
EI 2012-11 1

Iterative branch-and-price for large multi-criteria

kidney exchange

Kristiaan M. Glorie ∗1 and Joris J. van de Klundert 2

1Econometric Institute, Erasmus University Rotterdam
2Institute of Health Policy and Management, Erasmus University

Rotterdam

June 5, 2013

Abstract

Living donor kidney transplantation is the preferred treatment for
patients with end stage renal disease. Unfortunately, living donors are
often incompatible with their specified recipient due to physiological rea-
sons, such as incompatible blood types. Kidney exchange is an increasing
modality that allows the exchange of kidneys between such incompatible
donor-patient pairs. Typically, the aim is to find an allocation of donors to
patients that is optimal with respect to multiple hierarchically ordered cri-
teria. In this paper we show why existing approaches to the optimization
of kidney exhange cannot deal effectively with multiple hierarchical crite-
ria or with large, sparse, multi-center pools, which now begin to arise in
practice. We then present a generic iterative branch-and-price algorithm
which can deal with such multi-criteria exchanges and we show how the
pricing problem can be solved in polynomial time for a general class of
criteria. Our algorithm is effective even for large realistic donor-patient
pools. Moreover, the algorithm accomodates inclusion of altruistic donors
(who have no specified recipient) and individual rationality constraints
for hospitals, as these are of increasing importance in clinical practice.
Our approach and its effects are demonstrated using data from the Dutch
national kidney exchange program, which is the oldest nationally coordi-
nated program.

Key words: Kidney Exchange, Multi-Criteria Optimization, Math Pro-
gramming, Branch-and-price, Simulation

1 Introduction

Living donor kidney transplantation is the preferred treatment for patients with
end-stage renal disease. Unfortunately, in over 30 percent of the cases, patients

∗Corresponding author: glorie@ese.eur.nl

EI 2012-11 2

are incompatible with their specified living donor. Kidney exchange is a modal-
ity that identifies matches between such incompatible donor-patient pairs that
allows them to proceed with transplantation: if the donor of a pair is com-
patible with the patient of a second pair, and the donor of the second pair is
compatible with the patient of the first pair, the pairs can switch donors so that
both patients can receive a transplant (e.g. Montgomery et al. (2006) and Klerk
et al. (2011)). Exchange, in this way, need not be limited to two pairs but may
involve cycles in which each donor gives a kidney to the patient of the next pair
in the cycle. Also, unspecified donors - i.e. donors without a specified recipi-
ent - may initiate a chain of transplants in which the last donor is allocated to
the deceased donor waitlist or is preserved for a future exchange. Such chains
are increasingly common and important in clinical practice (e.g. Ashlagi et al.
(2011), Glorie et al. (2012)).

Due to the large potential for increasing the number of transplants, many coun-
tries have begun developing kidney exchange programmes. Leading examples
are the Netherlands, the US, the UK, Australia, and South Korea (Keizer et al.
(2005), Manlove and O’Malley (2012), Park et al. (1999), Delmonico et al.
(2004)). In 2004, the Netherlands succesfully launched the first national kidney
exchange program in the world.

The design of kidney exchange programs raises the decision problem of assign-
ing donors to recipients. In practice, this problem is typically considered in a
static or offline context, in which exchanges are conducted at fixed time inter-
vals and the assignment is optimized for the present population, as opposed to a
dynamic or online context, in which exchanges are conducted continuously and
the assignment is optimized with respect to the future evolution of the popu-
lation. The difficulty of the decision problem arises from the requirement that
all transplants in a cycle must be performed simultaneously, in order to prevent
donors from reneging after their specified patient has received a transplant from
another donor. This means that the length of a cycle is limited to the number of
logistically feasible simultaneous transplants. Whenever this limit is finite and
larger than 2, the kidney exchange problem is NP-complete (Abraham et al.
2007).

Abraham et al. (2007) present a mixed integer programming ‘cycle’ formulation
for the single criterion kidney exchange problem with the objective of maxi-
mizing a weighted sum of cyclic transplants. They solve this formulation by a
branch-and-price algorithm (see Barnhart et al. 1998), in which they identify
positive price variables by depth-first search. Although alternative formulations
for the kidney exchange problem have also been investigated, these have all been
proven to be dominated by the cycle formulation (Constantino et al. 2013).

When exchanges are limited to cycles involving 3 pairs, Abraham et al. (2007)
are able to solve large instances because the calculation of a tight upperbound
(due to Roth et al. (2007)) allows them to quickly prove optimality and prevent
the need to enumerate all positive price variables. We will show however, that as
kidney exchange programs continue to evolve, this upperbound is no longer tight
and - even in the case of a single decision criterion - the pricing problem becomes
a major bottleneck. The reason for this is that the kidney exchange pools we
begin to observe in practice are much sparser than assumed by Abraham et al.
(2007) (see Ashlagi et al. (2011)), exchanges are not limited to 3 pairs but can

EI 2012-11 3

involve - as altruistic donors allow for chains in which simultaneity is relaxed
(see Roth et al. (2006)) - up to 6 or more pairs, and coordination between
multiple transplant centers requires the implementation of individual rationality
constraints (Ashlagi and Roth (2011) and Glorie et al. (2012)).

Moreover, in practice, maximizing the (weighted) sum of transplants is not the
only relevant objective criterion (e.g. Klerk et al. (2011)). As the qualities of
organs, the health of recipients, and the match between organs and recipients
vary, so does the expected effect of transplantation. Also, certain recipients may
be disadvantaged, e.g. because of poor blood type compatibility, which gives rise
to equity or fairness considerations. Objective criteria related to these effects
and considerations cannot always be modeled through a linear weight function
(e.g. because no suitable interpretation can be given to the weights, or because
a linear weight function does not suffice to capture the required structure) or
it is not desirable to do so (e.g. because large differences in weights lead to
numerical instabilities). Instead of a single weighted objective criterion, several
existing kidney exchange programs use a hierarchically ordered set of criteria
(e.g. Klerk et al. (2010), Manlove and O’Malley (2012), and Kim et al. (2007)).
The Dutch national kidney exchange program, in particular, uses the following
hierarchical set:

(i) Maximize the number of transplants;

(ii) Maximize the number of blood type identical transplants;

(iii) Match the patients in priority order based on ‘match probability’ (see
Keizer et al. 2005);

(iv) Minimize the length of the longest cycle or chain;

(v) Maximize the spread over transplant centers per cycle and chain;

(vi) Match the patient with the longest waiting time.

The Dutch criteria are based on European agreements governed in the conven-
tion on human rights and biomedicine Council of Europe (2002), which deter-
mines that the allocation of organs should be both ‘optimal’ and ‘fair’. For this
reason the criteria include factors related to the probability of obtaining a trans-
plant (criteria (ii) and (iii)) and waiting time (criterion (vi)). The exact aim
of criterion (ii) is to help establish a fair allocation across patient blood types
by ensuring that patients of disadvantaged blood types, such as blood type O,
receive as many transplants as possible (donors of the same blood type will be
reserved for them whenever this is viable). Criterion (iii) establishes such fair-
ness in a broader sense by taking into account the total match probability (as
defined in Keizer et al. (2005)). The priority order within criteria (iii) and (vi)
is based on the traditional priority mechanisms for allocating deceased donor
kidneys. Criteria (iv) and (v) are of a logistical nature. The hierarchy among
the criteria implies that every criterion should be optimized subject to the best

EI 2012-11 4

possible score on previous criteria. For example, the number of blood type iden-
tical transplants (criterion (ii)) should be maximized under the condition that
the total number of transplants is maximum (criterion (i)).

Because of the evolution of kidney exchange pools and the ways in which ex-
change can take place, and because of the advent of large multi-center exchanges
and the requirement of multi-criteria optimization, there is a need for new tech-
niques for kidney exchange clearing. The work presented in this paper makes
the following contributions:

1. We develop a generic iterative branch-and-price algorithm for clearing
kidney exchanges with a hierarchically ordered set of objective criteria;

2. We propose a polynomial solution method for the pricing problems as they
result for a general class of criteria (which includes all criteria of the Dutch
exchange);

3. The presented approach encaptures long, possibly non-simultaneous, un-
specified donor chains at practically feasible run times even in sparse ex-
change pools;

4. The approach allows for optimization for a set of transplantation centers,
such as at a national level, while taking individual rationality constraints
of the participating transplantation centers into account.

