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Chapter 1

Introduction

Pathogenesis of Campylobacter jejuni infection

Campylobacter jejuni (C. jejuni) is a spiral, comma-shaped Gram-negative bacterium 
which is motile due to bipolar flagella. C. jejuni is frequently present in the intestines of 
poultry and birds, where it is considered to be part of the normal intestinal flora (1). Dur-
ing slaughter procedures, poultry meat products often become contaminated with fecal 
content containing C. jejuni (2, 3). As a consequence of the extensive consumption of 
chicken worldwide, the handling of raw chicken and ingestion of undercooked chicken 
meat are the main causes of C. jejuni infection in humans (3). Apart from poultry, other 
sources of C. jejuni infection include raw milk, (swimming) water and pets (4). 

Upon ingestion, C. jejuni can pass through the human gastrointestinal tract without 
clinical symptoms; however, infection with C. jejuni will often lead to a diarrheal illness 
(5). In the Netherlands, approximately 80,000 people per year (range, 30,000 – 160,000) 
are estimated to experience acute gastroenteritis caused by Campylobacter (6). The 
symptoms include fever, abdominal pain, and slimy or bloody diarrhea that lasts for 
several days (7). C. jejuni diarrhea is self-limiting, though complications such as bacte-
raemia, post-infectious reactive arthritis or Guillain-Barré syndrome (GBS) occasionally 
occur. In view of the broad spectrum of clinical disease presentations associated with 
C. jejuni infection, microbial as well as host factors are likely to contribute to C. jejuni 
pathogenesis.

In order to cause disease, C. jejuni must be able to move away from the peristaltic force 
in the intestinal lumen and penetrate the intestinal mucus to reach the underlying intes-
tinal epithelium (Fig.1). Several components in the mucus layer aid in defense against 

peristaltic �ow
lumen

mucus 
layer

intestinal 
epithelium

mucin,           antimicrobial peptide,                  C. jejuni       

Figure 1. The luminal environment. Schematic representation of the luminal environment showing 
the intestinal lumen, and the mucins and antimicrobial peptides in the mucus layer which overlies the 
intestinal epithelium.
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pathogens. To be able to cross the mucus, C. jejuni has to evade or combat these defense 
systems. For example, C. jejuni needs to avoid getting trapped in mucins, large net-like 
polymers able to physically block, stick- or bind to bacteria that penetrate the mucus 
layer (8). The broad range of bactericidal antimicrobial peptides, produced by epithelial 
cells, are another important component of the intestinal mucosal defense system which 
C. jejuni needs to combat next (9). 

The small size and spiral (corkscrew) appearance of C. jejuni (Fig. 2A) are morphologi-
cal characteristics of the bacterium that facilitate penetration of the mucus layer. Bipolar 
flagella facilitate motility and enable C. jejuni to move towards the mucus, which is an 
attractive, nutrition-rich environment for C. jejuni. A slimy polysaccharide capsule is 
present on the outer membrane of C. jejuni (Fig. 2B). The capsule prevents entrapment of 
bacteria in lumenal mucins and protects against environmental stress, such as osmotic 
changes (10, 11). Lipooligosaccharides (LOS) expressed on the surface of C. jejuni play a 
role in defense against mucosal antimicrobial peptides (12).

The ability of C. jejuni to adhere to and invade intestinal epithelial cells contributes 
to the pathogenicity of this bacterium. Contact with the epithelium can provoke in-
flammatory responses and may lead to damage of this cellular barrier. Several C. jejuni 
virulence factors play a part in epithelial adhesion and invasion. The current view of 
the C. jejuni adhesion/invasion process is that the binding of particular bacterial surface 
adhesins to their cognate receptors on intestinal epithelial cells is required to initiate 
bacterial invasion (13). Recently, it was demonstrated that the C. jejuni proteins CadF 
(Campylobacter adhesion to fibronectin) and FlpA (fibronectin-like protein A) act in a 
coordinated manner to bind fibronectin on the extracellular matrix of intestinal epithe-
lial cells (14). The cooperative action of fibronectin binding and flagella-mediated secre-
tion of Cia proteins (Campylobacter invasion antigens) stimulates host cell membrane 
ruffling (14). Subsequently, C. jejuni-induced intracellular signaling events promote 
bacterial uptake through invoking rearrangement of the epithelial cell cytoskeleton 
(14). Cytolethal distending toxin (CDT) is a major virulence factor that triggers cell 
cycle arrest and apoptosis in epithelial cells through DNase activity (15). C. jejuni starts 
to shed outer membrane vesicles containing CDT upon sensing of epithelial cells (16). 
CDT also induces interleukin-8 secretion from epithelial cells, which could contribute to 
inflammatory diarrhea (17). Other C. jejuni proteins reported to be involved in epithelial 
adhesion and/or invasion include PorA (porin), cj0091 (putative lipoprotein), JlpA (a 
surface-exposed lipoprotein), pldA (phospholipase A), CapA (putative autotransporter), 
DNAJ (transcriptional regulatory), racR (reduced ability to colonize) and FlaA (flagellin 
subunit A) (18-22). The capsule and LOS also play a role in epithelial invasion (23, 24). 
The regions associated with the biosynthesis of the capsule and the LOS are two of the 
most variable regions in the genome of C. jejuni (25). Gene variability in these regions 
has resulted in the display of a great variety of  both capsule and LOS structures by 
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different C. jejuni strains (26, 27). It is unclear whether particular capsule structures or 
LOS structures are associated with a higher invasion potential.

Clearly, C. jejuni is equipped with many virulence factors (Fig. 2C). Although C. jejuni 
related disease is limited to gastroenteritis in the majority of individuals, severe post-
infectious complications such as GBS can develop in rare cases.

Guillain-Barré syndrome 

With a global incidence of 1-2 cases per 100,000 population annually, GBS is the most 
common cause of acute neuromuscular paralysis worldwide (28). GBS is a post-infec-
tious, immune-mediated disease of the peripheral motor and sensory nerves, which is 
characterized by symmetric pain, sensory deficits and weakness of the limbs (29-32). The 
disease is monophasic, with an acute progressive phase, a plateau phase and a recovery 
phase (33). About one-third of patients with GBS require artificial respiration; in US 
hospitals, mortality is reported in 2-12% of the cases (34, 35). The rate of GBS-mediated 
mortality may be higher in developing countries, due to the unavailability of proper 
treatment (36). After the symptoms have stabilized, most patients gradually improve 
within a period of weeks to months, depending on the severity of neurological dam-
age. After six months, 20% of patients with GBS are still unable to walk without support 

LOS

Flagellum

Capsule

Membrane vesicle 
containing CDT

CadF

FlpA

(a)

Cia proteins

A B

C

Figure 2. Campylobacter jejuni.  A. Cryo-electron tomographic visualization of C. jejuni supported by 
a lacey carbon film (kindly provided by R. I. Koning). B. Electron microscopy visualization of a C. jejuni 
fragment. Alcian Blue dye was used to stain the polysaccharide capsule (indicated by the black arrow; 
copyright A. V. Karlyshev ©). C. Schematic presentation of C. jejuni showing the capsule, bipolar flagella, 
surface proteins CadF and FlpA, flagellum secreted Cia proteins, membrane vesicle secreted CDT and 
membrane-anchored LOS. CadF, Campylobacter adhesion to fibronectin; FlpA, fibronectin-like protein A; 
Cia, Campylobacter invasion antigen; LOS, lipooligosaccharides; (a) other surface proteins or lipoproteins.
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(37). Severe fatigue is a common sequelae, which has been reported in 60-80% of GBS 
patients, and can last for years (38, 39). 

In particular, the peripheral motor and sensory nerves and the peripheral nerve roots 
are damaged in patients with GBS. Peripheral nerves carry the signal impulses from the 
central nervous system to the limbs and organs, through cable-like bundles of axons. The 
axons are surrounded by myelin-producing Schwann cells which protect the axon and 
increase the speed of nerve conduction. Gangliosides are enriched in the membranes of 
both axons and Schwann cells (40, 41) (Fig. 3).

Based on nerve conduction studies and pathological criteria, GBS has been classified 
into different subtypes. Notable differences in geographic distribution between these 
subtypes were identified. Two axonal subtypes of GBS, acute motor axonal neuropathy 
(AMAN) and acute motor-sensory axonal neuropathy (AMSAN), occur more frequently 
in China, Japan, India and Central America (36, 42-44). A demyelinating subtype, acute 
inflammatory demyelinating polyneuropathy (AIDP), is the most common form of GBS 
in Europe and Northern America (45). Miller Fisher syndrome (MFS) is a restricted variant 
of GBS characterized by a lack of coordination (ataxia), loss of tendon reflexes (areflexia) 
and paralysis of the eye muscles (oculomotor weakness, ophthalmoplegia), without 
limb weakness (46). MFS affects around 5% of GBS patients in Western countries, but is 
more common in Eastern Asia (47)

During the acute phase of GBS, auto-antibodies with specificity for gangliosides are 
frequently detected in patient serum (48, 49). These antibodies can bind to ganglioside 
structures present on human peripheral nerves (45, 50). Electrophysiological and his-
tological studies have revealed demyelination or axonal degradation of the peripheral 
nerves in patients (51-53). The mechanism by which auto-antibodies elicit nerve dam-
age is presumably as follows: antibody binding to gangliosides on the peripheral nerves 
leads to activation of the complement system. For example, in fatal cases of GBS and in 
animal models, C3b complement deposition was detected on myelin membranes (in 
case of AIDP) and nodes of Ranvier (in case of AMAN) (Fig. 4) (54-56). As a consequence 

myelin producing 
Schwann cell

axon

ganglioside 

node of Ranvier

Figure 3. Schematic representation of a peripheral nerve. A peripheral nerve is composed of an axon 
which is surrounded by myelin producing Schwann cells. Gangliosides are imbedded in the outer 
membrane of both, the axon and the Schwann cells. Nodes of Ranvier are periodic gaps between myelin 
sheaths.
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of C3b deposition, further activation of the complement cascade occurs, resulting in 
generation of the complement membrane attack complex (MAC, C5b-9). MAC deposits 
can be detected on Schwann cell membranes in nerve biopsies of patients with acute 
AIDP (56, 57), and the formation of these deposits has been reported to precede myelin 
degradation (58). Additionally, studies using ex vivo animal models demonstrated that 
accumulation of MAC on axons results in nerve disruption and nerve injury, by distur-
bance of the membrane potential which is crucial for fluent nerve conduction (59). 
Macrophages also seem to be involved. Histopathological characterization of nerve 
tissue from patients with GBS has revealed the presence of macrophages (52), which 
appear within days after the onset of nerve dysfunction (56). However, it is unclear what 
the role of these macrophages is. Possibly, macrophages recruited upon complement 
activation may cause further damage to the nerves. Alternatively, the macrophages may 

complement

C3b

complement

C3b

macrophage macrophage

AMAN AIDP

antibodies

MAC MAC

node of Ranvier myelin producing 
Schwann cell

(a)
antibodies

Figure 4. Mechanisms of nerve damage in AMAN and AIDP. In AMAN (left panel), cross-reactive anti-
ganglioside antibodies bind to gangliosides in the nodes of Ranvier; whereas in AIDP (right panel), 
gangliosides in the membrane of Schwann cells are targeted. Antibody binding leads to activation of the 
classical complement pathway, resulting in insertion of the membrane attack complex (MAC). This causes 
axonal damage in AMAN patients and disruption of myelin in patients with AIDP. Macrophages either 
cause further damage or are involved in the clearance of damaged tissue fragments. (a) The role of anti-
ganglioside antibodies in AIDP is less firmly established than in AMAN. 
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be involved in the scavenging and clearance of neural tissue fragments which have been 
disrupted by the complement MAC. 

The role of anti-ganglioside antibodies in AIDP, the demyelinating form of GBS, is cur-
rently debated. A recent study proposes that anti-ganglioside antibodies only play a role 
in AMAN and that AMAN patients may have been erroneously classified as AIDP (60). 

Antecedent infection and molecular mimicry

GBS is frequently preceded by a microbial infection, one to three weeks prior to the on-
set of disease. Serological studies have demonstrated that 30-40% of patients with GBS 
had been recently infected with C. jejuni (61). Although less frequent, other pathogens 
such as cytomegalovirus, Epstein-Barr virus, Mycoplasma pneumoniae and Haemophilus 
influenzae are also associated with GBS (61, 62). In about half of the patients, no prior 
infection is detected. Unidentified triggers, such as asymptomatic bacterial of viral infec-
tions, may be involved in the onset of disease in these patients. 

The structural similarity (molecular mimicry) between sialylated carbohydrate struc-
tures expressed by microbes and ganglioside structures present in human peripheral 
nerves plays an important role in the development of GBS (63-65). During infection, an 
antibody response directed to microbial antigens is induced. For C. jejuni and Haemophi-
lus influenzae in particular, it has been established that due to the structural similarity of 
bacterial antigens and self-antigens (gangliosides), cross-reactive auto-antibodies can 
be formed (66, 67). These antibodies not only target the microbe but, in rare cases, also 
the neural tissue of the host. Predominantly, the gangliosides GM1, GM1b, GD1a and 
GalNAc-GD1a and ganglioside complexes are targeted (68-70). This leads to comple-
ment-mediated tissue destruction, as mentioned above. In C. jejuni and Haemophilus 
influenzae, ganglioside mimicry can be found within the LOS expressed on the bacterial 
surface (71, 72). A clear causal relationship between other GBS-associated microbes and 
the onset of GBS has not yet been established but molecular mimicry may play a role. 
Cytomegalovirus does not express ganglioside mimics, but induces ganglioside GM2 
expression on cytomegalovirus-infected fibroblasts (73). Anti-GM2 antibodies found in 
CMV-infected patients with GBS are hypothesized to be induced by the CMV infection 
(73). Anti-ganglioside antibodies have also been detected in patients with GBS who 
had a recent infection with Epstein-Barr virus or Mycoplasma pneumoniae. It has been 
speculated that these microbes can also express ganglioside mimics, or that they induce 
the expression of ganglioside-like structures on host cells (62, 74).

Campylobacter jejuni lipooligosaccharide and molecular mimicry

C. jejuni LOS is composed of two covalently linked domains: lipid A, a hydrophobic mem-
brane anchor; and a surface exposed, non-repeating core oligosaccharide, consisting 
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of an inner and outer core region. Only the outer core region of the LOS can contain 
epitopes that mimic nerve gangliosides (Fig. 5). 

The C. jejuni genes involved in ganglioside mimicry are located within the LOS biosyn-
thesis locus, a genetically highly-diverse gene cluster that is interchangeable between 
strains (75, 76). Genetic diversity has led to the formation of several LOS genotypes (LOS 
locus classes). Thus far, 19 distinct  LOS locus classes, A through S, have been identi-
fied (27). Genes involved in the production of ganglioside mimics are only present in 
LOS classes A, B, C, M and R (27). In particular, the genes responsible for the synthesis, 
modification and transfer of sialic acid, found in the A, B, C, M and R LOS classes, are 
necessary for the production of ganglioside mimics, and are crucial for the induction 
of anti-ganglioside antibodies and hence GBS (77). Gene alterations, mutations and 
other mechanisms such as phase variation within these LOS classes (A, B, C, M and R) all 
contribute to structural variations in the ganglioside mimics produced (76). 

Comparative genotyping has demonstrated that C. jejuni strains with LOS class A (Fig. 
6) are associated with the development of GBS (77, 78), and strains with LOS class B are 
associated with the development of MFS (77, 78). 

The C. jejuni sialyltransferase Cst-II, sialylates the LOS, and consequently determines 
the expression of ganglioside-mimicking LOS structures. Intriguingly, variability in 
cst-II can be detected in the C. jejuni strains isolated from GBS and MFS patients, and 
is highly associated with the clinical phenotype of the subsequent disease. Due to poly-
morphisms in the gene sequence, C. jejuni Cst-II can either be mono-functional (Thr51), 

Ganglioside mimic (GM1a)
     

Outer core              Inner core                               Lipid A Oligosaccharide                        Ceramide

Oligosaccharide

A. B.

galactose,         N-acetyl-galactosamine,        sialic acid,         heptose,         glucose,          3-deoxy-D-manno-octulosonic acid (Kdo),
phosphate or phosphoethanolamine,         glucosamine                 

Figure 5. Ganglioside mimicry. A subset of C. jejuni strains express LOS that contain epitopes which 
mimic gangliosides. A. Schematic representation of an LOS structure that contains a ganglioside 
mimic. Ganglioside mimicry occurs in the outer oligosaccharide core and is indicated here as GM1a. 
The inner and outer cores are surface-exposed. Lipid A is embedded in the outer cell wall layer of C. 
jejuni. B. Schematic representation of a ganglioside (GM1a). Gangliosides are glycosphingolipids with an 
extracellular sialylated oligosaccharide chain and a ceramide tail that is embedded in the outer leaflet of 
the plasma membrane. Gangliosides are predominantly found in nerve cell membranes but are present in 
membranes of other cell types as well. 

A. 	 B.
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with α(2,3)-sialyltransferase activity, or bi-functional (Asn51) with both α(2,3)- and 
α(2,8)-sialyltransferase activities (76). There is a connection between the functionality of 
Cst-II and the syndrome  that develops after C. jejuni infection (79). Strains with mono-
functional Cst-II express monosialylated LOS structures that mimic, for example, the 
gangliosides GM1a, GM1b, GM2 and GD1a present on peripheral nerves (Fig. 7). Mono-
sialylated C. jejuni strains are predominantly isolated from the stools of GBS patients, and 
in agreement with this observation, antibodies against monosialylated structures are 
frequently detected in the serum of patients with GBS (77, 80). Bi-functional Cst-II leads 

1        2             3               4              5            6       7          8          9     10  11    12  13

cst-II

Gene Annotation Function
1 Cj1133, waaC Heptosyltransferase I
2 Cj1134, htrB Lipid A biosynthesis acyltransferase
3 Cj1135 1,4-Glucosyltransferase
4 Cj1136 1,3-Galactosyltransferase
5 cgtA N-Acetylgalactosaminyltransferase
6 Cj1139, wlaN, cgtB 1,3-Galactosyltransferase 
7 Cj1140, cstII 2,3- or 2,3-/2,8-sialyltransferase
8 Cj1141, neuB1 Sialic acid synthase
9 Cj1142, neuC1  N-Acetylglucosamine-6-phosphate 2-epimerase
10 neuA1 CMP-Neu5Ac synthetase
11 orf 11, SOAT Sialate-O-acetyltransferase
12 Cj1146, waaV Glycosyltransferase
13 Cj1148, waaF Heptosyltransferase II

Ganglioside mimic (GM1a)
     

Figure 6.  C. jejuni genes involved in the production of ganglioside mimics. Schematic representation of 
genes present in an LOS class A biosynthesis locus, together with an LOS structure and gene annotation 
and gene function of genes present in a class A biosynthesis locus. LOS class A is associated with GBS 
and contains the genes necessary for the production of the ganglioside mimic GM1a. Other ganglioside 
mimics including GM3-, GM2-, GD3-, GD1a- and GD1c- mimics can also be produced with a class A LOS 
biosynthesis locus. Color coding is used to represent gene functionality for LOS production. Genes 
7-11 (yellow) are involved in sialic acid biosynthesis and transfer. A ganglioside mimic is only produced 
when sialic acid is present in the LOS outer core. Mutation of gene 7 (cst-II), which encodes a sialic acid 
transferase, leads to an LOS structure without sialic acid. Cst-II knockout mutants were used in chapters 
3-6. 
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to the production of disialylated gangliosides-mimicking structures, including GD2-, 
GD3-, GD1c- and GT1a-mimics, which share a structural resemblance with epitopes on 
ganglioside GQ1b (Fig. 7). The presence of anti-GQ1b antibodies is associated with GBS 
variants characterized by oculomotor weakness, including MFS (79, 81, 82). Interest-
ingly, ganglioside GQ1b is highly enriched in the human cranial nerves innervating the 
eye muscles which are affected in MFS, explaining the vulnerability of these structures 
to anti-GQ1b antibodies (83). 

GD3

GD2

GD1c

GT1a

GQ1b 

Cer
α2,3

α2,8

GM2

GM1a

GM1b

GD1a

α2,3
Cer

α2,3
Cer

2,3 α2,3
Cer

α

Cer
α2,3

2,8α

α 2,3
Cer 2,3

α2,8

α
Cer

α2,3 α2,3

α2,8

Cer

α2,3 α2,3

α2,8 α2,8

Cer

galactose,        N-acetyl-galactosamine,        glucose,        sialic acid,  Cer ceramide  

GalNAc -GD1a

2,3 α2,3
Cer

α

Figure 7. Mono- and disialylated ganglioside structures. Schematic illustration of the ganglioside 
structures relevant for this thesis. These ganglioside structures can be mimicked by the C. jejuni outer core 
LOS, except for GQ1b. However, instead of a ceramide-bound glucose which is present in gangliosides, 
the C. jejuni LOS contains a heptose, followed by an inner sugar core. C. jejuni LOS also has a lipid A 
transmembrane tail instead of a ceramide tail. Monosialylated structures with α(2,3)-linked sialic acid 
residues are represented in the left panel, Disialylated structures with α(2,3/2,8)-linked sialic acid residues 
are represented in the right panel.
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Immune activation leading to GBS

The induction of an antibody response to sialylated LOS is a crucial step in the patho-
genesis of GBS. It is largely unknown how these carbohydrate structures are recognized 
and presented by the host immune system, or how the immune system is activated to 
produce cross-reactive anti-ganglioside antibodies. In order to determine which cells 
and receptors might play a role in immune activation, the primary focus lies on immune 
cells which C. jejuni initially encounters during its passage through the intestinal mucosa. 

Bacteria can cross the intestinal epithelial barrier in at least three ways (Fig. 8). First, 
some pathogens have the capacity to invade the epithelium and gain access to the sub-
epithelial lamina propria. Second, bacteria can invade CX3CR1+ antigen presenting cells 
that can extend their dendrites in between epithelial cells after dislodging tight junc-
tions (84, 85). Third, bacteria can be taken up via specialized epithelial microfold cells 
(M-cells) (86). M-cells are equipped with a large variety in pattern recognition receptors 
(PRRs) and are located on top of Peyer’s patches, a mucosa associated lymphoid tissue in 
which adaptive immune responses are mounted. 

Residential macrophages and dendritic cells, situated beneath the intestinal epithe-
lium, come into contact with C. jejuni once the bacterium has passed through the in-
testinal epithelium. Macrophages sense and kill invading bacteria, whereas sensing of 
bacterial fragments by dendritic cells induces activation of signaling pathways resulting 
in cytokine and chemokine production. CD103+ dendritic cells have the capacity to 

lumen

mucus 
layer

intestinal 
epithelium

lamina 
propriaPeyers patch 

apoptotic epithelial cell,         CX3CR1+ antigen presenting cell,         M-cell

(a)

(b)

(c)

1                                               2                                        3

Figure 8. Potential mechanisms by which C. jejuni crosses the intestinal epithelium. 
C. jejuni could cross the intestinal epithelium; (1) by invasion of intestinal epithelium cells through (a) cell-
invasion, (b) cell-damaging or (c) disruption of tight junctions between epithelial cells; (2) by invasion of 
CX3CR1+ antigen presenting cells; (3) by invasion of specialized epithelial M-cells (microfold cells) 
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migrate to the intestine draining lymph nodes where they can present antigens to naïve 
T cells and induce T cell differentiation (87).

The immune receptors involved in the binding of sialylated C. jejuni LOS are likely to 
contribute to the immune-events leading to anti-ganglioside antibody formation. In this 
regard, the sialic acid-binding immunoglobulin-like (Siglec) family is an interesting fam-
ily of receptors. Siglecs are expressed on the surface of immune cells and are involved 
in cell-to-cell communication, immune signaling and the binding of pathogens (88). 
Each Siglec contains an N-terminal ‘V-set’ Ig domain which binds sialic acid-containing 
ligands (Fig. 9). A variable number (1-16) of ‘C-set’ Ig domains extend the ligand binding 

Name(s) A�nity Expression

Siglec-16

Siglec-14 monocytes, granulocytes

Siglec-11 α2,3/α2,8 NeuAc macrophages, microglia

Siglec-10 B cells, NK cells, monocytes, 
eosinophils 

Siglec-9
CD329

α2,3 Neu5Ac
α2,6 Neu5Ac/Neu5Gc

NK cells, monocytes, 
neutrophils, B cells, T cells 

Siglec-8 α2,3 Neu5Ac-Gal-S
α2,6 Neu5Ac/Neu5Gc

eosinophils, basophils

Siglec-7
CD328

α2,8 Neu5Ac
α2,3 Neu5Ac-GalNAc-S

NK cells, monocytes, 
dendritic cells, T cells 

Siglec-6
CD327

α2,6 Neu5Ac (low) placenta, B cells

Siglec-5
CD170

 α2,3/α2,6/α2,8 Neu5Ac monocytes, macrophages, 
neutrophils, B cells

Siglec-3 α2,6 Neu5Ac-GalNAc monocytes, myeloid 
progenitors

MAG
Siglec-4            

α2,3 Neu5Ac Schwann cells, 
oligodendrocytes 

CD22
Siglec-2                    

α2,6 Neu5Ac
α2,6 Neu5Gc

B cells 

Sialoadhesin
Siglec-1, CD169

α2,3 Neu5Ac macrophages

CD
33
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+

+

+

macrophages, microglia

sialic acid binding ‘C-set’ domain,            ‘V-set’ Ig domain,       immunoreceptor tyrosine-based inhibitory motif (ITIM),
ITIM-like motif,       FYN kinase phosphorylation site,        positively charged membrane region,       
immunoreceptor tyrosine-based activation motif (ITAM),       Grb2 binding motif                   

α2,6 Neu5Gc
α2,3/α2,6 NeuAc

Siglec-15 α2,6 Neu5Ac-GalNAc macrophages, dendritic cells

α2,3/α2,6/α2,8 Neu5Ac

α2,3/α2,8 NeuAc

+

Figure 9. Human Siglecs. Sialic acid-binding immunoglobulin like-lectins (Siglecs) contain a sialic acid 
binding ‘C-set’ Ig domain and a variable number of ‘V-set’Ig domains. Each Siglec has a distinct specificity 
for binding to sialylated ligands. Siglecs are predominantly expressed on immune cells but have also been 
detected on other cell types including Schwann cells and oligodendrocytes. Sialoadhesin, MAG (myelin-
associated glycoprotein, Siglec-4) and Siglec-15 do not contain intracellular signaling motifs. CD22 and 
most CD33-related Siglecs have immunoreceptor tyrosine-based inhibitor motifs (ITIM) and ITIM-like 
motifs in their cytoplasmic tail. Siglec-14, -15 and -16 contain a positively-charged trans-membrane 
spanning region. This positive charge mediates the association with DAP12, an adaptor protein which 
bears an immunoreceptor tyrosine-based activation motif (ITAM). A FYN kinase phosphorylation site is 
present on MAG. CD22 and Siglec-10 contain Grb2 binding motifs. Neu5Ac, N-acetylneuraminic acid; 
Neu5Gc, N-glycolylneuraminic acid; Gal, Galactose, GlcNAc, N-acetylglucosamine; S, Sulphate.
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site away from the membrane surface (89). A subgroup of the Siglec family, serve as 
regulators of the immune system through tyrosine-based signaling motifs located in 
their cytoplasmic tail (90, 91). The cytoplasmic tails of sialoadhesin (Siglec-1, Sn) and 
MAG (myelin-associated glycoprotein, Siglec-4) lack tyrosine-based signaling motifs.

Each Siglec displays distinct specificity for recognition of particular sialylated ligands. 
Siglec-7, expressed on NK cells, monocytes, dendritic cells and T cells, binds to sialylated 
C. jejuni strains (88). Specific recognition of sialylated LOS versus sialylated LOS by the 
host immune system can be considered as a crucial step in anti-ganglioside antibody 
formation. Binding of Siglec-7 to C. jejuni may therefore be an initial immune event that 
contributes to the eventual development of GBS. Hence, therefore it is important to 
determine whether GBS-associated C. jejuni strains specifically bind to Siglec-7 or other 
members of the Siglec family, and what the consequences of this binding are for the 
infection and pathogenicity of C. jejuni.

Besides immune recognition, immune activation is another pivotal step in antibody 
formation. Pattern recognition receptors expressed on dendritic cells and macrophages 
are committed to sense pathogens in their immediate environment. Toll-like receptors 
(TLRs) are responsible for the induction of cytokine production upon sensing of microbial 
structures. A recent study demonstrated that sialylation of LOS elicits increased cytokine 
production by dendritic cells via activation of TLR4, leading to enhanced B cell prolifera-
tion (92). TLR4 recognizes the lipid A part of LOS, suggesting that co-receptors, including 
Siglecs, may be involved in sialic acid-mediated enhancement of the TLR4 response.

It is unclear how sialylated LOS are presented to B cells, in which anatomical com-
partments B cells are activated and whether T cell help is involved. Anti-ganglioside 
antibodies detected in patients with C. jejuni-associated GBS are mainly of the IgA and 
IgG isotypes (93, 94). IgA antibodies are probably produced by plasma B cells in Peyer’s 
patches whereas IgG antibodies either originate from activated B cells in mesenteric 
lymph nodes or, in case bacteria or bacterial epitopes reach the bloodstream, activated 
B cells in the marginal zone of the spleen. The IgG anti-ganglioside antibodies predomi-
nantly belong to the IgG1 and IgG3 subclasses, which is suggestive of T cell dependent 
responses (95, 96). Currently, it is not established whether a T cell response contributes 
to the development of anti-ganglioside antibodies.

CD1 glycoproteins, expressed on antigen-presenting cells, are involved in the presenta-
tion of microbial glycolipids to T cells (97) and might play a role in the induction of anti-gly-
colipid antibodies, including anti-ganglioside antibodies. GM1-like LOS specifically bind to 
purified mouse and human CD1d (98). Immunization studies in mice have demonstrated, 
however, that anti-ganglioside antibodies of IgG1 and IgG3 subclasses are produced in 
the absence of CD1d (in GalNAcT-/- CD1d-/- mice), indicating a CD1d-independent pathway 
for anti-ganglioside antibody production (98). Further studies are required to determine 
whether T cells are involved in the anti-ganglioside antibody response.
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Treatment of GBS

Treatment of patients with GBS either consists of administration of high concentrations 
of immunoglobulins (IVIg) or plasma exchange (plasmapheresis). These treatment 
modalities are combined with supportive care, including mechanical ventilation when 
required. In both treatment modalities, the immune response of the patient is targeted. 
The precise mechanism of action of IVIg has not been definitively established yet, but 
IVIg is proposed to have pleitropic immune modulatory effects. It is thought that the IVIg 
interacts with the Fc receptors on immune cells, leading to anti-inflammatory effects 
that reduce the severity of the immune response. Anti-cytokine antibodies in IVIg inhibit 
cytokine function whereas complexes of IVIg inhibit components of the complement 
system (99). In vitro, pre-incubation of complement containing serum with IVIg resulted 
in reduced C3b deposition on ELISA plate wells coated with GM1, compared to non-
pretreated complement containing serum (100). Another hypothesis is that the high 
concentration of IgG in IVIg accelerates the clearance of IgG, including the clearance of 
the pathogenic anti-ganglioside antibodies (101).

During plasmapheresis, plasma, including auto-antibodies, complement components 
and cytokines is removed from the patient’s blood. Only the blood cells are returned to 
the blood circulation, diluted with either fresh donor plasma or a plasma substitute. The 
outcome of treatment with plasmapheresis is equivalent to IVIg; however, IVIg is the 
preferred method as it is better tolerated, associated with fewer complications and easy 
to administer (102). In many developing countries, IVIg is not a treatment option due 
to the high costs. As access to a plasmapheresis centers is not always available, many 
patients in developing countries only receive supportive care.

