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Abstract

Multidimensional scaling (MDS) has established itself as a standard tool for
statisticians and applied researchers. Its success is due to its simple and easily
interpretable representation of potentially complex structural data. These data are
typically embedded into a 2-dimensional map, where the objects of interest (items,
attributes, stimuli, respondents, etc.) correspond to points such that those that are
near to each other are empirically similar, and those that are far apart are different.
In this paper, we pay tribute to several important developers of MDS and give a
subjective overview of milestones in MDS developments. We also discuss the present
situation of MDS and give a brief outlook on its future.

Multidimensional scaling (MDS) has become one of the core multivariate analysis
techniques discussed in any standard data analysis, multivariate analysis, or computer
science text book. A search in the Thomson Reuters Web of Science on the topic
“multidimensional scaling” yielded 5,186 papers that were cited in 68,429 other papers
(per January 2013). This clearly shows that MDS is an established multivariate analysis
technique.

Several important milestones in the development of MDS can be distinguished and
the present paper is a subjective interpretation of that. As the present authors have
been working in the area since the 1970s, they have developed their own subjective view
of what they consider to be milestones in the development of MDS. The emphasis here
lies on algorithmic milestones as they have cleared the way for practical use. We do
not intend to provide an exhaustive overview of the history of MDS as that could easily
require a book by itself (for further details, see Borg and Groenen (2005)).

The remainder of this paper is organized both chronologically and per topic. We
roughly distinguish three periods: past (until 1980), present (1980-2000), future (from
2000). Even though the future necessarily lies ahead, it always takes time for develop-
ments to be used by a wider audience, which explains the lag of about 15 years. Table 1
gives an overview of these subjective milestones of the authors, which are discussed in
more detail in the subsequent sections.

1 The basic ideas of Multidimensional Scaling

The core idea of MDS is explained by the first sentence in Borg and Groenen (2005):
“Multidimensional scaling (MDS) is a method that represents measurements of similarity
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Table 1: Subjective overview of milestones in MDS.

Years Main author(s) Topic

Past
1958, 1966 Torgerson,Gower Classical MDS
1962 Shepard First MDS heuristic
1964 Kruskal Least-squares MDS through Stress with

transformations
1964 Guttman Facet theory and regional interpretations

in MDS
1969, 1970 Horan, Carroll Three-way MDS models (INDSCAL, ID-

IOSCAL)
1977- De Leeuw and others The majorization algorithm for MDS

Present
1986-1998 Meulman Distance-based MVA through MDS
1994 Buja Constant dissimilarities
1978, 1995- Various Local minimum problem
1998 Buja Smart use of weights in MDS

Future
1999-, Heiser, Meulman, Bus-

ing
Modern MDS software: Proxscal in SPSS
(PASW)

2000 Tenenbaum, et al. Large scale MDS ISOMAP heuristic
2002 Buja, Swayne, Cook Dynamic MDS in GGvis (part of GGobi)
2003 Groenen Dynamic MDS visualization through

iMDS
2005- Groenen, Trosset,

Kagie
Large scale MDS through Stress

2002 Denœux, Masson,
Groenen, Winsberg,
Diday

Symbolic MDS of interval dissimilarities

2006 Groenen, Winsberg Symbolic MDS of histograms
2009 De Leeuw, Mair Smacof package in R
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Table 2: Part of the confusion table of Morse signals (Rothkopf, 1957).

Morse Sign
Code Sign A B C D . . . 0

·− A 92 4 6 13 . . . 3
− · ·· B 5 84 37 31 . . . 4
− · −· C 4 38 87 17 . . . 12
− · · D 8 62 17 88 . . . 6
...

...
...

...
...

...
. . .

...
−−−−− 0 9 3 11 2 . . . 94

(or dissimilarity) among pairs of objects as distances among points of a low-dimensional
multidimensional space.” Thus, instead of the usual cases–by–variables data, the data
of MDS consist of measurements of (dis)similarity among pairs of objects, collectively
called “proximities”. Objects could be persons, attributes, stimuli, countries, etc., and
the measurements may be correlations of test items, similarity of politicians, dissimilarity
of mobile telephones, etc. The overall goal is to represent these objects as points in a
low-dimensional (usually 2-dimensional) space such that the distances among the points
represent the (dis)similarities as good as possible. The motive for doing this is to visualize
the data in a “picture” that makes the data structure much more accessible to the
researcher than the data matrix with its many numbers.

As a classic example, consider how test persons confuse acoustic Morse signals
(Rothkopf, 1957). The research question here is to detect psychological rules that govern
what is and what is not confused. There are 36 Morse signals, 26 for the letters in the
alphabet, and 10 for numbers. The task of test persons was to judge whether the Morse
signals in a particular pair of signals seem to be the “same” or “different”. Each pair
was presented in two orders: first A (di-da or ‘·−’) and then D (da-di-di or ’− · ·’), for
example, and also first D and then A. Each of 598 subjects, who were unfamiliar with
Morse codes, judged 351 pairs. Table 2 exhibits a part of the full 36× 36 matrix of con-
fusion rates. Note that these data are similarities. As distances are always symmetric,
asymmetries are considered errors in a distance model and the MDS is done on the sym-
metrized data matrix. Moreover, because the distance of a point to itself is always zero,
the diagonal of the data matrix is ignored. Figure 1 shows the (ordinal) MDS config-
uration representing these data. It exhibits that the confusion rates are systematically
related to the signals’ physical properties. The North-West vs. South-East direction
is correlated with the signals’ lengths, with long signals in the North-West corner and
short signals in the South-East direction. The vertical scatter of the points is related the
signals’ compositions of di’s and da’s, with da’s becoming more dominant as one moves
upwards. Hence, MDS here succeeded to uncover two psychophysical regularities that
are difficult, if not impossible, to discern in the numerical data.

This example shows that MDS essentially transforms a matrix of dissimilarities into
a low-dimensional map that, as much as this is possible, approximates the dissimilarities
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Figure 1: MDS solution of ordinal MDS on the Rothkopf confusion data (Table 2).

by distances of points representing the objects.

