Introduction

1. Protein-coding and non-protein coding genes

Most cellular functions are carried out by proteins, macromolecules composed
of chains of amino acids. The information needed to generate these proteins is
encoded in the DNA (Deoxyribonucleic Acid) and organized in transcriptional units
called ‘genes’. In order to manufacture a protein, the gene is first transcribed into
‘messenger’ Ribonucleic Acid (mMRNA), which is translated into protein [1].

For decades, it was thought that non-protein coding DNA had no function, and
that the number of protein-coding genes was proportional to the complexity of
organisms. However, when the complete human genome sequence was elucidated,
it was found that only a fraction (~1-2%) of the human genome consists of protein-
coding genes [2]. Furthermore, the number of human protein-coding genes (~22.000
[3]) is comparable to the number of protein-coding genes in the nematode
Caenorhabditis elegans (C. elegans), whereas the human genome is 30x larger [4-5].
Apparently, the non-protein coding DNA is important. The finding that >70% of the
DNA is transcribed into RNA [6] has sparkled interest in the function of non-protein
coding RNAs.

An increasing number of non-protein coding RNAs has been discovered.
Several classes can be distinguished based on function and size (Table 1) [7-15].

One class that has attracted a lot of attention is formed by microRNAs (miRNAS).



Table 1: Some prominent classes of non-protein coding RNAs

Name Length (Nt) | Main function

nanoRNAs 2-4 Primer initiation of transcription
microRNAs (miRNAS) 19-25 Post-transcriptional gene repression
Small interfering RNAs | 20-25 Post-transcriptional gene  repression and
(siRNAS) transposon silencing

Piwi-associated RNAs | 24-31 Transposon silencing

(piRNAS)

guideRNAs (gRNAS) 35-78 RNA editing

Transfer RNAs (tRNAS) 73-93 Translation of MRNAs to proteins

Small nucleolar RNAs | 60-300 Modification of rRNAs

(snoRNAS)

Small  nuclear RNAs | 90-220 Splicing

(snRNAS)

Long non coding RNAs >200 Regulation of expression of nearby genes
Ribosomal RNAs (rRNAs) | 1800-5000 | Structural component of ribosome

1.2 miRNAs: Regulators of gene expression

mMiRNAs are a group of 19-25 nucleotide long RNAs, that are able to regulate
the expression of protein-coding genes, via a mechanism that is explained in detail
below.

MiRNAs can either be located in the DNA as an individual transcriptional unit,
form a cluster with other miRNAs (several miRNAs under control of one promoter) or
may be part of protein-coding genes (located in introns or exons) [16]. Individual
MiRNA genes are transcribed as primary (pri-) miRNAs, which are cleaved by the
microprocessor (an endonuclease complex composed of Drosha, DGCR8 and
accessory proteins) into ~70 nucleotide long precursor (pre-) miRNAs. Following
export out of the nucleus by Exportin 5 (XPO5), the pre-miRNA is cleaved by
Argonaute 2 (Ago2) and Dicer into a mature ~22 nucleotide miRNA duplex [17-18]
(See figure 1, Chapter 4). The biogenesis of miRNAs that are cotranscribed with their
host gene or other miRNAs (in case of miRNA cluster) presumably involves similar
processing steps, however, some miRNAs (the so-called ‘mirtrons’) may be spliced

out of the host gene transcript independent of the microprocessor complex [19].




Another exception are ‘simtrons’, miRNAs which processing requires Drosha, but not
Dicer, DGCRS8, XPO5 or Ago2 [20].

One (in some cases both) of the strands of the miRNA duplex is incorporated
in the RNA induced silencing complex (RISC; composed of amongst other proteins
Dicer and Ago2), and the opposing strand is degraded [21-22]. The strand that is
incorporated in the RISC complex is used as a template to find complementary
binding sites in the 3UTR of mMRNA molecules [23]. The most important target
recognition motif is the seed sequence, typically nucleotides 2-8 from the 5’ end of
the miRNA [24]. However, the 3’end region may also contribute to effective binding in
~2% of the cases [25] and for some mMIRNAs target recognition is mediated by a
central 11-12 nucleotide region [26].

