Conclusions and recommendations

Recommendations for research and development

Future research and development activities should be directed by strategic choices,
involving available resources, future applications and patent positions.

Further miniaturization of the catheter (€ 1 mm OD) would enable investigation deeper
into the arterial system. Especially the coronary application would benefit from such a
development.

The current flexible drive-shafts perform adequately, but in future higher demands to
accurate depiction of blood-vessel cross-sections may be made, possibly related to new
methods of material and tissue characterization, based on the echo-information.

Also a change of working conditions may decrease the angular fidelity of the flex-shaft
rotation transmission. In a hybrid catheter, for instance, suited for US-imaging as well as
spark-erosion or mechanical drilling, mechanical power is required at the catheter-tip, most
likely to be delivered by the same drive-shaft. Furthermore, ongoing miniaturization will
change the properties of the flex-shaft. These arguments may show the importance of
further optimization of the flex-shaft properties, along the guide-lines set in this thesis.
Acquiring more understanding of the mechanics of the double-layer spiral itself would
greatly support these investigations. The relationship between its construction parameters
like the lead angle, the number of paralle] filaments per layer, the interference force
between the layers, the wire properties, etc., and the favourable qualities of the flex-shaft
should be studied.

Incorporation of a micro-motor in the catheter-tip has started already and will hopefully
yield a reliable scanning system, insensitive to catheter curvature. The driving motor in the
driving unit, to which the catheter is connected, will become obsolete, so that the unit can
become smaller and handier, serving bed-side ergonomics.

Down-scaling of the catheter to sizes < 1 mm OD requires the development of a smaller
micro-motor. This seems to be possible, applying the same principles, but will take a
considerable research and development effort.

For other medical applications, like in urology or gynaecology, US-imaging catheters may
also prove to be useful. Most likely the system will have to be modified to adapt to
different medical demands. Application of other ultrasonic frequencies and the change of
size and shape of the catheter/probe will probably be required.

The development of hybrid catheters, integrating US-imaging with an interventional
method e.g. balloon dilation will enable the physician to investigate a stenosis, take
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therapeutic measures and examine the result, all with the same catheter. It would save time
and the image-plane would more accurately coincide with the site of intervention, than can
be achieved with separate imaging and interventional catheters.

For the signal- and image-processing, obvious changes connected with the catheter
development have to be made, but more independently efforts can be made to improve
software ergonomics and software tools for image analysis, including 3-dimensional
computer reconstruction of a section of a blood-vessel.
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String pulley

APPENDIX A  String pulley driving mechanism

An introduction to this concept is given in § 3.2.2, together with a structure of the
mechanism in Fig. 3.2-4. In this appendix some aspects of the method will be discussed
in more detail and it will be shown that some major functional and constructive problems
are to be solved when pursuing this method.

The success of the method would lie in the ability to accurately derive the tip-rotation
angle from the linear string travel, monitored at the proximal end of the catheter.
Changes in tensile forces in the string ends as well as in the catheter-tube cause variations
in the proximal string travel, which will be interpreted as corresponding with a certain tip-
rotation angle, but actually are the result of changes in strain of the string and catheter-
tube.

Because of the small diameter of the friction wheel, the system is sensitive to this problem.
As an example the following reasoning and calculations are presented.

The dimensions of the catheter limit the diameter D of the friction wheel to about 1 mm.
One degree of rotation corresponds therefore with 9 um of travel of the string.

The string should be axially stiff, but very flexible. A thin, multi-fiber composed cable of
e.g. Kevlar or carbon meets these requirements. The outer diameter of the string is limited
to about 0.1 mm. The Young’s modulus of Kevlar is 130.000 N/mm? and of carbon fiber
up to 400.000 N/mm’. Carbon fiber, however, is brittle, so it is doubtful whether a radius
of curvature of 0.5 mm over the friction wheel is attainable for this fiber. The variation
in length Al of the Kevlar string under a variation of tensile force AF is given by:

Al = AF (A-1)
EA

where

AF [N] = variation of tensile force
! [mm) = length

E [N/mm?] = Young’s modulus

A [mm?] = cross-sectional area
EA [N] = axial stiffness

The Kevlar string of 2 m length (catheter length of 1 m) will elongate about 20 um at an
increase of the tensile force of 0.01 N (= 1 gf).
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Analogously the change of the catheter length can be found, when variations of the axial
force occur. The catheter, e.g. a polyethylene tube of 1.37 mm OD and 1.09 mm ID and
a bending rigidity of about 30 Nmm2, has an axial stiffness EA of about 160 N. A
variation of the axial force of 0.01 N (= 1 gf) changes the length L of this catheter of 1
m length, with AL = 60 um.