2 Motives for MDS: A historical account

MDS was not invented by statisticians. It was first developed to solve specific scaling
problems that arose in practical and scientific contexts. In the following, we outline
some of these developments.

2.1 Early MDS in geography

The first traces of MDS can be found in the 17th century. Figure 2 shows a small table
of distances among several towns and villages in Durham county, England. The order of
the row and column towns is reversed so that an unusual matrix of distances appears that
is symmetric over the lower left upper right diagonal. This diagonal does not contain
the zero distances of a town to itself, but contains the distances to London. Apart from
this table, Figure 2 also shows the geographical map of Durham county. It is considered
the first instance of showing both a table of distances and the map that corresponds to
these distances in a single figure (Gower, personal communication). Therefore, this case
can be seen as a predecessor of MDS. (Note that this map is one of a series covering the
counties of England, made by the Dutch cartographer Jacob van Langren in 1635.)

Modern MDS is not concerned with cartography. Rather, similar to factor analysis,
it evolved as a model for certain psychological phenomena, and only later became more
and more popular as a general-purpose data-analytic tool. Historically, MDS can be
related to at least four different purposes.

2.2 The distance formula as a psychological model of (dis)similarity judgments

The notion that (dis)similarity judgments can normally be modeled as distances has
been around in psychology for quite some time. It seems obvious that persons generate
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Figure 2: Map of Durham county by Jacob van Langren in 1635.

(dis)similarity judgments for pairs of objects in a process that closely mimics the natu-
ral distance function in a Cartesian space. That is, if a judgment is needed, the person
forms a mental representation of the objects in “psychological space”, a space spanned
by the objects’ attributes and with the objects corresponding to points in this coordinate
system. Dissimilarity judgments are then formed by first assessing, dimension by dimen-
sion, the differences of each pair of points, and then summing these intra-dimensional
differences. This generates a global distance, the basis for an overall (dis)similarity
impression or rating of the respective objects. To the outside observer—and possibly
also to the person him- or herself—the psychological space itself is unknown (underly-
ing, latent), but MDS promises to “uncover” it—as Kruskal, one of the MDS pioneers,
claimed—from the individual’s overall (dis)dissimilarity judgments. To do this, classical
MDS first assumes that the given judgments are ratings on a metric scale, and that the
distance function of the psychological space is the Euclidean distance.

It was, however, not before MDS algorithms were developed that allowed to pro-
cess not metric but ordinal data before this distance model received a lot of attention.
This met with the Zeitgeist of the late 60’s which emphasized ordinal data. Later, the
Euclidean distance formula was also generalized to the more general Minkowski metric.
This metric can be seen as a family of distances where the intra-dimensional differences
are weighted in proportion to their absolute size before they are summed. Minkowski
metrics range from weights of 1 for all intra-dimensional differences (city-block distance)
to weights that are so extreme that the largest difference is essentially equal to the to-
tal sum (dominance metric). Series of studies were done to investigate what particular
Minkowski metric was most suitable for what kind of context (e.g., judgments under
time pressure, perception of analytic vs. integral stimuli). Then, it was argued that
Minkowski spaces have local validity only because (dis)similarity judgments in psychol-
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ogy are subadditive. To account for this empirical lawfulness, Schönemann proposed an
MDS model with a bounded geometry. However, this idea was essentially ignored by
psychological research and not pursued much further by psychometricians.

Besides such refinements of the similarities-explained-by-distances model, attention
was also turned to modeling individual differences in MDS. This produced a hugely
popular model, often identified with a particular computer program called Indscal. It
assumes that different individuals differ in how they weight the same set of dimensions
of a common space. Numerous applications in the social sciences used this model, since
it promised to identify “the” dimensions uniquely, until step-by-step approaches (e.g.
Pindis) showed that rotations of the group space often are only slightly less successful
explaining the data. Moreover, the individual dimension weights can be deceptive in the
sense that they scatter a lot without explaining much more variance than unit weights.
The biggest mistake when using Indscal modeling is, however, comparing individual
weights all too loosely. These weights depend on the (arbitrary!) norming of the group
space, so that only the order of the weights of different persons for the same dimension
can be compared, while market researchers, in particular, had hoped that Indscal
would show them what dimensions are most important in product perception. When
these restrictions became clearer, Indscal became less important in applied research.

A further line of research used the MDS method to solve Coombs’ unfolding model,
where the data are not (dis)similarities but preferences of different individuals for the
same set of objects. In unfolding, persons are represented as points in space, and choice
objects by other points, and the distances among these two types of points represent the
preference data. Each person point is taken as this person’s point of maximal preference
(“ideal point”), and circles about each ideal point as iso-preference contours. Unfolding
was used a lot to model voting behavior, for example, but it was soon discovered that
theory-guided multiple uni-dimensional unfolding for different subgroups can be supe-
rior to exploratory multi-dimensional unfolding of the total sample. Hence, unfolding’s
popularity as a model of preferential choice dropped in importance.

This type of research where the MDS geometry and its distance function are taken as
psychological models has considerably advanced the understanding of human perception,
judgment, and preference. In particular, it has become clear under what conditions such
models yield good descriptions of empirical phenomena, and when they do not. Today,
research where general MDS plays a major role as a psychological model are over.

2.3 Ordinal MDS as a response to the premise that measurement in psychology must
build on non-metric data

In the late 60’s, methodologists were much concerned with “Foundations of Measure-
ment” (Krantz et al., 1971). The cardinal premise of this research initiative was that nu-
merical judgments (mostly “ratings” on, say, a scale from 0 to 10) cannot automatically
be assumed to be real numbers. Rather, it was argued that real-valued measurements
must be constructed and, first of all, justified by testing typically large sets of pair-wise
ordinal judgments that, together with some technical assumptions, establish structure-
preserving maps of relational into numerical systems (homomorphisms). To respond to
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this measurement philosophy, scaling methodologists felt driven to replace the classical
MDS of Torgerson and Gower–which assumed metric data as input–by ordinal MDS (or,
as it was called at that time) by “non-metric” MDS.

