xi, ri) = Nk(µk(xi), φk(ri)), (2.7)

the score equations become

∂ logL

∂βkp
=

N∑

i=1

cki

(
yi − µki
φki

)
xip =

N∑

i=1

c̃ki(yi − µki)xip, (2.8)

p = 1, . . . , Pβ , resembling score equations of a normal distribution with unequal

variances. The solution is provided by the weighted least squares procedure:

β̂k = (XT C̃kX)−1XT C̃ky, (2.9)

k = 1, . . . ,K, with C̃k a diagonal matrix with entries c̃ki =
cki
φki

.

For the variance structure parameters γk, the general framework was described

in Nelder and Pregibon (1987). The score equations have the following expressions:

∂ logL

∂γkp
=

N∑

i=1

cki

[
− 1

2φki
+

dki
2φ2ki

]
∂φki
∂γkp

=
N∑

i=1

[
cki
2

dki − φki
φ2ki

]
∂φki
∂γkp

, (2.10)
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p = 1, . . . , Pγ , with dki the deviance residual, which for a normal distribution is equal

to the squared residual (yi − µki)
2. Equation (2.10) is a score equation of a gamma

generalized linear model (GLM), with a response dki, a prior weight cki/2, and a

mean φki linked to the covariates. The parameters can be estimated by Iterative

Weighted Least Squares (IWLS), see also Nelder and Wedderburn (1972).

The above two (I)WLS procedures can be combined into an interchangeable

IWLS algorithm to find estimates of βk and γk for each kth component of the

mixture. In total the following estimation procedure is proposed:

1 Weights cki are computed given (starting) values of βk(t− 1) and γk(t− 1)

2 Each of K components is estimated by the above procedure yielding βk(t) and

γk(t)

3 Iterate [1] and [2] until convergence

This approach can be proven to be equivalent to the EM-algorithm. Briefly, the

E-step of the algorithm corresponds to finding the weights cki, while the M-step is

solving equations (2.4) and (2.5) given the posterior weights cki. More details on

the EM-algorithm in this setting can be found in McLachlan and Peel (2000)[pp.

48-51].

Upon convergence proper standard errors of each component location and scale

parameters can be computed numerically using the hessian matrix of the likelihood

evaluated at the maximum.

2.2.2 Mixtures of Exponential Family Distributions

We can easily extend the previous approach to mixtures of other distributions from

the exponential family:

f(yi) = exp

(
yiθi − b(θi)

φi
+ c(yi, φi)

)
. (2.11)
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In general, the score equations (2.4) become:

∂ logL

∂βkp
=

N∑

i=1

cki

(
yi − µki
φkiV (µki)

)
∂µki
∂ηki

xip, (2.12)

where p = 1, . . . , Pβ . These are the score equations of a standard GLM with a

modified prior weight equal c̃ki = cki/φki. Therefore a standard IWLS algorithm

can be used for the estimation, see e.g. Lee et al. (2006) [pp. 85-87]. The estimation

of the dispersion parameters γk requires the use of deviance residuals, corresponding

to the distribution used as a component of the mixture (e.g. Poisson, binomial, . . .).

To find the estimates of dispersion parameters γkp with p = 1, . . . , Pγ the gamma

distributed GLM is fitted as in Section 2.2.1.

2.3 Applications

2.3.1 Fourth Dutch Growth Study

Here we present the analyses of the cross-sectional Fourth Dutch Growth Study.

The objective is to model the centile curves of height as a function of age on the

7303 boys in the study.

FMIX approach

We first illustrate the FMIX approach on a part of the data i.e. the boys of age 14

to 16 and fit a flexible density distribution to this sub-sample. We used 5 Gaussian

mixture components. Every component has its own mean and variance, the weights

are 0.2. The assumed density for each height is then:

f(yi|µ1 . . . µ5, σ1 . . . σ5) =
5∑

i=1

1

5
N (yi|µi, σ2i ).

The result of the fit is shown in Figure 2.1(a). For comparison we present the fitted

density when weights were estimated. The fitted density is presented in Figure

2.1(b). Comparing Figures 2.1(a) and 2.1(b) demonstrates the flexibility with which
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Figure 2.1: Fourth Dutch Growth Study: estimation of the density for boys of age 14 to 16
with 1(a) fixed weights 1(b) estimated weights

mixtures are fitted.

Next, we analyzed the complete dataset to see the evolution of height with age.

The relationship is clearly non-linear and therefore we used splines to capture this

behaviour.

We started with restricted cubic splines (Harrell, 2001)[pp. 20-21] and cubic

B-splines (Eilers and Marx, 1996), but the B-splines converge quicker and gave a

better fit. In what follows we denote a B-spline of age with n degrees of freedom as

bs(age, n), with degrees of freedom (df) equal to the number of spline bases. The

following structure was used in the final model:

µk = bs(age, 10)βk,
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σ2k ≡ φk = exp(bs(age, 3)γk),

with the df determined by minimizing the AIC (smaller is better). However no

claim is made that we determined the optimal df. In Table 2.1 we present the

AIC of various FMIX models. We considered models with a different number of

components and a different df in the mean and variance structure. The optimal

model contained four mixture components with df=10 in the mean structure and

df=3 in the variance structure. The result of the estimation (fitted centile curves)

is presented in Figure 2.2.

Figure 2.3 presents fitted densities at different pre-selected ages of boys. To check

the fit of the model worm plots (van Buuren and Fredriks, 2001) were created see

Figure 2.4. A worm plot presents the expected quantiles and observed quantiles of

a model for a range of covariate, augmented with confidence bands of the estimated

quantiles.

The fit of the model seems appropriate, although there is still some misfit for

boys younger than 35 days. Modeling at this young age is very difficult due to a

fast increase in height for young boys. Further we computed the percentage of ob-

servations falling below every centile curve. This computed percentage is very close

to the nominal centile i.e., below the 95%-ile lies about 95 percent of observations

for the whole span of age. To fit the Gaussian mixture model with 10 bases in the

mean, 3 basis functions in variance structure and 4 Gaussian components with fixed

weights 2.8 minutes were necessary on a Pentium 2.33 Ghz core duo 2GB RAM.

LMS approach

A competitor to the FMIX approach, popular in the growth curves modelling is

the LMS method of Cole and Green (1992). The LMS models were fitted using

the R gamlss package, with the gamlss function with distribution ’BCCG’ and an

adequate number of dfs in each of the structures (mean,variance,skewness). We

compared the AIC of LMS models in Table 2.1. The AIC is worse than that of

FMIX models considered. The fitted centile curves with LMS approach are shown

in Figure 2.2.

In the analysis of the Fourth Dutch Growth Study height of boys, the visual fit
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Figure 2.3: Fourth Dutch Growth Study: fitted densities at pre-selected boys ages
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Model AIC (lower is better)
M10V3K4E 44564.9
M10V5K7 44601.9
M10V5K5 44602.3
M10V3K5 44582.3
M10V3K4 44574.1
M10V3K3 44579.1

LMS-M10V3S1 44633.7
LMS-M10V5S1 44619.3

Table 2.1: Fourth Dutch Growth Study: AIC of different models

We denote the number of dfs in the mean structure and variance structure together with a

number of mixture components as follows: M10V5K7E - is a mixture model with 7

mixture components (K), 5 df of a B-spline in variance structure (V) and 10 df B-spline in

the mean structure (M); E denotes that the weights of a mixture are estimated;

LMS-M10V3S1 - denotes an LMS model with 10 degrees of freedom in the mean structure,

3 degrees of freedom in the variance structure and one parameter in the skewness part of

the distribution

of the LMS model and the mixture approach with 4 mixture components with fixed

weights did not differ much, see Figure 2.2. The LMS method required less than 5

seconds to perform the fit.

General mixture modelling

R package gamlss.mx allows to fit mixtures of distributions with estimated weights,

which also can depend on covariates. However when trying to fit the model with

splines in mean and variance structure the program failed to converge (10 and 3

dfs subsequently). We developed our own codes for fitting mixture models with

estimated weights to analyze the Fourth Dutch Growth Study. We allowed for the

weights to be estimated, but not to depend on covariates. The fit of the model

measured by AIC was better (see Table 2.1), however visual fit of the centile curves

to the data was not improved (results not shown). To fit the model 8.9 minutes

were needed.
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Penalized Gaussian Mixture approach

In Ghidey et al. (2004) the penalized Gaussian mixture model (PGMM) was intro-

duced. This approach proposes to fix the means and variances of the components

of the mixture, letting the weights of the individual distributions to be estimated.

Additionally a penalty is imposed on the weights, reducing the difference between

the weights estimates of the neighboring distributions. The implementation of this

approach can be found in the R package smoothSurv. Applications in survival

analysis can be found in Komarek et al. (2005).

This model can be applied to positive continuous data, with the exponent of the

response as dependent variable. The shape of the distribution (modeled by weights)

remains the same over the range of a covariates, while the mean and scale are

estimated from the data and can vary with independent variables. An extension of

the approach could allow the weights to depend on the covariates, thereby allowing

the shape of distribution to change with a factor.

The PGMM as described in Komarek et al. (2005) was applied to the Fourth

Dutch Growth Study assuming constant weights (results not presented). In case of

growth data estimation time using this approach might be somewhat long. Further,

it is unclear how to create the penalty term of the likelihood when weights change

with a covariate.

2.3.2 Simulated example

In this section we present an artificially simulated dataset, however the example is

motivated by the situation described in Muthen and Brown (2009). They describe

a 4-class drug trial model, where the patients are assigned to either drug group or

a placebo group. Further, in each drug group there are respondents to the treat-

ment and non-respondents. Therefore, while information on the drug assignment

is available in covariates, the information whether patient is a respondent or not

is a latent factor and cannot be observed. Here we will consider one drug only,

therefore we have respondents to the drug and non-respondents. For each group

of respondents and non-respondents we simulate the different trajectory. Further

we assume cross-sectional situation. Assume our response variable is a hypothet-
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Model AIC (lower the better)
LMS 20265
FMIX 17972

gamlssMX 17972

Table 2.2: Simulated data: AIC of different models

ical performance index measuring the treatment performance, while the covariate

is the age of patient. We simulated dataset for 5000 individuals, with a uniform

distribution of age between 0 and 40. The response originates from the following

model:

µ1 = (2(40− age)3 + 3000)/(60− age)2 − 1.5,

for respondents and

µ2 = (2(40− age)3 − 3000)/(60− age)2,

for non-respondents. The dispersion parameters were set to one in both respondents

and non-respondents. To this dataset we have fitted LMS, FMIX and gamlss.mx

models. Figure 2.5 shows the fitted centile curves obtained from LMS, FMIX method

with 2 components, and gamlss.mx with standard starting values. We plot there

2.5, 5, 10, 25, 35, 40, 45, 50, 55, 60, 65, 75, 90, 95, 97.5 percentile curves. We also

computed the proportion of observations falling below the fitted centile curves. For

the LMS method 43.3% of observations are below 40% centile curve, while in the

FMIX approach it is 39.7%. 56% of observations are below the 60% centile curve

for the LMS method, while 59.7% falls below in the FMIX model.

The FMIX method improves the fit of the LMS method by detecting the mix-

ture of respondents and non-respondents. The fit of FMIX and gamlss.mx are

comparable. This is due to the assumption that half the patients population are

respondents and half do not respond to the drug. Therefore the correct weights

are assumed in the FMIX approach. Table 2.2 presents the AIC values of the three

approaches shown in this section. We conclude that FMIX and gamlssMX gave very

similar results.
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2.4 Simulation study

We performed a limited numerical comparison of the performance of the three meth-

ods: (1) FMIX (2) mixture models with estimated weights using our code and (3)

gamlss.mx to fit mixture models with estimated weights. Approaches (2) and (3)

are theoretically the same, however in practice they might perform differently.

We sampled the data from a mixture distribution. We considered three scenarios.

In Scenario 1, we sampled a data from a 75-25 mixture of normal distributions,

with means -20 and 20, and standard deviations both 15. In Scenario 2 data were

obtained by sampling from the 6-44-18-32 mixture of 4 Gaussian distributions with

respective means of -20,10,10,20 and standard deviations all equal to 7. Finally in

Scenario 3 we used 10-17.5-22.5-22.5-17.5-10 mixture of 6 Gaussian distributions

with means -30,-20,-10,10,20,30 and standard deviations 3,5,7,7,5,3 respectively. In

each scenario 6000 observations were sampled. No covariates were used in this

simulation.

In each scenario models with varying number of components were fitted with the

methods (1)-(3). In Scenario 1 we used 1-5,10,20 mixture components in fitted mod-

els, while in Scenario 2: 1-4,6,10 components. Finally in Scenario 3: 1-6,9,12,18,24

components. We computed the Kullback-Leibler (KL) divergence of the fit of the

models against the true distribution. Furthermore we computed AIC of each model.

These two measures were used for the comparison of the appropriateness of the

model.

Under Scenario 1, the lowest KL distance was obtained for the mixture model

with 2 components and estimated weights (method 2). This was the optimal model.

However, there were still models close to the optimal. Model with 4 components

of method 1 attained the ratio of KL of 1.11. Indicating that the Kullback-Leibler

distance of this model was 1.11 times the KL distance of the optimal model. The

lowest AIC was obtained by 2 components mixture model of method 2 and method

3.

Under Scenario 2, the optimal KL distance was obtained for the mixture model

of 4 components with fixed weights (method 1). Further all mixture models with

6 components performed well (methods 1-3), as well as method 2 and 3 with 10
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components. These had the ratio of the KL distance below 1.16. Note that models

of method 2 converged at the boundary of parameter space when 3 or 4 components

were used. Therefore for the models of method 2 computational problems occurred.

Note that gamlss.mx model with two estimated components converged to maxi-

mum with log-likelihood value lower by approximately 500 points than the other

models.

Under Scenario 3, the lowest KL distance was obtained for the model of 9 com-

ponents of method 1. Equivalent performance was observed for the model with 6

components of method 2. Further, relatively good performed models with 9, 12,

18 components of method 2. The ratio was below 1.11. In this scenario the AIC

of gamlss.mx models were lower than the AIC of FMIX or estimated weights

models with the same number of mixture components. This was the case when

4-6,9,12,18,24 components were used for the estimation.

In summary, by using fixed weights (FMIX) we face less computational problems

and we avoid obtaining infinite likelihood. It is seen that FMIX models perform as

good as general mixture models when number of mixture components in the FMIX

model is slightly larger than the number of components used to generate the data.

2.5 Conclusions

In this paper we proposed to use fixed weights in finite mixture models. We as-

sume each component of a finite mixture model is parameterized by a separate set

of parameters. Therefore, given prior weights (computed in the E-step of EM al-

gorithm) every mixture component can be separately maximized. Mixture models

of this type might be fitted using existing software for generalized linear models or

generalized linear mixed models, which allow the inclusion of appropriate weights.

The described estimation process is essentially the EM-alogrithm of Dempster et al.

(1977).

The assumption of separate maximization of the components can be relaxed and

the estimation can allow joint parameters over the mixture components. This could

be of interest when one would like to keep the shape of distribution the same over

the range of the covariates, and vary its mean only.
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We used B-splines to model the non-linear distributions, however one could be

interested in a monotone centile curves. This can be achieved by using the I-splines

of Ramsay (1988) together with some reformulation of the likelihood. Monotonic

centile curves are shown on the Figure 2.2. However, the reformulation of the

maximization problem required the general Newton-Raphson algorithm to be used

instead of interchangeable (I)WLS computational approach.

In comparison to the estimation weights approach one increases the speed of

computations and stability of the estimation by fixing the weights of the mixture,

whereby the total fit of the model does not deteriorate much. This was the case in

the Fourth Dutch Growth Study analysis with 4 Gaussian mixture components.
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Chapter

3 A Comparison of Three Random Effects

Approaches to Analyze Repeated

Bounded Outcome Scores with an

Application in a Stroke Revalidation

Study

Based on:

Molas M. and Lesaffre E. (2008). A comparison of three random effects approaches

to analyze repeated bounded outcome scores with an application in a stroke revali-

dation study. Statistics in Medicine 27 pp. 6612-6633.

Abstract

Discrete bounded outcome scores (BOS), i.e. discrete measurements that are re-

stricted on a finite interval, often occur in practice. Examples are compliance mea-

sures, quality of life measures, etc. In this paper we examine three related random

effects approaches to analyze longitudinal studies with a BOS as response: (1) a

linear mixed effects model applied to a logistic transformed modified BOS; (2) a

33
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model assuming that the discrete BOS is a coarsened version of a latent random

variable, which after a logistic-normal transformation, satisfies a linear mixed ef-

fects model and (3) a random effects probit model. We consider also the extension

whereby the variability of the BOS is allowed to depend on covariates. The methods

are contrasted using a simulation study and on a longitudinal project which docu-

ments stroke rehabilitation in four European countries using measures of motor and

functional recovery.

3.1 Introduction

A bounded outcome score is a measurement taking values on a finite interval. In

practice a BOS is often, although not necessarily, discrete. Examples are (a) the

proportion of days that patients correctly take their drug in compliance research; (b)

the Barthel-index which is an Activity on Daily Living scale ranging from 0 (death

or completely immobilized) to 100 (able to perform all daily activities independent)

with jumps of 5; (c) visual analogue scales recorded in a discrete manner and (d)

Likert scale measurements in social sciences. Here we will assume that the BOS is a

numeric measurement taking values in the unit interval and that we are interested

in modeling its distribution. The problem with a BOS is that its distribution can

take a variety of shapes, from unimodal to J- and U -shaped leading to non-standard

statistical approaches in general.

The CERISE study is used as our motivating example. This is a comparative

parallel longitudinal study involving patients who experienced a stroke and revali-

dating in 4 European centers. Patients are followed up for 6 months, and measure-

ments were taken at maximally 5 occasions. Specifically, we analyze the evolution

of the Rivermead Motor Assessment Arm (RMAA) over time. The response is an

index ranging from 0 up to 15. This score is obtained by summing up the number of

positively accomplished motor tasks by the patient and is likely to have U-shaped (J-

shaped) distribution. We consider patients from two centers in Nottingham (UK)

and Herzogenaurach (DE), and we are interested whether recovery patterns over

time differ between the centers. These data were analyzed previously by Wit et al.

(2007) using random effect ordinal logistic model with a response categorized into 5
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classes. The classification of the original response score is somewhat arbitrary, and

may result in an efficiency loss. Other ways of analyzing a BOS in the univariate

setting are mentioned in Lesaffre et al. (2007).

We contrast in this paper three random effects approaches to analyze a longi-

tudinal study with a discrete BOS as outcome. In the first approach the BOS is

modified such that it does not attain the boundary values of 0 and 1 and then a

linear mixed effects model is applied on the logistically transformed modified BOS.

The second approach was suggested by Lesaffre et al. (2007) for the univariate case.

They assumed that the discrete BOS is a coarsened version of a latent continuous

BOS with a logistic-normal distribution and fixed cut points. When varying the

latent mean and variance a variety of distributional shapes appears. Hence in the

second approach, we assume that the latent continuous BOS is logistic-normally dis-

tributed conditional on random effects (random intercept, random slope, etc) which

are assumed to have a multivariate normal distribution. This model will be referred

to as the random effects coarsened (CO) model. Finally, we consider the random

effects ordinal probit (OP) model. This model assumes the response to have an

ordinal character. However, the OP model can also be viewed as a discrete realiza-

tion of a latent continuous BOS with a logistic-normal distribution but now with

unknown cutpoints. For the three models we allow the measurement error variance

of the (latent) BOS to depend on covariates.

The motivating longitudinal example is introduced in Section 3.2. Section 3.4

describes the three approaches and their extension whereby the residual variance is

allowed to depend on covariates. Using a simulation study, we compare in Section 3.4

their performance (P(type I error), power, bias and MSE) with respect to estimating

a treatment effect in a randomized controlled clinical trial. The similarity in power

of the CO and OP approach, illustrated for the CO and OP models in the univariate

case in Lesaffre et al. (2007), also appears to be case here. Therefore we show in

the appendix that the power of the CO and OP model must be approximately the

same for a randomized clinical trial (RCT) in the univariate case. The analysis of

the longitudinal data set is shown in Section 3.5. Concluding remarks are given in

Section 3.6.
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3.2 Motivating example

The CERISE study is a longitudinal study which monitored, between March 2002

and September 2004, 532 consecutively admitted stroke patients from four European

rehabilitation centers in Leuven (Belgium), Nottingham (United Kingdom), Zurzach

(Switzerland) and Herzogenaurach (Germany). We will restrict our analysis to the

comparison of two centers: Nottingham (center 2, 135 patients) and Herzogenaurach

(center 4, 135 patients). Only patients satisfying specific in- and exclusion criteria

were recruited in the study in order to achieve some balance between the centers.

However, despite this attempt there were still quite some differences in patient

characteristics at baseline between the two centers.

Patients were examined on admission, at 2, 4 and 6 months after the onset of

stroke and at discharge. Thus, the time points of examination varied somewhat

between patients. Also, 24 patients dropped out prematurely from each center

(18%). Motor and functional recovery after stroke was assessed with a variety

test batteries and the Barthel index. Here we will examine the Rivermead Motor

Assessment Arm (RMAA) score, which is a measure that can assume the values

0, 1, . . . , 15. The two centers adhere a different revalidation scheme for the patients.

More details on this study can be found in Wit et al. (2005).

The key question was whether the different revalidation schemes result in a dif-

ferent outcome on motor (measured by the RMAA score) and functional recovery

taking into account the case-mix at baseline. Further, it was of interest to know

which conditions at baseline were predictive for a good outcome at discharge. Fi-

nally, the likely evolution of a stroke patient given his/her baseline conditions is

useful to know for the clinicians. This information requires the distribution of the

BOS in time given the condition of the patient at baseline.

In Figure 3.1 the evolution of RMAA over time in the two centers is shown.

Clearly at each time point the distribution has a U -shape although its appearance

changes over time. Observe that the graph has been simplified by lumping together

the measurements of the same visit although they happened at possibly different

study time points. However, in the analysis of Section 3.5 the true time points were

used.
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Figure 3.1: CERISE study: Evolution of Rivermead Motor Assessment Arm (RMAA) score
in center Nottingham (center 2) and Herzogenaurach (center 4).
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In Wit et al. (2005) RMAA was split up into a small number of classes and

a random effects ordinal logistic regression model was used to establish the center

effect taking into account the case-mix. Hereby some arbitrariness entered into the

analysis when choosing the (number of) cut points to define the new outcome.

3.3 Three random effects approaches for analyzing lon-
gitudinal studies with a BOS response

Let Yij be the jth measurement of the BOS on the ith subject at the jth time point

(i = 1, . . . , n; j = 1, . . . , ni) taking values k/m (k = 0, . . . ,m) in [0,1].

3.3.1 A linear mixed effects model on a (modified) BOS

A linear mixed effects model based on Yij has the drawback that possibly some of

the predicted outcomes will fall outside [0,1]. But, this problem is easily solved by

modifying the Yij into Ym,ij = Yij + ε or Ym,ij = Yij − ε, with ε a small positive

value when Ym,ij is equal to 0 or 1, respectively. Therefore our first model, referred

to as a logistically transformed linear mixed effects (LM) model assumes that

logit(Ym,ij)|bi ∼ N(µij , σ
2), (3.1)

with logit(p) = log(p/(1− p)) and

µij = β
Txij + b

T
i wij , (3.2)

with xij , wij a d-, p-dimensional covariate vector, respectively with wij a part of

xij rendering it a ‘well-formulated’ model, see Morrell et al. (1997). Further, here

wij = (1, tij)
T with tij the time that the jth measurement of the ith subject was

taken. Furthermore, for the random effects it is assumed that bi ∼ g(bi) ≡ Np(0,Σ).

A further extension is obtained by allowing σ to depend on covariates, see next

subsection.

This approach offers a practical and computationally fast procedure. It has the

drawback, though, that the original BOS is modified and that the choice of ε is
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subjective.

3.3.2 The coarsening model for longitudinal studies

Suppose that Yij is a coarsened version of a continuous BOS Uij taking values in

(0,1). More specifically, assume that Yij = k/m ⇔ ak ≤ Uij < ak+1, where the

cutpoints ak, (k = 0, . . . , (m + 1)) are known with a0 ≡ 0 and am+1 ≡ 1. Further,

let

Uij |bi ∼ LN(µij , σ
2), (3.3)

where LN(µij ,σ
2) is the logit-normal distribution, i.e.

Zij = logit(Uij)|bi ∼ N(µij , σ
2), (3.4)

where µij is given by (3.2). On the logit scale the cutpoints ak are transformed into

zk = logit(ak), (k = 0, . . . , (m+ 1)), with z0 = −∞ and zm+1 = ∞.

Further, conditional independence of Uij (and Zij) given bi is assumed such that

for this model the (marginal) likelihood contribution for the ith subject given an

observed vector yi = (yi1, . . . , yini)
T is given by

L(β,Σ, σ2|yi) =
∫ [∫ zu

s(i1)

zl
s(i1)

f1(zi1|bi)dzi1 × · · · ×
∫ zu

s(ini)

zl
s(ini)

fni(zini |bi)dzini

]
g(bi)dbi,

(3.5)

with fj(zij |bi) given by (3.4) and (3.2), zls(ij), z
u
s(ij) the known lower, upper limit,

respectively for the jth measurement of the ith subject. This model is called the

random effects coarsened (CO) model. A further extension of the CO model is ob-

tained by allowing the measurement error variance to depend on a possibly different

set of covariates, i.e.

log(σij) = γ
Tx∗

ij , (3.6)

thereby replacing L(β,Σ, σ2|yi) with L(β,Σ,γ|yi). This model is an extension of

the model suggested by Lesaffre et al. (2007) to a longitudinal setting.