Alternative, preferably low-cost and more specific therapeutic interventions for GBS 
are highly desirable. Novel strategies to block GBS-specific immune responses, or treat-
ments that result in faster clearance of pathogenic antibodies could lead to less severe 
neurological damage and faster patient recovery.

Aims and outline of this thesis

The aim of the work described in this thesis was to identify interactions between C. 
jejuni and the human host which contribute to the development of GBS. In particular, 
we focused on the role of sialylated LOS of C. jejuni. 

In Chapter 2, LOS class typing and LOS allele typing was performed on a large col-
lection of GBS/MFS-associated C. jejuni strains, in order to further investigate the role 
of LOS sialylation in the development of GBS. Furthermore, PCR-based genotyping was 
performed to assess whether other genes involved in virulence of C. jejuni are associated 
with the development of GBS. In Chapter 3, the role of LOS sialylation in C. jejuni adhe-
sion to and invasion of the intestinal epithelial cell line Caco-2 was determined. Invasion 
of the intestinal epithelium may lead to increased exposure of C. jejuni to the subepithe-
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lial immune system, and therefore may contribute to post-infectious GBS. In Chapter 
4, the interaction of C. jejuni with mouse sialoadhesin (Siglec-1) was characterized. Si-
aloadhesin is expressed by a subset of macrophages, which are present in the intestine, 
mesenteric lymph nodes and the spleen. Sialoadhesin binds to gangliosides with α(2,3)-
linked sialic acid residues. Similar residues are present on LOS of GBS-associated C. jejuni 
strains. In Chapter 5, the binding of human sialoadhesin to C. jejuni was assessed. Using 
human macrophages, the functional consequences of sialoadhesin binding on bacterial 
uptake, bacterial survival and macrophage activation were determined. In Chapter 6, 
we determined the epitope specificity of C. jejuni for Siglec-7 binding. The Siglec-7 bind-
ing property was correlated with serological and diagnostic records from patients with 
GBS and MFS. In Chapter 7, we assessed whether synthetic gangliosides coupled to a 
monomeric matrix can be used to selectively deplete anti-ganglioside antibodies from 
patient serum. Fast and specific depletion of pathogenic anti-ganglioside antibodies 
may reduce the severity of neurological damage inflicted by these antibodies in patients 
with GBS. Chapter 8 contains a general discussion including future perspectives. 
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Abstract 

Campylobacter jejuni is a frequent cause of bacterial gastroenteritis worldwide. Lipooli-
gosaccharide (LOS) has been identified as an important virulence factor that may play 
a role in microbial adhesion and invasion. Here we specifically address the question of 
whether LOS sialylation affects the interaction of C. jejuni with human epithelial cells. For 
this purpose, 14 strains associated with Guillain-Barré syndrome (GBS), 34 enteritis-asso-
ciated strains, the 81-176 reference strain, and 6 Penner serotype strains were tested for 
invasion of two epithelial cell lines. C. jejuni strains expressing sialylated LOS (classes A, B, 
and C) invaded cells significantly more frequently than strains expressing nonsialylated 
LOS (classes D and E) (P < 0.0001). To further explore this observation, we inactivated the 
LOS sialyltransferase (Cst-II) via knockout mutagenesis in three GBS-associated C. jejuni 
strains expressing sialylated LOS (GB2, GB11, and GB19). All knockout strains displayed 
significantly lower levels of invasion than the respective wild-types. Complementation 
of a Δcst-II mutant strain restored LOS sialylation and reset the invasiveness to wild-type 
levels. Finally, formalin-fixed wild-type strains GB2, GB11 and GB19, but not the isogenic 
Δcst-II mutants that lack sialic acid, were able to inhibit epithelial invasion by viable GB2, 
GB11, and GB19 strains. We conclude that sialylation of the LOS outer core contributes 
significantly to epithelial invasion by C. jejuni and may thus play a role in subsequent 
postinfectious pathologies.
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Introduction

Campylobacter jejuni is recognized as a leading cause of bacterial gastroenteritis world-
wide. Poorly handled or improperly cooked poultry meat, raw milk, pets and untreated 
water are thought to be sources of infection (1). The disease spectrum caused by C. jejuni 
ranges from asymptomatic infection to severe inflammatory bloody diarrhea (2). Further-
more, C. jejuni infection has been associated with the development of post-infectious 
complications such as the Guillain Barré Syndrome (GBS) (3). The apparent variation in 
gastro-intestinal disease outcome is likely to be affected by the expression of virulence 
factors that are associated with specific pathogenic mechanisms, e.g. C. jejuni motility 
(4), attachment (5) and invasion (6-8). Motility and chemotaxis appear to be necessary 
for epithelial adherence of C. jejuni, whereas the expression of functional flagella may 
determine the capacities for C. jejuni to invade the epithelium and to effectively colonize 
the mouse intestine (7, 9-11). 

Next to the role of flagella in the regulation of C. jejuni invasiveness, lipooligosaccha-
ride (LOS) structures have been generally implicated in microbial invasion (12-18). To 
date, eight major and distinctive LOS biosynthesis gene clusters, here referred to as LOS 
classes, have been described for C. jejuni (19), and this number continues to increase 
(Parker et. al., submitted). Sequencing and microarray analysis of the LOS biosynthesis 
gene locus of the C. jejuni genomes have also revealed this locus to be highly variable 
(20, 21), which may contribute to the variation in C. jejuni associated pathologies. 

A subgroup of C. jejuni strains that express the LOS class A, B or C gene locus, harbor 
genes involved in sialic acid biosynthesis and are therefore able to synthesize sialylated 
LOS (20, 22-24). The cst-II gene encodes for a sialyltransferase (25), that is necessary 
for the transfer of sialic acid onto the LOS core in C. jejuni class A and B strains. Class 
C C. jejuni strains depend on the gene cst-III for LOS sialylation. Hence, only C. jejuni 
strains expressing LOS classes A, B or C are capable of LOS sialylation. Previously, we 
have shown that the presence and expression of the cst-II gene is specifically associated 
with GBS and required for the induction of anti-ganglioside antibody responses which 
is the hall-mark of this post-infectious complication (22, 26). Based on this prior work, 
we hypothesized that LOS sialylation (and consequently C. jejuni LOS subclasses) may be 
involved in C. jejuni invasiveness.

Therefore, a panel of 48 human isolates and 7 human control strains were assessed 
for invasiveness into two human epithelial carcinoma cell lines (Caco-2 and T84). To 
specifically explore the role of sialylation, we generated three GBS-associated sialyl-
transferase (Cst-II) knock-out C. jejuni strains (GB2Δcst-II, GB11Δcst-II and GB19Δcst-II). 
These GB2Δcst-II, GB11Δcst-II and GB19Δcst-II mutants were tested for their ability to 
adhere and invade Caco-2 cells. Finally, we tested if complementation of the Δcst-II 
mutant would restore the invasion associated function of this gene-product. 
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Materials and Methods

Bacterial strains
Fourteen GBS- and 34 enteritis-associated C. jejuni strains, isolated from Dutch patients, 
6 Penner serotype strains and the 81-176 enteritis reference strain, were used in this 
study (see Table 1). To minimize in vitro passages, C. jejuni strains were recovered from 
the original patient-isolated glycerol stock by culturing on Butzler agar plates (Becton 
Dickinson, Breda, The Netherlands). A second passage was allowed for optimal vitality 
before using these strains in experiments. After recovery cells were harvested in Hanks 
Balanced Salt Solution (HBSS) (Life Technology, Breda, The Netherlands) and densities 
were adjusted according to the optical density at 600 nm (OD600).

Typing of the LOS biosynthesis gene cluster
 To determine the class of LOS locus present in each C. jejuni strain, genomic DNA was 
isolated using the DNeasy Tissue kit (Qiagen, Venlo, The Netherlands). PCR analysis was 
done with primer sets specific for the classes A, B, C, D and E as previously described 
(22). PCR assays were performed in a Perkin Elmer GeneAmp PCR System 9700 (Applied 
Biosystems, Nieuwerkerk aan de IJssel, The Netherlands), applying 35 cycles of 1 min 
94oC, 1 min 52oC, 2 min 72oC. 

Knockout mutagenesis
Strains GB2, GB11 and their Δcst-II mutants, GB2Dcst-II and GB11Dcst-II, respectively, 
have been described before (22). A Δcst-II mutant of a third GBS-related strain that is 
described here, GB19, was generated using the same procedure used for the knock-out 
mutagenesis in strains GB2 and GB11 (22). Briefly, the target gene (cst-II) and approxi-
mately 700 bp of upstream and downstream flanking sequences were amplified and 
cloned into the pGem-Teasy vector (Promega Corp, Leiden, The Netherlands). Inverse 
PCR was used to introduce a BamHI restriction site and a deletion of approximately 
800bp in the target gene. Inverse PCR products were digested with BamHI (Fermentas, 
St. Leon-Rot, Germany) and ligated to the BamHI digested chloramphenicol resistance 
(Cmr) cassette. Constructs were electroporated into electrocompetent GB19 C. jejuni cells 
and recombinants were selected on Mueller-Hinton plates (Becton Dickinson, Breda, 
The Netherlands) containing 20mg/ml chloramphenicol (Difco, Alphen aan den Rijn, The 
Netherlands).

Mass spectrometry
Samples were prepared for LOS mass-spectrometric analysis by overnight growth of C. 
jejuni strains at 37oC on Butzler agar plates in a micro-aerobic atmosphere. Material from 
one confluent agar plate in a micro-aerobic atmosphere was harvested and treated with 
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proteinase K at 60 µg/ml, RNase A at 200 µg/ml, and DNase I at 100 µg/ml (Promega, 
Leiden, The Netherlands). O-deacylated LOS samples were prepared and analyzed by 
capillary electrophoresis coupled to electro-spray ionization mass spectrometry (CE-ESI-
MS) (27).

Complementation of the cst-II gene
We used site specific homologous recombination to restore the wild-type phenotype of 
the GB11Dcst-II mutant strain (manuscript in preparation). In short, a construct contain-
ing the cst-II gene together with its promoter region and a gene encoding erythromycin 
resistance were cloned in the same orientation and were transformed by electroporation 
into electrocompetent GB11Dcst-II mutant cells. The electroporated cells were plated on 
selective blood agar plates containing 10mg/ml erythromycin (Sigma Aldrich, Zwijndre-
cht, The Netherlands) and incubated at 42°C in a micro-aerobic environment. Colonies 
formed were sub-cultured to purity and stored at -80°C until further use.

SDS-PAGE and Western blot assay 
To analyze C. jejuni LOS sialylation, a 10% SDS-PAGE gel was run. Strains were harvested 
from an overnight Butzler agar plate, whereafter concentrations were equalized by 
OD 600 nm measurement. Bacterial cell suspensions were lysed using glass beads (MP 
Biomedicals, Solon, OH, USA). Lysates were digested with proteinase K at 60 µg/ml for 
4 h at 56 °C and equal amounts were run on a 10% SDS-PAGE Tris-HCl gel for 2 h. As a 
marker the pre-stained SDS-PAGE standards broad range molecular weighted was used 
(Bio-Rad, Nazareth Eke, Belgium). After electrophoresis, the LOS was transferred to a ni-
trocellulose membrane (Amersham Biosciences, Piscataway, NJ, USA) for a Western-blot 
assay. The nitrocellulose membrane was blocked overnight with 0.05% (v/v) Tween-20 
(Sigma-Aldrich, Zwijndrecht, The Netherlands) and 5% (W/V) nonfat milk (Bio-Rad, 
Nazareth Eke, Belgium). The next day the membranes were washed three times for 10 
minutes with PBS and incubated with horse radish peroxidase (HRP) labeled cholera 
toxin (Sigma-Aldrich, Zwijndrecht, The Netherlands) in 1% blocking buffer as a detection 
agent. Presence or absence of sialylated LOS was visualized with an ECL detection kit 
(Biocompare, San Francisco, USA) and a Kodak photo film (Roche-Diagnostics, Almere, 
The Netherlands) according to the manufacturer’s protocol.

Bacterial growth assay
Bacterial growth characteristics of the clinical isolates and their corresponding mutants 
were determined in Mueller-Hinton broth (Becton Dickinson, Breda, The Netherlands) 
and in a specific antibiotic-free cell culture medium, which is used in the gentamicin 
exclusion assay. Bacterial strains were inoculated at equal OD at 600 nm, equivalent to 
5.0 x 104 CFU/ml, and incubated at 37°C, while gently shaking in a micro-aerobic envi-
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ronment. Bacterial cell counts and OD 600 nm were determined at 4, 8, 18, 24, 36 and 42 
h post-inoculation, respectively.

Intestinal epithelial cell line
 Human intestinal epithelial Caco-2 and T84 cells were maintained in Dulbecco’s Modi-
fied Eagle’s Medium (DMEM) (Invitrogen, Breda, The Netherlands) supplemented with 
10% fetal bovine serum (FBS) (Invitrogen, Breda, The Netherlands) and 1% non-essential 
amino acids (NEAA) (Invitrogen, Breda, The Netherlands). The cells were routinely grown 
in a 75-cm2 flask (Greiner Bio-one, Alphen a/d Rijn, The Netherlands) at 37°C in a humidi-
fied 5% CO2-95% air incubator. Confluent stock cultures were washed with PBS (Invitro-
gen, Breda, The Netherlands), trypsinized with trypsin-EDTA (Lonza, Verviers, Belgium) 
and 5.0 x105 cells were seeded in a new 75-cm2 flask.

Adhesion and invasion
Adherence and invasion of C. jejuni was determined by growing the intestinal epithelial 
cells (Caco-2 or T84) to confluence for 48 h at a final approximate density of 5.0 x106 
cells per well (Greiner Bio-one, Alphen a/d Rijn, The Netherlands), without allowing 
them to differentiate in the case of Caco-2 cells. The adherence and invasion assays were 
performed by incubating the epithelial cells with C. jejuni at a ratio of 1:100. Bacteria and 
epithelial cells were coincubated for 2 h at 37 °C in a 5% CO2 and 95% air atmosphere 
to assess adherence. For invasion, a subsequent 2 h of incubation of the epithelial cells 
was allowed. After incubation, monolayers were washed 3 times with pre-warmed 
PBS. To kill extra-cellular bacteria, monolayers were treated for 3 h with a bactericidal 
concentration of gentamicin (480 µg/ml) (Sigma-Aldrich, Zwijndrecht, The Netherlands) 
in DMEM medium containing 10% FBS and 1% NEAA as described previously (7). For all 
strains, sensitivity to this concentration of gentamicin was confirmed. After washing, 
epithelial cells were lysed with 0.1% Triton X-100 (Cornell, Philadelphia, PA, USA) in PBS 
for 15 minutes at room temperature. The number of invaded C. jejuni was determined by 
plating serial dilutions of the lysis mix onto freshly prepared blood agar plates. After in-
cubation for 24 to 36 h at 37 °C in a micro-aerobic environment, colonies were counted. 
The percentage of bacteria that invaded was calculated by dividing the number of C. 
jejuni that invaded the cells by the number of C. jejuni inoculated onto the cells times 
100%. For determination of adherence, cells were washed three times extensively with 
PBS and the cell monolayer was lysed with 0.1% Triton X-100 after which serial dilutions 
were plated onto blood agar plates (Becton Dickinson, Breda, The Netherlands). 

Inhibition of invasion
Formalin fixed, wild-type C. jejuni and their ∆cst-II mutants were used to inhibit invasion 
of viable C. jejuni GB2, GB11 and GB19. Briefly, GB2, GB11, GB19 and their ∆cst-II mutants 
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at a starting concentration of 5.0 x109 CFU/ml, determined at OD 600 nm, were fixed in 
3.6% formalin (Sigma-Aldrich, Zwijndrecht, The Netherlands) in PBS for 10 minutes. By 
washing the fixed cells 3 times in PBS the excess of formalin was removed. The sterility 
of the control cultures confirmed fixation to be complete. Caco-2 cells at a density of 
5.0 x104 cells per well were pre-incubated for 30 minutes with formalin-killed wild-type 
or ∆cst-II mutant C. jejuni at a multiplicity of infection (MOI) ranging from 100 to 5000. 
Subsequently, the Caco-2 cells were washed to remove excess dead C. jejuni bacteria 
whereafter fresh medium was added. Viable wild-type cells were added at a MOI of 100 
and invasion was assessed by the gentamicin exclusion protocol as described earlier. 

Statistical analysis
Statistical analysis was performed using Instat software (version 2.05a; Graphpad 
Software, San Diego, CA). Because the invasiveness of strains differed widely, log trans-
formation was used to equalize variances. Invasiveness was expressed as the geometric 
mean number of CFU per milliliter retrieved from the infected cell line in all three to six 
invasion experiments per C. jejuni strain performed. Differences in invasiveness between 
LOS class A, B, and C strains and LOS class D and E strains, and between GBS-associated 
and enteritis-associated strains, were tested for significance with a Mann-Whitney U test, 
since column statistics showed that the Gaussian distribution was unequal for the strains. 
A two-tailed value with P < 0.05 indicated statistical significance. Statistical analysis for 
differences in adherence and invasion between wild-type and knockout mutant strains 
was performed, and differences were tested for significance with a paired t test.

Results

LOS sialylation is associated with increased epithelial cell invasion
We observed a wide range of invasion capacities among the C. jejuni strains (Table 1). 
Categorization of C. jejuni strains into those carrying sialylated (n = 30) and nonsialylated 
(n = 18) LOS established that the sialylated-LOS producers, classes A, B and C, were more 
invasive than the nonsialylated producers, classes D and E (median CFU per milliliter, 
408,300 for classes A, B, and C and 11,190 for classes D and E; P < 0.0001) (Fig. 1A). No-
tably, on average, the GBS-associated strains (n = 14) invaded significantly better than 
the enteritis-associated strains (n = 34) (median CFU per milliliter, 632,700 versus 49,630, 
respectively; P = 0.0046) (Fig. 1B). The invasiveness of the C. jejuni Penner serotype strains 
corresponded with LOS class expression of sialylated or nonsialylated LOS, with the 
exception of the Penner serotype strain O:4. Thus, Penner serotype strain O:4 and also 
an enteritis-associated strain RIVM 15, invaded poorly, despite the presumed expression 
of sialylated LOS due to the presence of a class A or C LOS biosynthesis gene cluster, 
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Table 1. C. jejuni strains and their invasiveness for Caco-2 cells

Strains a LOS locus Invasion % b No. of invading C. jejuni 
per 100 cells 

Ganglioside mimic c Illness 

GB2 A 3.4 ± 0.55 285 - 395 GM1a, GD1a GBS

GB11 A 2.2 ± 0.7 150 - 290 GM1a, GD1a GBS

GB19 A 0.8 ± 0.29 51 - 109 GD1c GBS

GB3 A 0.12 ± 0.046 7 - 16 GM1a, GD1a GBS

GB22 A 0.05 ± 0.026 3 - 7 GM1a, GD1a GBS

GB23 A 1.17 ± 0.14 103 - 131 GM2 GBS

GB29 A 0.73 ± 0.06 67 – 79 GBS

E990521 A 3.0 ± 1.15 185 - 415 Enteritis

E991095 A 1.9 ± 0.81 110 - 271 Enteritis

E9126 A 1.2 ± 0.58 70 - 178 Enteritis

P19 A 4.7 ± 1.4 330 - 610 GM1a, GD1a Enteritis

P10 A 4.23 ± 1.86 237 - 609 GD3 Enteritis

P4 A 0.0054 ± 0.00092 0.44 – 0.63 GM1a, GD1a Enteritis

GB17 B 3.05 ± 1.75 130 – 480 GM1b, GD1c GBS

GB25 B 0.27 ± 0.13 14 - 40 GM1b, GD1c GBS

GB31 B 0.97 ± 0.15 82 – 112 GM1a, GD1a GBS

GB37 B 0.16 ± 0.03 13 – 19 GBS

Rivm 16 B 1.98 ± 0.7 192 – 205 Enteritis

Rivm 38 B 0.037 ± 0.023 1.0 – 6.0 Enteritis

Rivm 129 B 0.084 ± 0.026 5.0 – 11 Enteritis

E989123 B 0.29 ± 0.011 18 – 40 Enteritis

E981033 B 0.26± 0.075 18 - 33 GM1a Enteritis

E98652 B 0.028 ± 0.006 2 - 4 GM1a, GQ1b Enteritis

81176 B 0.26 ± 0.06 20 – 32 GM2, GM3 Enteritis

GB13 C 0.2 ± 0.017 18 - 22 GM1a GBS

GB38 C 1.8 ± 0.77 103 – 257 GBS

Rivm 15 C 0.00075 ± 0.00014 0.061 – 0.089 Enteritis

Rivm 83 C 2.75 ± 1.28 147 – 403 Enteritis

Rivm 93 C 3.5 ±  1.15 235 – 465 Enteritis

Rivm 109 C 1.22 ± 0.44 78 – 166 Enteritis

Rivm 116 C 0.25 ± 0.13 12 – 38 GM1a. GQ1b Enteritis

E98682 C 0.010 ± 0.0036 0.6 – 1.4 GM1a Enteritis

E981087 C 0.13 ± 0.031 10 - 16 GM2 Enteritis

P1 C 0.01 ± 0.001 0.9 – 1.1 GM1b Enteritis

P2 C 0.005 ± 0.0017 0.33 – 0.67 Enteritis

Rivm 3 D 0.005± 0.0012 0.38 – 0.62 Enteritis

Rivm 33 D 0.017 ± 0.0045 1 – 2 Enteritis

Rivm 65 D 0.018 ± 0.0026 1 – 2 Enteritis

Rivm 67 D 0.0097 ± 0.0013 0.5 – 1 Enteritis

Rivm 95 D 0.019 ± 0.003 1 – 2 Enteritis

Rivm 104 D 0.0082 ± 0.0014 0.68 – 0.96 none Enteritis

E98706 D 0.014 ± 0.0025 1.15 – 1.65 Enteritis
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respectively. Strain 81-176 invaded the Caco-2 cell line as well as it did in previous stud-
ies, although most of these invasion studies were performed using a different cell line 
and a shorter incubation period (see Table 1). All Dutch clinical strains that contain LOS 
genes of class A, B or C are thought to express sialylated LOS (22). Characterization of 
the LOS ganglioside mimic structures and determination of the presence or absence 
of sialylation for the GBS strains (GB2, GB3, GB4, GB11, GB13, GB17, GB19, GB22, GB23, 
GB25 and GB31) and enteritis strains (E98-623, 624, 652, 682, 706, 1033 and 1087) were 
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Figure 1. The invasiveness of C. jejuni is dependent on sialylation of the LOS. Scattergrams show the 
invasion of Caco-2 cells by Dutch C. jejuni strains, categorized with respect to the type of LOS that is 
expressed (sialylated LOS of classes A, B, and C [n = 30] versus non-sialylated LOS of classes D and E [n = 
18]) A. or the clinical outcome of infection, i.e., GBS (n = 14) versus uncomplicated gastroenteritis (ENT) 
(n = 34) B. Experiments were performed in triplicate and repeated at least three times. For each strain, 
a geometric mean outcome (number of CFU per millilitre) was calculated. The differences between the 
geometric means of groups of strains were tested with the Mann-Whitney U statistic. The median for each 
group of strains is shown. 

A. B.

E970873 D 0.14 ± 0.02 12 – 16 none Enteritis

GB4 E 0.009 ± 0.003 0.5 – 1 GBS

Rivm 37 E 0.081 ± 0.029 5 – 11 Enteritis

Rivm 46 E 0.0065 ± 0.0027 0.38 – 0.92 Enteritis

Rivm 47 E 0.097 ± 0.028 6 – 12 Enteritis

Rivm 50 E 0.0065 ± 0.00096 0.56 – 0.74 Enteritis

Rivm 61 E 0.011 ± 0.0066 1 – 2 Enteritis

E9141 E 0.074 ± 0.013 5 - 9 Enteritis

E9144 E 0.14 ± 0.03 11 - 17 Enteritis

E9146 E 0.08 ± 0.015 6 - 10 none Enteritis

E98623 E 0.004 ± 0.0015 0.2 – 0.5 none Enteritis

E98624 E 0.003 ± 0.00075 0.23 – 0.4 none Enteritis

P3 E 0.0045 ± 0.0013 0.32 – 0.58 Enteritis

a GB, GBS-associated strain; E, enteritis-related strain; P, Penner serotype strain. Strain 81-176 was used as 
a positive control.
b Data are means ± standard deviations for at least three independent experiments and are calculated as 
the percentage of bacteria that survived the gentamicin treatment.
c The LOS structures showing the ganglioside mimics of 18 strains were elucidated by mass spectrometry 
and immunological methods; for 7 strains, LOS structures were elucidated by immunological methods 
only. Data were not available for the other strains.
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carried out previously by immunological methods (28, 29). These results are shown in 
Table 1.

LOS phenotype characteristics of different C. jejuni strains and Dcst-II mutants
As determined by mass spectrometry analysis, GB19 expressed sialylated LOS in the form 
of ganglioside mimic GD1c (also referred to as GD3, due to the structural similarity to hu-
man GD3). GD1c contains disialic acid bound to the terminal galactose residue. All three 
Δcst-II mutants were chemically defined and found not to express of sialylated LOS. The 
LOS structures of C. jejuni strains GB2, GB11, GB19 and their associated ∆cst-II mutants 
are shown in Fig. 2. For a subset of the strains,  comprising GB3, GB4, GB13, GB17, GB22, 
GB23, GB25 and GB31, ganglioside mimic structures were determined previously by 
mass spectrometry (Table 1) (30). LOS structures of the Penner serotype strains O:1, O:2, 
O:3, O:4, O:10, O:19 and 81-176 (Table 1) have been characterized previously by other 
researchers (15, 31-35). As can be seen by the absence of data for some strains in Table 1, 
mass spectrometry data on LOS structures were not available for all bacteria.

Strain Structure Ganglioside mimic

GB2/GB11 Gal- GalNac- Gal- Hep- Hep- GM1

NeuAc Glc

Gal- GalNac- Gal- Hep- Hep- GD1a

NeuAc NeuAc Glc

Gal- GalNac- Gal- Hep- Hep- NoGB2/GB11Δcst-II 

Glc

GalNac- Gal- Hep- Hep- No
Glc

Gal- Hep- Hep- No
Glc

GB19 Gal-GalNac- Gal- Hep- GD1c
NeuAc Glc
NeuAc

GB19Δcst-II Gal-GalNac- Gal- Hep- No

Glc

Figure 2. Proposed LOS outer core structures as determined by mass spectrometry analysis. Note that 
GB2 and GB11 express a mixture of the sialylated LOS ganglioside mimics GM1 and GD1a, whereas GB19 
expresses sialylated LOS only in the form of GD1c. In all three strains, knockout mutagenesis of cst-II 
resulted in loss of expression of sialylated LOS.
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Knockout mutagenesis of cst-II does not affect bacterial growth rate significantly
 To exclude the possibility that differences in viability and growth rate would influence 
the results of our invasion assays, we assessed the growth rates of wild-type strains 
GB2, GB11 and GB19 and their Dcst-II mutants in Mueller Hinton medium and in the 
cell culture medium used in the Caco-2 cell invasion assays. No significant differences 
in growth rates were observed between the wild-type GB2, GB11 and GB19 and Dcst-
II strains and their Dcst-II mutants during the time span of our invasion experiments 
(results not shown). 

Disruption of cst-II significantly affects the invasiveness of C. jejuni into intestinal 
epithelial cells
We compared the capacity of the C. jejuni wild-type strains GB2, GB11 and GB19 to 
adhere to and invade into Caco-2 cells with those of their respective Δcst-II mutants. At 
an MOI of 100, wild-type and mutant strains adhered equally well to the human Caco-2 
cell line (Fig. 3A). The only exception was the GB11Δcst-II strain, which displayed a lower 
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Figure 3. LOS sialylation plays an important role in invasion. C. jejuni wild-type strains GB2, GB11, and 
GB19 and their respective cst-II mutants were studied for adherence to A. and invasion of B. human 
enterocyte-like Caco-2 cells. Differences in adhesion and invasion were tested for significance by using 
the standard t test. Data are expressed as geometric means for 3 experiments each performed in triplicate. 
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level of adherence than wild-type GB11 a factor (P = 0.031). GB2Δcst-II, GB11Δcst-II and 
GB19Δcst-II all showed a significant reduction in invasiveness as compared to their wild-
type parent strain (P = 0.005, P = 0.002 and P = 0.008, respectively) (Fig. 3B). 

In order to study whether the role of sialic acid in C. jejuni invasion is restricted to 
interactions with Caco-2 cells, a small selection of C. jejuni strains (P3, GB2, GB11 and 
GB13) and Δcst-II mutants (GB2Δcst-II and GB11Δcst-II ) were tested for invasiveness for 
the T84 human intestinal epithelial cell line (data not shown). The levels of invasiveness 
of all wild-type strains was similar in both cell types. Again, Δcst-II mutants displayed 
reduced (by log 1 to 1.5) invasion of T84 cells. Together, these data establish that LOS 
sialylation contributes significantly to the invasion intestinal epithelial cells by C. jejuni 
into. We excluded variation in microbial motility as the mechanism underlying the re-
duced invasion of the Dcst-II mutant strains by performing quantitative swarming assays 
(data not shown). 

Complementation of the GB11Dcst-II mutant restores expression of sialylated LOS
Site-specific homologous recombination was used to reinstall the cst-II gene, together 
with its promoter region, in the GB11Dcst-II strain. Using HRP-labeled cholera toxin 
as a detection agent, we confirmed the expression of sialylated LOS of the wild-type 
GB11 strain and of three selected clones of the complemented GB11Dcst-II mutant by a 
Western blot assay (Fig. 4, lane 1, 3, 4 and 5 respectively). The GB11Dcst-II mutant did not 
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Figure 4. Western blot assay for analysis of cholera toxin binding at the LOS of wild-type GB11, its Δcst-II 
mutant, and the complemented GB11Δcst-II mutant strain. Lane 1, LOS of the GB11 wild-type strain; 
lane 2, LOS of the GB11Δcst-II mutant strain; lanes 3, 4, and 5, LOS from three selected clones of the 
complemented GB11Δcst-II mutant; lane 6, LOS of the 11168 genome strain, used as a positive control. 
The LOS band is present at around 7 kDa.



LOS sialylation and C. jejuni invasiveness into Caco-2 cells

61

Chapter 3

express sialylated LOS (Fig. 4, lane 2). LOS isolated from the 11168 genome strain was 
used as a positive control for binding of the HRP-labeled cholera toxin (Fig. 4, lane 6).