The tip-rotation error angle v [°] is given by:

y = 2L » A1) (A-2)
nD

An estimation of the tensile force in the string and the compression force in the catheter
and their variations in a functional situation can be made, based on the fact that friction
forces should be exceeded. Friction between the string and the catheter-tube is increased
by the curved situation in which the catheter should function. The friction force F, = F, -
F, in one bend is ruled by the equation [1]:

F, = e"F, (A-3)
where
F, [N] = ingoing tensile string force
F, [N] = outgoing tensile string force

p = friction coefficient between string and catheter-tube
¢ [rad] = angle of contact in the bend

The geometry of the catheter, following the tortuous pathway to the coronary arteries can
roughly be approximated by 5 times a 90° curve: the introduction curve, the aortic arch
(= 180°), the entrance into the coronary and the summation of other curves.

If the proximal string tensile force of the ingoing end of the string is F,, and the tensile
force of the driven, outgoing end is F,, we find for the relationship between these two:

F, =e™F, (A-4)

out
and for their variations:

AF = e™AF, (A-5)

ouf
The average tensile force F, ,, in the string and its variation AF, ,, can be approximated
by:

Smp
Fx av = Fu‘p = eTFin (A—6)
and
Smp
AFs, av = AFlip =e TAFin (A—7)
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String pulley

where F.._is the tensile force in the driving string at the catheter-tip and AF,, its variation.

tip
The tensile forces in the two string ends at every catheter cross-section determine the
compressive force in catheter-tube at that location. The average compressive force F, ,, and
its variation

AF, ,,can be estimated by:

Smp
Fc av = —2Flip = -2e : Fin (A_S)
and
- (A-9)

AF_ . = -2AF, = -2¢ 7 AF,
The force F,, should be kept as small as possible, not to let F, ,, grow too much. But F,,
should have a certain minimum value to ensure enough string tension over the friction
wheel in the tip to avoid slip. Furthermore this minimum value should be kept as constant
as possible, to avoid increased fluctuations of the tensile force in the string and in the
compressive force in the catheter tube. It will show to be difficult to stabilize very small
pre-tensions F,. We assume that F;, can be stabilized to variations AF,. F,, and F;; can
be calculated, using respectively eqs. A-4 and A-6. The tip-error angle v, due to the
variations AF, , can be estimated using eqs. A-1 and A-2, where the variation of the tensile
force in the string AF, ,, is given by eq. A-7 and the variation of the compressive force in
the catheter AF, ,, by eq. A-9. Some calculations have been performed for different values
of the friction coefficient pu, F,, and AF,, (Table A-1).

The friction coefficient is not known exactly and may be reduced by using special
materials or lubricants.

Table A-1 F,,, and v as a function of F,, AF;, and .

H 1:in AF:in Foul ’Y
[N] [N] (N] [°]
0.05 0.01 0.001 0.02 2.5
0.01 0.02 24.5
0.1 0.001 0.22 2.5
0.01 0.22 24.5
0.1 0.01 0.001 0.05 3.6
0.01 0.05 36.3
0.1 0.001 0.48 3.6
0.01 0.48 36.3
0.2 0.01 0.001 0.23 8.0
0.01 0.23 79.7
0.1 0.001 2.31 8.0
0.01 2.31 79.7
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This table shows that u and AF,, should be kept very low (respectively < 0.05 and < 0.001
N), otherwise the variations in the tensile forces will cause large tip-rotation error angles.

A miniature gearing in the catheter-tip reducing the rotary speed by e.g. a factor 10 can
solve the described problems because the tip-rotation error will be less sensitive to
variations in length of the driving wire or catheter-tube. Needless to say that the
development of this miniature speed-reduction device represents a technological problem
by itself.

Another reason to keep the value of F,, low is to avoid the accumulation of the tensile
force over the length of the string to high values, between the ingoing and the outgoing
side. The string is also axially moving, so that the risk of damage to the polymer wall of
the catheter becomes apparent. A stainless steel spiral, incorporated in the catheter-tube
wall may be applied to reduce this risk.

If the string is situated (slightly) eccentrically in the catheter and its tension is high, a
considerable bending moment can be developed, which causes unwanted catheter curvature.

Reference

1. Meriam I.L., Statics, SI version, John Wiley & Sons, Inc., New York, London, Sydney,
Toronto, pp. 256-258, 1975.
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El; # EI, and pre-curvature

APPENDIX B Effect of EI, # EI, and pre-curvature on the
rotation transmission characteristics of a flexible
drive-shaft; analytical modelling

For the explanation of symbols, used in this appendix, see the list of symbols at the
beginning of Chapter 4.

The analytical modelling in this appendix is based on the fluctuating strain energy content
of the drive-shaft during rotation, due to El; # El, or pre-curvature. Before presenting
these models, a description is given of unsymmetrical bending, torsion and strain energy
of the shaft.