Kruskal and Guttman (with Lingoes) developed computer programs for ordinal MDS.
They both used gradient-based minimization to optimize the point coordinates, but
Kruskal did this in combination with ordinal regression of the data onto the distances,
while Guttman invented “rank images” as targets, a method that is less likely to yield
degenerate solutions. There are other technical differences (later harmonized in a best-
of-both-world’s program called Minissa), but the main difference between Kruskal and
Guttman was how they approached an MDS solution. Kruskal (as most users of MDS
at that time) first of all asked: “What do the dimensions mean?” Guttman, in contrast,
was content-driven. For him content came first and methods only served as tools to build
substantive theory in a partnership with data. He called MDS “SSA” (Smallest Space
Analysis, later reinterpreted as Similarity Structure Analysis), because he wanted to
emphasize that the Cartesian dimensions of an MDS representation are but an algebraic
scaffolding for solving a geometric problem. Hence, any geometric patterns (such as
dimensions, directions, clusters, figures, and, in particular, regions and neighborhoods)
that correspond to substantive knowledge about the objects can be meaningful. This
perspective later developed into facet theory and led to other data-analytic methods
such as partial order scalogram analysis.

Ordinal MDS stimulated a huge number of applications, but, over the years, interval
and even ratio MDS recovered considerably in terms of utilization. This had statistical
reasons on the one hand (interval MDS solutions, for example, are often less cluttered,
with fewer tight point clusters), and theoretical reasons on the other hand (the emphasis
of measurement foundations had shifted towards cumulative theory construction over
replications, away from from an almost endless testing of single data sets, and metric
MDS solutions often allow for simpler and more robust interpretations than “over-fitted”
ordinal solutions). Today, ordinal MDS is but one of several MDS models. Advanced
computer programs generate solutions for each of them in seconds, and so they can easily
be tested against each other at virtually no costs.

2.4 Ordinal MDS as a method to study the shape of generalization gradients in
learning

One historical motivation for MDS is closely linked to a special issue in the psychology
of learning. Its main focus is not the MDS space itself, but the shape of the regression
function of MDS distances to the data they represent. The theory that generates this
interest is the following. If a response R is conditioned to a stimulus S, then stimuli
similar to S also tend to trigger response R with a certain probability. This probability
should be a monotonically decreasing function of the distance of S′ to S. Yet, it is
difficult to tell the shape the generalization gradient, because S′ and S lie in perceptual
not physical space. However, given a set of stimuli and measurements of the probabilities
of giving the Si response to stimulus Sk, the issue turns into an MDS problem: If the
data are taken as similarity measures, one can first scale them via ordinal MDS; then, the
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regression trend of the MDS distances onto the data shows the shape of the generalization
gradient. So, rather than postulating that the gradient is an exponential or a linear decay
function, Shepard wanted to let the data speak for themselves, finding the generalization
gradient empirically through what is now known as the “Shepard diagram”. Shepard
struggled with the problem without really solving it, but his work motivated Kruskal to
develop an ordinal MDS algorithm (M-D-Scal) as a statistician’s answer to the scaling
task.

Today, applications of MDS where the Shepard diagram is of primary interest are ex-
ceedingly rare. Rather, researchers almost always focus on the MDS space itself and its
relationship to known or assumed properties of the objects represented in this space. Or-
dinal MDS can sometimes be useful to check certain model assumptions empirically. For
example, in Thurstonian Case-5 scaling, dominance probabilities are mapped into scale
differences by a cumulative Gaussian function. Rather than assuming such a mapping
function, one can use ordinal MDS to scale the

data into scale distances, and then check empirically if the mapping function is indeed
S-shaped.

2.5 MDS as a general data-analytic tool

As soon as ordinal MDS became possible, it was enthusiastically received by many
disciplines outside of psychology, in particular by market researchers. Green and his
coworkers, in particular, published scores of papers and books that showed how MDS
can be used to “uncover” how consumers perceive products. Sociologists also used MDS
to study social networks and, in particular, attitudes and values. Schwartz, for example,
used MDS to develop his Theory of Universals in Values (TUV), an influential theory on
social values that is well and alive today. The TUV is intimately related to a circumplex
of regions (a wheel of regional sectors) in 2-dimensional MDS space. It partitions the
MDS space into neighborhoods that each contain only points representing values of the
same category (e.g., achievement values, security values, enjoyment values). While Green
had used MDS in a purely exploratory way, Schwartz (as Guttman) was content-driven
and hence looked for correspondences of content theory about the MDS objects and their
representation in space.

Schwartz, however, never enforced such external constraints onto the MDS solutions
using confirmatory MDS (CMDS), although CMDS had been around since the early
80’s. DeLeeuw and Heiser, among others, developed certain forms of confirmatory MDS,
and programs like Proxscal (in SPSS) or Smacof (in R) are able to handle most of
them. However, many forms of external constraints onto the MDS configuration (except
those on dimensions) are not easy (or simply impossible) to set up in the present MDS
programs. Nor is it often clear how to assess the effects of those constraints statistically.
Sometimes the present programs also yield incorrect solutions, which can be difficult
to diagnose for the the applied researcher. From the substantive researcher’s point-of-
view, this is where more work is needed but recently work on CMDS has received more
attention.

Another line of research deals with one general argument against distance models,
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i.e. that distances are always symmetric but (dis)similarity data may not be symmetric.
Various proposals were made on how to handle non-symmetric data. Most amount to
first splitting the data information into a symmetric part (which can be modeled via
MDS) and a skew-symmetric part (which can be added to the points in MDS space
in form of small arrows leading to a vector field, for example). These models are not
psychological models in the sense that they explain how a person generates asymmetric
(dis)similarities. Rather, they are statistical tools that can be useful showing systematic
trends in asymmetric (dis)similarity data. However, no user-friendly programs exist so
far for these models, and hence their potential for statistical diagnostics has not been
exploited.