In most cases, the binding of a miIRNA to a target mMRNA results in repression
of the target gene. Depending on the degree of complementarity, miRNAs can either
promote mMRNA degradation and/or inhibit translation. mRNA degradation occurs
when there is extensive complementarity via Ago2-mediated RNA degradation [27] or
by mRNA deadenylation leading to its degradation [17, 28]. In contrast, translational
repression occurs when the complementarity is limited. The mechanisms behind
translational repression are not yet fully understood [29-30].

Besides repression of gene expression, some mMiRNAs can promote

translation of their target genes [31-34].

1.2.1 Nomenclature
As of August 2012, 1600 miRNAs have been identified (www.mirbase.org), and
individual miRNAs are designated by a number. Identical miRNAs that lie on different

chromosomes are given a ‘1’ or a ‘2’ suffix (e.g. miR-24-1 and miR-24-2). Related
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MiRNAs are indicated by letters (e.g. miR-200a, miR-200b, miR-200c). The strand
that is incorporated into the RISC complex is called the mature miRNA (e.g. miR-
141), and the opposite strand is referred to as the ‘star’ strand (e.g. miR-141%). As it
is not always clear which strand is functional, the strands can be indicated as ‘5p’ or
‘3p’ (e.g. miR-369-5p and miR-369-3p), depending on whether the strand is closest to

the 5’ or 3’ end of the miRNA precursor [35-36].

1.2.2 miRNAs and impact on cellular processes

As one miRNA can potentially target hundreds of genes, alterations in the levels of
mMiRNAs may result in widespread changes of gene expression. It has been
estimated that miRNAs can regulate >60% of all human genes [37]. Conversely, one
MRNA may be regulated by multiple miRNAs, and binding of multiple miRNAs to the
3'UTR of target mRNAs may be necessary for potent gene repression [38],
suggesting that miRNA-gene expression networks are complex. It has become clear
that miRNAs play a pivotal role in embryonic development and differentiation across
invertebrate and vertebrate species [39-42], and dysregulation of miRNAs has been
associated with disease (e.g. neurodegenerative disorders [43], cardiovascular
disease [44] and cancer [45-49]). mIRNAs regulate important cellular processes such
as the cell cycle, metabolism and the response to cellular stress [45, 50-52]. In

particular, miRNAs have been associated with the DNA damage response [53-54].

2. The DNA damage response and cancer
Every day our body is challenged with various kinds of DNA damage resulting
from both endogenous (e.g. production of free radicals as part of metabolism) and

exogenous causes (UV-light, lonizing Radiation (IR)). The DNA lesions (e.g. DNA



base modifications, single- or double strand DNA breaks) form a serious threat to
genomic integrity and can disrupt the function of genes. Luckily an elaborate DNA
repair system is able to repair most of the damage [55]. Central players in the DNA
damage repair pathway are Ataxia Telangiectasia Mutated (ATM) and Ataxia
Telangiectasia and Rad3 related (ATR). Detection of DNA damage by ATM and ATR
and their binding partners CHK2 and CHK1 activates a signaling cascade that can
give rise to chromatin and histone modifications (e.g. phosphorylation of H2AX),
activation of transcription factors (e.g. p53 and p21) and upregulation and activation
of DNA damage repair genes [56]. One of the immediate consequences of activation
of the DNA damage response (DDR) is the induction of a cell cycle arrest. This
allows cells to repair DNA damage before the DNA is replicated. However, upon
extensive damage, prolonged DNA damage signaling promotes apoptosis
(programmed cell death) and/or senescence (a state where cells continue
metabolizing but stop proliferating) [57].

Despite the presence of the DNA damage response pathways, some damage
is not repaired or erroneously repaired [58]. The accumulating damage in the DNA
can lead to cancer formation, for instance if tumor suppressors are mutated (e.qg.
PTEN or Retinoblastoma protein (Rb)). In addition, mutations in genes that are
involved in DNA damage repair occur frequently in cancer (such as p53 mutations).
The development of cancer (carcinogenesis) is a multistep process that is
accompanied by the acquisition of traits such as enhanced proliferation signaling,
evasion of cell death and replicative immortality. An aberrant DNA maintenance
system can promote the successive acquisition of these traits, and is therefore

considered a facilitating hallmark for cancer [59].



