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General Introduction 
 
1.1 Definitions of COPD 
 

Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory disorder 

of the lungs, becoming a global health problem with increasing morbidity and 

mortality (1).  Recent observations indicate that COPD is the fourth cause of mortality 

in the USA and it is projected to be the fifth burden of morbidity world-wide in the 

year 2020 according to a consensus report published by the World Health 

Organisation (2).  

COPD is characterized by a slow progression of airflow limitation, which is 

nearly irreversible. Recently, the Global Initiative on Obstructive Lung Disease 

(GOLD) has formulated an official definition; “A disease state characterized by 

airflow limitation that is not fully reversible. The airflow limitation is usually 

progressive and associated with an abnormal inflammatory response of the lungs to 

noxious particles and gases” (2). One of the major determining factors is tobacco 

smoking, but it remains to be investigated to what extent other factors such as 

environmental and occupational exposures and genetic factors can contribute to the 

disease. Surprisingly, only 10-20 percent of all smokers develop COPD (1, 2). 

 Diagnosis of COPD should be considered in patients with symptoms of cough, 

sputum production and abnormal shortness of breath and a presumed history of 

exposure to risk factors for the disease (1, 2). The diagnosis is confirmed by 

spirometry with a post-bronchodilator forced expiratory volume in one second (FEV1) 

< 80% of predicted value and in combination with an FEV1/FVC (forced vital 

capacity) < 70% of predicted.  The above lung function criteria are used in classifying 

the severity of the disease as stage I (mild COPD) followed by stage II (moderate 

COPD) with FEV1 values 30% to 80% of predicted and stage III (severe COPD) with 

FEV1 values < 30% of predicted (2). Figure 1.1 illustrates the effects of smoking on 

the annual decline in lung function (FEV1) of susceptible and non-susceptible smokers 

and also depicts the beneficial effect of smoking cessation. These data originate from 

a large epidemiological study in Britain from 1977 (3), and have subsequently been 

confirmed in more recent (4, 5). 
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Figure 1.1  Annual decline in forced expiratory volume in 1 second (FEV1 values are 
given in % predicted). Susceptible smokers show an accelerated decline in lung function as 
compared to non-smokers and non-susceptible smokers. The beneficial effects of smoking 
cessation are also depicted. Adapted from Refs. (1, 3). 
 

1.2  Structure of airways and lung parenchyma 
 
The respiratory system is commonly divided in two separate parts: the conducting 

airways consisting of trachea, bronchi, bronchioles, terminal bronchioles and the 

respiratory part defined as respiratory bronchioles, alveolar ducts and terminal alveoli 

(6).  The entire branching pulmonary tree consists of roughly 20 to 25 generations and 

a branch of the pulmonary artery accompanies each conducting airway (6). 

Conveniently the different anatomical sites are divided as “central” lung tissue, 

representing the larger conducting airways and “peripheral” lung tissue, which 

includes terminal and respiratory bronchioles, and alveoli. Airways with a diameter of 

2 mm or less are conveniently defined as small airways, which are considered as the 

most important contributors to the airflow resistance and are involved in the 

accelerated decline of FEV1 in COPD (7-11). Figure 1.2 shows the important 

structural features of “central” and “peripheral” lung tissues in case of non-

symptomatic smokers (A and B) and COPD (C and D) subjects, respectively. 

Conducting airways consists of an epithelial layer, its basement membrane, and the 

100 
  
   
 
75 
 
    
50 
 
 
25 
 
 
  
 
  0  

 

Disability 
Death 

Age (years)
25                                     50                                           75  

Non-smoker           Stopped smoking at 50 years 
Non-susceptible smoker         Stopped smoking at 60 years 
Susceptible smoker (10-20%) 



Chapter 1                                                General Introduction & Aims of the Study 

 
 

13

lamina propria, that consist predominantly of connective tissue and small vasculature, 

together forming the airway mucosa (6). The bronchial epithelium, covered with 

secreted mucus, protects the outer layers from first contact with the air or pathogens in 

the lumen. Different cell types are found in the epithelial layer, the cubical shaped 

ciliated cells, the secretory cells such as goblet and Clara cells which play a role in the 

production of mucus and the smaller basal cells which are though to be the epithelial 

stem cells (12). In the submucosa of the central airways irregular shaped patches of 

submucosal secretory glands and airways smooth muscle are found. In the adventitia 

of the larger airways predominately cartilage, supplying bronchial vasculature and 

connective tissue are observed, with a slow transition into the more peripheral areas of 

the lungs (13).  

 In peripheral tissue terminal and respiratory bronchioles as well as alveolar 

ducts and alveoli with accompanying arteries are present (13).  Veins of several sizes 

are found predominantly in interstitial septa, which are rich in extracellular matrix 

fibres such as collagens. While branching bronchioles gradually lose their coating of 

secretory glands, cartilage and finally also their ASM layer (6, 13). The alveolar walls 

are covered with flattened respiratory epithelial cells, alveolar type I cells, which are 

responsible for most of the gas exchange with capillaries in close proximity, and with 

more cubical shaped cells, alveolar type II cells, that are progenitor for the latter cells 

(14-16). Furthermore a scattered population of immune cells, predominantly a low 

number of alveolar macrophages, T-lymphocytes and granulocytes, is found (17). 
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Figure 1.2  The important structural features of “central” and “peripheral” lung 
tissues in case of non-symptomatic smokers (A and B) and COPD (C and D) subjects, 
respectively. Panel A depicts the main central airway structures with the bronchial 
epithelium, basement membrane (BM), the arterioles, capillaries, and venuoles embedded in 
the subepithelial layer (V) as well as airway smooth muscle (ASM) and subepithelial glands 
(Glands) and cartilage of the airway wall.  In B a small bronchiole with its epithelium lining 
the lumen and ASM is embedded in the surrounding alveoli.  An accompanying vessel (V) is 
present surrounded by vascular smooth muscle (VSM). 
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Figure 1.2 (continued) In panel C can be observed that subepithelial fibrosis (***) is present 
as well as an increased airway smooth muscle mass in COPD as compared to non-
symptomatic subjects. Panel D shows important peripheral features of COPD, peribronchial 
and perivascular fibrosis, vascular wall thickening and emphysema with enlarged air spaces 
and loss of alveolar attachment. All slides are stained with α-smooth muscle actin (red color). 
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1.3  Pathology and pathogenesis of COPD 
 
COPD consists of three distinct pathological conditions under one umbrella (Figure 

1.3). These are chronic bronchitis with productive cough of more than three months 

and mucus hypersecretion, small airway disease with chronic obstruction and 

inflammation of smaller airways, and emphysema with enlargement of air spaces, 

destruction of lung parenchyma, loss of lung elasticity that can in turn cause collapse 

of respiratory airways (18).  

Excessive tobacco smoking is the main cause in the pathogenesis of COPD, 

which can be explained by observations that inflammatory reactions are present in the 

entire tracheo-bronchial tree of non-obstructive smokers. Studies in the central 

airways indicate that the inflammatory infiltrate predominantly consists of cytotoxic 

CD8+ve T-lymphocytes, neutrophils and macrophages in the airway wall and 

neutrophils in the bronchial lumen (19, 20). Moreover, in the small airways and 

parenchyma of young non-obstructive smokers already an inflammatory cellular 

infiltrate is found without any structural changes, which could pinpoint towards initial 

stages in the pathogenesis of the disease (11).  In COPD patients the cellular infiltrate 

is further increased in the small airways consisting predominantly of CD8+ve T-

lymphocytes, neutrophils, macrophages as well as mast cells (21-23). 

Cellular and structural changes in smokers with or without COPD are 

summarized in Table 1.1. Smokers with airflow limitation show changes in peripheral 

airways including inflammation, fibrosis, mucus plugging and airway smooth muscle 

hypertrophy (21, 22, 24-27).  These factors cause deformation and narrowing of the 

airways and together with destruction of alveolar walls, could lead to airflow 

limitation. Less attention has been focused on central airways in COPD. The airway 

wall showed a further increase in the number of macrophages and T-lymphocytes and 

the airway lumen an elevated influx of neutrophils.  Furthermore, changes in central 

airway dimensions with increased submucosal fibrosis and airway smooth muscle 

mass are observed in COPD patients compared to non-symptomatic subjects (8, 28).  

The cellular and molecular mechanisms, which may explain the slow 

progression of airflow limitation, however, are not entirely clear. The currently well 

accepted protease-antiprotease hypothesis states that as a result of this smoke-induced 

ongoing inflammatory process, the connective tissue of the lungs is degraded by a 

relative excess of inflammatory-cell derived proteases such as neutrophil and 
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macrophage elastases and a relative depletion of antiproteolytic defences like α1-

antitrypsin or secretory leukocyte proteinase inhibitor (SLPI), (29, 30). Moreover, an 

unbalanced expression and release of anti- and pro-inflammatory cytokines or growth 

factors may play an important role. 

Although definitive progress has been made in the understanding of the 

disease and several drugs that can diminish symptoms in COPD patients like 

corticosteroids, bronchodilator agents or anti-inflammatory compounds have been 

found, no drugs are available at present that can reduce the progression of the disease 

(1). The only effective therapeutic intervention currently available is smoking 

cessation, but the effects only account for the diminishing of future damage since the 

disease state is poorly reversible (31). 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3  Risk factors for COPD. Among several other possible factors involved in 
the development of COPD, excessive smoking is considered as the main risk factor for the 
disease. COPD comprises of three distinct pathological conditions under one umbrella, 
chronic bronchitis, small airway disease and emphysema. AAT = α 1-antitrypsin, TNF-α = 
tumor necrosis factor α. 
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TABLE 1.1 CELLULAR AND STUCTURAL CHANGES PRESENT IN THE LUNGS OF 
NON-SYMPTOMATIC SMOKERS AND OF SMOKERS WITH ESTABLISHED COPD  
 

 Non-symptomatic smokers Smokers with established COPD 
Central airways   
Wall T-lymphocytes 

Macrophages 
Further increase in 

macrophages, 
CD8+ve T-lymphocytes 
Neutrophils in severe disease 

 
Lumen  
 

Neutrophils  
  

Neutrophils 
 

Peripheral airways Mononuclear cells 
Clusters of macrophages 

in the respiratory bronchioles 
 

Goblet cell metaplasia and 
mucus plugging 

Smooth muscle hypertrophy 
Fibrosis  
Macrophages, mast cells, 

neutrophils in severe disease 
CD8+ve T-lymphocytes 

Parenchyma 
                         

No destruction                       
No fibrosis 

Inflammation  
CD8+ve T-lymphocytes 

Destruction 
centriacinar and panacinar 
emphysema  

Fibrosis 
 

Pulmonary arteries Intimal thickening 
 

Endothelial dysfunction 
Intimal thickening 
Medial thickening 
Adventitial inflammation 

CD8+ve T-lymphocytes  
Based on References (8, 20, 23, 32-34). 

 

1.4     Tobacco-induced injury and repair 
It is now well established that particles from the smoke can cause damage to the 

airways in particular to the epithelial lining (35). Loss of epithelium induces repair 

processes, which consists of many steps and involves many factors (36). The role of 

damage in the in COPD is less clear, since it could originate from direct effects of 

smoking and/or from the subsequent chronic inflammation. Yet, both non-

symptomatic smokers and established COPD patients show signs of damage and 

repair to the epithelial surface in the form of denuded epithelial lining and also 

squamous metaplasia (8).  
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Normal wound healing 

The processes of normal and abnormal wound healing as a response to injury have 

been studied thoroughly (37-41). Figure 1.4 schematically summarizes the important 

cellular events in normal wound healing (41).   
 

Figure 1.4  Summary of the important cellular events in normal wound healing. 
During tissue repair several cell types undergo a rapid and transient increase in number that 
eventually drop to negligible levels by the time the wounded area reaches maturation. 
Normally, redundant inflammatory and structural cells undergo apoptosis and the wounded 
area ends up comparatively acellular and avascular. Adapted from Ref. (41).   
 
In general, wound healing involves a series of cellular and molecular events which 

initiates after injury of the epithelial lining and disruption of the underlying 

vasculature with an increased influx of platelets and inflammatory cells, in the 

primary stages predominantly neutrophils, followed by macrophages and T-

lymphocytes (41). These platelets and inflammatory cells are capable of releasing 

many growth factors and cytokines, and molecules like fibrin and fibronectin to close 

and hold together the wounded tissue (41). Currently, neutrophils are believed to act 

as first-line of defense against invading micro-organisms and the elimination of other 

foreign material by the release of anti-microbiologic peptides like defencins, reactive 

oxygen species (ROS) and proteinases, but they are also responsible for so called 

“friendly–fire” leading to damage on viable surrounding tissues (29). The next cell to 

appear is the macrophage, which is the key-orchestrator of tissue repair processes (41, 

42). Cytokines and growth factors released by surrounding epithelial cells, 

macrophages and T-lymphocytes attract (myo-) fibroblast to the wounded area which 

TimeDays Weeks 
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start to release additional growth factors and cytokines, especially TGF-β1, 

responsible for the synthesis and consecutive deposition of extracellular matrix 

(ECM) products such as collagen subtypes I, III V, VIII, and proteoglycans (37, 40, 

43).  Neo-vascularization and angiogenesis is initiated by the release of angiogenic 

growth factors like vascular endothelial growth factor (VEGF) by macrophages and 

other immune cells in response to a hypoxic environment. VEGF stimulates 

endothelial cell proliferation, migration and new tube formation (44). Taken together 

this environment of a rich cocktail of growth stimulatory cytokines and growth 

factors, (myo)-fibroblast derived new extracellular matrix networks and adequate 

capillaries facilitate proliferating epithelial cells to migrate which leads to closure of 

the wound (41). Controlling inflammation and (myo-) fibroblast growth is as 

important as initiating above events, thus minimizing additional damage and abnormal 

wound healing with scarring and excessive fibrogenesis (41).  

 
Deregulated repair processes 

Ongoing chronic inflammation with repetitive cycles of tissue damage and repair can 

lead to severe scarring abnormalities, predominantly by excessive deposition of ECM 

products by myo-fibroblasts. Within the airways, the bronchial epithelium, sub-

epithelial myo-fibroblasts, airway smooth muscle cells are major cell types involved 

in tissue repair processes and excessive stimulation can lead to airway wall 

remodeling with subepithelial fibrosis (8). Although it is becoming clear that many 

cytokines and growth factors are involved. Among these are the pro-inflammatory 

cytokines like tumor necrosis factor-α (TNF-α), interleukine-8 (IL-8) and IL-1β. 

These cytokines play an important role in chemotaxis of neutrophils and macrophages 

to the airway wall and lumen, and are also involved in bronchial epithelial survival 

and repair (36, 43, 45-47). TNF-α is a multi-functional cytokine, which can be 

induced in epithelial cells and inflammatory cells by cigarette smoke (48). It can 

induce neutrophil degranulation, release of proteolytic enzymes and mucus cell 

metaplasia with mucus hypersecretion (48). Furthermore, TNF-α has the ability to 

induce many additional products among them TNF-α itself, IL-8, IL-1β. Indeed, 

increased levels of TNF-α and IL-8 are found in sputum, bronchial alveolar lavage 

(BAL) fluid, bronchial epithelium and airway of COPD subjects as compared to non-

symptomatic smokers (48).   
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 Figure 1.5  A scheme of cytokine and growth factor actions in human airways. On 

triggering, eg, with tobacco smoke, epithelial cells are damaged, epithelial cells and resident 
macrophages produce inflammatory mediators such as tumor necrosis factor (TNF)-α 
interleukin (IL)-1β, IL-8. In turn, inflammatory mediators-stimulate migration of 
monocytes/macrophages, neutrophils, CD8 positive T-lymphocytes to the airway. Both TNF-
α and IL-8 can cause degranulation of neutrophils with production and release of serine-
proteinases, metalloproteinases (MMPs) as well as free radicals that can cause matrix and 
epithelial damage. In turn, TNF-α and released growth factors like vascular endothelial 
growth factor (VEGF) and fibroblast growth factors (FGF-1 and FGF-2) orchestrate epithelial 
repair. Ongoing inflammation and tissue breakdown trigger the release of growth factors like 
transforming growth factor-β1 (TGF-β1) inducing ECM production by myo-fibroblasts. 
Repetitive tissue damage and repair can lead to excessive ECM deposition and subepithelial 
fibrosis. Neu = neutrophil; Mφ = macrophage CD8+ve T  = CD8 positive T-lymphocytes. 
Based on Refs. (1, 48). 
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 Furthermore, a variety of growth factors including platelet–derived growth factor-BB 

(PDGF-BB) and vascular endothelial growth factor (VEGF), transforming growth 

factor-β1 (TGF-β1) and fibroblast growth factors (FGFs) that are released from the 

epithelium, neutrophils, macrophages and myo-fibroblast may contribute to the 

pathogenesis of COPD (49-52).  Although many other cytokines and growth factors 

can contribute, some of the important cellular and molecular events in the epithelial 

repair process and possible mechanism leading to sub-epithelial fibrosis in COPD are 

summarized in Figure 1.5. The major sources, target cells and effects for several 

growth factors implicated in chronic lungs diseases are listed in Table 1.2. Taken 

together, growth factors could therefore be important players in airway remodeling in 

the development of COPD. 

 

1.5  The Role of cytokines and growth factors in COPD  
 

Fibroblast growth factors  

The fibroblast growth factor family is implicated in a wide variety of patho-

physiological conditions including systemic hypertension, ischemic heart disease and 

interstitial lung fibrosis and may as well be involved in chronic inflammation, fibrosis 

and tissue repair during airway remodeling in COPD (53-56). The fibroblast growth 

factor family currently consists of at least than 23 members of which FGF-1 (acidic 

FGF) and FGF-2 (basic FGF) were the first discovered and are the most important 

ones, which share approximately 53 % sequence homology (57). FGFs play a role in 

morphogenesis, angiogenesis, tissue and ECM remodeling during normal 

development and disease states in almost every organ (57-61). In the lungs, FGF-1 

and FGF-2 are produced by many cell type including airway epithelium, alveolar 

macrophages and mast cells, (myo-)fibroblast, airway smooth muscle cells (38, 62-

64). Next to FGF-1 and FGF-2, two important members FGF-7 (keratinocyte growth 

factor) and FGF-10 are predominantly involved in development and maturation of the 

lungs (60).  
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Table 1.2 
Major growth factors in airway remodeling 
Growth factor Source Target Function 
FGF-1 ECM 

Fibroblast 
Fibroblast 
ASM 
VSM 
Epithelium 

Proliferation, 
Collagen production, 
 
Proliferation 
Collagen production 

FGF-2 ECM 
Endothelial cell 
ASM 
VSM 
Macrophages 

Endothelial cell  
Fibroblast 
ASM 
VSM 
Epithelium 

Proliferation 
Proliferation 
Proliferation 
Proliferation 
Proliferation 

VEGF Epithelium 
ASM 
Endothelial cells  
VSM 
Macrophages 
ECM 

Endothelial cell 
 
Epithelial cells 
Fibroblast 
 
Macrophages 

Proliferation, 
Migration 
Proliferation 
Proliferation, 
Recruitment 
Recruitment 

TGF-ß ECM 
Platelets,  
Macrophages 
Fibroblast 
ASM 

Fibroblast 
 
ASM 
VSM 
Endothelial cell 
 
 
Epithelium 
 
Neutrophil, 
T-lymphocytes 
Monocyt/macrophage 

ECM production, 
Recruitment 
ECM production 
ECM production 
Differentiation, 
ECM production 
Apoptosis 
Differentiation, 
ECM production 
Chemotaxis 

PDGF Platelets,  
Endothelial cell 
Macrophages 
Fibroblast 
ASM 
Epithelium 

ASM 
Epithelium 
Fibroblast 
 

Proliferation 
Proliferation  
Recruitment,  
Proliferation 

IGF-1 ECM 
Fibroblast 

Fibroblast 
ASM 

Proliferation and 
Differentiation 
Collagen synthesis 

IGF-2 ECM 
Fibroblast 
 

Fibroblast 
 

Proliferation, 
Differentiation 
Collagen synthesis 

    
 
Abbreviations; Transforming growth factor beta (TGF-ß), Fibroblast growth factor (FGF), 
Vascular endothelial growth factor (VEGF), Platelet-derived growth factor (PDGF), Insulin-
like growth factors (IGF), Airway and Vascular smooth muscle (ASM and VSM), 
Extracellular matrix (ECM). References (37, 38, 64-66). 
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Their cellular responses are very divers ranging from proliferation, migration, 

differentiation, cell viability as well as either stimulation or inhibition of ECM 

production. Target cells of FGF-1 and FGF-2 include epithelial cells, fibroblasts on 

which they act as potent mitogen as well as inducers of ECM synthesis (38, 67). 

Although both FGFs have mitogenic effects on epithelial cells, fibroblasts and on cells 

of smooth muscle origin, FGF-1 has been associated with higher proliferation of 

epithelial cell lineage, while FGF-2 is generally more potent than FGF-1 on cells of 

mesenchymal origin like fibroblast and smooth muscle cells. Basic FGF induces 

vascular smooth muscle cells and endothelial cell proliferation, and is therefore also 

considered as a potent factor in angiogenesis (68, 69).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.6  FGF receptor signaling. Multiple levels of regulation of FGF-mediated 
cellular responses exist. A; Selection of the ligand: 23 different FGF-ligands can bind to the 
FGF receptors. Predominantly FGF-1, FGF-2, FGF-7 and FGF-10 are expressed in the 
embryonic, postnatal and normal or pathological adult lungs. B; Selection of the FGF receptor 
and co-receptors: there are four FGF tyrosine kinase receptors FGFR-1 to FGFR-4 and 
heparan sulphate proteoglycans (HSPGs) co-receptors such as membrane-associated 
Syndecans (1-4), Glypicans (1-6) and Perlecan. The expression of different receptors and co-
receptors can influence the cellular responses to the FGFs.  C; Selection of multiple signaling 
pathways: many intracellular signaling pathways have been described. Abbreviations; TK = 
tyrosine kinase domain; Ig = Immunoglobulin-like domain; AB = acid box, ligand binding 
site; TM = trans membrane domain; HS = heparan sulphate chains; CP = HSPG core protein.  
Based on Refs. (58, 61).   
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Fibroblast growth factors exert their biological effects via binding to four 

high-affinity, transmembrane tyrosine-kinase receptors designated FGFR-1 through 

FGFR-4 (58). Distinct FGF subtypes bind with different affinity to the various FGF 

receptors. Alternative splicing and regulated protein trafficking further modulate the 

intra-cellular events and resultant response initiated by FGF ligand-receptor 

interaction (58). Additional regulatory binding sites for FGFs consist of heparan-

sulphate proteoglycans (HSPGs) that appear to be macromolecular receptors which 

can modulate the effects of FGFs, both stimulatory and inhibitory depending on the 

heparan-sulphate side chain as well as the proteoglycan core protein (70). HSPGs are 

part of the ECM and are located on the surface of most cell membranes closely linked 

with the high affinity tyrosine-kinase receptors (70). Figure 1.6 schematically 

summarizes the interactions of FGFs with their tyrosine–kinase receptors and HSPGs. 

Unlike the other members of the FGF family, the acidic and basic FGF lack 

cytoplasmic sequences for extracellar export. In this regard, the growth factors could 

be released during cell lysis and the HSPGs could act as a reservoir of growth factor 

that can be released in a enzymatic regulated manner during ECM breakdown (71). 

Additionally, fibroblast growth factor family members are implicated in 

pathological conditions with tissue remodeling and lung fibrosis (55, 62, 72). Barrios 

and coworkers (55) showed FGF-1 and FGFR-1 expression in experimentally induced 

pulmonary fibrosis. Becerril and colleagues found that FGF-1 overexpression in the 

lung fibroblasts results in down-regulation of collagen synthesis and up-regulation of 

collagenases, which may protect against fibrosis (72). In a recent study production of 

FGF-2 from mast cells and the expression of FGFR-1 (Flg) and FGFR-2 (Bek) protein 

were positively linked to idiopathic pulmonary fibrosis (62). FGF-2 and also PDGF 

have been implicated in the pathogenesis of obliterative bronchiolitis after 

transplantation (73).  

In the normal pulmonary vasculature, FGF-1, FGF-2 and FGFR-1 are 

constitutively expressed in the media (vascular smooth muscle cells) of pulmonary 

vessels and FGF-2 is also found in endothelial cells (63). Singh and colleagues 

demonstrated that increased expression of FGF-2 in vascular smooth muscle and 

endothelium precedes arterial enlargement in response to increased arterial blood flow 

in vivo (54). Furthermore, Bryant et al recently found that administration of FGF-2 

could be protective against a decrease in vessel luminal area and wall thickening in 

response to altered blood flow and that this inhibitory effect could be blocked by 
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anti-FGF-2 neutralizing antibodies (74). Taken together, FGFs could therefore be 

important players in airway and vascular remodeling in the development of COPD. 

 
Vascular endothelial growth factor 

A variety of angiogenic growth factors such as vascular endothelial growth factor 

(VEGF) and FGF-2 released from various cell types of airway as well as vascular 

walls have the potential to contribute to the pathogenesis of COPD. One of the potent 

proteins involved in vascular remodeling is vascular endothelial growth factor (VEGF). 

The VEGF family currently comprises six members (VEGF-A to F), of which the 

originally identified VEGF-A165 variant is the predominant form of five additional 

spliced variants (75). Like FGFs, VEGFs are heparin-binding proteins and acting via 

their high affinity, transmembrane receptors VEGFR-1 (flt-1) and VEGFR-2 

(KDR/flk-1), (75). The receptors belong to the family of tyrosine kinases and are 

predominantly expressed by endothelial, VSM cells and epithelial cells (75). Recent 

studies indicate that VEGF is expressed in the lung by bronchiolar, submucosal glandular 

and alveolar type I and II epithelial cells, alveolar macrophages, airway and vascular 

smooth muscle (ASM and VSM) cells as well as myo-fibroblast in fibrotic lung lesions 

(76-78). 

VEGF promotes an array of responses in the endothelium including 

hyperpermeability, endothelial cell proliferation and angiogenesis with new vessel tube 

formation in vivo (75, 79). Moreover, the expression of VEGF can be induced under a 

variety of pathophysiological conditions, including pulmonary hypoxia and pulmonary 

hypertension with increased sheer stress (76, 79). Hypoxia and pulmonary hypertension 

are pathological features often seen in advanced COPD patients and increased VEGF 

expression under influence of hypoxia-inducible transcription factors (HIFs) may 

contribute to increased and abnormal proliferation of endothelial and VSM cells in 

pulmonary vessels leading to vascular remodeling (8).  

The role of VEGF and its receptors in the lungs of COPD patients remains 

unclear. Vascular endothelial growth factor (VEGF) and its receptor 2 (VEGFR-2) are 

involved in proper maintenance, differentiation, and function of endothelial as well as 

epithelial cells. Voelkel and co-workers demonstrated that VEGFR-2 blockade in 

combination with chronic hypobaric hypoxia destroyed lung capillaries by inducing 

endothelial cell apoptosis and at the same time caused precapillary pulmonary arteries 

occlusion by proliferated endothelial cells (79-82). Furthermore, they observed that 
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emphysematous patients have decreased levels of VEGF messenger RNA and protein 

as well as decreased expression of VEGF receptor 2, KDR/flk-1(83). In this recent 

study, decreased VEGF and KDR/flk-1 expression was associated with endothelial 

and also epithelial cells death in alveolar septa due to a decrease of endothelial cell 

maintenance factors which may be part of the pathogenesis of emphysema (83). Thus, 

the expression of VEGF may be protective against signals leading to apoptosis such as 

toxic agents from tobacco smoke. 

Alternatively, abundance of VEGF and receptor mRNAs (Flt-1 and KDR/Flk) 

decreased in endothelial cells during hyperoxia, possibly secondary to the loss of 

endothelial cells by apoptosis. This also indicated that VEGF functions as a survival 

factor in the normal adult rat lung, and its loss during hyperoxia contributes to the 

pathophysiology of oxygen-induced lung damage (84). 

Although the role of VEGF in the vascular biology is thoroughly studied, it 

has become clear that VEGF and receptors are involved in various other cellular 

events as well, including epithelial proliferation and survival, and the recruitment of 

mast cells, neutrophils and macrophages to sites of fibrosis (79, 81, 85). Taken 

together, VEGF and its receptors could therefore also be important players in airway 

and vascular remodeling in the development of COPD. 

 
Transforming growth factors 

TGF-β and receptor expression in lungs have been associated with asthma, chronic 

bronchitis, idiopathic pulmonary fibrosis (86, 87). In patients with chronic bronchitis 

or COPD TGF-β1 mRNA and protein are observed in bronchial and bronchiolar 

epithelium, macrophages, mast cells and pulmonary vessels and increased TGF-β1 

protein levels are found in the epithelium of COPD patients as compared to smoking 

controls (50, 88).  

TGF-β is a multifunctional polypeptide growth factor, which is involved in 

inflammation and connective tissue synthesis. TGF-β belongs to a large superfamily 

currently including more than 30 members, which also include bone morphogenic 

proteins, inhibins and activins (37).  Three different mammalian isoforms exist (TGF-

β1 to -β3) of which the TGF-β1 isoform is the most potent and binds to at least three 

high affinity receptors (TGFβR I-III), (37). TGF-β is released as a biologically 

inactive precursor consisting of a dimer with the N-terminal pro-region, latency-
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associated peptide (LAP), to which inactive TGF-β1 is bound. Furthermore, latent 

TGF-β1 complex can bind to latent binding protein-1 (LTBP-1) that in turn binds to 

the extracellular matrix which serves at a reservoir for active TGF-β1 (89).  In 

addition, the release of latent TGF-β1 from the extracellular matrix is a consequence 

of cleavage of LTBP.  Activation and release of TGF-β1 dimer is achieved in vivo by 

enzymatic cleavage from intracellular and extracellular latent TGF-β1 stores by serine 

proteases as well as various metalloproteinases (37, 90).  

Its actions highly depend on the target cell-type or situation present. The TGF-

β superfamily is important in cell development and differentiation and proliferative 

regeneration (37). In epithelial and endothelial cells TGF-β1 is usually associated with 

terminal differentiation, growth inhibition and even apoptosis. During wound healing 

TGF-β1 is involved in regeneration (37). In (myo-) fibroblasts, smooth muscle cells 

and other cells of mesenchymal origin stimulation of proliferation, synthesis of ECM 

proteins including collagens, elastin, proteoglycans and fibronectin are induced by 

TGF-β1 (37, 91, 92).  

 

1.6  Extracellular matrix biology in COPD 
Extracellular matrix proteins in the lungs 

The extracellular spaces within tissues and cells are filled with organized extracellular 

matrix (ECM) proteins that are important for structural integrity, strength as well as 

elasticity of tissues. The major components of the ECM consists of fibrous proteins 

like collagens, elastin and fibrillin, proteoglycans such as syndecans, glypecan, 

perlecan and decorin as well as adhesion molecules like fibronectin and laminins.  It 

has been become clear that the ECM molecules play important roles in cell signaling 

and cellular activities. Fibronectin and laminin well as some collagens are bound to 

cells through specific binding sites or receptors, the integrins, of which more than 20 

different subtypes are identified. These integrin receptors are heterodimeric 

transmembrane receptors, consisting one α and β chain, which specially bind different 

ECM molecules (65, 93). Furthermore, fibronectin, on the other hand, has specialized 

domains for different collagens, so that the various components of the ECM are 

tightly interconnected with each other and with cells. Currently, more than 20 

collagen subtypes are identified, of which the subtypes I and III are the most abundant 

forms, found throughout the interstitial spaces and in between cells of many tissues 
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(65, 93, 94). Within the lungs, these collagen subtypes are deposited in the 

interstitium of airway wall, beneath the epithelial lining, and within the blood vessels 

and alveolar septa (95, 96). Collagen IV and laminin are the main constituents of 

cellular basement membranes, connecting epithelial or endothelial cells, functioning 

as outward cellular linings, with collagen subtypes I, III and VI inserting within the 

underlying interstitium (97, 98).  

Mature processed collagen molecules aggregate to form larger triple-stranded 

helical fibrous structures and help to form the ECM with other components (65, 93). 

Therefore, normal structural type I and III collagen production and deposition in the 

ECM to make normal physiological connective tissue is highly regulated by cytokines 

and growth factors like TGF- β, TNF-α and FGF-2 and their transcriptional as well as 

post-translational modulatory steps (65, 93).  Abnormalities in any of regulatory step 

may cause defective and accumulation of collagen in ECM, which in turn causes 

pulmonary fibrosis (94). 

   

ECM production and fibrosis 

Stimulation of ECM production by TGF-β1 appears to be normal for either 

mesenchymal or epithelial cell origin. In fibroblasts and smooth muscle cells TGF-β1 

also promotes expression of actin, myosin, smooth muscle actin and cell adhesion 

molecules such as integrins, including one specific and important combination α2β1 

integrin receptor, also known as the collagen receptor. Moreover, TGF-β1 down-

regulates the expression of matrix degrading enzymes (matrix metalloproteinases), 

specifically MMP-1, MMP-3 and induces the expression of protease inhibitors, such 

as tissue inhibitor of matrix metalloproteinase (TIMPs), (37). Taken together, the 

observations above inextricably link the processes of ECM guided degradation and 

migration, ECM production and scarring contraction of myo-fibroblasts to the 

functions of TGF-β1. As indicated by early reports and many follow-up studies the 

most important concepts in the onset and continuation of fibrosis is the presence of 

TGF-β1 at areas with injury to the epithelium and underlying basements membranes 

(86, 87). 
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ECM breakdown 

Historically, the role of compounds from neutrophils and also macrophages have been 

implicated in the pathogenesis of COPD, based on the relation between α1-antitrypsin 

deficiency and the predisposition for the development of emphysema in a rare number 

of patients (42, 99, 100). α1-antitrypsin or secretory leukocyte proteinase inhibitor 

(SLPI), inhibits neutrophil serine-proteinases, especially elastase, which can cleave 

elastin, thus causing damage to alveoli and eventually emphysema (29, 30).  

