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Chapter 1 

INTRODUCTION 
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1.1 Hematopoiesis 

1.1 .1 Hematopoiesis in vivo 

The maintenance of blood cell function requires the continuous production, differentiation and 

maturation of considerable numbers of cells with very diverse functions. These cells originate 

from common ancestors, i.e. pluripotent hematopoietic stem cells. 303
·
316 The stem cells, which 

reside in the bone marrow, are able to renew themselves and to produce daughter cells. These 

divide further into lineage committed cells and differentiate along separate pathways: the eryth­

roid, myelo-monocytic, megakaryocYtic and lymphoid lineages. Eventually the functional end­

cells like erythrocYtes, monocyt;es, granulocYtes, megakaryocyt;es/platelets and lymphocYtes are 

formed (Fig. 1). The presence of a sufficient number of stem cells ensures the ability of the body 

to keep up a constant supply of blood cells. Various regulatory mechanisms permit this dynamic 

system to raise an adequate response to fluctuating needs, e.g. during infection or blood loss, 

and result in increased production of the desired cell types. 

1.1.2. Hematopoiesis in vitro 

Research on blood formation has traditionally been morphological. based on the recognition and 

quantification of the maturation-phases of the various blood cell lineages in a stained smear of 

blood or bone marrow. This approach gives no detailed information with respect to regulation of 

the production of blood cells. With the development of in vitro clonogenic assays tools for 

research regarding the function of the bone marrow as the blood cell producing organ came 

within reach. 

Certain cells in the bone marrow demonstrated the ability to form colonies in vitro when 

incubated in a suitable culture medium for one or two weeks.81
•82•

127
•
130

·
240

•
267 The progenitor 

cell able to form such a colony (a group of at least 50 daughter cells) was designated "colony­

forming unit" (CFU), and eventually these observations led to the postulation of a hierarchical 

system of immature and mature CFUs {Fig.1). 
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Figure 1. The hierarchical system of hematopoiesis from pluripotent stem celt to functional end 

cells. 
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The various types of CFUs or "hematopoietic progenitor cells" are listed in table 1.1. 

table 1.1 

CFU 

CFU-B!ast 

CFU-GEMM 

CFU-GM 

CFU-G 

CFU-Eo 

CFU-Baso 

CFU-M 

CFU-Mega 

BFU-E 

Nomenclature of progenitor cells 

Composition of colony 

blast cells 

granulocytes, erythrocytes, mcnocytes and megakaryocytes 

granulocytes, monocvtes 

neutrophilic granulocytes 

eosinophilic granulocytes 

basophilic granulocytes 

monocvtes/macrophages 

megakaryocvtes 

(nucleated} erythrocytic cells 

Proliferation, differentiation and maturation of hematopoietic progenitor cells as well as 

reactions to stress are regulated by hematopoietic growth factors that are produced by a variety 

of celts. lnitiai!y, humoral factors were not available as pure factors and had to be added to in­

vitro cultures as impure conditioned media. The advent of recombinant DNA-technology and the 

cloning of eDNA of several hematopoietic growth factors represented a major development in 

experimental hematology and created new possibilities to unravel the regulation of bone marrow 

progenitor cetl growth. 

In this chapter the current knowledge of the regulation of hematopoietic progenitor cell growth 

will be introduced. Chapters 2 to 7 'describe the experimental work that forms the basis of this 

thesis. The last chapter is a general discussion of the presented data. An appendix describes 

the development and characteristics of the ctonogenic culture system used for the investiga­

tions of this thesis. 
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1.2 Growth factors and cytokines involved in the regulation of hematopoiesis 

The hematopoietic growth factors and cytokines that are subject of the experimental work of 

this thesis will be briefly introduced here. We shaH first discuss the major hematopoietic growth 

factors ll-3, GM-CSF, G-CSF and M-CSF, foHowed by the modulating cytokines ll-6, !L-1 and 

TN F-a. 

1, 2.1 lnterleukin-3 

Most growth factors were initially discovered in the murine species. lnterleukin-3 was the first 

murine growth factor to be molecularly cloned.7°·91 ·353 It took until 1986 before a gibbon ll-3 

was cloned 351 which appeared almost identical to human IL-3. At about the same time human 

ll-3 was identified and cloned by virtue of its homology {93%) to certain A·T rich repetitive 

seQuences in the 3' terminal region of murine JL-3.71 The mature polypeptide has a length of 

133 amino acids with a molecular weight of 15 kO. Others have also succeeded in cloning 

human ll-3. 229 The cellular source of il-3 in humans is restricted to a small fraction of lectin­

stimulated T-lymphocytes and NK-ceHs. 221 ·344 

The biologic activity of murine IL-3 is broad and encompasses erythroid, myeloid and mixed 

progenitor cells as targets.7°·105·122·251 A number of studies using the gibbon lL-3 preparation of 

Yang et al349 demonstrated that this lL-3 induced colony formation from human progenitors of 

the granulocyte, macrophage, eosinophil and megakaryocyte lineages and, when combined with 

Epo, also from erythroid and mixed progenitor ceHs.156·169·196·272 Human lL-3 also expressed a 

relative!y broad spectrum of stimulation: progenitor cells from the erythroid, myetoid and mixed 

lineages were induced to colony formation in vitro/1·231 ·255 as were megakaryocytic progeni­

tors.191 The activity of IL-3 on early progenitors is also iltustrated by its effect on the blast-colo~ 

ny forming cell. This CFU-blast is responsive to ll-3 and IL-6.156·157·222 

il-3 has effects on mature cells as wei!: this especially applies to eosinophils. Functional 

properties of eosinophHs are enhanced by lL-3. Thus tL-3 increases killing of antibody-coated 

target cells, enhances survival of eosinophits in vitro, augments proteoglycan synthesis and 

increases production of superoxide anions in eosinophils.168·169·252·253 Segmented neutrophils are 

not activated by ll-3.170 Basophilic granulocytes also express lL~3 receptors and acquire a 

differentiated phenotype following stimulation with lL-3. Histamine however is not released by 

basophi!s following stimutation with lL-3.314·315 Monocytes express !l-3 receptors and following 

stimulation monocyte survival is enhanced.75 !L-3 augments antibody dependent cytotoxicity of 

monocytes356 and increases the expression of TNF mRNA. 39 
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1.2.2 Granulocyte-macrophage colony-stimul<?ting factor IGM-CSFl 

The murine GM-CSF gene was molecularly cloned shortly after murine IL-3.96 The recombinant 

product stimulates preferentially granulocyte and macrophage progenitors and at high concen­

trations also eosinophil, megakaryocyte and erythroid progenitors {reviewed by Metcalf197}. 

