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Abstract
This paper develops a testing framework for comparing the predictive accuracy of
copula-based multivariate density forecasts, focusing on a specific part of the joint
distribution. The test is framed in the context of the Kullback-Leibler Information
Criterion, but using (out-of-sample) conditional likelihood and censored likelihood
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document that the resulting test statistics have satisfactory size and power proper-
ties in small samples. In an empirical application to daily exchange rate returns we
find evidence that the dependence structure varies with the sign and magnitude of
returns, such that different parametric copula models achieve superior forecasting
performance in different regions of the support. Our analysis highlights the impor-
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1 Introduction

The dependence between asset returns typically is nonlinear and time-varying. Tradition-

ally, efforts to accommodate these features have focused on modeling the dynamics of

conditional variances and covariances by means of multivariate GARCH and stochastic

volatility (SV) models; see the surveys by Silvennoinen and Teräsvirta (2009) and Chib

et al. (2009), respectively. Recently, copulas have become an increasingly popular tool

for modeling multivariate distributions in finance (Patton, 2009; Genest et al., 2009). The

copula approach provides more flexibility than multivariate GARCH and SV models in

terms of the type of asymmetric dependence that can be captured. In addition, an attrac-

tive property of copulas is that they allow for modeling the marginal distributions and the

dependence structure of the asset returns separately.

Many parametric copula families are available, with rather different dependence prop-

erties. An important issue in empirical applications therefore is the choice of an appro-

priate copula specification. In practice, most often this is done by comparing alternative

specifications indirectly, subjecting each of them to a battery of goodness-of-fit tests, see

Berg (2009) for a detailed review. A direct comparison of alternative copulas from differ-

ent parametric families has been considered by Chen and Fan (2006) and Patton (2006),

adopting the approach based on pseudo likelihood ratio (PLR) tests for model selection

originally developed by Vuong (1989) and Rivers and Vuong (2002). These tests compare

the candidate copula specifications in terms of their Kullback-Leibler Information Crite-

rion (KLIC), which measures the distance from the true (but unknown) copula. Similar to

the goodness-of-fit tests, these PLR tests are based on the in-sample fit of the competing

copulas. Diks et al. (2010) approach the copula selection problem from an out-of-sample

forecasting perspective. Specifically, the PLR testing approach is extended to compare

the predictive accuracy of alternative copula specifications, by using out-of-sample log-

likelihood values corresponding with copula density forecasts. An important motivation

for considering the (relative) predictive accuracy of copulas is that multivariate density

forecasting is one of the main purposes in empirical applications.

Comparison of out-of-sample KLIC values for assessing relative predictive accuracy
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has recently become popular for the evaluation of univariate density forecasts, see Mitchell

and Hall (2005), Amisano and Giacomini (2007) and Bao et al. (2007). Amisano and

Giacomini (2007) provide an interesting interpretation of the KLIC-based comparison

in terms of scoring rules, which are loss functions depending on the density forecast and

the actually observed data. In particular, the difference between the log-likelihood scoring

rule for two competing density forecasts corresponds exactly to their relative KLIC values.

The same interpretation continues to hold for copula-based multivariate density forecasts

considered in this paper.

In many applications of density forecasts, we are mostly interested in a particular

region of the density. Financial risk management is an example in case. Due to the regu-

lations of the Basel accords, among others, the main concern for banks and other financial

institutions is an accurate description of the left tail of the distribution of their portfolio’s

returns, in order to obtain accurate estimates of Value-at-Risk and related measures of

downside risk. Correspondingly, Bao et al. (2004), Amisano and Giacomini (2007) and

Diks et al. (2011) consider the problem of evaluating and comparing univariate density

forecasts in a specific region of interest. Diks et al. (2011) demonstrate that the approach

based on out-of-sample KLIC values can be adapted to this case, by replacing the full

likelihood by the conditional likelihood, given that the actual observation lies in the re-

gion of interest, or by the censored likelihood, with censoring of the observations outside

the region of interest.

In this paper we develop tests of equal predictive accuracy of different copula-based

multivariate density forecasts in a specific region of the support. For this purpose, we

combine the testing framework for comparing univariate forecasts in specific regions de-

veloped by Diks et al. (2011), with the logarithmic score decomposition for copula models

considered in Diks et al. (2010). The resulting test of equal predictive accuracy can be

applied to fully parametric, semi-parametric and nonparametric copula-based multivari-

ate density models. The test is valid under general conditions on the competing copulas,

which is achieved by adopting the framework of Giacomini and White (2006). This as-

sumes that any unknown model parameters are estimated using a moving window of fixed

size. The finite estimation window essentially allows us to treat competing density fore-
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casts based on different copula specifications, including the time-varying estimated model

parameters, as two competing forecast methods. Comparing scores for forecast methods

rather than for models simplifies the resulting test procedures considerably, because pa-

rameter estimation uncertainty does not play a role (it simply is part of the respective

competing forecast methods). In addition, the asymptotic distribution of our test statistic

in this case does not depend on whether or not the competing copulas belong to nested

families.

We examine the size and power properties of our copula predictive accuracy test via

Monte Carlo simulations. Here we adopt fully parametric and semi-parametric copula-

based multivariate dynamic models. The latter class of models (shortened as SCOMDY)

developed by Chen and Fan (2005, 2006) combines parametric specifications for the con-

ditional mean and conditional variance with a semi-parametric specification for the dis-

tribution of the (standardized) innovations, consisting of a parametric copula with non-

parametric univariate marginal distributions. Our simulation results demonstrate that the

predictive accuracy tests have satisfactory size and power properties in realistic sample

sizes.

We consider an empirical application to daily exchange rate returns of the Canadian

dollar, Swiss franc, euro, British pound, and Japanese yen against the US dollar over the

period from 1992 until 2008. Based on the relative predictive accuracy of one-step-ahead

density forecasts we find that different parametric copula specifications achieve superior

forecasting performance in different regions of the support. Our analysis highlights the

importance of accommodating positive upper (lower) tail dependence for accurate fore-

casting of common extreme appreciation (depreciation) of different currencies.

The paper is organised as follows. In Section 2 we briefly review copula-based mul-

tivariate density models and develop our predictive accuracy test for copulas based on

out-of-sample log-likelihood scores. In Section 3 we investigate its size and power prop-

erties by means of Monte Carlo simulations. In Section 4 we illustrate our test with an

application to daily exchange rate returns for several major currencies. We conclude in

Section 5.
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2 Methodology

The aim of this paper is to extend the copula-based density forecast evaluation tests de-

veloped by Diks et al. (2010), by enabling them to focus on specific regions of the cop-

ula domain. This is achieved by comparing two density forecasts which differ only in

their predictive copulas, but instead of unweighted likelihood scores we take the weighted

likelihood-based scores introduced in Diks et al. (2011) as the driving scoring rule, using

weight functions defined on the copula domain.

2.1 Review of density forecast evaluation using weighted scoring rules

This subsection briefly reviews the work of Diks et al. (2011) on weighted likelihood-

based scoring rules for density forecast evaluation. We use a more general notation, em-

phasising that all results extend to forecasts of a vector-valued variable Y t+1.

Density forecast evaluation Consider a stochastic process {Zt : Ω → Rk+d}Tt=1, de-

fined on a complete probability space (Ω,F ,P), and identify Zt with (Y t,X
′
t)
′, where

Y t : Ω→ Rd is the real-valued d-dimensional random variable of interest andX t : Ω→

Rk is a vector of exogenous or pre-determined variables. The information set at time t

is defined as Ft = σ(Z ′1, . . . ,Z
′
t)
′. We consider the case where two competing forecast

methods are available, each producing one-step ahead density forecasts, i.e. predictive

densities of Y t+1, based on Ft.

