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Abstract

Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous
variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods,
notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only
works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in
statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued
Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification
probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can
be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis,
which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a
simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are
proposed. The relationship between this method and binary logistic regression is explored. A numerical example using
survey data is presented.
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Introduction

The practice of exploring residual association between two

variables X and Y after adjusting for other, confounding, variables

Z is at the heart of much of statistical and epidemiological analysis.

It underlies the search for potentially causal relationships in

observational research. For continuous X and Y the partial

correlation coefficient is the most widely used measure of adjusted

association and presents the correlation between X and Y if Z

would be kept fixed (constant). The (partial) regression coefficients,

of either the regression of Y on X and Z or the regression of X on

Y and Z are also measures of association between X and Y that are

adjusted for Z, but these measures are not symmetrical in X and

Y. Such asymmetrical measures are sometimes adequate, espe-

cially when one of the two variables X and Y is obviously the

dependent and the other the independent variable, e.g. when a

causal relationship between X and Y exists or is assumed, as is

often the case in randomized clinical trials and in observational

cohort or case-control studies. In contrast, the partial correlation

coefficient is symmetrical in X and Y and is therefore a more

logical choice when there is no a-priori plausible unidirectional

causal link between X and Y, for example when X and Y are the

diastolic and systolic blood pressure respectively and Z is age (say),

measured in a cross-sectional random population sample.

For dichotomous X and Y that assume only the values 0 and 1

(e.g. alive and dead, or smoker and non-smoker), a commonly used

measure of association is the odds ratio

OR~
P(X~1,Y~1):P(X~0,Y~0)

P(X~1,Y~0):P(X~0,Y~1)

The population OR can not only be estimated from a random

population sample, such as a cross-sectional survey, but also from

samples stratified with respect to either X or Y, such as a cohort or

case-control study. Several methods have been developed for

adjusting the association between X and Y for a third variable Z.

The best known are the Mantel-Haenszel (MH) method [1], which

is symmetrical in X and Y, and logistic regression, which is not [2].

Even in the absence of a direct causal link between X and Y,

regressing Y on X and Z generally yields a different estimate (and

standard error) of OR(X,Y|Z) than regressing X on Y and Z

although the difference is often modest. Differences may arise, for

example, when either Z explains more (or less) variation in Y than

in X or when there are specification errors in the regression of Y

on X and Z or X on Y and Z. Such misspecification can occur, for

example, when the true relationship between Y and X and Z is not

the logistic model, but (say) a probit model. This lack of symmetry

can make logistic regression in this context undesirable. If we want

to present, for example, the residual relationship between two

cardiovascular risk factors or disorders, with no direct causal link

between the two but both potentially influenced by common

factors such as gender, then the MH-method would seem a more

attractive choice than logistic regression. Its symmetry, as well as
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its intuitive appeal, i.e. the fact that the procedure can easily be

understood without advanced mathematical training, probably

explains the enormous popularity of the procedure among

epidemiologists and other empirical researchers.

The usual form of writing the MH odds ratio estimate is

ŷyMH~

P
i

n00in11i=ni

P
i

n10in01i=ni

ni~
X

x,y~0,1

nxyi ð1Þ

where nxyi denotes the number of observations in a (x,y)-cell of the

2-by-2 table for the i–th stratum and where the summation is over

all strata of Z. The method has only been developed for Z with a

limited number of levels of exact matches (the ‘strata’), which is the

case when Z is a single categorical variable, such as sex, or when

strata were created by design, e.g. by matching. This is because in

calculating the MH odds ratio all observations at stratum Z for

which any of the marginal totals of the XZ-by-YZ table are zero

are ignored. Thus if combinations of Z are unique for each subject

then all observations are ignored!