An advantage of this approach in a univariate setting is that expressing the

distribution of a BOS as a coarsened version of a continuous latent distribution
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model can help in planning a RCT with a BOS, see also Tsonaka et al. (2006) for an

approach to calculate the sample size. No procedure for sample size calculation in

the longitudinal setting is available now. This extension is likely to imply simulations

in which the CO approach can play an important role. Further, in contrast to the

previous approach, the original data are not modified. The choice of the cut points

is somewhat subjective, though, but since the BOS is used as a numeric score the cut

points must be in-between two possible values. In Lesaffre et al. (2007) a rounding

mechanism was assumed, and this will be done also here. When the number of

possible outcomes is high the actual choice of the cut point will be less important.

Finally, some limited simulations in the univariate setting have shown that the CO

approach is relatively robust with respect to the normality assumption.

3.3.3 The random effects ordinal probit model

The random effects ordinal (logit, probit) model constitutes a standard tool for

analyzing repeated ordinal measures. Here we will concentrate on the random effects

probit (OP) model because of its relationship with the previous two models. The

OP model is defined as

P (Yij ≤ k) = Φ(θk+1 − φTxij − b∗Ti zij), (3.7)

with θk unknown cut points, that need to be estimated, φ a vector of regression

coefficients and b∗i the random effects.

When the cut points on the latent scale are indeed zk then it can be seen that the

CO and OP model are related as follows (see also Lesaffre et al. (2007)): θk ≡ zk/σ,

φ ≡ β/σ and b∗i ≡ bi/σ when the measurement error variance does not depend on

covariates. For σ depending on covariates, the CO model is equivalent to

P (Yij ≤ k) = Φ

(
zk+1 − βTxij − bTi zij

σij

)
,

with σij depending on covariates as in (3.6). On the other hand, the OP model is
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given by

P (Yij ≤ k) = Φ

(
θk+1 − φTxij − b∗Ti zij

σij

)
, (3.8)

with log(σij) = γ∗Tx∗∗ whereby x∗T = (1,x∗∗T ) and γT = (1,γ∗T ). Hence, ex-

pression (3.8) becomes (3.7) for a baseline class corresponding to x∗∗ = 0. The

extension of the OP model was suggested in Skrondal and S. (2004).

3.3.4 Research questions and remarks

For all above models the parameters can be estimated using a maximum likelihood

procedure. For σ not depending on covariates, the analysis using the modified

BOS (LM model) can be done with e.g. the SAS procedure MIXED. The CO and

OP model can be fitted to the data using routines written in the SAS procedure

NLMIXED. All routines can be extended relatively easy to allow for dependence of

σ on covariates. The SAS routines can be obtained from the authors upon request.

A practitioner’s appealing choice is probably the LM model, especially in explo-

rative research. But the fact that the original data need to be modified is annoying

and might lower its statistical performance. We question here what the impact is of

modifying the original data and whether the subjective choice of ε matters.

Further, we question what the CO approach has to offer extra over the LM and

OP approach. In the univariate setting (see Lesaffre et al. (2007)) it was observed

that the statistical performance of the CO and OP approach are similar, despite the

fact that in the OP approach m cut points need to be estimated.

Modeling the latent residual variance as a function of covariates can be important

for the evaluation of the fixed effects, such as treatment, as exemplified in Lesaffre

et al. (2007). The dependence of the variability on covariates might be modeled

by adding extra random effects to the model. For instance, when we allow the

latent measurement error to be different between two treatment groups, one could

augment the random effects structure with a binary covariate indicating treatment.

In the univariate setting this extension is equivalent to modeling σ as done above.

However, in the longitudinal setting, introducing extra random effects will yield a

different marginal covariance structure than when the measurement error variance
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is modeled directly and this may yield unexpected model assumptions.

The aim of this paper is not only to evaluate the impact of covariates on the

outcome but also to model the distribution of the BOS in time. In this respect, a

random effects ordinal model could be considered as not appropriate since it neglects

the actual values of the BOS and assumes that the BOS has an ordinal nature. The

estimated cut points will therefore be unrelated to the actual values of the BOS.

When the latent score indeed has a normal distribution, then the estimated cut

points will be on average equal to the true cut points as seen in the simulation

study below. Thus, when the estimated cut points under the OP model differ

‘considerably’ from the assumed cut points under the CO model, it could indicate

that the ‘true’ latent distribution of logit(Uij) deviates from the normal distribution.

3.4 A simulation study

3.4.1 Set up

The simulation study was set up in order to compare the performance of the three

random effects models. We focussed on detecting and estimating the treatment

effect in a clinical trial setting. Therefore we evaluated the P(Type I error) and

power in this respect. In addition, the bias and mean squared error (MSE) of the

regression coefficients (and thus of treatment estimator) is compared between the

three approaches. Observe, though, that the treatment effect in the LM and CO

model (∆) is defined differently from that in the OP model (∆/σ) which makes a

honest comparison with the OP approach difficult. For this reason the bias and

MSE for the OP model was based on ∆̂/σ · σ, whenever possible.

First, for each of the random effects models the latent BOS Uij , (i = 1, . . . , n; j =

1, . . . , ni) with n = 200, ni = 5 was generated as follows:

logit(Uij) = µij + b0i + b1i · timej + ǫij , (3.9)

whereby timej ≡ tij = 0, 2, 3, 4, 6 the time points where the BOS was measured,
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the measurement error ǫij ∼ N(0, σ2ij) and the random effects bi ∼ N2(0,Σ) with

vec(Σ) = (5.8, 0.15, 0.15, 0.5). For σij , we have considered three cases (with the

actual chosen value for the parameter):

log(σij) = γ0 (−0.3), (3.10)

log(σij) = γ0 (−0.4) + γ1 (0.3) · trti, (3.11)

log(σij) = γ0 (0.8) + γ1 (0.4) · trti + γ2 (−0.02) · agei. (3.12)

Further,

µij = β0 + β1 · trti + β2 · timej + β3 · trti · timej + β4 · agei, (3.13)

with trti = 0, 1 representing two treatment groups each consisting of 100 patients.

Age was randomly drawn from N(65, 92). As values for the regression coefficients,

we have taken β0 = −2.5, β1 = 0 mimicking that we simulated from a RCT,

β2 = 0.25, β3 = 0 when the null-hypothesis of no different evolution between the

two treatment groups is true and β3 = −0.1 in case the alternative hypothesis is

true, and β4 = 0.05. The parameter values are inspired by the results of the analysis

of the CERISE data with a CO model.

In a second step the coarsened BOS Yij was created as follows: Yij = k/m when

(k − 0.5)/m ≤ Uij < (k + 0.5)/m, where k = 1, . . . , (m− 1). Further, Yij = 0 when

0 ≤ Uij < 0.5/m and Yij = 1 when (m− 0.5)/m ≤ Uij < 1. We use m = 15.

For the LM model, ε was taken 0.01 and 0.015. In addition, in the simplest

setting we have investigated the performance of the LM model with ε equal to

0.001, 0.0001 and 0.00001.

Finally, we considered simulation under the correct CO model (Scenario 1) and

when the latent error distribution deviates from the normal (Scenario 2). More

specifically, we considered ǫij ∼ 1√
3
t3 to represent a symmetric distribution with

heavier tails than the normal and ǫij distributed according to a mixture of normals,

i.e. 0.30N(−1.21, 0.369) + 0.70N(0.52, 0.369) to represent a skewed distribution. In

both cases, the mean and variance were 0 and 1, respectively.

For all settings 1000 simulations were performed, except for the OP model with
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σ depending on covariates, which requires an excessive amount of computing time.

Indeed, to finalize the simulations for these models one would need about one year

of computing time. Up to now we have performed only 500 simulations per setting.

3.4.2 Results

Table 3.1 shows the results for the parameters of the mean structure (β) under

Scenario 1 and with σ constant. The probability of type I error for estimating the

treatment effect is roughly 0.05 for the CO and OP models under consideration, but

the LM approach is somewhat conservative. The power is also the highest for the

CO and OP models, about 0.06 to 0.08 higher than that of the LM model. The bias

is much lower for the CO and OP models than for the LM models. However, this

does not always translate in a lower MSE for the CO and OP models, but they are

often comparable though in some cases the MSE of the LM model is much higher.

We repeated the scenario of Table 3.1 for LM models with a varying ε. In loose

terms, we observed a worse performance of the LM terms (MSE, bias, power) when

ε decreases to zero (results not shown).
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For the CO and OP models, the P(type I error) for estimating the regression

coefficients in expression of σij (γ) was roughly 0.05, while for the LM model it

was between 0.10-0.15 (results not shown). Further, for all models the MSE of

these estimators increased with increasing number of more covariates involved in

σij . Furthermore, it appears that for the ordinal probit model, modelling the co-

variance matrix of measurements error as a function of continuous covariate results

highly unstable parameter estimates. A finding that is even more dominant for the

simulation scenarios below.

Table 3.2 presents the results under Scenario 1 for the parameters of the mean

structure when the latent score residual variance depends on treatment. Now for all

models and for estimating the treatment effect P(type I error) was close to 0.05. The

remaining results were similar as in the previous table, except that now the bias and

MSE could not be calculated for the OP model which ignores the dependency on

treatment. The reason is that this model estimates one variance parameter which

does not correspond to either of the two residual variances, and hence it is not

clear with which value the OP-estimated parameters must be multiplied to ensure

comparability to the other estimators.

Finally, the bias of the regressor coefficients of the latent score residual variance

increased when treatment was omitted in the model for σij , while the MSE increased

when age was included (results not shown).

Table 3.3 presents the results for the parameters of the mean structure under

Scenario 2, when ǫij ∼ 1√
3
t3. Overall, similar patterns emerged as under Scenario

1, except that the OP model seems to be more vulnerable to this deviation of the

assumption than the CO model. However, regarding the parameter estimators for

the latent residual variance the P(type I error) was around 0.25 for all models (results

not shown). In case ǫij was generated from the mixture of two normal distributions

(results not shown), the P(type I error) was around 0.04 for all models while the

power was 0.60 for the CO and OP models and around 0.55 for the LM models. For

the parameters of the residual variance, P(type I error) was around 0.025 for the

CO models, while it was roughly 0.07-012 for the LM models.
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3.4.3 Discussion of results

The P(Type I error) was closest to the nominal level of 0.05 for the CO and OP

models, but was more variable for the LM model, i.e. conservative in some cases

and anti-conservative in other cases. The power was always higher for the CO and

OP models being roughly equivalent in performance. Further, the bias was less for

the CO models and OP models in comparison to the LM models. Thus, modifying

the data has had an effect. Furthermore, the MSE was sometimes lower for the LM

model, but in the case when it was inflated it was much more so. Also, the choice

of the ε did have a serious impact on the estimation of some regression coefficients

(in bias and MSE). Finally, loosely speaking, the estimated cut points from the OP

model were on average the chosen cut points by the simulation under Scenario 1.

Two conclusions emerge. Firstly, the statistical performance of the LM models

is inferior to the other two models and how the BOS is modified can have a serious

impact on some parts of the model. Secondly, the performance of the CO and

OP models is similar, despite the fact that for the OP model 13 extra parameters

have to be estimated here. This was noticed also in Lesaffre et al. (2007) for the

univariate case. Therefore, in the Appendix we explored why the two approaches

yield approximately the same power in the univariate case. For this we compared

the score statistics of the treatment effect in a RCT with two groups. To this end,

we employed the approach in Whitehead (1992).

Finally, it is important to mention that all simulations were done for m = 15.

Limited simulations indicate that similar conclusions could be drawn for smaller

values of m. However, the bias of the three models increase somewhat when m

decreases.
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3.5 Analysis of the CERISE longitudinal study

The longitudinal CERISE study was analyzed with the three random effects models.

We preferred to use a likelihood approach because of its well-known robustness to

at random dropout mechanisms and because of the relatively high percentage of

patients that prematurely dropped out from the study (18%). However, we did not

aim to model possible more complex dropout mechanisms.

The first objective of the analysis was to check whether the evolution in the two

centers was different over time (in months) taking into account the baseline difference

between centers (with center 2 corresponding to center=0). The variable of interest

was therefore the interaction between center and time. The following covariates

were included in the models to adjust for case-mix: gender (male=0, female=1),

urinary incontinence (0=No, 1=Yes), swallowing problems (0=No, 1=Yes), presence

of dysphasia which implies impairment of speech and of comprehension of speech

(0=No, 1=Yes) and presence of dysarthria (0=No, 1=Yes) implying weakness or

incoordination of the speech muscles.

In the analysis of the data by the linear mixed model we used the adjustment

value ǫ = 0.01 to modify Yij . For the analysis of the data by the CO model we

assumed the following threshold values: a0 = 0, a16 = 1 and ai = i−0.5
15 for i =

1 . . . 15. Further, in the three models we allowed the latent score residual variance

to depend on center, age and time. But in order to show that modeling the variance

function does have an effect on the parameter estimates of the mean structure, we

first fitted the data with a constant variance, see Table 3.4. Likelihood ratio tests

were used to assess the significance of these parameters. The parameter estimates

of the models with the variance depending on the covariates are shown in Table 3.5.

Comparing the parameter estimates from Table 3.4 and Table 3.5 clearly show

that modeling the residual variance does have an effect on the estimation of the pa-

rameters in the mean structure. It strikes us that modeling σij is largely overlooked

in the literature.
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Further, in Table 3.4 it is shown that the parameter estimates of the LM and CO

model are close to each other. For the OP model we report the estimates as obtained

from PROC NLMIXED and the values calculated using the relationship between the

CO and OP parameters as indicated in Section 3.3.3 (values in parentheses). The

transformed OP estimates and the CO estimates are relatively close to each other,

with the OP estimates most often a bit larger in absolute value. With respect to the

AIC criterion the OP model seems to be preferred over the CO model. The reason

for preferring the OP model lies primarily in the fact that the normal assumption

for the Zij is perhaps not really satisfied. This was apparent from the estimated

cut points by the OP approach (not shown), which did not correspond well to the

assumed cut points of the CO model. The likelihood of the LM model (likelihood for

continuous data) cannot be compared with the CO and OP likelihoods (of grouped

data) and hence neither the AIC. Similar conclusions can be drawn for the estimates

shown in Table 3.5.

With respect to the research questions specified in Section 3.2, we conclude that

there is not enough evidence to claim that the evolution over time of the RMAA score

in both centers is different, while correcting for covariates. The way the covariates

influence the recovery of the patient on average is clear from the tables. Of particular

interest was to see how center, age and time affect the residual variability. In this

respect all models confirmed less variability in center 4, when the patient was older

and towards the end of the revalidation period.

The models shown in Tables 3.4 and 3.5 were based on a selection of covariates

from a larger set of possibly important covariates. Further, these models still contain

some nonsignificant covariates. If the purpose was to construct a predictive model,

some further pruning of the model might be envisaged. This needs further model

fittings. But, the three models from Table 3.5 differ considerably in computing

time. On a Pentium 4 (2.8GHz, 512 MB RAM) computer with Windows 2000

(SP 4) operating system, the LM model needed only 1 min to reach convergence,

the CO model needed about 10 mins but the OP model needed about 2.5 hours.

Therefore, from a practical point of view and taking into account the simulation
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results (especially the results on bias and power), the CO model seems to offer the

practitioner a good working tool for analyzing repeated BOSs.

One referee suggested further extensions of our models. In this respect we ex-

tended the models presented in the Table 3.5 by allowing the variance-covariance

matrix Σ of random effects to differ between centers. These extended models were

tested against the corresponding models in the Table 3.5 with a likelihood ratio

test with 3 degrees of freedom. In all cases the results of the tests yield p-values

higher than 0.05. Therefore, the additional flexibility in the random effects variance-

covariance matrix was unnecessary. Further extensions of our model could consist

of (a) allowing for the measurement error to be serially correlated, (b) extending

the random effects part to a polynomial function or in general more flexible than

the suggested linear evolution. Extension (a) above appears to involve quite com-

plicated programming efforts in conjunction with the SAS Procedure NLMIXED

and it is even not clear whether it is at all possible to perform the calculations.

For extension (b) we were able to fit a quadratic random effects model. While this

took only about 3 minutes computing time for the linear mixed model, 4 hours were

needed for the CO model, and the OP model converged after 30 hours.

In Table 3.6 the parameter estimates are shown, demonstrating that the quadratic

effect in time appears to be justified. However, the qualitative conclusions remain

the same. Finally, we tried more complicated random effects structures such as

adding a cubic term. Unfortunately, convergence could not be attained.

The better fitting of the OP model to the data suggests that the assumption of

a logit-normal distribution in the CO model is not entirely appropriate. This is not

too surprising since the logit-normal model represents a quite simple assumption

and might be not sufficiently flexible to model complex data. Nevertheless it will be

probably useful in many circumstances. Further, with some extra modeling the CO

approach allows to relax the two essential model parts relatively easy, i.e. the logit

link and the normal assumption. For instance a complementary log-log link function

could be used or a general family of link functions. The normal assumption could

e.g. be replaced by a mixture of normals as in e.g. Ghidey et al. (2004). Another
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possibility is to estimate the cut points but compatible with the observed scores.

Hence, instead of assuming the rounding coarsening mechanism one could estimate

ak, (k = 1, . . . ,m) with the restriction that âk ≤ k/m < âk+1. Observe that the OP

model also estimates the cut points but ignores the restriction.

The purpose of relaxing the model assumptions is to produce more accurate

information of the distribution of the BOS in time and hence to make better pre-

dictions of the recovery of the stroke patients given his/her initial conditions. For

instance, in Figure 3.2 we show the distribution of RMAA at three time points (at

admission, i.e. taken as the median value of days after stroke onset that the pa-

tient was admitted to the center, month 3 and month 6) for a male 40.4 years old

patient with no urinary incontinence, no swallowing problems, no dysphasia and no

dysarthria at baseline treated either in Nottingham (center 2) or in Herzogenaurach

(center 4), based on the fitted CO model. Observe that such a plot can not be made

with the OP approach. The probability of observing a score for RMAA higher than

0.8×15 = 9 is, for center 2 equal to 0.19, 0.26 and 0.36 for the three time points and

for center 4 equal to 0.29, 0.38 and 0.50, respectively.
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3.6 Final remarks

The logit-normal approach taken here is one of many ways to deal with a BOS. For

instance, Grootendorst (2000) regards the extreme values of 0 and 1 that the BOS

can assume as an indication for a latent score censored at the boundaries leading

to the Tobit model. Further, we could have modeled the BOS also using a random

effects ordinal logistic model. However, for the analysis of the CERISE data the

analysis corresponding to Table 3.5 needed about 6 hrs, hence not an advantage

over the OP model. Furthermore, for modeling of BOSs which arise as proportions

Lesaffre et al. (2007) suggested to use a generalized linear mixed-effects model in

the univariate case. It would be of interest to see how this model can be generalized

to a longitudinal setting. Finally, Arostegui et al. (2007) model the distribution of

a univariate BOS arising from the SF-36 form (a popular health-related quality of

life score) using a beta-binomial approach thereby assuming that the BOS is in fact

a proportion. This could have assumed also here and again it would be interesting

to see how the beta-binomial approach could be extended to a longitudinal setting.

To conclude, this paper has shown that modeling a longitudinal study with a

BOS as outcome can be effectively done with the CO model. In comparison to the

OP model, it has the same performance under logit-normality assumptions but is

dramatically quicker especially when σ depends on covariates. The computational

advantage of the CO model could be exploited in the simulation studies aiming

to establish required sample size for a longitudinal study with a BOS as outcome

Further, the performance of the LM model showed to be inferior in our simulations

to the CO and OP model, but despite its ad hoc nature it is nevertheless useful as a

first approach. Furthermore, the OP approach does not suffer from the estimation

of a large number of cut points which was already observed in the univariate case.

Finally, our simulations and the analysis of the CERISE data suggest that it is

advisable to model also σ as a function of covariates. Ignoring the dependence of

the residual variance on covariates can induce bias in estimating the parameters

of the mean structure. In this sense, we experienced that the CO model is easier
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to work with than the OP model where the dependence of the residual variance is

modeled in a less transparent manner. However, one could fit an OP model as a

robustness analysis at the end of the variable selection.
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APPENDIX: Score Test for CO and OP models

In this section we derive expressions for the score statistic to test the null hypothesis

of no treatment effect. We work in the cross sectional setting, where we compare

two groups. Two models are under consideration: Coarsening model (CO) and Or-

dinal Probit (OP). For both models score statistics are derived analytically and the

approach to compare their value for large samples is presented. Final numerical

evaluation is necessary. Analytical derivations used techniques presented in White-

head (1992). First we derive the score statistic for the CO model, it is followed by

the derivation for the OP model, and finally an approach for numerical comparisons

of the asymptotic values of the two statistics is presented.

Derivation of the score test for the coarsening model

We assume that the observations come from two populations (experimental treat-

ment and control), the residual variance is constant and equal for both populations.

There are m + 1 distinct values which can be observed, implying m valid cut-off

points z1 . . . zm. For the ease of notation we assume two additional cut-off points:

z0 = −∞ and zm+1 = +∞. In the coarsening model cut-off points z1 . . . zm are fixed

and known a priori. Moreover, we use the following notation: niC denotes number

of observations in the control group in the i-th class (i = 1, . . . , (m+ 1)), while niE

refers to the experimental group.

The total likelihood can be expressed as follows:

L(β, σ; y) =
m+1∏

i=1

[Φ(
zi − β0
σ

)− Φ(
zi−1 − β0

σ
)]niC×

×[Φ(
zi − β0 − β1

σ
)− Φ(

zi−1 − β0 − β1
σ

)]niE . (3.14)
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The following denotes the log-likelihood:

l(β, σ; y) = log(L(β, σ; y)) = l(C) + l(E),

l(C) =
m+1∑

i=1

niC × log[Φ(zi, µC)− Φ(zi−1, µC)]

l(E) =
m+1∑

i=1

niE × log[Φ(zi, µE)− Φ(zi−1, µE)],

where Φ(z, µ) = Φ( z−µσ ) and µC = β0, while µE = β0 + β1.

We utilize the following notation. Observations in the control group come from

the density fψ1,η(x) and observations in the experimental group come from the

density fψ2,η(x), where η is an unknown common vector of nuisance parameters.

The parameter of interest is θ = 1
2(ψ1 − ψ2), and the nuisance parameter is made

up of ϕ = 1
2(ψ1 + ψ2). This implies expressions for ψ1 and ψ2, which are:

ψ1 = ϕ+ θ , ψ2 = ϕ− θ.

In our situation the following is used: θ = β1 and ϕ = −2β0 − β1, which implies

ψ1 = −2µC = −2(β0) and ψ2 = −2µE = −2(β0 + β1). Therefore the log-likelihood

can be noted as: l(ψ1, ψ2, η; y) = l(C)(ψ1, η) + l(E)(ψ2, η). The vector of nuisance

parameters is η = {σ}.
To calculate the score test we are looking for the following expressions:

Z = lθ(0, ϕ
∗, η∗),

V = −lθθ(0, ϕ∗, η∗),

where ϕ∗ and η∗ are maximum likelihood estimators under the constraint that θ = 0.

Moreover, we show that for large sample sizes,equal allocation ratio to the control

and experimental arms, and for small θ derivatives lθϕ and lθη are nearly zero, which

allows to use the above expression for V . To calculate lθ we use lθ = l
(C)
ψ1

∂ψ1

∂θ +
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l
(E)
ψ2

∂ψ2

∂θ = l
(C)
ψ1

− l
(E)
ψ2

. The above formula yields the following expression:

lθ =
m+1∑

i=1

niC × [
φi(ψ1)− φi−1(ψ1)

2σ[Φi(ψ1)− Φi−1(ψ1)]
]−

m+1∑

i=1

niE × [
φi(ψ2)− φi−1(ψ2)

2σ[Φi(ψ2)− Φi−1(ψ2)]
],

where Φi(ψ1) = Φ( zi+0.5ψ1

σ ), Φi(ψ2) = Φ( zi+0.5ψ2

σ ), φi(ψ1) =
∂Φ(x)
∂x |

x=
zi+0.5ψ1

σ

. This

derivative evaluated at (0, ϕ∗, η∗) is equal to:

Z =
m+1∑

i=1

(niC − niE)× [
φi(ϕ

∗)− φi−1(ϕ
∗)

2σ∗[Φi(ϕ∗)− Φi−1(ϕ∗)]
], (3.15)

where Φi(ϕ
∗) = Φ( zi+0.5ϕ∗

σ∗ ).

Next we derive the expression for V using the fact that lθθ = l
(C)
ψ1ψ1

+ l
(E)
ψ2ψ2

, therefore

lθθ =
m+1∑

i=1

niC [−
φi(ψ1)× (zi + 0.5ψ1)− φi−1(ψ1)× (zi−1 + 0.5ψ1)

4σ3[Φi(ψ1)− Φi−1(ψ1)]
− [φi(ψ1)− φi−1(ψ1)]

2

4σ2[Φi(ψ1)− Φi−1(ψ1)]2
]+

+

m+1∑

i=1

niE [−
φi(ψ2)× (zi + 0.5ψ2)− φi−1(ψ2)× (zi−1 + 0.5ψ2)

4σ3[Φi(ψ2)− Φi−1(ψ2)]
− [φi(ψ2)− φi−1(ψ2)]

2

4σ2[Φi(ψ2)− Φi−1(ψ2)]2
].

The above expression evaluated at (0, ϕ∗, η∗) and mutiplied by minus one is equal

to:

V ≈
m+1∑

i=1

(niC + niE)[
φi(ϕ

∗)× (zi + 0.5ϕ∗)− φi−1(ϕ
∗)× (zi−1 + 0.5ϕ∗)

4σ3[Φi(ϕ∗)− Φi−1(ϕ∗)]
+

+
[φi(ϕ

∗)− φi−1(ϕ
∗)]2

4σ2[Φi(ϕ∗)− Φi−1(ϕ∗)]2
]. (3.16)

As ϕ∗ and η∗ are maximum likelihood estimators, lϕ and lη are equal zero, evaluated

at (0, ϕ∗, η∗), we have the following:

lσ|(0,ϕ∗,η∗) =
m+1∑

i=1

(niC + niE)[
φi(ϕ

∗)× (zi + 0.5ϕ∗)− φi−1(ϕ
∗)× (zi−1 + 0.5ϕ∗)

σ2[Φi(ϕ∗)− Φi−1(ϕ∗)]
].