2.6 Utilization of MDS today

Today, many of the original motives that led to the development of MDS, have become
unimportant. What has survived, in particular, is using MDS in Guttman’s sense, in
particular in attitude and value research, where intercorrelations of survey items are
studied for correspondences of the conceptual facets of the items to regions of their
spatial representation. Yet, most applications of MDS today actually serve a much
wider purpose, i.e. they are done to visualize tables of indices that can be interpreted
as (dis)similarity data. For that purpose, MDS is highly useful as it can handle a
vast variety of data as long as they are (dis)similarities (e.g., correlations, covariances,
co-occurrence data, profile distances); it does not require interval-scaled data but also
handles ordinal (and even nominal) data; it is robust against missing data and coarse
data; it often serves as a data smoother, showing a structure that is replicable even
under conditions of high error; it is easily explained to non-experts and allows them to
explore the solutions without much risk (given that the Euclidean metric is employed!);
it is easy to run for non-experts even though its solution algorithms are rather difficult
(but: driving a car also does not require knowing how the engine works); and it does
not impose a particular interpretation (“dimensions”, in particular) onto the user but
allows the data to speak for themselves.

3 Technical aspects of MDS: The past

3.1 Classical MDS

Classical MDS can be considered the first algebraic approach to MDS. It has been
independently proposed by several authors: Torgerson (1958), Gower (1966), and Kloek
and Theil (1965). Classical MDS rests on the following equation: Let X be the n × p
matrix of point coordinates (assumed here to be column-centered for simplicity); then,
the matrix of squared Euclidean distances with elements d2ij(X) =

∑p
s=1(xis − xjs)2 is

D(2) = 1α′ + α1′ − 2XX′, (1)

where 1 is a vector of ones of appropriate length and α the vector with diagonal elements
of XX′. Given D, X is found as follows. Let J = I − 11′/1′1 be the centering matrix
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with I the identity matrix. Then, multiplying the left- and right-hand side of (1) with
J makes the terms with α disappear as J1 = 0. An additional multiplication by −1/2
yields

−1/2JD(2)J = XX′. (2)

Then, the eigendecomposition of −1/2JD(2)J is QΛQ′, and so X = QΛ1/2. Classical
MDS rests on the idea that if the matrix of dissimilarities ∆ is not a Euclidean dis-
tance matrix (which is almost always true with real data), it can be approximated by
inserting ∆(2) for D(2) in (2), and then retaining the first p positive eigenvalues of the
eigendecomposition.

It can be proved that classical MDS minimizes the Strain loss function

Strain(X) = 1/4tr J(∆(2) −D(2))J(∆(2) −D(2))J

= ‖(−1/2J∆(2)J)−XX′‖2.

Gower (1966) was the first to realize that the dimension reduction of principal com-
ponent analysis (often seen as the eigendecomposition of a correlation matrix or the
singular value decomposition of the data matrix Z itself) has a dual method that can
be obtained by doing classical MDS on the Euclidean distances of the rows of the data
matrix Z. This method was coined principal coordinate analysis that emphasizes the
representation of the rows (usually individuals or samples) of the data matrix Z. For
more on classical MDS, we refer to Chapter 12 of Borg and Groenen (2005).

3.2 Stress

Arguably the two most important breakthroughs in MDS were (1) modeling dissimilar-
ities directly by distances in a loss function and (2) allowing very free transformations
of the dissimilarities that in turn are estimated by distances. Shepard (1962a, 1962b)
proposed heuristic methods to do both aspects but he did not provide a loss function.
Kruskal (1964a, 1964b), then, suggested the loss function

Stress(X, d̂) =

∑
i<j

(
d̂ij − dij(X)

)2
∑
i<j d

2
ij(X)

, (3)

where d̂ij is a transformed dissimilarity. For the moment assume that d̂ij = δij . Then,
this Stress loss function fits the distance dij(X) directly to the dissimilarities δij and
minimizes simply the squared errors over all combinations i, j. The minimization of
(3) over X is not trivial as no analytical solution exists. Kruskal proposed a gradient-
based minimization method to get the coordinates. The second breakthrough is to
allow for transformations of the dissimilarities. One such transformation is the linear
transformation d̂ij = a+bδij for unknown a and b. With a large positive intercept a and
a negative slope b the dissimilarities may be replaced by similarity measures, thereby
opening up a large variety of applications that are based on similarity measurements (e.g.,
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Table 3: Schematic overview of a dissimilarity matrix ∆ and a facet design.

Dissimilarity matrix ∆ Facet design
∆ Facet

O1 O2 O3 . . . On−1 On 1 2 3
O1 0 O1 1 1 3
O2 δ12 0 O2 1 2 3
O3 δ13 δ23 0 O3 2 1 3
...

...
...

...
. . .

...
...

...
...

On−1 δ1,n−1 δ2,n−1 δ3,n−1 . . . 0 On−1 3 1 1
On δ1n δ2n δ3n . . . δn−1,n 0 On 3 2 1

correlations) among the objects. Kruskal proposed an even more flexible transformation,
that is, the ordinal transformation. This implies that the d̂ijs should be chosen such that

whenever δij ≤ δkl it must also hold that d̂ij ≤ d̂kl for any combination of pairs ij and kl.

For fixed X, the minimization of (3) over d̂ amounts to a quadratic program with linear
inequality constraints on d̂. Kruskal provided a solution called monotone regression
that provides a global minimum to this optimization problem. These two contributions
can be seen as crucial milestones in the development of MDS as a statistical technique.
When optimizing both over X and d̂, some adaptation is needed to avoid the trivial
solution X = 0 and d̂ = 0. In (3), this trivial solution is avoided by dividing by the
sum-of-squares of the dij(X)s.

3.3 Facet Theory and Regional Interpretation in MDS

In facet theory, “content” information is available for the objects in the form of external
coding variables. These variables are called facets. The objects of observation are
assigned to a certain level on each facet, as illustrated in Table 3. Guttman (1964)
proposed to use such facets to form regions in MDS space. That is, it is hypothesized that
if the facets are scientifically useful at all, then the points should fall into certain (non-
overlapping and exhaustive) neighborhoods that correspond to the levels of a particular
facet, facet by facet. Ordered facets should lead to correspondingly ordered regions,
and this order can be linear (“stripes” in space) but also circular (“wedges”), with the
usual “dimensions” as special cases of linearly ordered stripes. Three types of regional
patterns are often observed with empirical data: axial, modular, and polar regions (see
Figure 3).