Attempts to fix this shortcoming, such as Miettinen’s multivar-

iate confounder (discriminant) score method, which has poor

statistical properties [3,4] and seems to be forgotten, were not

successful. Yet another approach is that of using binary logistic

models for marginal probabilities P(Y = 1|Z) and P(X = 1|Z), and

then expressing P(X = 1,Y = 1|Z) as a function of these marginal

probabilities and of the odds ratio, and maximizing the likelihood

function with respect to the odds ratio and the parameters of

marginal distributions. This approach has been explored by Carey

et al [5] and le Cessie and van Houwelingen [6]. It requires special

software to fit the models and is not equivalent to the Mantel-

Haenszel method when Z is a one-dimensional categorical

variable.

We here propose a very simple method to extend the MH odds

ratio to a general case of Z being an m-dimensional vector of

covariates, some of which may be continuous. Its basic idea is to

replace Mantel-Haenszel cell entries with subject-specific classifi-

cation probabilities generated by a suitable multinomial model. As

presenting an adjusted OR as a summary measure of association

makes primarily sense if subject-specific odds ratios can be

assumed not to depend on Z, i.e. under the hypothesis of

homogeneity of the OR across subjects (strata, levels of Z), we also

address estimation of the OR under the assumption of homoge-

neity and discuss how to test this homogeneity.

Methods and Results

Extended Mantel-Haenszel odds ratio estimate
If the subjects form strata Si of size ni and if pxyi9s denote the

observed fractions (probabilities) in each stratum, pxyi = nxyi/ni,

then

X

j[Si

p11jp00j~
X

j[Si

n11i

ni

n00i

ni

~
n11in00i

ni

and

X

j[Si

p10jp01j~
X

j[Si

n10i

ni

n01i

ni

~
n10in01i

ni

:

The expression (1) can then be written in terms of observed

probabilities as

ŷyprob~

P
p11ip00iP
p10ip01i

ð2Þ

where the sum is over all subjects. This probabilistic formulation

suggests a generalization of (2) in which pxyi denotes an estimated

probability P(X = x,Y = y|Z = zi) for the i-th subject with (possibly

vector-) covariate zi (and where the sum is over all subjects).

The estimates pxyi can be obtained from any suitable regression

model. A convenient and widely used model is the multinomial

logistic regression model

P(X~x,Y~yjZ)~
exp (axyzbT

xyZ)
P
x,y

exp (axyzbT
xyZ)

; x,y~0,1,a00~b00~0ð3Þ

with 3 intercept parameters a and 3Nm parameters bxy = (bxy1,…,

bxym)T, where m is the dimension of the covariate vector

Z = (Z1,…,Zm)T. This model has strong connections to other

important statistical models, specifically the log-linear model [7].

Classification probabilities pxyi can be obtained from (3) using

maximum likelihood (ML) estimates of axy and bxy obtained with

standard software, such as SPSS (nomreg), STATA (mlogit), R

(library nnet) and SAS (proc logistic), and the OR estimate

ŷyprobcan be readily computed using (2). Note that ŷyprob can be

also interpreted as a weighted mean of subject specific OR

estimates (p11i p00i)/(p10i p01i). The standard error (SE) of

log(ŷyprob) is derived in Appendix S1 and can be used to calculate

95% confidence intervals for the OR by exponentiating the two

confidence limits log(ŷyprob)+1:96SEfor the log(ŷyprob).

The odds ratio as a model parameter in the multinomial
logistic model

The subject-specific log odds ratio yzunder the multinomial

logistic model (3) is

log (yz)~a11{a10{a01z(b11{b10{b01)Tz ð4aÞ

This suggests an alternative estimator log(ŷyalt) of the log(OR) as

the average of subject-specific quantities log (ŷyz)computed directly

from the ML-parameter estimates using (4a). The subject-specific

odds ratio yz generally depends on Z unless d= b11-b01-b10 equals

zero, which presumably defines the situation where a ‘summary’