As in Amisano and Giacomini (2007), by ‘forecast method’ we mean a given density

forecast in terms of past information, resulting from the choices that the forecaster makes

at the time of the prediction. These include the variables X t, the econometric model (if

any), and the estimation method. The only requirement that we impose on the forecast

methods is that the density forecasts depend on a finite number R of most recent obser-

vations Zt−R+1, . . . ,Zt. Forecast methods of this type arise naturally, for instance, when

density forecasts are obtained from time series models, for which parameters are estimated

with a moving window of R observations. The advantage of comparing forecast methods

rather than forecast models is that this allows for treating parameter estimation uncertainty

as an integral part of the forecast methods. The use of a finite (rolling) window of R past
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observations for parameter estimation considerably simplifies the asymptotic theory of

tests of equal predictive accuracy, as argued by Giacomini and White (2006). It also turns

out to be more convenient in that it enables comparison of density forecasts based on both

nested and non-nested models, in contrast to other approaches such as that of West (1996).

Scoring rules One of the approaches that has been put forward for density forecast

evaluation in general is by means of scoring rules, which are commonly used in probability

forecast evaluation, see Diebold and Lopez (1996). A scoring rule is a loss function

S∗(f̂t;yt+1) depending on the density forecast and the actually observed value yt+1, such

that a density forecast that is ‘better’ receives a higher score. Note that, as argued by

Diebold et al. (1998) and Granger and Pesaran (2000), any rational user would prefer the

true conditional density pt of Y t+1 over an incorrect density forecast. This suggests that it

is natural to focus on scoring rules for which incorrect density forecasts f̂t do not receive

a higher average score than the true conditional density pt, that is,

Et
(
S∗(f̂t;Y t+1)

)
≤ Et (S∗(pt;Y t+1)) , for all t.

Following Gneiting and Raftery (2007), a scoring rule satisfying this condition will be

called proper.

It is useful to note that the correct density pt does not depend on estimated parameters,

while density forecasts typically do. This implies that even if the density forecast f̂t is

based on a correctly specified model, but the model includes estimated parameters, the

average score Et
(
S∗(f̂t;Y t+1)

)
may not achieve the upper bound Et (S∗(pt;Y t+1)) due

to non-vanishing estimation uncertainty. As a consequence, a density forecast based on

a misspecified model with limited estimation uncertainty may be preferred over a density

forecast based on the correct model specification but having larger estimation uncertainty.

Null hypothesis and testing approach Given a scoring rule of one’s choice, there are

various ways to construct tests of equal predictive ability. Giacomini and White (2006)

distinguish tests of unconditional predictive ability and conditional predictive ability. In

the present paper, we focus on tests for unconditional predictive ability for clarity of ex-
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position. The suggested approach can be extended to obtain tests of conditional predictive

ability in a straightforward manner.

Assume that two competing density forecasts f̂A,t and f̂B,t and corresponding realisa-

tions of the variable Y t+1 are available for t = R,R+1, . . . , T−1. We may then compare

f̂A,t and f̂B,t based on their average scores, by testing formally whether their difference is

statistically significantly different from zero on average. Defining the score difference

d∗t+1 = S∗(f̂A,t;yt+1)− S∗(f̂B,t;yt+1),

for a given scoring rule S∗, the null hypothesis of equal scores is given by

H0 : E(d∗t+1) = 0, for all t = R,R + 1, . . . , T − 1.

Let d
∗
R,P denote the sample average of the score differences, that is, d

∗
R,P = P−1

∑T−1
t=R d

∗
t+1

with P = T −R. To test the null, we may use a Diebold and Mariano (1995) type statistic

tR,P =
d
∗
R,P√

σ̂2
R,P/P

, (1)

where σ̂2
R,P is a heteroskedasticity and autocorrelation-consistent (HAC) variance esti-

mator of σ2
R,P = Var

(√
P d

∗
R,P

)
. The following theorem characterises the asymptotic

distribution of the test statistic under the null hypothesis.

Theorem 1 The statistic tR,P in (1) is asymptotically (as P →∞ with R fixed) standard

normally distributed under the null hypothesis if: (i) {Zt} is φ-mixing of size−q/(2q−2)

with q ≥ 2, or α-mixing of size −q/(q − 2) with q > 2; (ii) E|d∗t+1|2q < ∞ for all t; and

(iii) σ2
R,P = Var

(√
P d

∗
R,P

)
> 0 for all P sufficiently large.

Proof: This is the main part of Theorem 4 of Giacomini and White (2006), where a proof

is provided. 2

The logarithmic scoring rule Mitchell and Hall (2005), Amisano and Giacomini (2007),

and Bao et al. (2004, 2007) focus on the logarithmic scoring rule

Sl(f̂t;yt+1) = log f̂t(yt+1), (2)
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such that the score assigned to a density forecast varies positively with the value of f̂t

evaluated at the observation yt+1. Based on the P observations available for evaluation,

yR+1, . . . ,yT , the density forecasts f̂A,t and f̂B,t can be ranked according to their aver-

age scores P−1
∑T−1

t=R log f̂A,t(yt+1) and P−1
∑T−1

t=R log f̂B,t(yt+1). Obviously, the den-

sity forecast yielding the highest average score would be the preferred one. The log score

differences dlt+1 = log f̂A,t(yt+1)− log f̂B,t(yt+1) may be used to test whether the predic-

tive accuracy is significantly different, using the test statistic defined in (1). Note that this

coincides with the log-likelihood ratio of the two competing density forecasts.

Weighted likelihood-based scoring rules Diks et al. (2011) adapt the logarithmic scor-

ing rule for evaluating and comparing density forecasts in a specific region of interest,

Mt ⊂ Rd, say. As argued by Diks et al. (2011), this cannot be achieved by using the

weighted logarithmic score I(yt+1 ∈ Mt) log f̂t(yt+1), as by construction the resulting

test statistic would be biased towards (possible incorrect) density forecasts with more

probability mass in the region of interest. Replacing the full likelihood in (2) either by the

conditional likelihood, given that the observation lies in the region of interest, or by the

censored likelihood, with censoring of the observations outside Mt, does lead to scoring

rules which do not suffer from this problem and remain proper. The conditional likelihood

(cl) score function is given by

Scl(f̂t;yt+1) = I(yt+1 ∈Mt) log

(
f̂t(yt+1)∫
Mt
f̂t(y)dy

)
, (3)

while the censored likelihood (csl) score function is given by

Scsl(f̂t;yt+1) = I(yt+1 ∈Mt) log f̂t(yt+1) + I(yt+1 ∈M c
t ) log

(∫
Mc

t

f̂t(y)dy

)
, (4)

where M c
t is the complement of the region of interest Mt. Note that the cl scoring rule

does not take into account the accuracy of the density forecast for the total probability of

Y t+1 falling into the region of interest, while the csl scoring rule does.

The conditional and censored likelihood scoring rules focus on a sharply defined re-

gion of interest Mt. It is possible to extend this idea by using a more general weight

function wt(yt+1), where the scoring rules in (3) and (4) can be recovered for the specific
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choice wt(yt+1) = I(yt+1 ∈Mt):

Scl(f̂t;yt+1) = wt(yt+1) log

(
f̂t(yt+1)∫

wt(y)f̂t(y)dy

)
, (5)

and

Scsl(f̂t;yt+1) = wt(yt+1) log f̂t(yt+1) + (1− wt(yt+1)) log

(
1−

∫
wt(y)f̂t(y)dy

)
.

(6)

At this point, we make the following assumptions concerning the density forecasts

that are to be compared, and the weight function.

Assumption 1 The density forecasts f̂A,t and f̂B,t satisfy KLIC(f̂A,t) <∞ and KLIC(f̂B,t) <

∞, where KLIC(ht) =
∫
pt(y) log (pt(y)/ht(y)) dy is the Kullback-Leibler divergence

between the density forecast ht and the true conditional density pt.

Assumption 2 The weight function wt(y) is such that (a) it is determined by the infor-

mation available at time t, and hence a function of Ft, (b) 0 ≤ wt(y) ≤ 1, and (c)∫
wt(y)pt(y) dy > 0.

Assumption 1 ensures that the expected score differences for the competing density fore-

casts are finite. Assumption 2 (c) is needed to avoid cases where wt(y) takes strictly

positive values only outside the support of the data.

The following lemma states that the generalised cl and csl scoring rules in (5) and (6)

are proper, and hence cannot lead to spurious rejections against wrong alternatives just

because these have more probability mass in the region(s) of interest.

Lemma 1 Under Assumptions 1 and 2, the generalised conditional likelihood scoring

rule given in (5) and the generalised censored likelihood scoring rule given in (6) are

proper.