Complementation of the GB11Dcst-II mutant restores invasiveness 
The Western blot assay provided evidence that the complemented mutant was now 
capable of LOS sialylation. With the gentamicin exclusion assay, we were able to show 
that this complementation also restored invasiveness to wild-type levels (Fig. 5). These 
results reiterate the importance of LOS sialylation in invasion

Fixed, sialylated LOS-containing strains inhibit invasion of their viable counterparts
The decreased invasiveness of GB2Δcst-II, GB11Δcst-II and GB19Δcst-II and the restored 
wild-type invasion phenotype of the complemented GB11Δcst-II mutant clearly indicate 
a role for C. jejuni LOS sialylation in invasion. In order to further address the involvement 
of LOS sialylation in invasion, we designed an inhibition assay. We preincubated the 
Caco-2 cells with formalin-fixed, nonviable sialylated wild-type strains (GB2, GB11 and 
GB19) before incubating with viable sialylated wild-type strains (GB2, GB11 and GB19). 
We found reductions of as much as 1 to 2 log units in invasion by viable wild-type strains. 
When Caco-2 cells were preincubated with an excess of formalin-fixed nonsialylated LOS 
Dcst-II mutants, no differences in invasion were found relative to the invasion control 
(Fig. 6). The invasion control groups consisted of Caco-2 cells that were incubated only 
with the viable wild-type strains GB2, GB11 or GB19. These results corroborate that LOS 
sialylation is an important determinant of epithelial cell invasiveness.
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Figure 5. Complementation of the GB11 Δcst-II mutant restores the wild-type phenotype for invasion 
observed with GB11. The C. jejuni wild-type strain GB11, the GB11Δcst-II mutant, and the complemented 
GB11Δcst-II (C) mutant were studied for invasion of human enterocyte-like Caco-2 cells. Data are 
geometric means from at least three independent experiments, each performed in duplo. Error bars, 
standard deviations
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Discussion

The mucosal epithelial cells are the first to interact with enteric pathogens such as C. 
jejuni. This microorganism may temporarily colonize the intestines in the absence of any 
clinical symptom. On the other hand, C. jejuni has been implicated in the pathogenesis 
of immune-mediated pathologies, e.g., GBS. Because C. jejuni infection can present with 
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Figure 6. C. jejuni strains GB2, GB11, and GB19 invade Caco-2 cells via a sialylated-LOS-dependent 
mechanism(s). The levels of invasion by viable wild-type strains GB2 (A), GB11 (B), and GB19 (C) were 
assessed in the presence of either formalin-fixated GB2, GB11, or GB19 wild-type (wt) bacteria (sialylated 
LOS) or the respective fixated Δcst-II mutants (truncated LOS, non-sialylated). Data are means from at least 
three independent experiments; error bars, standard deviations.
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such a wide range of symptoms, it is crucial to further identify factors andmechanisms 
that control C. jejuni epithelial invasion and persistence (36). We hypothesized that 
the factors that regulate C. jejuni epithelial invasion may contribute to post-infectious 
sequelae, e.g., GBS.

Several C. jejuni outer membrane proteins, e.g., CadF, JlpA and PEB1 play a role in 
epithelial adhesion and invasion (37-39). Recently, PEB1 has also been identified as an 
amino acid transport system, which is essential for microbial growth. Previous studies 
that identified microbial LOS as a generally important factor for invasion have been 
confirmed for C. jejuni (12, 14-16). Here we specifically addressed if and to what extent 
sialylation of C. jejuni LOS contributes to microbial invasion. Therefore, we performed a 
large-scale survey by testing a heterogenic panel of 48 human-isolated C. jejuni strains, 
7 human control strains, and 3 sialyltransferase (cst-II) knockout strains. The knockout 
strains were previously shown to lack the capacity of LOS sialylation (22). 

Our studies indicate that LOS sialylation facilitates epithelial invasion (Table 1), since C. 
jejuni strains expressing sialylated LOS invaded significantly more frequently than nonsi-
alylated LOS strains (P <0.0001). Two strains with presumed LOS sialylation displayed low 
invasiveness. These results show that LOS sialylation must be regarded as an important 
contributor for C. jejuni invasiveness but not the single determinant. Earlier reports 
support the hypothesis that several factors determine invasiveness (12, 14-16). Similar 
contributions of sialic acid to invasiveness have been established for other pathogens 
(40, 41). In contrast, one study reports on inhibition of invasion by sialic acid (42).

Our experiments with the GB2, GB11 and GB19 sialyltransferase (cst-II) knockout 
strains further established the importance of LOS sialylation, since these mutated strains 
expressing nonsialylated LOS displayed significantly lower invasiveness than their re-
spective wild-type controls. The methods for generation of such knockout strains may 
be accompanied by various technical side effects, e.g., mutation of genes other than 
the target gene. Furthermore, insertion of an antibiotic resistance cassette may induce 
expression or silencing of adjacent genes and gene products. Therefore, we set up 
experiments using a complemented Δcst-II mutant strain. We show that this procedure 
indeed restored sialylation of the LOS (Fig. 4) and subsequent invasiveness to wild-type-
levels (Fig. 5). 

In our studies, only the GB11Δcst-II mutant strain showed diminished adherence 
relative to that of its wild-type parent strain, indicating a less important role for LOS 
sialylation in epithelial adhesion than in invasion. These findings indicate that adhesion 
and invasion are regulated by different sets of factors. Adhesion is likely established by 
proteins such as CadF, JlpA and PEB1 (37-39), whereas invasion is more influenced by 
LOS sialylation in the strains we tested. 

To support that invasion is facilitated by LOS sialylation, we established that formalin-
fixed wild-type strains GB2, GB11 and GB19, but not the isogenic Δcst-II mutants, were 
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able to inhibit epithelial invasion by viable GB2, GB11 and GB19 strains. These findings 
may have two implications; first, these data may help to identify novel epithelial inva-
sion receptors. Secondly, these experiments may lead to the discovery of specific agents 
that can be used to block microbial invasion.

Previously, sialylation of C. jejuni LOS was associated with GBS (22, 43, 44). Isolates from 
GBS patients mainly synthesize sialylated LOS of classes A and B (± 80% ) (30). Strains 
isolated from enteritis patients show a more mixed LOS composition, with a tendency 
towards nonsialylated LOS expressed by the classes D and E. Notably, the presence of 
strains expressing LOS classes A and B in enteritis patients is around 20-25%. Therefore, 
the enhanced invasiveness of GBS-associated strains seems to result from the frequent 
presence of LOS class A and B strains in this patient group (28). We hypothesize that 
among other risk-factors, enhanced invasiveness (e.g., through LOS class A expression) 
contributes to the development of postinfectious complications such as GBS. 

In conclusion, we demonstrate that C. jejuni strains expressing sialylated LOS have an 
overall increased capacity to invade intestinal epithelial cells. Knockout mutagenesis 
of the cst-II gene and complementation and blocking experiments provide additional 
evidence on the role of LOS sialylation in invasion of the intestinal epithelium. Under-
standing the function of LOS sialylation in epithelial cell invasion may provide us with 
potential target structures for future therapeutic interventions in C. jejuni-mediated 
diarrheal disease and its postinfectious complications. 
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Abstract

In Campylobacter jejuni (C. jejuni) induced Guillain-Barré syndrome (GBS), molecular 
mimicry between C. jejuni lipooligosaccharide (LOS) and host gangliosides leads to the 
production of cross-reactive antibodies directed against the peripheral nerves of the 
host. Currently, the presence of surface exposed sialylated LOS in C. jejuni is the single 
known bacterial pathogenesis factor associated with the development of GBS.

Using a unique, well-characterized strain collection, we demonstrate that GBS-
associated C. jejuni strains bind preferentially to sialoadhesin (Sn, Siglec-1, or CD169), 
a sialic acid receptor found on a subset of macrophages. In addition, using a whole-
cell enzyme-linked immunosorbent assay (ELISA), C. jejuni strains with sialylated LOS 
bound exclusively to soluble Sn. Mass spectrometry revealed that binding was sialic 
acid-linkage specific with a preference for α(2,3)-linked sialic acid attached to the ter-
minal galactose of the LOS chain as seen in the gangliosides GD1a, GM1b and GM3. This 
molecular interaction was also related to functional consequences as a GBS-associated 
C. jejuni strain that bound Sn in a whole-cell ELISA adhered to surface-expressed Sn of 
Sn-transfected CHO cells but was unable to adhere to wild type CHO cells. Moreover, a 
sialic acid negative mutant of the same C. jejuni strain was unable to bind Sn transfected 
CHO cells.

This is the first report of the preferential binding of GBS-associated C. jejuni strains 
to the Sn immune receptor (P = 0.014). Moreover, because this binding is dependent 
on sialylated LOS, the main pathogenic factor in GBS progression, the current findings 
bring us closer to unraveling the mechanisms that lead to formation of cross-reactive 
antibodies in GBS disease.
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Introduction

Campylobacter jejuni (C. jejuni), a food-borne gram negative bacterium, is the major 
cause of bacterial gastroenteritis worldwide. In addition to enteritis, infection with C. 
jejuni may also lead to a neurological complication called the Guillain-Barré Syndrome 
(GBS). GBS is an autoimmune disease affecting the peripheral nerves. Antibodies raised 
by the host during an infection with C. jejuni possess the capacity to cross-react with 
structures on human nerve tissue, resulting in neurological complications for the host 
(1). Further, high titers of anti-ganglioside antibodies are frequently found in the sera of 
GBS patients (2, 3). Gangliosides are glycosphingolipids with an extracellular sialylated 
oligosaccharide chain and a ceramide tail that is embedded in the outer leaflet of the 
plasma membrane. Although predominantly found in the nervous system, gangliosides 
are present on other cell surfaces as well.

C. jejuni has lipooligosaccharide (LOS) structures on its outer membrane. Biochemical 
and structural analysis of LOS outer core oligosaccharides has identified sialylated moi-
eties that are structurally similar to several gangliosides (4-6). During infection, the struc-
tural similarity between C. jejuni LOS and human gangliosides, also known as molecular 
mimicry, facilitates the induction of anti-ganglioside antibodies and the development 
of GBS (1, 7-9). The C. jejuni genes involved in ganglioside mimicry are located within 
the LOS biosynthesis locus, a gene cluster that is interchangeable between strains and is 
genetically highly diverse (10, 11). Therefore, several LOS classes (A through S) have been 
identified (12). LOS class, gene alterations, mutations and mechanisms such as phase 
variation in the LOS locus, contribute to structural variations in the ganglioside mimics 
produced (11). The presence of LOS biosynthesis locus-encoded genes responsible for 
synthesis, modification and transfer of sialic acid, found in LOS classes A, B and C, is 
crucial in the induction of anti-ganglioside antibodies and hence GBS (13, 14). Sialylated 
LOS is also involved in other aspects of C. jejuni pathogenesis. C. jejuni strains expressing 
sialylated LOS invade human epithelial intestinal cells significantly more frequently than 
strains expressing nonsialylated LOS (15). However, the receptor for C. jejuni attachment 
to human epithelial intestinal cells is unknown. 

Certain C. jejuni strains are known to bind to Siglec-7, a member of the sialic acid bind-
ing immunoglobulin like lectin (Siglec) family (16). Siglecs are present on the cell surface 
of a range of immune-associated cells and are involved in cell to cell interactions and 
signaling. A subset of the Siglec family, the CD33-related Siglecs, can serve as regula-
tors of the immune system through immunoreceptor tyrosine-based inhibitory motifs 
(ITIMs) in their cytoplasmic tail (17, 18). In addition, several recently described human 
Siglecs, Siglecs-14, -15 and -16 can interact with the immunoreceptor tyrosine-based 
activation motif (ITAM) adaptor, DAP12, and therefore potentially mediate the activation 
of intracellular signaling (19, 20). 
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Sialoadhesin (Sn, Siglec-1, or CD169) is a macrophage-restricted Siglec that has been 
associated with inflammatory and autoimmune diseases. For example, Sn levels are 
elevated on activated macrophages within the inflamed organs of several inflammatory 
disorders, including rheumatoid arthritis, experimental autoimmune encephalomyelitis 
(EAE), and experimental autoimmune uveoretinitis (EAU) (21-23). This elevated expres-
sion may have functional consequences since Sn-deficient mice show a reduced severity 
of EAE and EAU (23, 24). With a poorly conserved cytoplasmic tail and the absence of 
tyrosine-based signaling motifs, Sn seems to be more involved in cell-to-cell communi-
cation and ligand binding than intracellular immunoregulation. It has been shown that 
macrophages expressing Sn can bind and internalize sialylated Neisseria meningitidis in 
a Sn- and sialic acid-dependent manner (25). Further, HIV-1 can interact with Sn, prob-
ably via a sialic acid residue on gp120, with binding resulting in enhanced infectivity 
and facilitates transinfections in alpha interferon (IFN-α)-stimulated CD14+ monocytes. 
Furthermore, Sn gene expression is elevated in CD14+ monocytes from patients infected 
with HIV-1 (26). 

Each Siglec has a unique specificity for certain sialylated glycans, with Sn preferring 
sialic acid conjugates with an α(2,3)galactose (gal) linkage (27). This α(2,3)Gal linkage is 
often found on the LOS of GBS-associated C. jejuni strains. 

Because of the connection of C. jejuni infection with autoimmune disease such as GBS 
and its clinical variant Miller Fisher Syndrome (MFS), we investigated whether α(2,3)-
linked sialic acid residues on the surface of C. jejuni strains could interact with Sn and 
whether this interaction was characteristic for GBS-associated strains.

Material & Methods

Bacterial strains and culture conditions
Bacterial strains utilized in this study comprise (i) a group of eight  Penner serotype 
reference strains (28, 29) (Supplemental Table 1A), (ii) 29 well-characterized GBS- or 
MFS-associated C. jejuni strains isolated from GBS and MFS patient stool samples (GB13, 
GB14 and GB26, GB27 were cultured from diarrheal stools of family members of two 
GBS patients after a family outbreak of C. jejuni enteritis) (30-32) (Supplemental Table 
1B), (iii) 54 age and sex matched enteritis-associated C. jejuni strains isolated from Dutch 
patients with active diarrhea, and (iv) a sialic acid transferase (cst-II) knockout mutant of 
a GBS-associated strain (GB11Δcst-II) (13). 

C. jejuni strains were cultured from -80°C stocks and maintained on Colombia blood 
agar (BA) plates (Becton Dickinson BV, Alphen aan den Rijn, The Netherlands) supple-
mented with 10 μg vancomycin/ml in a microaerophilic atmosphere at 37°C. For culture 
of the GB11Δcst-II mutant strain, chloramphenicol (20 µg/ml) was added to the growth 
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medium. Prior to experimentation, all strains were cultured overnight on BA-plates 
containing vancomycin only. The LOS outer core structures of the GBS-associated 
strains utilized in this study have previously been reported (31). LOS was purified by 
hot phenol-water extraction as previously described (2). For the enteritis-only strains, 
we used mass spectrometry data as reported (33) to determine whether sialic acid was 
present in the LOS outer core. PCR screening to verify the LOS class was performed as 
previously described (13).

Cell culture and preparation of Fc-conjugates
Wild-type Chinese Hamster Ovary cells (CHO-wt), CHO cells expressing Sn domain 1-17 
(CHO-Sn), and CHO cells expressing a Sn mutant with an amino acid substitution in the 
sialic acid binding pocket at amino acid position 97 (arginine to alanine; CHO-SnR97A) 
were generated as previously described (34). Cells were maintained in Ham/F-12 me-
dium (PPA Laboratories, Cölbe, Germany), containing penicillin/streptomycin, 2 mM 
L-glutamine and 10% fetal calf serum (FCS) and were routinely grown in plastic 75-cm2 
flasks (Greiner Bio-One, Alphen aan den Rijn, The Netherlands) at 37°C in a humidified 
5% CO2-95% air incubator. With respect to Sn-Fc production, CHO cells expressing mu-
rine Sn recombinant Fc fusion protein domain 1-3 (Sn-Fc) or its mutant form (SnR97A-
Fc) were generated as previously described (35). Cells were cultured in 225 cm2 flasks 
and expanded into roller bottles in glutamine free Glasgow Minimal Essential Medium 
(GMEM) (Sigma-Aldrich, Zwijndrecht, The Netherlands) containing 100 μM L-methionine 
sulfoximine (Sigma-Aldrich), glutamine synthetase (GS) supplement (Sigma-Aldrich), 
penicillin/streptomycin and 10% dialyzed FCS (Invitrogen, Leek, The Netherlands). The 
FCS concentration was adjusted to 2% once cells covered ca. 80% of the surface of the 
bottle. When 100% confluence was reached, cells were put on X-VIVO-10 serum-free 
media (Lonza, Verviers, Belgium), and medium containing Sn-Fc or SnR97A-Fc was 
harvested weekly. The concentration of Sn-Fc and SnR97A-Fc produced was determined 
using an Fc-specific enzyme-linked immunosorbent assay ELISA.

Quantification of Fc-conjugates 
A 96-well Maxisorb ELISA plate (NUNC Inc. Uden, The Netherlands) was coated with 0.01 
mg goat anti-human IgG (Sigma-Aldrich)/ml, followed by incubation for 2 h at room 
temperature. After washing, wells were blocked with 1% bovine serum albumin (BSA) 
in phosphate-buffered saline (PBS). Series of 5-fold dilutions of the Sn-Fc- or SnR97A-Fc-
conjugates were added to the plates, followed by incubation for 2 h at room temperature. 
Five-fold dilutions of a sample containing a known concentration of Siglec-Fc were used 
as a reference. After washing, wells were incubated with 1/2,000-diluted peroxidase-
conjugated goat anti-human IgG (Sigma-Aldrich). Plates were washed four times with 
0.05% Tween 20 in PBS and developed with 100 μl TMB substrate (3’,3’,5’,5’-tetramethyl-
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benzidine; Sigma-Aldrich)/well. After an appropriate incubation time (5 to 10 minutes), 
the reaction was stopped by adding 100 µl 2 M H2SO4/well. The intensity of the signal 
was measured spectrophotometrically at 450 nm by using a 96-well microplate reader 
(Bio-Rad, Veenendaal, The Netherlands), and the concentrations were determined.

Sialoadhesin-Fc ELISA
With respect to the ganglioside/SnFc ELISA, equal amounts (300ng/well) of purified 
bovine brain ganglioside (GA1, GM1, GM2, GM3, GD1a, GD1b, GD3 and GT1b (Sigma-
Aldrich)) diluted in ethanol, were applied to 96-well Maxisorp ELISA plates (NUNC 
Inc.). Plates were then incubated for 2 h at room temperature, allowing the ethanol to 
evaporate. For the LOS/Sn-Fc ELISA, plates were coated overnight at 37 ºC using 2 µg 
of LOS in PBS plus 0.2% trichloroacetic acid per well. After a washing step, the wells 
were blocked for 2 h at room temperature and 2 h at 4ºC with 1% BSA in PBS (pH 7.8). 
In the meantime, 1.25 μg Sn-Fc conjugate/ml was precomplexed with 1,4000-diluted 
peroxidase-conjugated anti-human IgG (IgG-PO) (Sigma-Aldrich) in PBS with 0.05 % 
normal goat serum for 1 h at room temperature with shaking. After a washing step, 
100 µl precomplexed Sn-Fc was added/well, and plates were incubated for 2 hat room 
temperature. Plates were washed four times with PBS and developed using TMB as 
previously mentioned. 

Finally, for the C. jejuni-Sn-Fc ELISA, fresh overnight C. jejuni cultures grown on BA 
plates were harvested and washed, and optical density at 600 nm (OD600) was adjusted 
to 0.2 in +/++PBS (i.e., containing 2 mM CaCl2 and 2 mM MgCl2. After heat inactivation 
at 56ºC for 45 min, 100 μl of each sample/well was added in duplicate to 96-well Maxi-
sorp ELISA plates (NUNC Inc.), and the open plates were incubated overnight at 37ºC 
in order to allow the fluid to evaporate. After overnight incubation and washing, wells 
were blocked for 1 h with 1% BSA in PBS at 37ºC. In some cases, the bacteria were pre-
treated with neuraminidase for 16 h using 0.05 U of Arthrobacter ureafaciens α2-3,6,8,9-
neuraminidase (Calbiochem, Breda, The Netherlands)/ml in PBS-1 % BSA. Thereafter, the 
ELISA protocol previously described for the ganglioside Sn-Fc ELISA was followed with 
the exception that the C. jejuni/Sn-Fc ELISA plates were washed with PBS containing 0.05 
% Tween 20 to minimize nonspecific binding. 

Statistical procedure
For statistical analysis, strains were divided into either positive or negative groups de-
pending on their Sn binding properties. Strains exhibiting an OD450 value higher than 
2 times the background signal plus 2 times the standard deviation were classified as 
positive for Sn binding and strains with a lower OD450 signal as negative. The chi-square 
test was used to indicate whether a significant difference existed in Sn binding between 
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GBS-associated and enteritis-only strains. We consider P ≤ 0.05 to be statistically signifi-
cant. 

FITC-labeling of C. jejuni
Fresh overnight cultured C. jejuni were harvested in +/+ PBS and incubated for 1 h with 5 
µl of fluorescein isothiocyanate (FITC; 100mg/ml in dimethyl sulfoxide)/ml with shaking. 
Bacteria were washed in PBS and heat inactivated for 45 min at 56°C, and OD600 was 
adjusted to 1.0 in +/+ PBS.

Binding of C. jejuni to Sn-expressing and wild-type CHO cells
CHO-wt, CHO-Sn and CHO-SnR97A were grown to ~ 80% confluence on glass cover slips 
and, after being washed with serum-free medium, were incubated for 2 h at 37°C along 
with various FITC-labeled C. jejuni strains in media containing 1% FCS. For this procedure, 
a bacterium/cell ratio of 100:1 was used. After a washing step, the cells were fixed for 20 
min in methanol at -20°C and counterstained using 3 µM propidium iodide (PI). For flow 
cytometry analysis, semi-confluent CHO cells were harvested from 75-cm2 flasks using 
PBS containing 2mM EDTA. Cells were incubated for 45 min with FITC-labeled bacteria 
(bacteria/cell ratio of 100:1) in a 37°C incubator with shaking. After being washed, the 
cells were analyzed by using a FACSCalibur (Becton Dickinson BV). In control experi-
ments, the cells were incubated for 15 min with 1/10 diluted 3D6, a monoclonal rat anti-
mouse antibody raised against Sn, prior to incubation with the bacteria. To confirm Sn 
expression on CHO-Sn and CHO-SnR97A, 1/100-diluted 3D6 and 1/1,000 diluted Alexa 
Fluor 633-conjugated goat anti-rat IgG (H+L) secondary antibody (Invitrogen) was used.

Results

Binding of Sn-Fc to purified gangliosides
To validate our batch of Sn-Fc and to extend our knowledge of Sn/ganglioside interac-
tions and affinities using ELISA, we determined the ability of Sn-Fc to bind to a panel 
of purified bovine brain gangliosides. Gangliosides were coated on ELISA plates and 
incubated with Sn-Fc precomplexed with anti-human IgG-PO. It has been shown that 
Sn preferentially binds to α(2,3)-linked sialic acid glycoconjugates with strong affinity 
for sialic acid residues in the terminal position of a Gal-GalNAc-Gal backbone (27). We 
confirmed these findings with Sn binding properties in a ranking order of GD1a > GT1b 
> GM3. No Sn binding was observed either when sialic acid was absent (GA1), sialic 
acid was linked to the inner galactose of (Gal)-GalNAc-Gal (GM1a, GM2), or there was an 
α(2,8)-linkage (GD1b, GD3) (Fig. 1, Fig. 2). In conclusion, the binding efficiency of the Sn 
variant used here is in agreement with literature data.
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Figure 1. Sialoadhesin-Fc binding to purified gangliosides. Purified bovine gangliosides dissolved in 
ethanol were coated on ELISA plates, incubated with Sn-Fc precomplexed with anti-human IgG-PO, and 
visualized by using TMB. As a control for nonspecific binding of the precomplexed Sn-Fc, ethanol-coated 
wells were used (-). The data are depicted as means and standard deviations of quadruple measurements. 
Schematic structures of the gangliosides that were tested are depicted in Fig. 2. 
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Figure 2. Schematic representation of the human ganglioside structures relevant to the present study. 
The galactose-sialic acid linkages are indicated. These structures are mimicked by C. jejuni in the outer 
core LOS. However, instead of the ceramide bound glucose, the C. jejuni LOS has a heptose, followed by an 
inner sugar core, and C. jejuni LOS has a lipid A transmembrane tail instead of a ceramide tail. * GA1, GA2 
and GA3 or asialo-GM1, -GM2 and -GM3, are considered not to be gangliosides. 
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Sialic acid dependent interaction of Sn-Fc with heat inactivated C. jejuni strains and 
purified LOS 
Similar to the ganglioside ELISA described above, we set up a whole cell bacterial ELISA 
using eight heat-inactivated C. jejuni Penner strains with known ganglioside structures. 
These included not only Penner strains harboring ganglioside mimics that are the most 
important in GBS pathology (GM1, GM2, GM3, GD1a and GD3) but also control strains 
possessing no ganglioside mimic (none or GA3). Consistent with the ganglioside binding 
pattern, we found strong Sn binding for strains P2 (GM3), P4 (GM1, GD1a) and P19 (GM1a, 
GD1a) all having terminal α(2,3)-linked sialic acid residues in the LOS. Sn binding was also 
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Figure 3. Heat-inactivated C. jejuni Penner strains (A) or purified LOS of the same Penner strains (B) 
were coated on ELISA plates, and incubated with precomplexed Sn conjugates Sn-Fc or SnR97A-Fc, and 
visualized using TMB. For binding assays, Penner strains and LOS were either left untreated or were treated 
with neuraminidase. The bars represent a single experiment which was repeated at least three times, with 
means and standard deviations of three measurements. Schematic structures of the ganglioside mimics 
that are expressed by the Penner strains are depicted in Fig 2.  
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observed for P36 (GM2, GM3). Surprisingly, P1 (GM2) and P10 (GD3) also showed bind-
ing to Sn. It is possible that the presence of some undetected GM3 is responsible for this 
phenomenon. Binding of Sn to strains P3 (none) and P23 (GA3), which lack ganglioside 
mimics, was found to be low or zero (Fig. 3A). To confirm that these interactions were sialic 
acid dependent, we treated the Penner strains with neuraminidase before incubation with 
the Sn-Fc conjugate. Neuraminidase treatment completely abolished Sn recognition of P2 
(GM3), P4 (GM1, GD1a), P10 (GD3), and P19 (GM1, GD1a), showing that Sn binding to these 
strains is sialic acid specific. Sn binding to P1 (GM2) and P36 (GM2, GM3) was reduced, 
although not to background levels. Reduction in binding is probably due to the loss of the 
GM3 mimic. GM2, with an internal sialic acid, is less sensitive to neuraminidase treatment, 
so residual binding might be because of the presence of this structure. 

The ELISA was also performed using the Sn mutant SnR97A-Fc. This mutant has an 
amino acid substitution (R97A) in the sialic acid binding pocket and lacks the ability to 
bind sialic acid conjugates. None of the strains showed binding to SnR97A, ruling out 
nonspecific binding to other parts of the protein (Fig. 3A). 

To date, no ganglioside-like or sialylated structures other than the sialylated LOS have 
been found on the surface of C. jejuni strains. Therefore, Sn binding to C. jejuni strains 
as observed in the whole cell Sn-Fc ELISA is almost certainly due to the presence of 
sialylated LOS structures on the bacterial surface. To show that LOS is the ligand for Sn, 
we also performed Sn-Fc and SnR97A-Fc ELISAs on purified LOS (Fig. 3B), using LOS from 
the same Penner strains as used in Fig. 3A. Other than some relative differences in signal 
intensity for P19 and P36, the Sn binding pattern for purified LOS was very similar to 
the Sn binding pattern for intact bacteria, indicating that the interaction is really LOS-
specific. 

Binding of C. jejuni to Sn-expressing CHO cells
When attached to ELISA plate wells, C. jejuni and purified LOS from C. jejuni were both 
able to bind to precomplexed soluble Sn. In vivo, however, Sn is exposed on cell sur-
faces. Therefore, to test whether sialic acid-dependent binding to soluble Sn could be 
reproduced using cell surface-expressed Sn, we used CHO cells stably transfected with 
mouse Sn cDNA (CHO-Sn). Binding of C. jejuni to CHO-Sn cells was compared to that 
of parental CHO cells (CHO-wt), as well as CHO cells transfected with the Sn mutant 
R97A (CHO-SnR97A). GB11, a GBS associated strain, and its Campylobacter sialic acid 
transferase knockout mutant (GB11Δcst-II) were used. These strains were first tested for 
Sn binding using the Sn-Fc ELISA, and as expected, GB11 (possessing a mix of GM1a- and 
GD1a-like structures) bound to Sn, whereas GB11Δcst-II (possessing GA1, GA2 and GA3) 
did not (Fig. 2 and 4A).

Immunofluorescent staining (Fig. 4B) showed a clear association between GB11 and Sn-
expressing CHO cells but no binding of GB11 to CHO-wt or CHO-SnR97A cells. GB11Δcst-II 
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Figure 4. A. Sn binding to GBS-associated strain GB11 and the sialic acid negative mutant GB11Δcst-II. 
Whole bacteria and purified LOS was tested for Sn binding using ELISA. A schematic representation of 
the ganglioside mimicking structures expressed by GB11 and GB11Δcst-II can be found in Fig. 2. The 
structures were determined by mass spectrometry and previously published (20). B. Immunostaining of 
wild-type-, Sn- and SnR97A-expressing CHO cells, incubated with FITC-labeled GB11 or the sialic acid-
negative mutant GB11Δcst-II. Cells were counter stained using PI. C. Flow cytometric analysis of binding 
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did not bind to any of the CHO cell-lines, indicating that the binding of GB11 to CHO-Sn 
was actually sialic acid dependent. Flow cytometric analysis of CHO cells incubated with 
FITC-labeled C. jejuni (Fig. 4C) confirmed these findings with a shift in the fluorescent sig-
nal observed when GB11 incubated with CHO-Sn was compared to GB11Δcst-II incubated 
with CHO-Sn. This effect was not observed when GB11 and GB11Δcst-II were incubated 
with CHO-wt or CHO-SnR97A. Further, upon preincubated of CHO-Sn with 3D6, no differ-
ence in binding was observed between GB11 and GB11Δcst-II, indicating that the binding 
was strictly Sn dependent. Together, these results show that C. jejuni with ganglioside 
mimics in their LOS bind to cell-exposed Sn in a sialic acid-dependent manner. 

Sn binding properties of GBS-associated and enteritis-only C. jejuni strains
Based on the findings that C. jejuni was able to bind Sn in a sialic acid linkage-specific 
manner, with a preference for terminal α(2,3)-linked sialic acid residues, and the knowl-
edge that this sialic acid linkage is frequently found in the LOS of GBS associated strains, 
we screened a well-characterized GBS-associated strain collection (n = 29), and an 
age and sex-matched enteritis control group (n = 54) for Sn binding. For this process, 
a whole-cell Sn-ELISA was used with heat-inactivated C. jejuni strains coated onto the 
ELISA plate. A total of 20 (69%) of the 29 GBS-associated strains tested were found to 
be positive for Sn binding in the ELISA (Fig. 5A), including all strains containing GD1a-
like LOS (GB2, GB3, GB11, GB18, GB21, GB22, GB28, and GB31). The latter strains always 
expressed a combination of a GD1a and a GM1a ganglioside mimic. Strains GB13 and 
GB14, expressing a GM1a like structure only, produced negative Sn binding results in 
the ELISA. Therefore, and because the bovine ganglioside GM1a did not show binding in 
the ganglioside ELISA, the GD1a part of the GD1a/GM1a harboring strains is most likely 
responsible for Sn binding. Other strains that were positive for Sn binding at least had 
GM1b- or GM2-like LOS present. Strains MF7 and GB23, also with GM2-like LOS, showed 
little binding. The difference in binding affinity that was observed for strains with similar 
LOS structures was probably due to differences in expression rates of the mimics. 