2.1 DNA damaging anti-cancer therapy

The defects in the DDR make cancer cells more sensitive to DNA damage
than normal cells. This fact is exploited by many DNA damaging cancer therapies. In
this thesis we focus on four anti-cancer treatments:

(a) Platinum-based compounds (e.g. cisplatin and carboplatin) are among the
most widely used and effective anti-cancer therapies. Although these compounds
have affinity for proteins and RNA, the main cytotoxic effect is likely the induction of
inter- and intrastrand crosslinks in the DNA [60]. These inter- and intrastrand
crosslinks can disrupt gene transcription and cause replication fork stalling, which
can lead to DNA Double strand breaks (DSBs) [61]. Cisplatin and carboplatin have a
similar mode of action, but cisplatin is more potent whereas carboplatin gives less
toxic side effects. Compared to cisplatin, carboplatin induces less nephrotoxicity,
neurotoxicity, nausea and vomiting. In contrast, carboplatin is more
myelosuppressive than cisplatin [62].

(b) Another commonly used anti-cancer therapy consists of lonizing Radiation
(IR) treatment. IR induces the formation of free radicals, which can induce the
formation of single strand breaks (SSBs). If two single strand breaks occur in close
proximity on anti-parallel strands, a DSB may be formed (one DSB is formed for
every 25 SSBs) [63].

(c) Doxorubicin belongs to the class of anthracyclins and is used for the
treatment of a wide range of tumors. It interacts with the DNA by intercalation and
this blocks the action of topoisomerase Il, an enzyme which unwinds supercoiled
DNA to facilitate transcription and replication. In order to unwind the DNA,

topoisomerase Il creates DSBs, which are afterwards religated. Doxorubicin



stabilizes the topoisomerase Il complex after it has cut the DNA, preventing religation
of the DSBs [64].

(d) Taxanes like paclitaxel are also highly effective anti-cancer medicines.
They stabilize microtubules, which prevents assembly of the mitotic spindle and cell
division. Next to effects on microtubules, paclitaxel also stimulates the production of
Reactive Oxygen Species (ROS) that can give rise to DNA damage. Studies indicate

that the production of ROS contributes to paclitaxel cytotoxicity [65-66].

2.1.1 Therapy resistance
Despite the fact that the above mentioned treatments are among the most
successful anti-cancer therapies, the development of resistance, the phenomenon
that cells become insensitive to treatment, is a major problem.
The causes of therapy resistance have been extensively studied. Five major
mechanisms have been attributed to resistance to anti-cancer therapy [67]:
1. Decreased cellular accumulation of cytotoxics, for instance through altered
expression of drug transporters
2. Increased detoxification of cytotoxics
3. Circumvention of the effect of cytotoxics, for instance through mutations in
drug targets
4. Alterations in DNA repair

5. Increased proliferation signaling or evasion of apoptosis.

3. miRNAs, the DDR, and cancer
The DDR plays an important role in the formation of cancer and the response

to anti-cancer therapy. The role of miRNAs in the regulation of the DDR is just



beginning to be elucidated. A quarter of all miRNAs are significantly induced upon
DNA damage in an ATM-dependent manner [68] and it is known that p53
upregulates several miRNAs in response to DNA damage, such as the miR-34
family, miR-16 and miR-215 [69-72]. In addition, several miRNAs have been found to
regulate components of the DDR, including miR-421 and miR-125b which regulate
Atm and p53, respectively [73-75].

Increasing evidence suggests that DDR miRNAs play a role in cancer. For
instance, mMiR-16 and members of the miR-34 family are dysregulated in many
tumors [76-77]. Moreover, miRNA expression levels have been associated with the
response to anti-cancer therapy [78-79]. However, most of the studies into the role of
miRNAs in the DDR have been performed in cancer cells, which often have an
aberrant response to DNA damage.

In this thesis we aim (i) to characterize the miRNA response to DNA damage
in ‘healthy’ epithelial cells, (ii) to profile the miRNA expression in cancer cell lines and
to associate expression levels with tumor characteristics, (i) to examine the
expression pattern of DDR miRNAs in tumors and (iv) to identify and functionally
characterize miRNAs that play a role in cancer drug resistance. We have focused on

three common types of (epithelial) cancer.