Proof: A proof for univariate predictive densities has been given in the appendix of Diks

et al. (2011). All steps in that proof remain valid if the univariate density is replaced by

a multivariate density, and the scalar integration variable by a vector-valued integration

variable.
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We may test the null hypothesis of equal performance of two density forecasts f̂A,t(yt+1)

and f̂B,t(yt+1) based on the conditional likelihood score (5) or the censored likelihood

score (6) in the same manner as before. That is, given a sample of density forecasts and

corresponding realisations for P time periods t = R,R + 1, . . . , T − 1, we may form

the relative scores dclt+1 = Scl(f̂A,t;yt+1) − Scl(f̂B,t;yt+1) and dcslt+1 = Scsl(f̂A,t;yt+1) −

Scsl(f̂B,t;yt+1) and use these for computing the Diebold-Mariano type test statistics given

in (1).

2.2 Copula comparison with weights on the copula domain

Patton’s (2006) extension of Sklar’s (1959) theorem to the time-series case describes how

the time-dependent multivariate distribution Ft(yt+1) can be decomposed into conditional

marginal distributions Fj,t(yj), j = 1, . . . , d, and a conditional copula Ct(·), that is

Ft(y) = Ct(F1,t(y1), F2,t(y2), . . . , Fd,t(yd)), (7)

provided that the marginal conditional CDFs Fi,t are continuous. This decomposition

clearly shows the attractiveness of the copula approach for modeling multivariate distri-

butions. Given that the marginal distributions Fj,t, j = 1 . . . , d, only contain univariate

information on the individual variables Yj,t+1, their dependence is governed completely

by the copula function Ct. As the choice of marginal distributions does not restrict the

choice of copula, or vice versa, a wide range of joint distributions can be obtained by

combining different marginals with different copulas.

The one-step-ahead predictive log-likelihood associated with yt+1 is seen to be given

by
d∑
j=1

log fj,t(yj,t+1) + log ct(F1,t(y1,t+1), F2,t(y2,t+1), . . . , Fd,t(yd,t+1)), (8)

where fj,t(yj,t+1), j = 1, . . . , d, are the conditional marginal densities and ct is the condi-

tional copula density, defined as

ct(u1, u2, . . . , ud) =
∂d

∂u1∂u2 . . . ∂ud
Ct(u1, u2, . . . , ud),

which we will assume to exist throughout. Using (8), the conditional likelihood and cen-

sored likelihood scoring rule of a density forecast f̂t(yt+1) with marginal predictive den-
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sities f̂j,t, j = 1, . . . , d, and copula density ĉt can be decomposed as

Sclt+1 = wt(yt+1)

(
d∑
j=1

log f̂j,t(yj,t+1) + log ĉt(ût+1)

)
−wt(yt+1) log

(∫
wt(y)f̂t(y) dy

)
,

(9)

and
Scslt+1 = wt(yt+1)

(∑d
j=1 log f̂j,t(yj,t+1) + log ĉt(ût+1)

)
+(1− wt(yt+1)) log

(
1−

∫
wt(y)f̂t(y) dy

)
,

(10)

where ĉt is the conditional copula density associated with the density forecast, and ût+1 =

(F̂1,t(y1,t+1), . . . , F̂d,t(yd,t+1))
′ its multivariate conditional probability integral transform

(PIT).

As in Diks et al. (2010) we assume that the two competing multivariate density fore-

casts differ only in their copula specifications and have identical predictive marginal den-

sities f̂j,t, j = 1, . . . , d. The two competing copula specifications are assumed to have

well-defined densities ĉA,t and ĉB,t. The null hypothesis of equal predictive ability is

H0 : E(S∗A,t+1) = E(S∗B,t+1),

where ‘∗’ stands for either ‘cl’ or ‘csl’. Since the conditional marginals are identically

specified under both density forecasts, the logarithms of the marginal densities in (9) and

(10) cancel out, so that an equivalent formulation of the null hypothesis is

H0 : E(S∗A,t+1) = E(S∗B,t+1),

where, with a similar abuse of notation as above (leaving out the subscripts A and B),

Sclt+1(yt+1) = wt(yt+1) log (ĉ(ût+1))− log

∫
wt(y)f̂t(y) dy

and

Scslt+1(yt+1) = wt(yt+1) log ĉt(ût+1) + (1− wt(yt+1)) log

(
1−

∫
wt(y)f̂t(y) dy

)
.

We use the weight function to focus on specific regions of the copula. This can be achieved

by taking weight functions of the form

wt(yt+1) = w̃(û1,t+1(y1,t+1), . . . , ûd,t+1(yd,t+1)),
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where w̃(u1, . . . , ud) is a weight function defined on the copula support. Note that∫
wt(y)f̂t(y) dy =

∫
w̃t(û1,t+1(y1), . . . , ûd,t+1(yd))f̂t(y) dy

=
∫
w̃t(û1,t+1(y1), . . . , ûd,t+1(yd)) dF̂t(y)

=
∫
w̃t(û1,t+1, . . . , ûd,t+1) dĈt(ut+1) dut+1

=
∫
w̃t(u)ĉt(u) du.

This allows us to rewrite the scores S∗t+1 as

Sclt+1(yt+1) = w̃t(ût+1)

(
log ĉt(ût+1)− log

∫
w̃t(u)ĉt(u)du

)
(11)

and

Scslt+1(yt+1) = w̃t(ût+1) (log ĉt(ût+1)) + (1− w̃t(ût+1)) log

(
1−

∫
w̃t(u)ĉt(u)du

)
.

(12)

Note that these ‘reduced’ scoring rules take the same form as the weighted likelihood-

based scoring rules (5) and (6) derived before, but now involve only the density forecast

copula instead of the full density forecast and the observed conditional PITs ût+1 instead

of the variable yt+1.

The weight function w̃t(u) can be chosen directly in the copula support. In the cases

considered in this paper, w̃t will be time independent, and will take the form of an indicator

function of a given fixed subset of the copula support. In some cases this allows for a

simplification of the scoring rules. For instance, for w̃t(u) = I(u1 ≤ a, . . . ud ≤ a), it

follows that
∫
w̃t(u)ĉt(u) du = Ĉt(a, . . . , a), so that the reduced scoring rules take the

form

Scl(yt+1) = I(u1,t+1 ≤ a, . . . ud,t+1 ≤ a)
(

log ĉt(ût+1)− log Ĉt(a, . . . , a)
)

and

Scsl(yt+1) = I(u1,t+1 ≤ a, . . . ud,t+1 ≤ a) (log ĉt(ût+1))

+(1− I(u1,t+1 ≤ a, . . . ud,t+1 ≤ a)) log
(

1− Ĉt(a, . . . , a)
)
.

Again, the Diebold-Mariano type test statistics as given in (1) may be adopted to test

the null hypothesis of equal predictive accuracy of two copula-based density forecasts

ĉA,t(ût+1) and ĉB,t(ût+1) based on the conditional likelihood score (11) or the censored
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likelihood score (12) in the same manner as before. Note that by choosing the weight

function w̃t(u) = 1 we retrieve the original log scoring rule

S l(yt+1) = log ĉt(ût+1), (13)

as considered in Diks et al. (2010). The Diebold-Mariano type test statistic in (1) with

this log-scoring rule can be used to compare two copula-based density forecasts over the

entire copula support.

Above, we have assumed that the two competing multivariate density forecasts differ

only in their copula specifications and have identical predictive marginal densities f̂j,t,

j = 1, . . . , d. Implicitly this assumes that the parameters in the marginals and the copula

can be separated from each other, so that they can be estimated in a multi-stage procedure.

No other restrictions are put on the marginals. In particular, they may be specified para-

metrically, nonparametrically, or semi-parametrically. An important class of models that

satisfies these properties is that of SCOMDY models, discussed next.