Unsymmetrical bending

A local Cartesian coordinate system is defined on the drive-shaft (Fig. B-1). The curve in
the drive-shaft, with constant curvature, is restricted to the xz-plane by the catheter-tube
through which it runs (Fig. 4.1-1). The x-axis coincides with the local central axis of the
drive-shaft.

Al

Fig. B-1 Definition of local xyz-axes on a drive-shaft cross-section and the principal axes of bending ¥
and 7.

We assume that the drive-shaft cross-section has two perpendicular axes of symmetry, sO
that the two principal axes of bending, y and Z, can be defined. The - and Z-axis are
rotated around the x-axis over an angle ¥ with respect to the y- and z-axis.
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For the bending moments M, and M, in the principal directions we find [1, p- 296]:
M; = - x, EL (B-1)
and
M, =« EL (B-2)

where
Ky, K is the curvature in ¥ and 7 direction
El,, EI is the bending rigidity when bending around respectively the 7- and 7-axis
For the curvatures %, and k, we find:

K = K, cosy + K, siny (B-3)
and

K; = K, cosy - K, siny (B-4)

The confinement of the shaft in the xz-plane means that K, =0and x, = x;, = 1/p,, so that:

M. = - sy (B-5)
¥y
P,
and
o
M, = Eiy sy (B-6)
P,
Torsion

An infinitesimal section of the curved drive-shaft is also twisted by a torque M,, causing
a torsion angle dn (Fig. B-2). For the specific torsion angle  we find:

_dn _ M (B-7)
A

'

where
S, = torsional rigidity of the drive-shaft
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Y
/

M Z
d
)

-d
«Y-dn

Fig. B-2 Curved section of drive-shayt, with bending moments and torques ( a) and deformation (b). In case
of unsymmetrical bending a moment M, can occur, although the curve remains situated in the xz-
plane. Note that the rotation error angle , caused by torsion of the drive-shaft, is equal to -n.

Strain energy of the drive-shaft

The strain energy content W, of a curved and torqued shaft, with total length L is:

sir

where W, and W are respectively the strain energies of the shaft due t

torsion.
Integration over K, K; and y renders:

L 2 2 2
f{EIylc7 . ElL x . S‘X}ds
2 2 2

and considering egs. B-1, B-2, B-5, B-6 and B-7 this results in:

L .
W = f  El; cos’y + Ely siny S Xy g
0 2} 2

L % X X
W=W, +W = f{f My de, + [ M dxs - ["m, axyas BB
0’ 0 0 0

o bending and

B-9)

(B-10)

The infinitesimal work performed on the drive-shaft by external forces and moments is
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equal to the change of strain energy and internal dissipation:
Tady, -dw, = aw, + dw_ + de,m (B-11)

Sout t

where

T = external torque

Y, = proximal rotation angle
W, = external friction losses
W, = internal dissipation

The rotation error angle 8 can be found from:

L L y
e=-fxds=-f_‘ds (B-12)
0 0 S

t

Unequal bending rigidity in different bending planes: El; # EI,

First approximation model
For the simple drive-shaft geometry, as given in Fig. 4.1-1 and under the assumption that
l; >>s,, the rotation error angle 6 can be approximated by:

0 = v, -y, (B-13)

This way the torsion angle in the curved section 8, is neglected relative to the torsion angle
in the straight section /,. If we assume that the absolute value of the torsion angle in the
curved section is also small, we can define for this section S, =0, x = 0 and the rotation
angle y = y,. Over the straight length I, the torque T is constant and ¥ = 0/, = - 0/I,.

If friction losses are not taken into account, the combination of eqs. B-10 and B-11 gives:

5 ¥} >l
T @ [0V, +Ehsity, o, 4 Th b
dy, ¢ 2p; dy, 28,
Taking into account eq. B-13 we get:
T="ta. B g - EL Jsin2y, - 740 (B-15)
2pf Wl dllfl
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El; # El, and pre-curvature

so that:

T = L (EL - EL )sin2y, (B-16)
2p ’

For a uniformly driven drive-shaft, we find that y, = ot where ® is the angular velocity
and t is the time, so that substitution in eq. B-13 gives:

y, =t +6 (B-17)

The approximated rotation error angle 8 = -1 over the whole shaft is given by:

Tl 1 pEl
0 = Yy~ Ve =V~ W1 7 Bl ;U sin(2(wr+0)) (B-18)
Sl p]SI
and for a drive-shaft curve angle ¢, = w/2:
il pEl
0 = P Gn2(wr+6)) (B-184a)
szS:
where:
7 . (EL + EL) . (EL, - EL) (B-19)
? (EL, + EL)

and p is small for a good quality drive-shaft.

Improved model

If the assumption [, >> s, is not valid, torsion in the curved section cannot be disregarded
in comparison with the torsion in the straight section. Also in case the absolute value of
the torsion angle in the curved section is not small this angle has to be taken into account.
That means for the curved section S, # e and the rotation angle in this section is .