OR is most meaningful. Testing of the hypothesis H0: d = 0of

homogeneity of odds ratios can be carried out by the Wald test or

by the likelihood ratio (LR) test. To carry out the LR-test and to

obtain ML-estimates under the constrained model, i.e. under H0:

d = 0, we do need to fit this model. This produces the ML-

estimate of log(y),

log (ŷyhom)~âa11{âa10{âa01 ð4bÞ

and of its standard error. This ML-estimate is identical to the

Mantel-Haenszel type estimate (2) computed from classifications

probabilities derived from the homogeneity model:

The Mantel-Haenszel Procedure Revisited
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P
p11ip00iP
p10ip01i

~

P
i

exp (âa11zb̂bT
11Zi)

(
P
x,y

exp (âaxyzb̂bT
xyZi))

2

P
i

exp (âa10zâa01z(b̂b10zb̂b01)TZi)

(
P
x,y

exp (âaxyzb̂bT
xyZi))

2

~ŷyhom

P
i

exp (b̂bT
11Zi)

(
P
x,y

exp (âaxyzb̂bT
xyZi))

2

P
i

exp ((b̂b10zb̂b01)TZi)

(
P
x,y

exp (âaxyzb̂bT
xyZi))

2

~ŷyhom:

This demonstrates the close link between the classical MH-

approach and our model based OR estimate. Computations can

be carried out in R [8] using the package partialOR [9]; Appendix

S2 gives an example.

The odds ratio in binary logistic regression and its
relationship to the multinomial logistic model

To explore the relationship between the multinomial logistic

model and the two binary logistic regression models (Y on X, Z

and X on Y, Z) commonly used to adjust the OR between X and

Y we note that from the multinomial logistic model (3) we can

derive these two versions of binary logistic regression models, as

follows:

logit(P(Y~1jX,Z))~ax1{ax0z(bx1{bx0)TZ ð5aÞ

logit(P(X~1jY,Z))~a1y{a0yz(b1y{b0y)TZ ð5bÞ

The model (5a) can rewritten as

logit(P(Y~1jX,Z))~c0zc1XzcT
2 ZzcT

3 XZ

where c0 =a012a00 =a01, c1 =a11+a002a102a01 =a112a102a01,

c2 =b012b00 = b01, c3 =b11+b002b102b01 =b112b102b01. For

model (5b) we obtain a similar expression. To fit model (5a) to data

we enter X, Z and the interaction term XNZ in the model, and

similarly for (5b). Homogeneity of OR9s under the multinomial

logistic model with d= 0 is equivalent to absence of interaction

(c3 = 0) under the logistic model (5a), i.e. with Z being only a

confounder and not also an effect-modifier. Under this model

log(y) = c1 is the same parameter as that estimated under the

multinomial logistic model (3) with d= 0. The ML-estimates of y
may however differ (albeit not much) as the likelihood functions

differ. Note that model (3) can be either factorized as

P(Y|X,Z)NP(X|Z) or as P(X|Y,Z)NP(Y|Z). When fitting models

(5a) or (5b) we ignore the marginal distributions of X given Z or of Y

given Z, respectively, which are implicitly modeled in (3). Also if d ?
0 and – as is usually done – the interaction is ignored in the logistic

regressions then the two logistic regression models are misspecified

and the adjusted OR estimates are likely to differ as well. Assuming

absence of interactions and model misspecifications models (5a) and

(5b) simplify to a01+log(y)X+ b01
TZ and a10+log(y)Y+ b10

TZ,

respectively, demonstrating that, under these conditions, these two

logistic regressions estimate essentially the same parameter log(y).

Model choice
Which of the three models to use: (3), (5a) or (5b)? The assumed

design – a random population sample – suggests the multinomial

logistic model (3). It leads to an intrinsically symmetrical OR

estimate ŷyprob (or, alternatively, ŷyalt). For a more refined analysis

we would fit model (3) and carry out a formal test of homogeneity,

and if justified by apparent homogeneity use the ML-estimate (4b).