SCOMDY models The class of semi-parametric copula-based multivariate dynamic

(SCOMDY) models has been introduced by Chen and Fan (2006). We discuss this class

in some detail here, as we use it in the Monte Carlo simulations and the empirical appli-

cation in subsequent sections. The SCOMDY models combine parametric specifications

for the conditional mean and conditional variance of Y t with a semi-parametric specifica-

tion for the distribution of the standardised innovations, consisting of a parametric copula

with nonparametric univariate marginal distributions. The general SCOMDY model is

specified as

Y t = µt(θ1) +
√
Ht(θ)εt, (14)

where

µt(θ1) = (µ1,t(θ1), . . . , µd,t(θ1))
′ = E [Y t|Ft−1]

is a specification of the conditional mean, parameterised by a finite dimensional vector of

parameters θ1, and

Ht(θ) = diag(h1,t(θ), . . . , hd,t(θ)),
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where

hj,t(θ) = hj,t(θ1,θ2) = E
[
(Yj,t − µj,t(θ1))2|Ft−1

]
, j = 1, . . . , d,

is the conditional variance of Yj,t given Ft−1, parameterised by a finite dimensional vector

of parameters θ2, where θ1 and θ2 do not have common elements. The innovations εt =

(ε1,t, . . . , εd,t)
′ are independent of Ft−1 and independent and identically distributed (i.i.d.)

with E(εj,t) = 0 and E(ε2j,t) = 1 for j = 1, . . . , d. Applying Sklar’s theorem, the joint

distribution function F (ε) of εt can be written as

F (ε) = C(F1(ε1), . . . , Fd(εd);α) ≡ C(u1, . . . , ud;α), (15)

where C(u1, . . . , ud;α): [0, 1]d → [0, 1] is a member of a parametric family of copula

functions with finite dimensional parameter vector α.

An important characteristic of SCOMDY models is that the univariate marginal den-

sities Fj(·), j = 1, . . . , d are not specified parametrically (up to an unknown parameter

vector) but are estimated nonparametrically. Specifically, Chen and Fan (2006) suggest

the following three-stage procedure to estimate the SCOMDY model parameters. First,

univariate quasi maximum likelihood under the assumptions of normality of the standard-

ised innovations εj,t is used to estimate the parameters θ1 and θ2. Second, estimates of

the marginal distributions Fj(·) are obtained by means of the empirical CDF transforma-

tion of the residuals ε̂j,t ≡ (yj,t − µj,t(θ̂1))/
√
hj,t(θ̂). Finally, the parameters of a given

copula specification are estimated by maximising the corresponding copula log-likelihood

function.

3 Monte Carlo simulations

In this section we use Monte Carlo simulation to examine the finite-sample behaviour

of our predictive accuracy test for comparing alternative copula specifications in specific

regions of interest. We consider three classes of models: (1) copula model with no un-

certainty in the marginal distribution (marginals are not modeled), (2) copula model with

marginals specified parametrically and (3) copula model with marginals specified semi-

parametrically (SCOMDY model). In all three cases copula is modeled parametrically.
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Although the case without uncertainty in the marginals is of less practical relevance, it is

included as a baseline.

For the model involving marginals, the true data generating process (DGP) is based

on an AR(1) specification for the conditional mean and a GARCH(1,1) specification for

the conditional variance, with coefficients that are typical for financial applications to

exchange rates. In particular,

Yj,t = 0.1Yj,t−1 +
√
hj,tεj,t (16)

hj,t = 0.1 + 0.05 (Yj,t−1 − 0.1Yj,t−2)
2 + 0.85hj,t−1, (17)

for j = 1, . . . , d. The vector-valued innovations εt used in the simulations are i.i.d.,

but the elements εj,t, j ∈ 1, . . . , d for fixed t are not independent. For fixed t, each of

the variables εj,t are marginally standard normally distributed, while their dependence is

either described by the Gaussian copula, the Student-t copula, the Clayton copula or the

Clayton survival copula.

The Gaussian and Student-t copulas can be obtained using the so-called inversion

method, that is

CGa(u1, u2, . . . , ud) = F (F−11 (u1), F
−1
2 (u2), . . . , F

−1
d (ud)), (18)

where F is the joint CDF and F−1i (u) = min{x|u ≤ Fi(x)} is the (quasi)-inverse of the

corresponding marginal CDF Fi.

The Gaussian copula is obtained from (18) by taking F to be the multivariate normal

distribution with mean zero, unit variances, and correlations ρij , i, j = 1, . . . , d, and

standard normal marginals Fi. The corresponding copula density is given by

cGa(u; Σ) = |Σ|−1/2 exp

(
−1

2
(Φ−1(u))

′
(Σ−1 − Id)Φ

−1(u)

)
, (19)

where Id is the d-dimensional identity matrix, Σ is the correlation matrix, and Φ−1(u) =

(Φ−1(u1), . . . ,Φ
−1(ud))

′, with Φ−1(·) denoting the inverse of the standard normal CDF.

In the bivariate case d = 2, the correlation coefficient ρ12 = ρ21 is the only parameter of

the Gaussian copula.
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The Student-t copula is obtained similarly, but using a multivariate Student-t distribu-

tion instead of the Gaussian. The corresponding copula density is given by

cSt−t(u,Σ, ν) = |Σ|−1/2 Γ([ν + d]/2)Γd−1(ν/2)

Γd((ν + 1)/2)

(
1 +

T−1ν (u)′Σ−1T−1ν (u)
ν

)−(ν+d)/2
∏d

i=1

(
1 +

(T−1ν (ui))
2

ν

)−(ν+1)/2
,

(20)

where T−1ν (u) = (T−1ν (u1), . . . , T
−1
ν (ud))

′, and T−1ν (·) is the inverse of the univariate

Student-t CDF, Σ is the correlation matrix and ν is the number of degrees of freedom.

In the bivariate case the Student-t copula has two parameters, the number of degrees of

freedom ν and the correlation coefficient ρ12. Note that the Student-t copula nests the

Gaussian copula when ν =∞.

A major difference between the Gaussian copula and the Student-t copula is their

ability to capture tail dependence, which may be important for financial applications.

The lower tail dependence coefficient is defined as λL = limq↓0C(q, q, . . . , q)/q, and

the upper tail dependence coefficient as λU = limq↓0C
s(q, q, . . . , q)/q, where Cs is the

survival-copula of εt, that is, the copula of −εt rather than εt. For the Gaussian copula

both tail dependence coefficients are equal to zero, while for the Student-t copula the tail

dependence is symmetric and positive. Specifically, in the bivariate case d = 2, the tail

dependence coefficients are given by

λL = λU = 2Tν+1

(
−
√

(ν + 1)(1− ρ12)/(1 + ρ12)
)
,

which is increasing in the correlation coefficient ρ12 and decreasing in the number of

degrees of freedom ν.

The Clayton and Clayton survival copulas belong to the family of Archimedean cop-

ulas (see Nelsen (2006) for details). The d-dimensional Clayton copula is given by

CCl(u;α) =

(
d∑
j=1

u−αj − d+ 1

)−1/α
, with α > 0.

In contrast to the Gaussian and Student-t copulas, the Clayton copula is able to capture

asymmetric tail dependence. In fact, it only exhibits lower tail dependence, while upper

tail dependence is absent. In the bivariate case the lower tail dependence coefficient for
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the Clayton copula is λL = 2−1/α, which is increasing in the parameter α. The density

function of the Clayton copula is

cCl(u, α) =

(
d∏
j=1

(1 + (j − 1)α)

)(
d∏
j=1

u
−(α+1)
j

)(
d∑
j=1

u−αj − d+ 1

)−(α−1+d)

.

The Clayton survival copula is obtained as the mirror image of the Clayton copula, with

density function given by

cCl-s(u, α) = cCl(1− u, α).

Consequently, in the bivariate case the upper tail dependence coefficient for the Clayton

survival copula is λU = 2−1/α, and is increasing in the parameter α, while the lower tail

dependence coefficient is zero.

In the simulation experiments we focus on the bivariate case, i.e., d = 2. We set the

number of observations for the moving in-sample window to R = 1, 000 and compare the

results for two different out-of-sample forecasting periods P = 1, 000 and P = 5, 000.

Asymptotic results of the considered tests are based on the assumption that P > R, but in

practice it is not always possible to have large P . This motivates us to consider the finite

sample properties of the test for the more feasible situation R = P = 1, 000.

All models are estimated using maximum likelihood, for models involving marginal

distributions we estimate the parameters of the marginal distributions first and after ob-

taining the standardised innovations we transform them into PITs, either using the corre-

sponding parametric CDF or empirical CDF (ECDF). These are then used to estimate the

copula parameters.