(3.17)
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The above expression allows to simplify the V formula. In the end, we obtain score

statistic Z√
V

as follows:

Z√
V

=

∑m+1
i=1 (niC − niE)× [ φi(ϕ

∗)−φi−1(ϕ
∗)

[Φi(ϕ∗)−Φi−1(ϕ∗)] ]√∑m+1
i=1 (niC + niE)[

[φi(ϕ∗)−φi−1(ϕ∗)]2

[Φi(ϕ∗)−Φi−1(ϕ∗)]2
]
. (3.18)

It remains to show that lθϕ and lθη tend to zero for the validity of the approximation

of the V formula. We have lθϕ = l
(C)
ψ1ψ1

− l
(E)
ψ2ψ2

, and therefore:

lθϕ =
m+1∑

i=1

niC [−
φi(ψ1)× (zi + 0.5ψ1)− φi−1(ψ1)× (zi−1 + 0.5ψ1)

4σ3[Φi(ψ1)− Φi−1(ψ1)]
− [φi(ψ1)− φi−1(ψ1)]

2

4σ2[Φi(ψ1)− Φi−1(ψ1)]2
]−

−
m+1∑

i=1

niE [−
φi(ψ2)× (zi + 0.5ψ2)− φi−1(ψ2)× (zi−1 + 0.5ψ2)

4σ3[Φi(ψ2)− Φi−1(ψ2)]
− [φi(ψ2)− φi−1(ψ2)]

2

4σ2[Φi(ψ2)− Φi−1(ψ2)]2
].

Now, when
∑
niE =

∑
niC = n and n is large,with small θ the above expression

tends to zero. Finally we present an expression for lθσ = l
(C)
ψ1σ

− l
(E)
ψ2σ

, which is:

lθσ =
m+1∑

i=1

niC [
φi(ψ1)(zi + 0.5ψ1)

2 − φi−1(ψ1)(zi−1 + 0.5ψ1)
2

2σ4[Φi(ψ1)− Φi−1(ψ1)]
− φi(ψ1)− φi−1(ψ1)

2σ2[Φi(ψ1)− Φi−1(ψ1)]
+

+
[φi(ψ1)− φi−1(ψ1)][φi(ψ1)(zi + 0.5ψ1)− φi−1(ψ1)(zi−1 + 0.5ψ1)]

2σ3[Φi(ψ1)− Φi−1(ψ1)]2
]−

−
m+1∑

i=1

niE [
φi(ψ2)(zi + 0.5ψ2)

2 − φi−1(ψ2)(zi−1 + 0.5ψ2)
2

2σ4[Φi(ψ2)− Φi−1(ψ2)]
− φi(ψ2)− φi−1(ψ2)

2σ2[Φi(ψ2)− Φi−1(ψ2)]
+

+
[φi(ψ2)− φi−1(ψ2)][φi(ψ2)(zi + 0.5ψ2)− φi−1(ψ2)(zi−1 + 0.5ψ2)]

2σ3[Φi(ψ2)− Φi−1(ψ2)]2
].

The above expression tends to zero, when θ → 0, for large n, and equal allocation

of subjects to the control and experimental group. Under these conditions the

approximation for the V holds.
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Derivation of the score test for the ordinal probit model

We proceed in the similar fashion as in the first section. However, for the identifi-

cation we fix β0 = 0 and σ = 1. Moreover, we estimate m cut-off points i1 . . . im.

These cut-offs can be expressed as increments: ii = i1 + di, and d0 = −∞, d1 = 0

and dm+1 = +∞. The likelihood can be expressed as follows:

L(β1, i1, d2 . . . dm; y) =
m+1∏

i=1

[Φ(i1 + di)− Φ(i1 + di−1)]
niC×

×[Φ(i1 + di − β1)− Φ(i1 + di−1 − β1)]
niE .

Now we use the following parametrization: θ = β1 and ϕ = 2i1 − β1, which implies

ψ1 = 2i1 and ψ2 = 2i1 − 2β1. In similar manner as in the section one, we calculate

the derivatives lθ and lθθ and evaluate them at point (0, ϕ∗,η∗), now vector η =

{d2 . . . dm}. Calculations lead to the following formulas for Z and V .

Z =
1

2

m+1∑

i=1

(niC − niE)[
φi(ϕ

∗)− φi−1(ϕ
∗)

Φi(ϕ∗)− Φi−1(ϕ∗)
], (3.19)

V ≈ 1

4

m+1∑

i=1

(niC + niE)[
φi(ϕ

∗)(0.5ϕ∗ + d∗i )− φi−1(ϕ
∗)(0.5ϕ∗ + d∗i−1)

Φi(ϕ∗)− Φi−1(ϕ∗)
+

+
[φi(ϕ

∗)− φi−1(ϕ
∗)]2

[Φi(ϕ∗)− Φi−1(ϕ∗)]2
], (3.20)

where Φi(ϕ
∗) = Φ(0.5ϕ∗ + d∗i ). We show that the first term in (3.20) is equal to

zero. Lets consider the ordinal probit model, which is identified by setting two first

cut-off points constant, and allowing the estimation of β0 and σ. The likelihood

expression is thus the same as (3.14), just instead of having all cut-off points fixed,

we fix only the first two cut-offs (these can be arbitrary two thresholds). In this

model at the point (0, ϕ∗, η∗) the derivative with respect to σ is equal to zero and has

the same expression as in (3.17). Under θ = 0 we have one sample problem, and the
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maximum likelihood estimates can be obtained from the multinomial distribution for

ordinal probit model, in both identification situations. First part in (3.20) is equal

to expression in (3.17), with the different parameters in the cdf and pdf functions

and additional σ parameter. However in both situations Φi(ϕ
∗) =

∑i
j=1(njC+njT )∑m+1
j=1 (njC+njE)

,

and therefore one expresion is equal to the second expression multiplied by some

constant, as one of these expressions is equal to zero the other must be zero as well.

This yields an expression for the ordinal probit score test as follows:

Z√
V

=

∑m+1
i=1 (niC − niE)[

φi(ϕ
∗)−φi−1(ϕ

∗)
Φi(ϕ∗)−Φi−1(ϕ∗) ]√∑m+1

i=1 (niC + niE)[
[φi(ϕ∗)−φi−1(ϕ∗)]2

[Φi(ϕ∗)−Φi−1(ϕ∗)]2
]
. (3.21)

It can be easily shown that derivatives lθϕ and lθη tend to zero when the allocation

ratio to control and experimental treatment is close to one, number of subjects in

each group is large and the treatment effect θ → 0, which ensures the validity of the

V formula.

Comparison of OP and CO score test statistics

Both expressions (3.18) and (3.21) have the same functional form, are however

functions of different estimates. All the estimates are ML estimates obtained under

the constraint θ = 0. Therefore the expressions in case of the ordinal probit can be

obtained using ML estimators of the multinomial distribution, while in case of the

coarsening model, estimates are those obtained in case normal distribution is fitted

to the sample obtained under the 50-50 mixture of two normal distributions with

the same variance. Therefore for the large samples we have the following results:

Φi(ϕ
∗) = Φ(0.5ϕ∗ + d∗i ) =

∑i
j=1(njC + njE)

2n
→

n
∑i

j=1(pjC + pjE)

2n
=

= 0.5(Φ(
zi − β0
σ

) + Φ(
zi − β0 − β1

σ
)), (3.22)
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for the ordinal probit. And for the coarsening model the following holds:

Φi(ϕ
∗) = Φ(

zi + 0.5ϕ∗

σ∗
) = Φ(

zi − β∗0
σ∗

)

β∗0 ≈ 1

2
(µC + µE) σ∗ ≈ var(µ) + σ (3.23)

Equations 3.22 and 3.23 allow us the computation of ϕ∗, which can be substituted

into 3.21 and 3.18 respectively. Note that although the same symbol is used ϕ∗, it

represents distinct quantities in 3.21 and 3.18, which also change with index i.

Therefore, for large samples we are able to compare the values of 3.21 and 3.18.

This comparison, however, must be evaluated numerically as the formulas involve

the normal cumulative distribution function Φ or its inverse Φ−1.
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Chapter

4 Hierarchical Generalized Linear Models:

The R Package HGLMMM

Based on:

Molas M. and Lesaffre E.(2011). Hierarchical generalized linear models: the R

package HGLMMM. Journal of Statistical Software 39 13 pp. 1-20

Abstract

The R package HGLMMM has been developed to fit generalized linear mod-

els with random effects using the h-likelihood approach. The response variable is

allowed to follow a binomial, Poisson, Gaussian or gamma distribution. The distri-

bution of random effects can be specified as Gaussian, gamma, inverse-gamma or

beta. Complex structures as multi-membership design or multilevel designs can be

handled. Further, dispersion parameters of random components and the residual

dispersion (overdispersion) can be modeled as a function of covariates. Overdisper-

sion parameter can be fixed or estimated. Fixed effects in the mean structure can

be estimated using extended likelihood or a first order Laplace approximation to the

69
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marginal likelihood. Dispersion parameters are estimated using first order adjusted

profile likelihood.

4.1 Introduction

In Nelder and Wedderburn (1972) the class of generalized linear models (GLM) was

developed. This class of models allows for the response to follow a distribution

from the exponential family, extending modeling capabilities beyond the Gaussian

response. In Henderson et al. (1959) the linear mixed model was suggested, which

enabled to model correlation in the data. Further, it was extended to the generalized

linear mixed model (see e.g., Molenberghs and Verbeke (2005)), where the response

from an exponential family is combined with normal random effects. In Lee and

Nelder (1996) hierarchical generalized linear models were described, which allows

random effects to be not normally distributed. Further Lee and Nelder (1996)

proposed the extended likelihood rather than the marginal likelihood to estimate

the parameters. Later Lee and Nelder (2001) focused on the joint modelling of the

mean and dispersion structure. This estimation technique relies on the Iterative

Weighted Least Squares (IWLS) algorithm, where fixed effects and random effects

are estimated using the extended likelihood, and dispersion parameters are obtained

by maximizing the adjusted profile likelihood. A subsequent adjustment of the

algorithm was proposed in Noh and Lee (2007) replacing the extended likelihood by

the first order adjusted profile likelihood as a criterion to estimate fixed effects in

the mean structure.

The objective of this paper is to present the R (R Development Core Team,

2009) package HGLMMM available from the first author upon request or from

Comprehensive R Archive Network (CRAN). The package runs under R version

2.9.0 or higher. This package fits the class of generalized linear models with random

effects. In the remainder of the paper we first outline the h-likelihood approach

to the estimation and statistical inference. Next, we present the capabilities of the

HGLMMM package on real-life datasets, described in Lee et al. (2006).
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4.2 H-likelihood estimation and inference framework

Standard maximum likelihood estimation for models with random effects is based

on the marginal likelihood as objective function. The parameters are estimated by

a marginal likelihood procedure (MML) and their standard errors are computed

from the inverse of the negative hessian matrix of the marginal likelihood. In the

marginal likelihood approach random effects v are integrated out and only fixed

effects in the mean structure β and dispersion parameters λ are retained in the

maximized function. For a mixed effects model the conditional likelihood of the jth

(j = 1, . . . , ni) repeated observation on the ith subject (i = 1, . . . , N), i.e., yij , is

given by fβ,λ(yij |vi). The likelihood of the ith random effect is denoted as fλ(vi).

Note that λ contains dispersion parameters of the random components vi as well as

the parameters describing the residual dispersion (overdispersion) of the response

yij . The marginal likelihood maximized in the MML procedure is given by

LM (β,λ|y) =
N∏

i=1

∫ ni∏

j=1

fβ,λ(yij |vi)fλ(vi)dvi. (4.1)

Maximizing LM or equivalently the log-likelihood ℓM = log(LM ) yields consistent

estimates of the fixed effects parameters. However, the problem lies in computing

the integrated likelihood. This may be a time-consuming task especially for complex

models since it needs to be done for each subject and each iteration. Further, if the

MLE is determined with a Newton-Raphson procedure then integrals need to be

computed also for the first and second derivatives. It is also important to fine tune

the likelihood calculations, see e.g., Lesaffre and Spiessens (2001).

In Lee and Nelder (1996) another approach to estimating the parameters was

proposed. These authors argued to use the joint likelihood LE for the maximization,

which is directly available from the definition of the model. The joint likelihood,

called also extended likelihood or h-likelihood, is then maximized jointly with respect

to v and β given dispersion parameters λ. At the maximum, standard errors are

obtained in the classical way. In the notation of above, the extended likelihood is
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given by:

LE(β,λ,v|y,v) =
N∏

i=1

ni∏

j=1

fβ,λ(yij |vi)fλ(vi). (4.2)

The logarithm of (4.2) is called the extended log-likelihood by Lee et al. (2006) and

they denoted its logarithm as h = log [LE(β,λ,v|y,v)]. We could say that this

extended likelihood reflects the hierarchical character of the data.

In the h-likelihood approach the estimates of dispersion parameters are deter-

mined by maximizing the adjusted profile likelihood introduced by Cox and Reid

(1987). However, for some models the approach of Lee and Nelder (1996) is not ap-

propriate, therefore Noh and Lee (2007) proposed to replace the joint likelihood as

the estimation criterion for β with another adjusted profile likelihood. The outline

of this procedure is given in the next section.

4.2.1 Computing marginal MLEs using the h-likelihood approach

In some special cases, i.e., when the random effects are on the canonical scale (see

e.g., Lee et al. (2006) pp. 112-114), joint maximization of the extended log-likelihood

h with respect to all parameters (β,λ,v1, . . . ,vN ) is equivalent to maximizing the

marginal likelihood with respect to β,λ and taking the Empirical Bayes (EB) es-

timates for v1, . . . ,vN . But, most often the two maximization procedures are not

equivalent.

Noh and Lee (2007) suggest in the general case to work with a Laplace ap-

proximation to the marginal likelihood (4.1). Namely, the integral of the function

k(x,y) exp [−ng(x,y)] with respect to x can be approximated as follows:

∫
k(x,y) exp [−ng(x,y)] dx =

∣∣∣∣∣
n∂

2g(x,y)
∂x⊤∂x

2π

∣∣∣∣∣

− 1
2

x=x̂

exp [−ng(x,y)] k(x,y)|x=x̂, (4.3)

with x̂ the value of x that maximizes −g(x,y). This is called the Laplace approxi-

mation of the above integral (at x̂). More information on the Laplace approximation

can be found in e.g., Severini (2000) (Section 2.11).
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Taking in expression (4.3) k(x,y) = 1; exp [ng(x,y)] = exp [−h(θ,v)] whereby
θ = (β,λ); v representing the stacked vector of N random effects and finally

n∂
2g(x,y)
∂x⊤∂x

= −∂2h(θ,v)
∂v⊤∂v

, leads to

LM (β,λ|y) =
∫

exp [h(β,λ,v)] dv ≈
∣∣∣∣∣
−∂2h(β,λ,v)

∂v⊤∂v

2π

∣∣∣∣∣

− 1
2

v=v̂

exp [h(β,λ,v)] |v=v̂, (4.4)

with v̂ maximizing the extended likelihood for a given (starting) value of β and λ,

i.e., v̂(β,λ). Note that the approximation improves when the number of observa-

tions per subject, ni increases, which can be inferred from Severini (2000). Taking

the logarithm of the previous expression leads to the adjusted profile (log)-likelihood

pv(h) = h(β,λ,v)|v=v̂ − 0.5 log

∣∣∣∣
D(h,v)

2π

∣∣∣∣
v=v̂

, (4.5)

with D(h,v) = −∂2h(β,λ,v)
∂v⊤∂v

. The term ‘adjusted profile likelihood’ is chosen since

h(β,λ,v)|v=v̂ is a profile (log)-likelihood of β and λ and the second term in (4.5)

is a correction term to approximate the marginal log-likelihood.

The next step in the iterative procedure is to maximize the adjusted profile (log-

)likelihood (4.5) with respect to β. Note that maximizing the profile log-likelihood

h(β,λ,v)|v=v̂ to find the MLE of β is not appropriate since this is equivalent to

joint maximization of h over β and v which is most often invalid as seen above.

After obtaining β̂λ from maximization of (4.5) for a given dispersion component

λ, the estimation algorithm proceeds with estimation of λ. Another adjusted profile

likelihood is used as an objective function to find λ̂.

Let the marginal distribution of the data y be fβ,λ(y) (marginalized over v),

i.e., the LHS of expression (4.4) or its approximation, now seen as a probability

density function (pdf) of the data. Conditional on the sufficient statistics for β, i.e.,

β̂λ, (see Cox and Hinkley (1974), page 21), the (marginalized) distribution of the

data can be derived from:

fλ(y|β̂λ) =
fβ,λ(y)

fβ,λ(β̂λ)
, (4.6)
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where fβ,λ(β̂λ) is the distribution of β̂λ. One then applies the p-formula as derived

by Barndorff-Nielsen (1980, 1983), see also Pawitan (2001), to obtain in general the

distribution of the ML estimator. Namely,

fβ,λ(β̂λ) =

∣∣∣∣−
1

2π

∂2 log fβ,λ(y)

∂β⊤∂β

∣∣∣∣
1
2

β=β̂λ

fβ,λ(y)

f
β̂λ,λ

(y)
, (4.7)

where f
β̂λ,λ

(y) is the marginal profile likelihood of λ, i.e.,

log[f
β̂λ,λ

(y)] = ℓM (βλ,λ|y)|β=β̂λ
.

After substitution of expression (4.7) into (4.6) one obtains:

log
[
fλ(y|β̂λ)

]
= ℓM (βλ,λ|y)|β=β̂λ

− 0.5 log

∣∣∣∣
D(ℓM ,β)

2π

∣∣∣∣
β=β̂λ

, (4.8)

with D(ℓM ,β) = − ∂2ℓM
∂β⊤∂β

. In the next step, one replaces everywhere the marginal

log likelihood ℓM by the adjusted profile log-likelihood pv(h) evaluated in β = β̂λ.

This results in:

log
[
fλ(y|β̂λ)

]
= h(β,λ,v)|

β=β̂λ,v=v̂
−0.5 log

∣∣∣∣
D(h,v)

2π

∣∣∣∣
β=β̂λ,v=v̂

−0.5 log

∣∣∣∣
D [pv(h),β]

2π

∣∣∣∣
β=β̂λ

.

(4.9)

Finally, in Appendix 4 of Lee and Nelder (2001) it is shown that the sum of the last

two terms in the above expression is equal to

−0.5 log

∣∣∣∣
D [h, (β,v)]

2π

∣∣∣∣
β=β̂λ,v=v̂

,

with D [h, (β,v)] equal to

(
− ∂2h
∂β⊤∂β

− ∂2h
∂β⊤∂v

− ∂2h
∂v⊤∂β

− ∂2h
∂v⊤∂β

)
with dimensions equal to the

sum of the dimensions of two adjustment terms in (4.9). As a result one obtains the

following adjusted profile likelihood:

pβ,v(h) = h(β,λ,v)|
β=β̂,v=v̂

− 0.5 log

∣∣∣∣
D [h, (β,v)]

2π

∣∣∣∣
β=β̂,v=v̂

. (4.10)
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The latter adjusted profile likelihood is maximized with respect to λ to obtain λ̂.

Note that this objective function is “focussed” solely on the dispersion parameters.

This offers an extension of restricted maximum likelihood (REML) estimation and

provides inference for the class of generalized linear mixed models, see Noh and Lee

(2007). We show below that in the case of linear mixed models this function is

exactly the restricted maximum likelihood.

4.2.2 The linear mixed model case

We illustrate the above estimation framework for the linear mixed model case. While

in general the above calculations are approximate, in this case they are exact. Some

of the expressions are based on the results shown in Harville (1977). The classical

linear mixed effects model assumes:

fβ,λe(yi|vi) = N (Xiβ +Zivi;Σi),

fλv(vi) = N (0;Λi).
(4.11)

The design matrix Xi contains fixed effects for the ith subject, while Zi is a design

matrix for the random effects for the ith subject. Matrices Σi and Λi determine

the residual variance of yi and the variance of random effects vi respectively. Note

that we have split up λ into λe and λv, the dispersion parameters pertaining to

the residual variability Σi and random effects variability Λi, thereby showing the

role of each of the dispersion components. Denote by V the total (over all subjects)

marginal variance-covariance matrix V = ZΛZT +Σ, where X is the design matrix

for fixed effects obtained by stacking X1 to XN , Z = diag(Z1, . . . ,ZN ) is the design

matrix of random effects, Λ = diag(Λ1, . . . ,ΛN ) is the variance covariance matrix

of the random effects and Σ = diag(Σ1, . . . ,ΣN ) is the residual variance covariance

matrix.

In this case the adjusted profile likelihood pv(h) becomes:

pv(h) = ℓM = −1

2
log |2πV| − 1

2
(Y −Xβ)⊤V−1(Y −Xβ), (4.12)
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which is the expression for the marginal likelihood of a linear mixed model. Further,

the adjusted profile likelihood pv,β(h) is equal to:

pβ,v(h) = log[fλ(y|β̂λ)] = ℓM |
β=β̂λ

− 0.5 log

∣∣∣∣
X⊤V−1X

2π

∣∣∣∣ , (4.13)

which is exactly equal to the classical REML likelihood (see e.g., Verbeke and Molen-

berghs (2000)) for the linear mixed model.

Note that maximization of (4.5) with respect to β and λ is actually the maxi-

mization of the marginal likelihood computed by a classical Laplace approximation.

In the above h-likelihood procedure, estimation of β given λ is the same as with a

classical Laplace approximation, but the estimation of λ is essentially different. The

h-likelihood procedure gives an elegant set of IWLS equations for the estimation of

the dispersion parameters, which possibly depend on covariates.

4.2.3 Application to the hierarchical generalized linear models

The above theory is applied to generalized linear models with random effects. In

this class of models the assumed distribution of the response yij (conditional on

random effects) belongs to the exponential family:

fβ,λe(yij) = exp

[
yijθij − b(θij)

λe
+ c(yij , λe)

]
. (4.14)

This distribution is combined with the distribution of the random component, which

distribution belongs to the family of conjugate Bayesian distributions for an expo-

nential family, i.e.,

fλv(vi) = exp [a1(λv)vi − a2(λv)b(vi) + c2(λv)] , (4.15)

which can be expressed as the distribution of a pseudo-response ψi as follows:

fλv(vi) = exp

[
ψivi − b(vi)

λv
+ c2(ψi, λv)

]
. (4.16)
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In this class of models the response is allowed to follow a Gaussian, binomial, Poisson

or gamma distribution. Their corresponding conjugate Bayesian distributions are

Gaussian, beta, gamma and inverse-gamma, respectively. Note that both λv and λe

are allowed to depend on covariates.

4.2.4 Implementation in the HGLMMM package

In this section we document the use of the functionHGLMfit, together with accom-

panying functions HGLMLRTest, HGLMLikeDeriv and BootstrapEnvelope-

HGLM. First we will describe the use of the fitting function HGLMfit and explain

the parameters used in the invocation of the function. The following structure of

the routine is used:

HGLMfit(DistResp = "Normal", DistRand = NULL, Link = NULL,

LapFix = FALSE, ODEst = NULL, ODEstVal = 0,

formulaMain, formulaOD, formulaRand, DataMain, DataRand,

Offset = NULL, BinomialDen = NULL, StartBeta = NULL,

StartVs = NULL, StartRGamma = NULL, INFO = TRUE,

DEBUG = FALSE, na.action, contrasts = NULL, CONV = 1e-04)

Below we describe the parameters of the function HGLMfit together with the

default values in parenthesis.

DistResp ("Normal"): The distribution of the response as defined in (4.14) is

set by the option DistResp. The user can set it to: Binomial, Normal, Poisson or

Gamma. Note that the name of the distribution must start with a capital letter.

DistRand (No Default): The next option DistRand specifies the distribution

of the random components and should be set as a vector of distribution names

from the set: Beta, Gamma, IGamma (inverse-gamma) and Normal. For each random

component one entry in the vector must be specified. Therefore for a model with

two random effects, whereby the first random effect has a normal distribution and

the second random effect has a gamma distribution, you should specify the vector



78 Chapter 4

c("Normal","Gamma").

Link (Canonical link): The link option is available for a gamma distribution

of the response. The choice is either Log or Inverse. For the random variables of

a Binomial, Normal or Poisson distribution only the default links are currently

available, that is Logit, Identity and Log, respectively.

LapFix (FALSE): Having defined the structure of the model, i.e., (1) the dis-

tribution of the response, (2) random effects and (3) the link, one has to specify in

the option LapFix whether the joint likelihood (4.2) will be used to estimate fixed

effects in the mean structure of the response model, or the effects will be estimated

by the adjusted profile likelihood (4.5), which is an approximation to the marginal

likelihood. Set LapFix=TRUE for the adjusted profile likelihood and LapFix=FALSE

for the joint likelihood.

ODEst (Likelihood based analysis) ODEstVal (0): Next the option ODEst

determines whether the dispersion parameter λe in (4.14) will be estimated or held

fixed. This is set to NULL by default which implies for the Poisson and Binomial

distribution for the response that it is fixed. For the Normal and Gamma response, the

default option is that it is estimated from the data. Specifying ODEst=TRUE implies

that λe is estimated, while it is fixed for ODEst=FALSE. Further, the parameters

ODEstVal specify either the starting values when λe is estimated, or the values used

in the estimation when λe is set fixed.

formulaMain: The option formulaMain requires a two-sided formula to be spec-

ified to determine the structure of the linear predictor of the response, e.g.,

Outcome ~ Fixed.Efffect.1+Fixed.Effect.2+(1|Subject.1).