In empirical research, regions are almost always found by hand (drawing and re-
drawing partitioning lines on print-outs of MDS plots until the partitioning seems opti-
mal), but Borg and Groenen (1997) were the first to minimize Stress while imposing axial
constraints when the number of axial facets equals the number of dimensions. Groenen
and Van der Lans (2004) extend this to the case where the number of axial facets exceeds
the number of dimensions.

Let us return to the Morse signals example. Content information is available on the

11



a

a

a

a a

b

b

b

b
b

c

c

c

c

a

aa
a

b b
b

bb

b

c
c

c c c

c

c

a

a

a a

a
a

a

b
b

b

c

cc

c

b

b

c

c

a. Axial b. Modular c. Polar

Figure 3: Three possible ways for regional partitioning by a facet: Panel a shows an
axial partitioning by parallel lines, Panel b a modular partitioning by concentric circles,
and Panel c an polar partitioning by rays emanating from a common origin.
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Figure 4: MDS solution of ordinal MDS on the Rothkopf confusion data with regions
drawn by hand (Panel a) and regionally constrained MDS (Panel b).

Morse signals: Each signal has a temporal length (from .05 to .95 seconds) and a certain
composition of long and short beeps. We code the latter as ‘only short beeps’ (1), ‘more
short beeps than long beeps’ (1 > 2), ‘an equal number of short and long beeps’ (1 = 2),
‘more long than short beeps’ (2 > 1), and ‘only long beeps’ (2). These two external
variables are facets of the signals. An approximate axial partitioning of the unconstrained
solution is shown in Figure 4a (and Figure 1 without the axial partitioning) and the
regionally constrained version in Figure 4b. The axially constrained (“confirmatory”)
solution has a slightly higher Stress (.21) compared to the unconstrained solution (.18),
yet it gives a plot that is much easier to interpret in psychophysical terms. Moreover,
the linearized structure is related to substantive laws of formation and, therefore, it can
be expected to be more robust over replications than the possibly over-fitted exploratory
MDS pattern with its partitioning lines that were inserted only afterwards.

In a recent application, Borg, Groenen, Jehn, Bilsky, and Schwartz (2011) impose
two regional axial constraints with only two levels per facet (which effectively imposes a
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Figure 5: Illustration of the effect of dimension weighting for a common space G that
forms a square of points and three examples for individual spaces GSk. Panel a shows
the weighted Euclidean model with Sk diagonal and Panel b the generalized Euclidean
model.

quadrant restriction), and then perform a permutation test on Stress to test if the axial
constraints perform better than random assignment of points to quadrants. For more
information on Facet Theory, we refer to the book of Borg and Shye (1995) and for some
other applications, see, for example, Borg and Groenen (1997, 1998)

3.4 Three-way MDS models

In many applications of MDS, there is not just one data matrix but K dissimilarity
matrices, ∆k, for k = 1, . . . ,K. To model such data in one MDS representation, Horan
(1969) and Carroll and Chang (1970) proposed an important extension of the basic
MDS model. Their “weighted Euclidean model” assumes that each ∆k can be explained
by distances of a single common space G transformed by the diagonal matrix Sk for
each k. This means that each individual k simply stretches or compresses the common
space along its dimensions as if each k attributes his or her own specific salience to each
dimension. Figure 5a shows an artificial example of three individual spaces Xk = GSk
that are derived from a single common space.

Carroll and Chang (1970) did not use Stress but Strain in their Indscal program.
In this formulation, negative weights are a problem as they could lead to negative “dis-
tances”. The constrained MDS approach of De Leeuw and Heiser (1980) that uses Stress
avoids this problem and the sign of the dimension weight is formally unimportant. To
eliminate a basic indeterminacy in the GSk model, G is normalized so that G′G = I.
As this restricts the sum-of-squares of all columns in G to one, it becomes possible
to compare the dimension weighting values among persons over dimensions, but only
conditional to how G is normed (i.e., other norms lead to other dimension weights).

Three extensions exist of this approach. The first one also allows for a rotation before
stretching (see Figure 5b) which means that Sk is allowed to be any square matrix. Using
the Strain loss function, Carroll and Chang (1970) called this method Idioscal. The
second extension comes from the constrained MDS approach of De Leeuw and Heiser

13



(1980) using Stress that imposes a model that allows Sk to be of lower rank than the
dimensionality of the common space G. For example, one could model the common space
to be 4-dimensional and the individual spaces as (rotated and stretched/compressed)
subspaces of the 4-dimensional common space. A third possibility is to also pre-multiply
the common-space coordinate matrix G by a weight matrix (Lingoes & Borg, 1978), but
this leads to a model that has few applications.

Note that these three-way models tend to be very restrictive in case the dimen-
sionality is low. The alternative of doing K separate MDS analyses allows the Xk to
be estimated freely. On the other hand, the generalized Euclidean model or reduced
rank model with very high dimensionality of the common space (close to n) will yield
solutions close to K separate MDS analyses because the number of parameters in Sk
becomes large. We believe the generalized Euclidean model or reduced rank model are
most useful for common spaces whose dimensionality is not too small (say, larger than 3
and smaller than 6), and, in case of the reduced rank model, the rank of the individual
spaces (thus the rank of Sk ) may be small (say, 2).

3.5 The Majorization Algorithm

A key contribution to MDS was made by De Leeuw (1977) when he first used the idea
of majorization, albeit in the context of convex analysis in this paper. Up to then, the
minimization of Stress was essentially done through gradient algorithms, such as the one
proposed by Kruskal. The problem is that if only a single pair ij has a zero distance, then
the gradient is not defined any more. De Leeuw (1977) proved that by using subgradients
for those Euclidean distances that are zero, a convergent algorithm can be obtained. In
De Leeuw and Heiser (1977), the idea of majorization was worked out further. The
algorithm uses in each iteration an auxiliary function (called the majorizing function)
that is simple (quadratic in X); touches the original Stress function at the current
estimate; and is located above the original Stress function anywhere else (or has the
same value as the Stress function). Consequently, the update of the majorizing function
must have a smaller (or equal) value as the majorizing function and as the Stress function
at the current estimate (as these two functions touch there). Because the Stress function
either touches or is smaller than the majorization function by construction, it must be
so that at the update of the majorizing function, the Stress function also is smaller than
(or equal to) the Stress function of the current estimate. Hence, making the X that
minimizes the majorization function to be the next current estimate reduces Stress (or
keeps it the same). In practice, the majorizing algorithm is fast and reduces Stress until
the reductions in Stress become very small. This algorithm for minimizing Stress was
coined Smacof (Scaling by MAjorizing a COmplicated Function).