The torque T is caused by the changing strain energy in the curved section. Along the

curve the torque M, will decrease until it is zero at the distal tip. A good approximation
can be made by assuming a linear decline of the torque M,, so that M, = T for s =0 and
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M, = O at the distal tip, where s = s;:

M =T -2) (B-20)

Sl
and according to eq. B-7 the specific torsion angle 7 then is:

T
X)) = =1 -2 (B-21)
Sl Sl
The rotation error angle 6, in this section, relative to the rotation angle , is:

N
T g
6 =y - = - Nds! = - (s - — B-22
A RN E T 5= 5 (B-22)

Disregarding friction losses, eqs. B-10 and B-11 give:

pe_ 4 [EheV) By i) Sy, d (Thy g
dy, ¢ 2 2 W, 28

Vi 25

Combined with eq. B-22 and under the assumption that 6, is small enough to approximate:
sin(2(y,+0,)) = sin(2y,) + 20.cos(2vys,), we find:
Els 2Ts
T =220 Gin (g, - 20 (B-24)
p: 3§,

and a better approximation of the torque M(s) in the curve, than given by eq. B-20, will
result from an iteration step:

Fits. -
M) = PRI Gy 2y, - 2L 2% sty (B-25)
2 S 3 6

P '

The rotation error angle 8, over the straight section can be derived from eq. B-24,
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considering egs. B-12 and B-13:

1, pEl
oo 2P Gn (200 + 2(1+;_l1)e, ) (B-26)
1

pis,

and for a drive-shaft curve angle ¢, = 7/2:

7l pEl
= - I G (2 + 20142098, ) (B-262)
T 28, 3

The rotation error angle 8,; over the whole curve can be found from integration of eq. B-
25. The phase-shift at which the maximum error angle occurs is the same as in eq. B-26,
because both maximum values of the rotation error angles 8, and 6,; occur when T reaches
its maximum value. So we find:
sl 3
= - sin {200 + 200+208, ) (B-27)
2pISr 311

5

and for a drive-shaft curve angle ¢, = 7/2:

.
6 = - TPEL o (o0 + 20142009, ) (B-27a)
85 3k

i 1

The value of the rotation error angle at the distal tip is:

s pET
2

PyS,

0= +6 =-_t_( ¢+ %) sin { 201 + 2(1+;_l‘)e, ) (B29)
1

and for a drive-shaft curve angle @, = 1/2:

77
o=~ TELY Ty G {20+ 20+20)8, } (B-28a)
25 p, @ 3
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Drive-shaft pre-curvature

First approximation model

We still look at a drive-shaft in a catheter-tube, curved in the way as shown Fig. 4.1-1.
Now the flexural rigidity is equal in all bending planes: EI; = EI, = EI (Fig. B-1), but the
part of the drive-shaft running through the curved section of the catheter tube (x=x, in
z direction) has been given a pre-curvature x = K, in Z direction. Again we assume that
the rotation error angle 0 = v, - v, because the straight part /, >> s,. No torsion angle
over the curved section is taken into account; here S, is supposed to be = and the rotation

angle y = v,

Egs. B-3 and B-4 turn into:

K =K, siny (B-29)
and
K, =K, cosy - K, (B-30)
The combination of eqs. B-9 and B-11 with egs. B-29 and B-30 tums into:
EI il
7=_¢ { s‘(Kf - 2Kk cosy, + K + 4 (—2) =
dy, 2 dy, 28,
= Elcxs, (1 + ;9) siny, - 7.9 (B-31)
1 1
so that, with x, = 1/p, and x, = 1/p, we find for the torque T:
5, ET
T = ' siny, (B-32)
PoPy
and for the rotation error angle 6 = - we find after substitution of eq. B-17:
0 T, sLEI 5
de mex WZ \Vl S’ pUPIS, Sln(mt ) (B-33)
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and for a drive-shaft curve angle @, = 7/2:

0 mA (¢+0) (B-33
=5 s + -
zp!)Sl a)

Improved model

Similar to the improved model for EL; # El,, the improved model describing the rotation
error angle due to pre-curvature should include the situation where [, >> s; is not valid.
For the curved section S, # o and the rotation angle ¥ # . The rotation error angle 6,
over a length s of the curved section is defined by eq. B-22.

The analysis is analogous to the way the improved model for EI; # El; has been obtained.

The combination of eqs. B-9 and B-11 turns into:

d (*VEI 2 2
Tr=l=— {(ZLe? - 2x k. cos(y,+0 ) + +
o Of "L - 20008(,0) + D

S y? T
Xyas + 4 1y (B-34)
2 d 28

1 {

and 8, is small enough to assume: cos(y,+8,) = cosy, - B siny,.