This specification sets Outcome as the response. Further, in the above example it is

specified that there are two fixed effects and a random intercept with subject index

Subject.1. Correlated random components are currently not allowed, therefore a

structure (1+time|Subject.1) is not valid, instead

(1|Subject.1)+(time|Subject.1) needs to be entered.
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formulaOD formulaRand: Similarly formulaOD specifies the covariates in the

residual dispersion (overdispersion) structure by a one sided formula e.g., ~1+time.

Further, formulaRand requires a list of formulas determining the dependence of the

dispersion parameters of the random components on covariates. For a model with

two random effects the following code

list(one=~1+mean.time,two=~1) means that the dispersion parameter of the first

random component depends on the average time, while the dispersion parameter of

the second random component is constant (intercept only model).

DataMain DataRand: The option DataMain determines which data frame to use

for the estimation, i.e., where the data for the mean model and residual dispersion

is referred to. Likewise DataRand is a list of data frames. They correspond to design

matrices for the dispersion parameters of random effects. Therefore for each random

effect specified in formulaMain, a corresponding dataframe needs to be included.

Offset (1): In Poisson regression, an offset variable t is specified in the form

log(µ/t) = η, where η is a linear predictor and µ a mean modeled in the Poisson

regression. Therefore it is not necessary to log-transform t before entering in the

model.

BinomialDen (1): In binomial regression one has to use option BinomialDen

to specify the denominator for the binomial distribution. Suppose you toss a coin

ten times, then you have 10 independent trials, and the denominator should then

be 10. It is allowed that each observation has a different denominator.

StartBeta (NULL) StartVs (NULL) StartRGamma (NULL): The three follow-

ing options allow to specify the starting values for fixed effects in the mean structure

StartBeta, random effects in the mean structure StartVs (which is a vector of val-

ues for all random components together) and dispersion parameters StartRGamma.

Note that starting values for the residual dispersion (overdispersion) are supplied in

ODEstVal. Recall that the overdispersion parameter may be fixed or estimated by

setting the option ODEst. When starting values are not supplied, for the intercept of

the mean structure an appropriate sample mean of the response is used, and zeros



80 Chapter 4

are used for the other parameters.

CONV (1e-04): Setting option CONV determines the criterion for convergence,

which is computed as the absolute difference between values of all estimated param-

eters in the previous iteration and in the current iteration.

The function HGLMfit returns an object of class HGLM. We refer to the help

file of the package for the documentation of all elements of this list. The function

HGLMLikeDeriv takes an object of the class HGLM and returns gradient values

for fixed effects in the mean structure and dispersion parameters. The function

HGLMLRTest compares two HGLM objects with respect to h-likelihood values,

marginal likelihood pv(h) and REML likelihood pβ,v(h). Likelihood ratio tests are

produced. Finally, the function BootstrapEnvelopeHGLM creates a qq-plot

of the standardized deviance residuals for the response together with bootstrap

envelopes under the assumption that the given model is correct. If the qq-plot falls

within the envelopes we can claim that the assumed distribution of the response is

reasonable.

There are many packages/routines/programs for analysis of the hierarchical

models. The algorithm based on the h-likelihood approach offers a wider choice for

the random effects distributions. Further, dispersion components of random effects

as well as an overdispersion parameter can be modeled as a function of covariates.

This is combined with relatively modest computational requirements.

4.3 Analysis of examples

In this section we will present the analysis of the three data sets, also analyzed in

Lee et al. (2006), using the package HGLMMM.

4.3.1 Salamander data

In McCullagh and Nelder (1989) a dataset on salamander mating was presented.

The dependent variable represents the success of salamanders mating. There were 20
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males and 20 females in each of the 3 experiments coming from the two populations

called whiteside (denoted by W) and roughbutt (denoted as R). Salamanders were

paired for mating six times with individuals of their own kind and from the other

population. In total 360 observations were generated. Denote as µijk the probability

of successful mating. We will consider a model with crossed-random effects (also

known as a multi-membership model) to analyze this dataset. The mean structure

has the following expression:

log

(
µijk

1− µijk

)
= Intercept + TypeF+TypeM+TypeF ∗TypeM+ vi + vj , (4.17)

where TypeF is the type of female (R or W), TypeM is the type of male (R or W),

while vi are the random effects corresponding to males and vj are the random effects

corresponding to females. The following analyses were also performed in Lee et al.

(2006) (page 194-195). The program below is used to fit this model. The design

matrices for the dispersion components of male and female random effects contain

only an intercept and are created by the command below:

R> RSal <- data.frame(int = rep(1, 60))

The following program is invoked to perform the analysis:

R> modBin <- HGLMfit(DistResp = "Binomial", DistRand = c("Normal", "Normal"),

Link = "Logit", LapFix = TRUE, ODEst = FALSE,

ODEstVal = c(0), formulaMain = Mate ~ TypeF + TypeM

+ TypeF * TypeM + (1|Female) + (1|Male),

formulaOD = ~ 1, formulaRand = list(one = ~ 1, two = ~ 1),

DataMain = salamander,DataRand = list(RSal, RSal),

BinomialDen = rep(1, 360), INFO = TRUE, DEBUG = FALSE)

A brief description of the model can be displayed by modBin, that uses the print

method for objects of class HGLM. Printing of the object modBin gives the following

output:
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===== HGLM Model Information =====

Response Distribution: Binomial

Random Effect 1 : Normal / Female

Random Effect 2 : Normal / Male

Link: Logit

Overdispersion Structure is Fixed

Estimation of fixed effects: Laplace Approximation

Dataset used: salamander

Model Equation:

Mate ~ TypeF + TypeM + TypeF * TypeM + (1 | Female) + (1 | Male)

Overdispersion Equation:

~1

Dispersion Equation(s):

Component 1 :~1

Component 2 :~1

The output gives information about the response distribution, the number of ran-

dom effects, their distribution and the subject index. Further, the link function

is reported. Next, information is contained whether overdispersion (residual dis-

persion) is fixed or estimated. The method of estimating the fixed effects in the

regression equation is reported, as well as the model equation, the overdispersion

equation and the dispersion equations.

The detailed results of the fit can be obtained by the command:

R> summary(modBin, V=TRUE)

If option V=TRUE is omitted, the results for the random effects are not printed (as

in our example). Output for our object modBin is as follows:
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===== Fixed Coefficients - Mean Structure =====

Estimate Std. Error Z value Pr(>|Z|)

(Intercept) 1.0433 0.4036 2.585 0.00974 **

TypeFW -3.0055 0.5260 -5.714 1.10e-08 ***

TypeMW -0.7290 0.4741 -1.538 0.12413

TypeFW:TypeMW 3.7137 0.5758 6.449 1.12e-10 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The above output gives summary of fixed effects in the mean structure.

===== Overdispersion Parameters Fixed =====

Fixed Value

(Intercept) 0

The overdispersion parameter is held fixed at 1, which is exp(0). Note that the

parameters reported for overdispersion and dispersion pertain to the logarithm of

the parameters. The output shown below reports values for the parameters in the

dispersion structure of random effects. To obtain the value of λv one again needs to

exponentiate the reported estimate.

===== Dispersion Parameters Estimated =====

Dispersion Component: Female

Estimate Std. Error Z value Pr(>|Z|)

(Intercept) 0.3183 0.4459 0.714 0.475

Dispersion Component: Male

Estimate Std. Error Z value Pr(>|Z|)

(Intercept) 0.1863 0.4602 0.405 0.686
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Finally the output shown below reports on the values of the extended likelihood (H-

likelihood), pv(h) which is denoted as marginal likelihood, pβ,v(h) REML likelihood,

and the component fβ,λ(yij |vi) C-likelihood.

===== Likelihood Functions Value =====

H-likelihood : -287.8858

Marginal likelihood: -209.3600

REML likelihood : -209.5131

C-likelihood : -136.2331

The H-likelihood should be used to select the random effects, the marginal like-

lihood is the choice for the mean structure simplification, while REML likelihood

can be used for inference on the variance components. We obtain similar estimates

as in Lee et al. (2006).

4.3.2 Cake data

The chocolate cakes preparation experiment was conducted at Iowa State College.

Three recipes for preparing the batter were compared. Cakes were prepared at 6 dif-

ferent baking temperatures, which ranged from 175 up to 225 degrees of Centigrade.

For each recipe 6 cakes were prepared baked at different temperatures, therefore 18

cakes were baked all together and they are referred to as replication. There were

15 replications, therefore in total 270 cakes were baked. Further, in each replication

there are 3 different recipes. To cope with such a design we include two random

effects, vi representing the replication, and vij for the j
th recipe within the replica-

tion. Finally eijk stands for the error term associated with each cake. The linear

predictor of the model is defined as follows:

ηijk = intercept + recipej + tempk + recipej · tempk + vi + vij , (4.18)

whereby i = 1, . . . , 15 refers to the replicate, j = 1, 2, 3 is the recipe and k =, 1 . . . , 6

to the temperature. The analyzes presented can also be found in Lee et al. (2006)
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(pages 163-166). We will consider two models. In the first model we consider the

breaking angle as a normally distributed response, while in the second model we

assume that it has a gamma distribution. Further, in both models we assume a

normal distribution for both random effects vi and vij . The following syntax is used

for a gamma response model:

R> cake$repbatch <- 100 * cake$Replicate + cake$Batch

R> R1Cake <- data.frame(int = rep(1, 15))

R> R2Cake <- data.frame(int = rep(1,45))

R> modCake2 <- HGLMfit(DistResp = "Gamma", DistRand = c("Normal", "Normal"),

Link = "Log", LapFix = FALSE, ODEst = TRUE, ODEstVal = c(0),

formulaMain = Angle ~ as.factor(Recipe) + as.factor(Temperature)

+ as.factor(Recipe) * as.factor(Temperature) +

(1|Replicate) + (1|repbatch),

, formulaOD = ~1, formulaRand = list(one = ~ 1, two = ~ 1),

DataMain = cake, DataRand = list(R1Cake, R2Cake), Offset = NULL,

, INFO = TRUE, DEBUG = FALSE)

The estimated gamma model yields the following (marginal) likelihood value at

maximum:

===== Likelihood Functions Value =====

H-likelihood : -676.3907

Marginal likelihood: -808.0586

REML likelihood : -848.9244

C-likelihood : -754.2644

The normal model yields a (marginal) likelihood value of −819.54. This value is

lower than for a gamma model, and thus preferable according to the AIC criterion.

Following Lee and Nelder (1998) we create the model checking plots for both models

using the following code. First some graphics manipulation parameters are set to

control the layout of the graphs:

op<-par(mfrow=c(2,2),

oma = c(1,1,2,1),
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mar = c(3,3,4,1) +1.2

)

Next we copy the standardized deviance residuals as suggested by Lee et al.

(2006) (page 52) from the model object modCake2, and compute the linear predictor

of the model, i.e., η together with mean and transformed mean as indicated in Nelder

(1990). This is done as follows:

R> res <- modCake2$Details$StdDevianceResidualY

R> xmat <- model.matrix(~ as.factor(Recipe) + as.factor(Temperature) +

as.factor(Recipe) * as.factor(Temperature), data = cake)

R> eta <- xmat%*%modCake2$Results$Beta

R> mu <- exp(eta)

R> mu <- log(mu)

After a few steps, standardized deviance residuals and absolute standardized

deviance residuals can be plotted against scaled fitted values, together with a loess

curve. In addition a qq-plot of these residuals and histogram are created.

The commands below produce scaled fitted values plot against residuals:

R> plot(mu, res, pch = 18, col = "black" xlab = "Scaled Fitted Values",

ylab = "Deviance Residuals")

R> los <- loess.smooth(mu, res, span = 1/2, degree = 1,

family = c("symmetric", "gaussian"), evaluation = 50)

R> lines(los$x, los$y, col = "black", lwd=2)

Next, we create a plot of scaled fitted values against absolute residuals:

R> plot(mu, abs(res), pch = 18, col = "black", xlab = "Scaled Fitted Values",

ylab = "Absolute Deviance Residuals")

R> los <- loess.smooth(mu, abs(res), span = 1/2, degree = 1,

family = c("symmetric", "gaussian"), evaluation = 50)

R> lines(los$x,los$y, col="black", lwd=2)

The qq-plot and histogram of residuals:
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R> qqnorm(res, pch=18)

R> abline(h=0, v=0)

R> abline(a=0, b=1, lty=3)

R> breaks <- seq(-4, 4, by = 0.8)

R> hist(res, breaks = breaks, xlab = "Deviance Residuals",

main = "Histogram")

Additional commands provide a title:

R> par(op)

R> mtext("Diagnostics for Cake Model Gamma",

side = 3, line = 1.5, font = 2, cex = 2, col = ’black’)

R> par(op)

R> dev.off()

The above code produces the diagnostic plots for the gamma model presented in

Figure 4.1. Further we fitted a gamma model without interaction recipej ∗ tempk

and compared it with the original model using the likelihood ratio test:

R> HGLMLRTest(modCake3, modCake2)

The following output is obtained:

H-likelihood of model 2 is higher

Marginal likelihood comparison:

LR test p-value: 0.5034955

LR test statistics: 9.304224

LR difference df: 10

REML likelihood comparison:

LR test p-value: NA

LR test statistics: 29.88638

LR difference df: 0
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Figure 4.1: Cake data: Diagnostic plots for the gamma model.
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Figure 4.2: Cake data: Diagnostic plots for the final gamma model.

The chi-squared test statistics with 10 degrees of freedom indicate that there is

not enough evidence for the inclusion of the interaction term into the model (p value:
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0.5). Therefore the simplified model is our choice. According to the diagnostics plot

on Figure 4.2 the model seems to be fitting well. Lee et al. (2006) analyzed this

data using linear mixed model for the original, as well as the transformed response.

They also indicated that the gamma model is preferable by the AIC criterion.

4.3.3 Rat data

Thirty rats were treated with one of three chemotherapy drugs. White blood cell

counts (W) and red blood cell counts (R) were taken at each of four different time

points. We perform the same analysis as in Lee et al. (2006) (pages 224-229). We

will focus here on quasi-Poisson model with normal random effects. First we create

the design matrix for the dispersion parameter of the random component:

R> Rrat <- data.frame(WBC = tapply(rat$WhiteBloodCells, rat$Subject, mean),

RBC = tapply(rat$RedBloodCells, rat$Subject, mean))

The model can be fitted by:

R> modRat2 <- HGLMfit(DistResp = "Poisson", DistRand = c("Normal"),

Link = "Log", LapFix = FALSE, ODEst = TRUE,

ODEstVal = c(0), formulaMain = Y ~ WhiteBloodCells +

RedBloodCells + as.factor(Drug) + (1|Subject),

formulaOD = ~ 1, formulaRand = list(one = ~ WBC + I(WBC ^ 2)),

DataMain = rat, DataRand = list(Rrat),

INFO = TRUE, DEBUG = FALSE)

The crucial option here is ODEst=TRUE, which requests a quasi-Poisson to be fitted

instead of a likelihood based Poisson model. Note that a summary of the likelihood

values is not valid now, as we are not using a likelihood based technique but extended

quasi-likelihood is invoked. By a similar manipulation as in Section 4.3.2, we ask for

the diagnostic plots of the model. Figure 4.3 presents diagnostic plots for the quasi-

Poisson model for the residual error term (y|v), while Figure 4.4 gives diagnostics for
the choice of the model for the dispersion of the random term (v). The corresponding

diagnostic plots were also presented by Lee et al. (2006).
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Figure 4.3: Rat data: Diagnostic plots for the quasi-Poisson model (residual component).
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Figure 4.4: Rat data: Diagnostic plots for the quasi-Poisson model (dispersion of random
component).
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Figure 4.5: Rat data: Diagnostic plot for the likelihood based Poisson model.

Figure 4.5 presents the qq-plot for the standardized deviance residuals for the

Poisson model (likelihood based) of the same structure as the above quasi-Poisson

model, together with 95% bootstrap envelopes. Clearly the Poisson model does not

fit well. The code to generate the plot is the following:

R> modRat1 <- HGLMfit(DistResp = "Poisson", DistRand = c("Normal"),

Link = "Log", LapFix = FALSE, ODEst = FALSE,

ODEstVal = c(0), formulaMain = Y ~ WhiteBloodCells +

RedBloodCells + as.factor(Drug) + (1|Subject),

formulaOD = ~ 1, formulaRand = ~ list(one=~1),

DataMain = rat, DataRand = list(Rrat),

INFO = TRUE, DEBUG = FALSE)

R> BootstrapEnvelopeHGLM(modRat1, 19, 9999)
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4.4 Alternative software for hierarchical data

The methods described in this paper are applied to model hierarchy in the outcomes

(resulting in unobserved heterogeneity). There are numerous statistical programs

and packages to address this type of modeling. Here we would like to mention a

few. Note that that is not our intention to be exhaustive, but rather to focus on

most popular programs and which we are acquainted with.

First of all, to our knowledge prior to this R package the h-likelihood algo-

rithms were implemented only in GENSTAT (Payne et al., 2009) software. The

capabilities of HGLMMM and GENSTAT h-likelihood methods are similar. Ex-

tra flexibility is provided by HGLMMM by the ability to specify several random

components, allowing for a different distribution of each component. This is not

available in the GENSTAT program. On the other hand GENSTAT offers a

second order Laplace approximation to estimate variance components, which is not

implemented in HGLMMM.

To analyze the salamander example the software needs to allow for a crossed

random effects design. Gaussian quadrature methods are not applicable in this case

as the dimension of integration is often too large. The R package lme4 (Bates

and Maechler, 2009a) with the function lmer allows for the analysis of this example

with an ordinary Laplace approximation. The advantage of using HGLMMM is

the ability to include covariates in the dispersion part of the model. This is not

allowed in lmer. Packages lme4 and HGLMMM differ in the way the dispersion

parameters are estimated. The HGLMMM package uses the objective function

which is equivalent to the REML approach in linear mixed models. The package

lme4 is however faster and more efficient. Note that lme4 is a quite popular R

package for the analysis of longitudinal data. The salamander data can also be

analyzed by the PQL method of Breslow and Clayton (1993) as implemented e.g.,

in SAS (SAS Institute Inc., 2008) PROC GLIMMIX, which allows the dispersion

parameters to depend on categorical covariates.

In the cake example we analyzed the breaking angle of cakes assuming a normal



4.4 Alternative software for hierarchical data 93

distribution. This analysis can be reproduced in the R package nlme (Pinheiro

et al., 2009) or lme4 using a random effects model or a linear model with correlated

errors. Also the SAS procedures MIXED, NLMIXED or GLIMMIX can be used.

When the response follows a gamma distribution SAS procedures GLIMMIX and

NLMIXED can be used, but both of them assume the random effects follow a normal

distribution. On the other hand, in HGLMMM we easily combine non-normal

responses with a non-normal random effects distribution. Such a combination can

be done in SAS PROC NLMIXED only by using the trick of Liu and Yu (2008) and

requires some additional programming. Finally, note that SAS PROC NLMIXED

is a likelihood based procedure, while HGLMMM allows the utilization of the

extended quasi likelihood, with a overdispersion parameter varying with covariates.

In the rat example an extended quasi likelihood analysis is presented on the

number of cancer cell colonies, with the variance of the random effect distribution

depending on covariates. Now it is difficult to find standard software which could

repeat such an analysis. SAS PROC GLIMMIX comes closest, allowing for overdis-

persion in Poisson distribution and the variance of random effect to depend on a

categorical covariate.

In summary, the package HGLMMM blends the distribution of the response

from an exponential family with a random effects distribution from the conjugate

Bayesian distributions. Further, difficult designs can be handled such as multi-

membership designs or more than 2-levels in the hierarchical models. On top of

that one can put covariates in mean and (over)dispersion structure. All of these

features are not available in one package/software to our knowledge. The limitation

of HGLMMM is the necessity to assume independent random components, this

assumption can be relaxed in R packages lme4, nlme and SAS PROC MIXED,

NLMIXED, GLIMMIX .
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4.5 Future improvements

In future work we would like to adapt the codes to use Matrix (Bates and Maechler,

2009b) package to save memory and to avoid problems with large datasets. Different

links for the binomial response such as Probit and CLogLog need to be implemented

as well. In addition, future work will focus on the introduction of the correlation

between random effects. In Molas and Lesaffre (2010) the routines were extended

to handle hurdle models for count data.
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Chapter

5 Hurdle Models for Multilevel

Zero-Inflated Data via H-likelihood

Based on:

Molas M. and Lesaffre E. (2010). Hurdle models for multilevel zero-inflated data

via h-likelihood. Statistics in Medicine 29 pp. 3294-3310

Abstract

Count data often exhibit overdispersion. One type of overdispersion arises when

there is an excess of zeros in comparison to the standard Poisson distribution. Zero-

inflated Poisson and hurdle models have been proposed to perform a valid likelihood

based analysis to account for the surplus of zeros. Further, data often arise in

clustered, longitudinal or multiple-membership settings. The proper analysis needs

to reflect the design of a study. Typically random effects are used to account for

dependencies in the data. We examine the h-likelihood estimation and inference

framework for hurdle models with random effects for complex designs. We extend

the h-likelihood procedures to fit hurdle models, thereby extending h-likelihood to

97
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truncated distributions. Two applications of the methodology are presented.

5.1 Introduction

While counts are often modeled with a Poisson distribution, in medical applications

they usually exhibit overdispersion. One type of overdispersion arises where there

is an excess of zeros compared to the Poisson distribution. To deal with this type of

overdispersion the zero-inflated Poisson (ZIP) model has been suggested, see Singh

(1963) for an early reference. A competitor to the ZIP model or its extensions is

the hurdle model first suggested by Cragg (1971). The two above models have been

extended also to correlated data structures, see e.g. Min and Agresti (2005) and

references therein. In this paper we focus on further generalizations of the hurdle

model and suggest another way of estimating and testing its parameters.

Zero-inflated data can be found in e.g. dental studies where caries experience (see

Mwalili et al. (2008)) is modeled, adverse events studies or occupational accidents

studies (see Min and Agresti (2005)), etc.. Zero-inflated counts can also occur in

clustered data or repeated measures designs. In that case the dependence of the

counts needs to be dealt with. This could be done by the inclusion of random

effects in a likelihood based analysis. In Min and Agresti (2005) an extension of the

ZIP and the Poisson-hurdle model to dependent data is proposed, but they focus

on the latter model. Estimation and inference is based on the marginal likelihood.

In this paper we propose to use the h-likelihood approach Lee and Nelder (1996,

2001) to estimate and test the parameters of a hurdle model in a repeated measure-

ments context. Our approach allows for multi-membership and multi-level designs.

Further, other than normal distributions may be taken for the random effects but,

the approach is restricted at this moment to independent random effects distribu-

tions. In the basic version the truncated part of the hurdle model is assumed to

be Poisson. Overdispersion in this part can be accommodated with by the inclu-

sion of an extra random effect. Parameter estimation is performed by an Iterative

Weighted Least Squares (IWLS) algorithm. Inference is based on h-likelihood and
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adjusted profile likelihood functions. This allows for a restrictive maximum likeli-

hood (REML) inference for variance components in the context of generalized linear

mixed models.

In Section 5.2 we describe the two motivating data sets. The hurdle model is de-

scribed in Section 5.3. The h-likelihood approach is extensively reviewed in Section

5.4. In this review we focus on the numerical aspects of the h-likelihood approach.

The extension of the h-likelihood approach to the hurdle model and in a multi-level

context is presented in Section 5.5. Most of the technical details of the developments

are, however, deferred to the Appendix. In Section 5.6 the motivating examples are

analyzed with the proposed h-likelihood approach. Concluding remarks are given

in Section 5.7.

5.2 Motivating data sets

In this section we describe the two motivating data sets, both are examples of zero-

inflated repeated measures data. The first example has been previously analyzed

by Min and Agresti (2005). The second data set results from an intervention study

to examine the effect of Tai-Chi Chuan exercises on the frequency of falls in elderly

people.

5.2.1 Adverse events study

The data were obtained from a clinical trial comparing two treatments for a par-

ticular disease on the number of episodes of a certain adverse event. This example

was first described by Min and Agresti (2005) on simulated data. 118 patients were

randomly allocated to one of the two treatment arms. The response of the study is

the frequency of episodes between consecutive visits. About 83% of the counts were

zeros. Table 5.1 displays the distribution of the number of episodes of the adverse

event observed between each of the six visits.
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Number of Adverse Events
Visit Treatment 0 1 2 3 4 5 6

1
0 51 8 0 0 0 0 0
1 57 1 1 0 0 0 0

2
0 52 4 2 0 1 0 0
1 47 9 3 0 0 0 0

3
0 51 6 2 0 0 0 0
1 47 8 3 1 0 0 0

4
0 53 4 2 0 0 0 0
1 44 7 5 2 0 0 1

5
0 52 4 3 0 0 0 0
1 41 9 3 0 5 1 0

6
0 53 4 2 0 0 0 0
1 42 5 5 3 2 1 1

Table 5.1: Frequency table for the Min & Agresti Min and Agresti (2005) dataset

5.2.2 Tai-Chi Chuan intervention study

Our second example is an intervention study concerned with the number of falls

in elderly people. Falls are a common problem among old aged people. Between

55% to 70% of fall incidents result in physical injury. In the Department of General

Practice of the Erasmus Medical Center at Rotterdam (the Netherlands) a study was

set up to examine the effect of Tai-Chi Chuan exercises on reducing the frequency

of falls in healthy elderly people living at home and who are at an increased risk

of falling. This randomized and partially blinded clinical trial ran from February

2004 to April 2006 and enrolled in total 269 elderly people. General practitioners

invited the elderly people but the GPs were not informed who attended the Tai-

Chi Chuan exercises. Participants were followed up for about a year yielding a

count each month. Here we lumped together the time periods into baseline and four

periods of follow up, resulting in a maximum of five counts for each subject. We

used as response the number of days a fall was recorded at baseline, after three,

six, nine and twelve months. Further, the participants were trained in groups. The

statistical analysis needs to take into account that people pertaining to the same

training group are clustered. Furthermore, the repeated counts are correlated and

show overdispersion. Table 5.2 presents the histograms of the frequency of falls in
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the two treatments over the 5 follow-up periods. It was also of interest to establish

the effect of some covariates that were recorded at baseline. Here we consider age,

sex, height, weight and alcohol use.