Our work builds on and extends recent work of Abraham et al. (2007), who
introduced the cycle-formulation, and of Ashlagi and Roth (2011), who consid-
ered the individual rationality constraints in kidney exchange. Using simulations
with actual Dutch kidney exchange data, we demonstrate the long term advan-
tages of using our algorithm for multi-criteria kidney exchange clearing. To this
end we implement the algorithm with the Dutch criteria listed above.

The paper is organized as follows. First, section 2 describes the multi-criteria
kidney exchange problem mathematically. Section 3 details our iterative branch-
and-price algorithm used to solve the multi-criteria kidney exchange problem.
Section 4 discusses the simulator that allows us to analyze long term implications
and section 5 presents the computational results. Finally, section 6 concludes
the paper.

2 A kidney exchange model

In this section we formalize the concepts used in kidney exchanges and we
mathematically define the problem under consideration.

EI 2012-11 5

Figure 1: Kidney exchange example

2.1 Problem definition

Definition 1. A kidney exchange pool N consists of two sets, i.e. N = NU∪NS,
where NU refers to the set of all unspecified donors and NS to the set of all
incompatible specified donor-recipient pairs.

Definition 2. A kidney exchange graph D = (N,A) has as its node set a kidney
exchange pool N . There is an arc ai,j = {ni, nj} ∈ A from node ni ∈ N to node
nj ∈ NS if the donor corresponding to node ni is compatible with the recipient
corresponding to node nj.

Note that in any kidney exchange graph D(N,A), nodes in NU , which corre-
spond to donors without recipients, have no incoming arcs. We define a trans-
plant cycle and a transplant chain as follows

Definition 3. In any given kidney exchange graph D(N,A), a length-k cycle
is an arc traversal 〈n1, . . . , nk〉 such that {n1, . . . , nk} ⊆ NS and such that
{nk, n1} ∈ A and, for every 1 ≤ i < k, {ni, ni+1} ∈ A.

Definition 4. A length l chain is an arc traversal 〈n0, . . . , nl〉 such that n0 ∈
NU and {n1, . . . , nl} ⊆ NS and for every 0 ≤ i < l, {ni, ni+1} ∈ A.

As, for all practical purposes, there exist exogenous limits on the number of
transplants that can be performed simultaneously and in relation to eachother,
we now firstly limit the sets of cycles and chains under consideration:

Definition 5. For kidney exchange graph D(N,A) and K,L ∈ N,

C(K,L) :=

{
c ⊆ N :

c is a cycle in D with length at most K, or
c is a chain in D with length at most L

}

EI 2012-11 6

Note that, as chains can allow for the requirement of simultaneity to be relaxed,
in general L ≥ K.

Definition 6. Let D(N,A) be a kidney exchange graph, K,L ∈ N, and C(K,L)
be defined as above. Then, any subset M =

{
c1, c2, . . . , c|M |

}
⊆ C(K,L), is

called an exchange if ci ∩ cj = ∅ for all, 1 ≤ i, j ≤ |M |, i 6= j.

Thus, an exchange is a collection of interdependent kidney transplantations
which can be feasibly performed together. In the remainder, we assume a kid-
ney exchange graph D(N,A), and K,L ∈ N are given, and refer to M as the
exchange set, i.e. the set of all exchanges M as defined above. Thus, an ex-
change set M always implicitly defines a kidney exchange graph D(N,A), and
K,L ∈ N . Now that we have formally defined exchanges, and the exchange
set, we proceed by considering the criteria by which exchanges M ∈ M are
evaluated.

Definition 7. For any given exchange set M, a kidney exchange criterium is
a function f :M→R.

We now arrive at the formal definition of the problem under consideration:

Definition 8. For any given exchange setM and ordered set of kidney exchange
criteria I = {f1, . . . , f|I|}, a hierarchical multicriteria kidney exchange problem
is to find an exchange M∗ ∈ M such that, for each i = 1, . . . , |I|, M∗ ∈ Mi

whereMi is recursively defined asMi := {M ∈Mi−1 : fi(M) ≥ fi(M ′),∀M ′ ∈
Mi−1} with M0 :=M.

Note that the set of criteria used in the Dutch kidney exchange program are an
ordered set of kidney exchange criteria which fit the above definition, as would
be the sole criterion of maximizing the number of transplants.

Figure 1 illustrates an example kidney exchange problem with 5 donor-recipient
pairs, n1, . . . , n5. The bound on the length of exchange cycles K is 4. The
graph has 4 feasible cycles, c1 = 〈n1, n2〉 , c2 = 〈n2, n3〉 , c3 = 〈n3, n4〉 , c4 =
〈n1, n2, n3, n5〉. There are two maximal exchanges given by M1 = {c1, c3} (high-
lighted) and M2 = {c4}. Although both exchanges have the same number of
transplants, in the Dutch system exchange M1 could be preferable over exchange
M2 by, for example, criteria (iv): the maximum cycle length is 2 instead of 4.

2.2 Integer programming formulations

In this paper we restrict our attention to kidney exchange problems that can be
formulated as mixed integer linear programs. For example, for the single crite-
rion of maximizing the number of transplants, the kidney exchange problem can
be formulated using the so-called cycle formulation, which we describe below.

EI 2012-11 7

Pool size Number of cycles and chains
Pairs Unspecified donors Cycles ≤ 4 Chains ≤ 3 Chains ≤ 6

8 2 0 5.0e+1 5.4e+1
16 4 8 2.72e+2 1.06e+3
40 10 3.34e+2 6.31e+3 8.15e+5
80 20 1.32e+4 1.20e+5 3.29e+8
160 40 4.20e+5 3.18e+6
400 100 2.19e+7 1.52e+8

Table 1: Average number of cycles and chains over 5 random kidney exchange
pools of the indicated size sampled from historical data of the Dutch national
kidney exchange program

2.2.1 Cycle formulation

The cycle formulation due to Abraham et al. (2007) uses a binary decision
variable xc for each cycle and chain c ∈ C(K,L) that is defined as:

xc =

{
1 if c ∈M∗,
0 otherwise.

Setting x =
[
x1, . . . , x|C(K,L)|

]T
, the integer program is given by:

P0:

max z0(x) =
∑

c∈C(K,L)

|c| · xc (1)

s.t.
∑

c∈C(K,L):n∈c

xc ≤ 1 ∀n ∈ N (2)

xc ∈ {0, 1} ∀c ∈ C(K,L)

In P0, the objective (1) is to select a collection of cycles and chains that maxi-
mizes the number of transplants. The constraints (2) ensure that no patient or
donor is contained in more than one selected cycle or chain.

The number of variables in the cycle formulation can be very large (see Table
1 which shows the number of cycles and chains in pools based on actual data
from the Dutch kidney exchange program), particulary because the number of
chains grows rapidly with the number of nodes. In an exchange pool with 80
pairs and 20 unspecified donors there can be as many as 300 million chains up to
length 6, thus the formulation requires at least that many variables. In contrast,
Abraham et al. (2007) showed that, when dealing only with 2 and 3-cycles, this
number of variables is only attained in pools of - roughly - 5,000 pairs or more
(see Table 2 in Abraham et al. (2007)).

EI 2012-11 8

2.2.2 Generalized cycle formulation

It turns out that for each of the individual criteria (i)-(vi) mentioned in the
introduction, as well as for many other practically relevant criteria, the single
criterion kidney exchange problem can be modeled by the following generalized
cycle formulation.

Consider a criterion fi ∈ I. As before, let x =
[
x1, . . . , x|C(K,L)|

]T
denote the

vector of decision variables that indicate whether a cycle/chain c ∈ C(K,L) is
selected. In addition, for ni,mi ∈ N, let yi denote a ni × 1 vector of auxilliary
variables which are allowed to assume values in some subspace Fi ⊆ Rni . Then,
for wi ∈ R|C(K,L)|, vi ∈ Rni , Ai ∈ Rmi×|C(K,L)|, Bi ∈ Rmi×ni , and bi ∈ Rmi ,
the generalized cycle formulation is given by the following integer program:

Pi:

max zi(x, yi) = wTi x+ vTi yi (3)

s.t. (2)

Aix+Biyi ≤ bi (4)

x ∈ {0, 1}|C(K,L)|

yi ∈ Fi

Here, the objective (3) is to maximize zi(x) with respect to fi. As before, the
constraints (2) ensure that no patient or donor is contained in more than one se-
lected cycle or chain. The general constraints (4) allow for various relationships
between the selected cycles x and the auxilliary variables yi that are required
to model fi.