The human GM-CSF gene was the first human hematopoietic growth factor gene that was 

molecularly cloned. The gene was first isolated from the GM-CSF-producing HTLV-transformed 

T-lymphoblast cell line Mo.347 The purified recombinant protein had a molecular mass of 18 to 

24 kD. Other groups subsequently reported the cloning of the GM-CSF gene.35•
41

•136•
159 Contrary 

to IL-3, GM-CSF is an ubiquitous growth factor produced by remarkably diverse cell types in 

various tissues, i.e. activated T-iymphocytes, endothelial cells, fibroblasts, keratinocvtes and 

monocytes (table 1.2). 

GM-CSF acts as a multipotential hematopoietic growth factor. lt stimulates granulocyte­

macrophage and eosinophil progenitors as well as megakaryocytic and mixed progeni­

tors.191·197·271·286·306 GM-CSF in fact expresses SPA {burst promoting activity) and stimulates 

erythroid colony formation in association with erythropoietin.68·190·200·262·285 Initially though some 

groups had failed to show a significant stimulatory effect of GM·CSF on CFU-mix35·256 and 

BFU-E. 7a,2o3 

table 1.2 GM-CSF producing cells 

cell type stimulus for references 
GM-CSF production 

T-lymphocyte lectins 227 
ll-1 111,342 

endothelium ll-1 29, 88, 261' 262, 273-275 
TNF 28,30,261,273,275 

fibroblasts ll-1 86, 137, 275 
TNF 275 

keratinocytes ll-1 147 

monocytes ll-1 275 
TNF 275 
adherence+ LPS 161 
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GM-CSF has effects on mature cells as well. It enhances the lysis of antibody coated target 

cells and phagocytosis of bacteria by neutrophils89
•
168

•
198 as well as the N-formytmethionyl­

leucylphenyla!anine (FMLP) induced superoxide anion production by neutrophils concomitantly 

with an increase in FMLP-receptors.6•35•168•217•293•
331

•332 Expression of the leucocyte-adhesion 

molecules Mo1, leuMS and LAM-1 on the surface of neutrophils increase following GM-CSF 

stimulation.4
·97•101 GM-CSF stimulated eosinophils exhibit enhanced cytotoxicitY against op­

sonized target cells35•168·
198

·277 and an increased rate of proteog!ycan-synthesis. 253 il-1 produc­

tion and HLA-DR expression of macrophages are upregulated by GM-CSF.282 GM-CSF enhances 

the antibody dependent cytotoxicity of monocytes against tumor ce!ls97
•
356 via a TNF-dependent 

mechanism.39 The fungicide activity of macrophages against Candida albicans increases through 

superoxide anion production following stimulation with GM-CSF.283 Adherence of monocytes to 

endothelium is also enhanced by GM-CSF. Endothelial cells themselves are induced to migrate 

and proliferate under the influence of GM-CSF.36 

Finally GM-CSF acts as an inducer of the production of several cytokines by mature blood cells. 

Thus GM-CSF may increase the RNA-accumulation as we][ as the protein production of ll-1, 

TNF, M-CSF and G-CSF in monocytes118
•228•

280
•
320 and il-6, il-1, TNF-a, G-CSF and M-CSF in 

neutrophi!s.48·165·166 These abilities emphasize the important role of GM-CSF in the regulation of 

hematopoiesis. GM-CSF can initiate a range of regulatory cascades through the induction of 

other factors. 

1.2.3 Granulocvte colony-stimulating factor fG-CSF! 

Murine G-CSF was cloned in 1986.311 The human G-CSF gene was cloned from a squamous cell 

carcinoma line (CHU-2) 213 and from the 5637 bladder carcinoma ceti line288 using a synthetic 

oligonucleotide probe. The molecular mass of G-CSF is 19,6 kD. G-CSF may be produced by 

monocytes, endothelial cells and fibroblasts (table 1 .3}. 

initially G-CSF was considered a growth factor with pluripotent activity, hence it was named 

pluripoietin.339 Later it became apparent that pluripoietin and G-CSF were identicaL 291 It is now 

clear that GMCSF is mainly a late-acting, lineage restricted growth factor, stimulating the 

outgrowth of neutrophilic colonies. 200•203•231.288•357 However there is evidence indicating that G­

CSF may also influence immature cells in vitro. G-CSF for instance synergizes with ll-3 in the 

stimulation of blast cell colony formation in mice, 124 an observation which was later extended to 

humans. 223 These findings however await further confirmation. 

Mature neutrophils express high-affinity G-CSF receptors 9
· 
16 and show increased oxidative 

metabolism in response to agonists like FMLP. 9•
217 Furthermore interferon-a is produced by 

neutrophils after stimulation with G-CSF.269 
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table 1.3 G-CSF producing cells 

ceil type stimulus for references 
G-CSF production 

monocvtes LPS 161' 275, 320 
lectins 227 

IL-4 340 
GM·CSF or IL-3 228 

endothelium ll·1 29, 88, 261' 275 
TNF 30, 261, 275 

fibroblasts ll-1 86,275 
TNF 144, 275 

1.2.4 Macrophage colony-stimulating factor rM-CSFl 

The cloning of the murine M-CSF gene56 was accomplished somewhat later than that of the 

human equivalent. 138
·
246

•
346 Subsequent research revealed that M-CSF mRNA exists as multiple 

species ranging from 1 .5-4 kilobases. 247 M-CSF is provided by monocytes/macrophages which 

are at the same time the prime targets for M-CSF. Other M-CSF producers are endothelial cells, 

fibroblasts and keratinocytes {table 1 .4). Possibly M-CSF is produced constitutively, i.e. without 

external stimulation, by monocytes, endothelium and fibroblasts. 275 

Human M-CSF induces the formation of macrophage colonies from human hematopoietic 

progenitor ceHs138
·
247 although not as efficiently as compared to the activity of murine M-CSF in 

mice. 52 !n humans macrophage colonies are much more efficiently induced by M-CSF in the 

presence of smalf amounts of GM-CSF.42 

The effects of human M-CSF on mature cells are confined to the monocyte-macrophage lineage. 