The Smacof approach operates on a slightly different formulation of raw Stress

σ2r (X, d̂) =
∑
i<j

wij
(
d̂ij − dij(X)

)2
, (4)

where wij are nonnegative weights indicating the importance of misrepresentation of a
particular pair of objects ij. An obvious choice for wij = 1 for all ij so that all pairs
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contribute equally. The wij can also be used for accommodating missing dissimilarities.

In the Smacof approach, degeneration to X = 0 and d̂ = 0 is avoided by imposing the
explicit restriction that the sum of squared d-hats must equal some positive constant,
for example,

∑
i<j wij d̂

2
ij = n(n− 1)/2.

The strength of the majorization approach lies in its generalizability and the desir-
able properties of the algorithm. For example, it allows imposing constraints onto the
configuration quite easily (De Leeuw & Heiser, 1980). This can be seen as follows. We
focus on Stress as a function of X and assume a ratio transformation so that d̂ij = δij .
Then, (4) can be expressed as

σ2r (X) =
∑
i<j

wijδ
2
ij +

∑
i<j

wijd
2
ij(X)− 2

∑
i<j

wijδ
2
ijd

2
ij(X) = η2δ + η2(X)− 2ρ(X). (5)

The core inequality of Smacof is based on the Cauchy-Schwartz inequality yielding
−
∑
i<j wijδijdij(X) ≤

∑
i<j wijδij/dij(Y), where Y is the estimate of X from the previ-

ous iteration (assuming dij(Y) > 0). Then, −ρ(X) ≤ tr X′B(Y)Y with B(Y) a matrix
function defined in, for example, De Leeuw (1988). There also exists the nice matrix
expression for η2(X) = tr X′VX where the offdiagonal elements of V are equal to −wij
and the diagonal elements contain the row sums of matrix W. Then,

σ2r (X) ≤ η2δ + tr X′VX− 2tr X′B(Y)Y (6)

showing that the majorizing function at the right side of (6) has a constant, a quadratic,
and a linear term in X. Let X = V−B(Y)Y be the (unconstrained) update with V−

the Moore-Penrose inverse of V. Then, (6) can be expressed as

σ2r (X) ≤ η2δ + tr X′VX− 2tr X′VX

= η2δ + tr (X−X)′V(X−X)− tr XV′X. (7)

This shows that the Smacof algorithm can handle any constraint on X for which the
function tr (X−X)′V(X−X) subject to the constraints can be minimized easily. For
example, consider a given n×r matrix H with r additional attributes (external variables)
on the objects. This information can be used easily by constraining the coordinates X
to be a linear combination of the known external variables H thereby allowing the MDS
dimensions to be interpreted in terms of the external variables. Then, in each iteration
the minimum of tr (HC−X)′V(HC−X) over C needs to be found and that is obtained
by C+ = (H′VH)−1H′VX.

Three-way models can also be seen as a form of constrained MDS that can be handled
by the majorizing approach. For example, three-way MDS models (such as the weighted
Euclidean model, the generalized Euclidean model, and the reduced rank model) are
expressed in the Stress framework as

σ2r (X) =
∑
k

∑
i<j

wij (δijk − dij(GSk))
2 . (8)
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Let ∆∗,W∗, and X∗ be defined as

∆∗ =

 ∆1 0 0
0 ∆2 0
0 0 ∆3

 ,W∗ =

 W1 0 0
0 W1 0
0 0 W3

 , and X∗ =

 X1

X2

X3

 .
Now, three-way MDS can be viewed as doing a constrained MDS on ∆∗,W∗, and X∗

where Xk is constrained to be of the form GSk.
Other algorithmic properties on convergence of the algorithm were proved in De Leeuw

(1988). Note that such convergence properties are not available for other MDS algo-
rithms. The Smacof algorithm is available in the SPSS module Proxscal (Meulman,
Heiser, & SPSS, 1999) and as the Smacof package in R (De Leeuw & Mair, 2009).

Although Euclidean distances are the easiest to visually interpret and therefore are
predominantly used in MDS, there can be reasons to deviate from the Euclidean distance
and use the more general Minkowski distance dij(X) = (

∑
s |xis − xjs|q)1/q for q ≥ 1.

The well known special cases are the city-block (q = 1), the Euclidean (q = 2), and the
dominance (q =∞) distances. The majorization approach to MDS was extended to deal
with these cases in Groenen, Mathar, and Heiser (1995) for 1 ≤ q ≤ 2 and also for q ≥ 2
in Groenen, Heiser, and Meulman (1999).

3.6 Other Algorithms

The property of undefined gradients for Stress led Takane, Young, and De Leeuw (1977)
to propose the S-Stress loss function that minimizes the sum over all pairs of the squared
differences of squared Euclidean distances and squared dissimilarities as its gradient is
defined for all distances, even if they are zero. The disadvantage of S-Stress is that it
will tend to over-represent large dissimilarities and that it can allow for relatively large
errors for small dissimilarities.

Ramsay (1977) proposed the Multiscale loss function that equals the sum of
squared differences of the logarithms of dissimilarities and distances, or, equivalently,
the sum of squared logarithms of the ratio of a dissimilarity and its distance. If the ratio
is one, the log is zero and there is a perfect representation of the dissimilarity by its
distance. Note that zero dissimilarities or zero distances cannot be handled by Multi-
scale. The advantage of this method is that it can be seen within a maximum likelihood
framework. In particular, its three-way extension with replications by individuals allows
inference and confidence ellipses for the points.