The approximation model based on eq. B-20, B-21 and B-22 gives for the rotation error
angle over the straight section of the shaft:

LEI
=007 sin{or ¢ (1+_3le)e, } (B-35)

' pODISI 1

6,

and for a drive-shaft curve angle @, = 7/2:

1,EI
- I sinfar (1+§sll_)e, } (B-352)
1

‘ 20,5,

I

and the rotation error angle 8 over the whole shaft:

s El
6=06 +06 =-
; ‘ PoP1S,

{, + 3_2‘) sin { @t + (1 +_3le)9,| b (B36)

1
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and for a drive-shaft curve angle @, = w/2:

g - _ TEI
20,S,

(@ + _szi) sin { or + (1+3s_ll)e, } (B-36)

1

Reference

l. Timoshenko S.P., Gere J.M., Mechanics of Materi

als, Van Nostrand Reinhold Company,
International Student Edition, 1973.
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APPENDIX C Effect of friction on the rotation transmission
characteristics of a flexible drive-shaft;
analytical modelling

Two cases will be analysed:

1. A drive-shaft in a curved piece of tubing, with constant radius of curvature.

2. A drive-shaft in a curved piece of tubing, with a section of constant radius of curvature
and two equal connecting straight ends.

Case 1

In Fig. C-1 a piece of tubing is shown, represented only by its two clearance boundaries
(clearance = c) with respect to the drive-shaft, which is represented by its centre-line. The
tube is bent over an angle @,, with radius p;, of the inside bend and radius p,, of the
outside bend. The radius of curvature of the catheter centre-line is p = (Pi+Pwb)2. The
shaft interacts with the tube on (at least) three points. At the two ends of the tube the angle
between the centre-lines of the drive-shaft and the catheter-tube is E.

p(sin(§0-£)+sin£)

Fig. C-1 Drive-shaft in a curved piece of catheter tbing. The drive-shaft is represented by its centre-line,
the tubing by its inner walls, the distance between which is the clearance.

The situation is symmetrical, so we study only one side of it. At the end of the tube its
inner wall applies a force F to the drive-shaft. Some trigonometric analysis shows that the
bending moment in the shaft, caused by F, at an angular position @ is:
EI . .
M =22 = F p (sin(p-§) + sinf) (C-1)

¢

where p, is the radius of curvature of the drive-shaft.
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If @ and & are small (justification of this assumption will follow), we get for P

El
p, = _EL_ (C-2)
Fpo

p; decreases with increasing angle ¢, until the shaft interacts with the inside bend of the
tube inner wall at @ = B, where a second force F, in opposite direction, is applied to the
shaft (Fig. C-2).

Fig. C-2 A second lateral force is applied to the drive-shaft at an angle ¢ = .

If B is small, which will be shown to be generally the case, two sets of forces, working
on the ends of the drive-shaft, act as two couples bringing about a constant bending
moment M in the drive-shaft in the middle section and a radius of curvature close to p.
That means:

EIl

M=FBp=_2 (C-3)
p
so that;
p=_E_ (C-4)
F p?
and combining eqs. C-2 and C-4 we find:
p=Bp (C5)
¢

Between ¢ = § and ¢ = 0 the radius of curvature p; of the shaft increases from pi=pto
Pi = e, while traversing from the inside bend to the outside bend (Fig. C-3).
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Fig. C-3 Detail of drive-shaft in catheter-tube for 0 < @ < B (Fig. C-2), with definition of infinitesimal
geometrical quantities.

The relationship between the angle  and the clearance ¢ can be found from Fig. C-3,
where:

p = ds
do
ds, d (C-6)
P = e b = p, = il
P de,
ds, = ds
Elimination of p, from egs. C-5 and C-6 gives:
do, = Ldo (C-7)
p
Integration renders:
I 2
- ¢ I - Ny C-3)
g, =&+ | _do' =&+ (
of B 2P

For ¢ > B the drive-shaft follows the inside bend, so that if ¢ = B then also @; = f.
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Substitution of this condition in eq. C-8 gives:

p
= F C-9
$=3 (€9)
Combined with eq. C-8:
B, ¢ C
L R -10
9 5 (C-10)
The infinitesimal radial displacement of the drive-shaft between ¢ =Band ¢ =0 is:
dc = (9, - ¢) ds = (¢, - ¢) p do (C-11)

Substitution of eq. C-10 in eq. C-11 and integration for ¢ =0 until @ = B result in:

% = B- ’E (C12)
p

Eq. C-12 shows that if c¢/p < 0.02, then B <0.35 rad (= 20 °). In most practical situations
¢/p < 0.02, where the minimum radius of curvature is around 20 mm and the clearance is
below 0.4 mm.

Because B is small the assumption that the angles ¢ (0 < ¢ < B) and & (€ = B/2, eq. C-9)
would be small was valid.