The number of replications in each experiment is set to B =1,000.

3.1 Size

In order to assess the size properties of the test, a case is required with two competing

copulas that are both ‘equally (in)correct’. We achieve this with the following setup. We

consider DGPs with a Student-t copula with degrees of freedom ν = 6. To verify the prop-

erties for various level of dependence we vary the correlation coefficient: ρ = 0.1, 0.5, 0.9.

We test the null hypothesis of equal predictive accuracy of Clayton and Clayton survival
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copulas with their parameters being estimated using the moving in-sample window. Due

to symmetry of the Student-t copula with respect to the reflections ui ↔ 1 − ui, the two

competing copula specifications are equally distant from the true copula. To preserve

the symmetry also when we focus on a region of interest, we focus on the central region

[0.25, 0.75]2, which also respects this symmetry. We report results based on two-sided

tests, for censored as well as conditional scores.

The discrepancy between the actual size (or observed rejection rate) and the nominal

size of the test are shown in Figs 1 and 2. Fig. 1 compares the results for the DGPs with

varying level of dependence. The higher the dependence the more deviation is observed

from the nominal size. The deviations are mainly caused by poor finite sample perfor-

mance of the HAC estimator which attempts to capture dependence between scores.1 The

tests based on censored likelihood scores tend to over-reject somewhat more often than

the tests based on conditional likelihood scores, but overall they exhibit similar proper-

ties. As expected, the size distortion can be seen to become smaller for a larger number

of out-of-sample evaluations P .

Fig. 2 compares the results for three DGPs with varying models for the marginal dis-

tributions: no uncertainty about the marginals, parametric marginals and semi-parametric

marginals. The three different estimators exhibit similar size properties.

We also considered other DGPs and higher dimensions to verify the size properties of

the test. We do not report detailed results here for the sake of brevity; they can be briefly

summarised as follows. The unifying theme was that the size distortion crucially depends

on the strength of dependence in the considered DGP. In some cases the semi-parametric

models showed somewhat larger size distortions than the parametric models and models

with known marginals. The size properties of both tests are comparable to those found by

Diks et al. (2011) for the tests of copula predictive accuracy for the full support.

1We have tried various implementations of the HAC estimator available in the literature (see den Haan
and Levin (1996) for review), but no implementation was fully satisfactory for considered DGPs and sample
sizes.
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Figure 1: Size discrepancy plots for the test of equal predictive accuracy for various levels of
dependence in the DPG

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.05  0.1  0.15  0.2

s
iz

e
 d

is
c
re

p
a

n
c
y

nominal size

ρ=0.1
ρ=0.5
ρ=0.9

(a) P = 1000, censored likelihood score

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.05  0.1  0.15  0.2
s
iz

e
 d

is
c
re

p
a

n
c
y

nominal size

ρ=0.1
ρ=0.5
ρ=0.9

(b) P = 1000, conditional likelihood score
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(c) P = 5000, censored likelihood score
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(d) P = 5000, conditional likelihood score

The panels display the actual size-nominal size discrepancy of a two-sided test of equal performance
of the Clayton and Clayton survival copulas. The DGPs are based on a Student-t copula with ν = 6
degrees of freedom and varying levels of correlation ρ. There is no uncertainty about the marginal
distributions. The tests are based on the central copula region [0.25, 0.75]

d (d = 2) and use either
censored (left) or conditional scores (right). The number of observations in the moving in-sample
estimation window is R = 1, 000 and the number of out-of-sample evaluations is P = 1, 000 and
P = 5, 000. The reported results are based on 1, 000 replications. The thin lines indicate the 95%
point-wise confidence bounds.
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Figure 2: Size discrepancy plots for the test of equal predictive accuracy for various DPGs
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(a) P = 1000, censored likelihood score
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(b) P = 1000, conditional likelihood score

The panels display the actual size - nominal size discrepancy of a two-sided test of equal performance
of the Clayton and Clayton survival copulas. The DGPs use a Student-t copula with ν = 6 degrees of
freedom and correlation ρ = 0.5. We consider three processes for the marginals: no uncertainty about
the marginals (labeled as ’no marginals’), parametric marginals with Normally distributed innovations
and semi-parametric marginals with ECDF-based standardised innovation. In the latter two cases the
marginals follow an AR(1)-GARCH(1,1) process. The tests are based on the central copula region
[0.25, 0.75]

d (d = 2) and use either censored (left) or conditional scores (right). The number of
observations in the moving in-sample estimation window is R = 1, 000 and the number of out-of-
sample evaluations is P = 1, 000. The reported results are based on 1, 000 replications. The thin lines
indicate the 95% point-wise confidence bounds.
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3.2 Power

We evaluate the power of the test of equal predictive accuracy by performing a simulation

experiment where one of the competing copula specifications corresponds with that of the

DGP, while the distance of the alternative, incorrect copula specification to the DGP varies

depending on a certain parameter of the DGP. Specifically, the DGP is a Student-t copula

of dimension d = 2 with correlation coefficient ρ = 0.3. The number of degrees of free-

dom ν is varied over the interval [3, 50]. We compare the predictive accuracy of the correct

Student-t copula specification (with both parameters ρ and ν being estimated) against an

incorrect Gaussian copula specification (with only the correlation coefficient ρ being es-

timated) in the left tail region [0, 0.25]d. Hence, we focus on the question whether the

proposed tests can distinguish between copulas with and without tail dependence. Note,

however, that the Student-t copula approaches the Gaussian copula as ν increases, and the

tail dependence disappears with the coefficients λL and λU converging to zero. Intuitively,

the higher the value of ν in the DGP, the more difficult it becomes to distinguish between

these two copula specifications.

The results are shown in Fig. 3 in the form of power plots, showing the observed

rejection rates (for a nominal size of 0.05) as a function of the degrees of freedom pa-

rameter, ν, in the DGP, for tests based on the censored and conditional scoring rule. The

results displayed are for the null hypothesis that the Gaussian and Student-t copulas per-

form equally well, against the one-sided alternative hypothesis that the correctly specified

Student-t copula has a higher average score. Intuitively, since the true DGP uses the

Student-t copula, we might expect the Student-t copula to perform better. Note, however,

that as the number of degrees of freedom ν in the copula describing the DGP becomes

large, the Gaussian copula might outperform the Student-t copula. This is a consequence

of the fact that the Gaussian copula is very close to to the Student-t copula for large values

of ν, but requires one parameter less to be estimated. Indeed, the rejection rates become

smaller than the nominal size for very large values of ν. Consequently, Fig. 3 shows that

the test has higher power for smaller values of ν. Naturally, the test based on the larger

number of out-of-sample evaluations, P , shows higher rejection rates.
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Figure 3: Power of the test of equal predictive accuracy for various levels of tail dependence
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(b) P=5000

The panels show the observed rejection rates (on the vertical axis) of a one-sided test of equal per-
formance of the Gaussian and Student-t copulas, against the alternative hypothesis that the correctly
specified Student-t copula has a higher average score. The tests are based on the left tail copula re-
gion [0, 0.25]

d (d = 2) and use either censored or conditional scores. The horizontal axis displays the
degrees of freedom parameter of the Student-t copula characterising the DGP. The off-diagonal corre-
lation coefficients ρij , i 6= j, are all set to 0.3. There is no uncertainty about the marginals. The test
of equal predictive accuracy compares a Student-t copula (with both parameters ρ and ν estimated,
rather than known) against a Gaussian copula with the parameter ρ also being estimated. The nominal
size is 0.05, indicated by the thin horizontal lines. The number of observations in the moving in-sample
estimation window is R = 1, 000 and the number of out-of-sample evaluations is P = 1, 000 and
P = 5, 000, repsectively. The reported results are based on 1, 000 replications.
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Figure 4: Size-power plots for the test of equal predictive accuracy
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(b) P = 5, 000

The panels display the observed rejection rates (on the vertical axis) as a function of nominal size
(on the horizontal axis) for a one-sided version of our test of equal performance of the Gaussian and
Student-t copulas, against the alternative hypothesis that the correctly specified Student-t copula has
a higher average score. The tests are based on the lower tail copula region [0, 0.25]

d (d = 2) and
based on either censored or conditional scores. The DGP is characterised by the Student-t copula
with correlation coefficient ρ = 0.3 and degrees of freedom ν = 5. There is no uncertainty about the
marginals. The test of equal predictive accuracy compares a Student-t copula (with both parameters
ρ and ν estimated, rather than known) against a Gaussian copula with the parameter ρ also being
estimated. The nominal sizes is 0.05, indicated by horizontal lines. The number of observations in the
moving in-sample estimation window is R = 1, 000 and the number of out-of-sample evaluations is
P = 1, 000 and P = 5, 000. Reported results are based on 1, 000 replications.
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Fig. 4 shows the observed rejection rates of the test as a function of the nominal size

for a fixed number of degrees of freedom, ν = 5, which may be observed in financial

applications. The test exhibits nontrivial power for all sizes considered.