Neutrophils store high amounts of serine proteinases and in addition at least two 

MMPs, MMP-8 (neutrophil collagenase) and MMP-9 (gelatinase B), Zn2+-ion 

catalyzed enzymes of which currently more than 20 members have been identified 

(99, 101). These MMPs can cause degradation of most components of the 

extracellular matrix upon neutrophil activation (100). Furthermore, MMPs can be 

secreted by macrophages. The release and action of MMPs are strictly regulated by 

for instance growth factors and cytokines and especially by enzymes called tissue 

inhibitors of metalloproteinases (TIMPs), of which currently four members have been 

identified (102). Furthermore, MMPs can mediate the release and activation of ECM-

bound (e.g. TGF-β1, FGFs, EGF, IGF-1 and TNF-α) or cell membrane-bound (IL-6 

and TNF-α) growth factors and cytokines, thereby promoting ongoing inflammation 

and tissue remodeling (100). However the opposite, degradative inactivation of IL-1β 

has also been described (100). All of these actions can contribute to pathologic tissue 

remodeling including inflammation and cellular proliferation as well as ECM 

breakdown and deposition during COPD. Indeed, subjects of emphysema showed 

increased levels of MMP-1 (interstitial collagenase 1), MMP-2 (gelatinase A) and 

MMP-9 (gelatinase B) in macrophages, alveolar type II cells and fibroblasts as 

compared to non-emphysematous controls (99). A similar approach, using bronchial 

tissue from COPD subjects, immunolocalized several MMPs, including MMP-1, 

MMP-2, MMP-9 and also MMP-8 and MMP-13 (interstitial collagenases 2 and 3), 

and found increased expression of MMP-1 and MMP-2 levels in bronchial epithelial 

cells, luminal and interstitial macrophages (103). Furthermore, MMP-9 and its 

inhibitor TIMP-1 were upregulated in sputum of chronic bronchitis patients (104). 

Taken together, these MMPs can degrade collagen and elastin, the major components 

the extracellular matrix, thereby implicating macrophages and neutrophils as 

important contributors to excessive tissue breakdown and injury in COPD and 

predisposing regenerative tissue towards deregulated repair with fibrosis.  
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1.7  Angiogenesis and vascular remodeling in COPD 
COPD patients with moderate to severe disease display elevated pulmonary vascular 

pressures during exercise and pathological changes in the pulmonary circulation (8, 

105). Wright et al. (105, 106) demonstrated increased wall thickness of small (< 500 

µm) pulmonary vessels in COPD subjects as compared to non-symptomatic smokers, 

which was correlated with the severity of the disease (as indicated by a decline in 

FEV1). Additionally, COPD patients with mild to moderate COPD showed intimal 

thickening and severe subjects of the disease also developed medial thickening.  

In COPD, alveolar hypoxia can cause pulmonary vasoconstriction and, if the 

hypoxic stimulus persists, pulmonary vascular remodeling, of which increased 

muscularization of small arterial branches is the most striking feature (18). With 

sustained vasoconstriction of pulmonary arteries, arterioles and veins, the medial 

vascular smooth muscle (VSM) extends distally to vessels normally devoid of smooth 

muscle (18). Intimal thickening and emergence of smooth muscle cells within the 

intima of small pulmonary arterial branches has been attributed to a chronic 

inflammatory process accompanied with fibrosis in part similar to arteriosclerosis in 

cardiovascular disease (107, 108). 

Recently, Peinado et al. showed also intimal but not medial thickening in the 

vasculature of mild COPD patients compared to non-smoking controls (109). 

Furthermore, observations from the same group indicated that muscular pulmonary 

and bronchiolar arteries have increased adventitial infiltration of inflammatory cells, 

predominantly CD8+ve T-lymphocytes and displayed VSM heterogeneity in relation to 

desmin as well as intimal thickening that was correlated to the amount of total 

collagen deposition (110, 111). The infiltration of the vascular wall with inflammatory 

cells may contribute to vascular wall thickening. Finally, loss of the pulmonary 

vascular bed by emphysema has been suggested to lead to the formation of new 

vessels (18). Thus, several phenomena acting in concert in COPD result in pulmonary 

vascular remodeling.  Yet, little is known about the molecular mechanisms underlying 

these processes in the context of COPD.  
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Angiogenesis 

Mature endothelial cells are quiescence cells with an extremely low proliferative 

index. Smoke induced injury with hypoxia, however, induce VEGF-A mRNA 

expression via hypoxia inducible transcription factors (HIF 1 to 3), (75, 112).  This 

initiates angiogenesis by increasing endothelial permeability and stimulates 

endothelial cells to secrete several proteinases, such as MMPs including collagens and 

elastin degrading MMP-1, MMP-2, MMP-3 and MMP-9, and heparinase acting on 

proteoglycans (44).  This, in turn, leads to ECM breakdown and the liberation of 

additional growth factors, predominantly VEGF-A itself as well as FGF-2 and insulin-

like growth factor-1 (IGF-1) sequestered in within the surrounding matrix (44, 75). 

Proliferating endothelial cells migrate to distant sites in wounded or inflamed tissue, 

which is predominantly guided by actions of VEGF and FGF-2 in close contact with 

the collagen and heparan-sulphate proteoglycan matrix, thus resulting in new tube 

formation (70).   

 

Vascular remodeling 

Of great importance is the recruitment of a stable vascular smooth muscle coating to 

newly formed vessels. This is initiated by VEGF in combination with angiopoietins 

produced by endothelial cells, of which currently four ligands are known (ANG-1 to 

ANG-4) that bind to two receptors expressed by endothelial cells, tie-1 and tie-2 

(113). Binding ANG-1 to tie-2 receptor induces endothelial cells to recruit fibroblasts 

or VSM, whereas ANG-2 binding to tie-2 repels this event (113). TGF-β1 and TGF-

βR2 are involved in vessel maturation by inhibiting endothelial cell proliferation and 

inducing smooth muscle differentiation and stimulating of ECM deposition by VSM 

cells and fibroblast, thereby solidifying the vessel wall (44).  

Pathological arteriogenesis involves hypoxia, tissue ischemia, increased sheer 

stress, which can inflicts damage to endothelial and VSM cells (44). Inflammatory 

cells such as monocytes, macrophages and CD8+ve T-lymphocytes infiltrate the vessel 

wall constitutively. Inflammation can cause additional damage to the vessel wall. 

Endothelial and VSM cells release growth factors such as FGF-2, PDGF and TGF-β1 

in response to inflammatory mediators. Eventually deregulated repair can lead to 

fibrotic tissue deposition and vascular remodeling (44). Taken together, vascular 

remodeling and angiogenesis in peripheral, as well as in central airways could also be 

associated with the pathogenesis of COPD. 
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1.8  ASM cells in airway remodeling  
Concepts of the contribution of human airway smooth muscle (ASM) cells to 

pathophysiological events during chronic airway diseases like asthma and COPD have 

drastically changed. Historically, ASM cells were considered as structural cells 

implicated in the regulation of producing immediate airway narrowing or widening 

merely by contraction and relaxation. However, the ASM cell can participate in 

inflammatory responses, release many chemotactic cytokines and growth factors, 

present necessary receptors and adhesion molecules and produce ECM components as 

well as ECM degrading proteases (114-116).   

 

Heterogeneity and phenotypic plasticity in ASM cells 

Recent studies indicate that ASM cells are apparently functionally and structurally 

divers and that heterogeneity and plasticity in phenotypes exists, which equip ASM 

cells with the potential to regulate airway lumen diameter both transiently, via 

reversible contraction, as well as chronically via remodeling by muscle hypertrophy 

(117). Phenotypic plasticity was first described in differentiated, cultured vascular 

smooth muscle cells derived from the medial layer of large elastic arteries (118). 

Mature vascular and also airway smooth muscle cells acquire an “immature” synthetic 

phenotype when incubated in serum-enriched culture, exhibiting a high proliferative 

index and loss of contractile elements and their associated proteins, defined as 

modulation (118, 119).  

For example, pro-inflammatory mediators such as TNF-α and IL-1β were 

potent inducers of interleukin (IL)-8 release by ASM cells and together they 

synergistically augmented IL-8 release. IL-8 is a C-X-C chemokine that potently 

chemoattracts and activates neutrophils. Therefore, in addition to its contractile 

responses, airway smooth muscle cells have synthetic and secretory potential with the 

release of IL-8 and subsequent recruitment and activation of neutrophils in the 

airways. 

The reversion of primary cultured smooth muscle cells to a contractile state 

also occurs after cultures grow to confluence or undergo serum starvation 

(maturation), which is marked by an increase in myofilaments and contractile 

apparatus-associated protein content (120).  Recently, intermediate subtypes have 
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been identified. The results from a recent study showed that IL-4 and IL-13 increased 

alpha-smooth muscle actin expression in myo-fibroblasts and thus that IL-4 and IL-13 

are capable of inducing the phenotypic modulation of human lung fibroblast to myo-

fibroblasts (121). This can influence the interaction of myo-fibroblast with the 

surrounding collagen matrix, modulating there contractile properties as indicated by a 

study investigating the contraction of these cells embedded in collagen I type gel 

matrix in response the cytokines (122).    

Additionally, a distinct subset of ASM cells has been identified with a fully 

contractile phenotype, elongated morphology, abundant contractile apparatus proteins 

such as smooth muscle α and γ-actin, smooth muscle myosin heavy chain, SM22 and 

α1-integrin, reacquisition of pharmacological responsiveness to acetylcholine (116, 

120). Additionally, contractile myocytes show a time-dependent subcellular 

reorganization of the contractile apparatus in response to changes in muscle length 

defined as mechanical plasticity (117). Figure 1.7 summarizes the important features 

of ASM cell heterogeneity, phenotypic and mechanic plasticity.  
 
Proliferation of ASM cells 

Since culture of human ASM cells was possible and since the discovery of the 

synthetic, highly proliferative ASM cells, the effect of mitogens and the signal 

transduction pathways leading to proliferation have studied intensively (114). The 

effects of mitogens for ASMC are mediated through at least two distinct receptor 

systems: Receptor tyrosine-kinase (e.g. platelet derived growth factor, epidermal 

growth factor as well as acidic and basic FGF) and G protein-coupled receptors (e.g. 

thrombin), (114, 123). Also the effects of TGF-β on ASM cell proliferation and ECM 

production have been thoroughly studied. 

Black and colleagues found that 24 hours of incubation with TGF-β1 

decreased DNA synthesis, whereas 48 and also 72 hours increased DNA synthesis and 

proliferation in cultured bovine ASM cells (125). Interestingly TGF-β1 inhibited 10% 

FBS induced DNA synthesis in sparsely seeded bovine ASM cells, whereas DNA 

synthesis was increased after 48 hours of TGF-β1 treatment in the presence of only 

BSA in confluent grown cells (126). Taken together, these studies demonstrated that 

TGF-β and TGF-β receptors are present on ASM cells and that TGF-β1 modulates the 

effects on proliferation with a condition-dependent nature (125-129).  
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 Figure 1.7 Schematic representations showing the association of phenotypic and 

mechanical plasticity on airway smooth muscle. Phenotypic plasticity results from 
reversible modulation and maturation of airway smooth muscle cells (ASMC) between a 
synthetic and contractile state associated with differential gene expression. Mature ASM cells 
acquire an “immature” synthetic phenotype when incubated in serum-enriched culture, 
exhibiting a high proliferative index and loss of contractile elements such as smooth muscle 
α and γ-actin (α, γ-SMA), smooth muscle myosin heavy chain (smMHC), SM22 and 
α1-integrin, and loss of pharmacological responsiveness to acetylcholine via 
muscarinic M3) receptor. ASM cells can produce growth factors, extracellular matrix 
products as well as matrix degrading enzymes (matrix metalloproteinases, MMPs) and their 
inhibitors (TIMPs). Integrins are involved in the interaction of ASM cells with the binding to 
collagen I in the ECM. The binding of α1β1 to collagen I results in an almost complete arrest 
of collagen synthesis, whereas the binding to α2β1 integrin leads to induction of growth factors 
like TGF-β1, MMP-1 as well as collagen gene expression (synthetic phenotype). Mechanical 
plasticity occurs in contractile myocytes as the result of time-dependent subcellular 
reorganization of the contractile apparatus in response to changes in muscle length. Adapted 
from Refs. (114, 117, 124).  
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ASM and extracellular matrix 

Khalil et al. demonstrated that the release of biological active TGF-β1 under influence 

of plasmin can induce ASM cells to synthesize pro-collagen I in an autocrine manner 

(130, 131). Furthermore, human ASM cells produce many other ECM components 

including collagen types I, III, IV and V, fibronectin, laminins, elastin and HSPGs 

(e.g. perlecan and syndecan) (132). In addition, ASM cells can secrete MMP-1 

(interstitial collagenase 1), MMP-2 (gelatinase A) and MMP-9 (gelatinase B) as well 

as TIMP-1 (124, 132). Hirst and colleagues showed that cell-matrix interactions, in 

addition to growth factors, could have important effects on ASM cell proliferation and 

phenotype.  In this study the authors showed that ASM cells cultured on collagen I or 

fibronectin matrix have increased proliferation whereas ASM cells grown on laminin 

proliferate more slowly yet express contractile proteins.  

Evidence for airway SMC heterogeneity and plasticity in vivo is indicated by 

observations in asthma and also COPD of accumulation of synthetic myocytes (myo-

fibroblasts) in the submucosal region of the bronchial wall as well as significant 

increased airway smooth muscle mass possibly through hypertrophy and hyperplasia 

(28, 133, 134). Taken together, the ASM cell can be considered as an important cell 

type in the progression of airway remodeling in COPD.  
 
1.9  Aims of the thesis 
 
Chronic obstructive pulmonary disease is characterized by airflow limitation that is 

irreversible and without smoking cessation usually progressive. The disease is 

associated with an abnormal inflammatory response of the lungs to noxious particles 

and gases. Exposure to particles from the tobacco smoke inflicts damage onto a 

variety of structures at several levels in the lungs from conducting larger airways, 

respiratory airways to alveolar regions as well as in the pulmonary and bronchiolar 

vasculature. Although subtle local differences may exist in the lungs the common 

feature of pathological processes in COPD is; chronic challenge lead to repetitive 

cycles of tissue injury with inflammation and repair, which may result in tissue 

remodeling and structural abnormalities that, in turn, can cause airflow limitation.  

Although definite progress has been made in the descriptions of pathological 

alterations in COPD at the histology level, the underlying molecular events remain 

largely unknown. We, therefore, hypothesized that the observed structural alterations 
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may arise from alterations in gene expression in the affected cell populations. We 

investigated the role of growth factors and extracellular matrix in the development of 

airway and vascular wall structural changes in COPD at the molecular level. 

 

The specific aims of the studies described in this thesis are: 

1. To investigate the structural alterations and the role of the fibroblast growth 

factor/receptor (FGF/FGFR) system in the pulmonary vasculature between non-

COPD and COPD patients in COPD (chapter 2).    

2. To investigate the role of vascular endothelial growth factor (VEGF) and its 

receptors Flt-1 and KDR/Flk-1 in airway and vascular remodeling during COPD 

(Chapter 3).  

3. To elucidate the role of the FGF/FGFR system during structural remodeling of 

central airways in patients with COPD (Chapter 4). 

4. To describe the distribution of various extracellular matrix components including 

collagens subtypes I, III, IV, fibronectin and laminin in the central airways of non-

symptomatic smokers and COPD patients in relation to airway and vascular 

remodeling (Chapter 5). 

5. To investigate the proliferative response and ECM synthesis by airway smooth 

muscle cell in reaction to growth factors TGF-β1, FGF-1 and FGF-2 in vitro: as a 

contribution to accumulation of airway smooth muscle mass by hypertrophy 

and/or hyperplasia during COPD in vivo (Chapter 6). 
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2.1 Summary  
Important characteristics of Chronic Obstructive Pulmonary Disease (COPD) include 

airway and vascular remodeling, of which the molecular mechanisms are poorly 

understood. We assessed the role of fibroblast growth factors (FGF) in pulmonary 

vascular remodeling by examining the expression pattern of FGF-1, FGF-2 and their 

receptor, FGFR-1 in peripheral area of the lung tissues from patients with COPD 

(FEV1 ≤75%; n=15) and without COPD (FEV1 ≥85%; n=13).  Immunohistochemical 

staining results were evaluated by digital video-image analysis as well as by manual 

scoring.  FGF-1 and FGFR-1 were detected in vascular smooth muscle (VSM), airway 

smooth muscle (ASM) and airway epithelial cells.  FGF-2 was localized in the 

cytoplasm of airway epithelium and in the nuclei of ASM, VSM and endothelial cells.  

In COPD cases, an unequivocal increase in FGF-2 expression was observed in VSM 

(3 fold, p=0.001) and endothelium (2 fold, p=0.007) of small pulmonary vessels with 

a luminal diameter under 200 µm. In addition, FGFR-1 levels were elevated in the 

intima (1.5 fold, p=0.05).  VSM cells of large (>200 µm) pulmonary vessels showed 

increased staining for FGF-1 (1.6 fold, p<0.03) and FGFR-1 (1.4 fold, p<0.04) in 

COPD.  Pulmonary vascular remodeling, assessed as the ratio of α-smooth muscle 

actin staining and vascular wall area with the lumen diameter, was increased in large 

vessels of COPD (p=0.007) and was inversely correlated with FEV1 values (p<0.007).  

Our results suggest an autocrine role of FGF-FGFR-1 system in the pathogenesis of 

COPD-associated vascular remodeling. 

 

2.2 Introduction 
Chronic obstructive pulmonary disease (COPD) is a global health problem with 

increasing morbidity and mortality (1).  One of the major causal factors is tobacco 

smoking (2).  However, only ten percent of all smokers develop symptomatic COPD. 

The causes of this variability in response of the airways and lung parenchyma to 

tobacco smoke exposure have remained largely unclear.  One of the key pathological 

features of COPD is thickening of airway walls as a result of inflammation, 

hyperplasia of airway smooth muscle cells and fibroblasts, and increased deposition 

of extracellular matrix (3).  In addition, advanced COPD leads to pathological 

changes in the pulmonary circulation (4, 5).  At least part of this is probably the result 
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of alveolar hypoxia, which is well known to cause pulmonary vasoconstriction and, if 

the hypoxic stimulus persists, pulmonary vascular remodeling, of which increased 

muscularization of small arterial branches is the most striking feature (6).  With 

sustained vasoconstriction of pulmonary arteries, arterioles and veins, the medial 

vascular smooth muscle (VSM) extends distally to vessels normally devoid of smooth 

muscle (6).  Intimal thickening due to fibrosis and emergence of smooth muscle cells 

within the intima of small pulmonary arterial branches has also been reported (5).  

Finally, loss of the pulmonary vascular bed by emphysema has been suggested to lead 

to the formation of new vessels (6).  Thus, several phenomena acting in concert in 

COPD result in pulmonary vascular remodeling.  Yet, little is known about the 

molecular mechanisms underlying these processes in the context of COPD. 

A variety of growth factors and cytokines released from various sites of 

airway and vascular walls have the potential to contribute to the pathogenesis of 

vascular remodeling in COPD.  In view of their important role in chronic 

inflammation, fibrosis and repair of various tissues, including the lung (9), fibroblast 

growth factors (FGFs) may well play a pivotal role in airway and vessel wall 

remodeling (7, 8). Fibroblast growth factors exert their biological effects via binding 

to four high-affinity, transmembrane tyrosine-kinase receptors designated FGFR-1 

through FGFR-4 (9).  Distinct FGF subtypes bind with different affinity to the various 

FGF receptors.  Alternative splicing and regulated protein trafficking further modulate 

the intra-cellular events and resultant response initiated by FGF ligand-receptor 

interaction (9).  In the lung as well as in the vascular system, FGFs have been 

implicated in several pathological conditions.  FGF-1 and FGFR-1 were shown to be 

upregulated during the development of lung fibrosis (10).  FGF-2 and also PDGF 

have been implicated in the pathogenesis of obliterative bronchiolitis after 

transplantation (11).  Moreover, vascular remodeling in response to increased blood 

pressure is associated with elevated levels of basic fibroblast growth factor (12, 13). 

To investigate, whether the FGF-FGFR system might be involved in the 

pathogenesis of COPD, we examined the expression patterns of FGF-1, FGF-2 and 

FGFR-1 in (ex-) smokers with or without COPD and correlated the expression with 

histological evidence of pulmonary vascular remodeling. 
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2.3 Materials and Methods 
Selection of Patients’ Specimens   

We examined lung tissue specimens of subjects with or without COPD.  Peripheral 

part of the lung tissue from current and ex-smokers who underwent lobectomy or 

pneumonectomy for lung cancer was obtained from the Pathology Laboratories of the 

Leiden University Medical Center, Leiden, the Netherlands, and the Zuiderziekenhuis, 

Rotterdam, the Netherlands.  Tissue specimens were taken distally from the lung hilus 

part and contain predominantly parenchyma and small airways as well as vasculature.  

All lung tissues were inflated by an injection syringe using formalin and fixed for 

approximately 24 hours after which the tissues were further dehydrated and embedded 

in paraffin and subsequently processed for immunohistochemical staining.  Based on 

a number of lung function data, patients were assigned to the COPD and non-COPD 

groups (14, 15). 

COPD group.  Fifteen subjects were assigned to the COPD group on the basis of the 

following parameters: forced expiratory volume in one second (FEV1) <75% of 

predicted value (16) before bronchodilatation, FEV1/FVC ratio <75%, a reversibility 

in FEV1 ≤12% of predicted after 400 µg inhaled salbutamol, and a transfer factor for 

carbon monoxide (diffusion capacity) per liter alveolar volume (Kco) ≤80% of 

predicted value. 

Non-COPD group.  Thirteen subjects were assigned to the non-COPD group on the 

basis of the following data; a FEV1 >85% before bronchodilatation, FEV1/FVC ratio 

>85%, and reversibility in FEV1 ≤12% of predicted after 400 µg salbutamol 

inhalation.  In order to exclude accompanying lung disease leading to a restrictive 

function disorder, the total lung capacity (TLC) of each subject included in the study 

was over 80% of the predicted values (16). 

Clinical data of all patients were examined for possible comorbidity and 

medication usage.  All patients were free of symptoms of upper respiratory tract 

infection and none received antibiotics perioperatively.  None of the patients received 

glucocorticosteroids in the three months prior to operation; four patients received oral 

glucocorticosteroids perioperatively.  In addition to the rigorous criteria based on lung 

function parameters, microscopic exclusion criteria was also applied in the selection 

of patients for this study. After the selection based on lung function, all the lung 

tissues were subsequently examined histologically by two experienced lung 
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pathologists using following exclusion criteria: (i) presence of tumor in the lung tissue 

specimen submitted for this study, (ii) presence of poststenotic pneumonia in the 

specimen, (iii) fibrosis of lung tissue, and (iv) obstruction of the main bronchus of the 

resection specimen by tumor (14, 15). 

 

Pulmonary Function Tests 

All pulmonary function tests were performed within 3 months prior to surgery.  FEV1 

and forced vital capacity (FVC) were measured by spirometry, total lung capacity and 

residual volume with the closed circuit helium dilution test and the Kco using the 

single breath-holding technique, as described by Quanjer and co-workers (16).  Lung 

function data and other patient characteristics are shown in Table 2.1. 

 

Immunohistochemistry  

Sections of paraffin-embedded lung tissue were cut at 4 µm, mounted on Super Frost 

Plus microscopic slides (Menzel-Gläser, Braunschweig, Germany) and processed for 

immunohistochemistry.  Serial sections were used for immunostaining of FGF-1, 

FGF-2 and FGFR-1 using human specific antibodies. The optimal dilutions for all 

antibodies were identified by examining the intensity of staining obtained with a series 

of dilutions, which gave specific and easily visible signal on paraffin sections derived 

from the same control tissue prior to perform the staining protocol on all section. In 

order to avoid day to day variations in the staining intensities, the incubations of all 

specimens with each antibody were performed in one single run. Sections were 

deparaffinized and rehydrated prior to incubation with specific mouse monoclonal and 

affinity purified antibodies against FGF-1 (1:2000 dilution), FGF-2 (1:200 dilution) 

and FGFR-1 (1:2000 dilution).  The mouse IgG1 antibody against human FGF-1 was 

raised using a synthetic peptide corresponding to the internal 61-99 amino acid 

sequence whereas, the mouse IgG2b antibody was raised against a synthetic peptide 

corresponding to the 16 amino acids from the C-terminus of human FGFR-1, as 

described previously (17, 18).  FGF-2 was a mouse (IgG1 isotype) monoclonal 

antibody raised against human FGF-2 (Mol. Weight: 18-24 Kda) and it was procured 

from Transduction laboratories, Lexington, Ky, USA.  Anti-human mouse 

monoclonal antibodies against α-smooth muscle actin (α-SMA), Ki-67 and FGF-2 

were purchased from NeoMarkers (Clone 1A4, Fremont, CA, USA), from Biogenex 
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(San Ramon, MO, USA) and from Transduction Laboratories (Lexington, USA), 

respectively.  To block non-specific binding, sections were preincubated with 10% 

normal goat serum diluted in 5% bovine serum albumin in phosphate buffered saline 

(5% BSA/PBS, pH = 7.4).  Subsequently, sections were incubated for overnight at 

4 °C with the primary antibodies (FGF-1 and FGFR-1) diluted appropriately or for 

1 hour at room temperature in case of α-SMA (1:1000 dilution).  Secondary 

biotinylated anti-immunoglobulins (Multilink, 1:75 dilution, Biogenex, San Ramon, 

MO, USA) and tertiary streptavidin conjugated Alkaline Phosphatase (Label 1:50 

dilution, Biogenex, San Ramon, MO, USA) were used to enhance the detection 

sensitivity.  Color was developed using New Fuchsin, while endogenous alkaline 

phosphatase activity was inhibited by 0.01 M levamisole. 

FGF-2 and Ki-67 immunostaining was performed on serial sections after 

antigen retrieval by boiling in citrate buffer (10 mM citrate buffer, pH = 6.0) for 10 

minutes in a microwave oven.  Sections were preincubated with 10% normal goat 

serum in 5% BSA/PBS, followed by incubation with primary antibody (1:50 dilution) 

overnight at 4 °C.  Slides were rinsed in PBS, incubated for 30 minutes with 

peroxidase-conjugated streptavidin at a dilution of 1:50 (Biogenex, San Ramon, MO, 

USA).  Subsequently, sections were colored using 0.025% of 3,3-diaminobenzidine 

(Sigma, St Louis, MO, USA) in 0.01 mol/L PBS, containing 0.03% H2O2.  Slides were 

counterstained with Mayer's hematoxylin.  Positive controls consisted of human breast 

carcinoma and placental tissue.  The optimal dilutions for all antibodies were identified 

by examining the intensity of staining obtained with a series of dilutions, which gave 

specific and easily visible signal on paraffin sections derived from the same control 

tissue. Slides were mounted and staining results were systematically investigated (see 

below). Negative controls consisted of omission of the primary antibody. 

 

Semi-quantitative Analysis 

All tissues were analyzed in a blinded fashion in random order by two independent 

observers, who were unaware of the clinical data of the case under study.  

Semi-quantitative analysis was performed using an arbitrary visual scale with grading 

scores of 0, 1, 2, and 3 representing no, weak, moderate and intense staining, 

respectively (14, 15). Errors within and between observers were assessed by 

correlating the expression scores using Pearson’s analysis and we found a very high 
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correlation ranging from 0.8 to 0.9. Microphotographs in Figure 2.1, panel A to D 

show representative examples of staining intensities used for visual scoring, 0-3 

respectively.  Sections were graded for the intensity of expression signal of FGF-1, 

FGF-2 and FGFR-1 in the endothelium and VSM of small  (50-200 µm internal 

diameter) and in the endothelium, VSM and adventitial area of large (>200 µm 

internal diameter) pulmonary arteries. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Representative examples of staining intensity pattern used for visual 
scoring. Photomicrographs depict lung tissue sections from patients without COPD (A and C) 
and with COPD (B and D) showing FGFR-1 staining (red new-fuchsine) in vascular smooth 
muscle cells.  Panels A to D show representative examples of staining intensities used for 
visual scoring, 0-3 respectively.  Scale bar = 50 µm; original magnification: x100. 
 

Video Image Analysis  

In addition, video image analysis was performed for α-SMA staining using Leica 

Qwin system version 3.0 (Leica B.V., Rijswijk, The Netherlands). Twenty digital 

images (pixel size: 736x574) from each section were taken using a video camera.  

Internal diameter of blood vessels was derived as a mean of measured vertical and 

DC 
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horizontal diameters.  In our study, we excluded those vessels who showed the ratio 

of >3 for both the diameters.  Based on the internal diameter, pulmonary vessels were 

grouped into 4 sizes (50-100 µm, 100-200 µm, 200-400 µm and >400 µm).  Vascular 

wall (VW) area, α-smooth muscle actin (α-SMA) stained area and vessel internal 

diameter (ID) were measured.  Measurements were expressed as percentages for 

staining per vessel wall (α-SMA/VW area), for VW area corrected for internal 

diameter (VW area/ID) and α-SMA staining, also corrected for lumen diameter 

(α-SMA area/ID). 

 

Statistical Analysis 

Data were analyzed for statistical significance using the unpaired, two-tailed Students’ 

“t”-test as well as the Mann-Whitney non-parametric test, wherever appropriate 

(14,15, SPSS software packet-SPSS Incorporation, Chicago, USA).  The staining 

score data for FGF-1, FGF-2 and FGFR-1 were expressed as mean ± SEM.  

Furthermore, FGF-1, FGF-2 and FGFR-1 staining scores for different vessels with 

internal diameter > and <200 µm, were correlated with FEV1 using Pearson’s 

correlation analysis.  Furthermore, the individual FEV1 values were correlated with 

the vascular remodeling data (VW area/ID) in both the groups.  Differences with 

p≤0.05 were considered to be statistically significant. 

 

2.4 Results 

Clinical Parameters 

The clinical and lung function characteristics of all subjects included in the study are 

listed in the Table 2.1. FEV1 and FEV1/FVC values were significantly lower in the 

COPD group than in the non-COPD group (p <0.001).  In the COPD group, residual 

volume (RV) was increased, whereas CO-diffusion (Kco) was reduced (p<0.005).  The 

subjects in the two groups did not differ significantly with respect to age, total lung 

capacity (TLC), reversibility in FEV1, smoking status (pack-years) and previous 

steroid usage (Table 2.1). 
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Table 2.1   Subject characteristics and clinical parameters 

 Non-COPD COPD 

FEV1 99±1.9 53±3.2* 

dFEV1 3±0.6 4±0.9 

FEV1/FVC 100±2.3 58±5.0* 

TLC 104±2.0 108±8.8 

RV 115±5.5 141±15.4* 

Kco 94±2.0 55±5.4* 

Sex (Male/Female) 11/2 14/1 

Age (years) 57±3.2 59±5.0 

Smokers/ex-smokers/non-smokers 9/4/0 12/3/0 

Pack-years 33±4.7 35±5.2 

Steroid use (yes/no/unknown) 0/12/1 4/9/2 

    

 
Abbreviations: Forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), 
total lung capacity (TLC), residual volume (RV), reversibility of FEV1 after 400 µg 
salbutamol (dFEV1) and carbon monoxide diffusion constant (Kco) are given as percentage 
of predicted. FEV1/FVC is given as actual ratio in %.  * P < 0.005 versus non-COPD. 
 

Localization and quantification of FGF-1 and FGF-2 

FGF-1 expression was detected in the media and adventitia of large pulmonary 

arteries and veins, but only in the media of small vessels.  No FGF-1 staining was 

found in the endothelial layer of any vessels.  FGF-2 was localized specifically in 

nuclei of endothelial and vascular smooth muscle cells. Expression of FGF-1 and 

FGF-2 was also observed in epithelial and bronchiolar smooth muscle cells.  

Representative microphotographs showing the expression patterns of FGF-1 and 

FGF-2 are presented in Figure 2.2.  A summary of the semi-quantitative data of 

FGF-1 and FGF-2 immunostaining is given in Figure 2.3. In subjects with COPD we 

observed significantly increased (p<0.02) expression of FGF-1 in medial VSM of 

larger vessels, but the level of adventitial expression of FGF-1 remained unaltered 

(Figure 2.3, panel A).  In contrast to FGF-1, the expression of FGF-2 was elevated in 

the COPD group, but only in the small vessels with an internal diameter <200 µm, 

where it was increased in endothelial (p<0.007) and medial smooth muscle (p<0.001) 

cells (Figure 2.3B).   
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Figure 2.2  Photomicrographs of lung tissue sections from patients without COPD 
(A and C) and with COPD (B and D).  Panels A and B (scale bar = 50 µm; original 
magnification: x100) show representative examples of FGF-1 protein staining (red 
new-fuchsine) in vascular smooth muscle cells of a large vessel (internal diameter >200 µm).  
Panels C and D (scale bar = 100 µm; original magnification: ×400) show representative 
examples of nuclear FGF-2 expression (brown 3,3-diaminobenzidine) in endothelium and 
vascular smooth muscle cells of vessels with internal diameter <200 µm. Arrows indicate 
positive nuclei.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3  Graphic representations of FGF-1 (panel A) and FGF-2 (panel B) expression 
scores (mean ± SEM) in large (internal diameter >200 µm) and small (internal diameter 
<200 µm) vessels in non-COPD and COPD groups. * P <0.05 versus the non-COPD group. 
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Figure 2.4  Photomicrographs of lung tissue sections from patients without COPD (A 
and C) and with COPD (B and D) showing FGFR-1 staining (red new-fuchsine) in vascular 
smooth muscle cells from large (internal diameter >200 µm; A and B) and small (internal 
diameter <200 µm; C and D) blood vessels.  Scale bar = 50 µm; original magnification: x100. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Graphic representations of FGFR-1 expression scores (mean ± SEM) in large 
(internal diameter >200 µm) and small (internal diameter <200 µm) vessels in non-COPD and 
COPD groups.  * P <0.05 versus the non-COPD group. 
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Localization and quantification of FGFR-1 

FGFR-1 immunoreactivity was detected in epithelial and bronchiolar smooth muscle 

cells, and in the endothelium and vascular smooth muscle of large and small vessels.  

No adventitial positivity for FGFR-1 was observed. Representative microphotographs 

showing the expression pattern of FGFR-1 are presented in Figure 2.4. A graphic 

representation of the data of FGFR-1 immunostaining is given in Figure 2.5.  The 

expression of FGFR-1 was significantly elevated in medial smooth muscle cells of 

large vessels (p<0.04) in the COPD-group as compared to non-COPD group, whereas 

the staining for the receptor in the intimal endothelium remained unaltered.  