Combination of egs. C-4 and C-12 with the expression for the friction torque T, caused
by one couple of forces, gives:

T,=2uF2% o MEL (C-13)

2 pyeep

where
d = the drive-shaft diameter
H = the friction coefficient between drive-shaft and catheter-tube material

The rotation error angle 0 over a shaft length /, which equals minus the torsion angle 1
due to this torque, is given by:

Tl pdiEr

' Spybep

0 = Wdixt - Wprox = - (C'14)

and is negative, because the direction of the driving rotation angle ot is chosen to be
positive.
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Case 2

In case a curved section of the catheter-tube ends at both sides in a straight piece of
tubing, the situation changes (Fig. C-4).

Fig. C-4 Curved section of a catheter-tube with straight ends and a drive-shaft inside.

In the straight sections of the tube, the shaft will also be straight if the clearance is small,
so that here the bending moment is zero, which is the result of no external forces in these
straight parts.

At the end of the curve, going into the straight part, the situation of external forces differs
from the situation of case 1, but can be described analogously by substituting p,," for pg,
(Fig. C-5).

Fig. C-5 Detail of drive-shaft in curved catheter-tube with straight ends for 0 < @ < B (Fig. C-4), with
definition of geometrical quantities.

So that we can define:

/
o = Pob + Py (C-15)
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¢! = pz/;b - Py (C-16)
and similar to eq. C-12 we find:
/
e g b= (C17)
pr 6
From Fig. C-5 we also find, combined with eq. C-9:

ol = P P (C-18)
cos§ 1 - p¥8
And we had defined earlier:
c
Py =p + ?
{ ¢ (C-19)
p,'b =p - 7

Substitution of egs. C-15 and C-16 in eq. C-17 and elimination of Pob » Pob and py, using
egs. C-18 and C-19, gives:
c 8p? - 2p*
e C-20
P 192 - 12p% - B¢ ( )

Because B is small the higher order terms can be neglected so that we find:

B =2 ‘E (€-21)
p

The angle B partly covers the curved section and partly the straight section (Fig. C-5). The
part covering the straight section equals the angle £ = B/2, so that the transition from
curved to straight tubing is situated halfway the angle f3.

Combination of eqs. C-4 and C-21 with the expression for the friction torque T;, caused
by one couple of forces, gives:

d EI
T,=2uF % = WL (C-22)

2 2py/6ep

The rotation error angle 8 over a shaft length [, which equals minus the torsion angle n
due to this torque, is given by:

T, L udiEl

5, 28 py/6cp

6= wdisl - Wprox = - (C—23)
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EI; # EI, and pre-curvature, combined with friction

APPENDIX D  Effect of EI, # EI, and pre-curvature, combined
with friction, on the rotation transmission
characteristics of a flexible drive-shaft;
analytical modelling

El, # EI, in combination with friction

The amplitude of the fluctuation of the driving torque due to unequal bending rigidity in
different bending planes for a 90° curve is according to eqgs. B-16 and B-19:

_ anI (D—l )

Elmax - _251_

For a curve with straight ends the driving torque due to friction (due to two couples of
lateral forces) is according to eq. 4-20:

_ wdEl _ WAEIKY

T
fr
pﬂ,ffycp1 ﬁ

where Kk, = 1/p, is the catheter-tube curvature.

D-2)

Theoretically this driving torque is constant, but in case of combination of EI, # EI, and
friction, the driving torque due to friction will receive a fluctuation synchronously with Tg;
and with amplitude:

T,, = PREL (D-3)
py/6cp,
on a constant friction torque level of Ty, &
T m ML (D-4)

" pyfeco,
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The maximum driving torque due to El; # EI, can be compared with this amplitude of
the torque due to friction by calculating:

T gt _ ™ 6ecp, (D-5)

L., 2ud

Choosing practical values for all parameters in this equation will show that Ty . is at least
one order of magnitude smaller than Te mas-

In case of this combination of influences the periodic error angle will therefore be mainly
determined by the influence El, # EI,.

The friction however may cause a significant off-set of the error angle because the value

of
T gt o TPy 6ep, (D-6)

T 2ud

can easily be smaller than 10 for small enough p and p,.

Pre-curvature in combination with friction

The amplitude of the fluctuation of the driving torque due to pre-curvature K, of the drive-
shaft (radius of curvature p,) is for a 90° curve according to eq. B-32:

ET
p,Mmax . _—TCEI = —n KO (D-7)
4 2p, 2

In case of combination of pre-curvature and friction, the driving torque due to friction will
receive a fluctuation synchronously with Ty, with amplitude Ty

pdEIl
2y/6¢

T

fra {(Kl + Ko)l's - (Kl B Ko)lls} (D-8)

If ®; >> x,, then this equation can be simplified into:

T, = ML h (D-9)
2y6c
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EI; # El, and pre-curvature, combined with friction

This fluctuation is added to the constant friction torque level Ty, ..

roe ME e s, - ) (D-10)

e ofee

which under the same condition can be simplified into:

WaEL i (D-11)
ch— |W

Ts, &

The maximum torque due to pre-curvature can be compared with this amplitude of the
torque due to friction by calculating:

prm _ K,y 6¢ B w/6¢ _ T/ 6cp, ©-12)

Tt nd (e, + 1) - (5, - KM de\/: T

Similar to eq. D-5 this ratio will be larger than 10 for practical values of all parameters,
so that the effect of fluctuating friction due to pre-curvature can be neglected with respect
to the effect of pre-curvature itself.