In case of heterogeneity we would use either the predicted

probabilities pxyi to calculate OR for each subject, or subject

specific log(OR) values given by ŷyz, and use them to explore their

relation to covariates Z in more detail.

Example
We used the proposed methods to explore the relationship

between (ever) smoking and antibodies (lifelong after infection) to

the sexually transmitted viral infection HSV-2 (persists lifelong).

For this, USA National Health and Nutrition Examination Survey

(NHANES) data were obtained [10]. (NHANES is conducted to

assess the health and nutritional status of adults and children in the

United States.) Both variables are probably associated with

(measured) sexual risk behavior, gender, ethnicity etc. which

may thus act as confounders in their relationship. However, there

may also be other relationships, e.g. both smoking and HSV-2

infection may be influenced by the (unmeasured) type of social/

sexual networks that individuals take part in, giving rise to residual

confounding. After elimination of cases with missing and

improbable values (e.g. reported first sexual contact at age 1),

and subjects reporting never to have had sexual relationships, we

obtained a dataset of 991 women and 765 men with complete

data. NHANES sampling weights were ignored for this example.

The unadjusted OR of the relationship between smoking and

HSV-2 was 1.715 (95% CI 1.372-2.144). We were interested in

the residual OR after adjustment for age, age at first sexual

contact, African American ethnicity, gender, and reported number

of lifetime partners (grouped into 1–4, 5–14, 15–39, 40+). Logistic

regression with HSV-2 as the dependent variable, yielded an

adjusted OR of 1.538 (95% CI 1.176–2.012), and logistic

regression with smoking as the dependent variable an adjusted

OR of 1.589 (95% CI 1.217–2.075); the closeness of these two LR

estimates appears to be consistent with (approximate) homogeneity

of the OR. The MH-type OR ŷyprobcalculated using (2), i.e. the

unconstrained symmetrical OR estimate, was 1.550 (95% CI:

1.183-2.022), see Appendix S2. The likelihood ratio test (df = 7) of

the constancy of OR’s gave a P-value 0.46, thus suggesting that the

odds ratio does not depend on the covariates. Therefore, using the

parametric method (4b) with d= 0 was considered appropriate,

which yielded an OR estimate ŷyhomof 1.582 (95% CI: 1.212–

2.065). The estimate proposed by le Cessie and van Houwelingen

was also close, viz. 1.553 (95% CI 1.183–2.032). These adjusted

OR values all suggest that the association between smoking and

HSV-2 infection is only partially accounted for by association with

the above mentioned covariates.

Discussion

We proposed a method to adjust an Odds Ratio between two

dichotomous variables X and Y for other, ‘confounding’, variables

Z, that is symmetrical in X and Y. The basic idea is to replace the

observed cell entries in strata of the Mantel-Haenszel procedure by

estimated classification probabilities estimated from a statistical

The Mantel-Haenszel Procedure Revisited

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e58327



model, for which we specifically propose and explore the

multinomial logistic regression model. In the case of a simple

categorical Z the proposed OR estimator is identical to the

classical Mantel-Haenszel estimator.

One of the strengths of the multinomial logistic model is that the

OR can also be estimated directly from the model parameter

estimates. In the important case of homogeneity, that is when the

subject specific ORs are independent of Z and thus all identical,

the log(OR) estimator simplifies to a simple linear combination of

3 model parameters. We propose the latter estimator as a suitable

symmetrical adjusted OR estimate and recommend its use for all

situations where a symmetrical adjusted OR is called for. We note

that care is needed when applying these methods: an adjustment

for variables that appear to be confounders, but are not, may lead

to misleading conclusions about the true, causal, associations

between variables [11,12]. Future research could address good-

ness-of-fit of the multinomial logistic regression model in this

context and alternatives, or generalizations, to this model for

situations where it is misspecified.

Supporting Information

Appendix S1 Calculating the variance of the logarithm
of the model-based generalized MH odds ratio, using the
delta method.

(PDF)

Appendix S2 Example of software code in R.

(PDF)
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