5.3 The hurdle model

There are two challenges associated with the analysis of the adverse events data

described in Section 5.2. Namely the statistical model needs to account for (a) the

excess of zero counts which might depend on covariates and (b) the fact that the

recorded counts of the same individual are correlated. In this section we describe in

detail the Poisson-hurdle model which allows for a proper likelihood based analysis

when the correlated counts exhibit zero-inflation or zero-deflation. We also contrast

the Poisson-hurdle model to the zero-inflated Poisson model.

The Poisson-hurdle model is composed of two submodels in such a way that the

total likelihood is decomposed into two separate likelihoods which can be maximized

independently. The proportion of zero counts is described by a binary model with

dependence on covariates often modeled with the logit link, but also the probit and

log-log link are in use. Second, the positive counts are modeled by a truncated

Poisson distribution at zero. Thus the Poisson-hurdle model can be expressed as

a mixture of two non-overlapping Poisson distributions: a degenerate Poisson with

mean zero and a truncated Poisson defined on positive integers.
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A competitor to the Poisson-hurdle model is the zero-inflated Poisson model.

When there is overdispersion of the non-zero count part both the ZIP model as

well as the Poisson-hurdle model can be extended, e.g. the zero-inflated negative

binomial model (ZINB) is obtained by assuming that the mean of the Poisson dis-

tribution has itself a gamma distribution. The ZIP distribution can be expressed as

a mixture of a degenerate Poisson with mean zero and a standard Poisson distribu-

tion. In this class of models the components of the mixture overlap. As a result,

for mixture weights that are positive and sum to one, the ZIP model can handle

only zero-inflation, see Mullahy (1986). Indeed, when the ZIP model is applied to

zero-deflated data, the estimates of the ZIP model become unstable and the mixture

weight for the degenerate distribution tends to zero. The problem is amplified when

covariates have an impact on the zero-inflation or deflation. The hurdle model does

not suffer from this handicap, though and can model both types of deviations from

the Poisson distribution. These issues were exemplified by Min and Agresti (2005)

in a cross-sectional setting but their findings carry over to clustered and longitudinal

designs.

When no structured covariates are involved there exists a correspondence be-

tween the ZIP and Hurdle model. Parameters of one model can be expressed as a

function of the parameters of the other. When structured covariates are involved

e.g. continuous or splines, this correspondence seems not to hold. Further, it is not

clear when the relations hold in the repeated measures designs.

The probability that a particular count occurs at the jth (j = 1, . . . , ni) occasion

for the ith (i = 1, . . . , N) individual under the Poisson-hurdle model is given by:

P (Yij = 0) = pij ,

P (Yij = k) = (1− pij) ·
e−µij

µkij
k!

1− e−µij
.

(5.1)

Further, the probabilities pij and the means of the truncated Poisson distribution,

µij , might depend on covariates. Inclusion of random effects v1i and v2i extends the

Poisson-hurdle model to repeated measures data (as introduced in Min and Agresti
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(2005)) as follows:

logit(1− pij) = xT1ijβ1 + v1i, Bernoulli Part

log(µij) = xT2ijβ2 + v2i. Truncated Poisson Part
(5.2)

Further, the random effects in (5.2) are assumed to follow a bivariate distribution.

In case v1i and v2i are independent, the likelihood factorizes into the sum of the

likelihood pertaining to the binary part and the likelihood of the truncated Poisson

part of the hurdle model. Thus in that case the two likelihood parts can be maxi-

mized separately. Of course when the v1i and v2i are correlated, joint maximization

of the two mixture components might be more appropriate.

In the Poisson-hurdle model each individual belongs to the one of the two com-

ponents of the mixture, i.e. zero-part or truncated Poisson part. The repeated

measures Poisson-hurdle model implies that the same individual might belong to

the zero part at one timepoint, while it can change the class at another visit e.g.

when a positive count is observed. Therefore the repeated measures Poisson-hurdle

model is defined for each timepoint.

In Min and Agresti (2005) two ways of dealing with repeated measures hurdle

models are described. First, under the assumption of bivariate Gaussian random

effects, numerical integration is performed to obtain the marginal likelihood, and

thereafter the marginal likelihood is maximized. Second, when an unspecified dis-

crete distribution for the random effects is assumed, a nonparametric maximum like-

lihood (NPMLE) method is employed, relying on the maximization of the marginal

likelihood as well. Both methods might become computationally prohibitive for high

dimensional random effects distributions. Alternatively, one could refer to Bayesian

methodology using MCMC sampling. But MCMC sampling requires though a lot

of computational power and as a result the time until convergence might be quite

long. Further, assessing convergence remains a difficult task. Here, we explore the

h-likelihood approach for parameter estimation and inference in a hurdle model with

a complex random effects structure.
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5.4 H-likelihood

5.4.1 Introduction

Regression models typically have two kinds of parameters: (1) mean structure pa-

rameters, β, often called regression or fixed effects parameters and (2) dispersion

parameters, denoted by λ. In a longitudinal setting random effects, denoted by v,

are often invoked to model the covariance structure between responses. The random

effects describe the subject-specific deviation of the individual with respect to the

population averaged evolution. Note that in a mixed effects setting there are two

types of dispersion parameters: (a) λv denotes the dispersion parameter(s) pertain-

ing to the random effects and (b) λe denotes the dispersion parameter(s) pertaining

to the error distribution. A popular way to estimate parameters of a longitudinal

random effects model is to integrate out the random effects from the likelihood lead-

ing to the integrated or marginal likelihood and maximize the marginal likelihood

with respect to the fixed effects parameters. Estimates of the random effects are

obtained in the marginal approach using an Empirical Bayes argument.

In this section we introduce the h-likelihood approach of Lee and Nelder (1996)

to compute the marginal likelihood estimates of the fixed effects parameters and EB

estimates of the random effects parameters, but without explicitly computing the

integrated likelihood.

5.4.2 Marginal and extended likelihood

For a mixed effects model the conditional likelihood of the jth (j = 1, . . . , ni) re-

peated observation on the ith subject (i = 1, . . . , N), i.e. yij , is given by fβ,λ(yij |vi).
The likelihood of the ith random effect is given by fλ(vi). In this section we treat the

dispersion parameters as one block. In Section 5.4.4 the two dispersion parameters

will be treated separately. The total likelihood of the fixed and random effects is the

product of all such terms over the subjects and the repeated observations within a
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subject, i.e.

LE(β,λ,v|y,v) =
N∏

i=1

ni∏

j=1

fβ,λ(yij |vi)fλ(vi). (5.3)

The logarithm of (5.3) is called the extended log-likelihood by Lee et al. (2006)

and they denoted its logarithm by h = log [LE(β,λ,v|y,v)]. The hierarchical struc-
ture of the data, i.e. repeated measures (yij) within subjects (represented by vi) is

clear from the expression of the extended likelihood. However maximization of (5.3)

with respect to fixed effects and random effects parameters leads in general to fixed

effects parameter estimates that are not consistent. This is known for a long time,

see e.g. Cox (1970).

Instead the standard procedure is to maximize the marginal likelihood given by

LM (β,λ|y) =
N∏

i=1

∫ ni∏

j=1

fβ,λ(yij |vi)fλ(vi)dvi. (5.4)

Maximizing LM or equivalently log-likelihood ℓM = log(LM ) yields consistent

estimates of the fixed effects parameters. However, the problem lies in computing

the integrated likelihood. This is a time-consuming task since it needs to be done for

each subject and each iteration. Further, if the MLE is determined with a Newton-

Raphson procedure then integrals need to be computed also for the first and second

derivatives. It is also important to fine tune the likelihood calculations, see e.g.

Lesaffre and Spiessens (2001).

In Lee and Nelder (1996) the authors proposed a technique which exploits the

extended likelihood for its use in estimating and testing all parameters (fixed effects

and random effects) in hierarchical generalized linear models.

5.4.3 Computing marginal MLEs using the h-likelihood approach

In some special cases, i.e. when the random effects are on the canonical scale (see

e.g. Lee et al. (2006) pp. 112-114), joint maximization of the extended log-likelihood
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h with respect to all parameters (β,λ,v1, . . . ,vN ) is equivalent to maximizing the

marginal likelihood with respect to β,λ and taking the EB-estimates for v1, . . . ,vN .

But most often the two maximization procedures are not equivalent. When (5.3)

is used to estimate fixed effects and random effects in the mean structure, the

estimation method will be denoted as HL(0).

In the general case Noh and Lee (2007) suggest to work with a Laplace approxi-

mation to the marginal likelihood (5.4). The computation of the marginal likelihood

by solving the integral by the Laplace approximation results in the adjusted profile

(log)-likelihood

pv(h) = h(β,λ,v)|v=v̂ − 0.5 log

∣∣∣∣
D(h,v)

2π

∣∣∣∣
v=v̂

, (5.5)

with D(h,v) = −∂2h(β,λ,v)
∂vT ∂v

. The term ‘adjusted profile likelihood’ is chosen since

h(β,λ,v)|v=v̂ is a profile (log)-likelihood of β and λ and the second term of (5.5)

is a correction term to approximate the marginal log-likelihood. Note that v̂ is

the maximum likelihood estimator of v for given (β,λ) computed using h as the

objective function, i.e. one could write v̂ = v̂β,λ.

The next step in the iterative procedure is to maximize the adjusted profile

(log-) likelihood (5.5) with respect to β. This approach will be denoted as HL(1).

We stress that HL(0) and HL(1) denote the different ways of estimating β, in both

situations λ and v are estimated using the same objective function, i.e. the adjusted

profile likelihood of order one and the extended likelihood respectively. Maximizing

the profile log-likelihood h(β,λ,v)|v=v̂ to find the MLE of β is not appropriate

since this is equivalent to joint maximization of h over β and v which is most often

invalid (see above).

After obtaining β̂λ from maximization of (5.5) for a given dispersion component

λ, the estimation algorithm proceeds with estimation of λ. Another adjusted profile

likelihood is used as an objective function to find λ̂:
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pβ,v(h) = h(β,λ,v)|
β=β̂,v=v̂

− 0.5 log

∣∣∣∣
D [h, (β,v)]

2π

∣∣∣∣
β=β̂,v=v̂

. (5.6)

The latter adjusted profile likelihood is maximized with respect to λ to obtain λ̂.

Note that this objective function is “focussed” solely on the dispersion parameters.

This offers an extension of REML estimation and inference to the class of generalized

linear mixed models Noh and Lee (2007). It can be shown that in case of linear

mixed models this function is exactly the restricted maximum likelihood.

5.4.4 A class of hierarchical generalized linear models

In this section we review the class of hierarchical generalized linear models (HGLM).

The maximization procedures of the previous section were applied in this class of

models by Lee and Nelder (1996).

The distribution of the response given random effects in a HGLM is assumed to

belong to the exponential family, i.e.

fβ,λe(yij |vi) = exp

[
yijθij − b(θij)

λe
+ c1(yij , λe)

]
, (5.7)

where λe determines the variance of the distribution in Normal or Gamma case,

while it plays the role of an overdispersion parameter in case of Binomial or Poisson

distribution. When we consider only likelihood inference, λe is fixed to 1 for a

Poisson or a Binomial model. For the canonical link, θij = ηij = xTijβ + zijvi.

Finally the functions b(θij) and c1(yij , λe) are determined by the chosen distribution.

Note that Lee and Nelder basically restrict the random effects to the univariate

case, although in Lee et al. (2006) a trick to construct correlated random effects is

presented. We discuss this issue in Section 5.7.

In the absence of covariates a convenient choice for the random effect distribution

of θij is a Bayesian conjugate prior (see e.g. Cox and Hinkley (1974)). Lee and
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Nelder assume the following conjugate prior for vi - a part of θij :

fλv(vi) = exp [a1(λv)vi − a2(λv)b(vi) + c2(λv)] . (5.8)

Since the aim is to maximize h with respect of β but also with respect to vi,

it is convenient to rewrite distribution (5.8) such that it becomes an exponential

distribution as a function of the ‘parameter’ vi as follows:

fλv(vi) = exp

[
ψivi − b(vi)

λv
+ c2(ψi, λv)

]
, (5.9)

with λv the dispersion parameter of the random component vi. Note that in deriving

(5.9) from (5.8) the property that λv a2(λv) = 1 holds for many (standardized)

random effects distributions, e.g. normal with mean zero, beta with mean 0.5,

gamma and inverse gamma with mean 1.

The trick is now to consider (5.9) as the distribution of ψi = a1(λv)
a2(λv)

and not

as the distribution of vi for which it was defined. For this reason, ψi is called a

pseudo-response. As such, ψi appears to have an exponential family distribution

although it is not stochastic.

The extended likelihood can then be written as:

h(β,λ,v) =
N∑

i=1

ni∑

j=1

[
yijθij − b(θij)

λe
+ c1(yij , λe)

]
+

N∑

i=1

[
ψivi − b(vi)

λv
+ c2(ψi, λv)

]
.

(5.10)

An extended IWLS algorithm can be used to estimate hierarchical generalized

linear models using the h-likelihood approach. In the next section we show the

details of the algorithm for the truncated Poisson model.
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5.5 Application of h-likelihood approaches to the Poisson-

hurdle model

The hurdle model was introduced in Section 5.3. It was indicated that under inde-

pendence of v1i and v2i in (5.2) the likelihood of the Poisson-hurdle model factorizes

into the sum of the likelihood pertaining to a binary model and the likelihood of

a truncated Poisson model. The estimation of the binary model with h-likelihood

is well known (e.g. Noh and Lee (2007)). Here we describe the adaptation of h-

likelihood procedures to find the estimates of the truncated Poisson model.

5.5.1 Estimation of the truncated distributions in h-likelihood

In this section we adapt the h-likelihood estimation algorithm to estimate the pa-

rameters of a truncated exponential distribution. A truncated distribution from an

exponential family can be written as follows:

fβ,λe(yij |vi) = exp

{
yijθij − b(θij)− log[M(θij)]

λe
+ c1(yij , λe)

}
, (5.11)

where M(θij) is a correction term to the exponential distribution as a result

from truncation. The extended log-likelihood can be written as:

h =
N∑

i=1

ni∑

j=1

log [fβ,λe(yij |vi)] +
N∑

i=1

log [fλv(vi)] . (5.12)

We now show the modification of the algorithm for the joint maximization of (5.12)

with respect to β and v. In the Appendix we show a detailed description of the

procedure, which can be applied to estimate v using h, β using pv(h), and λ using

pβ,v(h).
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The score equations of (5.12) have the following form:

∂h

∂βp
=

N∑

i=1

ni∑

j=1

wij

{
yij − µij −

M ′(θij)
M(θij)

}
∂ηij
∂µij

∂ηij
∂βp

, (5.13)

∂h

∂vi
=

ni∑

j=1

wij

{
yij − µij −

M ′(θij)
M(θij)

}
∂ηij
∂µij

∂ηij
∂vi

+

{
ψi − ui
λv

}
. (5.14)

As a result, modified Henderson’s equations (see e.g. Lee and Nelder (1996)) are

needed, i.e.

(
XTW̃X XTW̃Z

ZTW̃X ZTW̃Z +Q

)(
βNEW

vNEW

)
=

(
XTW̃s̃

ZTW̃s̃+R

)
, (5.15)

where

W̃ = W + diag

{
M ′′(θij)
M(θij)

−
[
M ′(θij)
M(θij)

]2}
V−1(µ)W,

s̃ = η + (W/W̃)

[
y − µ− M ′(θ)

M(θ)

]
∂η

∂µ
,

(5.16)

with βNEW and vNEW the updated vectors, X and Z are design matrices pertaining

to the fixed effects and the random effect in the mean structure, respectively the

W matrix is the diagonal weight matrix defined as for generalized linear models,

i.e. W =
(
∂µ
∂η

)2
V (µ)−1. Further V (µ) is a variance function of the distribution

fβ,λe(yij |vi), Q = −∂2log(fλv (v))

∂vT ∂v
, s = η + (y − µ)

(
∂η
∂µ

)
and R = Qv +

∂ log(fλv (v))
∂v .

For details of the derivations and further adjustments necessary for the estimation

of β and λ using adjusted profile likelihood, see Appendix.

5.5.2 Truncated Poisson model

Here we focus on the truncated (at zero) Poisson distribution. When Yij has a

Poisson distribution truncated at zero, i.e. Yij ∼ TPoisson(µij), the functions in
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(5.11) are defined as:

θij = log(µij),

b(θij) = exp(θij),

M(θij) = 1− exp(− exp(θij)),

λe = 1,

(5.17)

with µij the mean of the Poisson distribution related to covariates by the log link

as in (5.2).

The following extension to a three-level truncated Poisson model was inspired by

the analysis of the Tai-Chi Chuan intervention data. The two level truncated Poisson

model assumes a truncated Poisson distribution at each time point. However, we

would like to allow for the heavy tails of the distribution (overdispersion) by the

inclusion of an additional random effect.

The following model was therefore considered:

Yijk ∼ TPoisson(µijk),

log(µijk) = xTijkβ + vi + vij ,

µijk = exp(xTijkβ)uiuij ,

(5.18)

where vi = log(ui) and vij = log(uij). Further, ui ∼ Gamma
(

1
λ1
, λ1

)
and uij ∼

Gamma
(

1
λ2
, λ2

)
, both with mean equal to one. The model can also accommodate

a typical multi-level structure whereby there are N schools and within the i − th

school there are ni classes each generating Kij independent (> 0) counts. In the

Tai-Chi Chuan data, Kij = 1 for i = 1 . . . N , j = 1 . . . ni. Note that the parameter

µijk is not the mean of a truncated Poisson distribution, the actual mean is given

by:

µTruncijk = µijk

(
1

1− e−µijk

)
. (5.19)
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The extended log-likelihood of the above model is then given:

h =

N
∑

i=1

ni
∑

j=1

Kij
∑

k=1

{yijkθijk − b(θijk)− log[M(θijk)]}+
N
∑

i=1

[

ψivi − b(vi)

λ1

]

+

N
∑

i=1

ni
∑

j=1

[

ψijvij − b(vij)

λ2

]

.

(5.20)

To estimate all parameters using the h-likelihood approach, similar (but more gen-

eral) equations are needed than for the 2-level truncated Poisson case. We refer to

the Appendix for further technical details.

5.6 Applications

5.6.1 Adverse Events Study

The adverse events study has been previously analyzed by Min and Agresti (2005)

using a hurdle model. Here we repeat their analysis with a Gaussian quadrature

approach which we will consider as our reference. Indeed in case of truly normally

distributed random effects and with a two level structure this approach is probably

most appropriate. For comparative reasons we reanalyze the dataset with the h-

likelihood approach, and using also a hurdle model. The following model (as in Min

and Agresti (2005)) is used:

logit(1− pij) = β10 + β11TRTi(= 2) + β12 log(timeij) + v1i, Bernoulli Part

log(µij) = β20 + β21TRTi(= 2) + β22 log(timeij) + v2i, Truncated Poisson Part

(5.21)

where TRTi = 2 denotes that treatment B is administered to the i − th subject,

while treatment A is a baseline group. Treatment is a time independent variable.

Covariate timeij denotes the time between j − th and (j − 1)th visit for the i− th

subject and is a time dependent covariate. In Min and Agresti (2005) the data were

analyzed using correlated Gaussian random effects v1i and v2i, referred to in the

remainder of the paper as the MA analysis. As mentioned above, a limitation of our

approach at present is that we need to assume independence of v1i and v2i. Therefore

we have analyzed the data using the approach of Min and Agresti (2005) also with
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independent random effects, but then we allowed the distribution of random effects

to be different from normal using the method described in Liu and Yu (2008). In the

Bernoulli part of the hurdle model we assumed normal random effects v1i ∼ N (0, σ2v)

(dispersion parameter λv = σ2v) and beta random effects v1i = logit(u1i) and u1i ∼
Beta

(
1

2λv
, 1
2λv

)
with mean 0.5 and variance 1

4
λv

1+λv
. In the truncated Poisson part of

the model we assumed normal random effects v2i ∼ N (0, σ2v) (dispersion parameter

λv = σ2v) and gamma random effects v2i ∼ log(u2i) and u1i ∼ Gamma
(

1
λv
, λv

)

with mean 1 and variance λv. The MA analysis was executed with an adaptive

Gaussian quadrature approach with twenty [AGQ(20)] quadrature points using SAS

PROC NLMIXED (version 9.2) and is here considered as the reference analysis. We

compared the above analyzes to the h-likelihood approach outlined in the previous

section.

Originally h-likelihood procedures Lee and Nelder (1996) were based on the joint

estimation of fixed and random effects given the estimates (λ) of the dispersion

parameters, which were evaluated by an adjusted profile likelihood. We begin with

such an analysis, which we have denoted as HL(0) in Section 5.4.3. In the same

section we have seen that HL(0) can be improved by the evaluation of the fixed

effects by the adjusted profile likelihood pv(h) Noh and Lee (2007). Next, given

fixed effects and dispersion parameters, the extended likelihood is maximized to

find random effects. This approach was called HL(1) in Section 5.4.3.

The results are presented in Table 5.3 for the Bernoulli part and in Table 5.4

for the truncated Poisson part of the model. First, we compare the HL(0) to the

HL(1) method. The HL(0) method seems to be inferior especially in the case of the

Bernoulli model. The estimates are attenuated towards zero and are relatively far

from the estimates of the reference AGQ(20) analysis. For the truncated Poisson

part of the hurdle model, HL(0) is doing better, especially when gamma random

effects are used. In this case it appears to yield equivalent estimates to the HL(1)

approach. Next, we compare the HL(1) method with the AGQ(20) approach with

independent random effects. Point estimates obtained from both approaches are

close for the fixed effects, but there is some discrepancy in the estimation of the dis-
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persion components. Standard errors from the two methods are similar. Finally we

compare the HL(1) method (with independent Gaussian random effects) to the orig-

inal analysis in Min and Agresti (2005). For the Bernoulli part, the point estimates

and standard errors are close. Larger differences, however, occur in the truncated

Poisson part of the model, but the inferential conclusions remain the same. Espe-

cially the dispersion parameters differ. As far as the choice of the distribution of

the random effects is concerned it does not have a great impact on point estimates,

while slight differences are detected in standard errors. The choice of the random

effects distribution matters more in the Bernoulli part of the hurdle model than in

the truncated Poisson part.
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Figure 5.1: Adverse Events Study: Comparison of random effects estimates for the two parts
of the hurdle model

Figure 5.1 presents the estimates of the random effects from the MA analysis

and the HL(1) approach with Gaussian random effects. There seems to be a high

agreement in the estimated random effects from both models for the Bernoulli part of

the hurdle model. Less agreement is seen for the truncated Poisson part. Random

effects depicted by squares, show the estimates of the random effects of the 64

patients who did not experience an adverse event. These patients correspond to the
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zero class of the Bernoulli part of the hurdle model and hence do not contribute

to the estimation of the truncated Poisson part. However, the empirical Bayes

rule allows for the computation of the random effects associated with the truncated

Poisson model in the marginal analysis. Similarly, h-likelihood maximization can

yield estimates of these random effects after they have been incorporated into h.

The interpretation of such random effects in the context of the hurdle model is not

immediately clear, however.

To summarize, ignoring the correlation between random effects in the two parts

of the hurdle models seems to have more impact on the truncated Poisson part, than

the Bernoulli part. The differences are greater in the estimates of the dispersion

parameters and in the correlation between the random effects.

Finally, we computed deviance residuals for the truncated Poisson model in

(5.21). The QQ-plots of these residuals showed the same pattern as residuals pre-

sented in the Section 5.6.2. We created the QQ-plots for HL(0) and HL(1) models

with normal and gamma random effects, the QQ plots differ only slightly and did

not indicate a preference for a particular model.

5.6.2 Tai-Chi Chuan effectiveness in the elderly

Our second example concerns the Tai-Chi Chuan intervention in preventing falls in

elderly patients. We introduced the study in Section 5.2.2. The question here is to

determine the factors that trigger the patient to fall or not. Further, one wished to

know what factors determine the frequency of falling conditional on the fact that

the patient experienced at least one fall.

The hurdle model approach offers a tool for the accommodation of the excess of

zeros. The correlation between the observations on the same subject in each part of

the hurdle model can be accounted for by the inclusion of a subject specific random

effect. On top of this random effects structure, another random effect can be used

to model the tails of the distribution of the counts. We assumed independence of

random effects in the hurdle model and fitted the binary model and the truncated
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Poisson model separately. We started from a complex model and removed the

redundant terms subsequently by backward elimination using 5% significance level.

We did not correct for multiple comparisons. Parameters describing the Tai-Chi

Chuan effectiveness were always retained in the model. We implemented ordering

in our modelling strategy: first, we selected the distribution for random effects using

h-likelihood, then we selected the structure of the dispersion using pβ,v(h) adjusted

profile likelihood, and at the end regression parameters of the mean were selected

based on pv(h) adjusted profile likelihood. The fitted model was the following:

logit(1− pij) = xT1ijβ1 + v1i, Bernoulli Part

log

(
µij

daysij

)
= xT2ijβ2 + v2i + v2ij , Truncated Poisson Part

(5.22)

where daysij denotes number of exposure days for the i− th patient in the j− th
period. The covariates vectors xt1 and xt2 contain gender, time of the visit, interaction

of intervention and time. In addition age is included in the Bernoulli part of the

model. Table 5.5 presents the results of the estimation of the Bernoulli model. In

the final model the random effects were v1i = logit(u1i) and u1i ∼ Beta( 1
2λv1

, 1
2λv1

)

with mean 0.5 and variance 1
4

λv1
1+λv1

. The dispersion parameter λv1 is significantly

different between males and females, indicating that counts of the female patients

are less dispersed around the average individual evolution. There is no significant

effect of the Tai-Chi Chuan intervention on the probability whether patients fall or

not.
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Table 5.6 reports on the point estimates and standard errors for the truncated

Poisson model, the number of exposure days is used as an offset (daysij) in (5.22).