Illustration: Matching the patient with the longest wait time
To illustrate, we model here objective (vi), which is to match the patient with
the longest wait time.

Let waitn denote the wait time of the patient associated with node n ∈ NS and
define

yn :=

{
1 if patient n ∈ N is the longest waiting patient that is matched,
0 otherwise.

and

y′n :=

{
1 if node n ∈ N is matched,
0 otherwise.

Then, letting y(vi) = [y1, . . . , yn, y
′
1, . . . , y

′
n]
T

, the following integer program
models objective (vi):

EI 2012-11 9

max z(vi)(x, y(vi)) =
∑
n∈N

waitn · yn (5)

s.t.
∑

c∈C(K,L):n∈c

xc = y′n ∀n ∈ N (6)

y′n ≤ yn ∀n ∈ N (7)∑
n∈N

y′n = 1 (8)

xc ∈ {0, 1} ∀c ∈ C(K,L)

yn ∈ {0, 1} ∀n ∈ N
y′n ∈ {0, 1} ∀n ∈ N

The objective (5) is to select a patient n ∈ N with maximum waiting time.
Constraints (6) have been derived from constraints (2) by including y′n as a
slack variable to indicate if node n ∈ N is matched. Constraints (7) ensure that
yn can only be 1 if patient n ∈ N is matched while constraint (8) ensures that
only one patient can be the longest waiting patient.

Note, however, that the above integer program is not yet in the generalized cycle
formulation. To translate the program to the generalized cycle formulation
we should add the - in this case redundant - constraints (2), and relax the
auxilliary variables y such that they are no longer integral (integral subsets are
not subspaces of R). We obtain the following mixed integer program (observe
that the adjustments do not modify the solution space of the former integer
program):

max z(vi)(x, y(vi)) =
∑
n∈N

waitn · yn

s.t. (2), (6), (7), (8) (9)

xc ∈ {0, 1} ∀c ∈ C(K,L)

yn ∈ [0, 1] ∀n ∈ N
y′n ∈ [0, 1] ∀n ∈ N

2.2.3 Weighted criteria cycle formulation

Ostensibly, for a given set of criteria I = {f1, . . . , f|I|}, the hierarchical multi-
criteria kidney exchange problem can be formulated by combining the integer
programs Pi into the following weighted criteria cycle formulation.

Let λ1, . . . , λ|I| ∈ R+. Then, using the notation introduced before, the weighted
criteria cycle formulation is given by:

EI 2012-11 10

max z =

|I|∑
i

λi(w
T
i x+ vTi yi) (10)

s.t. (2)

Aix+Biyi ≤ bi i = 1, . . . , |I|
x ∈ {0, 1}|C(K,L)|

yi ∈ Fi i = 1, . . . , |I|

Here, the objective (10) is to maximize a weighted sum of the criteria f1, . . . , f|I|.
By setting λ1, . . . , λ|I| appropriately, all sorts of relationships between the cri-
teria can be modeled. In particular, by setting the weights such that λi � λi+1

for i = 1, . . . , |I| − 1, the hierarchical relationship can be enforced.

One of the practical difficulties with the weighted criteria cycle formulation is
that, for exchanges with six criteria as used in the Dutch national program,
the required scaling of the weights leads to numerical instability which renders
the program to be infeasible. Therefore, in the next subsection, we present a
recursive formulation which models the criteria in the hierarchy without leading
to numerical instability.

2.2.4 Recursive cycle formulation

In this subsection we present a new, recursive formulation modeling hierarchi-
cal criteria that does not suffer from such numerical instability: the recursive
cycle formulation. The idea is not to encapture the hierarchical multi-criteria
structure into a single integer pogram, but instead recursively define multiple
programs R1, . . . , R|I| which are linked together by ‘objective propagation’ con-
straints.

The first program in the recursion sequence is the generalized cycle formulation
of criterion f1. In case of the Dutch criteria, we have R1 := P0, where P0

is the program we have defined before for the maximization of the number of
transplants.

Then, denoting, in addition to the notation introduced above, the optimum
value of Ri by z∗i , the programs Ri, i = 2, . . . , |I|, are recursively defined as:

Ri:

max zi(x, yi) = wTi x+ vTi yi (11)

s.t. (2)

Ajx+Bjyj ≤ bj j = 1, . . . , i (12)

zj(x, yj) ≥ z∗j j = 1, . . . , i− 1 (13)

x ∈ {0, 1}|C(K,L)|

yj ∈ Fj j = 1, . . . , i

EI 2012-11 11

As in the generalized cycle formulation, the objective (11) is to maximize the sin-
gle criterion fi. However, the constraints (12) now include all the relationships
required for modeling criteria f1, . . . , fi. Constraints (13) are the objective prop-
agation constraints, which link the program Ri to the programs R1, . . . , Ri−1,
by propagating their corresponding objective function values.

The recursive cycle formulation naturally fits the definition of the hierarchical
multi-criteria kidney exchange problem. Indeed, the constraints (12) and (13)
directly describe the setsMi, i = 1, . . . , |I|. The exchange corresponding to the
solution of program R|I| is the solution to the hierarchical multi-criteria kidney
exchange problem.

2.2.5 Individual rationality constraints

Until now we have not yet considered the inclusion of individual rationality
constraints required for multi-center coordination. In the integer programs we
deal with, there are a class of constraints that are independent of the criteria
under consideration.

Let H be the set of hospitals and transplant centers involved in the kidney ex-
change program. For each hospital h ∈ H, let Nh ⊆ N be the subset of patients
and donors associated with that hospital, and let Ah denote the compatibilities
between them. When a hospital h ∈ H does not participate in the national pro-
gram, it can perform at most z∗h transplants, where z∗h is the solution to P0 on
the digraph Dh = (Nh, Ah). In order to have no incentive to withhold patients
or donors from the national program, the hospital should be able to perform at
least z∗h transplants when it fully participates in the national program. Hence,
the individual rationality (or participation) constraints amount to:

∑
c∈C(K,L)

|c ∩Nh| · xc ≥ z∗h ∀h ∈ H (14)

Note that, in this case, individual rationality refers to rationality of participating
transplant centers, not of patients or donors or surgeons. Constraints (14)
should be added to the integer programs modelling the various criteria under
consideration.

For the recursive cycle formulation we will denote a program Ri appended with
individual rationality constraints by IRi.

3 Iterative solution approach

In this section we will develop an iterative branch-and-price algorithm for solving
the hierarchical multi-criteria kidney exchange problem based on the recursive
cycle formulation. The idea is to iteratively solve integer programs correspond-
ing to the criteria. If a program is solved, its objective function value is prop-
agated to the integer program corresponding to the next criterion by means

EI 2012-11 12

Step 0 Initialize C(K,L) and x =
[
x1, . . . , x|C(K,L)|

]T
FOR EACH Hospital h ∈ H DO

Step 0.h Solve P0 on Dh:
z∗h := maxx∈{0,1}|C(K,L)| f0(x)

s.t. (2)

END FOR

FOR EACH Criterion fi ∈ I DO

Step i Solve IRi on D:
z∗i := maxx∈{0,1}|C(K,L)| fi(x)

s.t. (2), (14), f1(x) ≥ z∗1 , . . . , fi−1(x) ≥ z∗i−1

END FOR

Output x∗ := argmax x∈{0,1}|C(K,L)|fi(x)

s.t. (2), (14), f1(x) ≥ z∗1 , . . . , fi−1(x) ≥ z∗i−1
M∗ := {c ∈ C(K,L) : x∗c = 1}

Table 2: Iterative algorithm for solving hierarchical multi-criteria kidney ex-
change

of an objective propagation constraint. Table 2 gives a schematic overview of
this iterative approach, where IRi and fi(x) := fi({c ∈ C(K,L) : xc = 1})
respectively denote the integer program corresponding to criterion fi with indi-
vidual rationality constraints, and the objective function value of the exchange

corresponding to x =
[
x1, . . . , x|C(K,L)|

]T
under criterion fi.

3.1 Branch-and-price methodology

Because, the integer programming formulations described in Section 2 with one
variable per cycle and chain, grow exponentially in the size of the exchange pool,
the (recursive) integer programs P0, IR1, . . . , IR|I| included in the approach of
Table 2 are solved using branch-and-price. The branch-and-price method starts
with a limited subset C ⊆ C(K,L) of cycles and chains and solves the LP
relaxation of the integer program under consideration using the corresponding
restricted variable set. Whenever linear programming duality conditions imply
that adding not yet included variables may improve the solution value, corre-
sponding cycles and chains are generated and added to C. This process repeats
until strong duality conditions are satisfied. By doing this repeatedly for each
node in a branch-and-bound tree, an optimal integral solution can be obtained.