3.1 Breast cancer

Breast cancer is one of the most common forms of cancer, and a leading
cause of cancer related death among women [80]. Breast tumors are heterogeneous.
Different histological subtypes can be distinguished on the basis of expression of
hormone receptors (ER, PR, ERBB2) or gene expression data [81-82]. Breast cancer

is usually treated with surgery, which may be followed by IR and/or chemotherapy.



Different chemotherapy regimens exist based on amongst others of doxorubicin and
taxanes [83]. Depending on the receptor status of the tumor, patients may also be
treated with targeted therapy (e.g. Tamoxifen or Trastuzumab for ER or ERBB2
positive tumors, respectively).

We have profiled the miRNA response to DNA damage in Chapter 2. Primary
epithelial breast cells were treated with a low dose or a high dose of cisplatin and IR,
and miRNA expression was analyzed at different time points (6H, 12H and 24H), thus
identifying DNA damage responsive miRNAs. We examined the expression pattern of
these miRNAs in breast tumors, and investigated whether these miRNAs can play a
role in the response to cisplatin, doxorubicin and paclitaxel chemotherapy.

In Chapter 3, we determined the miRNA expression profile of a set of 51
breast cancer cell lines. These breast cancer cell lines have retained most of the
molecular characteristics of the breast tumor subtypes [84], and we examined
whether miRNAs could discriminate between different subtypes. In addition, miRNA
expression profiles were correlated with the mutation status of breast cancer genes

(ERBB2, p16™<*A E-cadherin, BRCAL, PTEN, PIK3CA).

3.2 Lung cancer

Lung tumors are the most common cause of cancer related mortality [80].
Lung tumors are classified into small cell lung carcinoma (SCLC) and non-small cell
lung carcinoma (NSCLC). SCLC tumors are treated with platinum-based
chemotherapy and IR [85-86], whereas NSCLC tumors are more frequently treated
with surgery and adjuvant chemotherapy (Platinum-based chemotherapy in

combination with amongst others paclitaxel) [87-88].



In Chapter 2, we aimed to identify cancer relevant DNA damage responsive
miRNAs in primary lung epithelial cells using a similar approach as described for

breast epithelial cell lines.

3.3 Ovarian cancer

Ovarian tumors are a group of heterogeneous carcinomas that, until recently,
were thought to arise from the ovarian surface epithelium. However, it has become
clear that the four major subtypes originate from different non-ovarian cell types. The
most common histotype, serous, is thought to originate from epithelial cells in the
fallopian tube [89-90]. In contrast, invasive mucinous tumors seem to have a
gastrointestinal origin. Two other subtypes, Clear-cell and Endometrioid tumors
probably arise from the endometrium and may develop as a consequence of
endometriosis (retrograde menstruation) [91].

Although ovarian cancer is 10x less common than breast cancer, it is the fifth
most common cause of cancer related death in females [80]. There are two main
causes for the high mortality. First of all, ovarian cancer is often detected in a late
stage. If ovarian cancer is detected when it is confined to the ovaries (stage 1) the 5-
year survival rate is 90%, whereas the 5-year survival rate drops to 30% if distant
metastases are present [80].

The second major reason why ovarian cancer has a high mortality is because
of the development of therapy resistance. Treatment consists of surgery and
combination chemotherapy. As first line treatment, paclitaxel is administered in
combination with carboplatin or cisplatin [92-93]. As second line treatment, pegylated

liposomal doxorubicin may be used [94].
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Recently, miRNAs have also been implicated in ovarian cancer biology and
therapy resistance (see Chapter 4). In Chapter 5, we investigated the role of one of
these miRNAs, miR-141 and its targets in cisplatin sensitivity of ovarian cancer cell
lines. In Chapter 6 we examined the effect of overexpression of another miRNA,
mMiR-634, on the response of ovarian cancer cell lines and primary tumor cells to
chemotherapy. In Chapter 7, we explored the role of the miR-634 putative targets
RSK1 and RSK2 in the response to cisplatin chemotherapy in an ovarian cancer cell

line.
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