Random effects v2i ∼ N (0, σ2v21) (λv21 = σ2v21), while bvij = log(u2ij) and u2ij ∼
Gamma

(
1

λv22
, λv22

)
with mean 1 and variance λv22 . The dispersion parameter λv22

differs significantly between males and females, indicating that the frequency of falls

for males is less predictable at each visit. There is a borderline significant effect of

the Tai-Chi Chuan intervention for the population experiencing at least one fall.

To summarize, the Tai-Chi Chuan intervention does not affect the probability

of having at least one fall, but the population might benefit from the intervention

in terms of reduction of the number of falls.

In order to investigate the goodness of fit of the truncated Poisson models we

computed the deviance residuals. To check the compliance with the data we used

a parametric bootstrap technique. We simulated 19 datasets using the final model

presented in Table 5.6. For each model a QQ-plot was created. Figure 5.2 presents

the QQ-plot of the final model (solid line) together with maximum and minimum

values (dotted lines) obtained from the 19 parametric bootstrap samples. It appears

that there is no deviation from the assumed distribution. We refer to the Appendix

for the details of the deviance residuals computation.

Table 5.5: Tai-Chi Chuan Study: Bernoulli part of hurdle model by HL(1) approach

Effect Estimate P-value
Intercept -5.69 0.004
Female 0.96 0.007
Time -1.18·10−3 0.132

Time*Trt(Tai-Chi) -0.64·10−3 0.454
Age 0.05 0.042
γ10

1 -0.42 0.096
γ11

1 -1.22 0.001

1 - Estimates are for the dispersion component log(λv1
) = γ10 + γ11 × Femalei
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Figure 5.2: QQ-plot for truncated Poisson residuals

Table 5.6: Tai-Chi Chuan Study: Truncated Poisson part of the hurdle model by HL(1)
approach

Effect Estimate P-value
Intercept -3.54 <0.001
Female -0.66 0.035
Time -2.48·10−3 0.006

Time*Trt(Tai-Chi) -2.17·10−3 0.048
γ20

1 0.11 0.670
γ210

2 -0.33 0.431
γ211

2 -1.50 0.032

1 - Estimates are for the dispersion component log(λv21
) = γ21

2 - Estimates are for the dispersion component log(λv22
) = γ220 + γ221 × Femalei
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5.7 Discussion and conclusions

H-likelihood provides an alternative estimation and inference framework for random

effects models. Lee et al. (2006) presented how extended likelihood and appropriate

adjusted profile likelihoods can be used to estimate model parameters. The entire

procedure results in an efficient estimation algorithm in terms of convergence and

time. In this paper the algorithm is outlined for hierarchical generalized linear

models and further extended to the estimation of the truncated distributions.

The h-likelihood framework allows random effects to have a different distribu-

tion than normal. Further, for the estimation of the dispersion parameters a REML

objective function is used, now also in case of non-normal distributions of the data

Noh and Lee (2007). The modeling of the dispersion parameters in terms of covari-

ates can be performed. Furthermore, the incorporation of complex designs such as

multilevel or multi-membership is possible.

We described the h-likelihood based estimation and inference for hurdle models.

Using this methodology zero-inflated data of complex designs can be analyzed. An

alternative tool for the analysis of such data is the zero-inflated Poisson model.

While the ZIP model allows only for zero-inflation, hurdle models are appropriate

for inflated, as well as for zero-deflated distributions.

The elegant Iterative Weighted Least Squares h-likelihood algorithm is obtained

for models with independent random effects. Lee et al. (2006) describe a proce-

dure to introduce correlation between random effects. However, the estimation of

correlation does not fall within the IWLS algorithm and must be estimated by addi-

tional numerical procedures. In the correlated random effects setting the following

issues need to be additionally solved: (1) the modelling of the variance covariance

matrix as a function of covariates and (2) the introduction of the correlation be-

tween non-normal random effects. We will investigate the correlated random effects

h-likelihood models in detail in our future work.

In this paper restricted ourselves to independent random effects. This allows
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for the factorization of the likelihood and separate fit of the binomial and truncated

Poisson model. We focussed on the truncated Poisson distribution, however binomial

distribution could have been used too. Overdispersion is allowed by the inclusion of

an additional random effects as in the example of Section 5.6.2.

Currently the most accurate methods to estimate random effects models are

based on the marginal likelihood, which is approximated by adaptive Gaussian

quadrature algorithm. However, they might become prohibitive in case of com-

plex designs. Breslow and Clayton (1993) proposed a penalized quasi-likelihood

(PQL) which handles multilevel and crossed random effects, but their approach

suffers from a biased estimation of the dispersion parameters. H-likelihood gives

improved dispersion estimates compared to the PQL. Another approach is based on

the evaluation of the marginal likelihood by the classical Laplace approximation.

In Noh and Lee (2007) the comparison of the h-likelihood method and classical

Laplace method for marginal likelihood is presented. Bias and mean squared error

of estimates were compared. They showed that h-likelihood approach outperforms

the estimation method based on standard Laplace approximation with respect to

the estimation of dispersion and fixed effects parameters for the binary data.

Alternatively one could refer to the Bayesian methodology and evaluate the

models by MCMC sampling. However, in limited analyzes for the adverse events

study, we encountered problems with sampling using WINBUGS for a truncated

Poisson model with gamma random effects. Namely, absorbing states occurred

after 50-100 thousand iterations.

Additional work is required for the joint modeling of the two parts of the hurdle

model within the h-likelihood framework, which would enable correlation between

the random effects. Additionally the procedures to handle the competitor to the

hurdle model, the ZIP model, within the h-likelihood need to be developed.
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Appendix

Estimating equations for the truncated Poisson distribution

We present here the derivation of the estimation algorithm for the truncated Poisson

distribution. We describe the situation when canonical links are used. The joint

likelihood of a three level model has the following form:

h =
∑

ijk

(yijkθijk − b(θijk)− log(M(θijk)))+
∑

i

(
ψivi − b(vi)

λ1

)
+
∑

ij

(
ψijvij − b(vij)

λ2

)

(5.23)

Now we compute the gradient and the hessian of the (5.23).

∂h

∂βp
=
∑

ijk

(
yijk − µijk −

M ′(θijk)

M(θijk)

)
∂θijk
∂µijk

∂µijk
∂ηijk

∂ηijk
∂βp

=
∑

ijk

(
yijk − µijk −

M ′(θijk)

M(θijk)

)
V −1(µijk)

∂µijk
∂ηijk

∂ηijk
∂βp

=
∑

ijk

(
yijk − µijk −

M ′(θijk)

M(θijk)

)
wijk

∂ηijk
∂µijk

∂ηijk
∂βp

∂h

∂vi
=
∑

ijk

(
yijk − µijk −

M ′(θijk)

M(θijk)

)
wijk

∂ηijk
∂µijk

∂ηijk
∂vi

+
ψi − ui
λ1

∂h

∂vij
=
∑

ijk

(
yijk − µijk −

M ′(θijk)

M(θijk)

)
wijk

∂ηijk
∂µijk

∂ηijk
∂vij

+
ψij − uij

λ2
,

where ηijk = log(µijk) = xTijkβ + z1ijk,ivi + z2ijk,ijvij is a linear predictor and wijk is

a diagonal element of the weight matrix W = diag
[
∂µijk
∂ηijk

]2
V−1(µ), V (µ) = b′′(θ).

Note that for canonical links models we have
∂µijk
∂ηijk

= wijk = V (µijk). Further

Z = [Z1|Z2] and z1ijk,i is the ijk− th row of the i− th column in Z1, while z2ijk,ij us

the ijk − th row of the ij − th column in Z2. In the random part vi = log(ui) and

vij = log(uij). We assume ui ∼ Gamma( 1
λ1
, λ1) and uij ∼ Gamma( 1

λ2
, λ2). Here

the pseudo-responses are ψi = 1 and ψij = 1. In a matrix notation the gradient can
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be written as follows:

D =
∂h

∂(β, vi, vij)
=




XTW ∂η
∂µ

(
y − µ− M ′(θ)

M(θ)

)

Z1TW ∂η
∂µ

(
y − µ− M ′(θ)

M(θ)

)
+ ψ1−u1

λ1

Z2TW ∂η
∂µ

(
y − µ− M ′(θ)

M(θ)

)
+ ψ2−u2

λ2


 , (5.24)

where ψ1 is a vector of ψi, ψ2 is a vector of ψij , u1 is a vector of ui and u2 is a

vector of uij . In the following derivation we define W̃ as follows:

W̃ = W

(
I+ diag

(
M ′′(θ)
M(θ)

−
(
M ′(θ)
M(θ)

)2
)
V −1(µ)

)
, (5.25)

with diagonal elements w̃ijk. Now we present the derivation of the hessian matrix.

∂h

∂βp∂βr
=−

∑

ijk

(
1 +

(
M ′′(θijk)

M(θijk)
−
(
M ′(θijk)

M(θijk)

)2
)
V −1(µijk)

)
∂µijk
∂ηijk

xijk,pxijk,r =

−
∑

ijk

w̃ijkxijk,pxijk,r

∂h

∂βp∂vi
=−

∑

ijk

w̃ijkxijk,pz
1
ijk,i

∂h

∂vi∂vi
=−

∑

ijk

w̃ijkz
1
ijk,iz

1
ijk,i −

∂ui
∂vi

(
1

λ1
)

∂h

∂vi∂vij
=−

∑

ijk

w̃ijkz
1
ijk,iz

2
ijk,ij ,

where for the random components we have

diag

(
∂u1
∂v1

)
= W1(u1) = W1 =

(
∂u1

∂v1

)2

V−1(u1).

Below we give expression for the negative expected hessian matrix:

H = −E

[

∂h

∂(β, v1, v2)∂(β, v1, v2)

]

=







XT W̃X XT W̃Z1 XT W̃Z2

Z1T W̃X Z1T W̃Z1 + Λ
−1
1 W1 Z1T W̃Z2

Z2T W̃X Z2T W̃Z1 Z2T W̃Z2 + Λ
−1
2 W2






(5.26)
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In the next step we derive an adjusted dependent variable used in the estimation

algorithm. Estimation algorithm is a Fisher Scoring maximization step extended

for the joint likelihood. It is based on previously described matrices H and D. The

updating of the parameters δ is performed as follows:

H(δ+1 − δ0) = D

Hδ+1 = D +Hδ0
(5.27)

These are in our situation as the following:







XT W̃X XT W̃Z1 XT W̃Z2

Z1T W̃X Z1T W̃Z1 + Λ
−1
1 W1 Z1T W̃Z2

Z2T W̃X Z2T W̃Z1 Z2T W̃Z2 + Λ
−1
2 W2













β+1
− β0

v
+1
1 − v0

1

v
+1
2 − v0

2






=















XT W
∂η
∂µ

(

y − µ −
M′(θ)
M(θ)

)

Z1TW
∂η
∂µ

(

y − µ −
M′(θ)
M(θ)

)

+
ψ1−u1

λ1

Z2TW
∂η
∂µ

(

y − µ −
M′(θ)
M(θ)

)

+
ψ2−u2

λ2





















XT W̃X XT W̃Z1 XT W̃Z2

Z1T W̃X Z1T W̃Z1 + Λ
−1
1 W1 Z1T W̃Z2

Z2T W̃X Z2T W̃Z1 Z2T W̃Z2 + Λ
−1
2 W2













β+1

v
+1
1

v
+1
2






=









XT W̃s̃

Z1T W̃s̃ + Λ
−1
1 W1v

0
1 +

ψ1−u1
λ1

Z2T W̃s̃ + Λ
−1
2 W2v

0
2 +

ψ2−u2
λ2









,

where s̃ = η+ W

W̃

[
y − µ− M ′(θ)

M(θ)

]
∂η
∂µ is an adjusted dependent variable. This set of

equations corresponds to equations (4.3) of Lee and Nelder (1996). Therefore their

algorithm can be used to evaluate it.

Computation of the modification terms in the estimation of fixed

parameters using adjusted profile likelihood pv(h)

In this section we show how to compute adjustments to the responses y and pseudo-

responses ψ necessary to use pv(h) as an objective function used to estimate β. We

show the computation of the modifications m below. In the vector notation we can

define modified responses and modified pseudo-responses as follows:

y∗ = y −m,

ψ∗
1 = ψ1 +Λ1Z

1TW
∂η

∂µ
m,

ψ∗
2 = ψ2 +Λ2Z

2TW
∂η

∂µ
m,

(5.28)
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where W =
(
∂µ
∂η

)2
V−1(µ) which in our setting is W = diag(µ), ψ1 and ψ2 are

vectors of pseudo-responses with components ψi and ψij , in this situation they

are equal to one. We set mi = 0.5ki
∂µi
∂ηi

and show the computation of ki. Note

that now the index i refers to the i − th element of the m vector of a dimension

[(
∑N

i=1

∑ni
j=1Kij)× 1]. We use notation N∗ =

∑N
i=1

∑ni
j=1Kij for the total number

of observations. We define the equivalent of hat matrix based on TR:

PR = TR(T
T
RΣ

−1
a TR)

−1TT
RΣ

−1
a ,

where TR and Σa are defined as below:

TR =



Z1 Z2

IN 0

0 I∑N
i=1 ni


 Σ−1

a =




W̃ 0 0

0 W1Λ
−1
1 0

0 0 W2Λ
−1
2


 ,

(5.29)

where Ws = (∂us∂vs
)2V−1(us) is a diagonal matrix, which specifically for the gamma

distributed random effects is Ws = us (s = 1, 2). Matrices Λs are diagonal matrices

with entries equal to λs (s = 1, 2).

The computation of ki in our model can be done as follows:

ki = PR[i, i](1/W̃[i, i])(1/W[i, i])
∂W̃

∂θ
[i, i]

+
N∗∑

j=1

PR[j, j](1/W̃[j, j])
∂W̃

∂θ
[j, j]A11[j, i]

+
N∗∑

j=1

PR[j, j](1/W̃[j, j])
∂W̃

∂θ
[j, j]A12[j, i]

+

n1∑

j=1

PR[(N
∗ + j), (N∗ + j)]A21[j, i]

+

n2∑

j=1

PR[(N
∗ + n1 + j), (N∗ + n1 + j)]A22[j, i],

(5.30)

where n1 = N , n2 =
∑N

i=1 ni and N∗ =
∑N

i=1

∑ni
j=1Kij . The derivative ∂W̃

∂θ is
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defined as below:

∂W̃

∂θ
= W +

M ′′′(θ)
M(θ)

− 3
M ′(θ)M ′′(θ)

M(θ)2
+ 2

(
M ′(θ)
M(θ)

)3

Next, we turn to the computation of adjustment matrices. Define the following

matrix:

D = (TT
RΣ

−1
a TR)

−1ZT

and partition it into:

D =

(
D1

(n1×N∗)

D2
(n2×N∗)

)
Z =

(
Z1
N∗×n1

Z2
N∗×n2

)

This allows us to define the adjustment matrices:

A11 = −Z1D1W̃W−1

A12 = −Z2D2W̃W−1

A21 = −D1W̃W−1

A22 = −D2W̃W−1

(5.31)

This adjustment allows to use (5.5) as an objective function for the estimation of

the fixed effects in the IWLS algorithm. Upon convergence hessian matrix of (5.5)

can be computed and used for calculation of standard errors.

Details of the estimation of the dispersion components

In order to maximize (5.6) the following derivative must be equal to zero:

∂pβ,v(h)

∂λv
=

1

2

N∑

i=1

di − (1− qi)λ1
λ21

=

N∑

i=1

(1− qi)

2

d∗i − λ1
λ21

, (5.32)

the above expression for the derivative is a score equation of a gamma distributed

random variable d∗i =
di

(1−qi) with mean λ1, variance
2λ1

(1−qi) and prior weight (1−qi)
2 .
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In our model di = 2(ui − vi − 1). To derive the correct prior weights qi we begin

with the calculation of pi:

pi = p̃i + 1 + 2

[
log(λ1) + digamma(1/λ1)

λ1

]
, (5.33)

where p̃i is theN
∗+i(i = 1 . . . N) diagonal value of the hat matrix for the hierarchical

models:

P̃ = T(TTΣ−1
a T)−1TTΣ−1

a .

The matrix T is defined as below:

T =




X Z1 Z2

0 IN 0

0 0 I∑N
i=1 ni


 (5.34)

where X, Z1 and Z2 are design matrices for fixed effects, first random component

and second random component respectively.

Finally, to compute the prior weights qi the values of pi in (5.33) need to be

adjusted by the following quantity:

−trace




P̃




∂ log(W̃)
∂ log(λ1)

0 0

0 ∂ log(W1)
∂ log(λ1)

0

0 0 ∂ log(W2)
∂ log(λ1)








(5.35)

Now we present the computation of the derivatives matrix in the adjustment

term (5.35):

In the calculation we need the derivatives v̂i
λ1

and
v̂ij
λ2

. These have the following

expressions:

∂v̂i
∂λ1

= −
[
Z1TW̃Z1 +W1Λ

−1
1

]−1
Λ−2

1 (ψ1 − u1)

∂v̂ij
∂λ2

= −
[
Z2TW̃Z2 +W2Λ

−1
2

]−1
Λ−2

2 (ψ2 − u2)
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We define the following derivatives, which will be used in the calculations:

∂W̃

∂θ
=W +

M ′′′(θ)
M(θ)

− 3
M ′(θ)M ′′(θ)

M(θ)2
+ 2

(
M ′(θ)
M(θ)

)3

∂W̃

∂µ
=
∂W̃

∂θ
diag(

1

µ
)

.

Finally we compute:

∂ log(W̃)

∂ log(λ1)
=

1

W̃

∂W̃

∂µ
diag(µ)diag

(
Z1 ∂v̂i

∂λ1
λ1

)

∂ log(W1)

∂ log(λ1)
=
∂W1

∂ui
diag

(
∂v̂i
∂λ1

λ1

)

∂ log(W2)

∂ log(λ2)
=
∂W2

∂uij
diag

(
∂v̂ij
∂λ2

λ2

)

This allows the proper calculation of the prior weights qi.

Computation of the deviance residuals for the response in the

truncated Poisson model

The following is the classical definition of the deviance residual Pierce and Schafer

(1986):

2

∫ Y

b′(θ̂)

Y − b′(θ)
V (µ)

db′(θ),

where b′(θ) = µ + µexp(−µ)
1−exp(−µ) . Further, b′(θ̂) is the estimate of b′(θ) and µ̂ is the

estimate of µ. Make the following substitution:

b′(θ) = µ+
µexp(−µ)

1− exp(−µ) .

After the substitution and some derivations we need to evaluate the following inte-

gral:

2

∫ Y ′

µ̂

Y − µ− µexp(−µ)
1−exp(−µ)
µ

dµ,
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where Y = Y ′ + Y ′exp(−Y ′)
1−exp(−Y ′) . The final expression for the deviance residuals is as

follows:

2

{
Y log

(
Y ′

µ̂

)
− (Y ′ − µ̂)− log[1− exp(−Y ′)] + log[1− exp(−µ̂)]

}

This form of the deviance residuals we use in the paper.
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Chapter

6 Joint Hierarchical Random Effects

Models with Gaussian Random Effects

Based on:

Molas M., Noh M., Lee Y., and Lesaffre E. (2012). Joint hierarchical generalized

linear models with multivariate Gaussian random effects. Submitted to Computa-

tional Statistics and Data Analysis.

Abstract

Likelihood based inference for correlated data involves the evaluation of a marginal

likelihood integrating out random effects. In general this integral does not have a

closed form. Moreover, its numerical evaluation might create difficulties especially

when the dimension of random effects is high. H-likelihood inference has been

proposed where the explicit evaluation of integral is avoided, it also allows extensions

handling e.g.(1) complex design experiments, (2) REML type of inference beyond

the class of a linear model and (3) overdispersion modelling. Here we extend the h-

likelihood approach to multivariate generalized linear mixed models. We blend the

133



134 Chapter 6

h-likelihood computational algorithms with a Newton-Raphson procedure for the

estimation of the correlation parameters. This allows that components of the joint

model are interlinked via correlated Gaussian random effects. Further, correlated

random effects are allowed within each component. This approach can serve as a

basis for further developments of joint double hierarchical generalized linear models

with correlated random effects. The methods are illustrated with a rheumatoid

arthritis study dataset, where the correlation between latent trajectories of three

endpoints is evaluated.

6.1 Introduction

The h-likelihood estimation technique originated in Lee and Nelder (1996). In that

paper, the authors investigated the possibility to use the extended likelihood for

estimation and inference of models with random effects. The special type of an

extended likelihood where a random effect appears linearly in the linear predictor is

called hierarchical likelihood or h-likelihood. We refer to Lee and Nelder (2005) for

an extensive discussion of h-likelihood. In Lee and Nelder (1996) also the class of

the hierarchical generalized linear models (HGLM) class was defined. The HGLM

is an extension of the generalized linear model (GLM) by adding random effects,

which can follow any distribution from the conjugate Bayesian priors class.

In Lee and Nelder (1996) the authors proposed an augmented iterated weighted

least squares algorithm (IWLS) to estimate the fixed and random effects from the

hierarchical likelihood, given the variance components which are obtained from the

adjusted profile likelihood. In a subsequent paper Lee and Nelder (2001a) developed

a numerical procedure based on interlinked IWLS algorithms for fixed, random

effects and variance components. This turned out to be a natural way for modelling

dispersion or overdispersion parameters in a regression manner. Further it allowed

the use of an extended quasi likelihood concept (Nelder and Pregibon, 1987). A

further extension of the algorithm was proposed in Noh and Lee (2007) for a less

biased estimation of the fixed effects of a mean structure using an adjusted profile
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likelihood. These procedures were, however, developed for independent random

effects.

Correlated random effects are discussed in Lee and Nelder (2001b). Correlation

between the random components is essential in the definition of joint models, where

components of the model are linked via correlated random effects. A bivariate

binary-normal joined model was described in Yun and Lee (2004). Another joint

model in the h-likelihood framework can be found in Ha et al. (2003) combining a

time to event endpoint and a longitudinal Gaussian outcome. There the correlation

between two models is handled by a shared random effect.

In this paper we present computational details of a joint hierarchical generalized

linear model (JHGLM), where the number of endpoints may vary and follow the

HGLM concept, and the correlations between random effects are estimated using a

Newton-Raphson algorithm. Random effects are allowed to be correlated between

the models as well as within a model. We applied the method to a rheumatoid

arthritis data set, where it is of interest to replace one marker measured by a physi-

cian by self-reported markers. In this study we model jointly two binary outcomes

and one Gaussian outcome. To further illustrate our computational method we also

analyzed a bivariate simulated dataset, with a Poisson and Gaussian outcome as

the first example, and Poisson and binary outcome as the second example.

The paper is structured as follows. Section 6.2 describes the theory of a joint

model and summarizes the h-likelihood method. Section 6.3 presents the estimation

of a joint model in a h-likelihood framework. Section 6.4 applies the method to the

rheumatoid arthritis study and two simulated datasets. In Section 6.5 concluding

remarks are given. The appendix contains details of the numerical computations.

6.2 Joint model

To analyze a longitudinal study with one endpoint the class of linear mixed models

(LMM) or generalized linear mixed models (GLMM) can be used. H-likelihood

estimation was first applied to responses of an exponential distribution blended
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with independent conjugate Bayesian random effects (Lee and Nelder, 1996, 2001a).

This class of models constitutes the hierarchical generalized linear models (HGLM).

HGLMs allow for overdispersion parameters to be included in the model. There are

two different ways to model overdispersion in HGLMs (Lee and Nelder, 2000).

For a univariate HGLM the extended likelihood can be written as, see Lee et al.

(2006):

LE(β,λ,v|y,v) =
N∏

i=1

ni∏

j=1

fβ,λ(yij |vi)fλ(vi), (6.1)

where yij is the observation of the ith subject (i = 1 . . . N) at the jth time point

(j = 1 . . . ni), β is the vector of fixed effects in the mean structure, vi is the vector of

latent random effects pertaining to the ith subject, and λ contains variances of the

random effects and residual variances (overdispersion parameters) of the response.

Parameter v appears in LE(β,λ,v|y,v) on the left side as unknowns to be estimated

and on the right side as latent factors generating the data. A gentle introduction on

the use of (6.1) in univariate HGLMs estimation can be found in Molas and Lesaffre

(2011), where the method is also contrasted to the classical approach based on the

marginal likelihood.

6.2.1 The joint HGLM

Now we write the univariate longitudinal model as a joint HGLM (JHGLM) with

the extended likelihood:

LE(β,λ,ρ,v|y,v) =
N∏

i=1

ni∏

j=1

fβ,λ(y1ij |v1i) . . . fβ,λ(ykij |vki) . . . fβ,λ(yKij |vKi)×

× fλ(v1i, . . . ,vki, . . . ,vKi). (6.2)

The above extended likelihood is a simple multiplication of univariate likelihoods in

(6.1), and as such there is no difference whether the models (indexed by k) are fitted

jointly or separately. Let β = (β1, . . . ,βk, . . . ,βK)
T and note that βk is the specific

parameter vector for kth univariate model, as also for λ = (λ1, . . . ,λk, . . . ,λK)
T .
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Here we will consider the class of joint models as e.g. in Fieuws and Verbeke (2006),

and impose a multivariate normal distribution on the latent variables:

fλ(v1i, . . . ,vki, . . . ,vKi) = MVNλ,ρ(v1i, . . . ,vKi). (6.3)

where the vector λ represents the variance components and ρ represents the correla-

tions of the joint multivariate normal distribution. To apply h-likelihood methods,

the appropriate adjusted profile likelihoods of (6.2) must be used for estimation

of λ, ρ and β. While the random effects are restricted to a normal distribution,

the responses ykij may have a distribution belonging to the exponential family i.e.

normal, binomial, Poisson or gamma, possibly varying with k.