Generating columns for any of the LP relaxations to P0, IR1, . . . , IR|I| corre-
sponds to generating cycles and chains in the kidney exchange graph. Letting δn

EI 2012-11 13

denote the dual value of the constraint corresponding to node n ∈ N in (2), for
the LP relaxation of P0, the reduced cost rc of a cycle or chain c ∈ C(K,L) \C
not yet contained in the problem are given by:

rc = |c| −
∑
n∈c

δn

For the LP relaxation of IRi, i = 1, . . . , |I|, we have the following generalized
reduced cost ric of a cycle or chain c ∈ C(K,L) \ C:

ric = wi[c]−
∑
n∈c

δn−
i∑

j=1

mi∑
k=1

Aj [k, c] · µj,k−
i−1∑
j=1

wj [c] · νj−
∑
h∈H

|c ∩Nh| · ηh (15)

where, as before, δn denotes the dual value of the constraint corresponding to
node n ∈ N in (2), µj,k denotes the dual value of the k-th constraint modelling
criterion j in (12), νj denotes the dual value of the j-th objective propagation
constraint in (13), and ηh denotes the dual value of the constraint corresponding
to hospital h ∈ H in (14).

In order to establish LP-optimality we search for cycles with positive reduced
cost in the kidney exchange graph (see Section 3.3 for details on how this can
be accomplished). If no such cycle can be found, the LP has been solved to
optimality. If the LP solution is fractional, we branch, restricting one or more
variables in the values they can assume, and then resolve the LP. At each node
of the branching tree, the LP solution provides an upper bound on the restricted
problem of that node. An integral lower bound can be obtained by solving the
IP with the columns generated for the LP. If, at any node, the LP upper bound
is no better than the best lower bound, its subtree can be pruned. If the IP
lower bound matches the upper bound at the root node, the problem has been
solved to optimality.

3.2 Branch-and-bound

3.2.1 Branching

An important and integral part of any branch-and-price procedure is the branch-
ing scheme. In the best branching scheme investigated in Abraham et al. (2007),
branching is performed on the cycles (or, in our case, also chains) in the kidney
exchange graph. Whenever the LP solution is fractional, the cycle whose cor-
responding variable has an LP value closest to 0.5 is selected and two branches
are created, one in which the cycle’s corresponding variable is set to 0, and one
in which it is set to 1. Branches are then explored using depth-first search. As
there are are up to

∑K
i=2 |N |

i
cycles of length K or less in D, the branching tree

may have exponential depth. In our algorithm we branch on the arcs, of which
there can be only up to N2. We consider two branching schemes, based on the
following definition:

EI 2012-11 14

Definition 9. An arc a ∈ A is fractional if

xa :=
∑

c∈C(K,L):a∈c

xc

is fractional.

The existence of fractionally selected cycles need not immediately imply that
a fractional arc exists. For instance, multiple fractional cycles might overlap,
such that xa = 1 for every arc a ∈ A. Fortunately, Theorem 1 establishes that
this can never be true for all arcs whenever the LP solution is fractional.

Theorem 1. There exists a fractional arc if and only if the LP solution is
fractional.

Proof. The first implication is trivial: if a ∈ A is a fractional arc, then by
definition of xa, there must be at least one c ∈ C(K,L) : a ∈ c for which
xc is fractional. To prove the other implication, suppose c1 is a fractionally
selected cycle containing arcs a1, a2, . . . , a|c1|. If any arc a ∈ c1 is not also
covered by at least one other fractionally selected cycle, then Xa = xc and
hence a is fractional. Therefore suppose there are one or more other fractional
cycles which have at least one arc in common with cycle c1. Now, let c2 be
such a fractional cycle containing, without loss of generality, arc a1 = {n1, n2}
but not arc a2 = {n2, n3}, and let c3, . . . , cm be all other fractional cycles
containing arc a1. There are two options: either

∑m
i=1 xc = 1 or

∑m
i=1 xc < 1.

In the first case, xa1 =
∑m
i=1 xc = 1 so arc a1, and hence node n2, is totally

covered, implying that no positively valued cycle c ∈ C(K,L)\ {c1, c3, . . . , cm}
can cover arc a2 = {n2, n3}, and that therefore xa2 ∈ [xc1 , 1 − xc2], making
arc a2 fractional. In the second case, xa1 =

∑m
i=1 xc < 1 and thus arc a1 is

fractional. This completes the proof.

In our first branching scheme, we branch on groups of multiple arcs. If the LP
solution is fractional, we select the node with the largest number of fractional
out-arcs and then divide its out-arcs in two subsets, S1 and S2, and create a
branch for each subset. In each branch, all the arcs of its corresponding subset
are banned. The subsets S1 and S2 are determined by adding arcs to S1 in
non-decreasing order of xa value, until the sum of xa values of arcs in S1 is at
least 0.5. The remainder of the arcs are added to S2. Theorem 1 guarantuees
us that we can always find a node with at least one fractional out-arc.

In the second branching scheme, we branch on only one arc at a time. If the
LP solution is fractional, we select the arc with fractional value closest to 0.5.
We then create two branches: one in which the arc is banned, and one in which
it is enforced. Again, Theorem 1 guarantees that a fractional arc always exists,
and, moreover, that when we have branched on all fractional arcs, we have an
integer solution.

In order to enforce an arc a ∈ A in the master problem, we need to add the
following constraint:

EI 2012-11 15

∑
c∈C(K,L):a∈c

xc = 1 (16)

Adding constraint (16) to the master problem changes the reduced cost of a
cycle or chain. In particular, if A∗ ⊆ A is the set of enforced arcs, the reduced
cost ric of a cycle or chain c ∈ C(K,L) \ C in problem IRi is now given by:

ric = wi[c]−
∑
n∈c

δn−
i∑

j=1

mi∑
k=1

Aj [k, c] · µj,k−
i−1∑
j=1

wj [c] · νj−
∑
h∈H

|c ∩Nh| · ηh−
∑
a∈A∗

1a∈cξa

(17)

where, in addition to the previously introduced notation, ξa is the dual value
of constraint (16) and 1a∈c is an indicator function which is 1 if a ∈ c and 0
otherwise.

Note that banning an arc in the master problem is trivial, as that arc can simply
be removed from the graph.

3.2.2 Bounding

In all cases, before branching, integral upper and lower bounds can be derived
from the last iteration of the algorithm. For example, in Step 2, the maximum
number of blood type identical transplants can not be higher than the total
number of transplants determined in Step 1. Nor can it be lower than the
number of blood type identical transplants in Step 1’s solution. These derived
bounds are used to prune the irrelevant parts of the branching tree as soon as
they violate the bounds.

As in Step 1 there is no previous iteration, an upper bound can be derived
by determining in polynomial time the maximum number of transplants when
L = K = ∞. For graphs that are not too sparse, Roth et al. (2007) have
shown that this upperbound is tight when the instance size is large. As in
Abraham et al. (2007) such an upperbound can be determined by finding a
maximum weight matching in a bipartite graph with donors on one side and
patients on the other. Let us denote this bipartite graph as G = (U, V,E), with
U denoting the patients, V denoting the donors, and E denoting the edges.
Donors are connected to their own patients with a zero-weight edge and to all
other compatible patients with an edge of weight 1.

For each edge e ∈ E, let xe be defined as:

xe =

{
1 if e is selected,
0 otherwise.

The maximum weight matching can then be found in polynomial time by solving
the following LP:

EI 2012-11 16

max
∑
e∈E)

we · xe

s.t.
∑

e={u,v}∈E

xe = 1 ∀u ∈ U

s.t.
∑

e={u,v}∈E

xe = 1 ∀v ∈ V

xe ∈ [0, 1] ∀e ∈ E

During the branching process the initial bounds may be improved upon by
the LP solutions (which provide an upper bound), or by a primal heuristic for
constructing a feasible integer solution (which provides a lower bound). In all
branching schemes, we use, as a primal heuristic, the solution to the IP with
the columns generated for the LP. If, at any node of the branching tree, the LP
upper bound is no better than the best lower bound, that node’s subtree can be
pruned. If, at any node, the IP lower bound matches the upper bound at the
root node, the problem has been solved to optimality.