M-CSF induces macrophages to produce interferon, TNF and IL-1 327 and it enhances antibody 

dependent Cytotoxicity by macrophages in mice214 and man.209 ·
355 Furthermore M-CSF induces 

the migration of monocytes via increased chemotaxis, 324 enhances monocyte survival in vitro15 

and increases the tumoricidal activity of murine and human monocvres. 248
•258·300 
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table 1.4 M-CSF producing cells 

ceU type stimulus for references 
M-CSF production 

monocytes phorbolesters 117,119,227,249 
LPS 1 61 
IFN-y 249 
TN F-a 226 
IL-3 320 
GM-CSF 118,320 
IL-4 340 

endothelium IL-1 88, 261, 275 
TNF 261' 275 

fibroblasts IL-1 86, 275 
"activators" 80 

keratinocytes lPS 48 
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1.2.5.1 Other cvtokines that affect hematopoiesis 

Apart from the four classical hematopoietic growth factors IL-3, GM-CSF, G-CSF and M-CSF, 

other cytokines may influence hematopoiesis. These cytokines are listed in table 1.5. ll-6, IL-1 

and TNF, which are part of the experimental work described in this thesis, will be briefly 

discussed. 

table 1.5 

cytokine 

SCF 

ll-4 

ll-5 

ll-7 

IL-8 

ll-9 

ll-10 

IL-11 

TGF-B 

PDGF 

IGF 

ll-6 

JL-1 

TNF 

Non-classical growth factors affecting hematopoiesis 

effect 

stimulation of primitive 
hematopoiesis 

co-stimulation with G-CSF; inhibition 
of JL-3 effect; proliferation of 
B-lymphocytes 

stimulation of CFU-Eo 

proliferation of B- and 
T -lymphocytes 

chemotactic cytokine for neutro­
phils and T-lymphocytes 

enhancement of BFU-E formation 

enhancement of proliferation of 
T- and B-lymphocytes and mast cells 

enhancement of proliferation of 
CFU-blast and CFU-Mega 

inhibition of BFU-E and CFU-GEMM, 
enhancement of CFU-GM formation 

enhancement of BFU-E and CFU-GEMM 
formation 

enhancement of BFU-E and CFU-G 
formation 

see § i .2.6.2 

see ! 1 .2.6.3 

see § 1.2.6.4 
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1 .2.5.2 lnterleukin-6 

IL-6 is a pleiotropic cytokine that exerts important effects on hematopoiesis (reviewed by Le & 

Vilcek143
}. Before the name interleukin-6 was accepted243 the cytokine had been variously 

labelled interferon-B2, 8-cel! stimulating factor-2, 263
·
264

•
307 hybridoma growth factor317 and 

hepatocyte stimulating factor.94 Weissenbach et a!336 first succeeded in isolating and cloning an 

IL-6 eDNA. Later several groups independently cloned the same gene.27
•
104

•
113 The molecular 

mass of the IL-6 protein is 20,8 kD. IL-6 may be produced by fibroblasts, monocytes, 

endothelial and epithelial cells (table 1.6). 

table 1.6 ll-6 producing cells 

cell type stimulus for references 
IL-6 production 

monocytes serum 1, 14, 120, 188,308 
LPS 
ll-1 

fibroblasts ll-1 55, 145, 146, 188 
TNF 
PDGF 
LPS 

endothelium ll-1 129, 189, 279 
TNF 
LPS 

neutrophils GM·CSF 49 
TNF 
LPS 
PMA 

T-lymphocytes PHA 120 
TPA 

8-lymphocytes SAC 120 
IL-4 281 

IL-6 has been reported not to stimulate colony growth from human bone marrow292 but also to 

induce low numbers of CFU-G43 and even to inhibit G-CSF induced colony formation. 132 These 
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studies were done with bone marrow cells at different levels of enrichment. Most likely the 

presence of various amounts of accessory cells has influenced these dissimilar results. 

A positive effect on megakaryocytopoiesis has been noted and has initially been interpreted as 

an indirect effect of IL-6.33 Later evidence however showed that megakaryocytes produce ll-6 

and express ll-6 receptors as well, suggesting that terminal megakaryocyte differentiation may 

be regulated by autocrine IL-6 stimulation. 109 In-vitro experiments demonstrated a synergistic 

effect of ll-6 on IL-3 induced megakaryocytic colony formation. 139 

iL-6 indirectly induces proliferation of immature blast colony forming cells. lL-6 has been 

reported to synergize with !L-3 in shortening the G0-phase of the ceil cycle of the 

CFU-blast. 157·222.223 Thus ll-6 activates the earliest stages of hematopoiesis. 

lL-6 has profound effects on immune-effector cells. it induces 8-iymphocyte terminal differen­

tiation141 and it provides an important signal for human T-cell proliferation and differentiation.121 

Furthermore IL-6 induces the synthesis of acute phase proteins in hepatocytes. 44 These activi­

ties illustrate the key role of ll-6 in the acute phase and immune response250 initiating simul­

taneously immune-competent cells as well as hematopoiesis. 

1.2.5.31nterleukin-1 IIL-1} 

ll-1 is a cytokine with diverse effects that are part of the response of the organism to 

inflammatory stress. Two forms of IL-1 (a and(?.) exist and their genes have been cloned.8·92·181 

Both IL-1 isoforms bind to the same receptor185 and they express very similar biological activity. 

The molecular weight of both IL-1a and ll-1B is 17.5 kD. Many cell types have the ability to 

produce JL-1 (table 1. 7). Noteworthy is the autostimulatory capacity of ll-1, i.e. !L-1 may 

induce lL-1 in several cell types. The multiple effects of IL-1 include effects on hematopoiesis 

and hematopoietic functions. IL-1 may augment the production of effector cells like neutrophils 

and monocytes. These effects of IL-1 are presumably indirect: lL-1 generally serves as an 

mRNA stabilizing agent for hematopoietic growth factor genes 12 and thus increases the 

production of G-CSF, GM-CSF, M-CSF and IL-6 in monocytes,85·275·308 endo­

thelium, 29·261 ·262·274·279·358 and fibroblasts. 54·86· 137·160· 188 Two research groups have reported the 

production of TNF by monocytes following JL-1 stimulation.125·238 
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table 1.7 !l-1 producing cells 

cell type stimulus for references 
IL-1 production 

monocytes adherence 83,90 
LPS 112 
IFNy+ll-2 282 
GM-CSF 
LFA-3, CD44 330 

CD45 

endothelium LPS 162, 167, 202, 324, 327 
TNF 
ll-1 

fibroblasts TNF 150 
ll-1 187 

smooth muscle LPS 163, 328 
ll-1 

keratinocytes PMA 20 

neutrophits GM-CSF 165 

The hematopoietic response to infection is amplified by the interplay between monocytes, 

endothelial ceHs and fibroblasts involving several positive feedback !oops. Activated monocytes 

produce ll-1 that induces endothelial cells and fibroblasts to produce IL-1, GM-CSF and M-CSF. 