6.2.2 Estimation of fixed effects in the mean structure

In the general case, Noh and Lee (2007) suggest to work with a Laplace approxima-

tion to the marginal likelihood to estimate fixed effects in the mean structure. This

involves the evaluation of the adjusted profile (log)-likelihood:

pv(h) = h(β,λ,ρ,v)|v=v̂ − 0.5 log

∣∣∣∣
D(h,v)

2π

∣∣∣∣
v=v̂

, (6.4)

with D(h,v) = −∂2h(β,λ,ρ,v)
∂vT ∂v

and h(β,λ,ρ,v) = log(LE(β,λ,ρ,v|y,v)). The

term ‘adjusted profile likelihood’ is chosen since h(β,λ,ρ,v)|v=v̂ is a profile (log)-

likelihood of β, variance parameters λ and correlation parameters ρ, profiled over

v, and the second term of (6.4) is a correction term to approximate the marginal

log-likelihood. This profile likelihood is used only to estimate β for a given λ and ρ.

Note that v̂ is the maximum likelihood estimator of v for given (β,λ,ρ) computed

using h as the objective function, i.e. one could write v̂ = v̂β,λ,ρ.
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6.2.3 Estimation of correlations and variances of random com-

ponents

To estimate the correlations ρ and variances λ, a Newton-Raphson algorithm needs

to be applied to maximize the appropriate adjusted profile likelihood. Let the

marginal distribution of the data y be fβ,λ,ρ(y) (marginalized over v), seen as a

probability density function (pdf) of the data. Conditional on the sufficient statistics

for β, denoted as β̂λ,ρ, (see Cox and Hinkley (1974), page 21), the (marginalized)

distribution of the data can be derived from:

fλ(y|β̂λ,ρ) =
fβ,λ,ρ(y)

fβ,λ,ρ(β̂λ,ρ)
, (6.5)

where fβ,λ,ρ(β̂λ,ρ) is the distribution of β̂λ,ρ. After additional steps (see Molas and

Lesaffre (2010)) it can be shown that log(fλ(y|β̂λ,ρ)) can be approximated by the

following adjusted profile likelihood:

pβ,v(h) = h(β,λ,ρ,v)|
β=β̂,v=v̂

− 0.5 log

∣∣∣∣
D [h, (β,v)]

2π

∣∣∣∣
β=β̂,v=v̂

, (6.6)

where

D [h, (β,v)] = −
(

∂2h
∂β∂βT

∂2h
∂β∂vT

∂2h
∂v∂βT

∂2h
∂v∂vT

)
.

The latter adjusted profile likelihood is maximized with respect to λ and ρ to obtain

λ̂ and ρ̂. Note that this objective function is “focussed” solely on the dispersion and

correlation parameters. This offers an extension of restricted maximum likelihood

(REML) estimation and provides inference for the class of generalized linear mixed

models, see Noh and Lee (2007).

6.2.4 Residual dispersion and overdispersion

In (6.2) parameter λ contains not only the variance and correlation parameters of

the random effects, but also dispersion or overdispersion parameter of each of the



6.3 The h-likelihood approach for a JHGLM 139

K responses. In the case of a Gaussian distribution, the variance is the dispersion

parameter of the response, while for binomial or Poisson data, one could include an

overdispersion parameter into the model. To estimate residual dispersion parameters

equation (6.6) can be used, while in case of overdispersion the h-likelihood needs to

be replaced by double extended quasi likelihood (Lee and Nelder, 2001a).

6.2.5 Overview of the estimation procedure

The estimation of parameters in the h-likelihood way is the following:

1. Set λs and ρs at some starting values i.e. variances and correlations of the

random effects and residual dispersion (overdispersion) parameters.

2. Given λs and ρs estimate latent variables (random effects) at maximum v̂

using (6.2) and fixed effects β̂ either using (6.2) or (6.4) where appropriate.

3. Evaluate (6.6) at new β̂ and v̂ and compute λs+1 and ρs+1.

4. Iterate steps 2-3 until convergence.

6.3 The h-likelihood approach for a JHGLM

In the previous section we have defined a class of joint models, for which we will

now present details on the h-likelihood estimation approach. The h-likelihood ap-

proach is a restricted maximum likelihood method (REML) of Noh and Lee (2007)

extended here to joint models. Difficulty in estimation of JHGLMs with h-likelihood

is two-fold: (1) extended likelihood (6.1) needs to be replaced by (6.2) and (2) ad-

ditional algorithm is needed to estimate variance components and correlations of

(6.3). In this section we present practical and algorithmic details which are needed

to implement the scheme presented in Section 6.2.
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6.3.1 Estimation of the mean structure parameters

Suppose the correlations and variance components are known, i.e. λ and ρ are

known. Our objective is to find the estimates of fixed and random effects in the

mean structure. In order to use the h-likelihood methods presented in Lee and

Nelder (2001a) and Molas and Lesaffre (2011) we need to replace (6.1) by (6.2). In

the algorithm, this is accomplished by an appropriate stacking of the matrices as in

Lee et al. (2006). Suppose that we have a model with three responses, each with

a random intercept and a random slope. Let Y k denote the outcome vector of the

kth endpoint stacked over subjects, similarly Xk denotes the design matrix of the

kth outcome. Further, Zk1 is the design matrix of random intercepts and Zk2 is

the design matrix of random slopes for the kth endpoint. The design matrices of

random effects are a Kronecker product of a identity matrix of the dimension equal

to a number of subjects and random intercept or random time vector per subject.

This implies the following matrices for the JHGLM:

Y =







Y 1

Y 2

Y 3






, X =







X1 0 0

0 X2 0

0 0 X3






, Z =







Z11 Z12 0 0 0 0

0 0 Z21 Z22 0 0

0 0 0 0 Z31 Z32






.

Now we can define the matrices leading to the composition of the augmented

IWLS (Lee and Nelder, 2001a). The same algorithm can be applied just with the

above stacked matrices. Define:

T =

(
X Z

0 I

)
, Σa =

(
W−1Φ 0

0 ΣR

)
,

where I is the identity matrix of dimension equal to the number of columns in Z,

each row of I corresponding to a random effect. The weight matrix W is diagonal

with elements wkij , where wkij = V (µkij)
−1(

∂µkij
∂ηkij

)2 and V (µkij) is the variance

function of the kth endpoint and jth observation of the ith subject; µkij is the mean

parameter respectively and ηkij is the linear predictor. The matrix Φ is a diagonal

matrix of φkij , which represent residual error variances or overdispersion parameters.

Further, ΣR is the variance covariance matrix of random effects. In our case we have
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6 correlated random effects, and q subjects therefore we have together 6×q estimates

of random effects. Therefore if follows that:

ΣR =





















λ11 ρ1
√
λ11λ12 ρ2

√
λ11λ21 ρ3

√
λ11λ22 ρ4

√
λ11λ31 ρ5

√
λ11λ32

ρ1
√
λ11λ12 λ12 ρ6

√
λ12λ21 ρ7

√
λ12λ22 ρ8

√
λ12λ31 ρ9

√
λ12λ32

ρ2
√
λ11λ21 ρ6

√
λ12λ21 λ21 ρ10

√
λ21λ22 ρ11

√
λ21λ31 ρ12

√
λ21λ32

ρ3
√
λ11λ22 ρ7

√
λ12λ22 ρ10

√
λ21λ22 λ22 ρ13

√
λ22λ31 ρ14

√
λ22λ32

ρ4
√
λ11λ31 ρ8

√
λ12λ31 ρ11

√
λ21λ31 ρ13

√
λ22λ31 λ31 ρ15

√
λ31λ32

ρ5
√
λ11λ32 ρ9

√
λ12λ32 ρ12

√
λ21λ32 ρ14

√
λ22λ32 ρ15

√
λ31λ32 λ32





















⊗

Iq.

(6.7)

The augmented IWLS algorithm (Lee et al., 2006) can be invoked with updating

equation to obtain estimates of fixed and random effects:

TTΣ−1
a Tξ = TTΣ−1

a z, (6.8)

with ξ = (β,v)T and z = η + (y − µ)(∂η/∂µ). Updating these equations until

convergence will yield estimates of the fixed and random effects based on (6.2). Using

the above defined matrices the procedure in Noh and Lee (2007) can be applied for

the joint model to use the Laplace approximation to (6.2) as the objective function

to find fixed effects. We will not describe this procedure here in detail, but refer to

Noh and Lee (2007) and Molas and Lesaffre (2010) for computational and theoretical

details in somewhat different settings, which can be easily extended to JHGLM by

using the above defined matrices.

6.3.2 Estimation of the random effects covariance matrix

Previous section shows how to estimate the fixed and random effects in the mean

structure, given the dispersion components. Here we show how to estimate the dis-

persion components in ΣR using a Newton - Raphson algorithm. In order to assure

that the qR-dimensional matrix ΣR is positive definite we will take the Cholesky

decomposition of the matrix:

TRΣRT
T
R = DR or Σ−1

R = TT
RD

−1
R TR, (6.9)
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where TR is a lower triangular matrix with ones on diagonal and tij parameters in

the lower triangle with i = 2, . . . , qR and j = 1, . . . , (i−1). Further, DR is a diagonal

matrix with entries d∗ii = exp(dii). The idea of the decomposition originates from

Pourahmadi (1999), and has been used by Cecere et al. (2006) in the context of

covariance modelling. The parameters γR = (dii, tij) (i = 1, . . . , qR j = 1, . . . , (i −
1)) determine the matrix ΣR and are estimated by a Newton-Raphson algorithm as

follows:

1. Take a starting point vector γsR;

2. Compute the adjusted likelihood value (6.6) at γsR and estimated fixed βsR and

random effects vsR using the procedure described in Section 6.3.1;

3. Compute the score vector S = (∂pβ,v(h)/∂γR) and hessian matrix H =

(∂2pβ,v(h)/∂γR∂γ
T
R) and evaluate it at γsR, β

s
R and vsR.

4. Check if −H is positive definite. If not, compute the closest positive definite

negative of the Hessian using the method of Higham (2002). This is done

in an iterative manner based on an eigenvalues decomposition of the matrix,

negative eigenvalues are set to zeros, as well as their corresponding eigenvec-

tors. New eigenvectors and eigenvalues are used to create a new matrix. The

procedure is repeated until convergence.

5. Update γs+1
R using:

γs+1
R = γsR − λRH

−1S,

where λR is equal to one;

6. Evaluate pβ,v(h) at new point γs+1
R , if the likelihood increased accept the

proposal, otherwise set λR = λR/2 and create a new proposal, repeat until the

new proposal is accepted;

7. After the new proposal γs+1
R is accepted, find new values of the regression

parameters βs+1
R and random parameters vs+1

R .
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8. Update the value of residual (over)dispersion parameters as described in Sec-

tion 6.2.4. Further details of the estimation procedures are given in the Ap-

pendix.

The computation of the score and Hessian matrices is explained in the Appendix.

After updating the variance covariance matrix of the random effects, the residual

dispersion components should be estimated using the approach of Chapter 7 of Lee

et al. (2006), adapted to the JHGLM setting. This can be done by stacking matrices,

and computing deviance residuals based on the distribution of each Y i.

6.3.3 Missing components

In the rheumatoid arthritis example described below, two individuals were not ex-

amined by the physician at any of the visits. Therefore, there are no data on one

of the endpoints for two patients, yet they filled-in the questionnaires at all time

points. We present here a trick to make it possible to avoid deletion of all the ob-

servations from these two subjects. The trick is to add observations in a way that

they change the likelihood only up to the constant. Let us consider the Gaussian

likelihood:

log [f(yij |vi)] = −0.5 log(2πφij)− 0.5 exp

[
(yij − µij)

2

φij

]
.

If we set yij = 0 and µij = 0, the new observation will not influence the estimation

of the fixed structure parameters, but will allow the estimation of the random effect

itself for this subject. This can be achieved by adding a row to the matrices Y i,

Xi, Zi1 and Zi2 composed only of zeros. To avoid that likelihood of the 2 subjects

contributes to the estimation of residual dispersion, we set zeros to all covariates of

the dispersion structure. If there is only an intercept as the design matrix in the

estimation of the residual dispersion, the value one needs to be replaced by zero.
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For a binary likelihood

log [f(yij |vi)] = yij log(µij) + (1− yij) log(1− µij), (6.10)

an observation does not contribute to the likelihood when we set µij = 0.5 again by

adding a row of zeros to Xi, Z1i and Z2i. Note that there is no residual dispersion

parameter in the Bernoulli distribution.

6.4 Illustration of the computational approach

6.4.1 Rheumatoid Arthritis Study

The example is the rheumatoid arthritis Patients rePort Onset Reactivation sTudy

(RAPPORT study), which is a longitudinal study that aims to identify an increase in

disease activity by self-reported questionnaires. A cohort of 159 patients is followed

throughout one year. Each month these patients fill in at home a questionnaire

(most of them use a web-based form), and each three months a clinical evaluation

by the treating rheumatologist is performed. We consider here the self-reported

measures at the time the clinical evaluation is done and examine the association of

the clinical evaluation with the self-assessment questionnaires.

The self reported instruments used here are the Health Assessment Question-

naires (HAQ) and the Rheumatoid Arthritis Disease Activity Index (RADAI). Two

other measurements scored on a visual analogue scale instruments (VAS) will be

ignored in this paper. The HAQ measures the functional status of the patient using

20 questions from 8 categories. Each category is based on daily physical functioning

activities such as dressing, rising, eating etc. The HAQ score ranges from 0 to 3, but

in this study we will use a binary version of HAQ, as suggested by Aletaha et al.

(2006). When HAQ is above 0.5 an increased activity of the disease is indicated

and we classify this as ‘remission’, otherwise it is called ‘no remission’. The second

self-reported endpoint (RADAI) contains 5 items, e.g. today’s disease activity in
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terms of swollen and tender joints or today’s amount of arthritis pain. Originally

RADAI is scored on a Likert scale varying between 0 and 10, but again we will use

a binarized version of it with cut-off point of 2.2, as suggested in Fransen and van

Riel (2009). RADAI values lower than 2.2 indicate a stable disease, while above

indicate increased activity of the disease.

The examination done by the clinician was recorded in the Disease Activity Score

of 28 joint counts (DAS28), which is a composite score of swollen joints count, tender

joints count, a visual analog scale of the patient’s assessment of general health and

erythrocyte sedimentation rate at the first hour. The DAS28 score varies between

0 and 10. In this study we treat it as a Gaussian response.

The clinical and self-reported measurements taken at months 0, 3, 6, 9, 12 were

considered in this paper. Therefore, information is provided on three endpoints

DAS28, HAQ at RADAI, 5 times over the span of one year. However not all mea-

surements were recorded as planned, and the missing data that occurred here are

assumed to happen according to a missing at random (MAR) mechanism. Finally

gender and baseline age of the patients were included in the analysis as covariates.

Denote DAS28 as Y 1, HAQ as Y 2 and RADAI as Y 3. As covariates we use

the intercept, month of measurement, sex and age at baseline. Therefore each Xk,

where k = 1, 2, 3 has four columns. There are 159 patients in the study, therefore

i = 1, 2, . . . , 159 and j = 1, 2, . . . , 5 as there are five visits. Note that not all patients

gave information for each kth endpoint, as well not all patients were measured at each

of the 5 visits. We will consider the following multivariate model with 3 endpoints:

Y1ij | v11i, v12i ∼ N (X1ijβ1 + v11i + v12i ∗ timeij , φ2),

Y2ij | v21i ∼ Bernoulli

(
exp(X2ijβ2 + v21i)

1 + exp(X2ijβ2 + v21i)

)
,

Y3ij | v31i ∼ Bernoulli

(
exp(X3ijβ3 + v31i)

1 + exp(X3ijβ3 + v31i)

)
.

We consider a model for DAS28 with random intercept and slope, while HAQ and

RADAI have only random intercepts. Note that we were not able to fit models for
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RADAI and HAQ in a univariate setting with correlated intercept and slope, but

neither was this possible with SAS PROC NLMIXED and WINBUGS. The reason

might be that in most clusters the binary response stayed at 0 or 1 for the whole

period. Thus we assume a four dimensional latent structure:




v11i

v12i

v21i

v31i


 ∼ MVN







0

0

0

0


 ,




λ11 ρ1
√
λ11λ12 ρ2

√
λ11λ21 ρ5

√
λ11λ31

ρ1
√
λ11λ12 λ12 ρ4

√
λ12λ21 ρ5

√
λ12λ31

ρ2
√
λ11λ21 ρ4

√
λ12λ21 λ21 ρ6

√
λ21λ31

ρ3
√
λ11λ31 ρ5

√
λ12λ31 ρ6

√
λ21λ31 λ31







(6.11)

We performed the analysis to evaluate the degree to which the DAS28 measure-

ment correlates with HAQ and RADAI status. We are interested in correlations

between the latent profiles of the measures. In case of binary measurements the la-

tent profiles are constant linear on the linear predictor scale. In case of DAS28 latent

profiles are linear with intercept and slope defined by two random effects v11 and

v12. The parameters determining the correlation of latent profiles are ρ parameters

in (6.11). As two patients were not scored for DAS28 at any of the 5 time points,

we used the trick described in (6.3.3) by adding two fictive observations. Further,

the DAS28 random slope has a design matrix in years. The results are presented

in Table 6.1. We also present the result of estimation when, three responses were

fitted separately.

We are primarily interested in the correlations between the latent profiles of

the endpoints. The correlation between HAQ and RADAI random intercepts was

the greatest and was equal to 0.85. This indicates that two measures are highly

correlated on the latent scale, implying that where the latent score is high on RADAI

it is also high on HAQ over the 5 visits. The correlation between the random

intercept and slope of DAS28 was equal to −0.16, being an indication that patients

starting with a worse condition might have improved faster, than the patients with

a better initial disease status. The correlation, however is small. DAS28 slope did

not correlate strongly with the random intercept of HAQ and the random intercept

of RADAI with correlations 0.12 and 0.09 respectively. The correlation between the
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random intercept of DAS28 and the random intercepts of HAQ and RADAI were

estimated as 0.61 and 0.63. This is an indication that the latent level of DAS28

predicts moderately strong the latent level of RADAI and HAQ.

To summarize, the latent intercepts of the three outcomes play a major role,

HAQ and RADAI seem to be equivalent binary measures whether disease progresses

or is retained at current level, and they might as such be treated exchangeably.

Further, the level of latent DAS28, predicts moderately well the status of a patient

obtained from self-assessment.
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6.4.2 Simulated data

We also use a simulated dataset to further exemplify our procedures. In a lon-

gitudinal study one might be interested whether the change in the albumin level

correlates with the number of the loss of balance episodes in patients taking certain

medications. We have assumed to follow a cohort of 100 patients over time. Each

individual was measured at four visits 0, 1, 2, 3 in the hospital, and at each visit 2 re-

sponses were measured: a count Y1 and a Gaussian response Y2. Y1 might represent

the loss of balance episodes generated from a Poisson distribution. The continuous

Gaussian response Y2 might represent the change in albumin level. We have used

the following model to generate the data:

η1ij = −1.5 + 0.5timeij + v10 + v11timeij

η2ij = −1.5 + 0.3timeij + v20 + v21timeij

Y1ij ∼ Poisson(exp(η1ij))

Y2ij ∼ N (η2ij , 0.8
2),

where i = 1, 2, . . . , N and j = 1, 2, . . . ni. The random effects were sampled from

the following normal distribution:




v10

v11

v20

v21


 ∼ N







0

0

0

0


 ,




0.8 −0.2 0.36 0

−0.2 0.3 0 0.2

0.36 0 4 −1

0 0.2 −1 1.5





 ,

The results of estimation are shown in Table 6.2. The h-likelihood procedure

correctly estimated the evolution of the average patient over time, the number of

balance loss episodes increased over time together with the increase of the change

in the albumin level. Further, among individuals evolutions of two endpoints over

time were positively correlated meaning that if the albumin increase changes were

above the average level over time also the number of balance loss episodes was
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Table 6.2: Results of the h-likelihood and Bayesian fit to simulated data: Poisson and Gaus-
sian models

H-likelihood WINBUGS
Poisson Intercept -1.38 Poisson Intercept -1.43

Time 0.49 Time 0.49
Gaussian Intercept -1.47 Gaussian Intercept -1.46

Time 0.35 Time 0.35
Variance Covariance Matrices

0.16 0.019 0.4 -0.07 0.256 -0.0008 0.37 -0.06
0.019 0.21 0.018 0.15 -0.0008 0.233 0.03 0.15
0.4 0.018 5.06 -1.03 0.37 0.03 5.003 -1.004

-0.07 0.15 -1.03 1.38 -0.06 0.15 -1.004 1.368

above the average evolution over the time. The correlation between random slopes

of two responses was estimated as 0.28 = 0.15√
0.21∗1.38 . We have managed to fit the

same model using a Bayesian approach with WINBUGS with uninformative prior

distributions. The SAS PROC NLMIXED is able to fit such models in theory,

however we were not able to achieve convergence.

The Bayesian approach and the h-likelihood approach gave similar estimates,

with the biggest difference in the values of variance covariance matrix in the Poisson

model. Note that we take posterior means in the Bayesian case and we compare

them with the maximum likelihood estimates.

In the next step we have categorized the Gaussian response into two categories

i.e. positive or negative values. This gave the Bernoulli outcome, which we fitted

jointly with the Poisson process in the h-likelihood way. We also fitted the data using

WINBUGS. First we present the result of h-likelihood and Bayesian estimation for

the model with only random intercepts.

In case of JHGLM with a Poisson and Bernoulli outcome the estimation process

was more difficult when random intercepts and slopes were in both models. The

estimation problem occurred especially when random slope was added for the binary

data. In Table 6.3 we present the results of the JHGLM models estimated by

h-likelihood and in a Bayesian way. The results for the random intercepts joint

model with one correlation are very similar between the h-likelihood and Bayesian
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Table 6.3: Results of the h-likelihood and Bayesian fit to simulated data: Poisson and binary
models

H-likelihood (RI) WINBUGS (RI) H-likelihood (RI+RS)
Poisson Intercept -2.31 Poisson Intercept -2.31 Poisson Intercept -1.37

Time 0.93 Time 0.92 Time 0.49
Binary Intercept -1.82 Binary Intercept -1.82 Binary Intercept -4.69

Time 0.54 Time 0.55 Time 1.09
Variance Covariance Matrices

0.12 0.027 2.41 -0.51
1.28 1.02 1.31 1.02 0.027 0.2 -0.22 0.71
1.02 6.5 1.02 6.92 2.41 -0.22 55.43 -10.85

-0.22 0.71 -10.85 11.56

approach. In Tables 6.2 and 6.3 in the Bayesian analysis results we report posterior

medians. WinBUGS was not used for the estimation of the random intercept and

random slope model. When random slopes were added to the models it becomes

cumbersome to estimate the binary model. This is due to low number of within

patient measurements, when there are more timepoints per patient the problem is

less prevalent. We have simulated data with more measurements per patient and

in this case WinBUGS performed better yielding estimates of the joint models,

however convergence after 35000 iterations for the variance of random slopes of the

binary model can be still in question. Results were similar to those obtained by the

h-likelihood method with a biggest discrepancy in the estimation of random slopes

variances of binary model, less discrepancy was obtained for the estimation of the

Poisson model random slopes variances. H-likelihood gave similar results to both

Poisson and binary models fitted separately by standard software for longitudinal

data using Laplace approximations to the marginal likelihood, with some difference

in the binary model variance parameters. These differences were however much

lesser than in case of the comparison of Bayesian and H-likelihood methods.

6.5 Discussion and conclusion

This paper has described the h-likelihood estimation approach for estimating mul-

tivariate repeated measures models. It extends the routines beyond the bivariate

case, and allows correlated Gaussian random effects of the model components. The
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endpoint is allowed to be Gaussian, gamma, Poisson or binomial. Fixed effects can

be estimated in our approach either by using h-likelihood or an adjusted profile

likelihood.

There are numerous extensions of the presented procedure which we would like to

develop further. First, an extension of covariance modelling to depend on covariates

as in Pourahmadi (1999) is of interest. This could extend the univariate case of

independent random effects. Next, addition of independent random effects of a

conjugate Bayesian distribution would be of interest next to the correlated Gaussian

random effects already present in the JHGLM. Joint double HGLM (JDHGLM)

could be defined by allowing for an inclusion of correlated random effects in the

variance functions. JDHGLM model with covariance modelling would provide much

flexibility in the modelling assumptions.

It is important to mention the technical limitations of our R software. First,

memory problems make it difficult to fit data sets of large dimensions and we will

probably need sparse matrix computation methods. The second computational im-

provement might by speeding up the Newton-Raphson algorithm for estimating of

the correlations and variances of random effects distribution.

Upon having solved the above issues, we would have a very strong computa-

tional approach to the modelling of multivariate longitudinal data. This would be

an alternative to a marginal likelihood or the Bayesian approach, extending them

further e.g. through the use of extended quasi likelihood functions or the availabil-

ity of covariance modelling. We regard the current paper as a contribution allowing

to fit JHGLMs via h-likelihood, but also as a first step allowing for all the above

extensions.
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Appendix

In the appendix we show how to compute the Hessian and the score matrix with

respect to parameters estimated in the Newton-Raphson algorithm of Section 6.3.2.