3.3 Pricing

In Abraham et al. (2007) the pricing problem is solved by traversing the kidney
exchange graph D in search for a positive price cycle. In the worst case, this
procedure enumerates all cycles in D and therefore (assuming L ≥ K) is of

order O(|N |L), which is exponential in the size of the input. In this section we
present a polynomial algorithm to solve the pricing problem in O(L |N | |A|).

The algorithm requires that the reduced cost of a cycle can be expressed as a
linear function of arc weights. Therefore, we first formulate the following lemma
on the reduced cost of a cycle or chain in the recursive cycle formulation.

Lemma 1. If the objective coefficients wj [c] and the constraint coefficients
Aj [k, c], j = 1, . . . , i, k = 1, . . . ,mj for each cycle or chain c ∈ C(K,L) in
problem IRi can be described as linear functions of arc weights, then there ex-
ist weights πia ∈ R, for all arcs a ∈ A, such that, for every cycle and chain
c ∈ C(K,L),

ric =
∑
a∈c

πia (18)

i.e. the reduced cost of c can also be described as a linear function of arc weights.

Proof. Let wi[c] =
∑
a∈c αiωi,a and Aj [k, c] =

∑
a∈c βi,jω

′
j,k,a for j = 1, . . . , i

and k = 1, . . . ,mj , then by (17),

EI 2012-11 17

ric = wi[c]−
∑
n∈c

δn −
i∑

j=1

mi∑
k=1

Aj [k, c] · µj,k −
i−1∑
j=1

wj [c] · νj −
∑
h∈H

|c ∩Nh| · ηh −
∑
a∈A∗

1a∈cξa

=
∑
a∈c

αiωi,a −
∑
n∈c

δn −
i∑

j=1

mi∑
k=1

∑
a∈c

βi,jω
′
j,k,a · µj,k −

i−1∑
j=1

∑
a∈c

αjωj,a · νj

−
∑
h∈H

|c ∩Nh| · ηh −
∑
a∈A∗

1a∈cξa

=
∑

a={n,n′}∈c

αiωi,a − δn′ − i∑
j=1

mi∑
k=1

(βi,jω
′
j,k,a) · µj,k −

i−1∑
j=1

(αjωj,a) · νj − ηh(n′) − 1a∈A∗ξa


=

∑
a={n,n′}∈c

πia

where

πia = αiωi,a− δn′ −
i∑

j=1

mi∑
k=1

(βi,jω
′
j,k,a) · µj,k−

i−1∑
j=1

(αjωj,a) · νj−ηh(n′)−1a∈A∗ξa

(19)

with δn the dual value of the constraint (2) for node n, µj,k the dual value
of the k-th constraint modelling criterion j in (12), νj the dual value of the
j-th objective propagation constraint in (13), ηh(n) the dual value of constraint
(14) for the hospital h ∈ H associated with node n, and ξa the dual value of
constraint (16).

The linear relationship between the objective and constraint coefficients and the
arcs in D holds for most criteria used in practice. In particular, all of the Dutch
criteria have this property. Also, the constraints required for branching on arcs
have this property. Note, however, that the constraints required to branch on
cycles (as used by Abraham et al. (2007)) do not satisfy this relationship, as
they require constraints to enforce the inclusion of a single cycle.

Now, let us define a reversion operator as follows:

Definition 10. For any directed cycle or chain c =
〈
n1, n2, . . . , n|c|

〉
, the di-

rected cycle (resp. chain)

c−1 :=
〈
n|c|, n|c|−1, . . . , n1

〉
is the reverse of c.

The pricing problems can now be solved in polynomial time through the algo-
rithm given in Table 3. The algorithm first constructs the arc set Ã ⊆ A of

EI 2012-11 18

arcs that are not banned and then determines for each starting node n ∈ N
a shortest path up to length K or L in D̃ = (N, Ã) (depending on whether
node n corresponds to an unspecified donor or not) using an adapted version
of the Bellman-Ford method (Bellman 1958)(Ford 1956). For each node n ∈ N
and k = 0, 1, . . . ,K − 1 (L − 1 for chains) the algorithm calculates functions
fnk : N → R∪ {∞} and gnk : N → N that respectively provide the weight of the
shortest path between n and any other node n′ ∈ N using at most k arcs, and
the predecessor of node n′ ∈ N on such a shortest n− n′ path.

The algorithm consists of four main steps. Before executing the main steps, Step
0 transforms the arc specific weights obtained from Lemma (1) such that the
pricing problem becomes a minimization problem. Then, for each node n ∈ N ,
Step 1 initializes the functions fnk and gnk , Step 2 calculates the function values
of fnk and gnk in case of a cycle (i.e. n ∈ NS), and Step 3 calculates the function
values in case of a chain (i.e. n ∈ NU). The final step, Step 4, checks whether
there are cycles or chains with positive reduced cost and, if there are, reversely
constructs them from the function values of gnk .

As stated in Theorem 2 below, the algorithm is exact, i.e. it always finds a
positive price cycle or chain if one exists. In fact, for each starting node it
finds the maximum weight cycle of length at most K (or chain of length at
most L). However, it might be the case that a cycle or chain returned by the
algorithm contains a subcycle (and hence is not feasible for the master problem).
In the case of such a compound cycle or chain, Theorem 2 guarantuees us that
the subcycle will always have a positive price. We can choose to abort the
algorithm as soon as a positive price cycle or chain is found, or it can be run to
completion, possibly resulting in multiple positive price cycles and chains being
identified (NB. If run to completion, the algorithm will output each cycle c∗

up to |c∗| times, therefore it may be desirable to filter the generated cycles for
duplicates).

Before providing the theorem, we first introduce the following definition:

Definition 11. For any directed cycle c composed of simple cycles σ1, . . . , σm
in D = (N,A), and arc weights πia ∀ a ∈ A, the maximum simple cycle S(c) is
the cycle given by

S(c) = argmaxσ∈{σ1,...,σm}

{∑
a∈σ

πia

}

Theorem 2. C∗ 6= ∅, and, for all c∗ ∈ C∗, S(c∗) ∈ C(K,L) and riS(c∗) > 0, if

and only if ∃c ∈ C(K,L) : ric > 0.

Proof. Analogous to the Bellman-Ford method, we have, for each n, n′ ∈ NS ,
k = 0, . . . ,K, that

fnk (n′) = min

{∑
a∈P

w′a : P is an n− n′ walk traversing at most k arcs

}

= max

{∑
a∈P

wa : P is an n− n′ walk traversing at most k arcs

}

EI 2012-11 19

Step 0 Set w′a := −πia ∀ a ∈ Ã as in (19), C∗ = ∅

FOR EACH Node n ∈ N DO

Step 1 Set fn0 (n) := 0 and, ∀ n′ ∈ N\ {n}, fn0 (n′) :=∞ and gn0 (n′) := ∅

Step 2 IF n ∈ NS THEN

set, for k = 0, . . . ,K − 2, and for all n′ ∈ N ,

â = {n′′, n′} := argmina={u,n′}∈Ã {f
n
k (u) + w′a},

fnk+1(n′) := min {fnk (n′), fnk (n′′) + w′â},

gnk+1(n′) :=

{
n′′ if fnk (n′′) + w′â < fnk (n′),

gnk (n′) otherwise.

Step 3 ELSE IF n ∈ NU THEN

set, for k = 0, . . . , L− 2, and for all n′ ∈ N ,

â = {n′′, n′} := argmina={u,n′}∈Ã {f
n
k (u) + w′a},

fnk+1(n′) := min {fnk (n′), fnk (n′′) + w′â},

gnk+1(n′) :=

{
n′′ if fnk (n′′) + w′â < fnk (n′),

gnk (n′) otherwise.

END FOR

Step 4 For n, n′ ∈ NS , if {n′, n} ∈ Ã and fnK−1(n′) + w′{n′,n} < 0,

C∗ → C∗ ∪
{
n′, gnK−1(n′), gnK−2(gnK−1(n′)), . . . , n

}−1
,

and, for n ∈ NU , n′ ∈ NS , if fnL(n′) < 0,

C∗ → C∗ ∪
{
n′, gnL−1(n′), gnL−2(gnL−1(n′)), . . . , n

}−1
Table 3: Polynomial pricing algorithm

EI 2012-11 20

Then, obviously,

c∗(n) := {n′, gn(n′), gn(gn(n′)), . . . , n}−1 (20)

= argmax

{∑
a∈P

πia : P is an n− n walk traversing at most k arcs

}

is a, possibly compound, maximum weight cycle with length at most K. Let
σ1(n), . . . , σm(n) be the simple cycles composing c∗(n) (if c∗(n) itself is a simple
cycle, m = 1 and σ1(n) = c∗(n)). By definition, S(c∗(n)) ∈ {σ1, . . . , σm} ⊆
C(K,L). Therefore, it remains to prove that ∃n ∈ NS : c∗(n) ∈ C∗ and that,
for all n ∈ NS : c∗(n) ∈ C∗,

∑
a∈S(c∗(n)) π

i
a > 0.