These cytokines in turn further stimulate monocytes to produce ll-1, as weH as TNF, GM-CSF 

and M-CSF (figure 2). Thus multiple pathways permit IL-1 to stimulate hematopoietic progenitor 

cells indirectly. A negative effect is provided by ll-4 that inhibits IL-1 production by 

monocytes.69•319•335 lnitiaHy it was thought that IL-1 has a direct stimulative effect on the 

CFU-blast. From subsequent investigations however it became likely that this indirect effect is 

mediated by IL-6 produced by cells accessory to progenitor cells in a fraction of enriched bone 

marrow cens.157 Another indirect effect of IL-1 inctudes the induction of G-CSF production in 

enriched bone marrow progenitors. 259 IL-1 also induces CSA in bone marrow stroma. 87 These 

indirect effects of il-1 apparently may influence the level of activity of hematopoiesis. 

19 



!L·1 

TNF 

M-CSF 

GM-CSF 

MONOCYTE FIBROBLAST 

M-~~J\~L~~ 
GM-CSF\ 

GM-CSF 

~ ~E,NDOTHELIAL 

~ .... ~ELL 
----==------:;; 

Figure 2. Interactions between monocytes, endothelium and fibroblasts. 

1.2.5.4 Tumor necrosis factor ITNFl 

TNF initially received interest because of its ability to induce necrosis in certain tumors 

{reviewed by Semenzato266). Afterwards the effects of TNF on hematopoiesis became apparent. 

TNF shows certain similarities to JL-1.149 The major effects of TNF on hematopoiesis, alike 

those of IL-1, are achieved via the release of other cytokines that serve as intermediators of 

TNF activity (see below). 

Two types of TNF have been described, TNF (formerly: cachectin), which is now called TNF-a, 

and lymphotoxin, now called TNF-13.. TNF-a and TNF-8 are structurally and functionally 

related. 236 There exact relationship has not been elucidated, however TNF-a and TNF-13. have 

differential activities in several systems. 

Several groups have reported the cloning of the TN F-a cDNA236·270·325 and TNF-B c-DNA.sa The 

non-glycosylated protein has a molecular weight of 17,300 Da. Cells that may produce TNF are 

listed in table 1.8. The monocyte is a prominent producer of TNF-a. TNF-B is produced by 

activated T- and 8-lymphocytes. TNF-a production in monocytes is inhibited by IL-6.2•260 

Early experiments concerning the effects of TNF-a on hematopoiesis demonstrated a dose-
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dependent inhibition of colony formation from erythroid, myeloid and mixed progenitor 

cens.31 ·110·210·345 Most of this work has been done with unpurified bone marrow and a!so with 

crude conditioned media as the source of CSF. More recent work suggests that TN F-a and to a 

lesser extent TNF-t:S preferentially inhibits CFU-G or the more mature myeloid progenitor 

cells.211.212 

table 1.8 TNF producing cells 

cell type stimulus for references 
TNF-production 

monocytes adherence 38, 39, 107, 112, 149 
LPS 219, 329, 332 
ll-3 
IL-2+1FNy 
LFA-3, CD44 

CD45 

T-lymphocytes PMA+aCD3 294,301,360 
aCD3+aCD28 

8-lymphocytes PMA 295 
SAC 

Backx et al11 and others239 have demonstrated in detailed analysis that the effect of TNF-a in 

vitro depends on the type of colony stimulating factor used to generate growth. lL-3- and 

GM-CSF-induced BFU-E and CFU-Eo numbers are significantly enhanced when TNF-a is added 

to the cultures as well. On the other hand co tony formation by Epa-induced BFU-E and G-CSF­

induced CFU-G is inhibited by TNF-a. Comparable results were obtained by Caux et al46 in 

cultures of CD34 positive cells. Thus it appears that TNF-a enhances the early stages of 

hematopoiesis and suppresses the mature stages. 

TNF-a enhances monocyte-cytotoxicity,39·238 enhances the neutrophil superoxide-anion produc­

tion in response to FMLP7·268 and augments eosinophil cytotoxicity. 277 TN F-a is a strong inducer 

of the release of M-CSF, G-CSF, IL-1 and TNF itself from monocytes,173·226·238 GM-CSF, G-CSF, 

M-CSF and ll-1 from endothelial cells28·30·162.1 67·208·218·261 ·273 and G-CSF, GM-CSF, IL-1 and lL-6 

in fibroblasts. 144
•
145·150·208 TNF-B, as TNF-a, induces growth factor production from 

fibroblasts.360 PHA-activated T-lymphocytes produce GM- and G-CSF in response to TNF-a. 174 

Generally TNF-a is a more active inducer of cytokines than is TNF-B. This is apparent by the 

release of G-CSF by fibroblasts, 144 lL-1, IL-6 and CSF by endothelium30·129·16l and IL-6 by 
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fibroblasts. 190 TNF~B failed to induce M~CSF production from monocytes, where TNF-a did.226 

It has been suggested that TNF is produced constitutively in several tissues310 and for this 

reason may have an important function in the steady~state regulation of hematopoiesis. 

1 .3 The objective of the study 

We have used highly enriched hematopoietic progenitor cells and in-vitro culture to examine the 

following questions: 

1. The effects of recombinant lL-3 and GM-CSF on proliferation and differentiation of enriched 

hematopoietic progenitor cells have not been clearly defined: 

- how do IL~3 and GM~CSF compare with respect to number and types of colonies induced? 

-to what extent do accessory cells influence colony formation induced by IL-3 and GM~CSF? 

{chapters 2 and 3) 

2. The effects of recombinant G-CSF, M~CSF and IL-6 on enriched hematopoietic progenitor 

cells in connection with IL-3 and GM~CSF have not been fully elucidated: 

~ what is the role of synergistic effects between G~CSF, M-CSF and IL~6 on the one hand 

and IL~3 and GM~CSF on the other hand, on the proliferation and differentiation of colony 

forming cells? 

(chapters 4, 5 and 6) 

3. Consistent results on the effects of ll-1 on proliferation of immature bone marrow cells are 

lacking: 

~does ll-1 directly induce proliferation? 

-what is the role of GM~CSF and TNF as mediators of the IL-1 effect? 