Decomposition and derivatives of variance covariance matrix

First we give the details of the variance covariance matrix ΣR decomposition ac-

cording to Pourahmadi (1999). The matrix is decomposed as follows:

TRΣRT
T
R = DR.

If ΣR is a 3 by 3 matrix we have the following matrices:

TR =




1 0 0

t21 1 0

t31 t32 1


 DR =




d∗11 0 0

0 d∗22 0

0 0 d∗33


 ,

further d∗ii = exp(dii). The Newton-Raphson algorithm optimizes the likelihood

with respect to parameters (tij , dii). Therefore, derivatives with respect to these

parameters are of interest. However first we will show derivatives with respect to

(tij , d
∗
ii). First, lets look at the derivatives ∂DR

∂d∗ii
, and ∂TR

∂tij
.

∂DR

∂d∗22
=




0 0 0

0 1 0

0 0 0


 ∂TR

∂t12
=




0 0 0

1 0 0

0 0 0


 .

The second derivative of the above matrices with respect to any other parameters

of the parameters itself, is a matrix of zeros. Now denote by L = T−1, we shall

drop the subscript R from notation of T and D. The following derivatives need to
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be computed:

∂ΣR

∂d∗ii
= L

∂D

∂d∗22
LT

∂ΣR

∂tij
= −L

∂T

∂tij
LDLT − LDLT

∂T

∂tij
LT

∂2ΣR

∂d∗ii∂d
∗
jj

= L
∂2D

∂d∗ii∂d
∗
jj

LT = 0

∂2ΣR

∂d∗ii∂tkl
= −L

∂T

∂tkl
L
∂D

∂d∗ii
LT − L

∂D

∂d∗ii
LT

∂T

∂tkl
LT

∂2ΣR

∂tij∂tkl
= L

∂T

∂tij
L
∂T

∂tkl
LDLT + L

∂T

∂tkl
L
∂T

∂tij
LDLT

+ L
∂T

∂tkl
LDLT

∂T

∂tij

T

LT + L
∂T

∂tij
LDLT

∂T

∂tkl

T

LT

+ LDLT
∂T

∂tij

T

LT
∂T

∂tkl

T

LT + LDLT
∂T

∂tkl

T

LT
∂T

∂tij

T

LT

The above derivatives are used in the further computations to compute the score

vector of the adjusted profile likelihood and hessian matrix with respect to the

parameters of interest (d∗ii, tij).

Derivatives of the adjusted profile likelihood

Lets use the motivating example of 3 endpoints with 4 multivariate random effects

to demonstrate the computation of the score vector and the hessian matrix.

h =

N∑

i=1

n1i∑

j=1

[
y1ijθ1ij − b(θ1ij)

φ1ij
+ c1(y1ij , φ1ij)

]
+

N∑

i=1

n2i∑

j=1

[
y2ijθ2ij − b(θ2ij)

φ2ij
+ c2(y2ij , φ2ij)

]

+

N∑

i=1

n3i∑

j=1

[
y3ijθ3ij − b(θ3ij)

φ3ij
+ c3(y3ij , φ3ij)

]
− 2N log(2π)− N

2
log(detΣR)−

1

2
(vTΣRv),

note that in the above expression the multivariate normal distribution is for all

random effects at once, without a summation sign over the subjects, therefore the

variance covariance matrix is of form shown in (6.7) but with 4 random effects
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instead of 6. The adjusted profile likelihood maximized with respect to (tij , dii) is:

pβ,v(h) = h(β,λ,ρ,v)|
β=β̂,v=v̂

− 0.5 log

∣∣∣∣
D [h, (β,v)]

2π

∣∣∣∣
β=β̂,v=v̂

,

and

DD = D [h, (β,v)] = −
(

∂2h
∂β∂βT

∂2h
∂β∂vT

∂2h
∂v∂βT

∂2h
∂v∂vT

)
.

The derivative of the adjusted profile likelihood is:

∂pβ,v(h)

∂d∗ii
=

∂v̂T

∂d∗ii
ZT

(
Y − µ

Φ

)
− 1

2
trace

{
Σ−1
R

∂ΣR

∂d∗ii

}
− ∂v̂T

∂d∗ii
Σ−1
R v̂T

+
1

2
v̂TΣ−1

R

∂ΣR

∂d∗ii
Σ−1
R v − 1

2
trace

{
DD−1∂DD

∂d∗ii

}
,

where all matrices are total matrices stacked over all three models. The hessian

matrix has the following expression:

∂2pβ,v(h)

∂d∗ii∂d
∗
jj

= −∂v̂
T

∂d∗ii
ZTWΦ−1 ∂v̂

∂d∗jj
+

∂2v̂T

∂d∗ii∂d
∗
jj

ZT

(
Y − µ

Φ

)

− 1

2
trace

{
Σ−1
R

∂2ΣR

∂d∗ii∂d
∗
jj

}
+

1

2
trace

{
Σ−1
R

∂ΣR

∂d∗ii
Σ−1
R

∂ΣR

∂d∗jj

}

+
∂v̂T

∂d∗ii
Σ−1
R

∂ΣR

∂d∗jj
Σ−1
R v̂ − ∂v̂T

∂d∗ii
Σ−1
R

∂v̂

∂d∗jj
− ∂2v̂T

∂d∗jj∂d
∗
ii

Σ−1
R v̂

+
∂v̂T

∂d∗jj
Σ−1
R

∂ΣR

∂d∗ii
Σ−1
R v̂ − v̂TΣ−1

R

∂ΣR

∂d∗jj
Σ−1
R

∂ΣR

∂d∗ii
Σ−1
R v̂

+
1

2
v̂TΣ−1

R

∂2ΣR

∂d∗ii∂d
∗
jj

Σ−1
R v̂ − 1

2
trace

{
DD−1 ∂2DD

∂d∗ii∂d
∗
jj

}

+
1

2
trace

{
DD−1∂DD

∂d∗ii
DD−1∂DD

∂d∗jj

}
.
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To compute derivatives with respect to tij the above formulas can be used as well.

As we have d∗ii = exp(dii) the derivative with respect to dii is as follows

∂pβ,v(h)

∂dii
=

∂pβ,v(h)

∂d∗ii

∂d∗ii
∂dii

∂2pβ,v(h)

∂dii∂djj
=

∂2pβ,v(h)

∂d∗ii∂d
∗
jj

∂d∗ii
∂dii

∂d∗jj
∂djj

+
∂pβ,v(h)

∂d∗ii

∂2d∗ii
∂dii∂djj

In the following two sections we explain how to compute derivatives of estimates of

random effects with respect to parameters of interest and the derivatives of adjust-

ment term.

Derivatives of the estimates of the random effects

Denote by TT2 = Z
TWΦ−1Z +Σ−1

R , we have:

∂v̂

∂d∗ii
= TT−1

2 Σ−1
R

∂ΣR

∂d∗ii
Σ−1
R v̂

−TT2
∂2v̂

∂d∗ii∂d
∗
jj

= ZTWΦ−1∂W

∂µ
diag

(
Z
∂v̂

∂d∗ii

)
Z
∂v̂

∂d∗jj

− Σ−1
R

∂ΣR

∂d∗ii
ΣR

∂v̂

∂d∗jj
−Σ−1

R

∂ΣR

∂d∗jj
ΣR

∂v̂

∂d∗ii

+ Σ−1
R

∂ΣR

∂d∗ii
Σ−1
R

∂ΣR

∂d∗jj
Σ−1
R v̂ +Σ−1

R

∂ΣR

∂d∗jj
Σ−1
R

∂ΣR

∂d∗ii
Σ−1
R v̂

− Σ−1
R

∂2ΣR

∂d∗ii∂d
∗
jj

Σ−1
R v̂

Derivatives of the adjustment term of the profile likelihood

The adjustment matrix DD has the following form:

DD =

(
XTWΦ−1X XTWΦ−1Z

ZTWΦ−1X ZTWΦ−1Z +Σ−1
R

)
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The first order derivative of this matrix is as follows:

UpD =
∂W

∂µ
WZ

∂v̂

∂d∗ii

DnD = −Σ−1
R

∂ΣR

∂d∗ii
Σ−1
R

∂DD

∂d∗ii
=

(
XTUpDΦ−1X XTUpDΦ−1Z

ZTUpDΦ−1X ZTUpDΦ−1Z +DnD

)

Finally second derivative has the following form:

UpD =
∂2

W

∂µ2
WWdiag

(

Z
∂v̂

∂d∗ii

)

diag

(

Z
∂v̂

∂d∗jj

)

+
∂W

∂µ

∂W

∂µ
Wdiag

(

Z
∂v̂

∂d∗ii

)

diag

(

Z
∂v̂

∂d∗jj

)

+
∂W

∂µ
Wdiag

(

Z
∂2

v̂

∂d∗ii∂d
∗

jj

)

DnD = Σ
−1
R

∂ΣR

∂d∗ii
Σ

−1
R

∂ΣR

∂d∗jj
Σ

−1
R +Σ

−1
R

∂ΣR

∂d∗jj
Σ

−1
R

∂ΣR

∂d∗ii
Σ

−1
R

− Σ
−1
R

∂2
ΣR

∂d∗ii∂d
∗

jj

Σ
−1
R

∂DD

∂d∗ii
=

(

X
TUpDΦ

−1
X X

TUpDΦ
−1Z

ZTUpDΦ
−1

X ZTUpDΦ
−1Z +DnD

)

Estimation of the residual dispersion parameters

To estimate the residual dispersion parameters we use the adjusted profile likelihood

(6.6). We can express the adjusted profile likelihood derivative with respect to φ as

follows:

∂pβ,v(h)

∂φ
= 0.5

N∑

i=1

ni∑

j=1

{
dresij − φ

φ2
+ cij(φ)

}
− 0.5trace

{
DD−1∂DD

∂φ

}
,

where dresij is an appropriate GLM deviance residual for the response distribution.

In this derivation we ignore the derivatives ∂v̂
∂φ . Now lets define:

T =

(
X Z

0 I

)
ΣT =

(
Φ 0

0 ΣR

)
Σ0 =

(
Φ 0

0 0

)
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We have:

∂pβ,v(h)

∂φ
= 0.5

N∑

i=1

ni∑

j=1

{
dresij − φ

φ2
+ cij(φ)

}
+ 0.5

trace(T(TTΣ−1
T T)−1TTΣ−1

0 )

φ
,

Now we define qij as the ij−th diagonal element of the matrixT(TTΣ−1
T T)−1TTΣ−1

0 .

This leads to:

∂pβ,v(h)

∂φ
= 0.5

N∑

i=1

ni∑

j=1

{
dresij − (1− qij − c∗ij)φ

φ2

}
,

where c∗ij = φcij(φ). The adjustment c∗ij occurs only for the gamma distribution

and is equal c∗ij = 1 + 2 log(φ)
φ + 2

digamma(1/φ)
φ . Finally we can write the derivative

as follows:
∂pβ,v(h)

∂φ
=

N∑

i=1

ni∑

j=1

(1− qij − c∗ij)

2

{
dres∗ij − φ

φ2

}
, (6.12)

where dres∗ij =
dresij

(1−qij−cij) . Equation (6.12) can be maximized by a gamma dis-

tributed GLM with dres∗ij as a response and
(1−qij−c∗ij)

2 as a prior weight. The mean

of the distribution is φ and variance 2φ
(1−qij−c∗ij)

.
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Chapter

7 Discussion,Conclusions and Further

Research

We start in Chapter 2 with the use of the likelihood to model the density of the

data given covariates. We developed a h-likelihood inspired algorithm to estimate

the Gaussian mixture model. To increase the computational efficiency we have

assumed fixed weights of the components of the mixtures. This protects from infinite

likelihood problems, which can be encountered in the standard mixture modelling

approach. Further it speeds up the computations without constraining the final

density form if a few more mixture components are used. We considered independent

data and it could be of interest to extend the computational system to a correlated

datasets design.

In Chapter 3, we have explored the statistical treatment of bounded outcome

scores in a longitudinal setting. As seen in that chapter, the distribution of a BOS

is difficult to express by a classical parametric family. In this chapter we have

extended the approach in Lesaffre et al. (2007), which assumes that the observed

data are a coarsened version of latent continuous data, to repeated measures studies

by the use of random effects. It turns out, that the likelihood of our approach

may have an equivalent likelihood formulation in terms of an ordinal probit model.

161
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However, in the proposed coarsening model less parameters need to be estimated.

A simulation study showed that the statistical performance of the two approaches is

similar when the data follow the coarsening model. However, the coarsening model

can be computationally much more efficient. As further research, it might of interest

to see how the h-likelihood approach can replace the marginal likelihood and see if

there is some additional computational advantage.

In Chapter 4, we have implemented the algorithm of Lee and Nelder (2001)

and Lee and Nelder (1996) in an R package HGLMMM. In this package, we

allow the response to follow a Gaussian, binomial, Poisson or gamma distribution in

combination with conjugate Bayesian random effects. The dispersion parameters of

response as well as random effects can be easily modelled as a function of covariates

and the procedures allow for complex designs. However, the implementation does

not yet allow for correlated random effects, and limitations due to computer memory

might occur for large data sets with many random effects. The first problem has

a theoretical basis, as it seems difficult to accommodate neatly the estimation of

correlations in the h-likelihood numerical procedures. The second problem is a

result of choosing R as a programming environment and limitation of computers

itself, and might be easier to circumvent.

The computational methods of hierarchical generalized linear models were ex-

tended in Chapter 5 for the modelling of zero-inflated data. We adjusted the h-

likelihood computational methods to the hurdle model with random effects. This

model consists of two parts, the first part represents a binary model and second

part a truncated Poisson model. We have shown that the distribution of the trun-

cated Poisson model can be expressed as an exponential family. The theory for the

binomial model has already been available and we have adjusted the algorithms to

work for the truncated Poisson model. All advantages of the h-likelihood computa-

tional approach apply. However, we did not allow for correlated random effects, but

assumed independent random effects between two components of the joint model.

Extending the h-likelihood model to correlated data became then the topic of our

further research, and we have described joint models with correlated Gaussian ran-
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dom effects in Chapter 6. However, the introduction of correlation breaks down the

neat h-likelihood algorithm and a Newton-Raphson step is required to estimate the

variance covariance matrix of the correlated random effects. Given these parameter

estimates, standard procedures can be adapted to estimate the rest of the unknowns.

However the ability to estimate the joint hierarchical generalized linear models with

correlated random effects by h-likelihood extends the REML concept of estimation

to a wider class of models. In the HGLM joint models the computational issues

are more severe than in the models with independent random effects, which is due

to the need of an optimal code for the correlations. Further, as more responses in

a longitudinal setting are analyzed over time, the dimensions of the matrices are

increasing as well creating possibly a computer storage problem.

Further work on h-likelihood could be focussed on the hurdle model with cor-

related random effects, which could be achieved by combining the developments in

Chapters 5 and 6. Another useful extension would be the modelling of the variance

covariance matrix of random effects as a function of covariates. These extensions,

require additional software modification, but from the theoretical point of view most

of the work is in place. The hurdle model is of course just one of the possible mod-

els for analyzing correlated count data, and we are also interested to examine the

h-likelihood implementation of various overdispersed/correlated count data models.

Another area that has been neglected in the h-likelihood approach is modeling or-

dinal responses. This is definitely a topic of interest for further development. This

may be achieved by first developing the computational framework in an h-likelihood

context of BOS responses.
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Summary

In this thesis we scrutinize the use of likelihood based models for analysis of

(longitudinal) complex data. We compare the h-likelihood estimation procedures

to the standard approach, and apply h-likelihood algorithms to a wider class of

problems. Models for mixture of distributions, zero-inflated count data, bounded

outcome scores responses or multivariate longitudinal data are described and ex-

tended with an application of h-likelihood type solutions.

Chapter 1 describes in brief theoretical foundations to use the likelihood as a

basis for estimation and inference. We present the properties of maximum likelihood

estimators, and where these properties originate from. The likelihood based tests

properties and derivations are discussed in detail. The other likelihood based tests

i.e. Wald test and likelihood ratio test are asymptotically equivalent. We discuss

the extension of the use of likelihood in repeated data models and introduce the

concept of h-likelihood.

In Chapter 2 we describe another possibility to define a mixture modelling

system. We propose to fix the contribution of mixture components (weights) and

do not estimate it. While we leave flexibility in a choice of number of components

and the parameters of each of the components. This system might be characterized

by an improved computational stability. In case of Gaussian components of the

mixture system, mean of each mixture component and its variance can be modelled

as a function of covariates e.g. by use of splines. The idea of joint modelling of mean

and dispersion is based on the h-likelihood methods. We present the application of

this theory to model the height of boys as a smooth function of age in the Fourth

Dutch Growth Study. Limited simulations and hypothetical examples are presented.

Chapter 3 describes the modelling of longitudinal bounded outcome score re-

sponse. Such an outcome is obtained, when certain trait is measured repeatedly for

the same patient. The score is typically bounded between minimum and maximum

value e.g. 0 − 100, and often rounded to the nearest important number, which are

located with equally spaced distances on the span of the score e.g. 0, 10, 20, . . . , 100.
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Such a score might be characterized by an unusual distribution as U-shaped or J-

shaped. In this chapter we compare three methods to analyze such a response using

marginal likelihood. Standard method to analyze such a data could be ordinal pro-

bit model for repeated measures data. Additionally we propose to perform a logit

transformation on the original score (scaled before that to 0 − 1 interval) and (1)

apply a mixed model on the transformed data (2) assume that the data follows

mixed model on the latent scale and observed data gives information about the in-

terval where the true latent score could lay. We compare the proposed approaches

to the ordinal probit model through simulations. Application of the method is pre-

sented to the analysis of the stroke revalidation study (CERISE), where the speed

of revalidation after stroke is compared between two centers.

We introduce the h-likelihood method for random effects models in Chapter 4,

first we contrast it to the marginal likelihood approach. In the remainder of the

chapter we describe our software for fitting hierarchical generalized linear models

using h-likelihood algorithms. Numerous examples are presented. This chapter is

focussed on practical application of a software to perform h-likelihood estimation

of random effects models. The approach allows complex designs of random compo-

nents e.g. crossed random effects, multilevel structures, cross-over designs. Random

effects are assumed to follow a conjugate baysian family of distributions, therefore

allowing distributions beyond normal. Variance components are easily modelled as a

function of covariates, as well as overdispersion parameter which is estimated using

extended quasi-likelihood concepts. Finally REML estimation concept is extend to

exponential family distributions beyond the case of linear mixed model.

In Chapter 5 we extend existing h-likelihood algorithm to allow the estimation

of zero-inflated count data. We adapt h-likelihood approach for hurdle models.

In hurdle model, the zero count is modeled separately from the positive counts.

The zero count follows a binary distribution, while positive counts are assumed to

follow truncated Poisson distribution. As a matter of fact the hurdle model can be

looked upon as a joint model of binary response and truncated Poisson response. In

this chapter we assume that both parts of the model can be estimated separately,
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therefore only independent random effects are allowed. We present the application of

the method to the Tai-Chi Chuan clinical trial, where it was of interest whether this

type of exercise for elderly people helps prevent the number of falls they experience.

Chapter 6 extends h-likelihoods algorithms to handle joint models of multi-

ple exponential family longitudinal endpoints. These endpoints are joined through

correlated random effects. We blend the use of Newton-Raphson algorithm for the

estimation of the correlation of the random effects with h-likelihood procedures.

Multivariate random effects models can be handled now in h-likelihood approach.

This work is a basis for further extension to joint double hierarchical generalized

linear models or to modelling variance covariance matrix as a function of covariates.

Further, work of Chapter 5 and Chapter 6 can be connected resulting in hurdle

model with correlated random effects.

Chapter 7 gives discussion, conclusions and further research ideas.



Samenvatting

In dit proefschrift onderzoeken we het gebruik van op aannemelijkheid gebaseerde

modellen voor de analyse van (longitudinale) complexe data. We vergelijken de H-

aannemelijkheidsschattingsprocedure met de standaardaanpak en passen

h-aannemelijkheids algoritmes toe op een bredere klasse problemen. Modellen voor

mengsels van verdelingen, zero inflated count data, begrensde uitkomsten of multi-

variaat longitudinale data worden beschreven en uitgebreid met een toepassing van

H-aannemelijkheid.

Hoofdstuk 1 beschrijft in het kort de theoretische grondslagen van het gebruik

van aannemelijkheid als basis van statistische schattings- en toetsingsmethoden. We

presenteren de eigenschappen van maximale-aannemelijkheidsschatters en leggen uit

waar deze op gegrond zijn. We leggen in detail uit waar de toetsen gebaseerd op de

aannemelijkheidsmethode vandaankomen en wat hun eigtenschappen zijn. Andere

toetsen gebaseerd op de aannemelijksfuntie (Wald en aannemelijkheidsratio) zijn

asymetritisch equivalent. We bespreken hoe aannemelijkheidstheorie uitgebreid kan

worden tot herhaalde metingen en introduceren H-aannemelijkheid.

In hoofdstuk 2 bespreken we een andere manier om systemen van mengsels van

verdelingen te modelleren. We stellen voor om de gewichten van de verschillende

componenten vast te zetten en dus niet te schatten, terwijl we wel vrijheid behouden

en de keuze van het aantal componenten en de parameters van de afzonderlijke

componenten. Op deze manier behalen we een verbeterde numerieke stabiliteit.

Wanneer de componenten normaal verdeeld zijn kunnen we het gemiddelde en de

variantie van de componenten door middel van een spline modelleren. Het idee

om het gemiddelde en de spreiding gezamenlijk te modelleren is gebaseerd op H-

aannemelijkheid. We presenteren een toepassing van deze theorie waar we de lengte

van jongens modelleren als een gladde functie van hun leeftijd gebruikmakend van

gegevens uit de Vierde Nederlandse Groei Studie. Ook worden enkele voorbeelden

en simulaties gepresenteerd.

Hoofdstuk 3 beschrijft het modelleren van longitudinale begrensde uitkomsten.
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Een dergelijke uitkomst kan verkregen worden wanneer een eigenschap herhaaldelijk

wordt gemeten. Vaak zit de score van de uitkomst tussen een minimum en een

maximum (bijvoorbeeld 0 - 100) in en wordt afgerond naar een aantal getallen die

op gelijke afstand verdeeld zijn binnen dit interval (bijvoorbeeld 0, 10, 20, ..., 100).

Vaak heeft zo’n score een U- of J-vormige verdeling. In dit hoofdstuk vergelijken we

drie methoden om zulke uitkomsten te modeleren gebruikmakend van de marginale

aannemelijkheid. De standaard methode om dergelijke data te analyseren is een

ordinaal probit model voor herhaalde uitkomsten. In aanvulling hierop bekijken

we ook (1) een model waarbij we de data eerst zo schalen dat ze in het interval

van 0 tot 1 liggen, waarna we de logit transformatie toepassen en de resulterende

scores modelleren met een gemengde effecten model. En (2) een model waarbij we

een latente score veronderstellen die met een gemengd effecten model kan worden

beschreven en de waargenomen data informatie geeft over de waarde van de latente

score. Deze methoden worden toegepast op data van de CERISE studie waar de

snelheid van het herstel na een hersenbloeding wordt vergeleken tussen twee centra.

We introduceren de H-aannemelijkheidsmethode voor random effecten modellen

in hoofdstuk 4. We vergelijken deze methode eerst met de methode van de

marginale aannemelijkheid. In de rest van het hoofdstuk beschrijven we onze soft-

ware waarin het H-aannemelijkheids algoritme wordt gëımplementeerd. Verschei-

dene voorbeelden worden gepresenteerd. Dit hoofdstuk is gericht op de praktische

applicatie de software om met H-aannemelijkheid random effect modellen te schat-

ten. Deze aanpak staat complexe designs van de random effecten zoals gekruiste

effecten, meerdere niveaus, cross-over designs toe. De random effecten worden

verondersteld te komen van een geconjugeerde Bayesiaanse familie van verdelin-

gen, waardoor ook andere verdelingen dan de normale mogelijk zijn. De variantie

componenten kunnen gemodelleerd worden als een functie van covariaten en ook

over-dispersie (gebaseerd over quasi aannemelijkheid) is mogelijk. Tenslotte wordt

het ’REML’ concept uitgebreid naar modellen buiten het lineaire gemengde effecten

model.

In hoofdstuk 5 breiden we het bestaande H-aannemelijkheids algoritme uit
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opdat het toegepast kan worden op zero-inflated count data. We passen het algo-

ritme aan zodat me een hurdle model kunnen schatten. In zo’n model wordt de

uitkomst nul in de modellering gescheiden van de positieve uitkomsten. De nullen

worden gemodelleerd met een binaire verdeling terwijl voor de positieve uitkom-

sten een afgeknotte Poisson verdeling wordt gebruikt. Hier veronderstellen we dat

beide delen apart gemodelleerd kunnen worden. Daarom zijn de random effecten

onafhankelijk. We passen het model toe op de Tai-Chi Chuan trial waarbij gekeken

wordt of met deze therapie vallen bij oudere mensen kunnen worden voorkomen.

In hoofdstuk 6 passen we de H-aannemlijkheidsmethode toe op modellen met

meerdere longitudinale uitkomsten uit een exponentiele familie. Deze worden met

elkaar verbonden door gecorreleerde random effecten. We combineren het gebruik

van het Newton-Raphson algoritme met het gebruik van

H-aannemelijkheidsprocedures. Dit is de basis voor een verdere uitbreiding voor

modellen waarin ook de correlatiestructuur als een functie van covariaten wordt

gemodelleerd. Ook kunnen we het besprokene in hoofdstuk 5 en 6 combineren,

zodat we hurdle modellen met gecorreleerde random effecten verkrijgen.

In hoofdstuk 7 geven we een discussie, conclusie en ideeën voor verder onder-

zoek.
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