Strain GB27 showed very strong Sn binding which is surprising since we previously 
reported that its LOS outer core is a GA1-like structure (31). GB27 LOS genes are identical 
to LOS genes of GB26 but earlier sequence analysis had shown that the sialyltransferase 
gene (cst-II) was variable in these two strains due to phase variation (i.e., alterations in 

between CHO cells and C. jejuni strains. Wild type- and Sn-expressing CHO cells were incubated with 
FITC-labeled GB11 or GB11Δcst-II, with or without preincubation using 3D6 (a monoclonal rat anti-mouse 
antibody against Sn). Expression of Sn on the CHO cells was confirmed using 3D6 and an Alexa Fluor 
633-labeled secondary antibody. (a) CHO-wt, (b) CHO-Sn, (c) CHO-SnR97A, incubated with GB11 and 
GB11Δcst-II. (d) CHO-wt, (e) CHO-Sn cells, preincubated with 3D6 before the addition GB11 or GB11Δcst-
II. GB11 is depicted as filled grey curves; GB11Δcst-II as dark grey open curves. Light grey open curves 
indicate CHO cells without the addition of bacteria. (f ) Expression of Sn (or Sn-R97A) on CHO cells. The 
light grey line is CHO-wt, the back line is CHO-Sn, and the dark grey line is CHO-SnR97A.
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a hypervariable homopolymeric G tract). GB26 had a 9-G tract in cst-II that predicted a 
complete translation product consistent with a sialylated outer core, while GB27 had a 
10-G tract that predicted a premature translation stop resulting in no sialyltransferase 
activity in that strain. Because of the heterogeneity of homopolymeric G tracts, we sug-
gest that the cst-II gene had a 9-G tract and was turned on in the GB27 sample that 
was tested for Sn binding. We sequenced the cst-II gene of 4 samples of minimally pas-
saged GB27 cultures and indeed found that they contained 9-G tracts (turned on) in 
the cst-II gene. We also confirmed the presence of a GM1b mimic in the LOS outer core 
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Figure 5. A. Sialoadhesin binding to GBS-associated strains. B. Sialoadhesin binding to enteritis only 
strains. Binding of Sn-Fc to GBS-associated strains and enteritis-only strains was evaluated by ELISA. 
Heat-inactivated bacteria were coated onto plates, incubated with Sn-Fc precomplexed with IgG-PO, 
and visualized using TMB. The bars represent a single experiment which was repeated at least two times, 
with means and standard deviations of two measurements per experiment. -, PBS control for background 
staining. The black line represents 2 times (signal plus the standard deviation) the negative control. 
Strains with OD450 values above this line were considered to be positive for Sn binding. UT, untypeable; 
NT, not tested. Schematic structures of the gangliosides mimics that are expressed by the GBS- and MFS-
associated strains are depicted in Fig. 2.
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of these samples by electrophoresis-assisted open-tubular liquid chromatography mass 
spectrometry (Supplemental Table 2). Clearly, GB27 is a strain that has the capacity to 
synthesize a GM1b mimic and to bind strongly to Sn. 

The GBS-associated strains were significantly more often positive for Sn binding when 
compared to the enteritis strains (P = 0.014) (Table 1). For the enteritis strains, 22 (41%) 
of 54 strains tested, were positive (Fig 5B). All strains that were positive for Sn binding 
possessed either a class A, a class B or a class C LOS gene locus. Strains with such an 
LOS class contain genes involved in sialic acid synthesis, modification and transfer. The 
LOS outer core of these enteritis-only strains (except for strain 66) have previously been 
analyzed by electrophoresis-assisted open-tubular liquid chromatography–electrospray 
mass spectrometry (Supplemental data Table 1 in reference (33)). This analysis confirmed 
that sialic acid was present in the LOS outer core of the enteritis-only strains that were 
positive for Sn binding. The mass spectrometry analysis of the enteritis-only strains did 
not allow determination of the complete LOS outer core structures. However, correla-
tions can be made for the strains that had mass species identical to GBS and MFS strains 
for which the LOS outer core structures are known (see reference (31)). For example, 
strains 19, 49, 71, 109 and 110 all had the same mass species as GB13 and GB14 which 
were previously shown to display GM1a mimicry. Therefore, it is reasonable to expect 
that these strains also possess sialic acid in their LOS outer cores but still are negative 
for Sn binding. Strains 9, 12, 13, 31 and 41 had mass species identical to GB11, which 
has GM1a/GD1a mimicry. Similar to GB11, these five strains were positive for Sn binding.

Discussion

It has been well established that LOS structures, expressed on the surface of C. jejuni, 
play an important role in development of the postinfectious autoimmune disorders GBS 
and MFS. Cross-reactive, nerve damaging antibodies are produced during infection due 
to molecular mimicry between C. jejuni outer core LOS and gangliosides on peripheral 

Table 1. Binding of Sn to GBS- or enteritis-related C. jejuni strains a 

Strain Count (%) within strains

Negative Positive

GBS 9     (31.0 %) 20   (69 %) b

Enteritis 32   (59.3 %) 22   (40.7 %)

a Strains were divided into positive or negative for Sn binding characteristics. Strains with OD values 
higher than 2 times the background signal plus 2 times the standard deviation were classified as positive 
for Sn binding, and strains with a lower signal as negative for Sn binding.  
b A chi-square test analysis showed that the GBS group of strains exhibited significantly more Sn binding 
than the enteritis group of strains (P = 0.01)
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nerves. The expression of genes involved in LOS sialylation are a prerequisite for mim-
icry, since truncated LOS structures without sialic acid show a reduced reactivity with 
GBS patient serum and fail to induce an anti-ganglioside antibody response in mice (13).

Here we report that the sialylated structures on the surface of C. jejuni are able to 
specifically bind to Sn, an immune receptor of the Siglec family that has been linked 
to various autoimmune diseases. We show that the ligand for Sn is the outer core LOS. 
Moreover, binding to Sn is sialic acid dependent as neuraminidase treated strains, as well 
as a sialic acid transferase knock-out strain, failed to bind to Sn. Sn specifically recognizes 
LOS structures with a terminal α(2,3) linked sialic acid conjugate as seen in GD1a, GM3 
and GM1b. Crucially, upon screening a large panel of pathogenic GBS-associated and 
non-pathogenic enteritis strains, significantly more GBS-associated strains bound Sn 
compared to enteritis-only strains (P = 0.014).  

What is the consequence of Sn binding? It is unclear whether binding to Sn on host cells 
affects the fate of C. jejuni. Sn is expressed on a subset of macrophages, predominantly 
on macrophages in the subcapsular sinus (SCS) and medulla of the lymph nodes and on 
metallophilic macrophages of the spleen (36). Lymph node macrophages are involved in 
capturing and processing of trafficking antigens from the lymph. A recent study (37) showed 
that SCS lymph node macrophages have limited phagocytic activity; therefore, Sn binding 
may not be pivotal for intracellular infection by and survival of the bacterium. In contrast, 
SCS macrophages possess the ability to retain antigens on their cellular surface, which may 
lead to antigen presentation to follicular dendritic cells (FDC) (38). As such, Sn expression on 
SCS macrophages may allow capture of soluble ganglioside-mimicking LOS fragments and 
FDC presentation, leading to B cell maturation and subsequent antibody production. 

Another feature suggesting that Sn is not primarily involved in the initial events of C. 
jejuni invasion comes from our own observations. Although we have shown that C. jejuni 
strains with sialylated LOS invade intestinal epithelial cells better than nonsialylated strains 
(15), this effect was found not to be sialic acid linkage dependent. Moreover, intestinal 
epithelial cells are not known to express Sn. Therefore, factors and/or pattern recognition 
receptors other than Sn must play a role in C. jejuni invasion of the intestinal epithelium. 

In our study we used murine Sn which has a high degree of protein sequence similarity, 
up to 79% in the sialic acid binding domain, to human Sn as well as similar α(2,3)-linkage 
and sialic acid-dependent binding properties (21). Extrapolation to the human situation 
is therefore plausible. 

Our results show that especially strains with a GD1a, GM3 or GM1b ganglioside 
epitope and only strains with a class A, B or C LOS were positive for binding to Sn. Only 
these LOS classes harbor genes involved in LOS sialylation and ganglioside mimicry. 
Not just GBS-associated strains but also 40.7 % of enteritis-only strains were positive for 
Sn binding. Although these strains possess the Sn binding epitope, infection was not 
associated with the development of neurological dysfunctions. Therefore, other factors 



84

Ch
ap

te
r 4

that play a role in macrophage-mediated Sn binding and subsequent processes must 
contribute to the development of GBS. Single nucleotide polymorphisms (SNPs) that 
contribute to genetic variations between hosts might alter macrophage function and 
behavior. Genetic polymorphisms in genes encoding the macrophage-mediators tumor 
necrosis factor–alpha and matrix metalloproteinase-9 have been associated with the 
more severe forms of GBS (39). Furthermore, coinfection with another bacterial spe-
cies or virus might direct the immune system towards Sn-mediated autoimmunity. For 
example, viral infections can induce release of interferons (IFNs), factors that have been 
shown to upregulate Sn on the surface of monocyte-derived macrophages (40).

Not all GBS associated strains tested were positive for Sn binding. Strains GB13 (GM1a) 
and GB14 (GM1a) lack a terminal α(2,3)-linked sialic acid residue that, most likely, is 
necessary for Sn binding. In fact, these strains were not isolated from a GBS patient but 
from two family members of a GBS patient during a family related C. jejuni enteritis out-
break. Although we classified these strains as GBS-associated because the patient serum 
reacted with LOS fractions from the C. jejuni strains isolated from the family members, 
a separate uncultured strain might have triggered development of GBS. Strain GB1 and 
GB5 with LOS classes C and B harbor genes required for ganglioside mimicry, but do 
not express ganglioside-like epitopes. Sequence analysis of these strains revealed one 
or more base deletions in LOS-associated genes, resulting in a truncated LOS outer core 
without sialic acid (31). Anti-GM1 antibodies were detected in the acute phase serum 
of the GBS patient from whom strain GB1 was isolated (41). It might be that the base 
deletions in the LOS of GB1 occurred later in the course of the infection or during labora-
tory procedures. Strains GB4, GB15 and GB24 lack the genes essential for ganglioside 
mimicry. Although these strains were cultured from the stools of GBS-patients, no anti-
ganglioside antibodies were detected in the acute-phase sera of these patients (31, 41), 
suggesting that another pathogenic mechanism than molecular mimicry was involved. 

Binding of C. jejuni strains to Siglec-7, which has a preference for α(2,8)-linked sialic acid 
glycans, has already been demonstrated in an earlier study (16). In the same study, however, 
no binding was found for Sn, not even using LOS purified from strain HS:19 (GM1, GD1a). Al-
though variation in the signals between strains was observed in our experiments, all strains 
possessing GD1a-like LOS we tested were positive for Sn binding. It is unclear, therefore, why 
no Sn binding was observed using strain HS:19 in this publication (16). We also tested our 
strains for binding to Siglec-7, and preliminary experiments revealed that especially the MFS 
associated strains MF6, MF7, MF8 and MF20 had high affinity for Siglec-7 (data not shown). 
Although these strains were also positive for Sn binding, the Siglec-7 pathway might gener-
ate additional immune responses leading to the specific oculomotor nerve dysfunction seen 
in MFS. Future studies will focus on this interesting aspect. 

In this publication, using various test systems, we demonstrate that C. jejuni strains 
expressing α(2,3)-linked sialylated surface structures are able to bind to Sn. Our finding 
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that GBS-associated strains preferentially bind Sn when compared to enteritis strains 
brings us nearer to an understanding of the mechanisms involved in the formation of 
cross-reactive antibodies in C. jejuni-mediated GBS. 
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Supplemental Table 1A. Penner serotype reference strains

Penner strain HS(a) serotype Origin Strain type Ganglioside-
mimic

LOS class

P1 1 CCUG(b) 10935 Serostrain GM2 C

P2 2 CCUG 10936 Serostrain GM3 C

P3 3 CCUG 10937 Serostrain none E

P4 4 CCUG 10938 Serostrain GD1a, GM1a A

P10 10 CCUG 10943 Serostrain GD3 A

P19 19 CCUG 10950 Serostrain GD1a, GM1a A

P23 23 CCUG 10954 Serostrain none (GA3) B

P36 36 CCUG 10966 Serostrain GM2, GM3 B
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Supplemental Table 1B. GBS/MFS-associated C. jejuni strains

GBS/MFS 
strain

HS 
serotype

Origin Patient diagnose Ganglioside-mimic LOS class

GB1 1 The Netherlands GBS none (GA1) C

GB2 UT(c) The Netherlands GBS GD1a, GM1a A

GB3 19 The Netherlands GBS GD1a, GM1a A

GB4 37 The Netherlands GBS none E

GB5 4, 64 The Netherlands GBS none (GA2) B

MF6 4, 64 The Netherlands MFS GM1b, GD1c B

MF7 35 The Netherlands MFS GM2, GD2, GD3 B

MF8 23, 36 The Netherlands MFS GM2, GD3 B

GB11 2 The Netherlands GBS GD1a, GM1a A

GB13 2 The Netherlands enteritis, family GBS GM1a C

GB14 2 The Netherlands enteritis, family GBS GM1a C

GB15 5, 34 The Netherlands GBS none D

GB16 13, 66 Belgium GBS with 
ophthalmoplegia

GD1c A

GB17 4, 13, 64 The Netherlands GBS GM1b, GD1c, GA1 B

GB18 19 The Netherlands GBS GD1a, GM1a A

GB19 4, 50 The Netherlands GBS with 
ophthalmoplegia

GD1c B

MF20 2 The Netherlands MFS GM1b, GD1c B

GB21 13, 65 The Netherlands GBS GD1a, GM1a A

GB22 13, 64 Netherlands Antilles GBS GD1a, GM1a A

GB23 4, 13, 43 The Netherlands GBS GM2 A

GB24 31 The Netherlands GBS none D

GB25 2 The Netherlands GBS with 
ophthalmoplegia

GM1b, GD1c, GA1 B

GB26 1, 44 The Netherlands enteritis, family GBS GM1b A

GB27 1, 44 The Netherlands enteritis, family GBS GM1b A

GB28 19, 38 Netherlands Antilles GBS GD1a, GM1a A

GB29 NT(d) The Netherlands GBS not yet determined C

GB30 NT The Netherlands GBS not yet determined B

GB31 13, 50 Netherlands Antilles GBS GD1a, GM1a A

GB33 NT The Netherlands GBS not yet determined B

Penner (A) and GBS/MFS-associated (B) C. jejuni strains used in this study. The ganglioside mimicking 
structures on the surface of each strain was identified using mass spectrometry. The LOS class was 
determined using PCR. (a)HS, Heat stable (Penner serotyping system), (b)CCUG, Culture Collection University 
of Göteborg, (c)UT, Untypable , (d)NT, Not tested. 
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Supplemental Table 2.

Observed Ions
(m/z)

Molecular mass
(Da)

Proposed composition

Strain [M-4H]4- [M-3H]3- Observed Calculated1

GB27 1016.0 1354.0 4066.5 4067.3 Neu5Ac1•HexNAc1•Hex4•Hep2•PEtn1•Kdo2•lipid A*

1023.0 1364.0 4095.5 4095.4 Neu5Ac1•HexNAc1•Hex4•Hep2•PEtn1•Kdo2•lipid A

1030.0 1373.0 4123.0 4124.4 Gly1•Neu5Ac1•HexNAc1•Hex4•Hep2•PEtn1•Kdo2•lipid A*

1037.0 1383.0 4152.0 4152.4 Gly1•Neu5Ac1•HexNAc1•Hex4•Hep2•PEtn1•Kdo2•lipid A

1047.0 1396.0 4191.5 4190.4 Neu5Ac1•HexNAc1•Hex4•Hep2•PEtn1•Kdo2•lipid A*

1054.0 1405.0 4219.0 4218.4 Neu5Ac1•HexNAc1•Hex4•Hep2•PEtn1•Kdo2•lipid A

1061.0 1414.0 4246.5 4247.4 Gly1•Neu5Ac1•HexNAc1•Hex4•Hep2•PEtn1•Kdo2•lipid A*

1068.0 1424.0 4275.5 4275.5 Gly1•Neu5Ac1•HexNAc1•Hex4•Hep2•PEtn1•Kdo2•lipid A

Negative ion ESI-MS data and proposed compositions of intact LOS from C. jejuni GB27. 
Electrophoresis-assisted open-tubular liquid chromatography mass spectrometry (EA-OTLC-MS) was 
performed as described by Dzieciatkowska et al. (Biochemistry 2007, 46:14704-14714). The presence of 
NeuAc was also confirmed by the fragment ion at m/z 290 when tandem mass spectrometry was carried 
out on the triply charged ions at m/z 1365 and 1405 (data not shown).
 Isotope-average mass units were used for calculation of molecular mass values based on proposed 
compositions as follows: Hex,162.14; HexNAc, 203.20; Hep, 192.17; Kdo, 220.18; P, 79.98; PEtn, 123.05; 
Neu5Ac, 291.26; Gly, 57.05; C14:0, 210.36; C16:0, 238.41; HexN, 161.16; HexN3N, 160.17; 3‑OH-C14:0, 226.36; H2O, 
18.01. * Lipid A consists of 1 HexN, 1 HexN3N, 3 N-(3-OH-C14:0), 1 O-(3-OH-C14:0), 1O-(C14:0) and 1O-(C16:0). The 
others contain 1 HexN, 1 HexN3N, 3 N-(3-OH-C14:0), 1 O-(3-OH-C14:0) and 2 O-(C16:0).
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Abstract

Molecular mimicry between Campylobacter jejuni sialylated lipooligosaccharides (LOS) 
and human nerve gangliosides can trigger the production of cross-reactive antibodies 
which induce Guillain-Barré syndrome (GBS). To better understand the immune events 
leading to GBS, it is essential to know how sialylated LOS are recognized by the immune 
system. Here, we show that GBS-associated C. jejuni strains bind to human sialoadhesin 
(hSn), a conserved, mainly macrophage-restricted I-type lectin. Using hSn-transduced 
THP-1 cells, we observed that C. jejuni strains with α(2,3)sialylated LOS, including strains 
expressing GM1a- and GD1a-like epitopes, bind to hSn. This observation is of importance, 
as these epitopes are frequently the targets of the cross-reactive antibodies detected 
in GBS patients. Interestingly, the Sn binding domains were not constitutively exposed 
on the surface of C. jejuni. Heat inactivation and the environmental conditions which 
foodborne C. jejuni encounters during its passage through the intestinal tract, such as 
low pH and contact with bile constituents, exposed LOS and facilitated Sn binding. Sn 
binding enhanced bacterial uptake and increased the production of interleukin-6 (IL-6) 
by primary human Sn-expressing monocyte-derived macrophages, compared to control 
conditions where Sn was blocked using neutralizing antibodies or when nonsialylated 
C. jejuni was used. Sn-mediated uptake has been reported to enhance humoral immune 
responses. As C. jejuni strains expressing ganglioside mimics GD1a and GM1a are closely 
associated with GBS, Sn binding might be a determining event in the production of 
cross-reactive antibodies and the development of GBS.
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Introduction

Guillain-Barré syndrome (GBS) is an acute, rapidly progressing, post-infectious neuropathy 
which results in severe muscle paresis. In the acute phase of the development of GBS, auto-
antibodies with specificity for gangliosides are frequently detected in patient serum (1, 2). 
These antibodies bind to ganglioside structures which are enriched on the peripheral nerves, 
resulting in immune-mediated damage and subsequent paralysis (3). Auto-antibodies 
against α(2,3)sialylated carbohydrate epitopes, present in gangliosides GM1a and GD1a, 
are especially detected in GBS patients (3, 4). Although it is accepted that antecedent infec-
tion by microorganisms carrying surface-exposed ganglioside-like structures can lead to 
production of anti-ganglioside antibodies (5-7), the precise immune-processes leading to 
anti-ganglioside antibody production are unclear. Infection with Campylobacter jejuni (C. 
jejuni), an intestinal pathogen, most commonly precedes the production of anti-ganglioside 
antibodies and the development of GBS (7). Lipooligosaccharides (LOS) are a major C. jejuni 
surface antigen that might contain sialylated carbohydrate moieties which are structurally 
identical to the carbohydrate moieties on human gangliosides (8, 9). Depending on gene 
content, phase variation and mutations in the LOS biosynthesis loci, C. jejuni can express 
various ganglioside-like structures (10). The presence of genes involved in sialic acid biosyn-
thesis and transfer is essential for the production of these ganglioside mimics (11). 

Recent studies have demonstrated that sialylation of LOS enhances the infectivity 
of bacteria, elicits enhanced immune responses and induces the production of anti-
ganglioside antibodies leading to GBS (12-15). In particular, sialylated C. jejuni strains are 
more invasive in intestinal epithelial cells than nonsialylated strains (12) and in patients, 
sialylated strains are associated with an increased severity of gastro-enteritis (13). In 
addition, sialylation induces a stronger IgM antibody response in the human host (12, 
13). By generating a Campylobacter sialyltransferase (cst-II) knockout mutant, we were 
able to demonstrate that sialylation of LOS modulates dendritic cell (DC)-mediated T 
helper cell differentiation and enhances DC-driven B-cell proliferation (14, 15). Most im-
portantly, the presence of cst-II in C. jejuni is crucial for the induction of anti-ganglioside 
antibodies (16), which have the capacity to induce peripheral nerve destruction and 
paralysis in rabbits and mice (17, 18). 

Specific recognition of sialylated LOS versus nonsialylated LOS by the host immune 
system can be considered as a crucial step in anti-ganglioside antibody formation. 

Toll-like receptor 4 (TLR-4) interacts with the lipid A component of LOS; however, 
sialylation of the LOS outer core appears to influence TLR-4 signalling, as neuraminidase 
desialylated LOS and cst-II mutant-LOS activate DCs less efficiently leading to reduced 
B-cell proliferation, compared to wild-type strains (15). We hypothesize that other re-
ceptors which specifically bind to sialylated carbohydrates determine sialylated C. jejuni 
LOS recognition. Two members of the sialic acid-binding immunoglobulin-like lectins 
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(siglecs) family have been demonstrated to specifically recognize sialylated C. jejuni LOS. 
A sialic acid-specific interaction with siglec-7 was demonstrated previously (19), and we 
have recently shown that sialoadhesin (Sn, Siglec-1, CD-169) from mice is able to bind to 
C. jejuni LOS in a sialic acid-dependent manner. Interestingly, especially GBS-associated 
C. jejuni strains bound murine Sn (mSn) (20). Sn is a conserved siglec found in both 
rodents and humans, which is mainly expressed on macrophages (21). Therefore, in the 
current study, we aimed to identify whether C. jejuni binds to human Sn (hSn) expressed 
on macrophages, and assessed the consequences of hSn binding on bacterial uptake, 
bacterial survival and macrophage activation. 

Results

C. jejuni binds to human Sn expressed on Sn-transduced THP-1 cells
THP-1 cells transduced with full length hSn cDNA (THP-1-Sn) (21) were used to identify 
whether C. jejuni interacts with hSn. Flow cytometric analysis confirmed high levels of hSn 
membrane expression on THP-1-Sn cells (MFI = 1526.3 ± 24.7; n = 3); whereas hSn expres-
sion was low on untransduced THP-1 cells (MFI = 6.7 ± 0.2; n = 3; Fig. 1A). To assess whether 
C. jejuni binds to hSn, THP-1-Sn cells and control THP-1 cells were incubated with heat 
inactivated FITC-labelled C. jejuni strain GB11, which was previously shown to bind mSn 
(20). Flow cytometric analysis revealed a strong association of GB11-FITC with THP-1-Sn 
cells (MFI = 81.2 ± 7.3; n = 3) while virtually no FITC signal was detected on THP-1 cells (MFI 
= 3.5 ± 0.3; n = 3; Fig. 1B). To visualize the binding of C. jejuni strain GB11 to hSn, THP-1-Sn 
and control THP-1 cells incubated with C. jejuni-FITC were cytospun onto glass slides, fixed 
and stained with anti-hSn-PE. Fluorescence microscopy revealed a clear co-localization of 
C. jejuni strain GB11 with hSn on THP-1-Sn cells (Fig. 1C, upper panel), whereas almost no 
interaction between GB11 and control THP-1 cells was observed (Fig. 1C, lower panel). 

Binding of C. jejuni to THP-1-Sn cells is sialic acid- and Sn-dependent
To determine whether the binding of C. jejuni to hSn was sialic acid-specific, we incu-
bated THP-1-Sn cells with heat-inactivated, FITC-labelled wild type C. jejuni strain GB11 
or FITC-labelled bacteria from a previously generated sialic acid GB11 knockout mutant 
(denoted GB11∆cst-II) (16). Flow cytometric analysis demonstrated that 82.2% of THP-1-
Sn cells bound GB11, whereas only 0.4% bound GB11∆cst-II, indicating that the presence 
of sialic acid was crucial for hSn binding (Fig. 1D). To confirm that GB11 bound to Sn 
and not to other cell-surface proteins, THP-1-Sn cells were treated for 15 min with an 
antibody against hSn before addition of the bacteria. Pretreatment with the anti-hSn 
antibody almost completely neutralized the binding of GB11 to THP-1-Sn cells, reducing 
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the number of positive cells to 2.9% (Fig. 1D). Pre-incubation with an isotype control 
antibody had no effect on Sn-binding (Fig. 1D). 

Ganglioside mimic-specific interaction of C. jejuni with human Sn
Using an ELISA we previously demonstrated that mSn binds to C. jejuni strains which 
express terminal α(2,3)-linked sialic acid residues, as found in gangliosides such as GM3, 
GD1a, GM1b and GT1b (20, 22). To identify whether hSn has a similar binding profile 
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Figure 1. C. jejuni interacts with human Sn expressed on THP-1-Sn cells in a sialic acid- and Sn-dependent 
manner.  A. Confirmation of Sn expression on THP-1-Sn cells. Flow cytometric analysis of Sn expression on 
THP-1 and THP-1-Sn cells, using an anti-hSn-PE antibody or isotype control antibody. Events indicate the FL-2 
signal within the live cell population of unstained cells (filled grey curves), isotype control stained cells (dotted 
line curve) and anti-hSn-PE stained cells (black line curve). B. Flow cytometric analysis of the interaction of heat 
inactivated FITC-labelled C. jejuni strain GB11 incubated with THP-1 or THP-1-Sn cells for 2 h. Events indicate 
the FL-1 signal within the living cell population in the absence (filled grey curves) or presence of FITC-labelled 
GB11 (black line curve). C. Immunofluorescent staining of hSn on THP-1 and THP-1-Sn cells incubated with heat 
inactivated FITC-labelled C. jejuni strain GB11 for 2 h, using an anti-hSn-PE antibody. C. jejuni is shown in green, 
hSn in red. D. Flow cytometric analysis of the interaction of FITC-labelled C. jejuni strains GB11 and GB11ΔcstII 
with THP-1-Sn cells, in the presence or absence of hSn blocking using an anti-hSn antibody or isotype control 
antibody, respectively. The percentages of cells binding C. jejuni within the living cell populations are indicated. 
E. Binding of a panel of FITC-labelled, heat inactivated C. jejuni strains with known ganglioside mimicking 
structures to THP-1-Sn cells. The cells were either untreated (white bars), or treated with an antibody against 
hSn (grey bars) or an isotype control antibody (black bars). Living cells were gated and used for analysis. 
Results are the mean values from one representative experiment ± the SD of triplicate experiments.  Results 
represent the data from one experiment that was repeated at least two times, with means ± SD of triplicate 
measurements; * p < 0.05 (one-way ANOVA). 
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to mSn, the binding of C. jejuni strains with known ganglioside mimicking structures 
to hSn was tested using THP-1-Sn cells. In agreement with the mSn binding capacities, 
C. jejuni strains GB2, GB11, GB26 and GB31 positively bound hSn, and C. jejuni strains 
GB1, GB11∆cst-II and GB19 did not bind hSn (Fig. 1E) (20). Unexpectedly, hSn bound 
the C. jejuni strains GB13 and GB14 which were not recognized by mSn (Fig. 1E). GB13 
and GB14 both express GM1a-like LOS (11). The GM1a structure does not contain a 
terminally-linked sialic acid residue, but instead contains an α(2,3)-linked sialic acid at-
tached to an internal galactose of the LOS outer core, and hSn can apparently interact 
with this internal sialic acid. The enteritis-associated C. jejuni reference strain 11168 also 
has GM1a-ganglioside mimicry. Investigation of the hSn binding capacity of this strain 
indicated that 11168 could bind to THP-1-Sn cells; however, at a relatively low level 
compared to strains GM13 and GM14 (Fig. 1E). Similarly to GB11∆cst-II, GB2∆cst-II did 
not bind to hSn, again demonstrating that an absence of sialic acid in the LOS prevents 
hSn binding (Fig. 1E). It should be noted that THP-1-Sn cells were also incubated with an 
antibody against human Sn for 15 min prior to addition of the bacteria, as a control for 
Sn-specific binding. Pre-incubation with anti-hSn antibody significantly reduced the Sn 
binding capacity of all strains, as illustrated by a reduction in cell-associated fluorescence 
intensity to background levels (p ≤ 0.05; one-way ANOVA); however, an isotype control 
antibody did not affect cell-associated fluorescence (Fig. 1E). To determine if the strains 
were adequately labelled, the FITC-labelled bacteria were analysed by flow cytometry. 
Although there was slight variation in the labelling intensities, the MFI was generally 
high (MFI = 1053 ± 170; Supplemental Fig. 1) 

Growth conditions determine ganglioside mimic exposure and Sn binding 
In the previous experiments, heat inactivated bacteria grown on BA-plates were used to 
determine Sn-dependent binding. The binding of untreated bacteria grown on BA-plates 
to THP-1-Sn cells was also assessed and, surprisingly, no binding was observed. Cholera 
toxin (CT) strongly binds to ganglioside GM1 (23). To determine whether the ganglioside 
mimics were adequately exposed on the bacterial surface, living and heat inactivated bac-
teria from the GB11 (GM1 positive) and GB11Δcst-II (GM1 negative) strains were incubated 
with CT-biotin and streptavidin-FITC, and analysed by flow cytometry. Indeed, CT-biotin 
was able to bind to strain GB11 when the bacteria were heat inactivated; however, the 
binding was severely reduced when the strain was left untreated (Fig. 2A). As expected, 
CT-biotin did not bind to GB11Δcst-II, which lacks a GM1-like structure.

We investigated whether the exposure of bacteria to similar environmental conditions 
as they would encounter after ingestion, such as low pH or bile salts in the stomach and 
intestine respectively, would influence the exposure of ganglioside mimics on the bacte-
rial cell surface. Therefore, C. jejuni strain GB11 was cultured on BA-plates, FITC-labelled, 
incubated for one h in either PBS pH 3.0 or PBS pH 7.0 containing 0.1 % DOC, then the 
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binding to THP-1-Sn cells was analyzed using FACS. Compared to untreated bacteria, 
incubation at pH 3.0 and, to even greater extent, incubation in 0.1% DOC enhanced the 
bacterial ability to bind THP-1-Sn cells (Fig. 2B). Furthermore, when the bacteria were 
freshly cultured on commercial CSM-plates which contain 0.1% DOC, Sn-specific bind-
ing of the bacteria to THP-1-Sn cells was also observed (Fig. 2C). In order to localize the 
exposure of ganglioside mimics on the bacterial cell surface, untreated GB11 cultured 
on BA-plates, GB11 cultured on BA-plates and heat-inactivated, and CSM-plate cultured 
GB11 were incubated with CT-biotin, then subsequently with streptavidin-conjugated 
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Figure 2. Exposure of ganglioside mimics on the surface of C. jejuni. A. Flow cytometric analysis of the 
expression of ganglioside mimics on the surface of C. jejuni. Bacteria were either heat inactivated or left 
untreated, then subsequently incubated with CT-biotin and streptavidin-FITC. B. Flow cytometric analysis 
of the binding of FITC-labelled C. jejuni strain GB11 to THP-1-Sn cells. Bacteria grown on BA-plates were 
untreated, incubated for 1 h in PBS pH 3.0 or PBS pH 7.0 containing 0.1% DOC, or heat inactivated. C. Flow 
cytometric analysis of the binding of FITC-labelled C. jejuni strain GB11 to THP-1-Sn cells. Bacteria were 
grown on either BA-plates or CSM-plates. THP-1-Sn cells were left untreated (white bars) or pretreated to 
block Sn binding using an anti-hSn antibody (grey bars). D. Cryo-EM visualization of C. jejuni strain GB11 
grown on BA-plates and untreated (a), grown on BA-plates and heat inactivated (b), or grown on CSM-
plates and untreated. The bacteria were incubated with CT-biotin followed by streptavidin-conjugated 
quantum dots. 
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quantum dots and visualized by cryo-electron microscopy (cryo-EM). Quantum dots 
were visible on the heat inactivated and CSM-plate grown bacteria, and covered the 
surface of the bacteria (Fig. 2D). Interestingly, no quantum dots were present on the 
surface of most of the BA-plate grown, non-heat inactivated bacteria. 