(chapter 7) 
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Chapter 2 

STIMULATING SPECTRUM OF HUMAN RECOMBINANT MULTI-CSF (IL-3) ON 

HUMAN MARROW PRECURSORS: IMPORTANCE OF ACCESSORY CELLS 

Fredrik J Bot, lambert Dorssers, Gerard Wagemaker 

and Bob LOwenberg 

Blood 71:1609-1614, 1988 
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Abstract 

Recently, human multi-CSF was obtained by molecular cloning. ln the present study, the effects 

of multi-CSF in vitro were investigated by comparative culture of whole marrow progenitor cells 

obtained by sorting the cell fraction that binds the monoclonal antibody (MoAb) BI3C5 (CD 34). 

Multi-CSF stimulated erythroid (BFU-EL multipotentia! (CFU-GEMM) and eosinophil (CFU-Eol 

colonies in cultures of the progenitor cell enriched fraction, whereas (besides BFU-E, CFU-GEMM 

and CFU-Eo) granulocyte {CFU-Gl, granulocyte-macrophage (CFU-GMJ and macrophage (CFU-Ml 

colony-forming cells also were stimulated by mu!ti-CSF when unfractionated bone marrow was cul­

tured. Reconstitution of the progenitor cell fraction (813C5 positive) with the 8!3C5 negative 

population restored the broad spectrum of progenitor cell stimulation. This suggested that 

accessory cells are required for expression of the full spectrum of progenitor cell stimulation by 

multi-CSF. Subsequently, specific marrow cell populations, including T-lymphocvtes, granulocytic 

cells, and monocytes, were prepared by using selected MoAbs in complement-mediated lysis or cell 

sorting, added to cultures of hematopoietic progenitors and tested for accessory cell function. The 

results demonstrate that small numbers of monocytes permit the stimulation of CFU-G, CFU-GM 

and CFU-M by multi-CSF. These monocyte-dependent stimulating effects on CFU-G, CFU-GM and 

CFU-M could also be achieved by adding recombinant GM-CSF as a substitute for monocvtes to 

the cultures. Therefore, multi-CSF most likely has direct stimulative effects on BFU-E, CFU-GEMM 

and CFU-Eo and indirect effects on CFU-G, CFU-GM and CFU-M in the presence of monocytes. 

lmroduction 

The proliferation and differentiation of hematopoietic cells is regulated by specific growth 

factors. 197 The genes encoding several human hematopoietic growth factors have been molecularly 

cloned and expressed in suitable host systems to produce the recombinant growth fac­

tors.35·138·213·288·347The murine growth factor interleukin-3 (!L-3), has been described as a prolifera­

tive stimulus for early progenitors in the mouse, including the multi potential progenitors and those 

of granulocytes and macrophages, erythrocytes, eosinophilic granulocytes, megakaryocytes and 

mast ce!ls.70·105·122 Recently, a homologous human growth factor (multilineage colony-stimulating 

factor, multi-CSF) was discovered by eDNA cloning.71 ·351 Human multi-CSF stimulates erythroid, 

myeloid and multipotential hematopoietic progenitor ceHs.71 Hence, the spectrum of stimulation of 

this molecule resembles that of murine IL-3. ln the experiments we present, we provide further 

insight into the stimulative effects of multi-CSF on human hematopoietic progenitor cells in vitro. 

24 



Materials and methods 

Preoaration of ceH suspension. Bone marrow was obtained by posterior iliac crest puncture from 

hematologically normal adults who had given their informed consent. A separate donor was used 

for each experiment. The marrow was coHected in Hanks' balanced salt solution (HBSSl with 

heparin, diluted in HBSS and layered over a Fico\1-gradient (1.077 g/cm3; Nycomed, Oslo). After 

centrifugation, the mononuclear cells were harvested, washed twice in HBSS and resuspended in 

phosphate-buffered saline (PBSJ with 2% heat-inactivated fetal calf serum {FCS). 

Recombinant human CSFs. The preparation of recombinant human multi-CSF has been described 

in detail elsewhere.71 In brief, mRNA was prepared from activated human lymphocytes and used 

for eDNA synthesis. The eDNA clone was identified by hybridization with mouse !L-3 eDNA. This 

eDNA was then inserted into a eukaryotic expression vector (pLS4l and transfected into monkey 

COS cells, which were then cultured for 48 to 72 hours. The resulting conditioned medium 

[COS(pl84}CM} was used in bone marrow colony assay and is designated "multi-C~F". Medium 

conditioned by COS-cells transfected with the vector without the insert encoding multi-CSF did not 

stimulate colony formation in cultures of human bone marrow cells. 71 Recombinant human 

G-CSF213•268 from Genetics Institute {Cambridge, MAl and recombinant GM-CSF35·
347 from Biogen 

SA (Geneva) were used at optimal concentrations of 1:1,000 and 1,000 U/mL, respectively. 

labeling and cell sorting. A cell sample was incubated with the monoclonal antibody (MoAb) 813C5 

(CO 34; Sera-lab, Crawley Down, England) 133 at a final dilution of 1:1 00 in PBS and 5% FCS for 

30 minutes on ice. After being washed in PBS and 5% FCS, the cells were further incubated with 

goat-anti-mouse-F!TC (GAM-FITC, Nordic, Til burg, The Netherlands) at a dilution of 1 :40 for 

another 30 minutes on ice. The cells were then washed twice and resuspended in PBS at a 

concentration of 1 06 nucleated cells/mL. Control cells were incubated with GAM-FITC alone. 

Analysis and ceH sorting were performed under sterile conditions with a FACS 440 (Becton Dickin­

son, Sunnyva!e, CA) at a maximum rate of 2,000 cet!s/second. The separation between positive 

and negative fractions was done so that the 813C5 positive cell fraction regularly contained 3% to 

4% of the total nucleated cell number. This resulted in a cell population enriched for blast cells and 

hematopoietic progenitors but depleted of mature erythroid and myeloid cells and T lymphocytes. 

in certain experiments, the 813C5 negative fraction was incubated with VIM-2 (lgM, reactive with 

myelomonocytic cells; final dilution 1 :50), 179 orT3 (lgG2, CD3, mature T lymphocytes; final dilution 

1:1 0), or 84-3 (lgM, CD15, myeloid cells; final dilution 1 :20)237 and stained with GAM-F!TC, after 

which the positive cell were sorted and added to the cultures. the number of these cells added to 

the enriched BI3C5 positive cells in culture reconstituted the original numerical proportions of the 

two cell populations in the Ficoll fractionated marrow specimen unless stated otherwise. 
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Complement mediated cytolysis. In several experiments, we used a different approach for the 

addition of subfractions from the 813CS-negative cetl fraction. After sorting, the 8!3C5-negative 

cells were incubated with either MoAb V!M-2 or T3 at optimal concentrations {30 minutes on ice) 

and then incubated with rabbit complement at a final concentration of 40% (30 minutes at 25 °C) 

and washed twice. These VJM-2- or T3-depleted BI3C5-negative cells were then added to the 

appropriate cultures and tested for accessory abilities. 