4 Present

4.1 Distance-based Multivariate Analysis

In a series of publications in the period from 1986 to 1998, Meulman generalized the
relation of principal coordinates analysis and classical MDS to a much wider range of
multivariate analysis techniques such as (multiple) correspondence analysis, (general-
ized) canonical correlation analysis, and discriminant analysis. The emphasis in this
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approach is on the representation of the objects, and much less on the variables. It
allows for optimal scaling of the variables in the Gifi (1990) approach approximating
distances through Stress or Strain. A comprehensive overview was outlined in her thesis
(Meulman, 1986) and a series of papers were written on that topic (see, for example,
Meulman, 1992).

4.2 Constant Dissimilarities

Even though the use of Stress is dominant in MDS, little was known on the “nullest
of null models”, that is, having constant dissimilarities without any variation (Buja,
Logan, Reeds, & Shepp, 1994). Many classical multivariate analysis techniques assume
centered data so that constant data do not occur. Buja et al. proved what kind of
solutions occur when Stress with Euclidean distances is fed with constant dissimilarities.
It turns out that in one dimension, the objects will be positioned equally spaced on a
line, in two dimensions the points will be in concentric circles, and in three dimensions,
they are positioned on the surface of a hypersphere. The 2-dimensional solution is used
very often in MDS applications and near constant dissimilarity data can occur after
transformations. The contribution Buja et al. is that they focused the attention on such
noninformative solutions. Users of MDS should always check if their data have sufficient
variation in the dissimilarities or d-hats before starting interpreting a solution.

4.3 Local Minima

The advantage of classical MDS is that there is an algebraic solution that yields a global
minimum. Some of the disadvantages are that it cannot handle transformations of the
dissimilarities and that the resulting distances often under-estimate the dissimilarities.
The use of Stress avoids these disadvantages but introduces the problem of local minima.
From 1978 until recently, several contributions have been made. Three cases should be
distinguished.

First, De Leeuw and Heiser (1977) and Defays (1978) noted that unidimensional
scaling becomes an NP-hard combinatorial problem. Hubert and Golledge (1981) and
Hubert and Arabie (1986) used dynamic programming to globally optimize the combi-
natorial problem and hence the unidimensional Stress function up to about 22 objects.
The approach by Pliner (1996) that smoothes small distances in ρ(X) by a quadratic
function is very effective in finding global minima for even larger unidimensional scaling
problems. Brusco (2001) applied simulated annealing.

The second case is for 2 ≤ p < n − 1. For small p ≥ 2, Groenen and Heiser (1996)
found that local minima occur frequently, more so in low dimensionalities than for higher
dimensionalities. They proposed the tunneling method that is indeed capable of finding
a series of subsequent lower local minima that could end in a global minimum although
there is no guarantee of finding it. In Groenen et al. (1999), the smoothing approach
of Pliner (1996) was adapted and extended to deal with any Minkowski distance and in
any dimensionality. For city-block distances and Euclidean distances, their smoothing
approach was effective in locating a global optimum, but for Minkowski distances with
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exponents q > 2, in particular the dominance distance (q =∞), the smoothing approach
was not effective. For the special case of city-block distances, combinatorial approaches
have been proposed by Hubert, Arabie, and Hesson-McInnis (1992). More recently, there
has been a series of articles on simulated annealing approaches of several MDS variants
which work well when appropriately tuned (Murillo, Vera, & Heiser, 2005; Vera, Heiser,
& Murillo, 2007).

The third case is full-dimensional scaling (p = n− 1). De Leeuw (1993) proved that
there is a single local minimum for Stress that is global.

5 Future

5.1 MDS with Weights

Apart from handling missings, the weights wij in the Stress function 3 can be also be used
to emphasize certain aspects of the dissimilarities. The first one to exploit this was Heiser
(1988) who proposed to mimic certain other MDS loss functions by choosing appropriate
weights. For example, the S-Stress loss function can be mimicked by wij = δ2ij . Buja
and Swayne (2002) emphasized choosing wij = δqij allows a more refined weighting of the
errors depending on the size of δij . If the objective is to have the large dissimilarities well-
represented and it does not matter much to have larger errors for small dissimilarities,
then q should be chosen large (for example, q = 5 or 10). Conversely, if the interest is in
the proper representation of small dissimilarities and the larger ones are unimportant in
the representation, then this can be assured by choosing q small (for example, q = −5
or −10). Making the weights wij in such a way dependent on the dissimilarities allows
emphasizing the proper representation of certain selection of the dissimilarities that is
dependent of their values. This can be particularly useful in the context of large scale
MDS.

5.2 Dynamic MDS

For most of its life time, MDS has been a static method: dissimilarities are input to an
MDS program producing a usually 2-dimensional solution that is shown as a map. The
GGvis software of Buja and Swayne (2002) (see also Buja et al., 2008) that is a part of
GGobi was the first comprehensive interactive software. The advantage is that in real
time MDS options can be changed and its effects are immediately shown as the iterative
process progresses. Such dynamics allow for a completely new, direct, and intuitive
interaction with an MDS user on the interplay of the specific dissimilarities at hand and
the possible MDS options.

5.3 Large Scale MDS

Traditional MDS tends to have a small number of objects (say, between 10-200). Both
computations and interpretation completely changes when one is dealing with far more
objects, e.g., 10.000-100.000 objects. With such large n the total number of pairs of
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objects n(n − 1)/2 increases quadratically, which generally is prohibitive for standard
MDS algorithms.

The Isomap algorithm of Tenenbaum, De Silva, and Langford (2000) is based on
classical MDS for large scale MDS problems. In particular, it focusses on nonlinear
manifolds in higher dimensionalities. By k-nearest neighbours a network of connected
pairs of objects is created by declaring the bigger dissimilarities as missing. This struc-
ture of nonmissing dissimilarities can be seen as a weighted graph with weights at the
vertices being the dissimilarities. As classical MDS cannot handle missing dissimilarities,
they are replaced by the shortest path on the graph. This forms a fully filled matrix
of pseudo dissimilarities on which classical MDS is performed. In this way, Isomap is
capable of recovering low dimensional manifolds that exists in higher dimensionality.