IFN-α and C. jejuni LOS induce the expression of Sn by monocyte-derived 
macrophages
To study Sn-dependent binding and internalization, and the functional consequences of 
Sn binding in a more biologically relevant setting, we used Sn-expressing primary human 
macrophages. As it has been demonstrated that Sn expression can be induced on CD14+ 
monocytes by stimulation with IFN-α (21), we investigated whether IFN-α induced expres-
sion of Sn on human monocyte-derived macrophages (MDM). After two days of culture 
with IFN-α, MDMs exhibited expression of Sn (MFI = 68.4 ± 4.3; n = 3); whereas non-IFN-α 
stimulated MDMs remained negative for Sn (MFI = 3.9 ± 0.5; n = 3; Fig. 3A). We also tested 
if C. jejuni LOS could directly induce expression of Sn by MDMs, and therefore whether 
LOS could potentially modulate its own recognition. Flow cytometric analysis revealed 
that GB11 LOS potently induced the expression of Sn by MDMs, at a similar level as IFN-α 
treatment (Fig. 3B). The induction of Sn by C. jejuni LOS was not sialic acid-dependent, 
as treatment with nonsialylated LOS isolated from strain GB11Δcst-II or treatment with 
purified E. coli LPS resulted in similar levels of Sn expression in MDMs (Fig. 3B) 

Binding to Sn enhances the uptake of C. jejuni by MDMs
As primary monocyte-derived macrophages express many different pattern recogni-
tion molecules, which may not all be present on THP-1 cells, we assessed whether the 
binding of C. jejuni to hSn on IFN-α-induced primary MDMs (Sn+MDMs) was similar to 
THP-1-Sn cells. The Sn-specific binding of a selection of C. jejuni strains to Sn+MDMs 
was determined. In particular, three strains (GB11, GB26 and GB31) that positively 
bound THP-1-Sn cells and two strains (GB1 and GB11∆cst-II) that did not bind THP-1-
Sn cells were included in the flow-cytometric binding assay. All of the C. jejuni strains 
tested showed an interaction with Sn+MDMs. However, the fluorescence intensities of 
Sn+MDMs incubated with strains GB11, GB26 and GB31 were higher than strains GB1 
and GB11∆cst-II (Fig. 3C), indicating that increased numbers of GB11, GB26 and GB31 
were associated with each individual Sn+MDM cell. Pretreatment of Sn+MDMs with an 
antibody against hSn significantly reduced the binding of strains GB11, GB26 and GB31 
(p ≤ 0.05; one-way ANOVA), to similar levels as Sn+MDMs incubated with strains GB1 and 
GB11∆cst-II. Pretreatment with the hSn antibody had no significant effect on the interac-
tion of Sn+MDMs with strains GB1 and GB11∆cst-II. Additionally, pretreatment with an 
isotype control antibody did not influence the interaction of Sn+MDMs with any C. jejuni 
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strain, indicating that the enhanced interactions of strains GB11, GB26 and GB31 with 
Sn+MDMs, compared to strains GB1 and GB11∆cst-II, were hSn-specific.
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Figure 3. Sn-specific binding of sialylated C. jejuni strains results in enhanced uptake by Sn+MDMs. Human 
monocyte-derived macrophages were either untreated (MDMs) or treated with IFN-α to induce expression 
of Sn (Sn+MDMs), then Sn expression and the capacity to bind and internalize C. jejuni were quantified. 
FITC-labelled, heat inactivated C. jejuni stains were incubated with the cells for 2 h prior to flow cytometric 
analysis. Living cells were gated and used for analysis. A. Flow cytometric analysis of the expression of Sn on 
human MDMs and Sn+MDMs in unstained cells (filled grey curve), and cells stained with anti-hSn-PE (black 
line curve) or a PE-labelled isotype control antibody (dotted line curve). B. Flow cytometric analysis of the 
expression of Sn on untreated human MDMs or MDMs incubated for 48 h with either IFN-α (500 U/ml), E. 
coli LPS (10 ng/ml), C. jejuni GB11 or GB11ΔcstII LOS (10 ng/ml), and subsequently stained with anti-hSn-PE. 
C. Interaction of FITC-labelled C. jejuni strains containing known ganglioside mimicking structures with 
Sn+MDMs which had been untreated (white bars), stained with anti-hSn-PE (grey bars) or stained with an 
isotype control antibody (black bars). Results represent data from one experiment that was repeated at least 
one time. Means ± SD of triplicate measurements are shown; * p < 0.05 (one-way ANOVA). D. Internalization 
of C. jejuni strains by Sn+MDMs. Sn+MDMs were incubated with FITC-labelled bacteria as described in C., then 
treated with trypan blue prior to flow cytometric analysis to discriminate between external and internalised 
bacteria; * p < 0.05 (one-way ANOVA). 
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To determine whether Sn-binding is a prerequisite to bacterial endocytosis, the extra-
cellular bacteria in the experiment described above were quenched using trypan blue, 
and the cells were reanalysed using flow cytometry. The MFI of Sn+MDMs incubated with 
hSn binding strains GB11, GB26 and GB31 was higher than Sn+MDMs incubated with the 
non-hSn-binding strains GB1 and GB11∆cst-II (Fig. 3D), indicating that Sn binding leads 
to an increased uptake of bacteria. In agreement with this hypothesis, preincubation 
with anti-Sn significantly decreased bacterial uptake (p≤0.05; one-way ANOVA). There 
was no difference in the interaction of untreated and isotype control antibody-treated 
cells, confirming that the increased internalization of strains GB11, GB26 and GB31 was 
Sn-dependent. To assess the quenching efficiency of trypan blue, FITC-labelled C. jejuni 
strains were analysed by flow cytometry before and after incubation with trypan blue. 
Trypan blue severely reduced the fluorescent signal of all strains (Supplemental Fig. 2).

Sn-specific binding enhances phagocytosis of living C. jejuni by Sn+MDMs
To further assess phagocytosis using live, unstained bacteria, we performed gentamicin 
exclusion assays using Sn+MDMs which had been incubated for 3 h with fresh, CSM-plate 
grown GB11 or GB11Δcst-II. Sn-specific binding significantly increased the uptake of C. 
jejuni by untreated cells, compared to cells pretreated with anti-Sn antibody (p ≤ 0.05; 
two-tailed t-test; Fig. 4). The survival of C. jejuni in Sn+MDMs was also assessed, and we 
observed that all of the bacteria were dead after 24 h, indicating that Sn binding does not 
result in altered intracellular trafficking or escape of C. jejuni from lysosomal degradation.
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Figure 4. Sn-mediates the phagocytosis C. jejuni. Sn+MDMs were untreated or pretreated with an antibody 
against hSn, then incubated with C. jejuni strains GB11 or GB11ΔcstII for 3 h. The gentamicin exclusion assay 
was used to quantify the number of internalized bacteria. Results represent data from one experiment that 
was repeated at least two times. Means ± SEM of triplicate measurements are shown; * p <0.05 (t-test). 
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Sn binding elevates production of the cytokine IL-6 by Sn+MDMs
To assess if the interaction of C. jejuni with Sn affected cytokine production, Sn+MDMs 
were incubated for 6 h with wild type GB11 or GB11∆cst-II, then the levels of six cyto-
kines were measured in the cell culture supernatants. The cytokine IL-6 was specifically 
elevated in a Sn- and sialic acid-dependent manner (Fig. 5A). High levels of IL -8 and 
TNF-α were also induced by C. jejuni (19867 ± 3683 and 19704 ± 4709 pg/ml, respec-
tively); however, the induction of these cytokines was not Sn-dependent (Fig. 5B and C). 
Other cytokines, such as IL-1b, IL10 and IL-12p70 were also induced in a Sn-independent 
manner to levels between ~100-400 pg/ml (data not shown). 

Discussion

In this study, we demonstrated that C. jejuni strains isolated from patients with GBS can 
bind to Sn expressed on primary human macrophages, via the presence of sialic acid 
residues in the bacterial LOS. Using Sn-transduced THP-1 cells and primary human mac-
rophages, we showed that C. jejuni strains, in particular those containing α(2,3)-linked 
sialic acid residues, as present in the gangliosides GM1a, GD1a, GM1b and GM3, bind 
to hSn. Ganglioside-like structures were not constitutively exposed on the bacterial 
surface, but required particular growth conditions or treatments. Direct growth of the 
bacteria on media containing DOC, or treatment of C. jejuni initially grown on BA-plates 
by heat-inactivation, incubation at pH 3.0 or exposure to DOC was necessary for Sn 
binding. In primary human macrophages, Sn binding resulted in enhanced bacterial 
uptake and increased cytokine release. Regardless of Sn binding, internalized bacteria 

-
untre

ated

anti-
sn

iso
type

untre
ated

anti-
sn

iso
type

0

2

4

6

8

IL
-6

 µ
g/

m
l

GB11

GB11Δcst-II

-
untre

ated

anti-
sn

iso
type

untre
ated

anti-
sn

iso
type

0

10

20

30

IL
-8

 µ
g/

m
l

-
untre

ated

anti-
sn

iso
type

untre
ated

anti-
sn

iso
type

0
10
20
30
40

TN
F-

al
p

ha
 µ

g/
m

l

GB11 GB11Δcst-II
GB11Δcst-IIGB11

Figure 5.

A                                      B                                     C   

Figure 5. Production of the cytokine IL-6 is elevated in C. jejuni-treated Sn+MDMs. Sn+MDMs were 
untreated or pretreated with a hSn antibody or isotype control antibody, incubated for 6 h with C. 
jejuni strains GB11 or GB11∆cstII, then IL-6 (A), IL-8 (B) and TNF-alpha (C) production were measured. 
The cytokine levels in the cell supernatants were quantified using a cytometric bead array human 
inflammatory cytokine kit. The plots display the mean value of triplicate measurements (indicated by the 
line) and the range values in one representative experiment that was repeated at least two times.
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were killed within 24 h, suggesting that Sn binding does not enable C. jejuni to escape 
lysosomal degradation. 

It has previously been reported that mSn has a preference for binding terminal α(2,3)-
linked sialic acid, which is present on purified gangliosides such as GT1b, GD1a and 
GM3. (22). We recently demonstrated that the ganglioside-like structures present in the 
LOS on the surface of C. jejuni have similar binding properties to purified gangliosides 
(20). Using hSn in this study, we showed that internal α(2,3)-linked sialic acids, as present 
in GM1a-like LOS, as well as terminal α(2,3)-linked sialic acids can bind to hSn. This is of 
interest as C. jejuni strains carrying α(2,3)-sialylated LOS structures, especially the strains 
expressing GM1a- and GD1a-like LOS, are associated with GBS. It should be noted that 
the enteritis-associated C. jejuni reference strain 11168 could also bind Sn; however, at 
relatively low levels, despite the presence of GM1a-ganglioside mimicry. These data 
imply that non-GBS C. jejuni strains with the GM1a mimic carry additional structures that 
hinder binding to Sn. In agreement with this observation, it has been demonstrated that 
ganglioside complexes can attenuate siglec binding. (24).

Our finding that specific microenvironments are crucial for the binding of C. jejuni to 
Sn is of particular importance. In this study, both heat inactivated and living bacteria 
were used to assess Sn-dependent bacterial binding and uptake. An association with Sn 
could not be detected when living bacteria grown on standard BA-plates were tested, 
whereas heat inactivation resulted in Sn binding. This discrepancy was explained by 
exploring LOS exposure on living and heat inactivated C. jejuni using biotinylated-CT, 
which has a high binding affinity for surface-exposed GM1. In agreement with the 
observed Sn binding capacity, FACS analysis and cryo-EM microscopy revealed that 
GM1 was extensively exposed when C. jejuni were heat inactivated. The fact that GBS 
patients often have antibodies against C. jejuni LOS indicates that these structures are 
exposed during the course of infection. Therefore, we reasoned that the outer surface of 
C. jejuni is modified during the passage of food borne C. jejuni through the stomach and 
intestine, for example by losing the capsular layer or due to conformational changes in 
surface structures. Indeed, when living bacteria were incubated at low pH or in buffer 
containing the bile constituent DOC, or when the bacteria were grown on culture plates 
containing DOC, the LOS were exposed and able to bind Sn. Culture of C. jejuni in the 
presence of DOC may also enhance LOS expression; however, microarray based analysis 
has indicated that the expression of genes involved in LOS biosynthesis or modification 
are not upregulated in the presence of DOC (25).  

We further explored the possible role of Sn in GBS by studying primary human mac-
rophages. Using CHO cells transfected with mSn, we previously demonstrated that Sn is 
sufficient for the binding of ganglioside-like structures, without the need for additional 
co-receptors” (20). However, unlike most siglecs, Sn lacks intracellular signaling motifs 
thus most likely cooperates with other surface molecules. Our data clearly indicates that 
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Sn-binding leads to enhanced phagocytosis of C. jejuni. This is in line with a previously 
described role for Sn in microbial uptake. Neisseria meningitides, HIV and porcine repro-
ductive and respiratory syndrome virus (PRRSV) are internalized upon Sn binding in a 
Sn-specific manner (21, 26, 27). These observations raise questions regarding the conse-
quences of Sn-mediated phagocytosis. Sn binding may play a role in redirecting C. jejuni 
or the LOS to specific intracellular compartments. For example, Sn accompanies PRRSV 
from the cell surface to the inside of the cell just beneath the plasma membrane, after 
which the virus can be detected in early endosomes (27). Regardless of Sn-dependency, 
the uptake of C. jejuni by macrophages resulted in bacterial death within 24 h, indicating 
that Sn-mediated uptake of C. jejuni does not enable the bacteria to escape lysosomal 
degradation in macrophages. 

Alternatively, Sn-mediated uptake of C. jejuni may affect the macrophage activation 
state and cytokine release, leading to altered innate immunity. Indeed, Sn-mediated C. 
jejuni uptake enhanced the release of IL-6 by primary macrophages. Moreover, in col-
laboration we have recently shown that sialylation of LOS increased the production of 
type I interferons in mice (28). These data imply that Sn-mediated uptake may determine 
the quality of the innate immune response to C. jejuni. 

Sn may also indirectly affect antigen presentation to other cells of the immune system, 
via its selective expression pattern on specific immune cells. Sn is mainly expressed on 
tissue-resident macrophages found in the intestine, marginal zone of the spleen and 
in the sub-capsular sinus of lymph nodes (29). One function of these macrophages is 
the presentation of antigenic debris to follicular DCs and B-cells (30). As such, it can 
be envisaged that increased Sn-mediated binding and/or phagocytosis may lead to 
the presentation of more C. jejuni fragments, resulting in increased immune activation. 
Evidence for a direct role of Sn-mediated uptake in antibody production is provided 
by a recent immunization study in pigs, which demonstrated that direct targeting of 
the immunizing protein to Sn resulted in a more rapid and robust induction of specific 
IgM and IgG immune responses, compared to immunization with the protein alone (31). 
Further study is required to confirm whether Sn-dependent uptake leads to C. jejuni 
antigen trapping and presentation, resulting in cross-reactive anti-ganglioside antibody 
production.

In conclusion, this study demonstrates that GBS-associated sialylated C. jejuni strains 
are able to bind to hSn, which results in enhanced cytokine production and increased 
uptake of the bacteria by monocyte-derived macrophages. Sn-mediated differentiation 
between C. jejuni strains on the basis of ganglioside mimic expression may be an impor-
tant initial event in the production of anti-ganglioside antibodies and the development 
of GBS.
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Experimental procedures

Bacterial strains
A panel of 11 well-characterized C. jejuni strains with known ganglioside-like structures 
was used in this study (Supplemental Table I) (11, 16). Eight strains isolated from GBS 
patients were selected, based on their ganglioside mimic-specific binding properties to 
mSn, as previously demonstrated using an ELISA (20). To verify sialic acid-specific bind-
ing, two sialic acid transferase (cst-II) knockout mutants, GB2Δcst-II and GB11Δcst-II (16), 
and the reference C. jejuni strain NCTC 11186 (32) were included. C. jejuni strains were 
routinely grown from -80ºC stocks and cultured on Colombia blood agar (BA) plates (BD 
Biosciences, Alphen aan den Rijn, The Netherlands), as previously described (20). For the 
cryo-EM experiments and gentamicin exclusion assays, bacteria were grown for one day 
on Campylobacter blood-free, charcoal based, selective medium agar (CSM) plates (BD 
Biosciences) which contain 0.1% deoxycholate (DOC).

FITC labelling of C. jejuni strains
C. jejuni cultures were grown for two days, harvested, washed with PBS and incubated 
for 1 h with 5 µl/ml FITC (100 mg/ml stock solution in DMSO) with shaking. Unbound 
FITC was removed by washing extensively with PBS, the bacteria were heat inactivated 
for 45 min at 56ºC in PBS containing 2 mM MgCl2, then the bacteria were stored in 10% 
glycerol broth at -80ºC. Before use in binding experiments, the bacteria were thawed, 
washed and the optical density at 600 nm (OD600) was adjusted to 1 in PBS (for C. jejuni, 
OD 1 ~ 2.5 x 109 CFU/ml). In some experiments, the bacteria were used directly after 
FITC-labelling, or incubated for 1 h in either PBS pH 3.0 or PBS pH 7.0 containing 0.1% 
DOC (Sigma). The fluorescence intensities of FITC-labelled C. jejuni were assessed using 
a FACSCalibur flow cytometer (BD Biosciences).

Culture of THP-1 cells and preparation of human Sn-expressing monocyte-derived 
macrophages 
THP-1 (a human monocytic leukaemia cell line) and THP-1 cells transduced with full 
length human Sn cDNA (TSn or THP-1-Sn), were maintained as previously described 
(21). To prepare Sn-expressing monocyte-derived macrophages (Sn+MDMs), human 
peripheral blood mononuclear cells were isolated from buffy coats by density gradient 
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centrifugation using Lymphoprep (Axis shield, Oslo, Norway), and CD14+ monocytes 
were isolated by positive selection using CD14-microbeads (Miltenyi Biotec, Utrecht, 
The Netherlands), according to the manufacturer’s protocol. To obtain monocyte-
derived macrophages (MDMs), the cells were grown on low attachment flasks in RPMI-
1640 containing 10% human AB serum (HS), penicillin/streptomycin, 2 mM L-glutamine 
(growing medium), and 25 ng/ml human macrophage colony-stimulating factor (M-CSF; 
Invitrogen, Breda, The Netherlands) for 5 days. To obtain Sn+MDMs, the media was re-
freshed with growing medium containing 500 U/ml IFN-α2a (PBL, Piscataway, USA) and 
the cells were cultured for 2 days. Sn was also induced by culturing MDMs for 2 days in 
media containing either E. coli LPS (10 ng/ml; Sigma-Aldrich, Zwijndrecht, Netherlands), 
or LOS isolated from C. jejuni GB11 or GB11Δcst-II LOS (10 ng/ml), which was purified as 
previously described (15).

Expression of Sn on THP-1 cells and MDMs 
To determine the expression of Sn on THP-1, THP-1-Sn, MDMs or Sn+MDMs, the cells 
were incubated with PE-labelled mouse IgG1 κ anti-human CD169 monoclonal antibody 
(anti-hSn-PE; BioLegend, Uithoorn, The Netherlands) for 45 min at 4ºC, fixed in para-
formaldehyde (PFA) and analysed using the FACSCalibur flow cytometer. A PE-labelled 
mouse IgG1 κ isotype antibody (BioLegend) was used as a control for background stain-
ing.

Binding of C. jejuni to Sn-transfected and wt THP-1 cells
THP-1 and THP-1-Sn cells were harvested, washed and resuspended in RPMI-1640 media 
containing 1% FCS. FITC-labelled C. jejuni were added at a cell:bacteria ratio of 1:100 
and incubated for 2 h at 37°C in 5% CO2. The cells were washed to remove unbound 
bacteria, fixed in 2% PFA and analysed using a FACSCalibur flow cytometer. To discrimi-
nate between living and dead cells, the nuclear stain 7-amino-actinomycin D (7-AAD; BD 
Biosciences) was added to the cells immediately before FACS analysis. 

For the Sn-blocking experiments, the cells were incubated with anti-hSn-PE antibody 
for 15 min prior to the addition of bacteria; PE-labelled mouse IgG1, κ isotype control 
antibody (BioLegend) was used as a control for Sn-specific blocking. For immunofluo-
rescent microscopy, the cells were incubated with FITC-labelled bacteria, stained with 
anti-hSn-PE, cytospin preparations were made and the expression of Sn was evaluated 
using an Olympus IX51 microscope and CellF imaging software (Olympus, Zoeterwoude, 
Netherlands). 

Ganglioside mimic exposure on C. jejuni
C. jejuni strains GB11 and GB11Δcst-II were grown on BA plates either left untreated 
or heat inactivated and incubated with biotinylated cholera toxin (CT-biotin)(Sigma-
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Aldrich) diluted 1:100. The cells were subsequently incubated with streptavidin-FITC 
diluted 1:100, washed, fixed using 2% PFA and analysed with a FACSCalibur flow cytom-
eter.

Cryo-electron microscopy 
C. jejuni strain GB11 was either grown on BA plates or on DOC containing CSM-plates. 
Bacteria were left untreated or heat inactivated and incubated CT-biotin diluted 1:100; 
then subsequently labeled with streptavidin-conjugated quantum dots 525 (1:50 vol/
vol; (Invitrogen). The samples were vitrified using a Vitrobot Mark IV (FEI) at RT and 100% 
humidity, blotted for 2 sec at blot force 10 using filter paper and then plunged into a liq-
uid ~2:1 mixture of liquid ethane and propane, which was cooled using liquid nitrogen. 
The vitrified samples were mounted in a Gatan 626 high tilt cryo holder and imaged 
using a Tecnai F20 TEM at 200 kV (FEI). The images were recorded with post-column 
energy filter 2k x 2k CCD cameras (GIF 2002; Gatan GmbH) in zero-loss mode using a slit 
width of 20 eV.

Binding and uptake of C. jejuni by Sn-expressing MDMs
Sn+MDMs were harvested from low attachment culture plates using Cell Dissociation 
Buffer (Invitrogen), washed, resuspended in RPMI-1640 containing 1% HS and the bind-
ing of C. jejuni to Sn+MDMs was determined as described for THP-1 cells. To distinguish 
between internalized and external bacteria, the external bacteria were quenched with 
0.2 % trypan blue (MP Biomedicals, Illkirch, France) 20 min prior flow cytometric analysis. 

Gentamicin exclusion assay
Human CD14+ monocytes were grown on 24-wells in growing medium containing 25 
ng/ml M-CSF. After 5 days, media was changed to media lacking penicillin/streptomycin, 
containing 500 U/ml IFN-α2a (PBL) and cells were grown for another 2 days. Cells were 
either left untreated or preincubated for 15 min with anti-hSn-PE antibody. C. jejuni 
harvested from overnight cultures on CSM-plates were added at an MOI of 50, incubated 
for 3 h, where after the cells were washed and the media was replaced with growth 
media containing 200 µg/ml gentamicin. After 2 h, cells were washed and lysed in HBSS 
containing 0.2% Triton X-100. Serial dilutions were prepared and plated on BA-plates. 
After overnight culture under microaerophilic conditions, the number of colonies were 
counted.

Cytokine measurements
Sn+MDMs cultured in 96-well plates were either untreated, or pretreated with anti-hSn-
PE or an isotype control antibody for 15 min, then incubated with heat inactivated C. 
jejuni strains at a cell:bacteria ratio of 1:100 in growing medium lacking penicillin/strep-
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tomycin. The supernatants were harvested after 6 h and cytokine levels were measured 
using a cytometric bead array (CBA) Human Inflammatory Cytokine Kit (BD Biosciences), 
according to the manufacturer’s instructions. 

Statistical analysis
One-way ANOVA (SPSS software) and two-tailed t-tests (GraphPad Prism software) were 
used for statistical analysis, as indicated.
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C. jejuni strain Disease association Ganglioside mimic 

GB1 GBS none (GA1)

GB2 GBS GD1a, GM1a

*GB2∆cstII  - GA1, GA2, GA3

GB11 GBS GD1a, GM1a

*GB11∆cstII  - GA1, GA2, GA3

GB13 GBS GM1a

GB14 GBS GM1a

GB19 GBS GD1c

GB26 GBS GM1b

GB31 GBS GD1a, GM1a

11168 enteritis GM1, GM2

Supplemental Table 1. �C. jejuni strains used in this study. The ganglioside mimicking structures on the 
surface of each  C. jejuni strain were identified by mass spectrometry and have been previously described 
(11, 16). * Campylobacter sialic acid transferase (cstII) knockout mutants of strains GB2 and GB11.
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Supplemental Figure 1. Flow cytometric analysis of FITC-labeled C. jejuni strains. In order to determine if 
C. jejuni strains were labeled adequately, FITC-labeled C. jejuni strains were analyzed using flow cytometry.
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Abstract

Due to molecular mimicry, Campylobacter jejuni lipooligosaccharides can induce a 
cross-reactive antibody response to nerve gangliosides, which leads to Guillain-Barré 
syndrome (GBS). Cross-reactive antibodies to ganglioside GQ1b are strongly associated 
with oculomotor weakness in GBS and its variant, Miller Fisher syndrome (MFS). Antigen 
recognition is a crucial first step in the induction of a cross-reactive antibody response, 
and it has been shown that GQ1b-like epitopes expressed on the surface of C. jejuni 
are recognized by sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7). We aimed 
to determine the epitope specificity of C. jejuni binding to Siglec-7, and correlate the 
outcome to disease symptoms in GBS and MFS patients. Using a well-defined GBS/
MFS-associated C. jejuni strain collection, which included three sialic acid knockout 
strains, we found that Siglec-7 exclusively binds to C. jejuni strains that express terminal 
disialylated ganglioside mimics. When serological and diagnostic patient records were 
correlated with the Siglec-7 binding properties, we observed an association between 
Siglec-7 binding and the presence of anti-GQ1b antibodies in patient serum. In addition, 
Siglec-7 binding was associated with oculomotor weakness in GBS and MFS patients. 
Lipooligosaccharides-specific binding of C. jejuni to Siglec-7 may be an initiating event 
in immune recognition and presentation, and lead to anti-GQ1b antibody production 
and the development ocular weakness in GBS or MFS. 
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Introduction

Guillain-Barré syndrome (GBS) is an antibody-mediated autoimmune disease of the 
peripheral nerves, which mainly arises after gastrointestinal infection (1-3). GBS is char-
acterized by rapidly progressing acute ascending paralysis, which can result in complete 
systemic paralysis and the need for artificial respiration (4). Miller Fisher syndrome (MFS) 
is a restricted variant of GBS, characterized by paralysis of the eye muscles (oculomotor 
weakness), lack of coordination and loss of tendon reflexes, without limb weakness (5). 
GBS-MFS overlap syndrome may also occur in patients who display a combination of 
limb and oculomotor weakness (6, 7). 

Campylobacter jejuni is the predominant infection preceding the onset of weakness 
and paralysis in GBS and MFS (8, 9). C. jejuni strains isolated from GBS patients frequently 
express lipooligosaccharide (LOS) structures that contain glycan moieties which mimic 
gangliosides from the human peripheral nervous system (10). In these patients and 
in animal models, the antibodies raised during the immune response to C. jejuni LOS 
can cross-react with various gangliosides and lead to complement-dependent nerve 
destruction and paralysis (11, 12). 

Guillain-Barré is a syndromic disease entity with a heterogeneous presentation of 
symptoms (2). Ganglioside mimicry in C. jejuni is strongly associated with the specificity 
of the cross-reactive antibody response and the clinical neurological phenotype. C. jejuni 
can express monosialylated and disialylated LOS with α(2,3)- or α(2,3/2,8)-linked sialic 
acid residues, respectively. Monosialylated C. jejuni strains are predominantly isolated 
from the stools of patients with GBS. In agreement with this observation, antibodies 
against monosialylated structures, including GM1a, GM1b, GD1a and GalNAc-GD1a are 
frequently detected in the serum of GBS patients (13, 14). In contrast, C. jejuni strains 
with disialylated LOS that mimic GQ1b-like epitopes including GD1c and GD3 are closely 
associated with MFS patients, who often have cross-reactive antibodies directed against 
GQ1b (15, 16). Iinterestingly, the human oculomotor nerves, which innervate the eye 
muscles and are affected in MFS, have a relatively high content of GQ1b, which could 
explain their vulnerability to damage mediated by anti-GQ1b antibodies (15). 

Antigen recognition is a determining initial step in the development of immune responses 
leading to GBS or MFS. Sialylation of C. jejuni LOS is an important determinant for the de-
velopment of GBS and MFS (17). Therefore, sialic acid-binding immunoglobulin-like lectins 
(Siglecs) expressed on immune-related cells may play a decisive role in immune recogni-
tion. Siglecs comprise a family of surface exposed receptors that are involved in sialic acid 
dependent cell-to-cell interactions and ligand binding (18). Additionally, Siglecs function as 
endocytic receptors in immune recognition of both bacteria and viruses (19-21).

We recently demonstrated that GBS-related C. jejuni strains specifically bind to sialo-
adhesin (Siglec-1) (22). Furthermore, other researchers have shown that C. jejuni strains 
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expressing disialylated LOS structures can bind to Siglec-7 (23); however, a limited number 
(n = 4) of strains were examined and no correlation was made with the clinical phenotype. 

In this study, we determined the epitope specificity of C. jejuni for Siglec-7 binding. 
We examined a large and unique collection of C. jejuni strains (n = 29) derived from 
GBS and MFS patients, for which detailed information was available on the ganglioside 
mimicking structures expressed. In particular, we investigated the relationship between 
Siglec-7 binding and the presence of anti-ganglioside antibodies in patient serum and 
the specific clinical phenotypes. This study demonstrates that Siglec-7 specifically rec-
ognizes the C. jejuni strains associated with oculomotor weakness in GBS or MFS.

Materials and methods

Bacterial strains and culture conditions
A group of 29 successive and well-characterized C. jejuni strains isolated from the 
stools of either GBS or MFS patients (Supplemental Table 1), three previously described 
sialic acid transferase (cst-II) knockout mutants of GBS-associated strains (GB2Δcst-II, 
GB11Δcst-II and GB19Δcst-II) (24, 25) and the reference strain NCTC 11168 were used 
in this study (22, 24, 26). Strains GB13, GB14, GB26 and GB27 were cultured from the 
diarrheal stools of the family members of two GBS patients after a family outbreak of 
C. jejuni enteritis (27) (Supplemental Table 1). The GBS-related and MFS-related strains 
predominantly originate from Dutch patients. Two strains from the Netherlands Antilles 
and one Belgian strain were included. C. jejuni strains were cultured from stocks held 
at -80°C stocks and maintained on Colombia blood agar plates (Becton Dickinson BV, 
Alphen aan den Rijn, The Netherlands) supplemented with 10 μg/ml vancomycin in a 
microaerobic atmosphere at 37°C. Chloramphenicol (20 mg/L) was added to the Δcst-II 
mutant strain culture plates. For each experiment, all strains were freshly cultured for two 
days on blood agar plates containing only vancomycin. The LOS outer core structures 
of most GBS/MFS associated strains used in this study have been described previously 
(10). The LOS structures of C. jejuni GB29, GB30 and GB33 were determined using mass 
spectrometry analysis, as previously described (10). Genotyping by PCR was performed 
to verify the LOS classes, as previously described (24).