CFU-GEMM cuh:ure assay. Mixed colonies were grown as described before by Fauser and Messner 

with slight modifications. 5·81 Sorted or unsorted marrow cells were cultured in a 1 mL mixture of 

lscove's modified Dulbecco's medium UMDM). 1.1% methylce!lulose, 30% autologous heparinized 

plasma, BSA, transferrin, lecithin, sodium-selenite and 8-mercaptoethanot. Cells were added at a 

concentration of 8x1 04 /mL in total marrow cultures and 0,2 to 0,5x1 04 /mL for the Bi3C5-positive 

cell fractions. Exogenous growth stimuli were added in the form of various concentrations of multi­

CSF and recombinant human erythropoietin (Epa} at a concentration of 1 U/mL {Kirin-Amgen, 

Thousand Oaks, CA). Cultures with 1 0% of a medium stimulated by leukocytes in the presence of 

1% phytohemagglutinin {?HA-LCML 10 as based on the original CFU-GEMM assay, were done for 

comparison. Dishes were incubated at 37°C and 100% humidity in an environment of 5% C02 in 

air. Colonies were scored at day 15 and identified by their distinct morphological appearance at 

1 OOx magnification. Numbers of colonies refer to the means of duplicate cultures. In selected 

cases, the nature of the colonies was verified Cytologically after they had been plucked from the 

plates with a finely drawn Pasteur pipette, and stained with May-GrUnwa!d-Giemsa. Mixed colonies 

were always verified cytologicalty. Megakaryocyte colonies were not assayed since CFU-Meg could 

not be detected reproducibly in every bone marrow sample. However, ± 15% of CFU-GEMM in 

the multi-CSF stimulated cultures contained megakaryoevtes. 

Multi-CSF as a stimulator of purified hematopoietic progenitor cells. To minimize a possible 

interference of nonclonogenic accessory cells, we enriched progenitor cells from normal human 

bone marrow by sorting the celt fraction positive for MoAb 813C5 (CD34J, and cultured the cells 

at low cell concentrations (2 to 5x1 03 /ml) in the presence of multi-CSF. The results of a repre­

sentative experiment are shown in Fig 1. When Epa was added as the only exogenous growth­

stimulating factor some background erythroid bursts (BFU-El were formed. BFU-E numbers rose 

markedly when graded concentrations of multi-CSF were added and reached a plateau at 1 % to 

3% (vollvoJJ multi-CSF. In subsequent experiments, a concentration of 3% multi-CSF was used. 

Eosinophil (CFU-Eo) and muJtipotential (CFU-GEMM) colonies appeared in multi-CSF stimulated 
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cultures, and their numbers rose as a function of increasing concentrations of multi-CSF. When only 

multi-CSF but no Epa was added to the cultures, neither red nor mixed colonies appeared, whereas 

the number of eosinophil colonies remained constant. A remarkable number of eosinophil colonies 

was formed in the presence of multi-CSF with or without Epo. Multi-CSF did not stimulate 

significant numbers of granulocyte {CFU-G), granulocyte-macrophage {CFU-GM), or macrophage 

(CFU-M) colonies. 
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Fig 1. Colony formation in response to multi-CSF: culture of purified human hematopo­
ietic progenitors. Numbers of erythroid, mu!tipotential and four classes of myeloid 
colonies (Eo, G, GM, Ml in vitro are plotted as a function of increasing concentrations 
of recombinant multi-CSF. The results from one representative experiment are shown. 
The 813CS (C034)-positive fraction was obtained by cell sorting from 8 x 1 04 

mononuclear marrow cells and represented 5% of the original cell population. Values 
represent mean colony counts of duplicate cultures. Epa (1 U/ml) was added to all 
cultures; in cultures without Epa and without multi-CSF no colonies appeared. Colony 
growth after stimulation with 10% PHA-LCM is shown for comparison. Data from one 
of duplicate experiments are shown. 

The numbers of BFU-E obtained with multi-CSF were similar to those stimulated by a crude 

conditioned medium (PHA-LCML but somewhat [ower numbers of CFU-GEMM and CFU-Eo were 

obtained with multi-CSF than with PHA-LCM. In several experiments with a greater concentration 

of mu!ti-CSF (10% vol!vo[), the colony numbers, in particular those of BFU-E declined. This reduc­

tion suggests the presence of inhibitory factors in the mu[ti-CSF preparation {COS-supernatant). 

Recently we used partially purified Escherichia Coli-derived multi-CSF in concentrations up to 30 

times (expressed as activity) greater than the maximal concentration of COS-supernatant mu!ti-CSF, 

and demonstrated no inhibitory effect. The pattern of stimulation, i.e. induction of colony formation 

from BFU-E, CFU-Eo and CFU-GEMM, was identical for both types of multi-CSF. 

27 



Role of accessory cells. To examine a possible role of 813C5-negative accessory cells in the 

stimulatory effects of multi-CSF on: {a) a mock-sorted cell fraction, i.e., passed through the cell 

sorter without selecting for a specific marker (total marrow nucleated cells)(Fig 2AJ; {b) the sorted 

BI3C5-positive cell population (precursor cell fraction) (Fig 28); and (c} the 813C5-positive cell 

fraction supplemented with the number of 813C5-negative cells that reconstituted the total marrow 

cell population (Fig 2C). 