To prove the first part, let c ∈ C(K,L) be a cycle with
∑
a∈c π

i
a > 0 and let

n ∈ c. By (20) we then have that
∑
a∈c∗(n) π

i
a ≥

∑
a∈c π

i
a > 0, and, therefore

fnK−1(n′) + w{n′,n} =
∑

a∈c∗(n)

w′a = −
∑

a∈c∗(n)

πia < 0

which implies that c∗(n) ∈ C∗ as desired.

To prove the second part, let n ∈ NS : c∗(n) ∈ C∗. Then∑
a∈c∗(n)

πia =
∑

a∈σ1(n)

πia + . . .+
∑

a∈σm(n)

πia > 0.

Because of this, ∃σ ∈ {σ1(n), . . . , σm(n)} :
∑
a∈σ π

i
a > 0, and, by definition 11,∑

a∈S(c∗(n)) π
i
a > 0 as desired. The proof for chains is analogous.

Corollary 1. Given a kidney exchange graph D = (N,A) and arc weights πia
∀ a ∈ A, a positive weight cycle up to length K or chain up to length L, if one
exists, can be found in time O(max {K,L} |N | |A|).

Proof. Directly from the description of the algorithm in table 3.

4 Simulators

We test our algorithm using two realistic simulators. The first is a kidney
exchange simulator based on historical data from the Dutch national kidney
exchange program. This simulator is described in detail in (Glorie et al. 2012).
We use this simulator to both generate static kidney exchange pools (individual
pools sampled from the available patient-donor population) as well as dynamic
sequences of pools and exchanges (pools that dynamically evolve by simulating
arrivals sampled from the patient-donor population and by simulating removals
due to exchanges and, for example, patient illness). In order to also generate
instances with different characteristics and larger size, we use a second simulator
that is a slightly modified version of the simulator described in (Saidman et al.
2006) (and used in (Abraham et al. 2007)), which is the most commonly used

EI 2012-11 21

generator for kidney exchange pools. It is based on US population data. We
make some modifications to the simulator in order to capture new insights into
the composition of exchange pools in practice described in (Ashlagi and Roth
2012). We use this simulator to generate an alternative set of static kidney
exchange pools. In this section we will briefly explain the main aspects of the
data and simulation procedures.

4.1 Static simulation with actual Dutch data

The data for our first simulator is obtained from the Dutch Transplant Foun-
dation (NTS) and originates from the empirical registry of the Dutch national
kidney exchange program. It includes 438 incompatible patient-donor pairs
who participated in Dutch kidney exchanges between October 2003 and Jan-
uary 2011. In addition it contains 109 unspecified donors who were screened
at one of the seven Dutch transplant centers during that period. Each patient
and donor has a blood type as well as a registration center. Donors also have a
record of their so-called human leukocyte antigen (HLA) types, while patients
have a record of the HLA types that are medically unacceptable to them. A
patient is marked as incompatible with a donor whenever the donor’s blood type
contains a protein that is not contained in the patient’s blood type, or whenever
the donor has a HLA type that is unacceptable to the patient, otherwise the
patient and donor are compatible. A static kidney exchange pool is generated
at random from the data using sampling with replacement.

4.2 Dynamic simulation with actual Dutch data

We use the static simulator described above to perform dynamic kidney ex-
change simulations as described in (Glorie et al. 2012). The dynamic simula-
tion procedure consists of repeated Monte Carlo simulations. Each simulation
spans the period between 1 October 2003 and 23 December 2010 and involves
a population of size 547 generated from the empirical data using sampling with
replacement. The arrivals of patient-donor pairs and unspecified donors are
determined by assigning each pair and each unspecified donor in the sampled
population a random date in the simulation period. Arrival dates are drawn
uniformly, corresponding to a Poisson arrival process. Matching rounds are
conducted every three months, starting from 1 January 2004. In each match-
ing round, the optimization algorithm described in Section 3 implemented with
the Dutch hierarchical criteria identifies a matching. There are a total of 29
matching rounds during the simulation period. Proposed matches may fail with
a probability depending on the patient and donor characteristics, in which case
the optimization algorithm is rerun with the new information. This process is
repeated until a feasible matching is found. Patients and donors may leave the
pool over time due to simulated attrition and reneging.

EI 2012-11 22

4.3 Static simulation with US population data

We also perform simulations with US population data using the simulator de-
scribed in (Saidman et al. 2006). The simulation is based on data from the
United Network for Organ Sharing (UNOS) in the US. The simulator generates
patients with a random blood type, sex, and probability of being crossmatch
incompatible with a randomly chosen donor. Each patient is assigned a poten-
tial donor with a random blood type and relation to the patient. If the patient
and the potential donor are incompatible, they are added to the kidney ex-
change pool. Blood types and probabilities of crossmatch failure are then used
to determine the compatibilities in the pool.

As Ashlagi and Roth (2012) recently found that the percentage of highly sen-
sitized patients (i.e. patients with a high probability of crossmatch incompat-
ibility with a randomly chosen donor) in practice is significantly higher than
assumed in (Saidman et al. 2006), we modify the final pool using a distribution
for patient sensitization that characterizes the empirical distribution described
in (Ashlagi et al. 2013): half of the patients is assigned a high sensitization level
(a probability of crossmatch incompatibility of 97.5 %) and the other half is
assigned a low sensitization level (a probability of crossmatch incompatibility
of 2.5 %). Final compatibilities are then determined using the modified sen-
sitization levels. This means that the pools are much sparser than the pools
generated by the original simulator due to Saidman et al. (2006).

Additionally, because we want to model multi-center exchanges, we randomly
assign the patients and donors to a transplant center. To ensure a realistic
distribution of center sizes, we take the empirical distribution of center size
obtained from our first simulator.

5 Computational results

Our experiments were performed on a Windows 7 64 bit computer with an 3
GHz AMD Athlon II X2 processor and 4 GB of RAM. The iterative branch-
and-price algorithm has been implemented in C#.NET and LP’s and ILP’s are
solved using CPLEX 12.5.

Table 4 displays the run time performance of our algorithm for solving the
usual primary objective (maximizing the number of transplants) on instances
constructed by the simulator with Dutch clinical data described in Section 4.
The performance of the different pricing and branching strategies described in
section 3 is compared on instances of various sizes. The cycle length limit K is
set to either 3 (short cycles) or 4 (long cycles) and the chain length limit L is
set to either 3 (short chains) or 6 (long chains).

In our comparisons we include the depth-first pricing algorithm with cycle
branching used in Abraham et al. (2007). In this algorithm, the kidney exchange
graph is traversed for positive price cycles by exploring nodes in non-decreasing
dual value order. Intermittently, the search path is pruned based on the fact
that new nodes will have dual value as least as large as the current node.

EI 2012-11 23

In all instances containing more than 400,000 cycles and chains the master
problem is seeded with a starting collection of 10,000 random cycles and chains
(generated by random walks from a randomly chosen node in the kidney ex-
change graph until a feasible cycle or chain is found). The collection of cycles
and chains is managed such that whenever the problem contains more than
400,000 cycles and chains, the cycles and chains with the lowest reduced cost
are deleted (excepting those that are branched on or have a non-zero LP value).

Per pricing iteration up to 100 new cycles and chains are added (except in the
depth-first pricing algorithm, where we adhered to the setting of 1 new cycle or
chain per iteration, as advised in Abraham et al. (2007) and which, after tuning,
we found to work best for this pricing alorithm).

The first column in Table 4 indicates the pool size. The second column contains
the total run time in seconds. The third and fourth column respectively contain
the time spent on solving LP’s and IP’s for the master problem. When branching
is applied, the fifth column reports the number of processed nodes in the branch-
and-bound tree over the total number of nodes in the tree; the sixth column
reports the total time required for solving pricing problems.