We also considered power properties for models with parametric and semi-parametric

marginal specifications, which we do not report here due to space considerations. Addi-

tional estimation uncertainty due to the marginals slightly decreased the power, but the

overall pattern was very similar to the case with no marginal uncertainty.

Finally, comparison with the results of Diks et al. (2010) shows that the tests based on

the full copula support have higher power than the tests focusing on the left tail only. This

is to be expected, as the tests for predictive accuracy in a given region of support attempt

to solve a much more difficult statistical problem (the observations outside of the targeted

region are of limited value to the testing of the hypothesis).

In summary, although the suggested tests of predictive accuracy in the selected region

of support exhibit moderate discrepancy from the nominal size, they have satisfactory

statistical power.

4 Empirical application

We examine the empirical usefulness of our predictive accuracy test with an application to

exchange rate returns for several major currencies. Specifically, we consider daily returns

on the US dollar exchange rates of the Canadian dollar (CAD), euro (EUR), and Japanese

yen (JPY). The data are noon buying rates in New York and are obtained from the Federal

Reserve Bank of New York. We base our analysis on the daily FX returns over the period

from January 2, 1980 until July 21, 2008. Up to December 31, 1998, the euro series

actually concerns the exchange rate of the German Deutschmark (DM), while the euro is

used as of January 4, 1999.

We employ a GARCH framework with Student-t innovations to model the marginal

characteristics of the daily exchange rate returns. For the conditional mean and the con-

ditional variance of the return on currency j we use an AR(5)-GARCH(1,1) specification,
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given by

Yj,t = cj +
5∑
l=1

φj,lYj,t−l +
√
hj,tεj,t (21)

hj,t = ωj + αj

(
Yj,t−1 − cj −

5∑
l=1

φj,lYj,t−1−l

)2

+ βjhj,t−1, (22)

where ωj > 0, βj ≥ 0, αj > 0 and αj + βj < 1.

The joint distribution of the standardised innovations εj,t combines Student-t univari-

ate marginal distributions Fj with a parametric copula C. We consider a substantial num-

ber of different copula specifications. In particular, we consider the Gaussian (Ga) and

Student-t (St-t) elliptic copulas and the classic Archimedean copulas and their mixtures,

that is, the Clayton (Cl), Clayton survival (Cl-s), mixture of Clayton and Clayton survival

(Cl/Cl-s), Gumbel (Gu), given by

CGu(u;α) = exp

(− d∑
i=1

(− lnui)
α

)1/α


Gumbel survival (Gu-s), and mixture of Gumbel and Gumbel survival (Gu/Gu-s). The

Gumbel copula for α > 1 has upper tail dependence with upper tail dependence index

λu = 2 − 21/α. Likewise, the Gumbel survival copula has lower tail dependence λL =

2− 21/α.

We compare the one-step ahead density forecasting performance of the different cop-

ula specifications using a rolling window scheme. The length of the rolling estimation

window is set to R = 2, 000 observations, such that P = 2, 772 observations (from De-

cember 23, 1987 until December 31, 1998) during the pre-euro sub-period and P = 2, 406

observations (from January 4, 1999 until July 21, 2008) during the post-euro sub-period

are left for out-of-sample forecast evaluation. For comparing the accuracy of the resulting

copula-based density forecasts we use the Diebold-Mariano type test based on the condi-

tional likelihood in (11) and the censored likelihood in (12). As both scoring rules give

qualitatively similar results, to save space we only report results of the tests based on the

censored likelihood.2

2Detailed results based on the conditional likelihood are available upon request.
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We focus on three specific regions of the copula support. The first region, labeled D,

corresponds to all currencies suffering a simultaneous depreciation against the USD, and

is defined as

D = {(u1, . . . , ud)|uj < r for all j = 1, . . . , d},

where the threshold r ∈ {0.20, 0.25, 0.30}. Note that we only consider regions with iden-

tical thresholds for all exchange rates. This obviously is an arbitrary choice, but it is made

in order to limit the number of regions under consideration. Below, we present detailed

results for r = 0.25 only, but include the two alternative values in the discussion to ad-

dress the sensitivity of the results to the specific choice of the threshold value. The second

region, denoted U, is the mirror image of D in the sense that it represents a simultaneous

appreciation against the USD and is defined as

U = {(u1, . . . , ud)|uj > 1− r for all j = 1, . . . , d},

where again the threshold r ∈ {0.20, 0.25, 0.30}. The third region concerns the central

part of the copula support. This region M is defined as

M = {(u1, . . . , ud)|r < uj < 1− r for all j = 1, . . . , d},

where we use the same values of r as for the regions D and U. Region M corresponds to

‘regular’ trading conditions.

Fig. 5 illustrates the three regions for the conditional PITs from one-step ahead den-

sity forecasts for the daily CAD/USD-JPY/USD-EUR/USD exchange rates return inno-

vations. The PITs of observations are color-coded in accordance with their attribution to

a particular region of copula support: observations in region D are in blue, observations

in region U are in red, the ones in region M are in green, and, finally, the observations in

the compliment to the union of the above regions are in grey.

As an additional diagnostic tool, we use the model confidence set (MCS) concept of

Hansen et al. (2011) to identify the collection of models which includes the best copula

specification with a certain level of confidence. Starting with the full set of models, at each

iteration we test the null hypothesis that all the considered models have equal predictive

ability according to the selected scoring rule. If the null hypothesis is rejected, the worst
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Figure 5: Conditional PITs from one-step ahead density forecasts for daily CAD/USD-JPY/USD-
EUR/USD returns

(a) Pre-euro sub-period: December 23, 1987
- December 31, 1998

(b) Post-euro sub-period: January 4, 1999 -
July 21, 2008

performing model is omitted, and equal predictive ability is tested again for the remaining

models. This procedure is repeated until the null hypothesis cannot be rejected and the

collection of models that remains at this point is defined to be the MCS. In our application

of the MCS procedure, we always exclude the worst performing model and repeat the

algorithm until only one model remains in the MCS. This allows us to obtain a complete

ranking of the competing models. We report the MCS p-values at every iteration. The

implementation of the MCS is based on bootstrapping. To accommodate the possibility

of autocorrelation in the scoring rules, we use the stationary bootstrap methodology of

Politis and Romano (1994). We report the results for the probability of sampling the

consecutive observation equal to 0.9. The ranking of the different copula specifications

and the MCS p-values are robust to the choice of this probability.

Due to space considerations we focus the density forecast comparison on the post-

euro sub-period in the discussion below. That is not to say that the pre-euro sub-period

does not render interesting results. In fact, in line with Patton (2006), we find striking

differences in the dependence characteristics of the three exchange rates between the pre-

and post-euro sub-periods. These differences do not become apparent when the predictive

accuracy of the density forecasts arising from different copula specifications is compared

over the whole copula support, using the test statistic of Diks et al. (2010). This follows

from Table 1, which reports the values of the pairwise QR,P test statistic based on the log-
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scoring rule S l(yt+1) as given in (13) for the pre- and post-euro sub-periods. Obviously,

the matrices in the two panels are antisymmetric, that is QR,P (i, j) = −QR,P (j, i) for

copula specifications i and j. We nevertheless report the full matrices as this allows for

an easy assessment of the relative performance of the various copulas. Given that in each

panel the (i, j)th entry is based on the score difference dlt+1 = S lj,t+1(yt+1)−S li,t+1(yt+1),

positive values of the test statistic indicate that the copula in column j achieves a higher

average score than the one in row i. Hence, the more positive values in a given column,

the higher the ranking of the corresponding copula specification.