Serology and diagnosis
Serum samples obtained within 2 weeks of the onset of weakness and before treatment, 
were tested for the presence of IgM and IgG antibodies to the ganglioside GQ1b using a 
validated ELISA with predefined cut-off values, as previously described (28). The diagno-
sis of GBS or MFS was made by specialized neurologists, based on previously described 
criteria (29, 30). 
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Preparation of Siglec-7-Fc-conjugate
Chinese hamster ovary (CHO) cells expressing the full extracellular region of human 
Siglec-7 fused to recombinant Fc protein (CHO-Siglec-7-Fc) were generated (31) and 
Siglec-7-Fc was produced as previously described (22). Briefly, CHO-Siglec-7-Fc cells 
were cultured in glutamine-free Glasgow Minimal Essential Medium (Sigma-Aldrich, 
Zwijndrecht, The Netherlands) containing 100 μM L-methionine sulfoximine (Sigma-Al-
drich), GS supplement (Sigma-Aldrich), penicillin/streptomycin and 10% dialysed foetal 
calf serum (Invitrogen, Leek, The Netherlands). Once the cells reached 80% confluency, 
the foetal calf serum concentration was adjusted to 2% and eventually, the cells were 
cultured in X-VIVO-10 serum free media (Lonza, Verviers, Belgium) and the media was 
harvested weekly. The concentration of Siglec-7-Fc was determined using an Fc-specific 
ELISA, as previously described (22).

Siglec-7-Fc ELISA
Two-day C. jejuni cultures grown on blood agar plates were harvested, washed and 
the optical density at 600 nm (OD600) was adjusted to 0.2 in phosphate buffered saline 
(PBS) containing 2 mM MgCl2 (PBS-Mg). After heat inactivation at 56ºC for 45 min, 100 
μL of each sample was plated in triplicate in 96-well Maxisorp ELISA plates (NUNC Inc. 
Uden, The Netherlands). The plates were kept open overnight at 37ºC to allow the fluid 
to evaporate. After washing, the wells were blocked for 1 h using 1% bovine serum 
albumin in PBS at 37ºC. Simultaneously, 1 ml/L Siglec-7-Fc conjugate was precomplexed 
with peroxidase-conjugated anti-human IgG (IgG-PO; Sigma-Aldrich) diluted 1/3000 in 
PBS containing 0.05 % normal goat serum for 1 h at room temperature with shaking. 
After washing, 100 µL precomplexed Siglec-7-Fc was added per well, the plates were 
incubated for 2 h at room temperature, washed four times with PBS containing 0.05% 
Tween 20 and developed using 100 μL 3’,3’,5’,5’-tetramethylbenzidine substrate (TMB; 
Sigma-Aldrich) per well. After an appropriate incubation time (5-10 min), the reaction 
was stopped by adding 100 µL of 2 M H2SO4 per well and signal intensity was mea-
sured spectrophotometrically at 450 nm using a 96-well microplate reader (Bio-Rad, 
Veenendaal, The Netherlands). With respect to the Siglec-7 inhibition experiment, 
equal amounts (300 ng/well) purified bovine brain GQ1b (Sigma-Aldrich) was coated 
on an ELISA plate and blocked to avoid non-specific binding. In parallel, precomplexed 
Siglec-7-Fc was incubated for 1 h with twice the number of bacteria we normally use 
in our Siglec-7 ELISA to coat the wells. Siglec-7 bound- or free bacteria were removed 
by centrifugation. The supernatant (i.e. non-adsorbed Siglec-7) was transferred to the 
GQ1b-coated plate and binding of Siglec-7 was determined as described above.
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Statistical analysis
Two-tailed t tests and Mann-Whitney U-tests were performed using Prism software 
(GraphPad, La Jolla, CA, USA) as indicated; P ≤ 0.05 was considered statistically signifi-
cant.

Results

Recognition of C. jejuni by Siglec-7 is sialic acid-specific
Although it has been shown that disialylated ganglioside-like structures expressed on 
the surface of C. jejuni can bind to Siglec-7 in a sialic acid-dependent manner, the pos-
sibility of low-affinity Siglec-7 binding to monosialylated structures or complexes could 
not be excluded (23). Therefore, we aimed to determine the precise requirements of 
ganglioside-like structures for Siglec-7 binding.

Sialic acid-specific Siglec-7 binding was determined using three C. jejuni strains GB2, 
GB11 (both GM1a+ GD1a+) and GB19 (GD1c+), and their sialic acid mutants GB2Δcst-II, 
GB11Δcst-II (both GA1+ GA2+ GA3+) and GB19Δcst-II (GA1+; Fig. 1). Strain GB19 showed 
high Siglec-7 binding affinity in a whole cell Siglec-7-Fc ELISA (Fig. 2A). In agreement 
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Figure 1. Schematic illustration of the ganglioside structures discussed in this study. These structures can 
be mimicked by the C. jejuni outer core lipooligosaccharides (LOS). However, instead of the ceramide-
bound glucose, the C. jejuni LOS has a heptose, followed by an inner sugar core, and C. jejuni LOS has a 
lipid A transmembrane tail instead of a ceramide tail. Disialylated structures with α(2,3/2,8)-linked sialic 
acid residues are represented in the left panel; monosialylated structures with α(2,3)-linked sialic acid 
residues are represented in the right panel. (a) GA1, GA2 and GA3 (or asialo GM1, -GM2 and -GM3) contain 
no sialic acids and are considered not to be gangliosides. 
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*Figure 2. Evaluation of the binding of Siglec-7-Fc to C. jejuni strains using an ELISA. The strains were heat-
inactivated, coated on ELISA plates, incubated with precomplexed Siglec-7 conjugate and visualized using 
3’,3’,5’,5’-tetramethylbenzidine substrate. The bars represent a single experiment that was repeated at least 
three times, with means and standard deviations of triplicate measurements. Strains GB2Δcst-II, GB11Δcst-
II and GB19Δcst-II are the non-sialylated Campylobacter sialic acid transferase (cst-II) knockout mutants 
of the parental wild type strains GB2, GB11 and GB19, respectively. White bars, non-/monosialylated 
lipooligosaccharides (LOS); black bars, disialylated LOS. A. Siglec-7 binding to parental wild type and sialic 
acid transferase knockout C. jejuni strains. B. Siglec-7 binding to GBS- and MFS-associated C. jejuni strains. 
* Strain GB19Δcst-II was included as a reference and it is considered to be a negative control for Siglec-7 
binding.
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with reports that disialylated carbohydrate structures specifically bind to Siglec-7 (23, 
32), GB19 (GD1c+) is disialylated at the terminal galactose of the oligosaccharide chain. 
GB19Δcst-II demonstrated reduced Siglec-7 binding, indicating that the binding was 
sialic acid-specific. Comparable background levels of Siglec-7 binding were observed 
for the monosialylated strains GB2 and GB11, and their respective nonsialylated Δcst-II 
mutants (Fig. 2A). In order to address whether Siglec-7 binds a similar epitope on gan-
glioside GQ1b, an inhibition ELISA was performed. Compared with GB19Δcst-II, Siglec-7 
binding to GQ1b was significantly (P = 0.0005; t test) reduced when strain GB19 was 
used for adsorption, demonstrating that strain GB19 inhibits Siglec-7 binding to GQ1b 
(Supplemental Fig.1). GB19Δcst-II showed a reduction in the signal when compared 
to the non-blocking situation. This reduction was similar as observed with GB11 and 
GB11Δcst-II, indicating that this effect was not dependent on sialic acid.   

We concluded that Siglec-7 can bind to the disialylated GD1c-like structure present on 
C. jejuni LOS in a sialic acid-dependent manner; however, Siglec-7 cannot bind monosia-
lylated GM1a- and GD1a-like structures.

In a large collection of GBS/MFS-associated C. jejuni strains, only disialylated C. 
jejuni strains bind Siglec-7
To further study ganglioside mimic-specific Siglec-7 binding, 25 GBS-related and 4 MFS-
related C. jejuni strains with known LOS structures, and the reference strain NCTC 11168 
were tested in the Siglec-7-Fc ELISA. A clear diversity in Siglec-7 binding was observed, 
with various strains showing high or low Siglec-7 binding capacity (Fig. 2B). In particular, 
strains MF06, GB19, MF07, GB25, MF20, MF08, GB30, GB16 and GB33 strongly bound 
Siglec-7. Strikingly, all of these strains have terminally disialylated LOS structures (Fig. 
2B). The GD1c-like structure is disialylated in strains MF06, GB19, GB25, GB16 and GB33; 
whereas disialylation is present in the GD3-like structure of strains MF07 and MF08 (Fig. 
1; Supplementary Table 1). 

The exact structures of the ganglioside mimics present on strain GB30 could not be 
determined because mass spectrometry analysis yielded a complex profile. However, 
mass spectrometry analysis confirmed the presence of monosialic and disialic acids in 
the LOS outer core of strain GB30. Based on these results, it is probable that the GB30 
LOS outer core contains GD3-like structures (Michel Gilbert, personal communication).

When the nonsialylated and monosialylated strains (n = 20) were compared to the 
disialylated strains (n = 10), we observed significantly higher Siglec-7 binding for the di-
sialylated strains (P < 0.0001; Mann-Whitney U test; Fig. 3A). Binding of the nonsialylated 
and monosialylated strains was low and comparable to the binding of strain GB19Δcst-II, 
which lacks sialic acid. Strain GB17 did not strongly bind Siglec-7, despite the presence 
of disialylated ganglioside-like structures. It is possible that this strain contains addi-
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tional structures that hinder Siglec-7 binding. Therefore, we concluded that only C. jejuni 
equipped with terminally disialylated ganglioside-like structures can bind to Siglec-7.

Siglec-7 binding correlates with the presence of anti-GQ1b antibodies in the serum 
of patients with GBS
We determined whether Siglec-7 binding correlated with the presence of anti-GQ1b 
antibodies in the serum of GBS patients. The strains isolated from patients with a high 
anti-GQ1b antibody titre demonstrated significantly higher Siglec-7 binding than the 
strains isolated from patients who did not have anti-GQ1b antibodies (P = 0.0002; Mann-
Whitney U-test; Fig. 3B; Supplemental Table 1). Seven of the nine strains that showed 
strong binding to Siglec-7 (78%) were isolated from GBS/MFS patients expressing 
anti-GQ1b antibodies; no patient serum was available for testing from the other two 
strains. Three strains (GB4, GB17 and GB22) that did not bind Siglec-7 were isolated from 
patients with anti-GQ1b antibodies. Strain GB4 expresses a class E LOS and therefore 
does not carry the genes necessary for sialylation, which is an essential determinant for 
ganglioside mimicry. We hypothesize that this strain (GB4) was not involved in trigger-
ing the patient’s immune system and the subsequent development of GBS. Strain GB17 
(GM1b+, GD1c+ GA1+) contains disialylated LOS but did not bind to Siglec-7; however, the 
patient had (low) anti-GQ1b antibodies. Strain GB22 (GD1a+ GM1a+) does not express di-
sialylated LOS; therefore, it probably does not bind to Siglec-7. In addition to anti-GQ1b 
antibodies, the patient from whom strain GB22 was isolated also had antibodies against 
GM1a (data not shown), suggesting that strain GB22 may contribute to induction of 
anti-GM1a antibodies but perhaps not anti-GQ1b antibodies.
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Figure 3. Relationship between Siglec-7 binding by C. jejuni and A, LOS sialylation; B, the presence of anti-
GQ1b antibodies in GBS and MFS patient serum and C, oculomotor weakness in GBS and MFS patients. 
Siglec-7 binding was measured using an ELISA. Four individual bacterial strains were cultured from family 
members of patients with GBS, within two separate families (Supplementary Table 1); data from only one 
strain isolated from each family is included in B and C. The median values are indicated by the horizontal 
line; P values < 0.05 were considered statistically significant (Mann-Whitney U-test).
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C. jejuni Siglec-7 binding is associated with oculomotor weakness and MFS 
As disialylated C. jejuni strains and anti-GQ1b antibodies are associated with oculomotor 
weakness (15, 33), we determined whether Siglec-7 binding also correlated with oculo-
motor weakness. Strikingly, all of the patients with oculomotor weakness (7/7; 100%) 
were infected with C. jejuni strains which showed a high binding affinity for Siglec-7 (P 
= 0.0002; Mann-Whitney U-test; Fig. 3C; Supplementary Table 1). Three of these strains 
were isolated from GBS patients and four were isolated from MFS patients. All of the pa-
tients with MFS had been infected with strains which had a high Siglec-7 binding affinity 
(4/4; 100 %). Two other strains which bound Siglec-7, GB30 and GB33, were isolated from 
GBS patients for whom no information on oculomotor weakness was available. 

Discussion

In the present study, we report that sialylated structures on the surface of C. jejuni can 
bind to Siglec-7, a receptor of the Siglec family which is expressed on immune cells 
including dendritic cells. We demonstrated that the binding of C. jejuni to Siglec-7 is 
sialic acid-dependent, as a sialic acid transferase knockout strain could not bind Siglec-7 
whereas the parental wild type strain could. Siglec-7 has a preference for binding di-
sialylated sialic acid conjugates, such as those present in the ganglioside GQ1b (32). 
Indeed, only strains expressing disialylated ganglioside-like structures could bind 
Siglec-7; specifically, the GD1c- or GD3-like disialylated ganglioside-mimics present 
in the C. jejuni strain collection used in this study. Similarly to GQ1b, both GD1c and 
GD3 are disialylated at the terminal galactose of the carbohydrate chain. Infection with 
GD1c-positive or GD3-positive C. jejuni strains has been previously associated with the 
presence of cross-reactive anti-GQ1b antibodies in the serum of GBS or MFS patients (16, 
33, 34). Upon screening a large panel of GBS-related and MFS-related C. jejuni strains, 
we observed an association between Siglec-7 binding and the presence of anti-GQ1b 
antibodies in patient serum. Furthermore, we found that Siglec-7 selectively recognized 
the C. jejuni strains that were isolated from GBS or MFS patients diagnosed with oculo-
motor weakness, strongly suggesting that the specific binding of C. jejuni to Siglec-7 is a 
marker for GBS and MFS with oculomotor weakness. 

Our findings are in concordance with previous studies which reported that Siglec-7 
can interact with terminally disialylated ganglioside structures, including GD3, GT1b 
and GQ1b (32, 35). An interaction of Siglec-7 with C. jejuni strains expressing disialylated 
LOS structures was also previously demonstrated using ELISA and CHO-cell adhesion 
assays (23); however, a limited number of strains were tested and the correlation with 
clinical phenotypes was not examined.
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It has been suggested that the presence of other ganglioside mimics influences the 
interaction with Siglec-7 (23). Polyvinylidene difluoride glycoarray-based experiments 
revealed that a 1:1 complex of either GM1, GM2, GD1a, GD1b or GT1a with GD3 attenu-
ated Siglec-7 binding (35). Therefore, the binding of Siglec-7 to the GD3-like structure 
of the strains MF07 (GM2+ GD2+ GD3+) and MF08 (GM2+ GD3+) used in this study could 
potentially be affected by the presence of GM2. As Siglec-7 binding was clearly observed 
for these strains, complex attenuation is apparently not a major issue. However, complex 
attenuation may explain why strain GB17 (GM1b+ GD1c+ GA1+) did not bind to Siglec-7. 
It should be noted that in serum of patient GB17, complex reactivity against GM1/GD1a, 
GD1a/GD1b and GD1a/GQ1b was observed (26). This suggests that the ganglioside-
like epitopes on GB17 LOS form complexes. The formation of these complexes might 
prevent Siglec-7 binding. It is also possible that the GD1c-like structure was expressed 
in low levels on the surface of GB17 under the current culture conditions, resulting in 
low Siglec-7 binding.   

The consequence of pathogen interactions with Siglec-7 is largely unknown. Siglec-7 
is a member of the CD33-related Siglecs, which contain immunoreceptor tyrosine-based 
inhibitory motifs (ITIMs) in their cytoplasmic tail. Pathogen interactions with Siglec-7 
could therefore exert an inhibitory effect on immune activation, as ITIM signalling 
has been shown to restrain Siglec internalization via ITIM phosphorylation (36). How-
ever, Siglec-related pathogen uptake has also been reported (19). It is possible that 
cis interaction of Siglec-7 with self-ligands results in an inhibitory response; whereas 
pathogen interactions with Siglec-7 overrule this signal, possibly due to the activation 
of co-receptors and cytokine secretion, or a higher receptor affinity (37). Evidence for 
a Siglec-7-activated immune response was recently demonstrated, as Siglec-7 interac-
tions resulted in the skewing of dendritic cells towards T helper 1 polarization, due to 
LOS-mediated OX40 ligand induction (38). However, the mechanisms by which this 
process could eventually lead to an anti-ganglioside antibody response and result in 
GBS or MFS with oculomotor weakness remain to be elucidated. 

In conclusion, we demonstrate that oculomotor weakness in GBS and MFS is associ-
ated with C. jejuni strains that bind Siglec-7. Binding of C. jejuni to Siglec-7 may be an 
event that mediates anti-GQ1b antibody activation, leading to oculomotor weakness in 
patients with GBS or MFS. Identification of C. jejuni on the basis of Siglec-7 binding could 
be of diagnostic value for the detection of strains which have the potential to induce 
neurological symptoms. In cases of C. jejuni infection where a Siglec-7 binding strain 
is cultured from faecal samples, antibiotic treatment could be prescribed to prevent 
postinfectious neurological complications. Additional studies are necessary to identify 
the occurrence of Siglec-7 binding strains in uncomplicated enteritis.
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Supplemental Table 1. GBS- and MFS-associated C. jejuni strains used in this study. All strains were 
isolated from patient stools. The ganglioside mimicking structures on the surface of each strain were 
identified using mass spectrometry; serum antibodies to the ganglioside GQ1b were detected using an 
ELISA. 

GBS/MFS Patient LOS Cst-II(a) Ganglioside Siglec-7 Anti-GQ1b Oculomotor 
strain diagnose class mimic  binding antibodies weakness

MF6 MFS B bifunctional GM1b, GD1c  + yes yes
MF7 MFS B bifunctional GM2, GD2, GD3  + yes yes
MF8 MFS B monofuctional GM2, GD3  + yes yes

MF20 MFS B bifunctional GM1b, GD1c  + yes yes
GB16 GBS A bifunctional GD1c  + yes yes
GB19 GBS A bifunctional GD1c  + yes yes
GB25 GBS B bifunctional GM1b, GD1c, GA1  + yes yes
GB33 GBS B NT GM1b, GD1c, GA1, GalNac-GMb1  + NT(b) unknown
GB30 GBS B NT mono- and disialylated LOS(c)  + NT(b) unknown
GB4 GBS E absent none  - yes no

GB17 GBS B bifunctional GM1b, GD1c, GA1  - yes(d) no
GB22 GBS A monofuctional GD1a, GM1a  - yes no
GB1 GBS C Cst-III none (GA1)  - no no
GB2 GBS A monofuctional GD1a, GM1a  - no no
GB3 GBS A monofuctional GD1a, GM1a  - no no
GB5 GBS B o� none (GA2)  - no no

GB11 GBS A monofuctional GD1a, GM1a  - no no
GB13 enteritis, family GBS C Cst-III GM1a  - no(e) no
GB14 enteritis, family GBS C Cst-III GM1a  - no(e) no
GB15 GBS D absent none  - no no
GB18 GBS A monofuctional GD1a, GM1a  - no no
GB21 GBS A monofuctional GD1a, GM1a  - no no
GB23 GBS A monofuctional GM2  - no no
GB24 GBS D absent none  - no no
GB26 enteritis, family GBS A monofuctional GM1b  - no(e) no
GB27 enteritis, family GBS A monofuctional GM1b  - no(e) no
GB28 GBS A monofuctional GD1a, GM1a  - no no
GB29 GBS C Cst-III none  - no no
GB31 GBS A monofuctional GD1a, GM1a  - no no

(a) Functionality of Cst-II based on a polymorphism (Asn51 or Thr 51) in the cstII gene, (b) = no serum available, (c) = mono-sialic 
acid and di-sialic acid were con�rmed by mass spectrometry but the backbone could not be determined, (d) = multiple testing of the 
same serum sample demonstrated low serum reactivity against GQ1b, (e) = no GQ1b antibodies in the serum of the GBS patient  

Supplemental table 1
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Supplemental Figure 1. C. jejuni-mediated inhibition of Siglec-7 binding to ganglioside GQ1b. 
Precomplexed Siglec-7-Fc was left untreated or preincubated with GB11, GB11Δcst-II, GB19 or GB19Δcst-
II. Siglec-7 bound- or free bacteria were removed by centrifugation. The supernatant was transferred to 
a GQ1b-coated ELISA plate to detect the concentration of non-adsorbed Siglec-7. Siglec-7 binding was 
visualized using 3’,3’,5’,5’-tetramethylbenzidine substrate. The bars represent a single experiment with 
means and standard deviations of triplicate measurements. White bars, uncoated wells; black bars, GQ1b 
coated wells. P values < 0.05 were considered statistically significant (t test).
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Abstract

Monolithic columns containing ganglioside GM2 and GM3 mimics were prepared for 
selective removal of serum anti-ganglioside antibodies from patients with acute and 
chronic immune-mediated neuropathies. ELISA results demonstrated that anti-GM2 IgM 
antibodies in human sera and a mouse monoclonal anti-GM2 antibody were specifically 
and selectively adsorbed by monolithic GM2 mimic columns and not by blank mono-
lithic columns or monolithic GM3 mimic columns. In control studies, serum antibodies 
against the ganglioside GQ1b from another neuropathy patient were not depleted by 
monolithic GM2 mimic columns. Fluorescence microscopy with FITC-conjugated anti-
human immunoglobulin antibodies showed that the immobilized gangliosides were 
evenly distributed along the column. The columns were able to capture ~95% of the 
anti-GM2 antibodies of patients after only 2 min of incubation. A monolithic column of 
4.4 µL can deplete 28.2 µL of undiluted serum. These columns are potential diagnostic 
and therapeutic tools for neuropathies related to anti-ganglioside antibodies. 
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Introduction

Antibodies against human peripheral nerve gangliosides are frequently encountered in 
various forms of immune-mediated neuropathies and may be directly involved in nerve 
damage (1). An example of such a neuropathy is the Guillain-Barré syndrome (GBS), in 
which half of the patients display significant levels of serum antibodies against various 
types of gangliosides. GBS is an acute post-infectious polyneuropathy, characterized by a 
rapidly progressive muscle weakness with a potentially devastating disease course. More 
than 20% of patients develop respiratory insufficiency requiring artificial ventilation at 
an intensive care unit. Overall the mortality is 5%, and at least 20% develop a sustained 
disability. Campylobacter jejuni is the most frequent cause of preceding infection, espe-
cially in the most severe forms of GBS (2). C. jejuni expresses lipooligosaccharides (LOS) 
on its surface, with carbohydrate moieties that are identical to gangliosides present in 
human neural cell membranes. This molecular mimicry can result in the production of 
antibodies against LOS during infection that cross-react with gangliosides. Antibodies 
to gangliosides are also found in patients with chronic forms of neuropathy, such as 
the paraproteinemic polyneuropathies. These forms of neuropathy are characterized by 
a progressive, incurable limb weakness usually leading to severe disability. At present 
no anti-ganglioside antibody specific treatment for these patients is available, although 
removal of the anti-ganglioside antibodies by selective immunoadsorption would be a 
rational approach.

Gangliosides are glycolipids containing a carbohydrate moiety with one or more sialic 
acid groups and a nonpolar ceramide unit by which gangliosides are anchored in cell 
membranes. Gangliosides are found abundantly in the human nervous system (3). The 
most widely known gangliosides are GM1, GM1b, GM2, GQ1b, GalNAc-GD1a, GT1a and 
GD1a (1, 2, 4) Antibodies in sera from patients with neuropathies bind to the extracellular 
exposed carbohydrate moieties of these gangliosides. Synthetic carbohydrate mimics 
of these gangliosides could be used to capture anti-ganglioside antibodies from the 
blood, as a specific treatment for these neuropathies. Synthetic ganglioside mimics pos-
sess various advantages over the natural gangliosides, which are usually purified from 
bovine brain. These advantages include a higher purity, tunable chemical properties, 
higher stability, possibly higher affinity, improved bioavailability, and no involvement of 
animals or risk of bovine-transmitted infections (5, 6). Recently, Pukin et al. synthesized 
analogs of various gangliosides (GM1, GM2 and GM3) in which alkyl spacers with differ-
ent terminal functional groups (alkene, alkyne and azide) replace the natural nonpolar 
ceramide moiety (7), as well as di-, tetra- and octavalent derivatives of GM2 and GM1 
gangliosides (8). 
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Figure 1 depicts the chemical structures of the ganglioside mimics GM1, GM2 and 
GM3. Serum antibodies from neuropathy patients showed a similar high affinity to these 
ganglioside mimics as to the bovine brain-derived gangliosides (7).

A range of synthetic GM1 mimics with a modified oligosaccharide part has been 
examined for binding the human anti-GM1 antibodies in solution inhibition and immu-
noadsorption (Sepharose columns) studies (9). It was found that the naturally derived 
GM1os (GM1 that lacks the ceramide aglycone) was superior to all investigated mimics. 
Thus, we focused on the genuine ganglioside analogues with an authentic carbohydrate 
structure and a functionalized aglycone part. 

Carbohydrates with various functional groups have already been used as ligands, e.g., 
for microarrays on gold, silicon, glass surfaces (10-19), nanoparticles (20), and carbon 
nanotubes (21) and in monolithic columns (22-24). Monolithic supports have the  ad-
vantage of a high surface density of reactive moieties that can bind oligosaccharides, 
which translates to a high loadability (25). Since this capacity is much higher than what 
could ever be obtained in e.g. wall-coated microchannels, this will increase the sensitiv-
ity in diagnostic applications. Flow-through applications would allow in principle the 
depletion of anti-ganglioside antibodies from blood as a rational treatment of GBS and 
other forms of immune-mediated neuropathies or more generally, diseases where bind-
ing between a receptor and a pathogenic molecule is involved. 

We focused on obtaining a proof of principle that monolithic ganglioside mimic 
columns can efficiently capture antibodies from patients’ serum samples and mouse 
monoclonal antibodies. This study is schematically summarized in Figure 2. Anti-GM2 
antibodies were selected as the target, and thus, GM2 was chosen as ligand and at-
tached via a 10-undecenyl spacer to a monolithic column. To determine the efficiency 
and selectivity of these affinity columns, we used sera obtained from a patient with 

 

 

O

OH
O O

OHO

O

OH

OH
O

O

HN

HO Ac

HO
HO

HO
O

OH

R

HO

O
HO

NH

OH
HO

Ac

R = H (GM3); R = (GM2); R = (GM1)O

OH
HO O

OHHO
O

OH

NH

HO

Ac

Figure 1. Structures of ganglioside mimics GM3, GM2 and GM1. 



Depletion of anti-ganglioside antibodies from human serum

133

Chapter 7

acute GBS (P1, patient 1) and a patient with chronic monoclonal gammopathy related 
polyneuropathy (P2, patient 2), both with high titers of IgM antibodies against GM2, 
and a mouse monoclonal antibody binding to GM2 (EM5). IgM antibodies against GM2 
are found in various forms of immune-mediated neuropathy and in other disorders 
including patients with a human immunedeficiency virus 1 (HIV) infection, in which the 
anti-GM2 antibody level has prognostic relevance (26, 27).

Results and Discussion

Depletion of IgM antibodies using monolithic GM2 mimic columns
The monolithic GM2 mimic column was used to deplete anti-GM2 IgM antibodies 
from serum samples from the neuropathy patients P1 and P2. Figure 3A depicts the 
anti-GM2 IgM activity determined by ELISA in sera before and after exposure to this 
column, indicating that these antibodies were successfully depleted. The decrease of 
the IgM concentration was ~97.5 % in P1 (50 times diluted) and ~92 % in P2 (100 times 
diluted). Still, ~78 % of IgM antibodies in P1 were depleted when the serum dilution 
went from 1:50 to 1:5. This shows that a 4.4 µL monolithic column (250 µm i.d., 9 cm 
long) can deplete 28.2 µL undiluted serum, which corresponds to a capacity of 6.4 µL of 
undiluted serum per microliter of column volume. The kinetics of the adsorption are fast, 

 

Figure 2. Schematic overview of the incubation studies with serum samples from patients with 
neuropathy and monolithic GM2 mimic columns to demonstrate selective depletion of serum anti-GM2 
antibodies. The binding was measured by ELISA. The homogeneous distribution of captured antibodies 
along the column was measured by fluorescence microscopy and fluorescence conjugated anti-human 
IgM antibodies.
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as the residence time of the serum in the columns was less than 2 min. Because of the 
strong binding of the serum anti-GM2 IgM to the GM2 mimic in the column, the bound 
antibodies could not be washed off the column with binding buffer solution.  

To further demonstrate the specificity and capacity of these columns to capture anti-
GM2 antibodies, mouse monoclonal IgM antibodies (EM5) binding to GM2 were infused 

      

 

 

 

     
Figure 3. A. Depletion of serum anti-GM2 antibodies by monolithic GM2 mimic columns. Serum anti-
GM2 IgM antibody concentration was determined by ELISAs in samples before (white bars) and after 
(black bars) exposure to the column. Serum from patient P1 with GBS was tested in two dilutions (1:50 
and 1:5). Serum from patient P2 was tested in one dilution (1:100). B. Depletion of the mouse anti-GM2 
monoclonal antibody EM5 (10 and 50 µg/mL) by monolithic GM2 mimic columns. The EM5 antibody 
concentration was determined by ELISAs in samples before (white bars) and after (black bars) exposure to 
the column. C. Control studies to confirm the specificity of interaction between anti-GM2 antibodies and 
GM2 mimics in the monolithic columns: (left panel) no depletion of anti-GM2 IgM antibodies from sera 
from patient P1 and P2 after infusion into blank monolithic columns; (middle panel) no depletion of anti-
GM2 IgM antibodies in sera from patients P1 and P2 after infusion into monolithic GM3 mimic columns; 
(right panel) no depletion of anti-GQ1b IgM antibodies in serum from a neuropathy patient after infusion 
into monolithic GM2 mimic columns. Serum anti-ganglioside IgM antibody (GM2 + GQ1b) and mouse 
monoclonal antibody (EM5) concentrations were determined by ELISAs in samples before (white bars) 
and after (black bars) exposure to the column.

A.

C.

B.
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(see Figure 3B) (28). Studies with a dilution series of EM5 in concentrations up to 10 μg/
mL showed that no residual activity to GM2 in the flow-through fraction was found after 
a single 2 min incubation with a monolithic GM2 mimic column. This column depleted 
more than 50% of the EM5 antibodies present at a concentration of 50 μg/mL of EM5 
(Figure 3B). No depletion of EM5 (concentrations up to 50 μg/mL) was observed using 
blank monolithic columns (see Figure 3C).

Figure 3C depicts the ELISA data from three sets of control experiments to further 
confirm the specificity of the interaction between serum anti-GM2 antibodies and GM2 
mimics in monolithic columns. First, sera from patients P1 and P2 were infused into blank 
monolithic columns (i.e., without GM2 mimics). No decrease in anti-GM2 IgM activity 
was observed confirming that these antibodies bind to GM2 mimics in the columns only 
(left panel, Figure 3C). Second, both sera were also infused into monolithic GM3 mimic 
columns. These act as a control antigen since the anti-GM2 antibodies in the patient 
sera did not bind to GM3 mimics in ELISA. No depletion of serum anti-GM2 antibodies 
was observed (middle panel, Figure 3C). Third, a serum sample from patient P3 with GBS 
with IgM antibodies to the ganglioside GQ1b (and no antibodies to GM2) was infused 
into the monolithic GM2 mimic column (right panel, Figure 3C). The anti-GQ1b antibody 
activity in serum from patient P3 was not reduced after incubation with the monolithic 
GM2 mimic column, indicating that no non-specific binding of antibodies occurs by the 
monolithic GM2 mimic column. 

Fluorescence microscopy results
To define the homogeneity of the distribution of GM2 mimics in the monolithic columns 
and to visualize the IgM adsorption by these columns, staining studies were performed 
with FITC-conjugated anti-human IgM antibodies after infusion of patient serum samples 
into the columns. Both blank and monolithic GM2 mimic columns were first infused with 
serum P1 at two different dilutions (1:50 and 1:5). After prolonged washing and then 
staining with FITC-conjugated anti-human IgM antibodies, the columns were viewed 
under a fluorescence microscope. The recorded images are shown in Figure 4A-C. 