A relatively significant off-set of the error angle can be caused by the constant part of the
friction torque when:

T K,y 6¢ _ TKybe 7P /6¢p, D-13)

T,  pd {0 + )" + (6 — %)™ oy fie 2udp,

is smaller than 10, which is the case for small enough ¥, and large enough X,.
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Finite element model

APPENDIX E  Finite element model description

The catheter shaft is modelled by a string of spatial beam elements having two nodes at
the ends. It is assumed that the catheter is clamped at one end while the shaft is driven by
a motor at a constant angular velocity. The catheter shaft is confined within a tube with
an inner diameter D, which is larger than the outer diameter D, of the string.

We shall describe the kinematic and dynamic modelling for the nodes, the elements and
the interaction between the shaft and the wall, whereafter we describe the solution method
for the resulting equations.

Kinematics

Nodes

The nodes have six degrees of freedom, three for the translations and three for the
rotations. The translations are simply defined by the Cartesian coordinates of the nodes in
a global coordinate system. The rotations are described by proper 3 x 3 rotation matrices
R, i.e. matrices which are orthogonal, R” = R, and have a determinant equal to one, det
R = 1. The rotation matrix is split up as a product of a matrix which describes the initial
orientation and three elementary rotation matrices for rotations about three axes. The
rotation matrix which describes the initial orientation is built up from an orthogonal triad
of unit vectors. The unit vector n,, points along the central axis of the shaft and the other
two, m,, and n,, are orthogonal to n,g; so the initial rotation matrix R, is:

T
nxD

— ?.
R, =| Ny

T
nzO

An actual orientation of a node is given by the product of four matrices:

R=R1R2R3R0

where
1 0 0 cosg, 0 -sing, cosp, sing, 0
R, = 0 cosp, sing, [ R =| 0 1 0 , R, =| -sing; cosQ, 0
0 -sin@, cosQ, sing, 0 cosQ, 0 0 1
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The three generalized coordinates that describe the orientation are the three angles @,, @,
and @;, which are called modified Euler angles or Briant angles [1]. The choice of the
order of rotations is based on the fact that ¢, and ¢, remain small, while @, can become
arbitrarily large, so there are no difficulties associated with singularities. In this way it is
also easier to describe the interaction between shaft and tube, as will be seen later on.

Elements

The elements used were originally developed by Besseling (1974) in order to analyse the
buckling and post-buckling behaviour of beam structures [2]. Later, Van der Werff and
Jonker (1984) used the same element for dynamic purposes by adding a mass description
[3]. The element used here is described by Meijaard (1991) [4].

The geometry of the element is defined by its two end-nodes p and g, which have the
positions x” and x?, and the orientations R” and R?. At the basis of the formulation of the
element is the definition of so-called generalized deformations, which are invariant under
finite translations and rigid body rotations. For the spatial beam element these generalized
deformations are chosen to be:

12 -7 1
2 2
€ = — + (265 + g8, +2€ + 2e; + EE, + 2€)
21, 301,
g = b (n?n? - n’n?
2 T A Ty y iz
- _ 14
g =-n, .1
- 9
g, =n; .1
- 14
& =n, .1
=] _ q
€& =-n; .1
where
Il=x?7-x" |, [=]I

and [, is the initial undeformed length of the element.
The initial geometry of the structure is defined by the Cartesian coordinates of the nodes

and unit vectors in the direction of the central axis of the shaft at the nodes. The
orientation matrix of the first node is defined in such a way that the vector n,, is pointing
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Finite element model

in the direction of the central axis of the shaft and ny is in the global xy-plane. The initial
orientation matrices of the next nodal points are calculated such that n, points along the
central axis of the shaft and the torsional deformation &, is zero. The initial length is
calculated from the requirement that initially the elongation & is zero. After this
initialization, the generalized deformations can be calculated from the positions and
orientations of the nodal points for any given displacements.