From Table 1, we observe that for both the pre- and post-euro sub-periods, the Student-

t copula performs best when the full copula support is taken into account in the compar-

ison. Based on the pairwise QR,P test statistic, the null of equal predictive accuracy is

rejected at better than the 1% significance level for all competing copula specifications,

except the Gumbel-Gumbel survival and the Clayton-Clayton survival mixtures during the

post-euro period. This is confirmed by the MCS results. During the pre-euro sub-period,

the MCS at conventional significance levels only consists of the Student-t copula, while

for the post-euro period the two mixture copulas may be included as well. Results are

very different, however, when we focus on sub-regions. Specifically, unreported results

show that during the pre-euro sub-period the Gaussian copula is the superior choice for

capturing the dependence structure in each of the three considered regions of support D, U

and M with the threshold r = 0.25. The corresponding p-values for the pairwise tests of

equal accuracy of a Student-t copula and a Gaussian copula are 0.001 for region D, 0.113

for region M, and 0.056 for region U. This suggests the lack of positive upper and lower

tail dependence in the case of joint depreciation or appreciation of the three exchange

rates against the US dollar. It follows that the strength of the Student-t copula specifica-

tion when the full support is considered stems from its performance in the complement

to the union of the three selected regions of support. The latter corresponds to strong

movements in opposite directions of the three currencies values against the US dollar. For

the post-euro sub-period we again find rather different results for the selected regions of

support.

Table 2 shows results of the pairwise QR,P test statistic based on the censored likeli-
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Table 1: Daily CAD/USD-JPY/USD-EUR/USD returns: Pair-wise tests of
equal predictive accuracy of copulas for full copula support, based on the test
suggested by Diks et al. (2010).

Ga St-t Cl Cl-s Cl/Cl-s Gu Gu-s Gu/Gu-s
Panel A: Pre-euro sub-period (December 23, 1987 - December 31, 1998)
Ga 2.97 −7.00 −6.74 −6.24 −6.47 −7.04 −6.34
St-t −2.97 −7.99 −7.61 −7.37 −7.40 −7.96 −7.45
Cl 7.00 7.99 0.21 3.30 0.79 −0.50 2.14
Cl-s 6.74 7.61 −0.21 3.02 0.50 −0.75 1.85
Cl/Cl-s 6.24 7.37 −3.30 −3.02 0.00 −3.09 −4.29 −2.45
Gu 6.47 7.40 −0.79 −0.50 3.09 −1.11 1.82
Gu-s 7.04 7.96 0.50 0.75 4.29 1.11 3.35
Gu/Gu-s 6.34 7.45 −2.14 −1.85 2.45 −1.82 −3.35
MCS order 7 4 3 6 2 1 5
MCS p-val 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel B: Post-euro sub-period (January 4, 1999 - July 21, 2008)
Ga 5.27 −2.38 −1.50 1.05 −0.78 −1.55 1.15
St-t −5.27 −4.60 −3.74 −1.47 −2.99 −3.69 −1.24
Cl 2.38 4.60 1.05 5.51 2.00 1.68 5.29
Cl-s 1.50 3.74 −1.05 4.76 1.63 −0.11 4.46
Cl/Cl-s −1.05 1.47 −5.51 −4.76 −4.15 −4.45 0.59
Gu 0.78 2.99 −2.00 −1.63 4.15 −1.04 4.37
Gu-s 1.55 3.69 −1.68 0.11 4.45 1.04 5.03
Gu/Gu-s −1.15 1.24 −5.29 −4.46 −0.59 −4.37 −5.03
MCS order 5 1 2 6 4 3 7
MCS p-val 0.14 1.00 0.00 0.00 0.245 0.07 0.01 0.27

Note: Values of the Diks et al. (2010) test statistic. The test statistic is based on
one-step ahead density forecasts for daily CAD/USD, JPY/USD and EUR/USD
returns during the corresponding sub-period, with the length of the rolling estima-
tion window set equal to R = 2, 000 observations in both sub-periods. Conse-
quently, the number of forecasts is P = 2, 772 for Panel A: Pre-euro sub-period
(December 23, 1987 - December 31, 1998), and P = 2, 406 for Panel B: Post-
euro sub-period (January 4, 1999 - July 21, 2008). In each panel the (i, j)th entry
is based on the score differences such that positive values of the test statistic indi-
cate that the model in column j achieves a higher average score than the model in
row i. Acronyms used for referring to copula specifications: Ga - Gaussian; St-t
- Student-t; Cl - Clayton; Cl-s - Clayton survival; Cl/Cl-s - Clayton-Clayton sur-
vival mixture; Gu - Gumbel; Gu-s - Gumbel survival; Gu/Gu-s - Gumbel-Gumbel
survival mixture. MCS order is the iteration, at which the model is omitted from
the MCS, while the MCS p-val is the corresponding p-value.
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hood scoring rule for regions D, U , and M with r = 0.25. These demonstrate that after

1999, the Gumbel survival, the Gumbel, and the Student-t specifications perform best for

these three individual regions of copula support. Next, we describe and analyze these

results in more detail.

The dependence structure in region D, corresponding to common significant depreci-

ation of the currencies against the US dollar, strongly favors the Gumbel survival copula

specification (see Panel A in Table 2). The Gumbel-Gumbel survival mixture copula is a

close second-best choice. Notably, the Gumbel survival copula outperforms the Gaussian

copula with an approximate p-value of 0.04. This signifies a major departure from the

lack of positive lower tail dependence observed in the pre-euro sub-period. Other copula

specifications with positive lower tail dependence, including the Gumbel-Gumbel survival

mixture, Student-t, and Clayton copulas also demonstrate good performance in region D.

Copula specifications with positive upper tail dependence but no lower tail dependence,

like the Clayton Survival and Gumbel copulas, yield the worst results and are the first

specifications to be dropped from the MCS. This strongly suggests that the ability to re-

flect positive lower tail dependence is a highly desirable feature for modeling extreme

joint depreciation of the three currencies against the US dollar. Accommodating only

positive upper tail dependence is of no use in region D.

Let us now investigate the details of the comparison between the Gumbel Survival and

Student-t copulas. The choice of the Student-t copula as the main competitor originates

from the superiority of the Student-t copula when the full copula support is considered.

Define an unbalanced observation from region D as the one which to corresponds to a

PIT for which one of the components is substantially smaller or larger than the other two.

More precisely, we define an observed PIT as unbalanced when its largest component is

more than 25 times larger than its smallest component. All other observations are labeled

as balanced. This type of classification is particularly useful in explaining the relative

performance of different copula specifications in any given region of support. We visu-

alise the balanced and unbalanced PIT observations and their effect on the test statistic by

means of specially-designed scatter plots, with the following features. All observations

favouring the winning copula (in the case of region D, this is the Gumbel Survival cop-
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Table 2: Daily CAD/USD-JPY/USD-EUR/USD returns: Pair-wise tests of equal
predictive accuracy of copulas for selected regions of support, based on the cen-
sored likelihood scoring rule

Ga St-t Cl Cl-s Cl/Cl-s Gu Gu-s Gu/Gu-s
Panel A: region D
Ga 2.27 1.88 −4.54 2.03 −4.36 1.77 1.98
St-t −2.27 0.60 −4.26 0.02 −4.02 1.29 1.08
Cl −1.88 −0.60 −4.17 −0.84 −3.96 1.15 0.73
Cl-s 4.54 4.26 4.17 4.57 4.48 3.56 4.08
Cl/Cl-s −2.03 −0.02 0.84 −4.57 −4.48 1.27 1.17
Gu 4.36 4.02 3.96 −4.48 4.48 3.21 3.81
Gu-s −1.77 −1.29 −1.15 −3.56 −1.27 −3.21 −1.00
Gu/Gu-s −1.98 −1.08 −0.73 −4.08 −1.17 −3.81 1.00