Moreover, in contrast to the FGF-1 expression in small vessels in COPD patients, we 

found significantly higher expression levels of the receptor (p<0.05) in medial smooth 

muscle of small vessels (Figure 2.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6  Photomicrographs of lung tissue sections from patients without COPD (A 
and C) and with COPD (B and D) showing α-smooth muscle actin staining (red 
new-fuchsine) in vascular smooth muscle cells from small (internal diameter <200 µm; A and 
B) and large (internal diameter >200 µm; C and D) blood vessels.  Scale bar = 50 µm; 
original magnification: x100). 
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Figure 2.7  Graphic representations of vessel wall measurements (mean ±±±± SEM) 
using video image analysis in non-COPD and COPD groups. Panel A: Ratio of vascular 
wall area/internal diameter (VW area/ID) ratio.  Panel B: Ratio of α-SMA area/VW area. * 
P <0.05 versus the non-COPD group. 
 

Assessment of vascular remodeling 

To examine pulmonary vascular remodeling as evidenced from variations in wall 

thickness and muscular medial thickness, video image analysis was performed using 

α-SMA immunostaining.  Four separate groups with vessels of internal diameters of 

50-100, 100-200, 200-400 and >400 µm, respectively, were analyzed (Figure 2.6). 

Measurements (mean ± SEM) were expressed as VW area/ID, α-SMA area/ID or 

percentage α-SMA staining per vessel wall area that represents volume fraction for 

smooth muscle staining was shown as α-SMA/VW area. The graphic representation 

of vascular wall remodeling data is presented in Figure 2.7.  A significant increase in 

VW area/ID ratio for COPD in vessels of 100-200 µm (44.2 ± 1.9 vs. 36.4 ± 2.1, 

p=0.007), 200-400 µm (57.9 ± 2.4 vs. 44.7± 3.2, p<0.001) and >400 µm (75.6 ± 2.6 

vs. 56.8 ± 5.9, p=0.011) was found (Figure 2.7, panel A).  In vessels ranging from 50 

to 100 µm in internal diameter no differences in VW area/ID ratio were observed. A 

significantly increased α-SMA area/ID ratio was observed for COPD in the 200-400 

(26.7 ± 1.9 vs. 20.3 ± 2.9, p = 0.034) and >400 µm (38.3 ± 2.0 vs. 23.5 ± 3.4, 

p=0.006) internal diameter vessels but not in the 50-100 and 100-200 µm vessels.  

Surprisingly, no significant differences were observed between COPD and non-COPD 

groups in the percentage vascular smooth muscle, defined as α-SMA/VW area in all 

vessel types (Figure 2.7, panel B).  Proliferation of VSM cells as evidenced from 

Ki-67 positivity was observed only very occasionally (data not shown).  

A B 
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Correlation with clinical data 

The staining scores of FGF-1, FGF-2 and FGFR-1 expression in COPD and non-

COPD patients were analyzed using Pearson’s test. For FGF-1, we observed a weak 

but significant inverse correlation (r=-0.39, p=0.038) between staining score and 

FEV1 in the medial VSM of vessels > 200 µm in ID (Figure 2.8, panel A).  

Additionally, there was a significant inverse correlation of FGF-2 staining scores in 

both endothelium (r=-0.44, p=0.002) and medial VSM (r = -0.55, p<0.0001) of 

vessels <200 µm in internal diameter with FEV1 (Figure 2.8, panel B and C).  

However, in vessels >200 µm in internal diameter, no significant correlation between 

FGF-2 expression and FEV1 was found (data not shown). Surprisingly, staining scores 

for FGFR-1 were not significantly correlated with FEV1 (data not shown). When 

considering the association between FEV1 and medial hypertrophy (VW area/ID 

ratio), we observed a significant inverse correlation of -0.50 (p=0.007) for vessels 

with internal diameter >200 µm (Figure 2.8, panel D). However, no significant 

correlation could be established between FEV1 and VW area/ID ratio for the vessels 

with internal diameter <200 µm (r = -0.10, p>0.10).  

 

2.5 Discussion 
In this study we have found that COPD is associated with an increase in the 

expression of FGF-2 in small (<200 µm) and FGF-1 in large (>200 µm) pulmonary 

vessels respectively whereas, FGFR-1 is increased in both vessel types.  Vascular 

medial thickness, assessed by video image analysis, was significantly increased in 

COPD in pulmonary vessels of various sizes.  Pearson’s correlation analysis revealed 

a significant inverse correlation of FEV1 with FGF-1 staining in the media of large 

and with FGF-2 expression in both endothelium and VSM of small vessels.  

Additionally, an inverse correlation of FEV1 with medial thickening was found in 

pulmonary vessels of larger caliber, indicating that the degree of pulmonary vascular 

remodeling is related to the severity of obstructive lung function defect.  
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Figure 2.8  Correlation with FEV1 (% predicted) of FGF-1 expression in vascular 
smooth muscle cells (internal diameter >200 µm) (A), FGF-2 expression in vascular smooth 
muscle cells (internal diameter <200 µm; B), FGF-2 expression in endothelial cells (EC) from 
small blood vessels (internal diameter <200 µm; C) and vascular wall area/internal diameter 
(VW area/ID; D).  Correlation coefficient (r) and significance level (P value) were obtained 
using linear regression (Pearson’s) analysis. 
 
 
Several studies have commented on the importance of structural and functional 

abnormalities in the pulmonary vasculature of COPD patients.  Hypoxia is known to 

induce prompt and severe vasoconstriction in the pulmonary vasculature, and 

sustained lung tissue hypoxia, as results from obstructive lung disease such as COPD, 

leads to pulmonary hypertension (4, 19).  Hypoxic vasoconstriction is considered to 

represent one of the major contributing factors of pulmonary hypertension and right-

sided heart failure in COPD and other chronic pulmonary diseases (4, 19).  In 

addition, emphysema, accompanied by loss of elastic recoil, increased pulmonary 

pressure and destruction of part of the pulmonary microvasculature, may contribute to 

the increased vascular resistance observed in COPD (5, 6). Using Video image 

analysis, we assessed systematically vascular wall thickening in COPD patients and 
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non-COPD cases. Wall thickness of vessels 200 µm or more in diameter was 

increased in COPD. Our results on pulmonary vascular remodeling particularly in 

terms of intimal and medial thickening are in agreement with several earlier reports 

(4, 5, 20-22).  Furthermore, the degree of intimal and medial thickening correlated 

with the decrease in lung function and, hence, with the severity of the disease.  Wright 

and coworkers (4, 5) also observed a correlation with the severity of disease with mild 

to moderate COPD with intimal thickening and in severe cases with medial 

thickening.  Similar findings on vascular abnormalities in COPD were recently 

reported by Peinado and coworkers, who showed intimal but not medial thickening in 

the vasculature of mild COPD patients compared to non-smoking controls (20, 21). 

We used expression of smooth muscle marker α-SMA (23) to investigate 

whether the ratio of smooth muscle (α-SMA/VW area) in the vascular wall had 

changed during the progression of COPD.  Surprisingly, the ratio of α-SMA stained 

area to VW area remained unchanged.  Approximately 42% of cells in all vessels 

stained positive for α-SMA, indicating that the increase in wall thickness could be 

attributed to the deposition of extracellular matrix proteins and medial accumulation 

of other cells, such as inflammatory cells and fibroblasts.  Recently, we found specific 

staining for extracellular matrix proteins, like fibronectin and collagen subtypes in the 

intimal vascular cells of these pulmonary vessels indicating for ongoing intimal 

fibrosis in COPD patients (data not shown).  Taken together, the data from this study 

indicate that vascular remodeling in COPD could be a contributing event in the 

pathogenesis of pulmonary hypertension in these patients.  Furthermore, the observed 

changes in the intimal fibrosis as well as medial thickening could narrow the vessel 

caliber and may eventually lead to more severe vascular obstruction in COPD 

patients.   

Members of the fibroblast growth factor family FGF-1, FGF-2 and FGFR-1 

are constitutively expressed in normal human lungs, particularly in airway epithelium, 

monocytes, and are localized in the intima and media of pulmonary vessels (24).  

Pulmonary expression patterns of FGF-1, FGF-2 and FGFR-1, as found in our study 

are in agreement with results obtained by Hughes and Hall (24) in the normal lungs.  

However, in the peripheral regions of the lungs of patients with COPD, we observed 

additionally FGF-1 in adventitia and FGF-2 immunoreactivity in the nuclei of medial 
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smooth muscle and endothelial cells advocating for a potential role of FGF-FGFR 

system in vascular remodeling in COPD.  

Fibroblast growth factor family members are implicated in tissue remodeling 

in a wide variety of pathophysiological conditions including systemic hypertension, 

ischemic heart disease and interstitial lung fibrosis (10, 12, 25, 26).  Barrios and 

coworkers (10) showed FGF-1 and FGFR-1 expression in experimentally induced 

pulmonary fibrosis.  Becerril and colleagues found that FGF-1 expression in the lung 

fibroblasts results in down-regulation of collagen synthesis and up-regulation of 

collagenases, which may protect against fibrosis (27).  However, increased FGF-2 and 

FGFR-1 expression in vascular smooth muscle cells in vitro in response to vascular 

injury has been shown to be associated with extracellular matrix remodeling, cellular 

proliferation, down-regulation of collagen type I and up-regulation of collagenase 

MMP-1 (28).  Our findings of upregulated FGF-1, FGF-2 and FGFR-1 expression 

could indicate that such compensatory mechanisms are active in COPD since smoking 

has been suggested to affect cellular viability in lungs.   

In a recent study, Singh and colleagues demonstrated that increased nuclear 

expression of FGF-2 in vascular smooth muscle and endothelium precedes arterial 

enlargement in response to increased arterial blood flow in vivo (12).  Though the 

function of high molecular weight FGF-2 in the cell nucleus remains unclear, it is 

believed that this form of FGF-2 translocates to the nucleus.  Moreover, Stachowiak 

and coworkers have demonstrated co-localization of the receptor FGFR-1 and FGF-2 

in the nucleus of human astrocytes suggesting for novel mechanisms for the action of 

FGF-2 (29).  In this study we show that FGF-2 is localized in the nucleus of 

endothelial and VSM cells and that the expression is increased in pulmonary vessels 

with diameter >200 µm in patients with COPD indicating a role for this growth factor 

in vascular remodeling.  We also showed that in COPD, the expression of FGF-2 was 

upregulated in vessels with an internal diameter of >200 µm.  Bryant et al. (13) 

recently found that administration of FGF-2 could inhibit internal luminal area 

decrease and wall thickening in response to altered blood flow; furthermore, this 

inhibitory effect could be blocked by anti-FGF-2 neutralizing antibodies.  Our 

findings suggest that FGF-2 plays an important role in the response to increased 

pressure in the pulmonary vasculature in COPD.  Several studies on hypoxia-induced 

pulmonary hypertension have shown that increased smooth muscle mass develops as a 

result of hypertrophy and hyperplasia of pre-existing smooth muscle cells or results 
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from differentiation of fibroblasts recruited to the media from the adventitia (23, 30).  

It is likely that such mechanisms of vascular smooth muscle mass increase are 

operational in COPD-related vascular remodeling. 

In vivo and in vitro data indicate that smooth muscle cells, and their cross-talk 

with endothelium, myofibroblasts and inflammatory cells via growth factors and 

cytokines, are major contributing factors to vascular remodeling during different 

pathophysiological conditions (23, 27, 31, 32).  Furthermore, inflammation, a 

well-established factor in peripheral as well as in central airways in COPD, could also 

be associated with vascular remodeling in COPD.  Increased adventitial infiltration of 

inflammatory cells, predominantly CD8+ T-lymphocytes, in muscular pulmonary and 

bronchiolar arteries has been reported earlier (21, 33).  Taken together, our results 

support the notion that in COPD, increased vascular expression of FGF-1, FGF-2 and 

FGFR-1 could participate in an autocrine and/or in a complex growth factor-cytokine 

interactive manner in regulating the process of pulmonary vascular remodeling.  Our 

data further support the hypothesis that COPD is associated with pulmonary vascular 

remodeling and that the FGF-FGFR system contributes to the pathogenesis and 

severity of the disease.   
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3.1 Summary  
Background: Ongoing inflammatory processes resulting in airway and vascular 

remodeling characterize chronic obstructive pulmonary disease (COPD). Vascular 

endothelial growth factor (VEGF) and its receptors VEGFR-1 (Flt-1) and VEGFR-2 

(KDR/Flk-1) could play a role in tissue remodeling and angiogenesis in COPD.  

Methods: We examined the cellular expression pattern of VEGF, Flt-1 and KDR/Flk-1 

by immunohistochemistry in central and peripheral lung tissues obtained from (ex-) 

smokers with (FEV1 <75% predicted; n=14) or without COPD (FEV1 >85% predicted; 

n=14).  The immunohistochemical staining of each molecule was quantified using a 

visual scoring method with grades ranging from 0 (no), 1 (weak), 2 (moderate) to 3 

(intense).  

Results: VEGF, Flt-1 and KDR/Flk-1 immunostaining was localized in vascular and 

airway smooth muscle (VSM and ASM) cells, bronchial, bronchiolar and alveolar 

epithelium and macrophages. Pulmonary endothelial cells abundantly expressed Flt-1 

and KDR/Flk-1 but not VEGF. In COPD patients, bronchial VEGF expression was 

higher in microvascular VSM cells and ASM cells as compared to non-COPD patients 

(1.7 and 1.6 fold, p<0.01, respectively). VEGF expression in intimal and medial VSM 

(1.7 and 1.3 fold, p<0.05) of peripheral pulmonary arteries associated with the 

bronchiolar airways was more intense in COPD, as well as in small pulmonary vessels in 

the alveolar region (1.5 and 1.7 fold, p<0.02). In COPD patients, KDR/Flk-1 expression 

was enhanced in endothelial cells, intimal and medial VSM (1.3, 1.9 and 1.5 fold, 

p<0.02), whereas endothelial Flt-1 expression was 1.7 times higher (p<0.03). 

Furthermore, VEGF expression was significantly increased in bronchiolar and 

alveolar epithelium as well as bronchiolar macrophages (1.5 fold, p<0.001). 

Additionally, expression of VEGF in bronchial VSM and mucosal microvessels as 

well as bronchiolar epithelium inversely correlated with FEV1 (r < -0.45; p<0.01). 

Conclusions: Our results suggest that VEGF and its receptors Flt-1 and KDR/Flk-1 are 

involved in peripheral vascular and airway remodeling processes in an autocrine and/or 

paracrine manner. This system may also be associated with epithelial cell viability 

during airway wall remodeling in COPD. 
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3.2 Introduction 
Chronic obstructive pulmonary disease  (COPD) is a disease state characterized by 

airflow limitation that is not fully reversible, usually progressive and associated with 

an abnormal inflammatory response of the lungs in response to noxious particles and 

gases (1).  COPD is a major health problem with cigarette smoking as its main cause. 

One important pathological features of COPD is chronic airway inflammation 

characterized by an influx of inflammatory cells predominantly neutrophils, 

macrophages and CD8+ T-lymphocytes in the lumen and wall of bronchial and 

bronchiolar airways and parenchyma (2-4). Furthermore, several studies reported a 

thickened bronchiolar wall and airway remodeling with peribronchiolar fibrosis, an 

increase in airway smooth muscle (ASM) mass and emphysema (3, 5, 6).  

 Vascular abnormalities have been associated with the development of COPD 

(7, 8). Wright et al. found an increase in wall area of small (< 500 µm) pulmonary 

vessels, by intimal thickening in mild to moderate COPD patients and medial 

thickening in severe cases as well, which was correlated with a decline in FEV1 (7, 9). 

Furthermore, recent observations indicated that muscular pulmonary and bronchiolar 

arteries have increased adventitial infiltration of CD8+ T-lymphocytes and have 

intimal thickening that was correlated to the amount of total collagen deposition (8, 

10). Finally, emphysema may lead to loss of the pulmonary vascular bed and induce 

angiogenesis (11). Yet, little is known about the molecular mechanisms underlying 

these processes in the context of COPD. 

One of the potent proteins involved in vascular remodeling is vascular 

endothelial growth factor (VEGF). The VEGF family currently comprises six members 

(VEGF-A to F), of which the originally identified VEGF-A165 variant is the 

predominant form of five additional spliced variants (12). VEGFs are heparin-binding 

proteins and act via their high affinity, transmembrane receptors VEGFR-1 (Flt-1) and 

VEGFR-2 (KDR/Flk-1). The receptors belong to the family of tyrosine kinases and are 

predominantly expressed by endothelial and epithelial cells (12). VEGF promotes an 

array of responses in the endothelium including hyperpermeability, endothelial cell 

proliferation and angiogenesis with new vessel tube formation in vivo (12, 13). The 

expression of VEGF can be induced under a variety of pathophysiological conditions, 

including pulmonary hypoxia and pulmonary hypertension with increased sheer stress 
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(13, 14). Both hypoxia and pulmonary hypertension are pathological features often 

seen in advanced COPD patients (2). We hypothesize, that increased VEGF 

expression perhaps under an influence of hypoxia-inducible transcription factors 

(HIFs) may contribute to increased and abnormal proliferation of endothelial and 

VSM cells in pulmonary vessels leading to vascular remodeling. 

Although the role of VEGF in the vascular biology is thoroughly studied, it 

has become clear that VEGF and its receptor system are involved in various other 

cellular events as well, including epithelial proliferation and survival, and the 

recruitment of mast cells, neutrophils and macrophages to sites of fibrosis (13, 15, 

16). Recent studies indicate that VEGF is expressed in the lung by bronchiolar, 

submucosal glandular and alveolar type I and II epithelial cells, alveolar macrophages, 

airway and vascular smooth muscle (ASM and VSM) cells as well as myo-fibroblast in 

fibrotic lung lesions (14, 17, 18).  

 In order to assess the role of VEGF and its receptors VEGFR-1 (Flt-1) and 

VEGFR-2 (KDR/Flk-1) in the pathophysiology of COPD, we first examined the 

expression of VEGF-A, Flt-1 and KDR/Flk-1 in central and peripheral lung tissue from 

(ex-) smokers with or without COPD. Furthermore, we investigated the relation of lung 

function with the expression data of VEGF and its receptors.  

 

3.3 Materials and methods 
 

Selection of patients 

Central and peripheral lung tissues were obtained from current or ex-smokers who 

underwent lobectomy or pneumonectomy for lung cancer. Fourteen subjects with COPD 

(FEV1 < 75% predicted) and fourteen subjects without COPD (FEV1 > 84% predicted) 

were included as previously described (19-21). Total lung capacities (TLC) were not 

below normal levels (TLC >80% predicted). All patients lack upper respiratory tract 

infection and did not receive antibiotics perioperatively. None of the patients had 

received glucocorticosteroids during 3 months period before resection, but four 

patients received glucocorticosteroids perioperatively. Based on these criteria, subjects 

with COPD could not be subdivided into patients with either chronic bronchitis or 

emphysema alone. Clinical data are given in Table 3.1. Subjects were excluded if the 

obstruction of the central bronchi was due to the tumor, or if diffuse pulmonary 
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inflammation or fibrosis was present, or if no tissue free from tumor could be obtained. 

Lung tissue specimens used in this study were obtained from the archival collection at 

the Department of Pathology (LUMC, Leiden, NL). Medical Ethics Committee of 

LUMC approved the study. The patients in these two groups participated in a larger 

research project, part of which has been published previously (19-21). Lung tissue 

specimens were routinely fixed in 10% neutral buffered formalin by inflation-immersion 

fixation and embedded in paraffin for histopathological examination and 

immunohistochemistry. 

 

Immunohistochemistry 

Paraffin sections (4 µm thick) of the lung tissues were cut and mounted on silane-coated 

glass slides. Immunohistochemistry was performed using a method as described earlier 

(20, 22, 23). In brief, after deparaffinization in xylene and rehydration through graded 

alcohol, slides were rinsed with phosphate buffered saline (PBS). Endogenous 

peroxidase was blocked with 0.3% hydrogen peroxidase. For VEGF, VEGFR-1, 

VEGFR-2 and Ki-67 staining, slides were pre-treated by boiling in citrate buffer 

(10 mM citrate buffer, pH = 6.0) for 10 minutes in a microwave oven. Subsequently, 

sections were preincubated with 10% normal goat serum diluted in 5% bovine serum 

albumin in phosphate buffered saline (5% BSA/PBS, pH = 7.4), and afterwards 

incubated for 30 minutes at room temperature with affinity-purified rabbit polyclonal 

VEGF antibody in a dilution of 1:200 v/v.  The VEGF antibody used was raised against 

a 20 amino acid synthetic peptide corresponding to residues 1-20 of the amino terminus 

of human VEGF (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA). A different 

series of slides were incubated with a rabbit polyclonal antibody against a synthetic 

peptide corresponding to aa 1312-1328 of human Flt-1 (NeoMarkers, RB-1526, 

Fremont, CA, USA) in a dilution of 1:100 v/v.  For VEGFR-2, a rabbit polyclonal 

antibody against aa 1326-1345 of mouse KDR/Flk-1 (NeoMarkers, RB-1527, Fremont, 

CA, USA) in a dilution of 1:200 v/v was used. To examine proliferation of cells in the 

airways, an antibody against Ki-67 (Dako Corporation, Glostrup, Denmark) of 1:400 

v/v at 4oC overnight for was used as a marker. Consecutive tissue sections were also 

stained with a monoclonal mouse anti-human alpha-smooth muscle actin (α-SMA) 

antibody (clone 1A4: Biogenex, San Ramon, USA) in a dilution of 1:1000 v/v.  The 

optimal dilution of the first antibody was identified by examining the intensity of 
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staining obtained with a series of dilutions of the antibody from 1:50 to 1:1000. Negative 

controls were prepared by omission of the primary antibody. After washing with tris-

base buffered saline (TBS, pH = 7.4), the test and control slides were incubated for 15 

minutes with Powervision+TM Post-antibody blocking solution (Immunovision 

Technologies, Daly City, CA, USA). Next, slides were washed and incubated with 

Powervision+TM polymerized horseradish peroxidase conjugates (Immunovision 

Technologies, Daly City, CA, USA). Finally, the sections were stained with 3, 3’-

diaminobenzidine tetrahydrochloride (Sigma, Zwijndrecht, NL) as chromogen, 

counterstained with Mayer's hematoxylin and visualized with light microscopy. 

 

Quantitative scoring analysis of immunohistochemistry 

Prior to screening, sections were coded so that the observers were unaware of the clinical 

details of the case under study. Expression of VEGF, Flt-1 and KDR/Flk-1 was analyzed 

semi-quantitatively, using a visual scoring method with grades ranging from 0 to 3 (0 = 

no staining; 1 = moderate staining; 2 = intense staining; 3 = very intense staining) as 

previously described (8, 19, 20, 24). The entire section of a tissue block was investigated 

and scored at the same magnification. The staining intensity of VEGF, Flt-1 and 

KDR/Flk-1 was scored blindly by two independent observers, who were unaware of the 

clinical data of the case under study, in bronchial and bronchiolar airways as well as 

alveolar parenchyma in cells of epithelial, endothelial and smooth muscle origin as well 

as macrophages. We examined errors within and between observers by correlating the 

expression scores using Pearson’s analysis and found a very high correlation ranging 

from 0.8 to 0.9. In the bronchial airways staining was assessed in the bronchial 

epithelium, mucosal microvasculature, submucosal bronchial wall vessels, airway 

smooth muscle (ASM) cells and macrophages in the bronchial airway wall.  In 

peripheral lung tissues the staining of VEGF and receptors was analyzed in bronchiolar 

an alveolar epithelium, bronchiolar ASM cells, and bronchiolar and alveolar 

macrophages. The vasculature in the peripheral lung was further subdivided into the 

larger pulmonary vessels associated with the bronchiolar airways and smaller vessels 

situated within the alveolar parenchyma. In each the VEGF and receptor staining of 

endothelial, intimal and medial VSM cells were assessed.  

 Since TGF-β1 may also induce VEGF expression in epithelial cells (25, 26), we 

assessed the correlation between the epithelial VEGF expression from the current study 
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and  epithelial TGF-β1 expression from one of our previous studies (20). In both studies 

the same patient groups were used and the staining was performed on adjacent or near 

sections.      

 

Statistical Analysis 

Data were analyzed for statistical significance using the unpaired, two-tailed Students’ 

t-test as well as the non-parametric Mann-Whitney test, where appropriate.  The 

expression data for VEGF and its receptors were expressed as mean ± SEM.  

Furthermore, VEGF and its receptors staining for different compartments were 

correlated with FEV1 using Pearson’s correlation analysis. Differences with p ≤ 0.05 

were considered to be statistically significant. 

 

3.4 Results 
Clinical Parameters 

The clinical and lung function characteristics of all subjects included in the study are 

listed in Table 3.1. As defined, the COPD group demonstrated decreased FEV1 and 

FEV1/FVC values, (p<0.001) as has been described previously (19-21). The subjects 

in the two groups did not differ significantly in age and smoking status (pack-years) 

or steroid use (Table 3.1). 

 

TABLE 3.1 A summary of the clinical characteristics of subjects with and without 

chronic obstructive pulmonary disease 

Group Sex 
(M/F) 

Age PY FEV1   

(% Pred.) 

FEV1/FVC 
(%) 

Steroid 
treatment  

Non-
COPD 

10/4 64 (3.7) 42 (7.7) 101 (3.3) 0.72 (0.02) None 

COPD 14/0 64 (2.3) 44 (0.8) 63 (2) 0.54 (0.02) 4 

p-value  0.84 0.82 < 0.001 < 0.001  

 
Definition of abbreviations: COPD = chronic obstructive pulmonary disease; Forced 
expiratory volume in 1 second (FEV1) and Forced vital capacity (FVC) are given as 
percentages of the predicted values (% Pred.) before bronchodilatation. M = Male; F = 
Female. PY = number of pack years. Data shown represent means with standard deviation in 
brackets. The patients in these two groups participated in a larger project, part of which has 
been published previously (19-21). 
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Immunolocalization of VEGF, Flt-1 and KDR/Flk-1 

 

Bronchial airways  

Examples of VEGF expression in central airways of non-COPD and COPD subjects are 

given in Figure 3.1A and 3.1B, whereas 3.1C and 3.1D (both taken from COPD 

subjects) show the VEGF receptors Flt-1 and KDR/Flk-1, respectively. In all subjects, 

within the airways VEGF, Flt-1 and KDR/Flk-1 were localized in the bronchial 

epithelium and airway smooth muscle (ASM) cells, bronchial microvasculature of 

mucosa and submucosa and on inflammatory cells, predominantly macrophages, (Figure 

3.1A-D). In the vessel wall, vascular smooth muscle (VSM) cells were positive for 

VEGF, Flt-1 and KDR/Flk-1, whereas endothelial cells did not stain for VEGF protein 

but were positive for the Flt-1 and KDR/Flk-1 (Figure 3.1). To assess the intensities of 

VEGF, Flt-1 and KDR/Flk-1 expression in various bronchial airway compartments, 

we opted for a visual scoring method as previously described (8, 19, 20, 24). VEGF 

expression was increased in bronchial airway smooth muscle cells of COPD patients 

as compared to non-COPD subjects (1.6 fold, p<0.01) but not in bronchial epithelial 

cells and macrophages (Figure 3.2A). In the central airways of patients with COPD as 

compared to non-COPD subjects, VEGF staining was more intense in VSM of 

microvasculature the bronchial mucosal (lamina propria) (1.7 fold, p<0.001) and 

bronchial VSM in the submucosa (1.4 fold, p<0.01, Figure 3.2A). No significant 

differences were observed when considering the expression levels of KDR/Flk-1 and Flt-

1 between COPD subjects and non-COPD patients (Figure 3.2B and 2C, respectively). 

In all subjects VEGFR-2 (KDR/Flk-1) expression was more intense than VEGFR-1 (Flt-

1) expression, except for the expression in endothelial cells of bronchial microvessels 

and on bronchial macrophages, which were comparable (Figure 3.2B and 3.2C). 

 

Bronchiolar airways 

Figure 3.3 shows photographs of peripheral lung tissues from non-COPD and COPD 

subjects for VEGF (3.3A and 3.3B), KDR/Flk-1 (3.3C and 3.3D) and Flt-1 (3.3E and 

3.3F), respectively. In bronchiolar epithelial cells VEGF (1.5 fold, p<0.001, Figure 3.4A) 

and Flt-1 expression (1.4 fold, p<0.04, Figure 3.4C) were increased in COPD patients as 

compared to non-COPD subjects, whereas the staining for KDR/Flk-1 was unchanged 

between both patient groups (Figure 3.4B). 
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Figure 3.1  Immunohistochemical localization of VEGF (A-B), KDR/flk-1 (C) and flt-1 
(D) in bronchial tissues from non-COPD (ex-) smoking subjects (A) and patients with COPD 
(B, C, D). Immunoreactive VEGF, KDR/flk-1 and flt-1 were localized in bronchial epithelial 
cells, airway smooth muscle (ASM) cells and in macrophages, endothelial and vascular 
smooth muscle (VSM) cells. Color is developed with 3, 3-diaminobenzidine 
tetrahydrochloride (DAB) as chromogen (brown color) and counterstained with Mayer's 
hematoxylin. Arrows indicate sites of positivity for VEGF, flt-1 or KDR/flk-1. Original 
magnification: x100; Scale bar = 50 µm. 
 
Airway smooth muscle cells showed slightly increased VEGF expression in 

bronchiolar region (1.3 fold, p<0.05), whereas the expression of both the receptors 

remained unchanged in two patient groups. However, the expression of KDR/Flk-1 

was more intense than Flt-1 in all patients (Figure 3.4B and 3.4C).  
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Figure 3.2  Graphic representations of VEGF (panel A), KDR/flk-1 (panel B) and flt-1 
(panel C) protein expression in different cell types in bronchial airways using visual scoring. 
The immunostaining score ranges from 0 (no staining) to 3 (very intense staining). Open and 
closed bars represent mean data from subjects without and with COPD, respectively. Data are 
presented as mean ± S.E.M. An asterisk indicates a significant difference (p<0.05, Student's t-
test) as compared to non-COPD subjects. Abbreviations: bronchial epithelium (Epi), bronchial 
microvessels (MV) in the mucosa, bronchial vascular smooth muscle cells (VSM) in the 
submucosa, airway smooth muscle (ASM) and macrophages (Mφ). 
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Figure 3.3  Immunohistochemical localization of VEGF (A-B), KDR/flk-1 (C-D) and 
flt-1 (E-F) in peripheral tissues from non-COPD (ex-) smoking subjects (A, C, E) and patients 
with COPD (B, D, F). Immunoreactive VEGF, flt-1 and KDR/flk-1 were localized in 
bronchiolar and alveolar epithelial cells, airway smooth muscle (ASM) cells, macrophages 
and in endothelial and intimal/medial vascular smooth muscle (VSM) cells. Color is 
developed with 3, 3-diaminobenzidine tetrahydrochloride (DAB) as chromogen (brown color) 
and counterstained with Mayer's hematoxylin. Arrows indicate sites of positivity for VEGF, flt-
1 or KDR/flk-1. Original magnification: x100; Scale bar = 50 µm. 
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Figure 3.4  Graphic representations of VEGF (panel A), KDR/flk-1 (panel B) and flt-1 
(panel C) protein expression in different cell types in bronchiolar airways and associated 
pulmonary arteries using visual scoring. Open and closed bars represent mean data from 
subjects without and with COPD, respectively. Data are presented as mean ± S.E.M. An asterisk 
indicates a significant difference (p<0.05, Student's t-test) as compared to non-COPD subjects. 
Abbreviations: bronchiolar epithelium (Epi), endothelial cells (EC), intimal and medial 
vascular smooth muscle cells (VSM int. and med.), airway smooth muscle (ASM) and 
bronchiolar macrophages (Mφ). 
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When considering the expression of VEGF in the larger pulmonary arteries associated 

with the bronchiolar airways, the fold in intimal and medial VSM staining was 1.7 

and 1.3 (p<0.05, Figure 3.4A) between COPD and control subjects respectively, 

whereas endothelial cells did not express VEGF. KDR/Flk-1 expression was enhanced 

in endothelial cells, intimal and medial VSM (1.3, 1.9 and 1.5 fold, p<0.02, Figure 

3.4B), whereas the corresponding value in endothelial cells for Flt-1 expression is 1.7 

(p<0.03, Figure 3.4C). In both patient groups, the intimal VSM stained 2-3 times less 

intense than medial VSM for VEGF, Flt-1 and KDR/Flk-1. Moreover, the vascular 

Flt-1 expression was lower than KDR/Flk-1 and VEGF in each of the investigated 

vessel wall areas (p<0.002, Figure 3.4). Staining of VEGF in bronchiolar 

macrophages (1.5 fold, p<0.001, Figure 3.4A) was increased in COPD as compared to 

non-COPD subjects, whereas the staining on macrophages of Flt-1 or KDR/Flk-1 

expression in bronchiolar airways as well as VEGF, Flt-1 or KDR/Flk-1 in the 

alveolar region remained unchanged (Figure 3.5).  

 

Alveolar parenchyma 

Staining of alveolar epithelial cells (type I and II) for COPD was more intense than 

for non-COPD controls (1.5 fold, p<0.0001, Figure 3.5A). KDR/Flk-1 and Flt-1 

expression were not changed in alveolar epithelial cells (Figure 3.5B and 3.5C). 

VEGF expression was increased in intimal and medial VSM (1.5 and 1.7 fold, p<0.01, 

Figure 3.5A) of small pulmonary vessels in the alveolar region whereas the 

corresponding values for KDR/Flk-1 were 2.0 and 1.8 (p<0.02), respectively (Figure 

3.5B). Furthermore, the expression of both KDR/Flk-1 and Flt-1 were increased in 

endothelial cells of small pulmonary vessels in lung parenchyma (1.7 and 2.1 fold, 

p<0.001, Figure 3.5B and 3.5C). 