Multi-CSF appeared to stimulate not only BFU-E, CFU-GEMM and CFU-Eo but atso CFU-G, CFU-GM, 

and CFU-M in unfractionated bone marrow cells {Fig 2A). This contrasts with the pattern of 

stimulation in the BJ3C5-positive precursor ceH fraction {Figs 1 and 28): i.e., stimulation of BFU-E, 

CFU-GEMM and CFU-Eo only, but not the other myeloid colony-forming cells (CFU-G, CFU-GM, 

CFU-MI (Rg 2CJ. 
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Fig 2. Colony formation in response to multi-CSF: direct comparison between total 
human bone marrow and purified progenitor cells. Different ceil populations prepared 
from human marrow were cultured. {AI Total mononuclear marrow cells {separated on 
Ficoll-lsopaque) were mock-sorted and cultured at 8 x 1 04 cells/dish. (C) The sorted 
BI3C5~positive fraction was reconstituted with the original proportion of BI3C5-negative 
cells and then cultured. (0) The sorted BI3C5·negative fraction plated in culture with 
Epo plus PHA-lCM. Colony numbers are plotted as a function of stimulation with 
various concentrations of mu!ti-CSF, i.e., 0%, 1% and 10% (vol!vol). Control cultures 
with 1 0% PHA·LCM were run in parallel; results are included in A through C. AH 
cultures also contained Epa {1 U/ml}. Cultures with no Epo and no multi-CSF did not 
support any colony growth {data not given). Data from one of duplicate experiments 
are shown. 
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The addition of B!3C5-negative cells to the BI3C5wpositive celt fraction completely restored the 

stimulative effect of multi-CSF on CFU-G, CFU-GM and CFU-M. The 813C5-negative cell fraction 

per se did not contain significant numbers of colony-forming cells (Fig 20). 

Because these experimental data suggested that CFU-G, CFU-GM and CFU-M colony formation in 

response to multi-CSF depended on the presence of 813C5wnegative cells or a subpopulation of 

these in culture, we subsequently examined the effect of the removal of specific subpopulations 

from this cell fraction using complement mediated cytolysis of V!M-2 (myelomonocytic) or T3 

(mature T-lymphocytesl positive cells (Fig 3). VJMw2iysis abrogated the augmentory effect of the 

BI3C5 negative celts whereas T3 lysis did not. These results suggested that the active accessory 

cells are VIM-2 positive and thus belong to the myelomonocytic lineage. 
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Fig 3. Colony formation in response to multi-CSF: addition of accessory cells to 
hematopoietic progenitor cells. Different subsets of cells were added in vitro and tested 
for accessory functions in cultures of the purified hematopoietic progenitor cell fraction 
(BI3C5 positive) that contained Epa and 3% multi-CSF. {1) Purified progenitor cell 
fraction {813C5 positive). 2.4 x 1 03 cells/dish with various cell supplements. {A) No 
accessory ceils added. (8) Addition of 813C5-negative cells (7.8 x 104 cells/dish). (C) 
Addition of 813C5-negative cells depleted of VIM-2-positive cells following complement­
mediated lysis. (0) Addition of BI3C%-negative cells depleted of T3-positive cells 
following complement-mediated lysis. Colony data from the total marrow population 
(!!) and the Bl3C5-negative fraction {Ill) are given for comparison. Data from one of 
duplicate experiments are plotted. 

29 



Following an alternative approach, specific VIM~2, T3 (mature T~lymphocytes), 844.1 {monocytesL 

and 84.3 {granulocytes) positive subsets were obtained from the Bl3C5~negative cell fraction by 

cell sorting {Fig 4) and examined for their abilities to exert the accessory cell effects. 
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Fig 4. Colony formation in response to multi-CSF: effect of addition of different 
subpopulations of accessory cells. Purified hematopoietic progenitor cells (813C5 
positive; 4 x 103 cerls/dish) were plated with 3% multi-CSF and Epa. To these cultures 
VJM-2-positive, 844.1-positive, 84.3 positive or T3-positive cells were added and 
examined for enhancement of colony formation. The VIM-2-, 844.1-, 84.3- and T3~ 
positive cells were separated by cell sorting from the 813C5-negative cell fraction. {A) 
Progenitor cells with no addition of accessory cells. (B) Addition of Bl3C5-negative cells 
(7.6 X 10 4 cells/dish). (C and OJ Addition of VlM-2-positive cells (promyelocytes to 
granulocytes and monocyres) {C, 2.5 x 104 and 0, 1 x 105 cells/dish). (E through G) 
Addition of the 844.1-positive cells (monocytes) in numbers that were originally present 
in the BI3C5 negative accessory cell population {E, 0.5 x 1 04 cells/dish) and increasing 
numbers (F, 2 x 104 and G, 5 x 104 cefls/dish). {H) Addition of the 84.3-positive cells 
(metamye!ocvtes to granulocytes) in original numbers {2 x 104 cells/dish). Results of 
the supplemented T3-positive cells were identical to those of the 84.3-positive cells 
{not shown}. Numbers of colonies grown from the separate VJM~2-positive, 844.1-
positive, or 84.3 positive fractions were: BFU-E, 2~4-1; CFU-G, 0-1-0; CFU-Eo, 1-1-0; 
CFU-M, 0-1-0; CFU-GM, 1~0-0; CFU-GEMM, 0-0-0. Results of one of three repeat 
experiments are shown. 

30 



Supplementation of VIM~2 positive or 84.1 ~positive celts to the BI3C5~positive ceil fraction restored 

the devetopment of colonies originating from CFU-G, CFU-GM and CFU-M in cultures stimulated 

with multE-CSF. As few as 2.5x1 04 V!M-2 or 0.5x1 04 844.1 surface marker positive celts were 

capable of enhancing colony growth. However 2x1 04 84.3-positive granulocytes or T3-positive 

lymphocytes were ineffective. indeed, CFU-GEMM, BFU-E and CFU-Eo were also slightly 

susceptible to the potentiating effect of monocytes, at least when large numbers of monocytes 

were added (Fig 4G). 

We examined whether the effect of the addition of monocytes to cultures of the 813C5~positive 

progenitor cell fraction to evoke CFU-G, CFU-GM, and CFU-M colony formation could be mimicked 

by supplementing exogenous GM-CSF or G-CSF (instead of monocvtes) to the multi-CSF cultures 
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Fig 5. Colony formation from purified marrow cells in response to multi-CSF, G-CSF and 
GM-CSF. Hematopoietic progenitor cells (813C5 positive, 4.5 x 103 cells/dish) were 
plated with mu!ti-CSF, G-CSF and/or GM-CSF; all cultures contained Epa. Results are 
those of one of two repeat experiments. 

When G-CSF or GM-CSF were added to multi-CSF cultures of purified bone marrow progenitors, 

additional CFU-G or CFU-G, CFu-GM and CFU-M were induced to colony formation. There was no 

evidence for a synergistic effect between these factors. When all three factors (i.e., multi-CSF, 

GM-CSF and G-CSF} were included in culture, no significant further increase in colony formation 

31 



was seen above the level of multi-CSF plus GM-CSF stimulation. This indicates that multi-CSF and 

GM-CSF in conjunction provide optimal stimulation of CFU-G, CFU-GM and CFU-M from the BI3C5-

positive progenitor cell fraction and that GM-CSF can substitute the monocyte accessory cell 

effect. 