Interaction between the shaft and the catheter-tube wall

The intrusion of the shaft in the tube wall and the relative speeds in the contact areas are
calculated in the nodal points and in points in the middle of the elements, which are
treated as sample points for the interaction. In the initial position, the coordinates X,,, and
the direction of the shaft central axis M, at the middle points are defined as follows [4,
eq. 12]:

—

1
= P q P q _ P _ q
X, = =X +X ) + §(zr:3nZ +gn; - g, - €N,

38

1
= (x? - xP —en’ 9 P 4
on_, = (X xP) + .Z( gn, + gN, + EMN, EN,

The positive factor o is chosen in such a way that n, is a unit vector. The radial
displacement is given by:
ro=lx - x, - mx - xo) Nl

If the radial displacement is not zero, three directions are defined in each sample point, an
axial, normal and tangential direction:

n =n

a x0 ?

on, =X - X, —nxo(x - X M, M =n X n

The normal velocity v, and the tangential velocity v, at the contact point are given by 7,
= DD/Z
v.=vn_ 5 Vv, =vn *Qr,

r r 1

Dynamics
Nodes

At the nodes, lumped masses can be added. These masses can represent some device
attached to the node or a rotational inertia of a disk at a node, as a correction for the finite
cross-sectional dimensions of the shaft. The kinetic energy of the lumped mass m and the
disk with I, I,y = 0.5 I I, = 051, and I,=1,=1,=0 is:

x* ¥y
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| o cni BB
Those = Em(xl +y 4xy) +

lex[z((PfSl"(Pz‘Pg)z + (cosQ,p,+sin@,cosp,p,)? + (-sing,$, +cos@,cosp,d,)’]

The contributions to the global mass matrix and force vector are given by:

moo o o 0 [ 0 ]
0moO 0 0 0 0
0 0 m 0 0 0 0
M=|0 00 I, 0 -Lsing, Cf = I ,cos0,0,0,
o000 o L 0 U T
) xx IHCOS(p2(P3(_(p1 +ES1n(P2(P3)
0 0 0 -Ising, 0 -21-1,,,(1+sin2<p2)J | £ac080,0,(0,~sing,0,) |

External forces and moments, such as gravitation, are represented by concentrated forces
and moments in the nodes.

Elements

The element mass matrix and velocity dependent inertia force vector are given by Meijaard

[4]:

[1s61  220A  sar -1z |
41,°ATA 131°AT -31°ATB
M® = m—l(’ 1561  -221°B
420 0
41,”"B™B
\_symm‘ ]

[ L22A 4707138 ¢2p%)
% eloe loe2(4ATA/¢p¢p_3ATB/(pq¢q)
T 3A 228 g

I (-3BTA' P (P +4BTB (459
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where
d(R™nf d(R!
A=(_ﬂ, B=_(_’}, A/=E§_, B = 9B
a(PP a(pﬁ' aq)P aq)'i‘
Forces due to gravitation are represented by concentrated forces at the nodes and the
middle points of the elements.
The stiffness and damping properties of the elements are given by a Kelvin-Voigt model

which yields a linear relation between the generalized element stresses and the strains and
strain rates as [6]:

o° = S(e°- &) + S,&°

where €,° are the initial deformations and

s, 0 0 0 0 0 |
0s, 0 0 0 0
s=00453_2830 Ol g BA ¢ 5 ¢ B ¢ F
0 0 -28, 45, 0 O [ " ¢ = e pet ’ lﬂeﬂ‘ T
00 0O O 4S, -28,
00 0 0 -25, 45,
5,5, 0 0 0 0 o |
0 S,S, O 0 0 0
0 0 4S5, 25,8, O 0
Sa™| o o 28,8, 45,8, O 0
o 0 0 0 45,5, 25,8,
o 0 o0 0 25,5, 45,5,

Interaction between the shaft and the catheter-tube wall
In normal direction, the radial restoring force per unit of length of the shaft f, depends on

the radial displacement r and the radial velocity v, For three regions of radial
displacements, three force laws are defined (& = (r+ryr)(ryry) )
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r<r g f=0
Tl < r<ryorg f= <k (r,-r )8 - E2) - ¢ v E(10-15E+6E%)
~k(r,-r)€ - Y2 ~ ¢ v,

b A £

If the value of f, as given above is positive, it is replaced by zero. The tangential force
per unit of length £, is given by a Coulomb-type friction law which is smoothed at v, =0:

2
f = parctan(kpvl)zfr

This results in a total nodal force per unit of length of:

f=fn +fn +mg-cv

where c is a damping coefficient, and a torsion moment per unit of length:

Ml = f;ra

The total forces and moments at the nodes are obtained by multiplying the values per unit
of length with a part of the length of the element. For the middle nodes, this part is taken
as two thirds of the element length and for the end-nodes this part is taken as the sum of
one sixth of the element length of the elements at each side of the node. This choice is
based on the well-known integration method of Simpson.

Equations of motion

The forces in the middle points of the elements are replaced by equivalent nodal forces as:

(9x ,/oxP9)'E

Iy

fp.q . 2 ml

eq

By assembling the global mass matrix M and force vector f, the equations of motion for
the entire system become:

Mi =f, % =M

180