 

Correlation between staining and clinical data 

We examined the relation between FEV1 values of patients in both groups and the 

staining scores of VEGF, Flt-1 and KDR/Flk-1 in the investigated areas. Within the 

bronchial airways, FEV1 values were inversely correlated with VEGF staining sores in 

bronchial mucosal microvasculature (r = -0.65; p<0.001, Figure 3.6A), bronchial ASM 

cells (r = -0.45; p<0.01, Figure 3.6B) if all subjects were analyzed together. 
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Figure 3.5  Graphic representations of VEGF (panel A), KDR/flk-1 (panel B) and flt-1 
(panel C) protein expression in different cell types in alveolar parenchyma and pulmonary 
vasculature using visual scoring. Open and closed bars represent mean data from subjects 
without and with COPD, respectively. Data are presented as mean ± S.E.M.  An asterisk 
indicates a significant difference (p<0.05, Student's t-test) as compared to non-COPD subjects. 
Abbreviations: bronchiolar epithelium (Epi), endothelial cells (EC), intimal and medial 
vascular smooth muscle cells (VSM int. and med.), and alveolar macrophages (Mφ). 
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Figure 3.6  Correlation with FEV1 (% predicted) of VEGF protein expression in 
microvessels  (MV) in the bronchial mucosa (A), bronchial airway smooth muscle (ASM) 
cells (B), bronchiolar epithelial (Epi) cells (C) and medial vascular smooth muscle (VSM) 
cells of pulmonary arteries associated with the bronchiolar airways (D). Correlation was 
assessed for the combined patient groups (non-COPD and COPD). Correlation coefficient (r) 
was obtained using linear regression (Pearson’s) analysis. 
 

The bronchiolar epithelium (r = -0.67; p<0.001, Figure 3.6C) and medial VSM of larger 

pulmonary arteries associated with bronchiolar airways (r = -0.50; p<0.01, Figure 3.6D) 

also showed an inverse correlation with FEV1 values from the total group. Additionally, 

VEGF expression in medial VSM was correlated with KDR/Flk-1 expression in 

endothelium of pulmonary arteries (r = 0.41; p<0.01) as well as smaller alveolar vessels 

(r = 0.48; p<0.01). Furthermore, we found correlation for the expression pattern of 

KDR/Flk-1 and Flt-1 in the endothelium of pulmonary arteries (r = 0.67; p<0.001) as 

well as in alveolar vessels (r = 0.80; p<0.0005).  
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 Additionally, we examined correlation between the epithelial VEGF expression 

from the current study and epithelial TGF-β1 expression from one of our previous studies 

(20). In both studies the same patient groups were used and the staining was performed 

on adjacent or near sections. With regard to the bronchiolar epithelium, Pearson’s 

analysis revealed a significant positive correlation between the VEGF protein and TGF-

β1 protein levels (r = 0.55; p<0.004) and VEGF protein and TGF-β1 mRNA expression 

(r = 0.45; p<0.02). With regard to the alveolar epithelium, the VEGF protein levels 

correlated significantly with the TGF-β1 mRNA expression only (r = 0.58; p<0.002), but 

not with the TGF-β1 protein levels (r = 0.31; p<0.12). 

 

3.5  Discussion 
In this study we show that COPD is associated with an increased expression of VEGF 

in the bronchial, bronchiolar and alveolar epithelium and in bronchiolar macrophages 

as well as ASM and VSM cells in both bronchiolar and alveolar region. KDR/Flk-1 

and Flt-1 were increased in COPD as compared to non-COPD in endothelial, intimal 

and medial VSM cells of larger pulmonary arteries and of smaller caliber alveolar 

vessels. Interestingly, we observed a significant inverse correlation of VEGF with 

FEV1 in bronchial mucosal microvessels and ASM cells, bronchiolar epithelium and 

medial VSM of larger pulmonary arteries associated with bronchiolar airways. TGF-β1 

staining in the bronchiolar epithelium also correlated with VEGF in the same patients 

as described in our previous study (20).  

Our results indicate that VEGF and its receptors Flt-1 and KDR/Flk-1 are 

localized within the airways and vasculature in endothelial and epithelial cells as well as 

smooth muscle cell origin and furthermore on various inflammatory cells, predominantly 

macrophages. The localization of VEGF and its receptors in the lungs of our patient 

groups is in agreement with earlier reports, which described a similar staining pattern 

in human developing and normal adult as well as in emphysematous lungs (17, 27, 

28). In contrast to Kasahara et al. (28), where authors showed in emphysematous 

lungs that VEGF and its receptor VEGF-R2 were decreased in total lung extracts, as 

measured with ELISA or western blot analysis, we found that the epithelial and 

endothelial cells in the alveolar spaces and in the most distal airways were intensely 

positive for VEGF and KDR/Flk-1 in COPD patients.  Furthermore, our patient 

groups could be considered as mild to moderate COPD whereas, in the study of 
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Kasahara the selected patients were solely emphysematous in origin. Our findings of 

increased VEGF expression in viable cell populations represent in part a successful 

attempt to repair sustained damage and perhaps contribution to vascular remodeling 

and their participation in the establishment and maintenance of the functional blood-

gas interface, maturation, survival and proliferation of capillary endothelial cells (29). 

In adult lungs, VEGF and its receptor system could contribute in the maintenance of 

endothelial and epithelial cell viability in response to injury (31). 

  Interestingly, immunoreactivity for VEGF in intimal and medial VSM cells and 

for Flt-1 as well as KDR/Flk-1 in endothelial cells of pulmonary arteries and alveolar 

vessels was elevated in patients with COPD. The highest levels of VEGF expression in 

the pulmonary vasculature were observed in the medial VSM cells and of KDR/Flk-1 in 

endothelial cells of arteries with a diameter of approximately 200 µm which are known 

to play an important role in pulmonary blood pressure regulation and vascular resistance 

(14, 30). Pulmonary hypoxia and hypertension with increased sheer stress are 

pathophysiological conditions that have been shown to increase the expression of VEGF 

in VSM cells (13, 14). Blockade of KDR/Flk-1 is associated with obliterative endothelial 

cell proliferation in pre-capillary arterioles with abnormal vessel development and at the 

same time with induction of capillary endothelial and cell death by apoptosis, together 

leading to death in rat embryos, similar to that seen in human primary pulmonary 

hypertension subjects (13, 18, 31, 32).  In a follow-up study they found that after 

VEGFR-2 blockade apoptosis predominated in areas of oxidative stress and that 

apoptosis blockade by a broad spectrum caspase inhibitor markedly reduced the 

expression of markers of oxidative stress (33). Hypoxia, oxidative stress and 

pulmonary hypertension are pathological features often seen in advanced COPD 

patients and increased VEGF expression may lead to increased or even abnormal 

proliferation of endothelial and VSM cells in pulmonary vessels. This suggests a 

potential role of this endothelial mitogen in peripheral angiogenesis and vascular 

remodeling, possibly in orchestration with other smooth muscle specific growth factors 

like FGF-2, PDGF and TGF-ß1 (12, 34-36). 

 We observed increased expression for VEGF and unchanged expression levels 

for Flt-1 and KDR/Flk-1 in bronchiolar and alveolar epithelial cells as well as in 

airway smooth muscle cells in COPD. It has been previously documented that the 

expression of VEGF and receptor KDR/Flk-1 can also be induced by stimuli like 
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hypoxia and oxidative stress in other than endothelial cells, such as epithelial and 

smooth muscle cells (33, 37, 38). In a recent report, Kanazawa and colleagues (39) 

have demonstrated that VEGF levels in induced sputum were higher in patients with 

bronchitis and lower in emphysema as compared to normal controls. Moreover, 

VEGF levels in bronchitis patients were inversely correlated with FEV1 values. Our 

data on inverse correlation of VEGF levels in various airway and vascular cells is in 

agreement with this report.  In our study subjects with COPD could not be subdivided 

into patients with either chronic bronchitis or emphysema alone. Furthermore, the 

nature of the human material examined (sputum) in the study of Kanazawa and 

colleagues is different than the lung tissue where we immunohistochemically localize 

and quantify the VEGF and its receptor levels.  

 Recent studies indicated that the expression of VEGF was increased in bronchial 

and alveolar epithelial cells and also was induced in α-SMA positive (myo-)fibroblasts in 

bleomycin induced fibrosis in the rat and in human patients with pulmonary fibrosis and 

that these fibrotic regions were densely populated by mast cells and macrophages with 

elevated KDR/Flk-1 expression (15, 17). We have shown earlier that mast cells and 

macrophages were increased in bronchiolar airway epithelium and reported an 

increased expression of TGF-ß1 in bronchiolar and alveolar epithelial cells in patients 

with COPD (20, 21). We found a significant correlation between VEGF expression in 

epithelial cells with the expression of TGF-ß1 published on same patient groups earlier 

(20) suggesting that the VEGF/Flk-1 system, possibly together with TGF-ß1, 

represents a molecular link between inflammatory cell accumulation and proliferation 

of myo-fibroblasts. Summarizing, the elevated VEGF and TGF-ß1 expression on 

bronchiolar epithelial cells and macrophages and the presence of KDR/Flk-1 and Flt-1 

suggests a mechanism of initiating and perpetuating fibrosis at sites of tobacco 

induced injury contributing to airway remodeling in COPD. As inhaled corticosteroids 

could decrease the VEGF expression levels (40), but this was not the case in our study 

as none of the patient received inhaled corticosteroid therapy except 4 patients 

received corticosteroids perioperatively. However, caution must be exercised in 

extrapolating the expression data based on fourteen patients in each group as the 

increased trend of VEGF expression in bronchial airways and KDR/Flk-1 in bronchial 

and bronchiolar airway smooth muscle could reach significance if more patients 

would have been examined.  
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 Taken together, these findings strongly suggest a role for VEGF and its 

receptors in airway and vascular remodeling, and thereby in the development of 

airway obstruction in COPD. At present, our knowledge of airway and vascular 

remodeling during the development of COPD is far from complete. Probably, many 

growth factors, among them VEGF, play an essential role in the pulmonary and vascular 

viability and repair in response to tissue injury. The increased pulmonary VEGF 

expression in airways, parenchymal lining and small-diameter pulmonary vessels in 

COPD may reflect an, in part unsuccessful, attempt to stimulate tissue repair 

mechanisms caused by tobacco-induced injury.  
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4.1 Summary  
An important feature of chronic obstructive pulmonary disease (COPD) is airway 

remodeling of which the molecular mechanisms are poorly understood. We assessed 

the role of fibroblast growth factors (FGF-1 and FGF-2) and receptor, FGFR-1 in 

bronchial airway wall remodeling in patients with COPD (FEV1 <75%; n=15) and 

without COPD (FEV1 >85%; n=16). FGF-1 and FGFR-1 were immunolocalized in 

bronchial epithelium, airway smooth muscle (ASM), submucosal glandular 

epithelium and vascular smooth muscle. Quantitative digital image analysis revealed 

increased cytoplasmic expression of FGF-2 in bronchial epithelium (0.35±0.03 vs. 

0.20±0.04, p<0.008) and nuclear localization in ASM (p<0.0001) in COPD patients as 

compared to controls. Elevated levels of FGFR-1 in ASM (p<0.005) and of FGF-1 

(p<0.04) and FGFR-1 (p<0.001) in bronchial epithelium were observed. In cultured 

human ASM cells, FGF-1 and/or FGF-2 (10 ng/ml) induced cellular proliferation, as 

shown by 3H-thymidine incorporation assay and by cell number counts. Steady state 

mRNA levels of FGFR-1 were elevated in human ASM cells treated with either FGF-

1 or FGF-2. The increased bronchial expression of fibroblast growth factors and their 

receptor in patients with COPD, and the mitogenic response of human ASM cells to 

FGFs in vitro, suggest a potential role for FGF/FGFR-1 system in the remodeling of 

bronchial airways in COPD.  

 

4.2 Introduction 
Chronic obstructive pulmonary disease (COPD) is a global health problem with 

increasing morbidity and mortality (1).  One of the major determining factors is 

tobacco smoking (2).  However, only ten percent of all smokers develop COPD.  One 

of the key pathological features of COPD is thickening of airway walls, which is 

thought to be a result of a chronic smouldering inflammatory process, in which 

neutrophils, macrophages and T-lymphocytes play a role, and which is associated 

with hyperplasia of airway smooth muscle cells and (myo-)fibroblasts, and increased 

deposition of extracellular matrix (3).  The bronchial epithelium and airway smooth 

muscle are two major cellular structures involved in airway remodeling (3).  A variety 

of growth factors and cytokines including platelet–derived growth factor-B (PDGF-B) 

and epidermal growth factor (EGF), transforming growth factor-β (TGF-β) that are 
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released from these sites of the airway wall have the potential to contribute to the 

pathogenesis of airway remodeling (4-6).  Supporting in vitro evidence for a 

relationship between epithelial injury and enhanced airway remodeling is provided by 

studies of co-cultures from bronchial epithelial cells and myo-fibroblasts (7, 8): these 

studies revealed enhanced cellular proliferation and increased collagen expression 

resulting from the interaction of these cells with several growth factors, including 

basic FGF (FGF-2), insulin-like growth factor-1, PDGF-B, TGF-β, endothelin-1 and 

EGF. 

Fibroblast growth factors (FGFs) may well play a pivotal role in regulating the 

airway wall remodeling.  A number of studies have demonstrated that members of 

EGF and FGF family contribute to chronic inflammatory and tissue repair processes 

as well as to fibrosis in chronic airway diseases such asthma (9, 10).  Fibroblast 

growth factors bind to four high-affinity, transmembrane tyrosine-kinase receptors 

(FGFR1-4).  Distinct FGF subtypes bind with different affinity to the various FGF 

receptors.  Alternative splicing and regulated protein trafficking further modulate the 

intra-cellular events initiated by FGF ligand-receptor interaction (11).  Increased 

expression of FGF-1 and FGFR-1 has been shown during the development of lung 

fibrosis (12) and FGF-2 has been implicated in the pathogenesis of obliterative 

bronchiolitis in lung transplants  (13).   

We postulate that the FGF-FGFR system is involved in the pathogenesis of 

COPD. We investigated the expression patterns of FGF-1, FGF-2 and FGFR-1 in 

bronchial airways of (ex-) smokers with or without COPD.  In addition, we examined 

the cell proliferation and the expression of FGFR-1 in cultured human ASM cells 

stimulated with FGF-1 and FGF-2. 

 

 

4.3 Materials and methods 
Selection of Specimens 

The Medical Ethics Committees of the Leiden University Medical Center and 

Southern Hospital Rotterdam, The Netherlands approved the study. Lung tissue from 

the hospitals pathology archives was obtained from patients who underwent 

lobectomy or pneumonectomy. Based on lung function data, patients were assigned 

(6, 14) to the COPD group (n = 15) consisting of fifteen subjects with forced one-
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second expiratory volume (FEV1) <75% of predicted value (15) before 

bronchodilatation, FEV1/FVC ratio <75%, a reversibility in FEV1 ≤12% of predicted 

after 400 µg inhaled salbutamol, and with a carbon monoxide diffusion capacity (Kco) 

≤80% of predicted value or to the Non-COPD group (n = 16) consisting of sixteen 

subjects with FEV1 >85% before bronchodilatation, FEV1/FVC ratio >85% and the 

total lung capacity (TLC) of over 80% (15).  The patients in these two groups 

participated in a larger research project, part of which has been published previously 

(16, 17). Clinical data of all patients were examined for possible co-morbidity and 

medication usage.  All pulmonary function tests were performed within 3 months 

prior to surgery as described earlier (16). Lung function data and other patient 

characteristics are shown in Table 4.1. 

 

Immunohistochemistry  

Serial sections of 4 µm were deparaffinized, rehydrated and immunostained using a 

Multilink labelling system (Biogenex, San Ramon, USA) and specific anti-human 

mouse monoclonal antibodies against α-smooth muscle actin (α-SMA, NeoMarkers, 

Fremont, USA), Ki-67 (Biogenex, San Ramon, USA), FGF-2 (Transduction 

Laboratories, Lexington, USA), FGF-1 and FGFR-1 (kind gift from Dr. J. Walters) as 

described previously (18, 19). Color was developed using New Fuchsin or 3, 

3-diaminobenzidine as chromogens. Slides were counter stained with Mayer's 

hematoxylin. Positive controls consisted of human breast carcinoma and placental 

tissue. The optimal dilutions for all antibodies were identified by examining the intensity 

of staining obtained with a series of dilutions: the optimum concentration resulted in 

specific and easily visible signal on control specimens. Negative controls consisted of 

omission of the primary antibody. 

 

Quantitative analyses of immunostaining 

Digital images (pixel size: 736x574) from each subject were analysed using Leica 

Qwin image analysis system (Leica BV, Rijswijk, The Netherlands). Staining patterns 

of FGF-1, FGF-2, FGFR-1 and α-SMA were analysed by interactively drawing areas 

and assessing the area of positive staining divided by the total measured cellular area 

of the respective epithelial or ASM layer. The nuclear localization of FGF-2 in ASM 

was assessed by computerized counting of individual nuclei and the data is expressed 
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as the number of positive nuclei divided by total nuclei (labelling index, LI). In case 

of vascular expression of FGFs and FGFR-1, quantitative analysis was performed 

using an arbitrary visual scale with grading scores of 0, 1, 2, and 3 (Figure 4.1) 

representing none (panel A), weak (panel B), moderate (panel C) and intense (panel 

D) staining, respectively (6, 14).  

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Immunohistochemical localization of FGF-2 in bronchial vessels. 
Representative examples of staining intensity pattern used for visual scoring. 
Photomicrographs depict lung tissue sections from patients without COPD (A and B) and with 
COPD (C and D) showing nuclear staining of FGF-2 in vascular smooth muscle cells. Panels 
A to D show representative examples of staining intensities used for visual scoring, 0-3 
respectively. Original magnification: x100. 
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Isolation and culture of human ASM cells 

Human airway smooth muscle cells were from three different non-asthmatic, non-

COPD and (ex) smoker donors who underwent lobectomy or pneumonectomy as 

described previously (20, 21). ASM cells were immunocytochemically characterised 

(α-SMA and smooth muscle myosin heavy chain staining) and used for experiments 

at passage 4-5. 

 

ASM cell Proliferation assays 

Cells were seeded at a density 1x104 cells/well in 96-wells plates, cultured until 

confluence, subsequently serum deprived to synchronise the growth and incubated 

with either 0.1, 1.0, 10, or 50 ng/ml human recombinant FGF-1 (Promega, Madison, 

USA) and/or FGF-2 (Sigma-Aldrich, St. Louis, USA) for 8, 24 and 48 h. Control cells 

received FBS-free DMEM alone. Five hours prior to the end of the treatment, 

1µCi/well of [3H]-thymidine (Amersham, Roosendaal, the Netherlands) was added. 

The cells were harvested on glass fiber filters and radioactivity was assessed using a 

Microplate Scintillation β-counter (Topcount, Packard, Meridan, USA). The mean 

CPM of quadruple wells and subsequently from three different cell batches was 

expressed as fold change compared to controls. In a parallel series of experiments, 

cells in quadruple were stimulated for 24 and 48 hours and processed for cell counting 

in the Casey1 system (Schärfe system GmbH, Reutingen, Germany) (20). 

 

RNA isolation and RT-PCR 

Growth–arrested ASM cells were incubated with either FGF-1 or FGF-2 (10 ng/ml) 

for 1, 2, 4, 8, 24 and 48 h. Total RNA was extracted, treated with RNase free DNase 

to eliminate contaminating genomic DNA and processed for the synthesis of cDNA 

and PCR (20, 21). Human specific forward and reverse primers spanning over a 497 

bp fragment encoding FGFR-1 and a 625 bp fragment of β-actin cDNAs were 

employed (22, 23). The PCR products were separated on 1.5% agarose gel, digitally 

photographed and the intensity of the bands was quantified in relation to β-actin band 

using Molecular Analyst (V 1.5) image analysis program (Biorad Laboratories, 

Hercules, USA) and values were expressed as a ratio to the controls. 
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Statistical Analysis 

Data were analysed for statistical significance using the unpaired, two-tailed Students’ 

t-test as well as the non-parametric Mann-Whitney test, where appropriate.  The data 

were expressed as mean ± SEM. Staining for different compartments were correlated 

with FEV1 and Kco using Pearson’s correlation analysis. Differences with p ≤ 0.05 

were considered to be statistically significant. 

 

4.4 Results 

Clinical Parameters 

The clinical and lung function characteristics of all subjects included in the study are 

listed in Table 4.1 (16). The COPD group demonstrated an elevated residual volume 

(RV), whereas the CO-diffusion (Kco) was reduced as compared to controls (p<0.005).  

The subjects in the two groups did not differ significantly in age, total lung capacity 

(TLC), reversibility in FEV1, smoking status (pack-years) or steroid use (Table 4.1). 

 

Localization and quantification of FGF-1 and FGF-2 

FGF-1 and FGF-2 were localized in bronchial epithelial and airway smooth muscle 

cells (ASM), epithelial cells of the mucous glands and VSM cell.  In addition, FGF-1 

was detected in the epithelial basement membrane (BM). Interestingly, FGF-2 was 

observed in the cytoplasm of bronchial surface and gland epithelium whereas in 

smooth muscle cells of the airway and blood vessels, the immunopositivity was 

nuclear. This latter, nuclear staining pattern was exclusively observed in smooth 

muscle cells and it was patchy so that positive nuclei were seen next to negative ones.  

Microphotographs showing the expression patterns of FGF-1 and FGF-2 are presented 

in Figure 4.2, panels A, C and E, G (non-COPD), and B, D and F, H (COPD), 

respectively.  Video image analysis revealed that the expression levels for FGF-1 in 

the bronchial epithelium (Figure 4.3, panel A) were increased significantly 

(stained/total epithelial area: 0.32±0.04 vs. 0.20±0.03, p<0.04) in COPD cases as 

compared to non-COPD.  In ASM cells no difference was found for FGF-1 

(0.16±0.04 vs. 0.14±0.03, p=0.77).  
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Table 4.1  Subject characteristics and clinical parameters 

 

 Non-COPD COPD 

FEV1 (%pred.) 97±1.6 54±3.3* 

dFEV1 (% change from pred.) 3±0.6 4±0.9 

FEV1/FVC (%pred.) 100±2.1 58±2.3* 

TLC (%pred.) 104±1.9 103±3.6 

RV (%pred.) 117±5.4 141±10* 

Kco (%pred.) 94±2.0 55±5.4* 

Sex (Male/Female) 13/3 14/1 

Age (years) 59±3.5 64±2.6 

Smokers/ex-smokers/non-smokers 11/3/2 12/3/0 

Pack-years 44±8.6 31±0.3 

Steroid use (yes/no/unknown) 0/15/1 3/10/2 

 

 

Abbreviations: Forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), 
total lung capacity (TLC), residual volume (RV), reversibility of FEV1 after 400 µg 
salbutamol (dFEV1) and carbonmonooxide diffusion constant (Kco) are given as percentage 
of predicted.  * P < 0.005 versus non-COPD. The patients in these two groups participated in 
a larger project, part of which has been published previously (16, 17). 

 

FGF-2 expression however was clearly up-regulated in bronchial epithelium of COPD 

cases (0.35±0.03 vs. 0.20±0.04, p<0.008, Figure 4.3, panel B) and ASM nuclei (LI 

ASM nuclei, 0.84±0.07 vs. 0.32±0.06, p<0.0001, Figure 4.3, panel C).  The 

distribution of total nuclei/total ASM tissue area remained unchanged in both the 

groups indicating that the number of nuclei as well as the ASM area increased 

simultaneously, keeping the ratio equal in both groups (data not shown).  

Furthermore, it appeared that COPD was associated with an increase in FGF-2 

expression in ASM cells with perhaps increase in their size but without their apparent 

proliferation.   
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Figure 4.2 Immunohistochemical localization of FGF-1 and FGF-2 in central 
airways. Photomicrographs of central bronchial tissue sections from patients without COPD 
(A, C, E and G) and with COPD (B, D, F and H).  Panels A and B show representative 
examples of FGF-1 protein staining (red new-fuchsine) in bronchial epithelium.  Panels C and 
D show representative staining in airway smooth muscle (ASM) cells. Original magnification: 
x200. Panels E and F show representative examples of FGF-2 protein staining (brown 3, 
3-diaminobenzidine) in bronchial epithelium. Panels G and H show representative nuclear 
staining in airway smooth muscle (ASM) cells. Original magnification: x400. Scale bar = 50 
µm.  
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Figure 4.3  Quantitative analysis of FGF-1 and FGF-2 expression. Graphic 
representations of FGF-1 expression using video image analysis (A) in Bronchial epithelium 
(EPI) and Airway Smooth muscle cells (ASM), and FGF-2 expression (B) in Bronchial 
epithelium depicted as a ratio of stained area divided by tissue area in non-COPD (white bars) 
and COPD groups (gray bars). (C) FGF-2 expression in ASM cells presented as Labeling 
Index (LI) of total ASM nuclei. Values are mean ± SEM from 13-15 patients in each group. * 
P <0.05 versus the non-COPD group. 
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Localization and quantification of FGFR-1 

FGFR-1 immunoreactivity was detected in bronchial epithelial and airway smooth 

muscle cells, and the endothelium and vascular smooth muscle of bronchial small 

vessels. Microphotographs showing the expression pattern of FGFR-1 are presented in 

Figure 4.4, panels A and C (non-COPD), and B and D (COPD).  Graphic 

representations of the data as assessed by video image analysis for FGFR-1 

immunostaining is shown in Figure 4.5, panel A.  The expression of FGFR-1 was up-

regulated in COPD in bronchial epithelium (0.21±0.03 vs. 0.08±0.02, p<0.001) and 

ASM cells (ASM/total ASM area, 0.31±0.05 vs. 0.11±0.03, p<0.005). Assessing the 

expression of both FGF-1 and FGF-2 in VSM cells using visual scoring, only FGF-2 

expression levels were found to be higher in COPD as compared to non-COPD (fold 

increase 1.65, p<0.01, Figure 4.5, panel B). Elevated staining of FGFR-1 in COPD as 

compared to non-COPD patients was observed in smooth muscle of subepithelial 

microvessels (1.6 fold increase, p<0.05, Figure 4.5, panel B). 

Bronchial airways were also stained with smooth muscle specific antibody, α-

SMA (Figure 4.4, panel E) as well as with cell proliferation marker, Ki-67 (Figure 

4.4, panel F).  The majority of ASM and VSM cells stained positive for α-SMA in 

both non-COPD and COPD groups.  Ki-67 immunoreactivity was mainly observed in 

the nucleus of basal and parabasal epithelial cells, and also in some inflammatory 

cells.  Surprisingly, we only found very rarely an ASM cell stained with Ki-67 and 

this was the case in both COPD and non-COPD groups. 

 

 

Correlation of FGFs and FGFR-1 expression with clinical data 

Pearson’s correlation of FGF-1, FGF-2 and FGFR-1 expression with clinical 

parameters in COPD and non-COPD patients is summarized in Figure 4.6.  For 

FGF-1, FGF-2 and FGFR-1, we observed a significant, inverse correlation between 

the epithelial expression with both FEV1 and FEV1/FVC, and a positive correlation of 

epithelial FGF-1 expression and packyears (r=0.49, p<0.01). Moreover, we found 

significant inverse correlation of FGF-2, and FGFR-1 staining in ASM cells with both 

FEV1 and FEV1/FVC (r = -0.71, p<0.0001).  Regarding the expression of FGFR-1 and 

its ligands, we observed a significant positive correlation with FGF-1 (r=0.53, 
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p<0.001) and with FGF-2 (r=0.64, p<0.001) in ASM.  In the epithelium these values 

were r=0.52 (p<0.001) and r=0.64 (p<0.001), respectively. However, no significant 

correlation was found between FGF-1 and FGF-2 localization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.4 Immunohistochemical localization of FGFR-1, αααα-SMA and Ki-67 in 
central airways. Photomicrographs of central bronchial tissue sections from patients without 
COPD (A) and with COPD (B) showing FGFR-1 staining (red new-fuchsine) in bronchial 
epithelium. Panels C  (non-COPD) and D (COPD) show representative staining in airway 
smooth muscle (ASM) cells. Representative staining in bronchial airways for α-SMA (E) and 
for cell proliferation marker, Ki-67 immunoreactivity (F) in COPD cases. Original 
magnification: x200. Scale bar = 50 µm. 
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Figure 4.5  Quantitative analysis of FGFs and FGFR-1 expression. Graphic 
representations of FGFR-1 expression using video image analysis (A) in Bronchial epithelium 
(EPI) and Airway Smooth muscle cells (ASM), depicted as a ratio of stained area divided by 
tissue area in non-COPD (white bars) and COPD groups (gray bars). (B) Graphic 
representations of visual staining scores for FGF-1, FGF-2 and FGFR-1 (mean ± SEM) in 
subepithelial microvasculature (VSM) in non-COPD (white bars) and COPD groups (gray 
bars). * P <0.05 versus the non-COPD group. 
 

 

 

A 

B 



Chapter 4                                                                      Airway Remodeling in COPD 

 
 
106

 

Mitogenic effects of FGFs in cultured human ASM cells 

In order to further investigate the role of fibroblast growth factors on airway smooth 

muscle remodeling, isolated human airway smooth muscle cells were stimulated in 

vitro with increasing concentrations of FGF-1 or FGF-2. Both FGF-1 and FGF-2 

resulted in significantly increased cell numbers at a concentration of 10ng/ml after 48 

h of incubation.  Therefore, we opted for this concentration of both the growth factors 

in our further experiments.  Figure 4.7, panel B shows the fold increase in cell number 

after 48 hours of stimulation with 10 ng/ml FGF-1, FGF-2 and the combination of the 

two over the control.  Significantly increase in ASM cell numbers (fold increase) after 

48 h of incubation with FGF-1 (1.37±0.08, p<0.01) of FGF-2 (1.45±0.17, p=0.05) or 

both ligands (1.42±0.14, p<0.03) was observed. 

A graphic representation of time dependent [3H]-TdR uptake at a 

concentration of 10 ng/ml of FGF-1 or FGF-2 is presented in Figure 4.7, panel C.  

After 24 of stimulation, we found significantly increased [3H]-TdR uptake with FGF-

1 and FGF-2, but after 48 hours only with FGF-2.  The combined incubation with 10 

ng/ml of each FGF-1 and FGF-2 resulted in significantly increased thymidine uptake 

that was comparable to 10 ng/ml of FGF-2 alone.  Eight hours of stimulation with 

either FGF-1 or FGF-2 did not result in marked increase in [3H]-TdR uptake (Figure 

4.7, panel C).  

To examine whether human ASM cells express FGFR-1 and if this expression 

is regulated by FGF-1 and/or FGF-2, we performed RT-PCR on cDNA templates 

derived from cells treated with 10 ng/ml of FGF-1 or FGF-2 for various time-periods 

and compared the expression pattern with controls.  FGFR-1 mRNA could be detected 

in ASM cells using RT-PCR for all treatments at all different time-points (Figure 4.8). 

A photograph showing the representative example, after agarose gel-electrophoresis 

with PCR products for FGFR-1 (497 bp) and β-actin (625 bp), is shown in Figure 

4.8B.  Both bands were analysed using appropriate image analysis software and 

FGFR-1/ β-actin values of FGF-1 or FGF-2 treated ASM cells at different time-points 

were assessed in relation to controls (Figure 4.8B). Both bands were analysed using 

appropriate image analysis software and FGFR-1/ β-actin values of FGF-1 or FGF-2 

treated ASM cells at different time-points were assessed in relation to controls. 
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Figure 4.6  Correlation analysis of FGFs and FGFR-1 expression. Correlation was 
made for Packyears with FGF-1 in bronchial epithelium, FGF-2 in ASM with forced vital 
capacity and FGFR-1 and FGFR-1 in ASM with forced vital capacity.  Correlation coefficient 
(r) was obtained using linear regression (Pearson’s) analysis and significance level P value, P 
< 0.05. Abbreviations: Forced expiratory volume in 1 second (FEV1), FEV1/FVC (forced vital 
capacity). 
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Figure 4.7  Assessment of human ASM cell proliferation in relation to FGF-1 and 
FGF-2. Panel A:  A graphic representation of dose-dependent increase in cell number of 
human ASM cells after 48 hours stimulation with increasing concentrations of FGF-1 or FGF-
2.  Panel B: Fold induction in ASM cells relative to control after stimulation with 10 ng/ml of 
FGF-1, FGF-2 or a combination of both ligands for 48 h. Panel C: Time course of [3H]-
thymidine uptake in ASM cells after stimulation with 10 ng/ml of FGF-1 and FGF-2 a 
combination of both ligands. Data is represented as mean fold increase in relation to control 
from three independent experiments performed in quadruplicate. Values are mean ± SEM and 
*P <0.05 versus the control group. 
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Figure 4.8  RT-PCR analysis of FGFR-1 mRNA expression in human ASM cells. 
Agarose gel electrophoresis of RT-PCR products of cDNA synthesized from human ASM 
cells treated with FGF-1 or FGF-2 (10ng/ml) (n=3). Representative example of an agarose 
gel-electrophoresis (Panel A) with PCR products for FGFR-1 (497 bp) and β-actin (625 bp).  
The different lanes marked on top denote: pGEM marker (M), Control cells at 1, 8, 24h (C1, 
C8, C24), FGF-1 or FGF-2 stimulated ASM cells for 1,2, 4, 8, 24 and 48 h. Bar diagram 
showing quantitative analysis of FGFR-1 mRNA expression (Panel B). Intensity of the bands 
was analyzed using digital image analysis software and FGFR-1/β-actin ratio was calculated 
as described in the text. Values are mean±SEM from 4 independent measurements. 
 

Stimulation with 10 ng/ml FGF-1 increased FGFR-1 mRNA expression by 1.31±0.11 

fold at 8 h and by 1.23±0.12 fold at 48 h of incubation as compared to control 

(p<0.05).  Whereas, FGF-2 stimulation resulted in elevated levels for FGFR-1 mRNA 

at 4 h (1.32±0.14 fold, P<0.05) and at 48 h (1.21±0.13, ns) of incubation. 