As can be seen from the table, our algorithm is able to find optimal solutions
in instances with 500 nodes – which can contain up to 100 · 4006 ≈ 4.10e+17
chains of length 6 – within two minutes. In almost all instances the polynomial
pricing algorithm performs better than the depth-first pricing algorithm. In
fact, using the depth-first pricing, the algorithm is not able to solve the larger
instances within the imposed time-limit of 1 hour (see the instance with 500
nodes), because the pricing takes too much time and optimality cannot yet
be proven because the initial upperbound (based on K = L = ∞) cannot be
achieved for these instances. Subset arc branching appears to require the least
amount of branching decisions of the various branching strategies, although the
difference in performance is small, at least not on the instances tested. Often
the optimal solution is already found in the root of the branch-and-bound tree.

Next, we perform experiments with instances constructed by the simulator with
US population data described in Section 4. When we consider the unmodified
version of the Saidman simulator to generate non-sparse pools, we obtain results
similar to those in Abraham et al. (2007). However, as indicated by Ashlagi and
Roth (2012), in practice pools turn out to become increasingly sparse. Therefore
we directly proceed and report results for the modified version of the Saidman
simulator that takes this higher degree of sparsity into account. In this case,
we generate various sparse instances up to 1,000 nodes. The cycle and chain
length limit is set to either K = L = 3 (short cycles and chains) or to K = 4
and L = 6 (long cycles and chains).

Table 5 summarizes the average performance characteristics over the generated
instances. The columns in Table 5 are similar to the columns in Table 4, except
that now, as not all versions of the algorithm are able to solve all the sparse
instances, the percentage of solved instances is reported in the last column.

The findings reported in Table 5 for sparse instances generated with US data
are in line with the findings reported in Table 4 for instances generated with
Dutch data. When we allow only short cycles and chains the polynomial pric-
ing algorithm and the depth-first pricing algorithm perform almost identically.

EI 2012-11 24

Pool Total LP IP # nodes proc. / Pricing
size time (s) time (s) time (s) # nodes time (s)

Depth first pricing with cycle brancing, K = 3, L = 3
10 .61 .04 .00 1 / 1 .00
20 .21 .04 .00 1 / 1 .00
50 1.11 .26 .00 7 / 13 .00
100 .78 .09 .28 1 / 1 .06
200 1.81 .52 .47 1 / 1 .36
500 54.92 32.59 .47 28 / 55 12.17

Depth first pricing with cycle brancing, K = 4, L = 6
10 .28 .05 .00 2 / 3 .00
20 .83 .17 .00 5 / 9 .00
50 .42 .13 .00 2 / 3 .00
100 7.52 .14 .27 1 / 1 6.81
200 730.65 9.30 .20 16 / 31 713.17
500 >3600 - - - >3600

Polynomial pricing with arc branching, K = 3, L = 3
10 .33 .03 .00 1/1 .00
20 .20 .03 .00 1/1 .00
50 2.97 .91 .00 20/39 .00
100 .80 .09 .25 1/1 0.13
200 1.58 .17 .30 1/1 0.64
500 21.98 1.09 .69 1/1 18.08

Polynomial pricing with arc branching, K = 4, L = 6
10 .27 .06 .00 2 / 3 .00
20 .94 .19 .00 6 / 11 .00
50 1.61 .53 .00 10 / 19 .00
100 .83 .13 .31 1 / 1 .08
200 2.78 .67 .30 1 / 1 1.33
500 103.67 21.44 4.53 24 / 47 35.72

Polynomial pricing with subset arc branching, K = 3, L = 3
10 .16 .05 .00 1 / 1 .00
20 .16 .03 .00 1 / 1 .00
50 .50 .13 .00 3 / 5 .00
100 .70 .08 .22 1 / 1 .11
200 1.59 .17 0.30 1 / 1 .64
500 22.06 1.08 0.67 1 / 1 18.13

Polynomial pricing with subset arc branching, K = 4, L = 6
10 .42 .09 .00 3 / 5 .00
20 .91 .22 .00 6 / 11 .00
50 1.20 .39 .00 7 / 13 .00
100 .88 .14 .31 1 / 1 .08
200 2.78 .67 .30 1 / 1 1.31
500 95.02 15.59 7.64 12 / 23 35.61

Table 4: Average performance characteristics for various instances generated
with historical data from the Dutch national kidney exchange program.

EI 2012-11 25

Pool Total LP IP # nodes proc. / Pricing
size time (s) time (s) time (s) # nodes time (s) % Solved

Depth first pricing with cycle brancing, K = 3, L = 3
100 .57 .14 .18 1 / 1 .02 100
200 3.01 1.83 .11 1.4 / 1.6 .61 100
500 60.26 37.29 .34 1 / 1 21.64 100
1000 421.53 224.25 1.47 1.4 / 1.8 191.08 100

Depth first pricing with cycle brancing, K = 4, L = 6
100 1.05 0.29 0.42 1 / 1 0.09 100
200 53.75 9.96 0.25 1.6 / 2 42.89 100
500 2528.83 280.28 1.02 2.8 / 4.6 2260.56 90
1000 ¿3600 1252.52 0.00 1 / 1 2384.20 0

Polynomial pricing with arc branching, K = 3, L = 3
100 0.47 0.08 0.03 1 / 1 0.19 100
200 3.57 0.25 0.14 1 / 1 2.79 100
500 64.48 2.67 0.60 1 / 1 60.33 100
1000 431.35 52.59 2.66 1 / 1 372.71 100

Polynomial pricing with arc branching, K = 4, L = 6
100 0.66 0.09 0.12 1 / 1 0.24 100
200 13.29 1.19 0.40 1 / 1 11.25 100
500 36.71 7.12 1.99 1 / 1 26.68 100
1000 326.57 54.55 16.92 6 / 11 172.25 100

Polynomial pricing with subset arc branching, K = 3, L = 3
100 0.47 0.08 0.03 1 / 1 0.19 100
200 3.58 0.26 0.14 1 / 1 2.78 100
500 64.41 2.66 0.61 1 / 1 60.27 100
1000 446.17 57.29 2.56 1 / 1 379.18 100

Polynomial pricing with with subset arc branching, K = 4, L = 6
100 0.66 0.10 0.12 1 / 1 0.24 100
200 13.29 1.21 0.40 1 / 1 11.22 100
500 36.67 7.10 1.97 1 / 1 26.68 100
1000 417.10 74.49 12.71 14.5 / 28 174.17 100

Table 5: Average performance characteristics over 10 randomly generated in-
stances generated with US population data. 1 % of the donors is unspecified.
50 % of the patients is highly sensitized.

However, when we allow long cycles and chains, in almost all instances the
polynomial pricing algorithm performs much better than the depth-first pricing
algorithm. In fact, when using depth-first pricing with cycle branching, many
of the larger instances cannot be solved (this is the case for 40 percent of the
instances with 500 nodes, and 100 percent of the instances with 1,000 nodes)
while all of these instance can be solved within a couple of minutes when using
polynomial pricing.

As before, many instances can be solved in the root of the branching tree,
but, in total, branching is now required for more instances. When branching is
required, arc branching appears to be more effective than subset arc branching

EI 2012-11 26

Pool % Instances for which
size upperbound is attainable

K = 3, L = 3
100 30
200 0
500 0
1000 10

K = 4, L = 6
100 70
200 20
500 100
1000 100

Table 6: Percent of instances for which the upperbound based on K = L = ∞
is attainable

as it leads to less branches on average (see the 1,000 node instances).

The reason that the algorithm using depth-first pricing and cycle branching has
difficulty solving sparse instances, is that for these instances the upperbound
for the maximum number of transplants due to Roth et al. (2007) based on
K = L = ∞ is no longer as tight as in non-sparse pools. Table 6 displays the
percentage of instances used in Table 5 for which this upperbound is attainable.
As can be seen from the table, the upperbound can almost never be attained
- not even for large instances - when only short cycles and chains are allowed.
When long cycles and chains are allowed, however, the upperbound can almost
always be attained. But allowing long cycles and chains is very detrimental to
the run time of the depth-first pricing algorithm. When the upperbound due to
Roth et al. (2007) cannot be achieved, optimality cannot be proven in an early
stage, and many cycles and chains have to be considered before the algorithm
can conclude that no cycle or chain with positive reduced cost exists. As this
causes the depth-first algorithm to enumerate a very large number of cycles
and chains (in order to prove optimality), it takes a very long time to solve the
pricing problems. The polynomial pricing algorithms perform better as they do
not need to consider as many cycles and chains.