Another approach was taken by Trosset and Groenen (unpublished, see also the dis-
sertation of Kagie, 2010). Trosset and Groenen proposed to allow for many missing
values thereby creating a sparse dissimilarity matrix. In an adaptation of Smacof, they
provide an algorithm that can indeed handle large n provided there is sufficient sparse-
ness. In joint work, the dissertation of Kagie expands on this approach. It was noticed
that often large scale MDS solutions are dominated by the mode of the distribution
of dissimilarities and that, therefore, solutions comparable to the constant dissimilarity
case occur often, such as in two dimensions a circle filled with a blur of points. It was
proposed to be solved by an a priori weighting of the dissimilarities to avoid a single
mode becoming dominant and by appropriate transformations.

5.4 Symbolic MDS

The use of symbolic data and adapted multivariate analysis methods has been advo-
cated in Bock and Diday (2000). Symbolic data can be seen as richer forms of data
values. Here, we discuss two such forms, that is, (a) the case that for each pair ij not
the dissimilarity is known but the interval of the dissimilarity, and (b) the case that a
distribution (histogram) of the dissimilarity for each pair ij is know. Often, such sym-
bolic data are obtained by aggregation or summary statistics over larger units such as
geographic areas, countries, etc.

For interval dissimilarities, Denœux and Masson (2000) proposed to present the
coordinates of object also as intervals yielding a rectangle to represent an object in two
dimensions. Then, the smallest distance of rectangles i and j should match as closely as

possible the lower boundary value δ
(L)
ij of the interval for dissimilarity ij and the largest

distance of the rectangles should match as the upper boundary value δ
(U)
ij of the interval.

A rectangle for object i can be specified by the coordinates of its center, that is, row i
of X, and by half of its width per dimension given by row i of R with ris ≥ 0 for all is.
Now, the largest Euclidean distance between two rectangles i and j can be expressed as

d
(U)
ij (X,R) =

( p∑
s=1

[|xis − xjs|+ (ris + rjs)]
2

)1/2

(9)
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Figure 6: Example of an iMDS solution that approximates intervals of dissimilarities by
the interval of the smallest and largest distance between two rectangles representing the
the objects. For rectangles 2 and 8 the minimum and maximum Euclidean distances are
shown.

and the smallest Euclidean is given by

d
(L)
ij (X,R) =

( p∑
s=1

max[0, |xis − xjs| − (ris + rjs)]
2

)1/2

. (10)

The corresponding I-Stress function equals

σ2I (X,R) =
n∑
i<j

wij
[
δ
(U)
ij − d

(U)
ij (X,R)

]2
+

n∑
i<j

wij
[
δ
(L)
ij − d

(L)
ij (X,R)

]2
.

Groenen, Winsberg, Rodriguez, and Diday (2006) provide the I-Scal algorithm for mini-
mizing σ2I (X,R). Their algorithm is based on iterative majorization thereby guarantee-
ing a monotone decrease of I-Stress values until convergence.

Figure 6 gives an example of an I-Scal solution of rectangles to represent interval

dissimilarities. The minimum Euclidean distance between rectangles 2 and 8, d
(L)
28 (X,R)

and maximum Euclidean distance, d
(U)
28 (X,R) are explicitly shown. Note that rectangle

4 collapses into a line because ri1 is (almost) zero.
Groenen and Winsberg (2006) proposed to model histogram dissimilarities. In this

case, the distribution of a dissimilarity is summarized by several quantiles, for example,
by the percentiles 20, 30, 40, 60, 70, and 80. In this model, the percentiles should be
chosen in pairs around the median, so 20-80, 30-70, and 40-60. Therefore, each such pair
consists of an interval dissimilarity. The current choice of percentiles can be perceived
as a three-way interval dissimilarity matrix with three replications (as there are three
percentile pairs). Just as in regular three-way MDS, there will be one common matrix
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Figure 7: Example of a histogram MDS solution on synthetical musical instruments.
The rectangles represent the percentile pairs 20-80, 30-70, and 40-60.

X with the rectangle centers for all three replications. The heights and widths of the
rectangles over the three replications should be such that each rectangle representing
a percentile range closer to the median should fit within a rectangle representing a
wider percentile range around the median. These restrictions can be handled easily
by an extension of the I-Scal algorithm with inequality restrictions on the risk. For
more details, we refer to Groenen and Winsberg (2006). Figure 7 shows an example of
solution of histogram dissimilarities of artificial musical instruments with the percentile
pairs 20-80, 30-70, and 40-60.

5.5 What needs to be done?

Of the developments described above in the section “Future”, what is most interesting
for the typical MDS user is the possibility to interact more with MDS programs in a
dynamic way (as in GGvis). Heady developed a powerful interactive MDS program
called Permap, a stand-alone program that is available as free-ware in the Internet
(http://cda.psych.uiuc.edu/mds 509 2013/permap/permap 11 8pdf.pdf). Unfor-
tunately, this program is not supported anymore. For the user, it would be nice to see
how MDS responds if he or she eliminates some objects/points from the solution; shifts
some points in space; or draws in some partitioning lines that are then enforced (in
some way such as linear axial constraints) onto the MDS solution. Such programs would
be hard to write and test, of course, but often simpler programs are missing too. For
example, programs that can handle asymmetric proximities and produce vector-fields
over MDS plots would be helpful to diagnose asymmetric data for systematic trends.
Even Procrustean transformations that are needed when comparing different MDS solu-
tions for similarities and differences are missing (or are difficult to find) in many of the
statistics packages. It is hoped that such programs will soon be generated within the
R environment where they should also survive longer than it has been true for many of
the old Fortran programs such as Kyst or Pindis, for example.
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Another area where we expect more developments is large scale MDS. For this case,
there are several technical and perceptual problems. When is large scale MDS interest-
ing? How many dimensions should be used? How can points in such plots informatively
be labeled? How should dissimilarities and weights be adapted such that MDS yields
informative solutions. How to treat missing values that could lead to unconnected or
only partially connected groups of objects? In this area, we expect that researchers
from computer science and machine learning are and will contribute to new develop-
ments. One such development is the VOS approach for bibliometrics, see Van Eck and
Waltman (2010) and for software and more references http://www.vosviewer.com/.
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