A 

B 
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4.5 Discussion 
In this study we have shown that COPD is associated with an increased expression of 

FGF-1, FGF-2 and FGFR-1 in the bronchial epithelium and an increased expression 

of FGF-2 and FGFR-1 in airway smooth muscle.  Correlation analysis revealed a 

significant inverse correlation of FEV1/FVC with FGF-1, FGF-2 and FGFR-1 staining 

in the bronchial epithelium and with FGF-2 and FGFR-1 expression in airway smooth 

muscle.  Additionally, a positive correlation of packyears with FGF-1 was found in 

bronchial epithelium, indicating that the degree of pulmonary FGF-1 expression is 

related to the amount of airway exposure to smoke.  Our in vitro results indicate that 

FGF-1 and FGF-2 are potent mitogens for isolated human airway smooth muscle 

cells. Taken together, these findings strongly suggest that the FGF-FGFR system 

contributes to the airway remodeling. 

Using video image analysis, we assessed systematically the expression of 

FGF-1, FGF-2 and FGFR-1 in the airways of non-COPD and COPD patients.  

Members of the fibroblast growth factor family FGF-1, FGF-2 and FGFR-1 are 

constitutively expressed in normal human lungs, particularly in bronchial epithelium, 

alveolar macrophages and monocytes, as well as in the intima and media of 

pulmonary blood vessels.  Pulmonary expression patterns of FGF-1, FGF-2 and 

FGFR-1, found in our study are in agreement with results by Hughes and Hall  (24) on 

the expression of these growth factors in the normal lungs. In additional, we observed 

FGF-1 staining and FGF-2 immunoreactivity in airway smooth muscle cells.  

Several studies have commented on the importance of structural and functional 

abnormalities and the expression of growth factors in the bronchial airways of patients 

with chronic obstructive lung diseases like COPD (25-29). In asthma many growth 

factor/receptor systems are though to be involved in tissue remodeling, including the 

EGF/EGFR, TGF-β, IGF-1 and FGF/FGFR systems. The combined effects of EGF, 

FGF-1 and FGF-2, IGF-1 and TGF-β on epithelial cells and (myo-) fibroblasts were 

shown to be necessary for regulating repair of epithelial injury by induction of cellular 

proliferation and collagen synthesis (8, 30, 31).  These same factors could however 

also be involved in fibrosis and tissue remodeling in asthma and possibly also in 

COPD (32).  
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Fibroblast growth factor family members are implicated in tissue remodeling 

in a wide variety of pathophysiological conditions including pulmonary hypertension, 

ischemic heart disease and interstitial lung fibrosis (12, 33-35).  Barrios and co-

workers (12) showed FGF-1 and FGFR-1 expression in experimentally induced 

pulmonary fibrosis.  Becerril and colleagues showed that FGF-1 expression in the 

lung fibroblasts results in down-regulation of collagen synthesis and up-regulation of 

collagenases, which may protect against fibrosis (36). Furthermore, increased FGF-2 

and FGFR-1 expression in vascular smooth muscle cells in vitro in response to 

vascular injury has been shown to be associated with extracellular matrix remodeling, 

cellular proliferation, down-regulation of collagen type I and up-regulation of 

collagenase, MMP-1 (37). Our findings of up-regulated FGF-1, FGF-2 and FGFR-1 

expression could indicate that such compensatory mechanisms are also active in 

COPD, since smoking has been suggested to have a strong effect on the misbalance of 

proteases/anti-proteases including elastases, collagenases and extracellular matrix 

deposition in the lungs.  Furthermore, FGF-1 and FGF-2 in the bronchial epithelium 

could be involved in proliferation and repair of epithelial cells after injury, which 

could be higher in COPD patients. This notion is supported by our findings of 

increased Ki-67 expression in the bronchial epithelium of COPD patients. Several 

authors also showed this expression in proliferating airway epithelial cells in biopsies 

of normal, asthma and chronic bronchitis patients (38, 39).  

In the present study, we show increased FGF-2 and FGFR-1 expression but 

not FGF-1 in airway smooth muscle cells using immunohistochemistry. By 

interactively counting of ASM nuclei using video image analysis we found a highly 

significant increase in positive cells in COPD.  Singh and colleagues have shown that 

increased nuclear expression of high molecular weight (HMW) FGF-2 in vascular 

smooth muscle and endothelium precedes arterial enlargement in response to 

increased arterial blood flow in vivo (34).  Although the function of this FGF-2 in the 

cell nucleus remains unclear, this FGF-2 is believed to be targeted for translocation to 

the nucleus.  Recently, the role of FGF-2 in the nucleus has been partly clarified, as 

has been reviewed in two recent reviews (40, 41). The basic FGF gene can produce at 

least five different isotypes: the conventional 18 kDa extracellular bFGF, as well as 

four additional high molecular weight forms which are predominantly nuclear in 

localization. All five isoforms are able to translocate to the nucleus upon activation of 

different cells.  In the nucleus, FGF-2 can act as modulator of ribosomal gene 
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transcription via direct interaction of the regulatory subunit of the protein kinase 

CKII. Also the FGF receptors can be translocated to the nucleus, as was evidenced by 

a study of Stachowiak and co-workers showing co-localization of the receptor 

FGFR-1 and FGF-2 in the nucleus, which could indicate a novel FGFR-1 and FGF-2 

functional mechanism (42).  From the pattern we observed, we assume that the 

positivity in the nuclei was not due to an artefact but representative of specific 

localization of the appropriate antigen by the antibody used. In the same section some 

nuclei were distinctly positive, whereas, adjoining nuclei were clearly negative. Taken 

together the role of FGF-2 isoforms in the nucleus is very complex, but may well 

represent an important feature in the functional regulation. 

Our ASM cell culture experiments in vitro indicate that FGF-2 and to a lesser 

extent FGF-1, are potent mitogens for airway smooth muscle cells, as was evidenced 

from increased [3H]-thymidine incorporation. However, scarce Ki-67 positive ASM 

cells in COPD despite enhanced FGFs expression indicate for low turn over and 

untimely proliferation due to tissue damage.  Our results are in accordance with 

previous studies on the mitogenic activity of these molecules (43, 44) and further 

strengthen for the role of FGFs COPD. Pearson’s correlation analysis revealed 

significant inverse correlation of FEV1 on the one hand with expression of FGF-1, 

FGF-2 and receptor FGFR-1 in bronchial epithelium, and on the other hand with 

FGF-2 and FGFR-1 in ASM. These findings may indicate that the expression of these 

molecules is related to airflow limitation. Additionally, we observed a positive 

correlation of epithelial FGF-1 expression and packyears in all patients, although no 

significant difference was observed when comparing packyears between non-COPD 

and COPD patients. This suggests that responses to cigarette smoke exposure are 

involved in epithelial cell function.  We also observed highly significant correlation of 

FGF-1/FGFR-1 co-localization in bronchial epithelium and FGF-2/FGFR-1 in ASM 

cells. These findings indicate that FGF-1 and FGF-2 are differentially expressed and 

may regulate locally different events in the corresponding tissues.  

In vivo and in vitro data indicate that smooth muscle cells, and their cross-talk 

with myo-fibroblasts and inflammatory cells via growth factors and cytokines, are 

major actors in airway remodeling due to a variety of pathophysiological conditions  

(36, 45-47).  In line with this general picture, our findings suggest that the FGF-FGFR 

system contributes in airway remodeling in COPD.  Taken together, our results 

support the notion that increased bronchial expression of FGF-1, FGF-2 and FGFR-1 
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in patients with COPD could participate in regulating the process of pulmonary 

airway remodeling.  Blockade of these pathways should be considered in the 

development of therapeutic interventions aimed to prevent or reverse chronic airflow 

limitation in COPD.   
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5.1    Summary  
Remodeling of airways and blood vessels is an important feature of chronic 

obstructive pulmonary disease (COPD), however its molecular mechanisms are 

poorly understood. We examined the expression patterns of various extracellular 

matrix (ECM) components, including collagens (total collagen, subtypes collagen I, 

III and IV), fibronectin and laminin in bronchi from smokers with COPD (FEV1 
≤75% pred.; n=15) and without COPD (FEV1 ≥85% pred.; n=16). 

Immunohistochemical staining results were assessed by a validated visual scoring 

method (grade 0-4). Staining for ECM components was observed in the surface 

epithelial basement membrane (SEBM), and within the interstitium and vessels of the 

lamina propria and adventitia of airways. In COPD, total collagen was increased in 

the SEBM (p<0.01) at sites of intact bronchial epithelium, but was not changed in the 

interstitial space and vessels of the airway lamina propria and adventitia. Deposition 

of collagen I and III, however, was enhanced in the SEBM both at sites of damaged 

and of intact surface epithelium (p<0.05), lamina propria (p<0.02) and bronchial 

adventitia (p<0.05) in COPD. In COPD, fibronectin was increased in vessels of the 

lamina propria (p<0.05) and laminin in airway smooth muscle (p<0.01) and the 

microvasculature (p<0.05). FEV1 values inversely correlated with collagens in the 

SEBM, fibronectin in bronchial vessels and laminin in the ASM. We conclude that 

smokers with COPD exhibit increased bronchial deposition of collagens I and III, 

fibronectin and laminin as part of the airway remodeling process in COPD. 

 

5.2 Introduction   
Chronic obstructive pulmonary disease (COPD) is a global health problem with 

increasing morbidity and mortality.  One of the major causal factors is tobacco 

smoking, but of all smokers, only 10-20 percent develop COPD (1).  Pathological 

features of COPD include thickening of airway walls, probably as a result of ongoing 

chronic inflammatory processes with an influx of neutrophils, macrophages and T-

lymphocytes (2).  The resultant changes in the airway wall in COPD include 

hyperplasia of subepithelial (myo-)fibroblasts and airway smooth muscle cells (3, 4).  
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Previous studies on the pathology of COPD have focused on alterations in small 

airways and parenchyma, where an infiltration of CD8+ T cells and macrophages, a 

loss in the number of alveolar-bronchiolar attachments and ECM (emphysema) with 

consequent loss of elastic recoil, and alveolar-peribronchial wall fibrosis with 

increased deposition of ECM proteins have been demonstrated (5-8).  Thus far, few 

studies of COPD have focused on the larger airways (9-11).  Bronchial epithelial loss 

and changes in large airway dimensions are found in COPD (3, 10, 12).  Tiddens and 

co-workers reported that the thickness of the wall area internal to the airway smooth 

muscle was increased in COPD, and that this increase correlated inversely with the 

FEV1/FVC ratio, but these authors found no difference with respect to the airway 

smooth muscle mass (10).  

Thickening of the surface epithelial basement membrane (SEBM), 

subepithelial fibrosis and the deposition of extracellular matrix proteins in the lamina 

propria are key features in asthma (13, 14). In COPD, however, changes in thickness 

of the SEBM and fibrosis of the mucosal lamina propria are less pronounced (15).  

Recent studies have indicated that the SEBM thickness in bronchial biopsies from 

smokers with chronic bronchitis was similar to that in normal subjects, unless features 

of asthma such as hyperresponsiveness or corticosteroid sensitivity were present as 

well (11, 15, 16). However, it has not been investigated in detail whether the 

composition of the SEBM is unchanged in COPD, and in addition, the lamina propria 

and adventitia may be altered.  

We postulated that alterations in total or relative content of extracellular 

matrix proteins such as collagens, including subtypes I, III and IV, fibronectin, 

laminins and proteoglycans in the various compartments of the bronchial wall 

(SEBM, lamina propria, and bronchial adventitia and smooth muscle) are present in 

the airways of (ex-) smokers with COPD. In this study we investigated the 

localization and distribution pattern of various ECM markers in bronchial tissue from 

(ex-)smokers with or without COPD. Taken together, our results indicate that COPD 

is associated with increased deposition of ECM components in the bronchial airway 

wall. This may contribute to airway remodeling and airflow limitation.   
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5.3 Materials and methods 
Bronchial tissue from lobectomy or pneumonectomy of current and ex-smokers, who 

underwent surgery for lung cancer, was obtained from the archive of the Pathology 

Departments of the Leiden University Medical Center (LUMC, Leiden, The 

Netherlands) and Southern Hospital (Rotterdam, The Netherlands), after approval of 

the study by the Medical Ethics committee of LUMC.  All lung tissues were expanded 

by an injection syringe using 10 % phosphate-buffered formalin, and fixed for 

approximately 24 hours after which the tissues were further processed for embedding 

in paraffin and immunohistochemical staining. Samples of bronchial airways, located 

as far away as possible from the tumour were chosen for the study.  Based on lung 

function outcome (see below), patients were assigned to the COPD and non-COPD 

groups (17-19).  The patients in these two groups participated in a larger research 

project, part of which has been published previously (19, 20). 

COPD group:  Fifteen subjects were assigned to this group on the basis of the 

following parameters: forced expiratory volume in one second (FEV1) <75% of 

predicted value before bronchodilatation, FEV1/FVC ratio <75%, a reversibility in 

FEV1 ≤12% of predicted after 400 µg inhaled salbutamol, and a transfer factor for 

carbon monoxide (diffusion capacity) per litre alveolar volume (Kco) ≤80% of 

predicted value (21). 

Non-COPD group: Sixteen subjects were assigned to this group based on the basis of 

the following data: FEV1 >85% of predicted before bronchodilatation, FEV1/FVC 

ratio >85%, and reversibility in FEV1 ≤12% of predicted after 400 µg salbutamol 

inhalation.  In order to exclude accompanying lung disease leading to a restrictive 

lung function, it was required that the total lung capacity (TLC) of each subject was 

over 80% of the predicted value (21). 

Clinical data of all patients were examined for possible co-morbidity and 

medication use. All patients were free of symptoms of upper respiratory tract infection 

and none received antibiotics perioperatively.  None of the patients received 

glucocorticosteroids in the three months prior to operation, but four patients received 

oral glucocorticosteroids perioperatively.  After the selection based on lung function, 

all the lung tissues used for this study were checked histologically using the following 

exclusion criteria: (i) presence of tumour, (ii) presence of poststenotic pneumonia, (iii) 

fibrosis of lung parenchyma, and (iv) obstruction of the main bronchus (17, 18). 
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Pulmonary Function Tests 

All pulmonary function tests were performed within 3 months prior to surgery.  FEV1 

and forced vital capacity (FVC) were measured by spirometry, TLC and residual 

volume with the closed circuit helium dilution test and the Kco using the single 

breath-holding technique, as described by Quanjer et al. (21).  Lung function data and 

other patient characteristics are shown in Table 5.1. 

 

Total collagen staining 

The total collagen fibers in bronchial tissue specimens were stained with Picro-sirius 

Red F3BA . Tissue sections of 4 µm thickness were treated with 0.2% aqueous 

phosphomolybdic acid and incubated in 0.1% Picro-sirius Red.  Before dehydration, the 

slides were treated with 0.01N HCl and mounted. Slides were visualized under light 

microscope and collagen content was assessed using the same visual scoring method 

used for the analysis of the immunohistochemistry data (see below).  

 

Immunohistochemistry and quantification 

Sections of paraffin-embedded lung tissue were cut at 4 µm, mounted on Super Frost 

Plus microscopic slides (Menzel-Gläser, Braunschweig, Germany) and processed for 

immunohistochemistry.  Serial sections were used to detect the staining of collagen I, 

III, IV, fibronectin and laminin β2 employing immunohistochemistry. Sections were 

deparaffinized and rehydrated prior to incubation with specific purified mouse 

monoclonal antibodies.  Anti-human mouse monoclonal antibodies against collagen 

IV, fibronectin and laminin were purchased from NeoMarkers (Fremont, USA), 

collagen I from Sigma (St Louis, USA) and collagen III from Biogenex (San Ramon, 

USA), respectively.  To block non-specific second antibody binding, sections were 

preincubated with 10% normal goat serum diluted in 5% bovine serum albumin in 

phosphate buffered saline (5% BSA/PBS, pH = 7.4).  Subsequently, sections were 

incubated overnight at 4 °C with primary antibodies against collagen I (1:150 v/v) or 

III (undiluted), fibronectin (1:500 v/v) and laminin β2 (1:150 v/v), or for 1 hour at 

room temperature in case of collagen IV (1:150 v/v). Immunostainings were 

performed after antigen retrieval by 0.1% protease treatment in PBS for 10 minutes at 

370C or in case of collagen I by boiling in citrate buffer (10 mM citrate buffer, pH = 

6.0) for 10 minutes in a microwave oven. Incubation for 30 minutes with secondary 
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biotinylated anti-immunoglobulins (Multilink, 1:75 dilution, Biogenex, San Ramon, 

USA) and tertiary complex of peroxidase-conjugated streptavidin at a dilution of 1:50 

were used to enhance the detection sensitivity.  Colour was developed using 0.025% 

of 3,3-diaminobenzidine (Sigma, St Louis, USA) in 0.01 mol/L PBS, containing 0.03% 

H2O2. Positive controls consisted of human breast carcinoma and placental tissue. 

Negative controls were not incubated with primary antibody. The optimal dilution for 

all antibodies was identified by examining the intensity of staining obtained with a series 

of dilutions: the optimum concentration resulted in specific and easily visible signal on 

paraffin sections of control specimens. Slides were counterstained with Mayer's 

hematoxylin, mounted and studied light-microscopically.   

A visual scoring method was applied. For this purpose all tissues were 

analysed in a blinded fashion in random order by two independent observers, who 

were unaware of the clinical data of the case under study. Quantitative analysis was 

performed using a validated, arbitrary visual scale with grading scores of 0, 1, 2, 3 and 

4 representing none, weak, moderate, intense and very intense staining, respectively 

(17, 18, 23, 24). We quantified the staining pattern of ECM proteins in the SEBM and 

subdivided the staining for sites where the bronchial epithelium was totally lost and 

the SEBM was denuded or not. Furthermore, the interstitial staining of the bronchial 

lamina propria and adventitia was assessed. Moreover, the staining pattern within 

either the microvasculature bronchial lamina propria or the adventitia was measured. 

The intensity of laminin expression in the ASM area was quantified. We also 

examined errors within and between observers by correlating the expression scores 

using Pearson’s analysis and found a very high correlation of 0.8 to 0.9. 

 

Statistical Analysis 

Data were analysed for statistical significance using the unpaired, two-tailed Students’ 

t-test as well as the non-parametric Mann-Whitney test, where appropriate.  The 

expression data for ECM proteins were expressed as mean ± SEM.  Furthermore, 

ECM proteins staining for different compartments were correlated with FEV1 using 

Pearson’s correlation analysis. The individual collagen subtype values were correlated 

with the total collagen staining and with each other to evaluate co-localisation.  

Differences with p ≤ 0.05 were considered to be statistically significant. 
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5.4 Results 
Clinical Parameters 

The clinical and lung function characteristics of all subjects included in the study are 

listed in Table 5.1. The COPD group demonstrated an elevated residual volume (RV), 

whereas the Kco was reduced (p<0.005).  The subjects in the two groups did not differ 

significantly in age, TLC, reversibility in FEV1, smoking status (pack-years) or 

steroid use (Table 5.1). 

 

Localization and quantification of extracellular matrix proteins 

We investigated the localization of extracellular matrix proteins in the bronchial 

airways (Figures 5.1 and 5.2). ECM proteins were systematically assessed in the 

following sites: the surface epithelial basement membrane (SEBM), the connective 

tissue of the lamina propria and adventitia of the bronchial airway and in the bronchial 

blood vessels. We observed staining for collagen IV, fibronectin and laminin within 

the SEBM relatively more towards the apical side whereas collagen I and III were 

localized more towards the lamina propria in the reticular layer. Within vessel walls, 

staining for fibronectin was found in the (neo-)intima, for collagen IV and laminin in 

the medial and collagen I and III in the adventitial layer. In addition, laminin was 

immuno-localized at the apical side of the bronchial epithelium and in the airway 

smooth muscle (ASM) cell layer. 

Representative examples of collagen staining in non-COPD (A, C, E and G) 

and COPD (B, D, F and H) samples are depicted in Figures 5.1 and 5.2. We quantified 

the staining pattern of ECM proteins in the SEBM and subdivided the staining for 

sites where the bronchial epithelium was damaged or not. All investigated ECM 

proteins were significantly increased at sites of epithelial denudation (Figure 5.3A-F, 

p<0.01). We observed more intense staining for total collagen in the SEBM at sites of 

intact epithelium in subjects with COPD (1.5 fold increase, p <0.05, Figure 5.3A). 

Figure 5.3B demonstrates that collagen I deposition is increased in COPD as 

compared to non-COPD patients in the SEBM at the areas of intact epithelium (2.3 

fold increase, p < 0.001) and damaged bronchial epithelium (1.6 fold increase, p < 

0.01), lamina propria and bronchial adventitia, (1.9 fold increase each, p < 0.001). 
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Table 5.1 Subject Characteristics 

      

Case Sex Age FEV1 FEV1/FVC TLC RV Pack-years Steroids 
Non-COPD         
1 M 72 98 104 105 122 65 n 
2 M 67 102 99 112 134 29 n 
3 F 73 91 91 107 125 50 n 
4 M 46 109 104 97 87 23 n 
5 M 58 96 92 110 121 70 n 
6 M 57 94 90 95 87 35 n 
7 M 86 86 96 106 140 70 n 
8 M 64 93 95 110 152 20 n 
9 M 28 99 102 104 143 0 n 
10 M 51 97 107 99 92 0 n 
11 M 38 100 94 106 100 28 n 
12 M 52 100 100 103 121 20 n 
13 F 58 100 105 90 90 28 n 
14 M 69 110 124 100 102 u u 
15 F 61 94 107 119 142 u n 
16 M 61 86 94 95 119 u n 
Mean ± SEM  59 ± 3.5 97 ± 1.6 100 ± 2.1 104 ± 1.9 117 ± 5.4 44 ± 8.6  
         
COPD         
17 M 77 73 70 103 110 25 n 
18 M 71 69 64 115 129 u n 
19 M 72 37 42 136 229 50 y 
20 M 60 75 66 123 155 45 n 
21 M 53 44 70 89 137 32 n 
22 M 65 52 60 112 169 55 n 
23 M 55 56 68 99 131 40 n 
24 M 55 45 60 u u 35 y 
25 M 45 75 74 97 97 u u 
26 M 61 49 62 130 223 20 y 
27 M 65 69 71 116 152 20 n 
28 M 57 47 53 111 170 55 n 
29 F 78 62 61 95 105 60 n 
30 M 71 45 52 114 171 u n 
31 M 77 67 72 104 128 u u 
Mean ± SEM  64 ± 2.6 54 ± 3.3 58 ±2.3 103 ± 3.6 141 ± 10 31 ± 0.3  
P value  0.239 0.0001 0.0001 0.099 0.008 0.312  
 
Abbreviations: Forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), 
total lung capacity (TLC), and residual volume (RV), are given as percentage of predicted.  M 
= Male, F = Female, Pre-operative steroids use (y/n/u, yes/no/unknown) P values are given as 
COPD versus non-COPD. The patients in these two groups participated in a larger research 
project, part of which has been published previously (19, 20). 
 
 

Figure 5.3C indicates that in COPD patients collagen III staining is elevated in the 

SEBM at sites of intact and damaged epithelium (1.5 and 1.4 fold increase, p < 0.01, 

respectively). Furthermore, at fibrotic sites of lamina propria (1.4 fold increase, p < 

0.05) and adventitia (1.3 fold increase, p < 0.05) of the airway wall the collagen III 

staining is also increased (Figure 5.3C). Collagen IV protein, however, remained 
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unaltered, irrespective of the presence of COPD (Figure 5.3D). Fibronectin deposition 

was higher in intima and (neo-)intima including endothelial cells of bronchial blood 

vessels in COPD (Figure 5.3E). Laminin staining was more intense in the ASM layer 

(1.5 times, p < 0.01) and small vessels in the lamina propria (1.3 times, p < 0.01, 

Figure 5.3F).  No other staining differences were observed between samples from 

subjects with and without COPD. 
 
Correlation of ECM proteins with clinical data 

Pearson’s correlation of ECM components with FEV1 values (% predicted) in all 

COPD and non-COPD patients is summarized in Figure 5.4. We observed a 

significant inverse correlation with FEV1 of the following parameters: total collagen 

staining in the SEBM underneath intact epithelium (r = -0.47, p<0.01); collagen I 

staining in SEBM at sites with damaged epithelium (r = -0.61, p<0.01); connective 

tissue of the bronchial adventitia (r = -0.67, p<0.001, Figure 5.4A) and of the lamina 

propria (r = -0.53, p<0.01) In the same regions similarly inverse correlation was found 

between collagen III and FEV1 (r = -0.40, -0.42 and -0.48, p<0.01, Figure 5.4B). 

Figure 5.4C illustrates that fibronectin is also inversely correlated with FEV1 values in 

endothelium (r = -0.51, p<0.01).  Moreover, in ASM we found a significant inverse 

correlation between FEV1 values and laminin (r = -0.61, p<0.001, Figure 5.4D). When 

considering co-localization of total collagen with subtypes for collagen I, III and IV, 

we found a significant correlation between total collagen and collagen III in the 

SEBM at both damaged (r = 0.62, p<0.001) and intact epithelium (r = 0.63, p<0.001). 

No significant correlation was found between total collagen and collagen I and IV 

localization. 
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Figure 5.1   Photomicrographs of bronchial tissue sections from patients without 
COPD (A, C, E and G) and with COPD (B, D, F and H).  Panels A and B show total 
collagen staining (Sirius-Red staining) in bronchial airway walls.  Panels C and D show 
staining for collagen I in surface epithelial basement membrane (SEBM) and lamina propria. 
Panels E and F show collagen III protein staining in bronchial adventitial layer with bronchial 
vessels. Panels G and H show collagen IV staining in lamina propria. Arrows indicate sites of 
damaged bronchial epithelium. Counterstained with hematoxylin. Original magnification: 
x200. Scale bar = 50 µm. 
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Figure 5.2 Photomicrographs of bronchial tissue sections from patients without 
COPD (A, C, E and G) and with COPD (B, D, F and H).  Panels A and B show fibronectin 
staining in bronchial lamina propria and panels C and D in vasculature. Panels E and F show 
laminin protein staining in the lamina propria and panels G and H in the adventitial layers 
with bronchial vessels. Arrows indicate sites of damaged bronchial epithelium: 
Counterstained with hematoxylin. Original magnification: x200. Scale bar = 50 µm.  
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Figure 5.3 Graphic representations of extracellular matrix proteins (mean ±±±± SEM) 
using visual scoring; (A) for total collagen, (B) for collagen I, (C) for collagen III, (D) for 
collagen IV, (E) for fibronectin and (F) for laminin. Abbreviations: surface epithelial 
basement membrane (SEBM), bronchial epithelium (B. E.), bronchial epithelium damaged or 
intact (D. E. or I. E.), lamina propria (L. P.), bronchial adventitia (B. A.) airway and vascular 
smooth muscle cells (ASM and VSM) and endothelial cells (EC). Staining score for 
non-COPD (white bars) and COPD groups (gray bars) are given. # P <0.05 SEBM scores of 
damaged versus undamaged bronchial epithelium. * P <0.05 versus the non-COPD group. 
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Figure 5.4  Correlation with FEV1 (% predicted) of total collagen in SEBM with 
undamaged bronchial epithelium (A), collagen III in the lamina propria (B), fibronectin in 
endothelial cells (EC, C) and laminin in VSM (D) of the combined patient groups (non-COPD 
and COPD). Correlation coefficient (r) was obtained using linear regression (Pearson’s) 
analysis and significance level P value, P < 0.05. 
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5.5 Discussion 
In this study we showed that COPD is associated with an increased bronchial 

deposition of collagens I, III, IV, fibronectin and laminin. ECM proteins were 

observed in SEBM, lamina propria and adventitia of the bronchial walls and 

vasculature. We found that ECM protein deposition is increased in the SEBM at sites 

of damaged bronchial epithelium in all patients. In COPD patients, total collagen and 

predominantly collagens I and III subtype were further increased as compared to 

controls, while bronchial vessels showed increased deposition of fibronectin and 

laminin. FEV1 values inversely correlated with collagens in the SEBM, fibronectin in 

bronchial vessels and laminin in the ASM.  Taken together, these findings strongly 

suggest that deposition of ECM components contributes to the airway remodeling of 

COPD. 

An identical localization pattern of the various investigated ECM makers in 

the cartilaginous bronchial wall was present in our patients groups, which is in 

agreement with earlier reports describing their presence in the bronchial airways of 

asthmatics (13, 25-28). Several previous reports have demonstrated structural changes 

with fibrosis and deposition of ECM proteins as well as loss of elastic recoil in 

peripheral airways and lung parenchyma of COPD patients (29-31). Inflammation, 

with influx of CD8+ T-cells in peripheral airways and accumulation of macrophages 

has been reported (6, 32).  Peribronchiolar and septal fibrosis are also found whereas 

alveolar extracellular matrix deposition is decreased in emphysema (5, 6, 32).  Our 

results demonstrate that COPD is also associated with changes in extracellular matrix 

protein deposition of larger airways.  In asthma, SEBM thickening is prominent, as is 

the deposition in large airways of various ECM proteins, including collagens, 

fibronectin, laminins and proteoglycans in epithelial SEBM, subepithelial layers and 

bronchial vasculature (28, 33-35). In COPD, however, the few previous reports that 

are available have indicated that SEBM thickness remains unchanged, unless features 

of asthma such as hyperresponsiveness or corticosteroid sensitivity were present (3, 

16, 28). However, we show here that the staining of total collagen, collagen I and III 

in SEBM is more intense in COPD as compared to controls. Furthermore, all 

investigated extracellular matrix proteins were upregulated at sites where the 

epithelial lining was damaged.  These findings support the hypothesis of involvement 
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of the bronchial epithelium and subepithelial (myo-)fibroblasts in damage and repair 

processes with tissue remodeling. Recent studies based on in vitro co-culture 

experiments indicate that effects of growth factors such as epidermal growth factor 

(EGF), fibroblast growth factors (FGF-1 and FGF-2) and transforming growth factor 

beta 1 (TGF-β1) on epithelial cells and (myo-)fibroblasts are necessary to mediate 

repair of epithelial injury by induction of cellular proliferation and collagen synthesis 

(36-39). The above mechanisms that were found in vitro could possibly also play a 

role in tissue remodeling and fibrosis during COPD. 

We also investigated the deposition of ECM proteins in the bronchial 

vasculature of the bronchial lamina propria and adventitia. We show that COPD is 

associated with more deposition of collagen III and laminin in vascular media and 

adventitia, and with fibronectin in endothelial cells and also neo-intima of small 

muscular vessels. We and others have previously shown that structural changes to the 

pulmonary vasculature, including intimal and medial thickening with VSM 

hypertrophy and lumen narrowing, occur in COPD (19, 23, 40-42).  We described that 

in the peripheral lung, vessel wall thickness was inversely correlated with FEV1. 

Peinado et al. concluded that small pulmonary arteries of patients with mild COPD 

have endothelial dysfunction and intimal thickening (41, 42). In a recent paper, Santos 

et al. quantified the (immuno-)histochemical staining pattern of various extracellular 

matrix components including elastin, total collagen and proteoglycans with the same 

visual scoring method employed by us and, previously, by several other authors (23, 

24, 43, 44). Santos et al. reported no differences in small pulmonary arteries between 

COPD patients and smoking non-COPD controls.  They did, however, find a positive 

correlation between the amount of collagen deposition and intimal thickening (23). In 

analogy to the ECM deposition in the bronchial wall, damage to the endothelial lining 

can induce vascular remodeling, vascular smooth muscle proliferation, metaplasia of 

VSM to (myo-)fibroblasts, and increased synthesis and deposition of extracellular 

matrix proteins such as collagens and fibronectin (45). Our results support this 

hypothesis, which is likely also to contribute to vascular remodeling during the 

development of COPD. 

Correlation analysis revealed a significant inverse correlation of FEV1 values 

and total collagen and collagen I and III staining in the SEBM, fibronectin in intima 

of mucosal vessels and laminin expression in airway smooth muscle. These findings 
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are consistent with the hypothesis of the development of structural abnormalities in 

the bronchial airway wall and in the vessel walls in patients with COPD causing 

airways obstruction. The exact mechanism remains unknown.  

Taken together, our results indicate that COPD is associated with increased 

deposition of ECM components in the bronchial airway wall, as part of the airway 

remodeling and contributing to airflow limitation. Blockade of pathways that are 

likely to be involved in structural and functional abnormalities should be considered 

in the development of therapeutic interventions aimed to prevent chronic airflow 

limitation in COPD. 
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6.1 Summary  
Altered extracellular matrix (ECM) deposition contributing to the airway wall 

remodeling is an important feature of asthma and chronic obstructive pulmonary 

disease (COPD) of which the molecular mechanisms are poorly understood. We 

examined the mRNA expression of ECM proteins, like collagen I, III and fibronectin 

in cultured human airway smooth muscle (ASM) cells stimulated with 10.0 ng/ml 

fibroblast growth factor 1 (FGF-1) and/or FGF-2 or 5.0 ng/ml of transforming growth 

factor β1 (TGF-β1) for 1, 2, 4, 8, 16, 24 and 48h. Densitometric analysis of Northern 

blots showed increased mRNA expression of collagen I and III in ASM cells 

stimulated for 24h with TGF-β1 or FGF-1, whereas the levels for these mRNAs did 

not change in FGF-2 stimulated cells. ASM cells constitutively expressed fibronectin 

mRNA, which remained unaltered after each stimulus. TGF-β1 did not induce cell 

proliferation as determined by 3H-thymidine incorporation assay and cell counts, 

whereas FGF-1 (P<0.05) and FGF-2 (P<0.001) previously induced cell proliferation. 

Cellular hypertrophy assessed by total protein over DNA ratio in ASM cells remained 

unaffected. Increased levels of TGF-β1 were observed in the conditioned medium of 

FGF-2 but not FGF-1 stimulated ASM cells with a maximum of 209±9.5 pg/ml after 

2-4h. We conclude that TGF-β1 and FGF-1 stimulate mRNA expression of collagen I 

and III in ASM cells, suggesting their role in the deposition of extracellular matrix 

proteins by ASM cells in the airways of patients with chronic lung diseases such as 

asthma and COPD. 
 