Staining of the monolithic GM2 mimic columns with FITC-conjugated goat anti-
human IgM, showed a significant and homogeneous labeling after infusion with serum 
from patient P1, and the fluorescence was visible over a greater length of the column 
after incubation with the 1:5 dilution than with the 1:50 dilution (Figure 4A and B, 
respectively). This indicates that most of the serum antibodies are immediately bound 
after introduction into the columns as long as free GM2 mimics remain available. The 
fluorescence images are in full agreement with the previously discussed results in ELISA 
showing depletion of serum anti-GM2 IgM activity after incubation with these columns 
(see Figure 3A). A monolithic GM2 mimic column not incubated with patient serum as a 
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antibodies do not bind to the column (Figure 4C).
Next a blank monolithic column (i.e. no GM2 present) and a monolithic GM2 mimic 

column were infused with mouse monoclonal antibodies (EM5), followed by treating 
both the columns with Alexa Fluor 594 conjugated anti-mouse IgM antibody. The 
obtained fluorescence images are depicted in Figure 4D. This clearly indicates that the 
mouse monoclonal antibodies are successfully captured only by the monolithic GM2 
mimic column. This result is in full agreement with the ELISA data (see Figure 3B and 3C).

As additional controls, a blank monolithic column and a monolithic GM3 mimic 
column were infused with sera P1 (1:50) and P2 (1:100) and a monolithic GM2 mimic 
column was infused with serum P3 (1:10). Afterwards they were stained with FITC-
conjugated goat anti-human IgM antibodies to detect bound serum antibodies in the 
column (see Supporting Information). In none of these cases significant staining was 
observed. These results prove that no IgM antibodies were bound to any of the columns 
(blank monolith, monolithic GM3 mimic and monolithic GM2 mimic), and they are in full 

 

 

 

 

   

    Figure 4. Fluorescence microscopy images of monolithic GM2 mimic columns infused with either serum 
or mouse monoclonal antibody and subsequently treated with relevant fluorescent labeled anti-human 
(FITC) or anti-mouse (Alexa Fluor 594) immunoglobulin: (A) Serum from patient P1 (1:50 dilution); (B) 
serum from patient P1 (1 : 5 dilution); (C) no serum treatment and; (D) mouse monoclonal antibody (EM5) 
incubated with blank monolithic columns and monolithic GM2 mimic columns; (1) initial part of column; 
(2) middle of column: (3) end of column.
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agreement with the ELISA data shown in Figure 3C. Thus, the columns are highly selec-
tive, as many other IgM antibodies must have been present in these serum samples. The 
overall results demonstrate both the efficiency and selectivity of monolithic GM2 mimic 
columns to capture anti-GM2 IgM antibodies from serum samples containing antibodies 
against gangliosides. The long-term stability of the columns was also checked, as this is 
of prime importance for any future diagnostic or therapeutic use. The antibody captur-
ing efficiency remained intact even after two years of storage in a dry state (results not 
shown).

Gangliosides with an alkene-terminated spacer can be successfully incorporated in 
monolithic capillary affinity columns in a single step by in situ polymerization. Fluores-
cence microscopy images showed an even distribution of GM2 molecules along the 
entire column. Per microliter of GM2 column 6.4 µL of undiluted serum containing IgM 
antibodies (titer 1600) could be depleted after an incubation time of less than 2 min. 
GM2 columns specifically deplete IgM antibodies against GM2 and not IgM antibodies 
against the closely related ganglioside GQ1b or other IgM antibodies from a healthy 
volunteer. Both blank monolithic columns and monolithic GM3 mimic columns did not 
exhibit any non-specific adsorption of IgM antibodies. Overall, these affinity monolithic 
columns can be used to deplete IgM antibodies specifically from serum samples of pa-
tients suffering from GBS. This proof of principle with GM2 opens up interesting pos-
sibilities for the development of new forms of diagnostics and even treatments for GBS 
and related neuropathies with neurotoxic anti-ganglioside antibodies. For diagnostic 
purposes, one could envisage trapping, staining with fluorescent anti-human antibod-
ies, followed by elution and detection to achieve rapid, selective and sensitive detection 
of various GBS-related antibodies. 

Experimental Section

General Synthetic Methods
Fused-silica capillaries of 250 μm i.d. and 375 μm o.d. were obtained from Polymicro 
Technologies (Phoenix, AZ, USA). Anhydrous sodium hydrogen phosphate, bovine serum 
albumin (BSA) and O-phenylenediamine tablets were purchased from Sigma Aldrich, 
The Netherlands. Hydrogen peroxide, citric acid, and natural GM2 ganglioside derived 
from bovine brain were purchased from Merck, The Netherlands. Mouse monoclonal an-
tibody (EM5) was kindly provided by Prof. Hugh Willison, University department of Neu-
rology, Glasgow. Alexa Fluor 594 goat anti-mouse IgM was purchased from Invitrogen, 
The Netherlands. Natural GQ1b was purchased from Sanbio, The Netherlands. Serum 
samples (see Table 1) were provided by the Erasmus MC (Rotterdam, The Netherlands) 
with titers as indicated in the table. Gangliosides (GM2 and GM3) with a 1-undecenyl 
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spacer were synthesized as described before (7). Gas tight syringes (500 µL) were pur-
chased from Alltech, The Netherlands. Syringe pumps (Harvard 11 PicoPlus, dual syringe) 
were purchased from VWR International, The Netherlands. (+)-N,N-diallyltartardiamide 
(DATD), 2-hydroxyethyl methacrylate (HEMA), piperazine diacrylamide (PDA) and 
2,2′-azobis(2-methylpropion amidine) dihydrochloride (AMPA) were purchased from 
Sigma Aldrich, The Netherlands. 

Enzyme-linked immunosorbent assay (ELISA) 
ELISAs were used to measure the IgM antibody binding to GM2 and GQ1b in serum 
samples. The wells of a 96-well plate (Nunc, Maxisorp) were treated either with ethanol 
or 300 pmol of ganglioside dissolved in ethanol. These solutions were subsequently 
allowed to evaporate to dryness. All the wells were then blocked with a solution of PBS 
(phosphate-buffered saline, pH = 7.8, 200 µL per well) containing 1% (w/v) of BSA for 2 h 
at room temperature and a further 2 h at 4 ºC. The plates were then emptied by flicking 
and incubated overnight at 4 ºC. The serum samples were diluted, initially 1:100, in PBS 
- 1% BSA, and added to 4 wells, 2 coated with GM2 or GQ1b and 2 with ethanol only. The 
following day, the plates were washed with an automated ELISA-washer (Elx50, Bio-Tek, 
UK) with PBS solution and filled with a solution of peroxidase-conjugated secondary 
antibodies (Jackson Immuno Research Labs) diluted to 1:2500 in PBS - 1% BSA for 1.5 h 
at room temperature. After washing, once again with the PBS solution, the plates were 
developed by adding 100 µL of substrate solution in citrate buffer (pH = 5.0-5.2). The 
substrate solution was prepared by dissolving one (5 mg) O-phenylenediamine tablet 
in 6.0 mL of 4 mM citric acid solution, 6.5 mL of 8 mM anhydrous sodium hydrogen 
phosphate solution and 12.5 mL of MilliQ water. Immediately prior to use 12.5 µL of 30% 
hydrogen peroxide solution was added to the above substrate solution. The reaction in 
the well was stopped by the addition of 100 µL of 2 M hydrochloric acid and the optical 
densities (OD) were read in an automated reader at 490 nm. The mean ODs of the blank 
(ethanol-coated) wells were subtracted from the mean ODs of the GM2-coated wells to 
obtain a specific OD (5, 6).  

Table 1. Patients’ clinical diagnosis and serum antibody specificity, class and titer

Patient
Code

   Antibody Antibody reactivity to 
gangliosides

Diagnosis

       Class        Titer

P1        IgM         1600    GM2 GBS

P2        IgM       51200    GM2 Polyneuropathy and monoclonal   
gammopathy

P3        IgM           200    GQ1b GBS

HV        IgM None Healthy control
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In situ preparation of ganglioside monolithic columns
A fused silica capillary of 100 cm total length was activated with 3-(trimethoxysilyl)propyl 
methacrylate. Subsequently an affinity monolithic column was prepared as described 
earlier.(24) In short: a solution of ganglioside mimics (GM2 or GM3, 5 mg) in methanol 
(30 µL) was added to a mixture of HEMA (30 μL), ammonium sulfate (8 mg), DATD (20 
mg) and PDA (16 mg) in 250 µL of phosphate buffer, pH = 7.0 in an Eppendorf tube and 
mixed well, followed by de-aeration for a period of 5 min. Subsequently, the initiator 
AMPA (10 μL, 10% v/v in water) was added. The monolith solution was then sucked into 
the acrylate terminated capillary using vacuum and both ends of the capillary were 
sealed with a gas chromatography septum. The column was placed in an oven (T = 65 
°C) for 12 h, which resulted in a monolithic ganglioside mimic column. The column was 
washed with water for 2 h at 2 µL/min.

Antibody depletion of serum samples 
A three-step procedure to capture antibodies (IgM) from serum samples was followed. 
First the columns were washed with PBS buffer (pH = 7.8) for 1 h at 1.4 µL/min. Next 
various serum dilutions (P1 (1:50 and 1:5), P2 (1:100), P3 (1:10), HV (1:10)) in PBS buffer 
(pH = 7.8)) were prepared and in each case 180 µL were infused into the columns at 1 
µL/min during 3 h. Subsequently the columns were washed again with PBS buffer for 1 
h at 1.4 µL/min. All solutions were infused into the columns with a 500 µL syringe and a 
syringe pump. The collected samples were analyzed with ELISA.

Mouse monoclonal antibody (EM5) depletion
A three-step procedure to capture mouse monoclonal antibodies (EM5) was as follows: 
first the columns were washed with PBS buffer (pH = 7.8) for 1 h at 1.4 µL/min followed 
by infusion of 120 µL of EM5 (10 µg/mL or 50 µg/mL) in PBS buffer (pH = 7.8) for 2 h at 
1 µL/min. Finally the columns were washed again with PBS buffer for 1 h at 1.4 µL/min. 

Control experiments
Three sets of control experiments were performed to demonstrate that a) IgM antibod-
ies against GM2 in sera P1 and P2 could only be depleted by monolithic GM2 mimic 
columns and not by either a blank monolithic column or a monolithic GM3 mimic col-
umn, b) monolithic GM2 mimic columns deplete IgM antibodies against GM2 only and 
not IgM antibodies against GQ1b nor various other species of antibodies and c) Mouse 
monoclonal antibody (EM5) could specifically be depleted by a monolithic GM2 mimic 
column and not by a blank monolithic column.
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Fluorescence microscope (FM) measurements
A stereofluorescence microscope and Olympus IX 51 microscope were used to carry out 
FM measurements. The homogeneous distribution of IgM antibodies along the ganglio-
side monolithic columns was tested using FITC conjugated goat anti-human IgM. First, 
the column was washed with PBS buffer (pH = 7.8) for 30 min at 1 µL/min. Subsequently, 
the column was treated with FITC conjugated goat anti-human IgM solution for 1 h at 1 
µL/min and finally washed with PBS buffer (pH = 7.8) for 45 min at 1 µL/min. The stained 
columns were evaluated using a fluorescence microscope. In case of a blank monolithic 
column and a monolithic GM2 mimic columns infused with mouse monoclonal antibody 
(EM5), the columns were treated with PBS buffer (pH = 7.8) for 1 h at 1.4 µL/min followed 
by treatment with 120 μL Alexa Fluor 594 goat anti-mouse IgM (1:100 dilution) for 2 h at 
1 μL/min. The columns were immediately washed with PBS buffer (pH = 7.8) for 85 min 
at 1.4 μL/min and then viewed with a fluorescence microscope.
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Fig. 1-4:  Fluorescence microscopy images of various blank experiments. 

 
 
Fig. 1. Blank monolithic column treated with serum P1  
 
 

 
 
Fig. 2. Monolithic GM3 mimic column treated with serum P1 
 
 
 
 
 

 

 

Fig. 3. Monolithic GM2 mimic column treated with serum P3. 
 

 

Fig. 4. Monolithic GM2 mimic column treated with serum of a healthy volunteer. 
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Sialylated epitopes on C. jejuni LOS are a major pathogenic factor in the development 
of GBS and MFS; however, the expression of sialylated epitopes alone is not sufficient to 
induce GBS. C. jejuni strains with sialylated LOS are frequently detected in the stools of 
patients with uncomplicated enteritis, whereas GBS is rare and develops in less than one 
in a thousand patients with an antecedent C. jejuni infection. The low incidence of GBS 
suggests that additional bacterial and/or host factors are involved in the development 
of this disease. 

The aim of the work described in this thesis was to identify interactions between C. 
jejuni and the human host which contribute to the development of GBS. In particular, 
we focused on the role of sialylated LOS of C. jejuni. In most of the studies described in 
this thesis, a large, unique, mainly Dutch collection of GBS- and MFS-associated C. jejuni 
strains, isolated from human stool samples was examined. Detailed information was 
available on the ganglioside mimicking structures expressed. Additionally, three sialic 
acid knockout mutants of parental GBS-associated C. jejuni strains were generated and 
used to determine the role of sialic acid in host interactions. A large C. jejuni strain col-
lection, isolated from stool samples of patients (all Dutch) with uncomplicated enteritis, 
served as a control group.

In this thesis, we report new GBS-associated bacterial virulence factors, we demon-
strate that sialylation of C. jejuni LOS enhances intestinal epithelial cell-invasion, and we 
present two host immune receptors involved in the specific recognition of sialylated 
LOS. Additionally, we focused on the development of a novel treatment strategy for 
patients with GBS. In the following section, the results described in this thesis will be 
discussed in relation to the current literature. In addition, future perspectives will be 
addressed.

Bacterial factors associated with GBS

Comparative genotyping was performed on our GBS-, MFS- and uncomplicated enteritis-
associated C. jejuni strains, with the aim to identify additional bacterial factors involved 
in the pathogenesis of GBS (Chapter 2). LOS genotyping confirmed and further estab-
lished that C. jejuni strains with the sialylated LOS classes A, B and C are predominant 
within GBS- and MFS-associated strains, and also that strains with class A and B LOS loci 
are associated with GBS and MFS, respectively. These findings are in agreement with 
several studies performed globally (1-4). Despite the presence of genes involved in LOS 
sialylation, we did not find an association between the LOS class C and GBS develop-
ment when GBS/MFS- and enteritis-associated C. jejuni strains were compared. An LOS 
class A or B was detected in 73% of our GBS- and MFS-associated strains compared to 
36% of our enteritis-associated strains. Since there are allelic variants for both LOS class 
A (A1/A2) and LOS class B (B1/B2), we had hypothesized that there might be differences 
in allele distribution between GBS- and enteritis-associates strains with an A or B LOS 
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class. The allele A1 and B2 were, however, most prevalent (~80% each) amongst LOS 
class A and B strains, respectively, in both the GBS/MFS and the enteritis collection. The 
finding that the LOS A1 and B2 alleles are the most common allelic variants in  enteritis-
associated strains is in agreement with a Finnish study which shows that the majority of 
class A/B C. jejuni strains of human origin have an A1 or B2 allele (5). We observed that 
the presence of an A1 or B1 allele results in sialylation of both, the inner and the terminal 
galactose of the LOS outer core. In contrast, in strains with an A2 or B2 allele, only the 
terminal galactose of the LOS outer core is sialylated. C. jejuni strains with the A1 allele 
can produce GD1a/GM1a ganglioside mimics on their surface. These strains strongly 
associate with the development of GBS, as antibodies against GD1a and GM1a are the 
most frequently detected auto-antibodies in patients with GBS (6) and are likely more 
pathogenic as they are associated with severe GBS and poor prognosis (7, 8). The obser-
vation that the A1 allele was dominant in both the GBS- and enteritis-associated strains 
indicates that the capacity of C. jejuni to expresse GD1a/GM1a ganglioside mimics does, 
however, not necessarily lead to the induction of GBS. One of the reasons behind this 
could be the fact that the presence of genes involved in LOS sialylation does not guaran-
tee the production of ganglioside mimics. For instance, within an LOS biosynthesis locus 
several distinct genetic mechanisms allow C. jejuni to vary the structure of the LOS outer 
core (9). These mechanisms include the presence of gene complements, phase variation 
because of homopolymeric C tracts, and gene inactivation by the deletion or insertion 
of a single base. The majority of the class A, B or C enteritis-associated strains that we 
tested (28/31; 90%), expressed sialylated LOS. It is therefore probably not the absence of 
sialic acid residues in the outer core LOS that explains why enteritis strains, which carry 
genes involved in LOS sialylation, did not trigger the development of GBS.

PCR-based genotyping of other bacterial genes that might be associated with the de-
velopment of GBS led to the observation that certain capsule types (HS1, HS2, HS4, HS19 
and HS23/36) are dominant in GBS- and MFS-associated C. jejuni strains. These capsule 
types were found in combination with LOS loci classes that contain genes involved in 
LOS sialylation (either LOS class A, B or C). High prevalence of capsule serotypes HS19 
and HS23/36, in combination with sialylated LOS classes, has been observed by others 
in GBS-associated C. jejuni strains (3, 4). These and our observations raise the question 
whether there is a particular cause for having a combination of a certain capsule type 
and a sialylated LOS class in C. jejuni. The capsule and LOS are synthesized by enzymes 
located on distinct gene loci (10), and as such biosynthesis of the capsule and LOS can 
be considered to be independent. Multilocus sequence typing (MLST), a method based 
on the partial sequences of seven housekeeping genes, is used for studying the popula-
tion structure and diversity of pathogens. MLST analysis showed that all C. jejuni strains 
with the capsule serotype HS19 belong to a similar genetic background, MLST clonal 
complex ST-22; these strains always appear to have a class A (A1) LOS locus (3, 4, 11). 
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A conserved genetic background, as demonstrated by others for HS19-positive strains, 
suggests that the co-occurrence of LOS classes and capsule types is clonally related. 
Based on MLST analysis, related, partially-related and unrelated genetic lineages were 
observed for the capsule/LOS class combinations found in our GBS/MFS strain collec-
tion. In several cases, horizontal transfer of LOS locus genes or capsule locus genes 
may have occurred between C. jejuni strains of genetically unrelated lineages. This is 
in agreement with results from other studies, which showed that C. jejuni is capable of 
gene exchange and horizontal transfer of both LOS and capsule gene clusters, and even 
complete LOS loci (9, 12, 13). In particular, the observation that genetically unrelated 
preservation of certain capsule types occurred in our GBS- and MFS strain collection 
argues for a causal relationship between capsule type and the development of GBS. This 
raises the question: what could be the role of the capsule in the pathogenesis of GBS? 
The C. jejuni capsule was shown to be involved in the invasion of epithelial cells and 
serum complement resistance (14, 15). Enhanced invasiveness and prolonged survival 
of C. jejuni in the intestinal mucosa may lead to increased exposure of bacterial epitopes 
to the immune system and eventually, the development of GBS. Moreover, the capsule 
is surface-exposed and is therefore likely to be involved in host-pathogen interactions.  

Sialylated LOS is involved in invasion of intestinal epithelial cells

In Chapter 3, we assessed whether LOS sialylation contributes to intestinal epithelial 
cell adhesion and/or invasion. We observed that C. jejuni strains with sialylated LOS are 
more invasive in Caco-2 cells compared to nonsialylated strains. With the use of three 
Campylobacter sialic acid transferase (cst-II) knockout strains, all of which lack sialic 
acid on their LOS, we demonstrated that the invasion of Caco-2 cells is sialic acid-de-
pendent. In agreement with this observation, Caco-2 invasion capacity was restored by 
complementation of the cst-II gene in a cst-II knockout strains. Furthermore, we recently 
demonstrated that sialylated C. jejuni strains translocate abundantly through polarized 
Caco-2 cells, without disrupting monolayer integrity as measured by the transepithelial 
electric resistance (16).

Many bacterial structures have been shown to play a role intestinal cell adhesion and 
invasion, including C. jejuni LOS (17). We are the first to show a role for LOS sialylation in 
C. jejuni cell-invasion. A more recent study, performed on C. jejuni strains isolated from 
chicken meat, confirmed our findings that strains with sialylated LOS exhibit a higher 
invasion potential compared to nonsialylated strains (18). However, the role of sialic acid 
in the invasion process may be strain and cell-type dependent, as the loss of sialic acid in 
the LOS outer core of C. jejuni strain 81-176 had no effect on the invasion of INT407 cells 
(19). Strain 81-176, which is highly transformable and has been studied widely, seems 
to have evolved in a somewhat different manner (20). Transposon mutagenesis in strain 
81-176 revealed that CadF and Cia proteins, which are generally implied to be required 
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for C. jejuni cell-invasion (21), did not contribute to the invasiveness of this strain (22). In-
stead, genes on the pVir plasmid which are present in a subset (~10%) of C. jejuni strains 
are involved in 81-176 cell invasion (22-24). We detected pVir in 4 of 125 (3%) enteritis 
strains and in 1 of 21 (5%) GBS- and MFS-associated strains (25). Therefore, involvement 
of pVir is not likely to account for the enhanced invasive capacity of C. jejuni strains in 
our collection.

The precise contribution of sialylated LOS to invasion of the intestinal epithelium is 
unclear. Cell adhesion is an important first step in the invasion process. However, we did 
not observe a difference in C. jejuni adhesion to epithelial Caco-2 cells between sialylated 
and nonsialylated strains, suggesting that sialylated LOS may play a more important role 
in the internalization process. It is likely that C. jejuni uses host cell receptors for invasion. 
C-type lectins, involved in carbohydrate binding and lectin-glycoconjugate interactions, 
have been proposed to participate in initiation of the invasion process (26). As such, 
lectins expressed on the intestinal epithelium that specifically recognize sialylated struc-
tures may be responsible for the enhanced invasiveness of sialylated C. jejuni strains 
observed in Caco-2 cells. In particular, the identification of sialic acid binding receptors 
on intestinal epithelial cells would strongly support a direct role for sialylated LOS in 
intestinal epithelial invasion.

It should be noted that there is controversy concerning the role of sialylated LOS in 
the severity of diarrheal disease. Sialylation of C. jejuni LOS has been associated with 
an increased occurrence of bloody diarrhea and a longer duration of symptoms (27). 
In a recent study, however, no relation between the ability of C. jejuni to sialylate its 
LOS and either bloody diarrhea, hospitalization or campylobacteriosis was found (28). 
As mentioned earlier, we observed that sialylated C. jejuni strains translocate through 
polarized Caco-2 cells in high numbers, without disrupting the monolayer integrity (16). 
This questions whether C. jejuni might be able to cross the intestinal epithelial barrier 
without inducing cell lysis, and as a result provoke less severe diarrheal disease. 

GBS-associated C. jejuni strains bind to sialoadhesin

Upon assessing the binding of GBS- and MFS-associated C. jejuni strains to members of 
the Siglec family, we observed that GBS-associated C. jejuni strains preferentially bind 
to Sn (Chapter 4 & 5). Binding to mouse- and human-derived Sn (mSn and hSn, re-
spectively) was assessed, and we observed that Sn from both species bound to C. jejuni 
strains which expressed terminal α(2,3)-linked sialic acids, as present in gangliosides 
GM1b, GD1a and GM3. Interestingly, hSn, but not mSn, was also able to bind to C. jejuni 
strains with internal α(2,3)-linked sialic acids, as present in GM1a-like structures. This is 
of importance as auto-antibodies directed to ganglioside GM1a are the most frequently 
detected antibodies in patients with GBS (6, 29). Using sialic acid mutant strains and 
purified LOS isolated from these sialic acid mutant strains, we demonstrated that the 
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α(2,3)-linked sialic acids present on the LOS outer core are involved in binding to both 
hSn and mSn. However, the binding of C. jejuni to Sn was not constitutive. We observed 
(Chapter 5) that C. jejuni must undergo particular treatments or growth conditions in 
order to expose the Sn binding domains. Heat inactivation, low pH or contact with a 
bile constituent during growth, exposed the LOS and facilitated Sn binding. Of interest 
in this observation is that no bacterial treatment was performed during the invasion 
studies described in Chapter 3, yet sialic acid-mediated invasion was demonstrated. 
This discrepancy may be related to the cascade of events that are necessary for optimal 
cell invasion (21). Adhesin/ligand mediated forces, together with rearrangement of bac-
terial cell surface structures during the adhesion process, could facilitate the exposure 
of bacterial LOS to cellular structures. Additionally, factors secreted by the intestinal 
epithelium may also contribute to LOS exposure.

Expression of Sn on human intestinal epithelial cells has not been reported; however, 
Sn is expressed by a subset of tissue macrophages, including macrophages in the intes-
tine, lymph nodes and spleen (30). Sn is involved in the recognition of sialylated patho-
gens leading to endocytosis (31-33). With 16 repeating Ig-like domains, the extended 
length of Sn facilitates optimal interaction with pathogens in the environment. In the 
human intestine, Sn-positive macrophages populate the lamina propria (30). These sub-
epithelial macrophages survey the environment for invading pathogens. Macrophage 
encounter of sialylated C. jejuni strains is likely to occur, as sialylated C. jejuni strains 
are highly invasive (Chapter 3) and able to translocate through epithelial cells in high 
numbers (16). 

Using primary human macrophages, we demonstrated that C. jejuni binding to Sn 
leads to increased bacterial uptake and enhanced production of the cytokine IL-6. Our 
findings are supported by recent studies, which showed that sialic acid-mediated bind-
ing to Sn expressed on murine bone marrow-derived macrophages enhances phago-
cytosis and leads to enhanced secretion of proinflammatory cytokines including IL-6 
(34, 35). Moreover, intravenously injected inactivated C. jejuni are readily captured by 
macrophages in the mouse spleen (34), and cytokines IL-6, TNF-α and IFN-β are induced 
in an Sn-dependent manner (35). In summary, sialic acid-specific binding of C. jejuni 
to Sn can result in macrophage-mediated immune activation in the intestine and the 
spleen.

Due to the absence of signaling motifs in its cytoplasmic tail, it is unlikely that Sn 
binding directly triggers cytokine production. Cooperation of Sn with other receptors 
such as TLRs, could explain Sn-mediated cytokine induction. Capture of LOS by Sn could, 
for example, enhance the contact between the LOS lipid A component and TLR4. Pre-
liminary experiments using whole bacteria did not reveal enhanced Sn-mediated TLR4 
activation, probably because lipid A, which is embedded in the outer membrane of C. 
jejuni, was not available for TLR4. 
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C. jejuni strains associated with oculomotor weakness bind to Siglec-7

In Chapter 6 we demonstrated that disialylated C. jejuni strains isolated from GBS or MFS 
patients bind to Siglec-7 in a sialic acid-dependent manner. Previously, it was shown 
that Siglec-7 can bind to disialylated carbohydrates, including the disialylated epitopes 
present on C. jejuni LOS (36). We confirmed these findings and additionally correlated 
the property of Siglec-7 binding with patient serological and diagnostic records. Upon 
screening a large panel of GBS- and MFS-related C. jejuni strains, we observed an as-
sociation between Siglec-7 binding and, (1) the expression of terminally disialylated 
LOS structures, (2) the presence of anti-GQ1b antibodies in patient serum, and (3) the 
diagnosis of oculomotor weakness in patients with GBS and MFS. 

The functional consequences of C. jejuni binding to Siglec-7 remain to be established. 
In humans, Siglec-7 is expressed on monocytes, dendritic cells, natural killer (NK) cells 
and T lymphocytes (37). The trans-membrane immunoreceptor tyrosine based inhibi-
tory motif (ITIM) is suggestive for inhibitory signaling by Siglec-7. In agreement, Siglec-7 
binding inhibits NK cell cytotoxicity and has a negative effect on T cell receptor signaling 
(38, 39). The function of Siglec-7 may, however, be cell type dependent as it recently 
was demonstrated that antibody ligation and zymosan engagement of Siglec-7 leads to 
pro-inflammatory responses in monocytes but not in NK cells and T lymphocytes (40). 

A role for Siglecs in antigen presentation leading to GBS?

Could Sn or Siglec-7 binding promote production of cross-reactive anti-ganglioside an-
tibodies, as detected in GBS and MFS patients? In order to answer this question, we first 
have to consider the immune-events that lead to antibody production. These events 
comprise: exposure of bacterial epitopes to immune cells, recognition by immune cells, 
phagocytosis, immune activation through cytokine production, and antigen presenta-
tion to cells of the adaptive immune system.

In this thesis we demonstrate that sialylated C. jejuni strains can invade intestinal epi-
thelial Caco-2 cells in high numbers. Epithelial invasion leads to abundant translocation 
of C. jejuni through epithelial cells (16). In vivo, such an event would expose C. jejuni to 
intestinal-tissue macrophages and dendritic cells which are situated beneath the intes-
tinal epithelium. Sn and Siglec-7 bind to sialylated epitopes that are associated with the 
induction of GBS or MFS. Sn and Siglec-7 are expressed on macrophages and dendritic 
cells, respectively (30, 41). We show that Sn binding results in enhanced phagocytosis 
and cytokine production in primary human macrophages and others showed that 
binding to Siglec-7 can induce pro-inflammatory responses (40). Thus, by binding of 
sialylated LOS epitopes to Sn or Siglec-7, several of the necessary prerequisites for anti-
body production are met. 

It remains unclear how sialylated ganglioside-like epitopes are presented to adap-
tive immune cells. Dendritic cells are well known for their ability to present antigenic 
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peptides, via MHC-I- and MHC-II-mediated presentation. However, the antigens which 
trigger GBS are not peptides but carbohydrates, and the structures involved in carbo-
hydrate presentation to B cells are largely unknown. We hypothesize that Siglecs ex-
pressed on either dendritic cells or macrophages play a role in antigen presentation. Sn 
is expressed on marginal zone (MZ) macrophages in the spleen and subcapsular sinus 
macrophages in the lymph nodes (42). B cells involved in IgM and IgG antibody produc-
tion are present in both of these organs. In the spleen, MZ macrophages capture and 
present antigenic debris to follicular dendritic cells and B cells (43). Whole bacteria or C. 
jejuni debris which enter the bloodstream during infection of the intestine will enter the 
spleen, where sialylated epitopes could be captured by Sn-positive macrophages (35).  It 
can be envisaged that increased Sn-mediated binding and/or phagocytosis may lead to 
the presentation of more C. jejuni fragments, resulting in increased immune activation. 
In agreement, a recent immunization study in pigs demonstrates that direct targeting 
of the immunizing protein to Sn results in a more rapid and robust induction of specific 
IgM and IgG immune responses, compared to immunization with the protein alone 
(44). These latter findings suggest that Sn-mediated binding of sialylated LOS epitopes 
derived from C. jejuni also leads to enhanced humoral immune responses, resulting in 
the production of cross-reactive anti-ganglioside antibodies. Whether Sn directly pres-
ents epitopes to B cells or whether additional cells including dendritic cells are involved 
remains unclear. 

Next to a role for macrophages, dendritic cells may play a role in antigen capture and 
presentation to B cells leading to the development of GBS. Dendritic cells express many 
PPRs which recognize pathogen-associated molecular patterns. Epitope binding by 
PRRs can lead to immune activation, internalization, and processing of the epitope or 
prolonged retention of the epitope on the cell surface (45). The sensing of sialylated 
LOS by TLR4 expressed on dendritic cells results in enhanced expression of inflamma-
tory cytokines, compared to nonsialylated LOS (46). In the intestine, such cytokines can 
directly or indirectly activate the recruitment of circulating monocytes, which differenti-
ate into pro-inflammatory macrophages upon sensing chemokine stimuli from the 
intestinal epithelium (47). Additionally, cellular activation may stimulate the migration 
of dendritic cells to the mesenteric lymph nodes. Mucosal dendritic cells loaded with 
microbial epitopes traffic towards these lymph nodes, where they interact with and 
activate B cells (48). Specific capture of C. jejuni disialylated carbohydrate epitopes by 
Siglec-7 expressed on the surface of dendritic cells may result in enhanced dendritic 
cell-mediated TLR4 activation in the intestine. The disialylated C. jejuni epitopes bound 
to Siglec-7 can, additionally, be presented to B cells in the mesenteric lymph nodes by 
dendritic cells that have migrated from the lamina propria.