Of practical importance, however, is not just the run time, but also the im-
pact of applying the iterative branch-and-price algorithm. Figure 2 displays the
long term effects of using this algorithm for multi-criteria kidney exchange us-
ing the Dutch criteria. In particular, the figure shows the relative difference to
single-criterion kidney exchange on the total number of transplants, the average
wait time, the number of highly sensitized patients (patients with PRA > 80)
transplanted, and O patients transplanted in 30 Monte Carlo simulations. Re-
sults are shown for two types of policies: policies with domino paired donation
(DPD) chains, of which the last donor in the chain donates to a patient on the
deceased donor waitlist, and policies with non-simultaneous extended altruistic
donor (NEAD) chains, of which the last donor in the chain becomes a ‘bridge’
donor who can start a new chain in a subsequent exchange. For both policies
we compare the multi-criterion solution to the corresponding single-criterion
solution.

EI 2012-11 27

Figure 2: Long term impact of multi-criteria kidney exchange: relative difference
to single-criterion policies for several criteria

While the difference in the total number of transplants and the average wait-
ing time is negligible (which is as expected), the difference in terms of highly
sensitized patients transplanted is significant, both statistically and practically
(statistical significance is tested using the Sign test with α = 0.05). This -
normally disadvantaged - group can receive up to 10 percent more transplants
when using the Dutch allocation criteria (P < 0.001). O type patients do not
appear to benefit as much, but even for this group the difference is significant
under the policies with L = 6 (P = 0.0142 for DPD and P = 0.0339 for NEAD).
Most important though, is that the total allocation process satisfies the fairness
requirements of international treaties (such as the European agreements men-
tioned in the introduction) as these are captured in the multiple criteria that
are used to make the matching decisions.

6 Conclusions and further research

In this paper we have shown how to clear large multi-criteria kidney exchanges
using a general and scalable exact algorithm. This is particularly important
as, over the last years, kidney exchange has quickly increased as a modality
for transplanting end stage renal disease patients with an incompatible living
donor. Most kidney exchange programs not only seek to optimize the number
of transplants, but also seek to guarantee a level of fairness, as prescribed in
international treaties (e.g. Council of Europe (2002)). For this reason many
programs use a set of multiple hierarchical optimization criteria. Using our
algorithm, we can effectively deal with such criteria, even in large and sparse

EI 2012-11 28

exchange pools with unspecified donors that now begin to arise in practice,
whereas we show such pools to be problematic for existing algorithms.

To maximize the benefits from kidney exchange, the exchange should be coor-
dinated at a national level and integrated with unspecified donation. However,
participation barriers for transplant centers may prevent such nationally coor-
dinated kidney exchange from being established. To make such coordination
possible then, participation constraints must be included. Our algorithm can
also deal effectively with such constraints.

Mathematically, the algorithm consists of an iterative branch-and-price proce-
dure. By using a general but effective class of integer programming formulations
we are able to optimally clear exchange pools with billions of cycles and chains
within minutes. The key part of our algorithm is a polynomial pricing proce-
dure for this class of formulations in combination with a branching strategy that
branches on arcs or on subsets of arcs. These elements allow us to efficiently
deal with long chains - which are an upcoming phenomenon in kidney exchange
- which would not be possible with depth-first pricing techniques suggested in
previous research.

On a practical level, we have shown through long term analysis that highly
sensitized patients may on average receive up to 10 percent more transplants
when using the hierarchical allocation criteria used in the Dutch kidney exchange
program. Although for testing purposes the algorithm has been specifically
implemented with the Dutch criteria, it easily generalizes to a wide variety of
other criteria. One particular alternative criterion that might be thought of
is, for example, the maximization of the number of expected life years gained.
Optimizing with respect to that criterion might also open up the possibility of
including compatible pairs in the kidney exchange program.

We hope our algorithm may serve as a reference solution framework for other
researchers, so that solution methods and data can be shared, to the benefit of
the patients suffering from end stage renal disease accross the globe.

References

Abraham, D, A Blum, T Sandholm. 2007. Clearing algorithms for barter exchange
markets: enabling nationwide kidney exchanges. ACM EC (07).

Ashlagi, I, DS Gilchrist, AE Roth, MA Rees. 2011. Nonsimultaneous chains and domi-
nos in kidney paired donation - revisited. American Journal of Transplantation
(11) 984–994.

Ashlagi, I, P Jaillet, VH Manshadi. 2013. Kidney exchange in dynamic sparse het-
erogenous pools. Working paper .

Ashlagi, I, A Roth. 2011. Free riding and participation in large scale, multi-hospital
kidney exchange. NBER paper no. w16720 .

Ashlagi, I, AE Roth. 2012. New challenges in multi-hospital kidney exchange. Amer-
ican Economic Review, Papers and Proceedings 102(3) 354–359.

Barnhart, C, EL Johnson, GL Nemhauser, MWP Savelsbergh, PH Vance. 1998.
Branch-and-price: Column generation for solving huge integer programs. Oper-
ations Research (46) 316–329.

EI 2012-11 29

Bellman, R. 1958. On a routing problem. Quarterly of Applied Mathematics (16)
87–90.

Constantino, M, X Klimentova, A Viana, A Rais. 2013. New insights on integer-
programming models for the kidney exchange problem. Preprint submitted to
European Journal of Operational Research .

Council of Europe. 2002. Additional protocol to the convention on human rights and
biomedicine concerning transplantation of organs and tissues of human origin.
European Treaty Series (186).

Delmonico, F, P Morrissey, G Lipkowitz, J Stoff, J Himmelfarb, W Harmon,
M Pavlakis, H Mah, J Goguen, R Luskin, E Milford, G Basadonna, M Choba-
nian, B Bouthot, M Lorber, R Rohrer. 2004. Donor kidney exchanges. Am J
Transplant (4) 1628–1634.

Ford, LR. 1956. Network flow theory. Paper P-923, The RAND Corporation, Santa
Monica, California .

Glorie, KM, M de Klerk, APM Wagelmans, JJ van de Klundert, WC Zuidema, FHJ
Claas, W Weimar. 2012. Unspecified donation in kidney exchange: when to end
the chain. Econometric Institute report (2012-19).

Keizer, KM, M de Klerk, BJJM Haase-Kromwijk, W Weimar. 2005. The dutch algo-
rithm for allocation in living donor kidney exchange. Transplantation Proceedings
(37) 589–591.

Kim, BS, YS Kim, SI Kim, MS Kim, HY Lee, YL Kim, CD Kim, CW Yang, BS Choi,
DJ Han, YS Kim, SJ Kim, HY Kim, DJ Kim. 2007. Outcome of multipair donor
kidney exchange by a web-based algorithm. Journal of the American Society of
Nephrology 18(3) 1000–1006.

Klerk, M De, WM Van der Deijl, MD Witvliet, BJJM Haase-Kromwijk, FHJ Claas,
W Weimar. 2010. The optimal chain length for kidney paired exchanges: an
analysis of the dutch program. Transplant Int. (23) 1120–1125.

Klerk, M De, J Kal van Gestel, B Haase-Kromwijk, F Claas, W Weimar. 2011. Eight
years of outcomes of the dutch living donor kidney exchange program. Clinical
Transplants 2011 . Terasaki Foundation Laboratory, Los Angeles, California.

Manlove, D, G O’Malley. 2012. Paired and altruistic kidney donation in the uk:
Algorithms and experimentation. Experimental Algorithms: Proceedings of the
11th International Symposium, SEA 2012, Bordeaux, France, June 7-9, 2012.
271–282.

Montgomery, R, S Gentry, W Marks, D Warren, J Hiller, J Houp et al. 2006. Domino
paired kidney donation: a strategy to make best use of live non-directed dona-
tion. Lancet (368) 419–421.

(NTS)., Nederlandse Transplantatie Stichting. ????
http://www.transplantatiestichting.nl .

Park, K, JI Moon, SI Kim, YS Kim. 1999. Exchange donor program in kidney trans-
plantation. Transplantation 67(2) 336–338.

Roth, AE, T Snmez, MU Unver. 2007. Efficient kidney exchange: Coincidence of
wants in markets with compatibility-based preferences. The American Economic
Review 97(3) 828–851.

Roth, AE, T Snmez, MU Unver, FL Delmonico, SL Saidman. 2006. Utilizing list ex-
change and nondirected donation through chain kidney paired donations. Amer-
ican Journal of Transplantation (6) 2694–2705.

Saidman, S, A Roth, T Sonmez, U Unver, F Delmonico. 2006. Increasing the oppor-
tunity of live kidney donation by matching for two- and three-way exchanges.
Transplantation 81(5) 773–782.