6.2    Introduction 
Chronic airway disorders like asthma and chronic obstructive pulmonary disease 

(COPD) are a global health problem with increasing morbidity and mortality (1). One 

of the key pathological features of these diseases is thickening of airway walls, which 

is thought to be a result of a chronic inflammatory process, in which inflammatory 

cells such as granulocytes, macrophages and T-lymphocytes play a role (2). In 

addition, ASM cell hypertrophy and increased deposition of extracellular matrix 

proteins such as collagens, elastin, laminin and proteoglycans around the smooth 

muscle could also be involved in airway wall thickening (3, 4). The exact cellular and 

molecular mechanisms that are underlying these changes are poorly understood. 
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Recent studies found plasticity between distinct airway smooth muscle cell 

phenotypes in vivo, which could have functional as well as structural consequences 

for physiology in the airway wall (4). Hirst and colleagues showed that cell-matrix 

interactions, in addition to growth factors, could have important effects on ASM cell 

proliferation and phenotype (3, 4). These authors showed that ASM cells cultured on 

collagen I or fibronectin matrix have increased proliferation, whereas ASM cells 

grown on laminin proliferate more slowly yet express contractile proteins (3). Many 

growth factors and cytokines including fibroblast growth factor-1 (FGF-1), FGF-2 and 

transforming growth factor-β1 (TGF-β1) that are released from the airway wall have 

the potential to contribute to airway remodeling, revealed by enhanced proliferation 

and increased collagen expression (5).  

TGF-β is a multifunctional protein that is involved in inflammation and 

connective tissue synthesis. Three different isoforms exists (TGF-β1 to -β3) of which 

the TGF-β1 isoform is often the most potent and commonly found growth factor in 

fibrotic and regenerative tissues under different pathophysiological conditions (6). In 

fibroblasts, synthesis of ECM proteins including collagens, elastin, proteoglycans and 

fibronectin is induced by TGF-β1 (7).  The effects on ASM cells are less clear. Khalil 

and colleagues demonstrated that TGF-β1 and TGF-β receptors are present on ASM 

cells and that the release of biological active TGF-β1 under influence of plasmin can 

induce ASM cells to synthesize pro-collagen I in an autocrine manner (8-10). 

A number of studies have demonstrated that members of the FGF family and 

their four high-affinity, transmembrane tyrosine-kinase receptors (FGFR1-4) can also 

contribute to tissue repair processes and fibrosis during chronic inflammation in 

chronic airway diseases (11, 12). Increased expression of FGF-1 and FGFR-1 has 

been shown during the development of lung fibrosis (13) and FGF-2 has been 

implicated in the pathogenesis of obliterative bronchiolitis in lung transplants (14). 

We have recently demonstrated that the expression of FGF-1, FGF-2 and FGFR-1 in 

ASM cells of bronchial airways of (ex-) smokers with COPD is increased as 

compared to non-COPD subjects. In addition, in cultured human ASM cells cell 

proliferation is induced by FGF-1 and FGF-2 (15, 16).  
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In the present study we investigated the effects of TGF-β1, FGF-1 and FGF-2 

on the expression of ECM components including collagen I, III and fibronectin in 

human ASM cells. We show that TGF-β1 and FGF-1 but not FGF-2 can induce the 

mRNA of subtypes pro-collagen I and III. We also demonstrate that FGF-2 stimulates 

ASM cells to release biologically active TGF-β1, which could involve an additional 

autocrine mechanism. Taken together, these findings indicate that TGF-β1 and FGF-1 

stimulated ASM cells can increase their synthesis of extracellular matrix proteins that 

may contribute to the pathogenesis of airway fibrosis and remodeling in chronic 

airway diseases like asthma or COPD.  

 

6.3 Materials & methods 
Human airway smooth muscle cell isolation and culture 

Human airway smooth muscle cells were isolated and cultured as we described 

previously (17, 18). Briefly, bronchial smooth muscle was dissected from a fresh 

macroscopically normal lobar or main bronchus obtained from patients who underwent 

surgery for lung cancer. After removal of the epithelium, parts of smooth muscle were 

dissected free of adherent connective and parenchymal tissue under aseptic conditions. 

Smooth muscle pieces were incubated in Hank's balanced salt solution (HBSS; Life 

Technologies BV, Breda, The Netherlands) containing bovine serum albumin (BSA, 10 

mg/ml), collagenase (type XI, 1 mg/ml) and elastase (3.3 U/ml; Sigma BV, Zwijndrecht, 

The Netherlands) at 37°C in a humidified incubator containing 5% CO2/95% air. After 

enzymatic digestion, the cell suspension was centrifuged and the pellet was washed in 

Dulbecco's modified Eagle's medium (DMEM), (Life Technologies BV, Breda, The 

Netherlands) containing 10% (v/v) heat-inactivated fetal bovine serum (FBS), (Bio-

Whithaker BV, Verviers, Belgium) supplemented with sodium pyruvate (1 mM), 

nonessential amino acid mixture (1:100), gentamicin (45 µg/ml), penicillin (100 

U/ml), streptomycin (100 µg/ml) and amphotericin B (1.5 µg/ml), (Life Technologies 

BV, Breda, The Netherlands).  

 Cells were subsequently seeded at 2x105 cells per 35 mm dish and maintained 

in culture by replacing the medium every 72 h.  After 10-14 days in culture, ASM 

cells grew to confluence and were then detached by trypsinization (0.5% trypsin; 

0.02% EDTA; Life Technologies BV, Breda, The Netherlands) and subcultured into 

25 cm2 tissue culture flasks. Cells were further subcultured in 75 cm2 tissue culture 



Chapter 6                                   Growth factors and Airway Remodeling in COPD 

 143

flasks. Immunocytochemical staining of confluent serum-deprived primary cultures of 

human ASM cells, using monoclonal antibodies to smooth muscle α-actin and smooth 

muscle-myosin heavy chain (SM1 and SM2), (Sigma BV, Zwijndrecht, The 

Netherlands), (17, 18), demonstrated that the cultures were essentially free (>95%) of 

other contaminating cell types. 

 

Growth factor stimulation 

Human ASM Cells in 75 cm2 tissue culture flasks in passage V-VI were washed twice in 

phosphate buffered saline (PBS) and treated with serum free DMEM containing 1 µM 

insulin, 5 µg/ml transferrin and 100 µM ascorbate (Sigma BV, Zwijndrecht, The 

Netherlands) for 72 h.  Using flow cytometric analysis of human ASM cells stained with 

propidium iodide, we previously found that 72 h of serum deprivation resulted in 

approximately 85% of human ASM cells remaining in the G0/G1 phase (18).  

ASM cells were stimulated with 5.0 ng/ml TGF-β1 (Promega, Madison, 

USA). Control incubations consisted of ASM cells that were incubated with FBS-free 

DMEM alone or DMEM containing FBS. Different ASM isolations (n=3) were in this 

case stimulated for 1, 2, 4, 8, 16, 24 and 48 hours. In a different set of experiments, 

human growth–arrested ASM cells were incubated with 10.0 ng/ml human 

recombinant FGF-1 (Promega, Madison, USA) or FGF-2 (Sigma-Aldrich, St. Louis, 

USA) in 10.0 ml FBS-free DMEM. Control incubations consisted of ASM cells that 

were incubated with FBS-free DMEM alone or DMEM containing FBS. Three 

different ASM isolations were stimulated for 1, 2, 4, 8, 24 and 48 hours.  

 

Isolation of total cellular RNA and Northern blot analysis 

Treated and untreated human ASM cells were washed in PBS and total RNA was 

extracted from the cells by the guanidium thiocyanate-phenol-chloroform method as 

previously described (17, 18). The RNA concentration was estimated by optical 

density measurements and a DNA/protein ratio of ≥ 1.8 was accepted. Samples of total 

RNA (10 µg) were denatured at 65°C in formaldehyde containing loading buffer and 

size fractionated on a 1% agarose gel containing 2.2 M formaldehyde. Ethidium bromide 

stained gels were photographed and RNA was transferred onto Hybond-N membrane 

(Amersham Nederland BV, 's-Hertogenbosch, The Netherlands) by the alkaline 

downward capillary transfer method also described earlier (17). The filters were air-dried 
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and UV cross-linked in a gene linker (Biorad Laboratories B.V., Veenendaal, The 

Netherlands). Blots were hybridized with radiolabeled cDNA probes against human 

mRNA for pro-alpha-1 type I collagen (3.4 kb fragment), pro-alpha-1 type III collagen 

(5.5 kb fragment) and fibronectin (7.7 kb fragment) or a reference house keeping gene, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 1.2 kb). Filters were washed 

under stringent conditions and exposed to Kodak X-OMAT films at –800C. 

Hybridization signals were quantified by measuring the intensity of the bands with 

Molecular Analist (V1.5) image analysis software (Biorad Laboratories, Hercules, 

CA). The measurements of the intensity of the bands were corrected for background. 

The signal of all the investigated ECM molecules were expressed relative to 

corresponding GAPDH value and this ratio of the bands was expressed relative to the 

same ratio of control ASM cell (treated with serum-free medium). This relative optical 

density (OD) in stimulated cells, depicted as fold induction versus controls was 

expressed as mean ± SEM from three individual isolations and statistically analyzed.  

 

Enzyme-linked immunosorbent assay for TGF-β1  

Conditioned media were collected from FGF-1 and FGF-2 treated human ASM cells, 

after which active TGF-β1 levels were assessed using human TGF-β1 specific enzyme-

linked immunosorbent assay (ELISA) kit obtained from Promega (The Netherlands) 

according to supplier. In brief, Nunc Maxisorp 96 wells ELISA plates (Sanbio, The 

Netherlands) were coated with TGF-β1 coating antibody in 0.025 M Sodium/bi-

carbonate solution at 40C overnight. Next, the plates were incubated with blocking 

solution (Promega, the Netherlands) for 35 minutes at 370C. A standard curve using 

recombinant TGF-β1 protein was first established and subsequently 0.1 ml of 

conditioned medium was used to assay for TGF-β1. Subsequently the samples were 

incubated with biotinylated TGF-β1 detecting antibody. After addition of the 

streptavidin-peroxidase conjugate, tetramethylbenzidine (TMB) was added and the 

absorbency of the resulting colored product was measured after 30 minutes using an 

automated spectrophotometer at 450 nm (Biorad Laboratories BV, Veenendaal, The 

Netherlands). The concentration of TGF-β1 was expressed in pg/ml. The lower detection 

limit of the TGF-β1 ELISA method was 15.6 pg of TGF-β1/ml.  
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[3H]-thymidine uptake 

Human ASM cells were detached from culture flasks with trypsin and resuspended in 

DMEM containing 10 % FBS. Cultured cells from three different subjects were plated 

at a density 1x104 cells/well in 96-wells plates and cultured for approximately 7 days 

until semi-confluence. Human growth–arrested ASM cells (quadruple in 96 wells 

plates) were incubated with 0.1, 1.0, 3.0, 5.0 and 10 ng/ml human recombinant TGF-

β1  (Promega, Madison, USA) or FGF-2 (Sigma-Aldrich, St. Louis, USA) in 100 µl 

FBS-free DMEM. Control incubations consisted of ASM cells, which were incubated 

with FBS-free DMEM alone, or DMEM containing FBS.  Three identical plates with 

seeded cells of three different ASM isolations were stimulated for 8, 24 and 48 hours.  

Five hours prior to the end of the treatment 10 µl (1µCi/10 µl in HBSS) of [3H]-

labeled thymidine (Amersham, Roosendaal, the Netherlands) was added to the wells, 

at a final concentration of 1µCi/110 µl per well. The medium was removed after 8, 24 

and 48 hours and the cells were washed twice with cold PBS. The cells were detached 

with 50 µl trypsin for 10 minutes after which 50 µl PBS was added. The plates were 

frozen overnight at –200C after which the cells were harvested on glass fiber filters 

using a Filtermate 196 cell harvester (Packard, Meridan, USA) and the activity was 

counted using a Microplate Scintillation ß-counter (Topcount, Packard, Meridan, 

USA). Measured radioactivity was expressed as counts per minute (CPM).  The mean 

CPM of quadruple wells and subsequently three different cell isolations were 

expressed as ratio as compared to control cells in serum free medium (fold-induction). 

 

Cell proliferation 

 In a parallel series of experiments, human growth–arrested ASM cells (quadruple in 

24 wells plates) were incubated with either 0.1, 1.0, 3.0, 5.0 or 10 ng/ml human 

recombinant TGF-β1 (Promega, Madison, USA) in 500 µl FBS-free DMEM for 24 

and 48 hours. Control incubations consisted of ASM cells, which were incubated with 

FBS-free DMEM alone, or DMEM containing FBS. Cells were processed for cell 

counting in the Casey1 system (Schärfe system GmbH, Reutlingen, Germany). After 

stimulation the cells were trypsinized with 50 µl for 10 minutes. Cells in suspension 

were added to 10 ml of Casey1 isotonic solution (6.38 g/l NaCl, 0.2 g/l Na-

tetraborate, 1.0 g/l Boric acid and 0.2 g/l EDTA). Cell numbers were measured and 

analyzed using Casey1 system software.  
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Total protein/DNA Ratio estimation 

In parallel experiments ASM hypertrophy was assessed in response to FGF-1, FGF-2 

and TGF-β1 by calculating the total protein to total DNA ratio. Cells were seeded in 

24 well plates and after serum starvation of 72 hours stimulated with 10 ng/ml FGF-1 

and FGF-2, and with 5.0 ng/ml TGF-β1 as described for the proliferation experiments. 

After stimulation the cells were washed with PBS and homogenated with 1.0 M 

NaOH. The total DNA content was determined fluorimetrically using DAPI as 

described earlier and the total protein content was measured using Bradford method 

(17, 18). Standard concentration curves were generated using haring sperm DNA and 

BSA, respectively. 

 

Statistical Analysis 

Data in the figures are given as mean ± SEM. Statistical analysis was performed by 

the Bonferroni t test. Significance was accepted at P<0.05. 

 

6.4 Results 
Expression of ECM genes after TGF-β1 stimulation 

Expression of ECM genes was examined in ASM cells stimulated with TGF-β1 (5.0 

ng/ml) at several time intervals. Representative Northern blots showing the expression 

pattern of collagens I and III and fibronectin are shown in Figure 6.1A. All ASM cells 

expressed mRNA for the investigated ECM genes. Densitometric analysis revealed 

that Collagen I and to a lesser extent subtype III were induced time-dependently by 

TGF-β1 (Figure 6.1B and 6.1C, respectively). Collagen I mRNA induction was 

maximal and significantly upregulated as compared to control between 16 and 24h of 

stimulation, whereas collagen III mRNA was maximal between 24 and 48h of 

stimulation (p<0.05), (Figure 6.1B and 6.1C, respectively). Fibronectin mRNA 

expression remained unaltered after TGF-β1 stimulation (Figure 6.1D).  
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Figure 6.1  Northern blot analysis of mRNA expression for extracellular matrix 
components collagen I, III and Fibronectin in human ASM cells in relation to TGF-ββββ1.  
Serum-starved human ASM cells were incubated with or without 5.0 ng/ml TGF-β1 for the 
times (h) indicated at the top of panel A. Total RNA hybridized with radio-labeled human 
probes against collagen I (Col I), Collagen III, (Col III), fibronectin (FN) and a house-hold 
gene GAPDH. Arrows on the right denote positions of pro-collagen α1 (I) and α2 (I) bands. 
Graphic representations of collagen I, III and fibronectin mRNA expression are depicted in 
panels B, C and D, respectively. Scanning densitometric values for ECM markers were 
normalized with respective GAPDH mRNA values. Values are means of the normalized signal ± 
SEM (n = 3) expressed as fold induction versus control (control value set at 1.0). * P< 0.05 
versus control. 
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Expression of ECM genes after FGF-1 and FGF-2 stimulation 

The expression of collagen I, III and fibronectin was also examined in ASM cells 

incubated with 10.0 ng/ml FGF-1 (Figure 6.2) or FGF-2 (Figure 6.3). We used 10 

ng/ml FGF-1 or FGF-2, since this concentration had a maximal effect on proliferation 

of ASM cells in one of our previous studies. Representative examples of Northern 

blots for these ECM markers after ASM stimulation with FGF-1 and FGF-2 are 

shown in Figure 6.2A and 6.3A, respectively. Densitometric analysis of collagen I, III 

and Fibronectin mRNA expression, depicted as fold induction over control, are 

presented in Figure 6.2B, 6.2C and 6.2D for FGF-1 stimulated and in Figure 6.3B, 

6.3C and 6.3D for FGF-2 stimulated ASM cells, respectively. Figure 6.2 and 6.3 

illustrate that FGF-1 but not FGF-2 induced the expression of mRNA encoding both 

collagen I and III which were significantly increased between 24 and 48 hours of 

stimulation compared to untreated ASM cells (p<0.05). Fibronectin mRNA 

expression remained unaltered after stimulation with either FGF-1 or FGF-2 (Figure 

6.2D and 6.3D). 

 

Effects of FGF-1 and FGF-2 on the release of TGF-β1 by ASM cells 

The release of TGF-β1 in the conditioned culture medium of ASM cells treated with 

FGF-1 or FGF-2 was measured to investigate an autocrine mechanism linking both 

growth factor systems. Table 6.1 shows a time dependent increase in the release of 

biologically active TGF-β1 in the conditioned medium from FGF-2 stimulated ASM 

cells with a maximum at 2 hours (209±9.5 pg/ml) which declines after 4 hours 

(145±54 pg/ml) to 24 hours (47±13 pg/ml) compared to control (0 pg/ml). For FGF-1 

we could only detect a TGF-β1 signal (220 pg/ml at 4 hours) in one of three different 

conditioned culture media, which therefore did not reach significance compared to 

control. ASM cells treated with medium containing 10% FBS showed clear 

(exogenous) increase in biologically active TGF-β1 at all time points which increased 

even further by applying 1.0 M HCl treatment to the samples, which caused the 

formation of active TGF-β1 by releasing it from the latent form, in contrast to all 

experimental samples (data not shown).  
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Figure 6.2  Northern blot analysis of mRNA expression for extracellular matrix 
components collagen I, III and Fibronectin in human ASM cells in relation to FGF-1 
Serum-starved human ASM cells were incubated with or without 10.0 ng/ml and FGF-1 for 
the times (h) indicated at the top of panel A. Total RNA hybridized with radio-labeled human 
probes against collagen I (Col I), Collagen III, (Col III), fibronectin (FN) and a house-hold 
gene GAPDH. Arrows on the right denote positions of pro-collagen α1 (I) and α2 (I) bands. 
Graphic representations of collagen I, III and fibronectin mRNA expression are depicted in 
panels B, C and D, respectively. Scanning densitometric values for ECM markers were 
normalized with respective GAPDH mRNA values. Values are means of the normalized signal ± 
SEM (n = 3) expressed as fold induction versus control (control value set at 1.0). * P< 0.05 
versus control. 
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Figure 6.3 Northern blot analysis of mRNA expression for extracellular matrix 
components collagen I, III and Fibronectin in human ASM cells in relation to FGF-2 
Serum-starved human ASM cells were incubated with or without 10.0 ng/ml and FGF-2 for 
the times (h) indicated at the top of panel A. Total RNA hybridized with radio-labeled human 
probes against collagen I (Col I), Collagen III, (Col III), fibronectin (FN) and a house-hold 
gene GAPDH. Arrows on the right denote positions of pro-collagen α1 (I) and α2 (I) bands. 
Graphic representations of collagen I, III and fibronectin mRNA expression are depicted in 
panels B, C and D, respectively. Scanning densitometric values for ECM markers were 
normalized with respective GAPDH mRNA values. Values are means of the normalized signal ± 
SEM (n = 3) expressed as fold induction versus control (control value set at 1.0). * P< 0.05 
versus control. 
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Table 6.1  Effects of FGF-1 or FGF-2 on secretion of active TGF-β1 

 FGF-1 FGF-2 
Active TGF-β1 (pg/ml) MEAN±SEM MEAN±SEM 

Control 0 0 
 2 0 209±9.5* 
 4 220±110 145±54* 
24 9.8±9.8 47±13 

 
Growth arrested ASM cells were stimulated with 10.0 ng/ml of FGF-1 and FGF-2 for up to 24 
hours and the release of active TGF-β1 was measured in the conditioned medium by ELISA. 
Values (mean ± SEM) are given in pg/ml and compared to control (untreated ASM cells) 
from three separate cultures. * P< 0.05 versus control. 
 
Effects of TGF-β1 on ASM cell proliferation and growth 

Effects of TGF-β1 on proliferation of ASM cells were investigated with [3H]-

thymidine incorporation and by determining changes in cell numbers in relation to 

untreated control ASM cells. Results for [3H]-thymidine incorporation and the 

investigation of changes in cell numbers are summarized in Table 6.2 and 6.3, 

respectively. The [3H]-thymidine incorporation after TGF-β1 remained unchanged at 

all investigated time intervals (Table 6.2). Trends towards an increase at the later time 

intervals (24h and 48h) at higher concentrations of TGF-β1 (5.0 and 10.0 ng/ml) could 

be observed but did not reach significance of p<0.05 (Table 6.2). In a separate set of 

experiments we investigated the changes in cell number in relation to TGF-β1 

stimulation expressed as fold induction over untreated ASM cells (Table 6.3). 

 
Table 6.2  Fold changes in [3H]-thymidine uptake of ASM cells in relation to TGF-β1. 

  8h  24h  48h 
TGF-β1 (ng/ml) MEAN±SEM MEAN±SEM MEAN±SEM 

Control 1 1 1 
0.1 0.63±0.05 1.84±0.79 0.97±0.44 
1 0.63±0.06 1.56±0.82 0.88±0.26 
3 0.73±0.10 2.19±1.55 1.44±0.74 
5   0.69±0.01* 2.56±1.41 1.77±1.05 

10 0.79±0.05 1.77±1.06 2.85±1.70 
 
Growth arrested ASM cells were stimulated with TGF-β (0.1 – 10.0 ng/ml) for up to 48 hours 
and the proliferation was examined by thymidine incorporation. Values are means of the 
normalized signal ± SEM (n = 3) expressed as fold induction versus control (control value set 
at 1.0). * P< 0.05 versus control. 



Chapter 6                                   Growth factors and Airway Remodeling in COPD 

 152

The number of ASM cells after TGF-β1 stimulation was increased at 24 hours of 

incubation at 3.0 or 10.0 ng/ml TGF-β1 as compared to ASM cells which were (Table 

6.3). At 48 h of incubation a relative increase in ASM cells treated with TGF-β1 

compared to their corresponding controls could not be observed. ASM cells treated 

with medium containing 10% FBS showed clear increase in [3H]-thymidine 

incorporation and cell number at 24 and 48 h of incubation (data not shown). 

 

Table 6.3  Fold changes in cell number of ASM cells in relation to TGF-β1. 

  24h  48h 
TGF-β1 (ng/ml) MEAN±SEM MEAN±SEM 

Control 1 1 
0.1 1.28±0.09 1.02±0.11 
1 1.25±0.10 1.06±0.15 
3   1.28±0.08* 1.11±0.17 
5 1.51±0.25 1.11±0.13 

10   1.43±0.12* 1.12±0.12 

Growth arrested ASM cells were stimulated with TGF-β1 (0.1 – 10.0 ng/ml) for 24 and 48 
hours and the proliferation was examined by cell counting. Values are means of the normalized 
signal ± SEM (n = 3) expressed as fold induction versus control (control value set at 1.0). * P< 
0.05 versus control. 
 
In parallel experiments ASM hypertrophy was assessed in relation to FGF-1, FGF-2 

and TGF-β1 by calculating the total protein to total DNA ratio. Table 6.4 shows the 

effect of FGF-1, FGF-2 and TGF-β1 on the protein/DNA ratio in human ASM cells. 

Of untreated cultured ASM cells the total protein/DNA ratio was approximately 120 

when both measurement are normalized as ng/ml, which was similar as in one of our 

previous studies (17). No significant differences could be observed for any of the 

growth factors and at any of the time points investigated between treated and 

untreated ASM cells (Table 6.4). 
 
Table 6.4  Protein/DNA ratio of ASM cells after TGF-β1, FGF-1 or FGF-2 stimulation.  
 
Incubation time (h) Control TGF-β1 FGF-1 FGF-2 

0 130±7.5    
24 125±7.1 122±11 142±4 144±6 
48 124±8 130±12 133±9 132±4 

Growth arrested ASM cells were stimulated with 10.0 ng/ml of FGF-1 and FGF-2 or 5.0 
ng/ml TGF-β1 for up to 48 hours and the protein/DNA ratio was measured. Values 
(mean ± SEM) are given as ratio of normalized to pg/ml protein and DNA concentration and 
compared to control (untreated ASM cells) from three separate cultures. * P< 0.05 versus 
control. 
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6.5 Discussion 
 
In the present study we show that in human ASM cells pro-collagen α1 (I) and α2 (I) 

and collagen III mRNA expression are induced by TGF-β1 and FGF-1 but not FGF-2. 

This effect is time dependent with a maximum at approximately 24 hours. We also 

show that the release of active TGF-β1 was increase by FGF-2 treated ASM cells with 

a relatively fast time course and a maximum of 2-4 hours. Neither proliferation nor 

hypertrophy could by observed in TGF-β1 incubated ASM cells.  

TGF-β1 is one of the most potent and well known inducers of extracellular 

matrix protein synthesis including collagens and fibronectin and could therefore be 

involved in tissue fibrosis in airways of patients with chronic respiratory disorders 

such as asthma and COPD (1-3, 8, 19-21). In vitro culture of human ASM cells 

experimentally injured could serve as a model for tissue damage and repair found in 

vivo situations (22). Coutts and colleagues showed recently that subconfluent or 

experimentally damaged human ASM cells release active TGF-β1 increasing pro-

collagen α1 (I) and α2 (I) mRNA expression (22). Our results of increased induction of 

mRNA expression of pro-collagen I and III in TGF-β1 treated ASM cells confirm 

earlier findings that TGF-β1 is able to induce the production of extracellular matrix 

proteins by ASM cells. 

Fibroblast growth factor family members are also implicated in tissue 

remodeling in a wide variety of pathophysiological conditions including interstitial 

lung fibrosis. Barrios and coworkers showed FGF-1 and FGFR-1 expression in 

experimentally induced pulmonary fibrosis (13). Moreover, Becerril and colleagues 

showed that FGF-1 treatment of human lung fibroblasts resulted in down-regulation 

of collagen I synthesis and up-regulation of collagenases, a mechanism that may be 

protective against fibrosis (23). Furthermore, FGF-2 stimulation of vascular smooth 

muscle cells in vitro, in a model for vascular injury, has been shown to be associated 

with down-regulation of collagen type I and up-regulation of collagenase MMP-1 

(24). Also in human dermal endothelial cells both FGF-1 and FGF-2 reduced the 

mRNA expression of collagen I and fibronectin, as compared to non-treated cells 

(25). Taken together, our findings of stable or slightly reduced mRNA expression of 

ECM components in ASM cells with FGF-2 treatment are in agreement with the result 

mentioned above. However, our results of increased mRNA expression of pro-
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collagen α1 (I) and α2 (I) and of collagen III in FGF-1 stimulated ASM cells contradict 

previous findings. A recent study, however, indicated that FGF-1 but not FGF-2 could 

increase the expression of collagen I in human cultured skin epithelial cells as 

compared to non-treated cells (26). Possibly, cell-type differences could explain the 

discrepancies observed between several investigations.   

In the present study we reported that active TGF-β1 is released from FGF-2 

and to a lesser extent FGF-1 stimulated ASM cells with a maximum at 2-4 hours of 

incubation. Since this induction is too rapid for de novo transcription and translation 

we hypothesize that this release originates from intracellular or cell-bound latent 

TGF-β1 stores. Inactive TGF-β1 is bound to latency-associated peptide (LAP), which 

together form latent TGF-β1. Furthermore, latent TGF-β1 is bound to latent binding 

protein-1 (LTP-1), which binds to the extracellular matrix. In this way, both the ECM 

and the latent TGF-β1 complex serve as a reservoir for active TGF-β1 (6). Although an 

exact mechanism remains unclear, a link between TGF-β1 and fibroblast growth 

factors has been reported earlier (27, 28). Thannickal and colleagues showed in 

human lung fibroblasts that FGFR-1 (Flg) and FGFR-2 (Bek) were upregulated by 

TGF-β1 incubation mediating enhanced mitogenic responses to FGFs. Secondly, FGF-

2 release increased after TGF-β1 stimulation, suggesting an autocrine loop for both 

factors (27, 28).  A similar mechanism was indicated by Li et al., who showed that 

TGF-β1 and FGF-1 could increase the release of FGF-2 from human cultured alveolar 

type II cells (29, 30). In human ASM cells, we demonstrate a reverse mechanism, the 

induction of TGF-β1 by FGF-2, which has only been shown earlier to our knowledge 

in a cell line of glial origin as well as cultured neonatal astrocytes (31, 32). The role of 

FGF-2 stimulated TGF-β1 induction in ASM cells is unclear. Taken together, we 

speculate that these findings could indicate a dual mechanism to regulate the synthesis 

of ECM. 

We investigated the DNA synthesis, proliferation and total protein/DNA ratio 

in cultured human ASM cells stimulated with or without TGF-β1 under serum-free 

conditions. Our results indicate that all three parameters mentioned above remained 

unaffected during the 48 hours of incubation TGF-β1 in our study. Several reports 

commented on the proliferative effects of TGF-β1 in cultured ASM cells indicating 

that TGF-β1 has modulatory effects on proliferation with a condition-dependent 

nature (33-37). Black and colleagues found that 24 hours of incubation with TGF-β1 
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decreased DNA synthesis, whereas 48 and also 72 hours increased DNA synthesis and 

proliferation in cultured bovine ASM cells (34).  Interestingly, results from Okona-

Mensah and coworkers indicated that TGF-β1 inhibited 10% FBS induced DNA 

synthesis in sparsely seeded bovine ASM cells, whereas DNA synthesis was increased 

after 48 hours of TGF-β1 treatment in the presence of only BSA in confluent grown 

cells (37). Cohen and coworkers found that thrombin induced DNA synthesis was 

inhibited by TGF-β1 in human ASM cells and showed facilitating effects of TGF-β1 

on serum-induced proliferation and that TGF-β1 incubation alone had no effect (35, 

36). Our results are consistent with these latter findings. Apart from possible species 

differences, these observations suggest the existence of a dual pathway for TGF-β1 

modulated cell growth as seen for fibroblasts. 

Taken together our results indicate that in vitro human ASM cells synthesize 

extracellular matrix components including collagen I, III and fibronectin, and in 

response to cytokines and growth factors such as TGF-β1 and FGF-1 increase their 

collagen I and III expression and that interactions between TGF-β1 and FGF-2 could 

modify these processes. These findings suggest that active TGF-β1 release and the 

upregulated synthesis of extracellular matrix components by ASM cells resemble 

situations of fibrosis and airway remodeling during the pathogenesis of chronic 

airway diseases such as asthma or COPD. Structural alterations within the airway wall 

of asthma and COPD patients could lead to irreversible obstruction.  
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Summary & General Discussion  
 
7.1 Outline of the Thesis 
COPD is a chronic disorder of the lungs, with an abnormal inflammatory response of 

airways, parenchyma and vasculature in response to noxious particles and gases (1). 

The disease is becoming a major health problem with increasing trend of morbidity and 

mortality (1). COPD is a complex disease, which is influenced by genetic as well as 

environmental factors. Historically, the relation of α1-antitrypsin deficiency and the 

development of COPD emphasized the role of genetics (2). Among factors like 

childhood respiratory infections, air pollution and occupational exposures, tobacco 

smoking is clearly the most important environmental trigger for COPD (2). Furthermore, 

strong relations of decline in lung function (as measured by FEV1 % predicted) with the 

number of pack years as well as the beneficial effects of smoking cessation have been 

established (3). Yet of all smokers, only 10-20 percent actually develops COPD and in 

all subjects with diagnosed COPD only roughly 1% is associated with α1-antitrypsin 

deficiency (3). The mechanisms determining these discrepancies as well as their 

underlying molecular mechanisms during the development and progression of the 

disease are not yet fully understood. 

Tobacco induced injury is responsible for the process of chronic airway 

inflammation by an influx of inflammatory cells in the lumen and wall of bronchial and 

bronchiolar airways and as well as in the lung parenchyma. Structural abnormalities, in 

turn, will result in progressive airflow limitation and decreased gas exchange, in patients 

leading to breathlessness and eventually death. Yet, how smoke-induced injury can lead 

to the development of deregulated tissue repair with scar tissue formation is not 

completely understood. 
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7.2  Research Questions 
We hypothesized that altered molecular events caused by differential expressed genes 

underlie the observed structural changes in COPD. Summarizing, therefore, the aims 

of studies presented in this thesis were:  

• What characterize the structural alterations in the development of COPD in the 

peripheral as well as central vasculature and airways.  

• What is the role of growth factors like FGF-1, FGF-2 and their receptor FGFR-1 

as well as VEGF and its two receptors flt-1 and KDR/flk-1 in the development of 

vascular structural abnormalities in patients with COPD. 

• What is the expression pattern of extracellular matrix (ECM) proteins such as 

collagens, laminins and fibronectin in the central and peripheral that could also 

contribute to airflow limitations in COPD. 

• What is the effects of fibroblast growth factors and transforming growth factor-β1 

(TGF-β1) on proliferation and production of ECM components by cultured ASM 

cells, as contributing cells to airway wall thickening in COPD.  

 

7.3  Summary 
Chapter 1 provides an overview of the clinical characteristics, pathogenesis and 

pathological changes in COPD. The inflammatory and structural abnormalities in 

COPD are described and the role of cytokines and growth factors in airway as well as 

vascular remodeling, pulmonary angiogenesis and the development of fibrosis in the 

peripheral and central airways are introduced. The aims of this thesis are outlined at 

the end of the chapter.  

Chapter 2 focused on the vascular alterations in the peripheral lungs of COPD 

patients. We found structural abnormalities and increased protein expression of the 

fibroblast growth factor/receptor (FGF/FGFR) system in the peripheral pulmonary 

vasculature of COPD patients. COPD patients showed increased thickness of the 

pulmonary vessel walls in vessels with several sizes from 100 to 400 µm and above 

but not with vessels of smaller lumen diameter. Surprisingly, no significant 

differences were observed in the percent of smooth muscle content of the wall, as 

indicated by α-smooth muscle actin staining divided by vascular wall area. 

Interestingly, we observed that in COPD patients FGF-1 was significantly increased 
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in medial VSM cells of pulmonary vessels > 200 µm, whereas FGF-2 was more 

intense in endothelial and medial VSM cells of small caliber vessels (< 200 µm).  