In summary, we propose a model for sialylated LOS-mediated host-pathogen interac-
tions that lead to GBS in Fig. 1.
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A novel treatment strategy?

IVIg and plasmapheresis are proven, effective treatments for GBS (50). In both of these 
treatment modalities, the immune response of the patient is reduced. However, these 
treatments do not specifically target the pathogenic anti-ganglioside antibodies. Fast 
and specific depletion of anti-ganglioside antibodies from the plasma of patients with 
GBS may reduce neurological damage during the acute phase of GBS and possibly also 
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Figure 1. Model for the sialylated LOS-mediated host-pathogen interactions leading to the production of 
cross-reactive anti-ganglioside antibodies. 
In the intestinal lumen, ingested C. jejuni penetrate the mucus layer by the use of bipolar flagella. The 
polysaccharide capsule prevents entrapment of C. jejuni in mucins and the LOS provides protection 
against mucosal antimicrobial peptides (15, 49). Several conserved bacterial surface structures contribute 
to the adherence to intestinal epithelial cells. Sialylated LOS expressed on a subset of C. jejuni strains 
facilitates enhanced invasion and translocation through the intestinal epithelium. Sn expressed on the 
surface of subepithelial tissue macrophages preferentially binds sialylated C. jejuni strains which are 
phagocytosed, killed and digested in lysosomal compartments. The fate of degraded particles is currently 
a topic of debate. Degraded bacterial particles may be released by the macrophage and shed into the 
environment or actively transferred from one phagocyte to another. TLR4 expressed on dendritic cells 
interacts with bacterial lipid A, leading to the production of pro-inflammatory cytokines. These cytokines 
may directly or indirectly activate the recruitment of infiltrating monocytes, which subsequently can 
differentiate into inflammatory macrophages and initiate additional immune activation. Other PRRs 
expressed on the surface of dendritic cells, including Siglec-7, sense the environment and capture 
microbial epitopes. Bacterial particles and dendritic cells coated with bacterial epitopes drain to the 
lymph nodes. Bacterial particles and whole bacteria that reach the bloodstream move towards the spleen. 
Specific recognition of sialylated epitopes by Sn expressed on subcapsular sinus and/or marginal zone 
macrophages, present in the lymph nodes and spleen, respectively, leads to presentation of sialylated 
epitopes to B cells. 
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lead to faster patient recovery. In Chapter 6 we provide proof of principle that synthetic 
gangliosides covalently bound to a polymeric structure (monolith) are able to capture 
anti-ganglioside antibodies from human serum. We have successfully depleted IgM and 
IgG anti-GM2 antibodies from serum in our experiments. Anti-GM2 antibodies have 
been related to cytomegalovirus-induced GBS (51). Unfortunately, we were not able 
to deplete anti-GM1 or anti-GD1a antibodies from serum using synthetic gangliosides 
coupled to monolithic columns. One explanation may be that the synthetic epitope is 
not recognized by anti-GM1 antibodies. However, when coupled to ELISA plates, syn-
thetic GM1 showed a strong binding affinity for anti-GM1 antibodies from the serum 
of neuropathy patients (52), demonstrating that the epitope is adequately recognized. 
Perhaps the density of synthetic GM1 in the monolithic columns is insufficient, resulting 
in poor binding of the antibodies. In humans, the density of gangliosides on periph-
eral nerves is high (53). These densely-packed structures are specifically targeted by 
anti-ganglioside antibodies, despite the prevalence of gangliosides on many other cell 
surfaces. Additional experiments are needed to address whether a higher concentration 
of synthetic gangliosides in the monolithic structure may improve antibody binding. 

Main conclusions 

The work presented in this thesis has led to the following conclusions:
1.	 Most GBS- and MFS-associated C. jejuni strains express sialylated LOS structures.
2.	 C. jejuni LOS locus class A and B are associated with GBS and MFS, respectively.
3.	 The C. jejuni LOS allele A1 results in the production of GM1a- and GD1a-like ganglio-

side mimics.
4.	 C. jejuni capsule types HS1, HS2, HS4, HS19 and HS23/36 are the dominant types 

among GBS/MFS-associated strains.
5.	 Capsule type HS4 is associated with the development of GBS/MFS.
6.	 LOS sialylation is an important determinant of Caco-2 cell invasiveness.
7.	 GBS-associated C. jejuni strains bind to Sn in a sialic acid-dependent manner.
8.	 Both human and mouse Sn bind to terminal α(2,3)-linked sialic acid on C. jejuni LOS.
9.	 Human Sn, unlike mouse Sn, binds to internal α(2,3)-linked sialic acid of GM1a-like 

LOS.
10.	Particular bacterial treatments or growth conditions are necessary to expose the Sn 

binding epitopes on C. jejuni.
11.	Binding to Sn results in increased uptake of C. jejuni in primary human macrophages.
12.	C. jejuni binding to Sn results in enhanced cytokine production in primary human 

macrophages.
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13.	Oculomotor weakness-associated C. jejuni strains bind to Siglec-7 in a sialic acid-
dependent manner.

14.	Synthetic GM2 coupled to a monolithic carrier is able to deplete anti-ganglioside 
antibodies from human serum.

Future perspectives

The role of the capsule in C. jejuni-host interactions 
In our search for novel bacterial factors that may be involved in the development of 
GBS, we identified five main capsule types HS1, HS2, HS4, HS19 and HS23/36 among 
GBS- and MFS-associated strains. In order to establish whether these capsule types are 
indeed associated with the development of GBS, additional C. jejuni strains isolated from 
GBS and MFS patients from various geographical areas need to be characterized. Upon 
confirming of our results, the role of these capsule types in the pathogenesis of GBS 
and MFS could be further explored. In this regard, the role of the capsule in epithelial 
cell-invasion and in complement resistance deserves special attention.

The identification of pathogenic capsules opens new avenues for novel preventive 
strategies in the future. GBS-related capsule types could be considered for inclusion 
in capsule-based vaccines, which are currently under development (54). Additionally, 
screening of environmental sources, food products and human stool samples for the 
presence of specific C. jejuni LOS classes and capsule types may create an opportunity 
for preventive eradication of these virulent strains. However, it should be realized that 
the costs of such measures may be prohibitively high; therefore, cheap and rapid assays 
for the detection of pathogenic strains are desirable.

Epithelial invasion by C. jejuni
To support a direct role for sialylated LOS in intestinal epithelial invasion, our future re-
search should focus on the identification of the epithelial cell-receptors that specifically 
bind to sialylated LOS. Additionally, we suggest that human organoids, derived from in 
vitro expansion of intestinal stem cells (55), could be used to study intestinal epithelial 
invasion in a more physiological setting.  

The role of Siglecs in C. jejuni-host interactions
The identification of two receptors involved in the specific recognition of GBS- and 
MFS-associated strains has improved our understanding of the immune events that 
may lead to the development of GBS and MFS. To gain more insight into the role of Sn 
and Siglec-7 in immune activation, we suggest that it should be investigated whether 
Sn-mediated binding of sialylated C. jejuni LOS can enhance TLR4 activation, and the 
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functional consequences of C. jejuni binding to dendritic cell-expressed Siglec-7 should 
be assessed. Additionally, it seems important to determine whether binding to Sn af-
fects the intracellular trafficking of C. jejuni, as it has been demonstrated that binding to 
lectins can lead to differential routing of antigens (56). 

An in vivo mouse model would be suitable to address the question of whether 
Sn-dependent uptake leads to C. jejuni antigen trapping and presentation, resulting 
in cross-reactive anti-ganglioside antibody production. Transgenic GalNAcT-/- mice, 
which lack complex gangliosides (57), are used as immune-naive hosts to raise anti-
ganglioside antibodies. Anti-ganglioside antibodies from the IgG1 and IgG3 subclasses 
are produced upon immunization of these mice with GM1-/GD1a-like LOS (58). Crossing 
of GalNAcT-/- mice with Sn-/- mice (59) would generate GalNAcT-/- Sn-/- double knockout 
mice. Such mice would be highly valuable to study the impact of Sn on the production 
of anti-ganglioside antibodies. 

Identification of the host receptors involved in the production of anti-ganglioside 
antibodies will assist in the discovery of host genetic susceptibility factors. In this regard, 
we propose investigating whether GBS patients have specific alterations in the genes 
that encode Sn or Siglec-7, resulting in altered expression of these receptors. Sequenc-
ing of the genes that encode Sn and Siglec-7, or the genes that encode the structures 
involved in the downstream signaling pathways may lead to the identification of par-
ticular nuclear polymorphisms associated with the development of GBS or MFS. 

Synthetic gangliosides in GBS serology
Unfortunately, synthetic gangliosides covalently bound to a monolithic matrix were 
not successful for depleting anti-GM1 antibodies from human serum. However, serum-
derived IgM and IgG anti-GM1 antibodies did bind strongly to synthetic GM1 coupled 
to ELISA plates and Luminex® beads. GM1-coupled ELISA plates or Luminex® beads 
are unsuited for antibody depletion but instead can be used for the detection of anti-
ganglioside antibodies in patient serum. Therefore, the use of synthetic gangliosides in 
GBS serology should be further explored. The fine specificity of various anti-ganglioside 
antibodies in GBS and MFS patients can be further investigated using synthetic ganglio-
sides. This research will eventually lead to a better understanding of the heterogeneous 
clinical phenotype of GBS.
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Summary

Infection with the intestinal bacterium Campylobacter jejuni (C. jejuni) may lead to the 
development of Guillain-Barré syndrome (GBS) or Miller Fisher syndrome (MFS). GBS is 
a severe and potentially life-threatening neurological disease which is characterized by 
demyelination or axonal degradation of peripheral nerves, resulting in acute, progres-
sive and fairly symmetrical paralysis. MFS is a milder variant of GBS, characterized by a 
lack of coordination, loss of tendon reflexes and paralysis of the eye muscles (oculomo-
tor weakness). GBS and MFS are immune-mediated diseases that can develop following 
a microbial infection. Several bacteria and viruses have been associated with the induc-
tion of GBS. C. jejuni is the most frequently identified causative agent, and is associated 
with more severe forms of the disease. C. jejuni can have sialylated lipooligosaccharides 
(LOS) structures which are highly similar to peripheral nerve gangliosides. It is estab-
lished that these sialylated LOS structures can induce the production of cross-reactive 
anti-ganglioside antibodies; these antibodies trigger nerve damage which may lead to 
paralysis in patients with GBS.

In industrialized countries, C. jejuni is predominantly transmitted through contami-
nated food. Once ingested, C. jejuni may penetrate the intestinal mucosa. The bacterial 
factors that contribute to mucosal penetration by C. jejuni include: the bipolar flagella, 
the surface adhesins involved in the adhesion to intestinal epithelial cells, and the 
bacterial structures involved in the invasion of intestinal epithelial cells. As such, these 
bacterial factors contribute to enhanced immune exposure which may lead to immune 
activation. In combination with the presence of sialylated LOS, these bacterial factors 
may contribute to the development of GBS. The identification of novel GBS-associated 
bacterial factors that contribute to enhanced immune exposure would be a pivotal step 
forward in the understanding of how C. jejuni-mediated GBS develops. 

Besides the identification of bacterial factors, identification of the human factors 
involved in the development of GBS is also of great importance. It is clear that cross-
reactive anti-ganglioside antibodies are induced in patients with GBS. However, it 
is largely unknown which immune events lead to the induction of these antibodies. 
Immune recognition of bacterial epitopes is a crucial first step in the induction of an 
antibody response, yet the specific receptors involved in the recognition of sialylated 
LOS are largely unknown.

The aim of this thesis was to identify interactions between C. jejuni and the human 
host which contribute to the development of GBS. In particular, we focused on the role 
of sialylated LOS of C. jejuni. We assessed the role of sialylated LOS of C. jejuni in adhesion 
and invasion of human intestinal epithelial cells and we studied whether sialylated C. 
jejuni strains can bind to members of the sialic acid-binding immunoglobulin-like lectin 
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(Siglec) family. Additionally, we search for novel GBS-associated C. jejuni virulence fac-
tors and we focused on the development of a new putative treatment strategy for GBS. 

In Chapter 2, we further established that the sialylated LOS loci classes A and B of C. 
jejuni are associated with GBS and MFS, respectively. In search for novel virulence factors 
that may be involved in the development of GBS or MFS, we screened for the preva-
lence of genes encoding proteins known to be involved in C. jejuni virulence. However, 
this approach did not lead to the identification of new GBS- or MFS-associated genes. 
PCR-based capsule genotyping revealed that five capsule types (HS1, HS2, HS4, HS19 
and HS23/36) were dominant among GBS/MFS-associated C. jejuni strains. Of these five 
capsule types, HS4 was significantly associated C. jejuni strains isolated from GBS or MFS 
patients. In order to establish whether these capsule types indeed are associated with 
GBS and MFS development, capsular genotyping on additional GBS- and MFS-associated 
strain from various geographical areas is necessary. 

In Chapter 3, we observed that sialylated C. jejuni strains were able to invade hu-
man intestinal epithelial Caco-2 cells in significantly higher numbers compared to 
nonsialylated strains. Three previously constructed sialic acid knockout strains showed 
a significantly reduced ability to invade Caco-2 cells, compared to the parental wild 
type strains. No difference was observed in the ability of sialylated and nonsialylated 
C. jejuni strains to adhere to Caco-2 cells. Our findings suggest that sialic acids on C. 
jejuni LOS play a role in the cell invasion process. As such, sialylated LOS could contribute 
to increased exposure of bacterial components, including sialylated LOS, to the host 
immune system.

In Chapter 4, the interaction of C. jejuni strains with murine sialoadhesin (Sn) was 
assessed. Sn is a member of the Siglec family (Siglec-1) and is expressed on a subset 
of macrophages. We observed that C. jejuni strains that have monosialylated LOS with 
terminal α(2,3)-linked sialic acids on the LOS outer core were able to bind to murine Sn 
(mSn). We provided evidence that Sn binding is sialic acid-specific, as two sialic acid 
knockout strains which lacked α(2,3)-linked sialic acids on their LOS were unable to bind 
to mSn, whereas the parental wild type strains could bind mSn. Upon screening a large 
panel of C. jejuni strains, we demonstrated that significantly more GBS-associated C. 
jejuni strains bond to mSn, compared to uncomplicated enteritis-associated strains. Sn 
is expressed on residentual macrophages in the lamina propria and on splenic marginal 
zone and mesenteric lymph node subcapsular sinus macrophages. C. jejuni may encoun-
ter these macrophages once the bacterium has crossed the intestinal epithelium. 

To determine whether binding to Sn could play a role in the pathogenesis of GBS 
in human, we assessed (Chapter 5) whether sialylated LOS on C. jejuni also interacted 
with human Sn (hSn) and what the functional consequences of binding to Sn were. We 
showed that C. jejuni can bind to hSn expressed on a monocytic cell line and primary hu-
man macrophages, in a sialic acid-dependent manner. Not only strains with terminally 
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α(2,3)-linked sialic acids, but also strains with internal α(2,3)-linked sialic acids (as present 
in the ganglioside GM1a) bond to hSn. This observation is of importance as antibodies 
against GM1a are the most frequently detected anti-ganglioside antibodies in patients 
with GBS. Intriguingly, the binding of C. jejuni LOS to hSn was not constitutive, but re-
quired specific bacterial treatments or growth conditions. Heat inactivation, treatment 
with low pH or a bile constituent, or bacterial growth on culture plates which contained 
bile facilitated the binding of C. jejuni LOS to hSn, in a sialic acid dependent manner. 
Cryo-electron microscopy and labeling of C. jejuni LOS with cholera toxin revealed that 
these conditions were necessary in order to expose the LOS on the bacterial surface. The 
functional consequences of hSn binding were assessed using human monocyte-derived 
macrophages. Sn binding enhanced bacterial uptake and increased release of the cy-
tokine IL-6, compared to control conditions when hSn was blocked using neutralizing 
antibodies or when nonsialylated C. jejuni was used. Sn-mediated differentiation of C. 
jejuni strains on the basis of their ganglioside mimic expression may be an important 
initial event in the induction of GBS-related immune responses.

In Chapter 6 we studied the interaction between C. jejuni and human Siglec-7, an-
other member of the Siglec family which is expressed on NK cells, monocytes, dendritic 
cells and T cells. We showed that Siglec-7 exclusively bond to strains which had terminal 
disialylated LOS, with α(2,8)-linked sialic acids. Additionally, we observed a correlation 
between Siglec-7 binding, the presence of anti-GQ1b antibodies in patient serum and 
the diagnosis of oculomotor weakness in either GBS or MFS. For future research we 
suggest that the functional consequences of C. jejuni binding to Siglec-7 on human den-
dritic cells should be assessed. Dendritic cells play a pivotal role in antigen presentation 
and immune activation and are therefore of interest in the pathogenesis of GBS.

In Chapter 7, we focused on a novel putative treatment strategy for GBS. Currently, 
patients with GBS are treated with either a high doses of purified immunoglobulins 
which are injected intravenously (IVIg) or plasma exchange (plasmapheresis). In both of 
these treatment modalities, the immune response of the patient is reduced, yet these 
treatments do not specifically target the anti-ganglioside antibodies. In Chapter 7 we 
provided proof of principle that synthetic gangliosides covalently bound to a polymeric 
structure (monolith) were able to capture anti-ganglioside antibodies from human 
serum. We demonstrated successful antibody capture and depletion of class IgM or IgG 
anti-GM2 antibodies. Rapid, specific depletion of anti-ganglioside antibodies from GBS 
patient plasma could lead to less severe neurological damage in the acute phase of GBS 
and faster patient recovery.

The most important conclusions of the work described in this thesis are that sialylated 
C. jejuni strains are more invasive in Caco-2 cells compared to nonsialylated strains. 
GBS-associated C. jejuni strains preferentially bind to Sn in a sialic acid dependent man-
ner. Binding to Sn might activate GBS-related immune responses, as we showed that 
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in primary human macrophages, sialic acid specific binding of C. jejuni to Sn resulted 
in increased bacterial uptake and enhanced cytokine production. MFS-related immune 
responses might be induced via the initial binding of disialylated LOS to Siglec-7, as 
we demonstrated that disialylated MFS- and oculomotor weakness-associated C. jejuni 
strains specifically bond to this Siglec, in a sialic acid dependent manner. The identifica-
tion of receptors involved in the development of GBS and MFS is of importance to dissect 
the immune events that contribute to the production of anti-ganglioside antibodies 
and may lead to the identification of host susceptibility factors for GBS and MFS.
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Nederlandse samenvatting

De darmbacterie Campylobacter jejuni (C. jejuni) is wereldwijd een van de belangrijkste 
veroorzakers van bacteriële diarree. Naast diarree kan een infectie met C. jejuni ook 
leiden tot de ontwikkeling van het Guillain-Barré syndroom (GBS). In Nederland worden 
jaarlijks 150 tot 300 getroffen door GBS. Hoewel GBS dus niet vaak voorkomt, is het een 
zeer ernstige en levensbedreigende ziekte.

In patiënten met GBS zijn de zenuwen die het centrale zenuwstelsel met de spieren 
verbinden beschadigd. Deze zenuwschade leidt tot gevoelsstoornissen en spierzwakte 
en heeft in ernstige gevallen volledige verlamming tot gevolg. Een mildere variant van 
GBS is het Miller Fisher syndroom (MFS), wat gekenmerkt wordt door een oogspierver-
lamming en evenwichtsstoornissen. GBS en MFS zijn immuun-gemedieerde ziektes die 
kunnen ontstaan na een microbiële infectie. Verschillende bacteriën en virussen worden 
in verband gebracht met GBS. Een voorafgaande infectie met de bacterie C. jejuni wordt 
het vaakst aangetoond en is geassocieerd met ernstige vormen van de ziekte. 

GBS volgend op een C. jejuni-infectie wordt waarschijnlijk veroorzaakt door een ge-
lijkenis tussen structuren op bacteriën en structuren op zenuwcellen van de mens. Aan 
het oppervlak van C. jejuni kunnen gesialyleerde suikerketens (lipooligosacchariden, 
LOS) voorkomen, die een grote overeenkomst vertonen met de ganglioside structuren 
die aanwezig zijn op zenuwcellen. Het is bewezen dat deze gesialyleerde suikerketens 
de productie van kruisreactieve anti-ganglioside antilichamen kunnen stimuleren. Als 
deze antilichamen binden aan gangliosiden op zenuwcellen, kan dit een immuunres-
pons op gang brengen die resulteert in zenuwbeschadiging en de klinische symptomen 
van GBS en MFS.

C. jejuni komt door het eten van besmet voedsel in het maag-darmkanaal terecht en 
is dan in staat om de mucuslaag (slijmlaag) van de darm te penetreren. Het daaronder 
liggende darmepitheel vormt een barrière voor de meeste bacteriën. C. jejuni is echter 
in staat om het darmepitheel te passeren, waarna het in contact komt met immuuncel-
len. Bacteriële factoren die het binnendringen van het darmepitheel faciliteren dragen 
waarschijnlijk ook bij aan een verhoogde blootstelling van bacteriële componenten 
aan het immuunsysteem. In combinatie met de aanwezigheid van gesialyleerde LOS op 
de bacterie, zouden deze factoren een rol kunnen spelen bij het ontstaan van GBS. De 
identificatie van GBS-geassocieerde bacteriële structuren die bijdragen aan verhoogde 
immuunblootstelling zou een belangrijke stap voorwaarts zijn in ons begrip van het 
ontstaan van C. jejuni-gemedieerd GBS. 

Naast het identificeren van bacteriële factoren is de identificatie van humane facto-
ren die bijdragen aan het ontstaan van GBS van groot belang. Het is duidelijk dat er 
kruisreactieve anti-ganglioside antilichamen voorkomen in het bloed van patiënten 
met GBS. Het is echter grotendeels onbekend welke immunologische gebeurtenissen 
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bijdragen aan het ontstaan van deze kruisreactieve antilichamen. Immuunherkenning 
van lichaamsvreemde componenten is een noodzakelijke stap voor het ontwikkelen van 
een antilichaamrespons, maar receptoren die betrokken zijn bij de specifieke herken-
ning van gesialyleerde LOS zijn nagenoeg onbekend. Het identificeren van dergelijke 
receptoren zal leiden tot meer inzicht in het ontstaan van GBS. 

Het doel van het onderzoek dat beschreven staat in dit proefschrift was om de interac-
ties tussen C. jejuni en de mens die bijdragen aan het ontstaan van het GBS te identifice-
ren. We hebben ons hierbij vooral gericht op de rol van gesialyleerde LOS. We hebben de 
rol van gesialyleerde LOS bij het binnendringen van humaan darmepitheel bestudeerd 
en bekeken of gesialyleerde C. jejuni-stammen kunnen binden aan Siglecs. Siglecs zijn 
een familie van siaalzuurbindende receptoren die voorkomen op immuuncellen en 
die onder andere betrokken zijn bij het herkennen van pathogenen. Verder hebben 
we met behulp van genotypering gekeken of bepaalde genen die betrokken zijn bij 
virulentie (vermogen om schade te veroorzaken in een gastheer) vaker voorkomen bij 
GBS-geassocieerde C. jejuni stammen vergeleken met stammen die geassocieerd zijn 
met ongecompliceerde diarree. Tenslotte hebben we ons gericht op het ontwikkelen 
van een nieuwe behandelingsmethode voor patiënten met GBS.

In Hoofdstuk 2 konden we bevestigen we dat C. jejuni-stammen met gesialyleerde 
LOS geassocieerd zijn met GBS en MFS. Onderzoek naar het voorkomen van genen die 
eiwitten coderen waarvan bekend is dat ze bijdragen aan de virulentie van C. jejuni heb-
ben niet geleid tot de identificatie van GBS- of MFS-geassocieerde bacteriële genen. 
Genotypering van het kapsel liet echter zien dat vijf kapseltypes (HS1, HS2, HS4, HS 
19 en HS23/36) dominant aanwezig zijn in GBS/MFS-geassocieerde C. jejuni-stammen, 
terwijl de kapseltypes in C. jejuni-stammen die geassocieerd zijn met ongecompliceerde 
diarree meer variatie vertoonden. Van de vijf gevonden kapseltypes in de GBS/MFS-
gerelateerde stammen was kapseltype HS4 significant geassocieerd met GBS/MFS. Om 
met meer zekerheid vast te kunnen stellen of het kapsel inderdaad een rol zou kunnen 
spelen bij het ontstaan van GBS of MFS, zijn aanvullende studies nodig. 

De rol van gesialyleerde LOS in het binden aan en binnendringen van darmepitheel-
cellen werd onderzocht in Hoofdstuk 3. We vonden dat gesialyleerde C. jejuni-stammen 
significant beter in staat waren om Caco-2 darmepitheelcellen binnen te dringen dan 
niet-gesialyleerde stammen. Drie siaalzuurmutanten waren significant minder goed 
in staat om darmepitheelcellen binnen te dringen in vergelijking met ongemuteerde 
stammen. Er werden echter geen verschillen gevonden in de capaciteit van C. jejuni-
stammen om aan Caco-2-cellen te binden. Dit suggereert dat de siaalzuren die aanwezig 
zijn op de LOS van C. jejuni voornamelijk een rol spelen bij het binnendringen van de cel 
en niet bij de hechting aan de cel. Onze bevindingen wijzen daarom op een dubbele 
rol voor gesialyleerd LOS in de pathogenese van GBS. Naast het feit dat gesialyleerde 
LOS betrokken zijn bij immuunactivering, dragen deze structuren door een verhoogde 
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capaciteit om darmepitheel binnen te dringen waarschijnlijk ook bij aan verhoogde 
blootstelling van bacteriële componenten aan immuuncellen (die zich onder het dar-
mepitheel bevinden).

Hoofdstuk 4 beschrijft een studie over de binding van C. jejuni aan muis-sialoadhesine 
(Sn, Siglec-1). Sn is een siaalzuurbindende receptor die voorkomt op bepaalde macro-
fagen. In bindingsstudies laten we zien dat C. jejuni-stammen die α(2,3)-gekoppelde si-
aalzuren aan het uiteinde van de suikerketens van hun LOS hebben, in staat zijn om aan 
Sn te binden. De binding aan Sn was siaalzuurspecifiek. Twee siaalzuurmutanten waren 
namelijk niet in straat om aan Sn te binden, terwijl de representatieve niet-gemuteerde 
stammen wel aan Sn bonden. Het vergelijken van een groot aantal C. jejuni-stammen 
op basis van binding aan Sn leidde tot de observatie dat GBS-geassocieerde stammen 
significant vaker aan Sn bonden dan C. jejuni-stammen die geassocieerd zijn met on-
gecompliceerde diarree. Sn is aanwezig op macrofagen die voorkomen in de darm, de 
lymfeklieren van de darm en de milt. Het is aannemelijk dat C. jejuni bij het passeren van 
het darmepitheel in contact komt met deze macrofagen. 

Om te bepalen of binding aan Sn ook een rol zou kunnen spelen in de pathogenese 
van GBS in de mens, onderzochten we of de gesialyleerde LOS van C. jejuni ook kunnen 
binden aan humaan Sn. In Hoofdstuk 5 laten we zien dat dit inderdaad het geval is. Dit 
toonden we aan met behulp van bindingsexperimenten waarbij we gebruikmaakten 
van twee celtypen die Sn aan hun oppervlak tot expressie brengen. Naast stammen met 
eindstandige α(2,3)-gekoppelde siaalzuren konden ook stammen met interne α(2,3)-
gekoppelde siaalzuren, onder andere aanwezig op ganglioside GM1a en GD1a, aan 
humaan Sn binden. Deze ontdekking is van belang, omdat antilichamen tegen GM1a en 
GD1a vaak gedetecteerd worden in het bloed van patiënten met GBS. Er waren specifieke 
condities noodzakelijk voor de binding van C. jejuni aan Sn. Alleen als C. jejuni op een 
bepaalde manier werd behandeld of gekweekt, bond het aan de receptor. Kortstondige 
verwarming, behandeling met een lage pH of met een galzout, of bacteriële groei in 
aanwezigheid van galzout waren condities die Sn-binding faciliteerden. Elektronenmi-
croscopie wees uit dat bovengenoemde condities nodig waren om de gesialyleerde sui-
kerstructuren bloot te stellen aan de oppervlakte van C. jejuni. Met behulp van primaire 
humane macrofagen hebben we de gevolgen van C. jejuni-binding aan Sn bestudeerd. 
Onze experimenten lieten zien dat Sn-binding leidde tot verhoogde bacteriële opname 
en verhoogde productie van cytokine IL-6, vergeleken met controlecondities waarbij Sn 
werd geblokkeerd met antilichamen of wanneer niet-gesialyleerde C. jejuni-stammen 
werden gebruikt. Cytokine IL-6 is betrokken bij immuunactivering. Door binding van 
gesialyleerde LOS aan Sn kan het immuunsysteem dus worden geactiveerd. Deze acti-
vatie zou een belangrijke eerste stap kunnen zijn in de productie van anti-ganglioside 
antilichamen en de ontwikkeling van GBS. 
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Hoofdstuk 6 handelt over de interactie tussen C. jejuni en Siglec-7. Siglec-7 is een 
ander lid van de Siglec-familie, dat onder andere aanwezig is op het oppervlak van 
NK-cellen, monocyten, dendritische cellen en T-cellen. Dendritische cellen spelen een 
belangrijke rol bij interacties die kunnen leiden tot de productie van antilichamen, waar-
door deze cellen interessant zijn voor onderzoek naar het ontstaan van GBS. We vonden 
dat Siglec-7 exclusief bond aan C. jejuni-stammen die dubbel-gesialyleerde LOS had-
den. Verder is in hoofdstuk 7 te zien dat Siglec-7-binding correleerde met de diagnose 
oogspierverlamming in GBS en MFS. In toekomstig onderzoek zouden de functionele 
consequenties van C. jejuni-binding aan Siglec-7 op dendritische cellen onderzocht kun-
nen worden. 

In Hoofdstuk 7 beschrijven we een innovatieve en mogelijke toekomstige behande-
lingsmethode voor patiënten met GBS. Huidige behandelingen bestaan ofwel uit het 
toedienen van een hoge dosis gezuiverde immunoglobulinen, ofwel uit plasmavervan-
ging. Ondanks dat beide behandelmethoden succesvol zijn in het onderdrukken van 
de immuunreactie in patiënten met GBS, zijn deze behandelingen niet specifiek gericht 
tegen de anti-ganglioside antilichamen. Deze anti-ganglioside antilichamen zijn nu juist 
waarschijnlijk de oorzaak van zenuwschade in GBS patiënten. We demonstreerden dat 
synthetische gangliosiden gekoppeld aan een polymere matrix in staat zijn om anti-
ganglioside antilichamen te binden en te verwijderen uit humaan plasma. Met deze 
methode hebben we succesvolle verwijdering van anti-GM2 antilichamen uit serum 
kunnen bewerkstelligen. Snelle, specifieke verwijdering van anti-ganglioside antilicha-
men uit bloed van patiënten met GBS kan leiden tot minder neurologische schade in 
de acute fase van GBS, waardoor de patiënten mogelijk sneller herstellen en minder 
restschade hebben. 

Sn en Siglec-7 zijn betrokken bij de specifieke herkenning van gesialyleerde LOS, aan-
wezig op GBS- en MFS-geassocieerde stammen. Dit is de belangrijkste conclusie van het 
werk beschreven in dit proefschrift. Deze bevinding heeft geleid tot de identificatie van 
immuuncellen en immuunresponsen die mogelijk indirect bijdragen aan de productie 
van anti-ganglioside antilichamen en de ontwikkeling van GBS en MFS.
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