MCS order 3 5 6 1 4 2 7
MCS p-val 0.24 0.385 0.45 0.00 0.35 0.00 1.00 0.45

Panel B: region U
Ga 2.86 −3.84 1.87 2.19 2.09 −3.72 2.25
St-t −2.86 −3.79 0.36 1.31 1.61 −3.69 1.55
Cl 3.84 3.79 3.43 3.57 3.14 3.63 3.44
Cl-s −1.87 −0.36 −3.43 1.41 1.82 −3.23 1.56
Cl/Cl-s −2.19 −1.31 −3.57 −1.41 1.25 −3.39 0.64
Gu −2.09 −1.61 −3.14 −1.82 −1.25 −2.93 −1.22
Gu-s 3.72 3.69 −3.63 3.23 3.39 2.93 3.24
Gu/Gu-s −2.25 −1.55 −3.44 −1.56 −0.64 1.22 −3.24
MCS order 3 5 1 4 6 2 7
MCS p-val 0.08 0.21 0.00 0.13 0.355 1 0.00 0.355

Panel C: region M
Ga 3.26 −0.44 −2.43 2.07 0.69 0.62 2.51
St-t −3.26 −2.51 −3.30 −2.03 −2.49 −2.34 −1.90
Cl 0.44 2.51 −2.16 2.89 1.36 1.50 2.60
Cl-s 2.43 3.30 2.16 4.47 4.12 4.21 4.24
Cl/Cl-s −2.07 2.03 −2.89 −4.47 −3.61 −3.18 1.64
Gu −0.69 2.49 −1.36 −4.12 3.61 −0.06 3.47
Gu-s −0.62 2.34 −1.50 −4.21 3.18 0.06 2.84
Gu/Gu-s −2.51 1.90 −2.60 −4.24 −1.64 −3.47 −2.84
MCS order 2 4 1 6 3 5 7
MCS p-val 0.01 1.00 0.015 0.00 0.06 0.01 0.04 0.08

Note: Values of the Diebold-Mariano type test statistic tR,P defined in (1) based on
the censored likelihood score (12) for the regions D, U and M with the threshold
r = 0.25. The test statistic is based on one-step ahead density forecasts for daily
CAD/USD, JPY/USD and EUR/USD returns during the period January 4, 1999 -
June 21, 2008 (P = 2, 406), with the length of the rolling estimation window set
equal to R = 2, 000 observations. In each panel the (i, j)th entry is based on
the score difference dcslt+1 = Scslj,t+1(yt+1) − Scsli,t+1(yt+1) such that positive values
of the test statistic indicate that the model in column j achieves a higher average
score than the model in row i. Acronyms used for referring to copula specifications:
Ga - Gaussian; St-t - Student-t; Cl - Clayton; Cl-s - Clayton survival; Cl/Cl-s -
Clayton-Clayton survival mixture; Gu - Gumbel; Gu-s - Gumbel survival; Gu/Gu-s
- Gumbel-Gumbel survival mixture. MCS order is the iteration, at which the model
is omitted from the MCS, while the ‘MCS p-val’ is the corresponding p-value.
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ula) are colored blue, while all observations favouring the competing specification (the

Student-t copula in region D) are colored red. The size of the marker corresponds to the

absolute value of the weighted score difference the larger the marker, the greater the ab-

solute value of the weighted score difference. Therefore, the most influential observations

are coded by large markers. The upper panel of Fig. 6 contains such a scatter-plot of PITs

falling in the D region of copula support where the corresponding weighted score differ-

ences determine the colour and shape of the markers. It is evident from the top panel of

Fig. 6 that balanced observations strongly support the Gumbel survival copula, while the

Student-t copula benefits almost exclusively from unbalanced observations. Balanced ob-

servations are also much more numerous with a substantial number of these corresponding

to large values of the weighted score differences.

For region U, associated with a common significant appreciation of the currencies

against the US dollar, we essentially find a mirror image of the above results. Now

the Gumbel copula emerges as the best option for capturing the dependence structure

of strongly appreciating currencies, see Panel B in Table 2. It is followed by the Gumbel-

Gumbel survival and Clayton-Clayton survival mixture copulas. We should remark that

the Gumbel copula also outperforms the Student t-copula specification with an approxi-

mate p-value of 0.05. The Gumbel copula, dominant in the U region, is the mirror image

of the Gumbel survival copula, being the best choice for the D region. Thus, also the same

type of the dependence structure (Gumbel copula and its mirror image) emerges as the best

choice for the two regions of support. The regions themselves are naturally “mirror re-

flections” of one another. This confers a reassuring symmetry to the results. The MCS

results indicate that the top three copulas that excel in capturing the dependence struc-

ture in region U are the Gumbel, Gumbel-Gumbel survival and Clayton-Clayton survival

mixture copulas. All three copula specifications allow for positive upper tail dependence.

At the same time, the Gumbel survival and Clayton copula are performing worst and are

the first to be excluded from the MCS. This again is the mirror image of the MCS results

for region D; accommodating positive upper tail dependence is crucial in the U region of

copula support, but allowing for lower tail dependence is of no use.

Looking deeper at the causes of the superiority of the Gumbel copula over the Student-
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Figure 6: Conditional PITs from one-step ahead density forecasts for daily CAD/USD-JPY/USD-
EUR/USD returns for the period January 4, 1999 - July 21, 2008

(a) Region D

(b) Region U
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t copula, we come to conclusions analogous to the ones reached for region D. The bottom

panel of Fig. 6 depicts PITs falling in region U, where the corresponding weighted scores

differences between the Gumbel and Student-t copulas determine the color and shape

of the markers: blue markers correspond to positive differences (favouring the Gumbel

copula), while red markers correspond to negative differences (favouring the Student-t

copula). Just as in the case of region D, balanced observations favour almost exclusively

the Gumbel copula. The only observations that sufficiently reinforce the Student-t copula

specification are away from the main diagonal (from {0.75, 0.75, 0.75} to {1, 1, 1}).

The final studied M region of copula support corresponds to modest movements of the

exchange rates. The Student-t copula decisively outperforms all competing copula spec-

ifications in this region of support. The significantly better performance of the Student-t

copula than the Gumbel-Gumbel survival mixture copula (with a p-value of 0.03) is of par-

ticular importance because it yet again illustrates the practical importance of separately

analysing the dependence structure in different regions of the copula support. At the 0.10

significance level, only the Student-t copula is in the MCS model set.

Finally, we examine the robustness of our results. First, our results are robust to vari-

ations in the volume of D, M, and U regions as parameterised by the threshold value r.

The ranking of relative performance of top copula specifications in the selected regions

of support is unchanged for r = 0.20 and 0.30. Second, estimation of the PITs using

the SCOMDY model with non-parametric marginal probability distributions (rather than

the Student-t marginal distributions) yields copula rankings which are, in general, con-

sistent with the results obtained with the fully parametric model. SCOMDY-generated

PITs favour the Gumbel-Gumbel survival mixture and pure Gumbel survival copulas in

regionD, the Student-t and Gumbel copulas in region U, and, finally, the Gumbel-Gumbel

survival mixture and Student-t copulas in region M. While the conclusions about the im-

portance of the positive lower and upper tail dependence features continue to hold, the

differences between the top performing copula specifications are less pronounced when

using the SCOMDY model.
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5 Conclusions

Many practical applications involving joint density forecasts of multivariate asset returns

focus on a particular part of the domain of support. Given that the dependence structure

may vary, for example, with the sign and magnitude of returns, it becomes imperative to

identify the best forecast method for the targeted part of the distribution. Copula mod-

eling allows for a straightforward construction of a flexible multivariate distribution via

their decomposition into the dependence structure, represented by a copula function, and

marginal distributions. In this paper, we develop Kullback-Leibler Information Criterion

(KLIC) based test of equal (out-of-sample) forecasting accuracy of different copula spec-

ifications in a selected region of the support. The test combines the approaches suggested

by Diks et al. (2010) and Diks et al. (2011), making use of censored and conditional

logarithmic scoring rules.

Monte Carlo simulation shows that the tests possess satisfactory power properties and

moderate size distortions. The application of the tests to daily exchange rate returns

clearly demonstrates that the best copula specification varies with the targeted region of

the support. This finding highlights the practical usefulness of the suggested test.
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