Moreover, the expression of their receptor FGFR-1 was more pronounced on 

endothelial and medial VSM cells of each size categories in COPD patients. 

Furthermore, we observed an inverse correlation of FEV1 with the medial VSM 

expression of both ligands and with vascular wall area. Therefore, the FGF/FGFR 

system could play an important role in the regulation of vascular remodeling, in 

COPD.    

 In chapter 3 we described the pulmonary expression of vascular endothelial 

growth factor (VEGF) and its receptors VEGFR-1 (flt-1) and VEGFR-2 (KDR/flk-1), 

which could also play a role in tissue remodeling and angiogenesis in COPD. We 

examined the immunohistochemical staining of VEGF, flt-1 and KDR/flk-1 in central 

as well as peripheral lung tissues obtained from (ex-) smokers with or without COPD. 

VEGF, flt-1 and KDR/flk-1 immunostaining was localized in vascular and airway 

smooth muscle (VSM and ASM) cells, bronchial, bronchiolar and alveolar epithelium 

and macrophages. Additionally, endothelial cells throughout the lungs abundantly 

expressed flt-1 and KDR/flk-1. Within the bronchial airways VEGF expression was 

enhanced in VSM cells of microvessels in the bronchial mucosa and submucosa as 

well as in ASM cells as compared to patients without COPD. VEGF expression was 

more intense in COPD in intimal and medial VSM of the peripheral pulmonary 

arteries associated with the bronchiolar airways and in small pulmonary vessels in the 

alveolar region as well. Moreover, KDR/flk-1 expression was enhanced in endothelial 

cells, intimal and medial VSM of the peripheral pulmonary arteries, whereas flt-1 

expression in endothelial cells only. Furthermore, VEGF staining was significantly 

increased in bronchiolar, alveolar epithelium and bronchiolar macrophages as well as 

the flt-1 receptor in the bronchiolar epithelium. VEGF expression in bronchial 

microvessels in the mucosa, bronchial ASM cells and bronchiolar epithelium 

inversely correlated with FEV1 values. Taken, together, these results implicate also 

VEGF and its receptors, flt-1 and KDR/flk-1 in peripheral vascular and airway 

remodeling processes in COPD.  

In order to extrapolate these findings we investigated in chapter 4 the role of 

FGF-1 and FGF-2 and their receptor FGFR-1 in the central bronchial airways. FGF-1, 

FGF-2 and FGFR-1 were quantified with digital image analysis and were localized in 

bronchial epithelium, airway and vascular smooth muscle (ASM and VSM). In COPD 
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as compared to non-COPD patients, elevated levels of FGF-1 and FGFR-1 were 

observed in bronchial epithelium and of FGFR-1 in only ASM. Interestingly, our 

results revealed increased expression of FGF-2 in COPD patients in the cytoplasm of 

the  bronchial epithelium and nuclear localization in ASM cells. This latter 

observation could pinpoint towards an alternative functional mechanism for FGF-2. 

Moreover, we found a positive correlation of FGF-1 expression in the bronchial 

epithelium with packyears as well as inverse correlation of FEV1/FVC with FGF-2 

and FGFR-1 expression in ASM cells. Furthermore, in cultured human ASM cells, 

FGF-1 and/or FGF-2 induced cellular proliferation. Steady state mRNA levels of 

FGFR-1 were elevated in human ASM cells treated with either FGF-1 or FGF-2. 

Increased bronchial expression of fibroblast growth factors and their receptor in 

COPD cases, and the mitogenic response of human ASM cells to FGFs in vitro, 

suggest a potential role for FGF/FGFR-1 system in the remodeling of bronchial 

airways in COPD.  

Furthermore, Chapter 5 showed that COPD is associated with increased 

deposition of extracellular matrix (ECM) molecules including collagens subtypes I, 

III, IV, fibronectin and laminin in the central airways, contributing to airway wall 

thickening. Staining for ECM components was observed surface epithelial basement 

membrane (SEBM) at sites of intact or damaged epithelium, interstitial space and 

vessels of lamina propria and adventitia of the bronchial airways. Total collagen was 

increased in the SEBM at sites of intact bronchial epithelium, but was not changed in 

the interstitial space and microvasculature of the lamina propria and adventitia of the 

airway in COPD as compared to non-COPD. Deposition of Collagen I and III, 

however, was enhanced in the SEBM both at damaged and intact epithelium, lamina 

propria and bronchial adventitia in COPD. Deposition of collagen IV was not 

different between the two groups, whereas expression of fibronectin was only 

increased in vessels of the lamina propria in COPD. Increased expression of laminin 

was observed in ASM and microvasculature in COPD as compared to non-COPD. 

FEV1 values inversely correlated with collagen I and III in SEBM and lamina propria, 

respectively. When considering co-localization of total collagen with subtypes for 

collagen I, III and IV, we found a significant correlation between total collagen and 

collagen III in the SEBM at both damaged and intact epithelium but not between total 

collagen and collagen I or IV localization. We conclude that smokers with COPD 
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exhibit increased bronchial deposition of collagens, fibronectin and laminin and this 

could be involved in airway remodeling leading to airflow limitation. 

In chapter 6 we investigated whether the altered extracellular matrix (ECM) 

deposition in the central airways of COPD patients could be partly ASM cell derived. 

In this study, therefore, we examined the mRNA expression of ECM proteins such as 

collagen I, III and fibronectin in cultured human ASM cells stimulated with FGF-1, 

FGF-2 or TGF-β1. Densitometric analysis of Northern blots showed increased mRNA 

expression of collagen I and III in ASM cells stimulated for 24h with TGF-β1 or FGF-

1, whereas the levels for these mRNAs did not change in FGF-2 stimulated cells. 

ASM cells constitutive expressed fibronectin mRNA, which remained unaltered after 

each of the stimuli. TGF-β1 did not induce cell proliferation as determined by 3H-

thymidine incorporation assay and cell count, this in contrast to FGF-1 and FGF-2. 

Total protein over DNA ratio in ASM cells, as a measure for cellular hypertrophy 

remained unaffected by each stimulus. Interestingly, increased levels of TGF-β1 were 

observed in the conditioned medium of FGF-2 but not FGF-1 stimulated ASM cells 

with a maximum after 2-4 hours of incubation. We conclude that TGF-β1 and FGF-1 

stimulate mRNA expression of collagen I and III in ASM cells. Taken together, 

induced cell proliferation by FGF-1 and FGF-2 and increased ECM synthesis by FGF-

1 and TGF-β1 in ASM cells in vitro implicate these growth factors in ASM cell 

accumulation by hypertrophy and/or hyperplasia during COPD. 
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7.4  Vascular alterations and the role of growth factors 

Vascular abnormalities including pathological angiogenesis and vascular remodeling 

resulting from tobacco induced injury have been associated with the development of 

COPD (4-6). Early reports from Wright et al. described an increased wall area of 

small (< 500 µm) pulmonary vessel within the intima in mild to moderate COPD 

patients and additionally in the media in severe cases (4, 7). The wall thickening has 

been attributed to a chronic inflammatory process with ongoing fibrosis and an 

increased adventitial infiltration of inflammatory cells, predominantly CD8+ve 

T-lymphocytes (6, 8). The emergence of smooth muscle cells within the intima of 

small pulmonary arterial branches and the extension of medial vascular smooth 

muscle (VSM) distally into pulmonary arteries, arterioles and veins that are normally 

devoid of smooth muscle have also been described (9). We have looked at the 

vascular alterations in COPD and have shown vascular wall thickening in the 

peripheral pulmonary vessels of mild COPD patients compared to non-smoking 

controls (chapter 2).  

 

Angiogenesis in COPD 

Tobacco smoking imposes severe oxidative stress on the lungs directly via reactive 

oxygen species in the smoke as well as indirectly through activation of inflammatory 

cells leading to a repetitive cycle of oxidant stress and protease activation. Occluded 

capillaries and loss of the pulmonary vascular bed by emphysema has been suggested 

to lead to the formation of new vessels (angiogenesis) and an increased number of 

broncho-pulmonary arterial anastomoses (9). Hypoxia is an important trigger for 

angiogenesis in order to (re-)supply tissues with oxygen and detecting as well as 

responding to hypoxia are therefore of pathophysiological and clinical relevance (10). 

Sustained alveolar hypoxia can cause pulmonary vasoconstriction with pulmonary 

hypertension and pulmonary angiogenesis with the formation of collateral vessel 

sprouting and remodeling of existing vessels (9).  

 In COPD patients we observed increased expression of FGF-2 and receptor 

FGFR-1 in endothelial and VSM cells in many small calibre (50-200 mm) alveolar 

vessels (Chapter 2). Additionally, VEGF and its receptors, flt-1 and KDR/flk-1 were 

increased on these pulmonary vessels (Chapter 3). Angiogenic sprouting is a 

mechanism, in which VEGF and FGF-2, play an important role (11). It is assumed 
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that tobacco-induced tissue injury to the endothelium with consecutive alveolar 

hypoxia leads to a series of events initiating angiogenesis in COPD (12, 13). In brief, 

myo-fibroblasts or vascular smooth muscle cells get activated by hypoxia and 

expression of hypoxia inducible transcription factors is induced, resulting in VEGF 

secretion (10, 14, 15). Endothelial and VSM cells activation leads to destabilization of 

the vessels by the actions of angiopoietin 2 and tie-2 receptor (16-18). In addition, 

VEGF increases vascular permeability, thereby allowing extravasation of plasma 

proteins which lays down a provisional matrix for proliferation and migration of 

endothelial cells (18). The increase in vascular permeability and as well as 

additionally secretion of proteinases by endothelial and VSM cells lead to liberation 

and activation of growth factors such as VEGF and FGF-2 from the surrounding 

matrix with prolongation of endothelial cell initiated tube formation (16-18). FGF-2 

and platelet-derived growth factor also affect angiogenesis by recruiting mesenchymal 

progenitor cells (pericytes) or (myo-)fibroblast and smooth muscle cells, whereas 

angiopoetin-1 and transforming growth factor–β1 further stabilize the newly formed 

vessel (18). In COPD little is known about the exact role of angiogenesis, but the 

relevance of the blood vessels in COPD is emerging by recent observations, indicating 

that severe emphysema is associated with pulmonary endothelial cell apoptosis and 

increased levels of oxidative stress makers as well as decreased VEGF and type 2 

receptor  (KDR/flk-1) expression (19). Moreover, treatment with a blocker of VEGF 

type 2 receptor caused emphysema in experimental animals placed in hypoxic 

conditions (20). In contrast, we observed increased VEGF expression in pulmonary 

vessels in a patient group with mild to moderate disease. It is possible that the kind of 

patients is responsible for the observed differences, mild COPD subjects in our case 

versus solely emphysema patients in case of the study above. These discrepancies 

could also pinpoint towards different stages of development or severity of the disease. 

In mild to moderate COPD patients increased expression of VEGF and receptors may 

indicate an active and partly successful response to tobacco induced injury, whereas 

the decreased expression observed by Voelkel and coworkers may represent a failing 

response at the end stage of the disease.  

Thus, the presence of VEGF and its receptors, especially KDR/flk-1, in the 

lungs are associated with both maintenance, survival and the protection against 

apoptosis of endothelial cells and the initiation of repair by angiogenesis in response 

to tissue injury. Although further studies are necessary to elucidate the contribution of 
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the formation of new vessels (angiogenesis) in COPD, our results suggest that VEGF 

and its receptors, flt-1 and KDR/flk-1 as well as FGF-2 and receptor FGFR-1 are 

important players in the peripheral lungs during the development of COPD (chapter 2 

and 3).   

 

Vascular remodeling in COPD 

Many of the factors of normal vessel formation are also active during pathological 

vascular wall remodeling with deregulated repair as a consequence of either direct 

tobacco-induced injury, inflammation or increased shear stress in COPD (18). A 

pathological link has been establish between pulmonary hypertension and the 

development of vascular wall thickening and remodeling (13, 15, 21). Microvessels of 

the normal adult lungs contain a mixed population of partially muscular and muscular 

vessels, the latter consists of separated muscular segments where preexisting smooth 

muscle cells are defined by an internal and external elastic lamina (22).  

The sources of the newly formed cells during vascular remodeling have been a 

key issue of investigation. Recent studies indicate that the existing VSM contribute 

only relatively little to the increase microvascular smooth muscle population as 

indicated by a low proliferation index (23, 24). Rather, vessel wall thickness increases 

by migration of interstitial fibroblast to the vessel wall and by cells derived from de-

differentiated VSM or even endothelial cells. VSM and endothelial cell-derived 

VEGF, FGF-1 and FGF-2 stimulate fibroblast chemotaxis and proliferation (25-30). 

We have demonstrated increased expression of these ligands in our COPD patient 

group (chapters 2 and 3). Release of the mediators such as platelet-derived growth 

factor, and endothelin-1 may also contribute to chemotaxis and alignment of these 

cells, whereas transforming growth factor-β1 induced the expression of α-SMA in 

endothelial and fibroblast, the early marker of smooth muscle phenotype 

differentiation (18). Furthermore, we have shown that the ratio in the amount of α-

SMA positive staining versus vascular wall area remained constant in growing 

vascular walls, indicating an overall increase in all the individual cell types and 

extracellular matrix, rather than a shift towards a particular cell type (chapter 2). TGF-

β1 is a potent inducer of ECM proteins synthesis in fibroblast and vascular smooth 

muscle cells such as collagens which may be involved in vascular wall thickening in 

COPD as indicated by a correlation with the amount of total collagen deposition in the 

vascular wall (5, 31). In addition, recent observations link alveolar hypoxia and the 
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expression of hypoxia-inducible transcription factors with the actions of VEGF and 

FGF-2 on endothelial, VSM cells and fibroblasts in the ongoing process of vascular 

remodeling. Hypoxia and endothelial injury induce the expression of VEGF in VSM 

cells as well as VEGF and KDR/flk-1 in endothelial cells, whereas the expression and 

release of FGF-2 can be upregulated in endothelial cells by increased shear stress (10, 

14, 17, 32, 33). The release of these growth factors leads to increased proliferation of 

endothelial and VSM cells. Furthermore, Rose and colleagues showed that hypoxic 

fibroblast showed increased HIF-1α expression and VEGF release, inducing both 

fibroblast recruitment and proliferation, which in turn activated and increased the 

proliferation of VSM cells (15). In addition, growth factors such as VEGF, FGF-2 and 

PDGF and TGF-β released from macrophages and mast cells upon hypoxia near sites 

of vascular lesions may contribute the vascular remodeling (27, 34, 35). Moreover, a 

shift in HSPG-side chain, which is acting as the potent co-receptor for the FGFR-1, 

leads to a remarkably enhanced responsiveness of FGF-2 on endothelial cells under 

influence of HIF-1α during hypoxia (36). The cellular interactions within the vascular 

wall and some of most the important mediators during vascular remodeling in COPD 

are summarized in Figure 7.1 (chapter 2 and 3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7  Summary & General discussion 

 171

 
 
Figure 7.1  Proposed mechanism of vascular wall thickening in COPD. Cigarette smoking 
imposes severe stress on the lungs both directly, via the toxic agents and reactive oxygen species in the 
smoke and indirectly through the activation of inflammatory cells, predominantly neutrophils (Neu), 
macrophages (Mφ) and T-lymphocytes (CD8+ve T), causing tissue injury, that in turn leads to alveolar 
hypoxia. Moreover, pulmonary hypertension that is associated with COPD could lead to additional 
vessel injury via increased shear stress. Growth factors such as vascular endothelial growth factor 
(VEGF), fibroblast growth factors (FGFs) and transforming growth factor β1 (TGF-β1) released from 
inflammatory cells near sites of vascular lesions may contribute the vascular remodeling. Hypoxic 
fibroblast (FB) show increased hypoxia inducible factor (HIF) 1α expression and VEGF release, 
inducing both recruitment and proliferation of interstitial fibroblasts, and in turn proliferation of 
vascular smooth muscle cells (VSMC). Hypoxia and endothelial injury cause release of VEGF and 
FGF-2 from endothelial cells leading to increased proliferation of endothelial and VSM cells. During 
hypoxia endothelial cells show a HIF-1α dependent expression of heparan sulphate proteoglycan 
(HSPG) side chains. HSPGs act as co-receptors for FGF-1 and FGF-2, leading to a remarkably 
enhanced responsiveness of FGF-2. TGF-β1 is involved in extracellular matrix (ECM) deposition 
within the vascular wall by FB and VSMC, and could initiate differentiation of EC and FB to a smooth 
muscle phenotype as indicated by the induction of α-SMA expression in endothelial and fibroblast. 
Several growth factors could play an important role in peripheral vessel remodeling during the 
development of COPD. Summarising, the investigated growth factors could play an important role in the 
pathophysiological processes that are active in peripheral vessel remodeling during the development of 
COPD. 
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7.5  Airway wall remodeling and the role of growth factors 
Changes to small airways and lung parenchyma 

Although the investigations in the pulmonary vasculature have gained interest, the 

role of the changes within the airway wall and have been studied intensively during 

the last several decades. The conducting airways can be subdivided in central, 

bronchial airway as well as more peripheral or small airways. Airways with a 

diameter of 2 mm or less are conveniently considered as small airways (37, 38). 

Inflammation and structural alterations in the small airways as well as the lung 

parenchyma are considered as the most important contributors to the airflow 

limitation and the accelerated decline of FEV1 in COPD (37, 38). Many studies, 

therefore, have focused on the pathological changes that take places within the 

airways < 2 mm in diameter and lung parenchyma (37, 39-42). 

Early reports showed that the specific morphologic features separating 

smokers from non-smokers were increases in epithelial and goblet cell metaplasia, 

smooth muscle mass as well as inflammation in the walls of small bronchioles and 

that young non-symptomatic smokers displayed early signs of inflammatory reactions 

in bronchiolar airways and alveolar air spaces without any apparent structural 

abnormalities (41, 42). Later studies further specified this increased inflammatory cell 

influx in COPD patients as predominantly neutrophils, macrophages, mast cells and  

CD8+ve T-lymphocytes (43-46). Changes in the lung parenchyma also contribute to 

the disease. As a result of this smoke-induced ongoing inflammatory processes, the 

connective tissue of the lungs gets degraded by a relative excess of inflammatory-cell 

derived proteases and a relative depletion of anti-proteolytic defences, together referred 

to as the protease-antiprotease hypothesis (47).  

In the light of these observations, definite progress has been made in what factors 

can cause damage to lung tissue. The current knowledge in the development of COPD 

is summarized Figure 7.2.  
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Figure 7.2 Important mechanisms in the pathogenesis of COPD. Chronic exposure to 
agents from tobacco smoke leads to tissue injury and chronic inflammation in the lung 
parenchyma, the small and large airways and vasculature with an influx of predominantly 
macrophages, neutrophils and CD8+ve lymphocytes. This leads to the release of many pro-
inflammatory cytokines and growth factors and a misbalance in inflammatory and structural 
cell-derived proteases and their inhibitors (serine/cysteine proteases vs. α1-antitrypsin, 
secretory leukoprotease inhibitor (SLPI), and matrix metalloproteinases (MMPs) vs. tissue 
inhibitors of MMPs, TIMPs). Excessive breakdown of elastin and collagens in the 
parenchyma with destruction of alveoli as well as increased deposition of extracellular matrix 
within the airways pulmonary vasculature with thickening and fibrosis contribute both to 
airflow limitation in COPD. Based on reference (48). 
 

Chronic tissue injury/repair & fibrosis

Irritants,
ROS

MφTissue injury

Chronic Inflammation

 CD8+ve T
  
Neu

 Proteases inhibitors
- α1-At, SLPI
- TIMPs

 Proteases
- Serine/Cysteine proteases
- MMPs

 Pro-inflammatory
- Cytokines
- Peptide growth factors

             COPD
- Emphysema
- Airway Remodeling
- Vascular Remodeling



Chapter 7  Summary & General discussion 

 174

From recent human as well as animal studies it has become clear that COPD is 

characterized by breakdown of elastin but also breakdown and synthesis of collagen with 

scar formation by proteases including macrophage metalloelestase, neutrophil elastase 

and collagenases (47, 49, 50). Moreover, the main effector cells are probably resident 

macrophages as indicated by recent animals studies in which knockout mice for 

macrophage products such as macrophage metalloelastase which did not developed 

increased airspace sizes (emphysema) after chronic smoke exposure (51-53). 

Interestingly, knockout mice lacking neutrophil elastase were only 50-60% protected 

against smoke-induced lung injury and emphysema, which implies that neutrophils 

probably only partially contribute in this process (54). On the other hand, these results 

have to be taken with care because of possible differences between mice and men. 

Thus, several phenomena occurring in parallel may result in peripheral tissue 

destruction and remodeling in COPD. Little is known, however, about the exact role 

of peptide growth factors in the molecular mechanisms underlying these processes in 

the context of COPD. 

 

Growth factors during tissue repair in COPD 

Growth factors such as FGF-1, FGF-2, VEGF, PDGF, TGF-β1 as well as many others 

produced and secreted by various cell types including inflammatory cells, bronchiolar 

and alveolar epithelial and airway smooth muscle cells or released from deposited 

extracellular matrix stores may contribute either adverse or protective to the process 

of airway remodeling (40, 46, 55). Chapter 2 focused on fibroblast growth factors in 

the peripheral lungs and we showed that FGF-1, FGF-2 as well as their receptor 

FGFR-1 were expressed by bronchiolar epithelial and airway smooth muscle cells, 

(myo-fibroblasts) and macrophages. Also VEGF and its receptor KDR/flk-1 and flt-1 

(chapter 3) as well as TGF-β1 and its receptor were found on bronchiolar and alveolar 

epithelial cells as well as airway smooth muscle cells (46). Moreover, we observed 

increased expression of VEGF on these cell types in COPD (chapter 3). 

The role of growth factors in tissue remodeling is possibly ambiguous. FGF-1, 

FGF-2 as well as VEGF released from injured cells or deposited extracellular matrix 

stores are strong chemotactic agents for macrophages, mast cells and fibroblasts. 

Additionally, they prove to be potent mitogens for bronchiolar epithelial cells, (myo)-

fibroblast and airway smooth muscle cells. FGF-2 and VEGF have been shown to be 

survival factors for epithelial cells as well. As indicated by a recent study from Pardo 
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and co-workers, FGF-2 prevented toxin-induced apoptosis in pneumocyte type II 

cells. Cell rescue relied on de novo protein synthesis of the anti-apoptotic proteins 

Bcl-X(L) and Bcl-2 within 4 h of FGF-2 treatment (56). Furthermore, the protective 

role of TGF-β1 is emphasized by recent observation demonstrating that smoke 

extracts inhibited epithelial cells repair processes by interfering with the epithelial cell 

proliferation, motility and TGF-β1 release (57). These data, suggest that epithelial 

cells present in the airways of smokers may be altered in their ability to support repair 

responses, which may contribute to architectural disruptions present in the airways in 

COPD, associated with cigarette smoking. Thus, fibroblast growth factors, TGF-β1 

and VEGF could play a role in effectively repairing damage to the lung epithelia and 

underlying connective tissues and protecting against further tobacco-induced tissue 

injury, in order to retain the normal architecture of the lungs.  

 

Changes to large airways 

Few studies of COPD have focused attention on larger airways of more than 2 mm in 

diameter. The characteristic changes in the central airways of smokers with 

established COPD include inflammatory cellular infiltration into the airway wall and 

mucous gland enlargement as well as changes in airway dimension in relation to lung 

function of patients with COPD (58-62). This last study showed that the wall area 

internal to the airway smooth muscle, the lamina propria, was significantly thickened 

over the entire range of cartilaginous airways, which was also associated with a 

reduction in FEV1/FVC (62). Surprisingly, and in contrast to earlier reports from 

peripheral airways, alterations in large airway smooth muscle mass were not observed 

(62, 63). Therefore, those authors argued that their findings and those of others favor 

chronic inflammation with subepithelial fibrosis of the airways as a cause of the inner 

wall thickness. Bronchial microvessels in the lamina propria may contribute to the 

inner wall thickening by vascular wall remodeling or vascular edema, since the 

number of microvessels in the area 500 µm deep inside the airway wall appeared 

constant for patients with either COPD or chronic bronchitis as compared to smoking 

and also non-smoking controls (63).  
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Extracellular matrix and subepithelial fibrosis in COPD  

Chapter 4 in this thesis described the role of fibroblast growth factors 1 and 2 as well 

as their receptor FGFR-1 in the bronchial airways during COPD. In COPD patients 

we found increased expression of FGF-1 in the bronchial epithelium, whereas FGF-2 

was elevated in bronchial airway smooth muscle cells and FGFR-1 was more intense 

on both cell types. The central airways were also immunohistochemically positive for 

VEGF and its receptors KDR/flk-1 and Flt-1 and in COPD displayed increased 

expression for VEGF but not for its receptors in the bronchial epithelium, ASM cells, 

and the macrophages and microvessels in the lamina propria and adventitia of the 

bronchial airways (chapter 3).  

Within the bronchial airways, collagen subtypes I and III, the most abundant 

ones, and fibronectin and laminin are found beneath the epithelial lining, throughout 

the interstitial spaces and in between most cells types and within the blood vessels of 

airway wall (64-66). Collagens and fibronectin are bound to cells through specific 

binding sites or receptors, the integrins, which are heterodimeric transmembrane 

receptors, consisting one α and β chain, which specially bind different ECM 

molecules (64, 65). Collagen IV and laminins are the main constituents of epithelial or 

endothelial basement membranes, which connects these cells, functioning as outward 

cellular lining of the airways or of blood vessels, with collagen subtypes I, III and VI 

from within the underlying interstitial spaces (67, 68). 

In the light of damage and repair of the bronchial epithelium and the surface 

epithelial basement membrane (SEBM) as well as airway remodeling and fibrosis in 

underlying subepithelial regions including the lamina propria, airway smooth muscle, 

and adventitial layers, we also investigated the expression and deposition of various 

extracellular matrix molecules in the central airways of COPD patients (chapter 5). In 

chapter 5 we found within the surface epithelial basement membrane that the 

deposition of total collagen as well as subtypes collagen I, III and IV, fibronectin and 

laminin was increased at sites of epithelial denudation, irrespective of the disease 

state. Furthermore, COPD patients showed a significant elevation of the deposition of 

fibronectin, collagen I and III but not collagen IV or laminin as compared to non-

COPD patients at the SEBM with or without the presence of epithelial damage 

(chapter 5). Moreover, in COPD patients collagen I and III but not fibronectin, 
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laminin and collagen IV were upregulated within the lamina propria and adventitia of 

the bronchial airways with accumulation of macrophages, fibroblast and α-SMA 

positive myo-fibroblasts (chapter 4 and 5). These results pinpoint towards ongoing 

bronchial subepithelial as well as adventitial fibrosis and airway remodeling in 

COPD. Within the bronchial airways, extracellular matrix is mainly produced by 

epithelial cells, (myo-)fibroblasts and airway smooth muscle cells. Bronchial 

epithelial cells and subepithelial fibroblast are rich sources of fibro-proliferative 

cytokines and growth factors as well as extracellular matrix products (69). TGF-β1 is 

able to induce production of fibronectin and the release of VEGF in an autocrine manner 

in bronchial epithelial cells (70, 71). Interestingly, bronchial epithelial cell and 

fibroblast interactions with regard to extracellular matrix production were observed 

with cell culture. Conditioned media of bronchial epithelial cell were shown to induce 

macromolecule release accompanied by increased steady-state fibronectin and 

collagen I alpha mRNA levels (72). TGF-β1 neutralizing antibody blocked this 

increase in extracellular matrix production, suggesting that TGF-β1 produced by the 

epithelial cells may drive fibroblast matrix production (72). The increased deposition 

of collagen I and III within the interstitial matrix in the lamina propria and adventitial 

spaces could be produced by (myo-)fibroblast present in the bronchial airways 

(chapter 5). 

 The role of fibroblast growth factors on ECM molecule production appeared to 

be more variable among different cell types within the airways. In human epithelial 

cells FGF-1 has been shown to induce collagen I and III (73). Our results of increased 

FGF-1 expression together with its receptor FGFR-1 in the bronchial epithelium of 

COPD patients (chapter 4) could contribute to the elevated deposition of fibronectin, 

collagens I and III in the SEBM at sites with intact and especially at areas with 

denudation of the bronchial epithelium in COPD (chapter 5). It has been shown that 

TGF-β1 is  also able to induce FGF-2 from airway epithelial cells and that FGF-2 to 

induce collagen IV in human epithelial cells (73, 74). We found expression of FGF-2 

expression on bronchial epithelial cells but observed no difference in FGF-2 

expression as well as collagen IV deposition in COPD patients as compared to con-

COPD patients (chapters 4 and 5).  

 Summarizing, the elevated expression of FGF-1 and its receptor FGFR-1, the 

increased expression of VEGF and the presence of KDR/flk-1 and flt-1 on bronchial 

epithelial cells and the increased deposition of ECM molecules in COPD, suggests a 



Chapter 7  Summary & General discussion 

 178

mechanism of ongoing repair processes at sites of tobacco induced epithelial damage, 

triggering and perpetuating subepithelial fibrosis in COPD. 

 

Airway smooth muscle, (myo-)fibroblast heterogeneity and the role in airway fibrosis  
Evidence is emerging that (myo-)fibroblast and/or airway smooth muscle cells from 

diseases including asthma and idiopathic pulmonary fibrosis are phenotypically 

different compared to isolated cells from control patients (75-80). We found increased 

FGF-2 and FGFR-1 as well as VEGF in ASM cells of COPD patients, which could 

also contribute to smooth muscle mass increase and ECM deposition during airway 

remodeling in COPD (chapter 3 and 4). Moreover, in chapter 6 we showed that 

isolated ASM cells in vitro, treated with TGF-β1 or FGF-1 but not FGF-2, displayed 

increased mRNA levels of pro-collagen subtypes III and I. Furthermore, in chapter 6 

we described that active TGF-β1 is released from FGF-2 and to a lesser extent FGF-1 

stimulated ASM cells with a maximum at 2-4 hours of incubation. Moreover, FGF-2 

and also FGF-1 but interestingly not TGF-β1 induced proliferation of isolated ASM 

cells in vitro (chapters 4 and 6). 

Normal mature ASM cells exist in vivo predominantly in a non-proliferative 

state with a fully differentiated contractile phenotype and expression of contractile 

makers (78, 81). The isolation and culturing in vitro on a serum-enriched medium 

with the exposure to many cytokines and growth factors causes the transition to a 

more proliferative phenotype, mimicking the events during chronic inflammation in 

vivo (78, 81). Serum deprivation restores the expression of most contractile markers. 

Intermediate forms may exist including a more “synthetic” phenotype with partly 

impaired proliferation, the synthesis of extracellular matrix components such as pro-

collagen subtype I and the expression of some of the contractile elements like α-

smooth muscle actin (α-SMA), together resembling a (myo-)fibroblast phenotype (77, 

82-84). A recent study using isolated ASM cells demonstrated that ASM cells-derived 

TGF-β1 localized extracellular and that plasmin regulated the secretion of a 

biologically active form of TGF-β1 by ASM cells as well as the release of 

extracellular TGF-β1. The biologically active TGF-β1 induced ASM cells to 

synthesize collagen I in an autocrine as well as manner α-smooth muscle actin (α-

SMA), (85).  
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During development of experimental lung fibrosis upregulation of FGF-1 

expression is observed in fibroblast (86). As indicated by a recent follow-up study, 

however FGF-1 reduced the expression and synthesis of type I collagen and increased 

the collagenase protein expression were found in cultured human lung fibroblasts 

(87). Their findings demonstrated that FGF-1 might have a protective role in avoiding 

collagen accumulation during lung ECM remodeling. Also FGF-2 has been found to 

decrease mRNA expression and synthesis of the pro alpha-chains for types I and III 

collagen and to induce interstitial collagenase (MMP-1), which is required for 

degradation of collagen types I and III in vascular smooth muscle cells (88). 

Furthermore, FGF-2 completely disassembled the smooth muscle alpha-actin-

containing stress fiber network and increased proliferation and migration of VSM 

cells (89).  

Although an exact mechanism remains unclear, a link between TGF-β1 

induced ECM production and the role of FGFs increased proliferation has been 

proposed by recent investigations. Inactive TGF-β1 is bound to latency-associated 

peptide (LAP) and this TGF-β1 is bound to latent binding protein-1 (LTBP-1) and in 

turn to the extracellular matrix, servings as a reservoir for active TGF-β1 (90). Release 

of bioactive TGF-β1 by macrophages, ASM cells or from the ECM-bound reservoirs 

may occur by simultaneously released serine proteases of which plasmin is one of the 

most important (85, 91). Thannickal and colleagues showed in human lung fibroblasts 

that FGF-2 release increased after TGF-β1 stimulation and that FGFR-1 (Flg) and 

FGFR-2 (Bek) were upregulated by TGF-β1 incubation, mediating enhanced 

mitogenic responses to FGFs (92, 93). This suggests an autocrine loop for both 

factors.  

In chapter 6 we show the opposite, the induction of TGF-β1 by FGF-2 in 

human ASM cells, which has only been shown earlier to our knowledge in a cell line 

of glial origin and neonatal cultured astrocytes (94, 95). Since this induction was too 

rapid for de novo transcription and translation, we hypothesize that this release 

originates from intracellular or cell-bound latent TGF-β1 stores. The role of FGF-2 

stimulated TGF-β1 induction in ASM cells is unclear. FGF-2, however, is known to 

induce plasminogen activator inhibitor-1 (PAI-1), blocking the cleavage from tissue–

type and urokinase-type plasminogen activators (tPA and uPA), and thereby the 

formation of plasmin and thus of bioactive TGF-β1 (96, 97). It could, therefore, be that 
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the decrease in bioactive TGF-β1 is counteracted by its own induction by FGF-2. 

Taken together, these findings could pinpoint towards a dual mechanism to regulate 

pro-collagen I synthesis by actions of TGF-β1 or FGF-2 on the level of plasmin. And 

in general, these growth factors could be involved in phenotypic switches between a 

proliferative/synthetic state versus a more contractile state.  

 

Nuclear localization of FGF-2 in airway and vascular smooth muscle 

In chapter 4 we show in COPD increased nuclear FGF-2, but not FGF-1, expression 

in airway smooth muscle cells by interactively counting of them using video image 

analysis. In chapters 2 and 4 we found that vascular smooth muscle cells also 

displayed this nuclear localization pattern. Currently, the role of FGF-2 in the nucleus 

has been partly clarified, as has been reviewed in two recent reviews (98, 99). The 

FGF-2 gene can produce at least five different isotypes: the conventional 18 kDa 

extracellular FGF-2, as well as four high molecular weight (HMW) forms (22, 22.5, 

24 and 34 kDa). All four HMW isoforms, are able to translocate to the nucleus upon 

activation of different cells and in the nucleus, FGF-2 can act as modulator of 

ribosomal gene transcription (98, 99). 

 From several investigations it is becoming clear that the primary role of 

translocation of HMW FGF-2 isoforms to the nucleus is involved mechanisms of 

responding to cellular injury. Pro-inflammatory cytokines and growth factors such as 

interleukin-1 β (IL-1β), tumor necrosis factor α (TNF-α) and epidermal growth factor 

(EGF) were shown to selectively increase the expression of HMW-isoforms (22 and 

24-kDa) but not of the conventional 18-kDa isoform, followed by nuclear 

translocation in cultured connective tissue cells (100). Also the FGF receptors can be 

translocated to the nucleus, as was evidenced by recent studies of Stachowiak and 

coworkers, showing increased expression and nuclear accumulation of basic fibroblast 

growth factor and the receptor FGFR-1 in primary cultured astrocytes following 

ischemic insults and in adrenal medulla cells after angiotensin II treatment (101-103). 

In fibroblast cell lines, overexpression of nuclear 24 kDa HMW FGF-2 is associated 

with increased resistance against toxic drugs and radiation induced DNA injury (104, 

105). Additionally, cellular debris at sites of injury contains nucleic acid fragments 

released from dead cells and growth factors such as FGF-2.  In viable but damaged 

surrounding cells, re-uptake followed by nuclear translocation of FGF-2 coupled to 
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DNA fragments can occur, which could be important events in early wound repair 

processes (106). Furthermore, Singh and colleagues also have shown that increased 

nuclear expression of 24 kDa HMW FGF-2 in vascular smooth muscle and 

endothelium precedes arterial enlargement in response to increased arterial blood flow 

in vivo (107).  

 Although the function of FGF-2 in the ASM cell nucleus in COPD patients 

remains unclear, from the pattern we observed we believe that the positive staining in 

the nuclei was not due to an artifact but representative of specific localization of the 

appropriate antigen by the antibody used. We hypothesize that pro-inflammatory 

cytokines that may be involved in perpetuation of chronic inflammation in COPD 

patients and the proliferation of airway smooth muscle (ASM) cells may rely on 

nuclear FGF-2 effects. Angiotensin II (Ang II), IL-1β and TNF-α, potent cytokines for 

a wide variety of cells including (myo-)fibroblasts and ASM cells, could be 

implicated in the expression and release of other fibro-proliferative messengers like 

TGF-β1 and IL-6 by ASM cells (108-110). As indicated by recent studies, increased 

nuclear expression of 24 kDa HMW FGF-2 in ASM cells could be involved in the 

expression of cytokines like IL-6 by inducing gene transcription pathways (111-113). 

Taken together, these observations suggest that nuclear FGF-2 expression could be 

transcriptionally involved in a variety of compensatory mechanisms in response to 

cellular injury, which could indicate a novel FGF-2 and FGFR-1 signal transduction 

mechanism in COPD. The exact role of nuclear FGF-2 expression in COPD remains, 

however, to be elucidated.    
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7.6  Concluding remarks 
Taken together, the investigated growth factors could play an important role in the 

pathophysiological processes that are active in airways as well as lung parenchyma 

during the development of COPD. The results presented in this thesis lead to the 

following conclusions: 

• The protein expression of growth factors FGF-1, FGF-2 and their receptor FGFR-

1 is increased in the pulmonary vasculature, which could be linked to the 

structural vascular abnormalities observed in COPD patients. 

• The expression of the angiogenic growth factor VEGF-A and its receptors 

KDR/Flk-1 and Flt-1 are upregulated in the peripheral vasculature and airways of 

COPD patients, implicating VEGF-A and receptors in vascular and airway 

remodeling. 

• COPD patients display more intense protein expression of FGF-1, FGF-2 as well 

as VEGF-A in the bronchial epithelium, airway smooth muscle cells, 

microvasculature and macrophages in the central airways, indicating their 

involvement in epithelial repair processes and the initiation and perpetuation 

central airway wall remodeling. 

• The deposition of extracellular matrix components collagens I and III, fibronectin 

and laminin was increased in the bronchial airways of COPD patients as compared 

to non-COPD controls, contributing to bronchial airway wall thickening in COPD.  

• ASM cells may contribute to bronchial wall thickening, indicated by their ability 

to produce the ECM markers collagen I, III and fibronectin in response to FGF-1 

or TGF-β1, as well as their proliferative response to FGF-1 and FGF-2 in vitro. 
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7.7  Implications for future research 
The studies in this thesis indicate that growth factors (FGF-1, FGF-2, VEGF and 

TGF-β1) expressed on various cell types and released from various sites in the lungs 

during chronic exposure to toxic agents from tobacco smoke, are important mediators 

in COPD. A rapidly growing number of cellular and molecular biomarkers with a 

large amount of possible interactions is implicated in the disease, reviewed by 

reference (48). 

 First of all, COPD is complex disease affecting all tree compartments of the 

lungs in a variable manner in individual patients, the lung parenchyma (emphysema), 

small airways (small airways disease) and the large airways (chronic bronchitis). The 

balance of inflammatory and structural cell-derived proteases as well as their 

inhibitors is also important in COPD (48). Excessive breakdown of elastin and 

collagens in the parenchyma with destruction of alveoli as well as increased 

deposition of extracellular matrix within the airways with thickening and fibrosis 

contribute both to airflow limitation in COPD. Thus, although evident progress has 

been made in the understanding of the disease, several important questions remain to 

be answered. 

What is the individual contribution of different cells to the pathogenesis of 

COPD? In others words which of the already known cell types, intercellular mediators 

as well as intracellular messengers are involved in initiating and perpetuating the most 

important events of the three disease states in the lung parenchyma (emphysema), 

small airways (small airways disease) and the large airways (chronic bronchitis). Most 

likely several different mediators are involved in chronic inflammation, tissue damage 

and fibrosis. As reviewed recently, interesting targets for COPD treatment include 

anti-inflammatory drugs, antioxidants and anti-remodeling agents (48).  However, 

new drugs for the treatment of COPD are needed and the identification of an 

association between peptide-growth factors such as FGF-1, FGF-2 and VEGF and the 

pathology of COPD could lead to new interventions either by promoting repair 

processes or preventing the formation of fibro-proliferative lesions. 

Also of clinical importance for the progression of the disease, are mild and severe 

COPD differential stages of the same disease or totally different pathologies? The 

number of neutrophils, macrophages and CD8+ve T-lymphocytes in the peripheral 
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airways correlated with the severity of airflow limitation (44, 114). Furthermore, our 

observations that the cellular expression of several growth factors in the airways is 

correlated with the functional determinant of airflow limitation (FEV1) emphasize 

their contribution to the disease. However, above observations do not rule out either 

possibility. If the progression from mild to severe COPD involves differential stages 

of the same disease, the question of reversibility of the disease is emphasized. 

Smoking cessation is obviously considered as beneficial, but further studies are 

necessary to investigate what the consequences are for the pathologic lesions such as 

the chronic inflammation and fibro-proliferative abnormalities in the airways of 

clinical COPD patients (115).   

What is the role of the blood vessels in the pathogenesis of COPD and their 

possible contribution in the treatment of the disease? Although structural 

abnormalities in the blood vessels of COPD patients have been observed several 

decades ago, their importance has been re-emphasized by several recent studies. We 

observed that the vessels of COPD patients have increased expression of peptide-

growth factors including FGF-1, FGF-2 and VEGF. Therefore, these peptide growth 

factors could be protective against tobacco-induced injury and may prove attractive 

therapeutic agents in the reversibility of the disease in the future.  

The most intriguing question for the understanding of COPD is why only a 

minority of 10% of all smokers actually develops the disease, given the fact that the 

amount of exposure to tobacco smoke is comparable between cases and non-

symptomatic smokers. Clearly, some people are more susceptible than others are, for 

the same amount tobacco smoked. Several genetic predispositions are identified, 

including associations between COPD and polymorphisms, in first of all α1-

antitrypsin, tumor necrosis factor-α and surfactant protein B genes (2). The 

associations above pinpoint towards differences in protection to alveolar destruction, 

in inflammatory mediator profile and in variations in lining fluid, respectively. The 

goal is to find which other heritable factors may contribute to the increased risk of 

development and progression of COPD. It would be interesting to investigate whether 

or not genetic polymorphisms can be found in genes that are involved in the initiation 

of repair processes and perpetuation towards pulmonary fibrosis, like peptide growth 

factors and their receptors.     
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7.9 Samenvatting 
 
De aandoening “Chronic Obstructive Pulmonary Disease” (COPD) is een 

verzameling van drie ziektebeelden die gekenmerkt worden door een chronische 

ontsteking met weefselschade in de longblaasjes (emfyseem), de kleinere luchtwegen 

(‘small airways disease’) en de hoofd bronchi (chronische bronchitis). Deze 

chronische ontsteking door de gehele longen is een gevolg van een langdurige 

blootstelling aan schadelijke gassen en deeltjes. Naast andere oorzaken, zoals 

luchtverontreiniging en blootstelling aan schadelijke stoffen tijdens werkzaamheden, 

is roken verreweg de meest belangrijke oorzaak. Het jarenlang excessieve gebruik 

van tabak leidt tot een beeld van progressieve achteruitgang van de longfunctie en het 

ontstaan van kortademigheid. Door de toegenomen tabaksconsumptie, voornamelijk 

gedurende het midden van de vorige eeuw, wordt COPD op dit moment een 

belangrijke oorzaak van morbiditeit en mortaliteit in de westerse wereld en neemt het 

aantal mensen dat aan de ziekte lijdt nog altijd toe. Er is een duidelijke relatie tussen 

de hoeveelheid gerookte tabak en afname van de longfunctie evenals een positief 

effect van tussentijds stoppen met roken. Echter, van alle chronische rokers 

ontwikkelt uiteindelijk slechts 10 procent daadwerkelijk klinisch aantoonbare COPD. 

Wat bepaalt welke individuen een verhoogde gevoeligheid vertonen voor chronische 

ontsteking en weefselschade, is een van de meest gestelde vragen aangaande de 

pathogenese van de ziekte.  

 Tijdens de voortdurende ontstekingsprocessen migreren immuuncellen onder 

invloed van onstekingsmediatoren en groeifactoren naar de plaats van de 

beschadiging. In rokers en in sterkere mate in COPD patiënten worden in het 

parenchym, de kleine en grote luchtwegen en in de bloedvaten verhoogde aantallen 

macrofagen, neutrofiele granulocyten en T-lymfocyten gevonden. Deze cellen 

scheidden bovendien extra beschadigende stoffen uit, waaronder reactieve zuurstof 

vormen en eiwitsplitsende enzymen. Hierdoor wordt het omliggende long weefsel 

herhaaldelijk beschadigd maar tevens gerepareerd. In bepaalde gevallen leidt een 

overvloed aan schade en een tekort aan herstel uiteindelijk tot irreversibele 

weefselvernietiging (emfyseem) evenals littekenvorming (weefsel herstructurering) in 

de longen. Deze structurele abnormaliteiten in de long resulteren in de progressieve 

longfunctieafname door middel van een verlaagde gasuitwisselingscapaciteit. De 

moleculaire aspecten van deze processen, echter, zijn onvoldoende bekend.  
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De doelstellingen van de in dit proefschrift beschreven studies waren daarom;  

(I) het karakteriseren van structurele veranderingen in de centrale evenals 

perifere luchtwegen en het pulmonaire bloedvatstelsel, 

(II) het identificeren welke specifieke groeifactoren mogelijk betrokken zijn bij 

deze weefsel herstelprocessen,  

(III) in hoeverre veranderingen in afzetting van extracellulaire matrix 

macromoleculen inclusief collageen in de centrale luchtwegen de luchtweg 

obstructie beïnvloeden,  

(IV) welke rol luchtweg gladde spiercellen spelen in de verdikking van de 

luchtwegen door productie van extracellulaire matrix moleculen en 

celvermeerdering onder invloed van specifieke groeifactoren.  

 

Hoofdstuk 1 geeft een overzicht van de klinische aspecten, de huidige inzichten op 

het gebied van pathogenese en pathologie van COPD. De immunologische 

verschillen in de longen van niet-rokers, rokers en COPD patiënten evenals de 

belangrijke structurele veranderingen in COPD patiënten worden beschreven. De 

belangrijkste cytokinen en groeifactoren die betrokken zijn bij de ontwikkeling van 

luchtweg- en vasculaire herstructurering worden geïntroduceerd. De laatste paragraaf 

van het eerste hoofdstuk beschrijft de specifieke doelstellingen van dit proefschrift.  

 

In Hoofdstuk 2 stonden structurele verandering in de perifere bloedvaten centraal. 

We hebben met immunohistochemische technieken parenchymaal long weefsels van 

COPD patiënten en rokers zonder COPD onderzocht. Met beeldanalyse werden het 

oppervlak van de wanden en de diameter van de bloedvaten gemeten en vervolgens 

het oppervlak door de diameter gedeeld en alle bloedvaten gegroepeerd naar grootte. 

We vonden dat COPD patiënten vergeleken met controle patiënten een verhoogde 

wanddikte van de bloedvaten in verschillende groepen van 100 tot 400 µm in 

doorsnede en groter hadden, maar niet van kleinere afmetingen van 50 tot 100 µm in 

doorsnede. Om te onderzoeken of de hoeveelheid bloedvat gladde spiercel massa 

veranderd was in COPD patiënten ten opzichte van controles onderzochten we de 

bloedvaten op het gehalte kleuring voor de gladde spiercel marker, “α-smooth muscle 

actin”, die niet verschillend bleek voor beide groepen.  

 Tevens werd in dit hoofdstuk de rol van fibroblast groeifactoren (FGF) 1 en 2 

evenals hun receptor FGFR-1 in het perifere bloedvatstelsel in COPD beschreven. 
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Het FGF/FGFR systeem is van belang voor de groei en overleving van onder andere 

long fibroblasten en epitheel cellen maar ook van bloedvat gladde spiercellen en 

endotheelcellen. In COPD patiënten tonen we aan dat de FGF-1 eiwit expressie 

significant is verhoogd in bloedvat gladde spiercellen van pulmonaire bloedvaten die 

groter zijn dan 200 µm in doorsnede, terwijl FGF-2 juist in verhoogde mate gevonden 

wordt van bloedvaten van 50 tot 200 µm in doorsnede. Bovendien was hun receptor 

FGFR-1 in gladde spiercellen en endotheelcellen van vaten van beide categorieën 

significant verhoogd in COPD patiënten. Tenslotte, werd een negatieve correlatie van 

de belangrijkste longfunctie parameter “forced expiratory volume in one second 

(FEV1)” met zowel de expressie van FGF-1 en FGF-2 in de bloedvaten als de mate 

van verdikking van de wand gevonden, wanneer beide patiënten groepen onderzocht 

werden. De beschreven groeifactoren zijn daarom mogelijk van belang in COPD 

patiënten bij de verdikking van de bloedvatwand door de actie van deze groeifactoren 

op de groei van bloedvat gladspiercellen en fibroblasten (vasculaire herstructurering).  

 

In hoofdstuk 3 werd de pulmonale expressie beschreven van een andere groeifactor 

die mogelijk betrokken is bij vasculair herstructurering en bloedvatvorming in de 

longen van COPD patiënten, “vascular endothelial growth factor (VEGF)” en zijn twee 

receptoren VEGFR-1 (flt-1) en VEGFR-2 (KDR/flk-1). Het proteïne expressie patroon 

van VEGF, flt-1 en KDR/flk-1 werd gekwantificeerd in perifeer longweefsel en evenals 

in de centraal bronchi van (ex-)rokers met en zonder COPD.  

 VEGF, flt-1 en KDR/flk-1 kwamen tot expressie in bloedvat en luchtweg 

gladde spiercellen, bronchiale, bronchiolaire en alveolaire epitheelcellen en 

macrofagen. Bovendien, brachten endotheelcellen door de gehele longen flt-1 and 

KDR/flk-1 in sterke mate tot expressie. In de bronchiale luchtwegen was VEGF 

expressie verhoogd in bloedvat gladde spiercellen van microbloedvaten in the 

bronchiale mucosa and submucosa lagen in de luchtweg gladde spier cellen 

vergeleken met patiënten zonder COPD. De expressie van beide receptoren KDR/flk-

1 and Flt-1 was onveranderd tussen beide groepen in de bronchiale luchtwegen. 

 Ter hoogte van het longparenchym, was VEGF expressie toegenomen voor 

COPD patiënten in de intimale en mediale bloedvatgladde spiercellen van pulmonaire 

arteriën die geassocieerd zijn aan de bronchiolaire luchtwegen evenals in de kleinere 

parenchymale bloedvatvertakkingen. Bovendien, was in COPD de expressie van 

KDR/flk-1 verhoogd in endotheelcellen, intimale en mediale bloedvatgladde 
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spiercellen van pulmonaire arteriën evenals in de kleinere alveolaire 

bloedvatvertakkingen. Flt-1 expressie was voor COPD toegenomen in 

endotheelcellen van beide bovenstaande bloedvatcategorieën. VEGF kleuring was 

significant toegenomen in bronchiolaire en alveolaire epitheelcellen evenals 

bronchiolaire macrofagen, terwijl de flt-1 receptor alleen in het bronchiolaire epitheel 

was verhoogd. Tenslotte, werd een negatieve correlatie gevonden van de FEV1 met 

de expressie van VEGF in zowel de bronchiale microbloedvaten in de mucosa, 

evenals in de bronchiale luchtweg gladde spiercellen en het bronchiolaire epitheel, 

wanneer de totale patiëntengroep onderzocht werd. Samengevat, wijzen deze 

resultaten uit dat VEGF en de twee receptoren, flt-1 en KDR/flk-1, betrokken zijn bij 

bloedvat- en luchtwegherstructurering in zowel de perifere long als in de centrale 

bronchustakken van COPD patiënten. 

 

In Hoofdstuk 4 beschrijven we de rol van FGF-1, FGF-2 en hun receptor FGFR-1 in 

de centrale, bronchiale luchtwegen. Het expressie patroon van FGF-1, FGF-2 en hun 

receptor FGFR-1 werd met behulp van digitale beeldanalyse gekwantificeerd. Beide 

groeifactoren en hun receptor kwamen tot expressie in het bronchiale epitheel, 

luchtweg gladde spiercellen en microbloedvaten in the bronchiale mucosa and 

submucosa. Significant verhoogde expressie vonden we in het bronchiale epitheel 

voor FGF-1, FGF-2 evenals FGFR-1 en in luchtweg- en bloedvat gladde spiercellen 

voor FGF-2 en FGFR-1. In gladde spiercellen was de expressie van FGF-2 nucleair, 

wat duidde op een alternatief, niet geheel opgehelderd, mechanisme van FGF-2 

mogelijk door middel van regulatie van gentranscriptie via FGF-2. Bovendien vonden 

we een positieve correlatie van FGF-1 expressie in het bronchiale epitheel met de 

hoeveelheid gerookte tabak evenals een negatieve correlatie van FGF-2 en FGFR-1 

expressie in luchtweg gladde spiercellen en de longfunctie parameter FEV1/FVC, 

wanneer de totale patiëntengroep werd onderzocht.  

 Om meer inzicht te krijgen in het mechanisme van luchtwegverdikking door 

toename van luchtweg gladde spiercel massa, onderzochten we de proliferatie 

response van geïsoleerde humane gladde spiercellen op FGF-1 en FGF-2 stimulatie. 

We vonden dat na incubatie met beide groeifactoren, hoewel FGF-1 in mindere mate 

dan FGF-2, proliferatie van deze cellen geïnduceerd werd en dat de receptor FGFR-1 

opgereguleerd werd. Samengevat, de verhoogde expressie van beide groeifactoren 

met hun receptor in de bronchiale luchtwegen in COPD patiënten en hun acties op 
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geïsoleerde humane luchtweg gladde spiercellen wijzen uit dat deze groeifactoren 

mogelijk een belangrijke rol spelen bij luchtweg herstructurering in COPD. 

 

Hoofdstuk 5 beschrijft welke rol een mogelijk veranderde depositie van 

extracellulaire matrix eiwitten in de bronchiale luchtwegen speelt in 

luchtwegverdikking tijdens de ontwikkeling van COPD. In de bronchiale luchtwegen 

werd depositie van ECM eiwitten, zoals collageen I, III, IV, fibronectin en laminin, 

gevonden in de basaal membraan van het bronchiale epitheel, in de interstitieële 

ruimte en bloedvaten van de lamina propria en de adventitia voor zowel patiënten met 

en zonder COPD. COPD patiënten hadden een verhoogde depositie van totaal 

collageen in de subepitheliale basaal membraan, maar de depositie in de interstitieële 

ruimte en bloedvaten van de lamina propria en de adventitia bleek onveranderd te 

zijn. Wanneer we echter de hoeveelheid collageen I en III afzonderlijk bekeken, 

vonden we een verhoogde depositie in de subepitheliale basaal membraan zowel op 

plaatsen waar het epitheel intact was en een extra toename op plaatsen waar het 

epitheel beschadigd was en ook de depositie in de interstitieële ruimte en bloedvaten 

van de lamina propria en de adventitia was toegenomen ten opzichte van controles. 

De afzetting van collageen IV was op geen van de onderzochte plaatsen verschillend 

tussen beide groepen en fibronectin was in COPD alleen verhoogd in de 

microbloedvaten in de lamina propria. De depositie van laminin vervolgens was 

toegenomen voor COPD patiënten in luchtweg gladde spiercellen en ook in de 

microbloedvaten in de lamina propria. De belangrijkste bijdrage aan de toename van 

de ECM depositie in de subepitheliale basaal membraan werd gevormd door 

collageen III die een significante co-lokalisatie met de totaal collageen meting 

tentoonspreidde, in tegenstelling tot collageen I en IV. We concluderen dat COPD 

patiënten een verhoogde depositie van verschillende ECM markers hebben in de 

bronchiale luchtwegen dat mogelijk van belang is bij luchtwegherstructurering en het 

ontstaan van chronische obstructie. 

 

In hoofdstuk 6 onderzochten we of de verhoogde depositie in de luchtwegen van 

COPD patiënten, mogelijk gedeeltelijk afkomstig was van luchtweg gladde 

spiercellen. Naast bronchiale epitheelcellen en subepitheliale fibroblasten, vormen 

luchtweg gladde spiercellen tevens een belangrijke bron van extracellulaire matrix 

componenten. Daarvoor werden geïsoleerde humane luchtweg gladde spiercellen in 
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kweek gestimuleerd met FGF-1, FGF-2 en “transforming growth factor β1 (TGF-β1)” 

en werd gekeken naar de productie van mRNA voor ECM componenten collageen I, 

III en fibronectin door deze cellen. Met Northern blot analyse vonden we dat de 

mRNA productie van collageen I en III door luchtweg gladde spiercellen was 

verhoogd na 24 uur incubatie met FGF-1 en TGF-β1 maar niet met FGF-2. De 

expressie fibronectin mRNA was onveranderd voor alle drie de onderzochte 

groeifactoren. Bovendien induceerde TGF-β1 geen proliferatie van luchtweg gladde 

spiercellen, dit in tegenstelling tot FGF-1 en FGF-2 (Hoofdstuk 4). De ratio tussen 

totaal proteïne en DNA, die geldt als een maat voor cel hypertrofie wanneer deze 

toeneemt, bleef echter gelijk voor niet-gestimuleerde en gestimuleerde luchtweg 

gladde spiercellen met TGF-β1, FGF-1 of FGF-2. Tenslotte, vonden we dat de 

secretie van actief TGF-β1 toenam voor luchtweg gladde spiercellen die gestimuleerd 

waren met FGF-2 maar niet met FGF-1. Aangezien tevens is aangetoond dat TGF-β1 

kan leiden tot FGF-2 inductie, duidt dit samen op een mechanisme waarbij beide de 

secretie van de andere kunnen beïnvloeden. Samengevat, concluderen we dat 

luchtweg gladde spiercellen onder invloed van groeifactoren zoals TGF-β1, FGF-1 of 

FGF-2 een bijdrage kunnen leveren aan luchtwegverdikking door een toename in 

gladde spiermassa en verhoogde depositie van extracellulaire matrix, die samen 

kunnen leiden tot luchtweg obstructie in COPD patiënten. 

 

Hoofdstuk 7 geeft een overzicht van de belangrijkste bevindingen van dit 

proefschrift, beschrijft welke mogelijke mechanisme ten grondslag liggen aan 

vasculaire- en luchtwegherstructurering en wat de rol van de besproken groeifactoren 

in dit geheel is. Tevens wordt besproken wat de toekomstige implicaties hiervan zijn 

voor het onderzoek in het kader van weefselschade en herstelprocessen op het gebied 

van COPD.  
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I was told a million times 
Of all the troubles in my way 
How I had to keep on trying 
Little better ev'ry day 
But if I crossed a million rivers 
And I rode a million miles 
Then I'd still be where I started 
Bread and butter for a smile. 
"Keep Yourself Alive" (Queen) 

 

Dankwoord 

Waar zal ik beginnen! Alles is reeds verteld, bezongen, geschreven. The British 

Admiralty has reached saver shores, de Nijldelta is verlegd, de marathon van Tokio is 

reeds gelopen. Djengis is al jaren thuis en uitgeraasd! En, de bloemen voor de Sint 

Pieter zijn eerder al besteld en hebben de zegeningen ontvangen… Campagnes zijn 

gevoerd, en ook de mijne loopt nu op zijn einde. “My curtain calls” and the play 

reached the 50th over.  

 

49.1   

Allereerst wil ik mijn promotors bedanken, Prof. P.R. Saxena om bij de vakgroep 

Farmacologie te kunnen werken en voor de interesse in het project dat zeker niet als 

directe farmacologie te boek stond. Ook wil ik mijn andere promotor bedanken, Prof. 

P.J. Sterk voor de samenwerking met het LUMC en vooral voor het enthousiasme 

waarmee je alle betrokkenen van het project en mij in het bijzonder altijd hebt 

aangemoedigd.  

 Mijn co-promotor, dr. H.S. Sharma ben ik dankbaar voor het initiëren van het 

NAF project #97.73. Beste Hari, je was zeer belangrijk voor de dagelijkse gang van 

zaken op het lab en de wetenschappelijke ontwikkelingen. Er waren soms moeilijke 

tijden, toch zijn er vele dingen die ik meegenomen heb die ik niet had willen missen, 

de “precisie technieken”, zoals de humane luchtweg gladdespiercelkweek, de expositie 

van ons onderzoek op de vele congressen waar we samen geweest zijn and The Indian 

Way… 
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49.2 

Beste Pim, (dr. W.I. de Boer), je bent gedurende het hele traject een rode draad 

gebleken. Allereerst zeer belangrijk bij de opzet en eerste initiatie in Leiden, de 

mogelijkheid om uit de “ruwe erts” in de catacomben van het LUMC een “goudmijn” 

te ontdekken. Vervolgens voor de vele discussies in het Rotterdamse, en ten slotte als 

steun bij het Astma Fonds, hier wil ik je allemaal hartelijk voor bedanken.  

 

49.3 

Dan waren er de “”Farma’s””, mijn directe collega’s. Allereerst Anna Widyastuti, je 

bent van onschatbare waarde geweest voor de loop van het project, en hebt mij vaker 

dan eens gesteund en ook bij de les gehouden. Je bent tevens een gezellige 

kamergenoot geweest en toonde mij een blik in een nog altijd ver bestaan! Het is 

jammer dat je niet tot het einde hebt kunnen blijven. Beste Sue en Erik, jullie zijn net 

een paar jaar eerder van start gegaan, toch zijn onze reizen eender geweest. Dank voor 

de hulp op het lab, de steun en de vele gezellige uren binnen en buiten het lab. Dear 

Pankaj and Vijay, you both occupied the same seat in our cosy little room and I feel 

you both have been very good colleagues; I liked all your Indian stories and snacks! 

Definitely, in the same group I should mention Uday and Wenxia. Thank you for all 

the nice chats at the end of the day and particularly the last few years’ Labday at the 

pharmacology department.  

 Verder wil ik ook de collega’s van de “”Farma wandelclub”” bedanken, Inge, 

Marieke, Mechteld, Mark e.a. voor alle mooie tochten door het hele land. Regien, dank 

je voor je soms kritische doch altijd heldere blik op mijn werk. Aloys, het groene 

groeit, dank je voor de vele planten praat. En natuurlijk waren er nog veel meer 

collega’s in de loop der jaren, sommige gingen eerder, andere kwamen later; Emine, 

Jan D, Freek, Jan H, Joy, Oka, Sherif, Edwin, Martin, Jasper, Richard, Beril, 

Antoinette, Saurabh, Roeland, Ria, Magda, Suneet, Wendy, Brigitte, Luuk, Saskia en 

alle andere die ik vergeten mocht zijn. Dank jullie voor de leuke conversaties tijdens 

de pauzes, de gezelligheid buiten het lab en op de labdagen.  

 De mensen van “”mijn twee andere labs””, afdelingen longziekten van de 

Erasmus en het LUMC wil ik ook graag bedanken voor de goede samenwerking en de 

leuke tijd. In het bijzonder, wil ik hieraan toevoegen dr. Jan-Bas Prins, dr. Pieter 

Hiemstra, dr. Jan Stolk, Jamil en Prof dr. Klaus Rabe, allen die ik in mijn nieuwe 
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functie bij Deltacell B.V. weer regelmatig in goede wetenschappelijke discussies 

tegenkom. Hiermee is de cirkel bijna rond, beste nieuwe collega’s Menno, Jan, Pieter, 

Annelies en de heer J. Schram, dank jullie voor de steun met de laatste loodjes. 

 

49.4 

Mijn dank gaat ook uit naar de leden van de leescommissie, Prof. dr. Ad J.J.C. Bogers, 

Prof. dr. Henk C. Hoogsteden en Prof. dr. Wolter J. Mooi, voor het kritisch beoordelen 

van mijn proefschrift. Verder wil ik hier tevens mijn dank uitspreken aan Prof. Wolter 

Mooi voor het kritisch doornemen van verschillende individuele manuscripten.  

 

49.5 

Friends will be friends... Jullie waren er altijd in de momenten van euforie, luisterend 

naar de vaak onbegrijpelijke of onsamenhangende verhalen vol buisjes en spul en de 

teleurstellingen die samen gaan met het leven als “”een eenvoudige AIO””. Vrienden, 

Simon, Annemieke, Gert-Jan, Mark, Robert-Jan e.a. bedankt voor jullie 

onvoorwaardelijke steun. 

 

50 

Het eindspel is ingetreden. My gratitude goes out to a man I never have met, yet his 

advice and supporting sounds encouraged me over and over again, Mr. Frederick 

Bulsara.  Beste ouders, schoonouders, jullie zijn altijd in mij blijven geloven en 

hebben mij gesteund door de jaren heen. Lieve Simone, jaren geleden, zes dagen voor 

mijn afstuderen, stond je (nog) niet in mijn dankwoord van toen, nu bezet je het laatste 

plaatsje. Dank je voor de vele avonden geduldig wachten en het begrip voor het leven 

met een AIO.  

 



Appendix  Curriculum Vitae 
 
 

 201

Curriculum Vitae 

 

Andor Rogier Kranenburg werd op 6 december 1973 geboren te Gouda. Na het 
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Longziekten van het Leiden University Medical Center te Leiden. Het project getiteld 

"De rol van groeifactoren en extracellulaire matrix regulatoren in de luchtweg 

herstructurering bij chronic obstructive pulmonary disease (COPD)" werd begeleid 
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Ang 1    angiopoietin 1 

ASM  airway smooth muscle 

BSA      bovine serum albumin 

CD  cluster of differentiation 

CD8+ve T CD8 positive T-lymphocyte   

cDNA     copy DNA 

COPD  chronic obstructive pulmonary disease 

DMEM Dulbecco’s modified Eagle’s medium 

EC  endothelial cell 

ECM  extracellular matrix 

EGF      epidermal growth factor 

ELISA  enzyme linked immunosorbent assay 

Epi  epithelial cell 

ET  endothelin 

FBS  Fetal bovine serum 

FEV1  forced expiratory volume in one second 

FGF      fibroblast growth factor 

Flk-1  fetal liver kinase-1 (VEGF receptor 2) 

Flt-1  fms-like tyrosine kinase (VEGF receptor 1) 

FN  fibronectin 

FVC  forced vital capacity 

GAPDH    glyceraldehyde-3-phosphate dehydrogenase 

HBSS  Hank’s buffered salt solution 

HIF  hypoxia inducible factor 

HMW  high molecular weight 

HSPG  heparan sulphate proteoglycan 

ICAM  intercellular adhesion molecule 

INF-γ  interferon gamma 

Ig  immunoglobulin 

IGF      insulin like growth factor  

IL        interleukin 

Kco  carbon mono-oxide constant 
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Mφ  macrophage 

MAP  mitogen activated protein 

MCP  monocyte chemotactic protein 

MHC      myosin heavy chain 

MMP      metalloproteinase 

mRNA     messenger RNA 

Neu  neutrophil 

PAI  plasminogen activator inhitor 

PBS      phosphate buffered saline 

PDGF     platelet derived growth factor 

RAS      renin-angiotensin system 

ROS  reactive oxygen species 

RT-PCR   reverse transcriptase polymerase chain reaction 

RV   residual volume 

SEM      standard error of mean 

SEBM  surface epithelial basement membrane  

SMA  smooth muscle actin 

SLPI  secretory leukoprotease inhibitor 

TGF-β   transforming growth factor-β 

TIMP      tissue inhibitor of metalloproteinases 

TLC  total lung capacity 

TNF-α    tumor necrosis factor-α 

TPA/uPA tissue-type or urokinase-type plasminogen activator 

VSM  vascular smooth muscle 

VEGF     vascular endothelial growth factor 
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