Discussion 

We assessed the stimulating abilities of the recombinant human growth factor multi-CSF. ln 

cultures of enriched human hematopoietic progenitor cells (based on 8l3C5 reactivity). multi-CSF 

stimulated BFU-E, CFU-Eo and CFU-GEMM. In the presence of BI3C5-negative cells, the spectrum 

of multi-CSF stimulation was broader and also included CFU-G, CFU-GM and CFU-M. These data 

suggest a direct stimulative effect of multi-CSF on BFU-E, CFU-Eo and CFU-GEMM and an effect 

on CFU-G, CFU-GM, and CFU-M in the presence of a secondary ceil. Experiments based on the 

addition of specific subsets of cells {selected by cell sorting) as well as elimination of these subsets 

from the accessory cell fraction (by complement mediated lysis) identified a VIM-2 and 844.1 

surface marker-positive cell population as the active accessory cell. The accessory cell function 

could not be attributed to the subsets that expressed the T-lymphocyte T3 or granulocytic 84.3 

markers. The VIM-2 and 844.1-positive surface phenotype of the accessory cells demonstrates the 

monocytic identity of the cells. It became apparent that the accessory cefl phenomenon was cell 

dose dependent and that minimal numbers (0.5 x 1 04 per dish) of these monocytic cells were 

sufficient to allow the outgrowth of CFU-G, CFU-GM and CFU·M in multi-CSF stimulated cultures. 

The addition of four times the proportional number of VIM-2-positive cells to purified progenitors 

further elevated GM and M colony numbers, and also raised the number of BFU-E, CFU-Eo, and 

CFU-GEMM. Three possible mechanisms through which monocytes enhance growth of these colony 

types stimulated by multi-CSF can be proposed: (a) production of growth factors (e.g. GM-CSF or 

M-CSA by monocytes in response to multi-CSF, (b) production of growth factors by monocytes 

independent of multi-CSF, and {c) celf-cell interactions between monocytes and colony-forming 

cells. The present experiments do not allow a distinction between the alternative mechanisms for 

the enhancement of CFU-G, CFU·GM and CFU-M colony growth. The possibility that monocytes 

produce growth factors that can induce CFU-G, CFU-GM, and CFU-M would at least be consistent 

with the observation that monocytes can be stimulated to produce colony-stimulating factors. 207 

More recently, specific evidence was obtained demonstrating that monocytes may produce M-CSF, 

interferon (lFNJ, tumor necrosis factor (TNF} and GM-CSF. 118
•
329 This could explain our results 

showing that the addition of recombinant GM-CSF could fully substitute the monocyte effect and 

that G-CSF could partly replace the role of the monocytes in the multi-CSF cultures, thereby 

resulting in the induction of G, GM and M colony types from purified marrow progenitor cells. 
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HUMAN GRANULOCYTE-MACROPHAGE COLONY STIMULATING FACTOR 

(GM-CSFl STIMULATES IMMATURE MARROW PRECURSORS 

BUT NO CFU-GM, CFU-G OR CFU-M. 

Fredrik J Bot, Loes van Eijk, Pauline Schipper 

and Bob LOwenberg 

Experimental Hematology 17:292-295, 1990 
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Abstraet 

Human GM-CSF has been described as a multilineage growth factor that induces in vitro colony 

formation from BFU-E, CFU-Eo and CFU-GEMM as well as from CFU-GM, CFU-G and CFU-M. In this 

paper we provide evidence indicating that GM-CSF, when tested for its stimulating capacities 

expressed upon high!y enriched hematopoietic progenitor cells (C034+/monocyte depteted), is 

unable to induce colonies from CFU-GM, CFU-G or CFU-M. Only BFU-E, CFU-Eo and CFU-GEMM 

were stimulated, and thus GM-CSF induces a similarly restricted spectrum of progenitor cells as 

does recombinant human interleukin-3 {JL-3). We then compared the relative stimulating potencies 

of GM-CSF and IL-3 by measuring colony numbers of CFU-GEMM, BFU-E and CFU-Eo generated 

from CD34+ progenitor cells. ll-3 and GM-CSF as singte factors were eQually active in stimulating 

CFU-GEMM but the combination of both factors produced additive stimulative effects upon 

CFU-GEMM. IL-3 was a more potent stimulus of BFU-E and GM-CSF was the more active stimulat­

ing factor for CFU-Eo. We conclude that GM-CSF and ll-3 although stimulating the outgrowth of 

identical types of progenitor cells particularly differ as regards their comparative quantitative 

efficiency of stimulation. 

Introduction 

In recent years recombinant human GM-CSF has been defined as a growth factor that induces 

colony formation in vitro from hematopoietic progenitor cells of the erythroid (BFU-E), eosinophilic 

{CFU-Eo}, granulocyte-macrophage (CFU-GM), granulocytic (CFU-G), macrophage (CFU-Ml and 

multipotential (CFU-GEMM) lineages.35·198·:!11.306 Consequently GM-CSF is regarded as a mu!titineage 

growth factor. lt has also been shown that GM-CSF affects the function of mature granulocytic 

cells168 and possibly also modifies the production of growth factors by these ce!ls166 as well as by 

monocytes.118 Therefore it is possible that the reported stimulative effects of GM-CSF on hemato· 

poietic colony formation depend upon a mixture of direct effects on the progenitor cells and indirect 

effects mediated through the action of GM-CSF on mature cetls with auxiliary stimulating functions. 

We set out to define more precisely the stimulating abilities of GM-CSF, using populations of highly 

enriched human marrow progenitor cells. The progenitor cell targets of GM-CSF were defined and 

directly compared to those of the other human multitineage colony stimulating factor, i.e. IL·3.21.71 
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Materiars and methods 

Preparation of eel! suspension: Bone marrow was obtained by posterior iliac crest puncture from 

hematologically normal adults, which had given their informed consent. The marrow was collected 

in Hanks balanced salt solution (HBSSJ with heparin and the mononuclear cells were separated over 

FicoH-Isopaque (1.077 g/cm2; Nycomed, Oslo, Norway) as described. 21 

Enrichment of progenitor cells: In 7 experiments ceHs labeled with a monoclonal antibody (MoAb) 

against the CD34 antigen (813C5, lgG1; Sera-Lab Crawley Down, UK133
) were obtained following 

fluorescence activated cell sorting. The CD34 antigen is expressed on less than 5% of bone 

marrow cells and this fraction contains virtually all, i.e. more than 90% of blasts and in vitro colony 

forming cells, 133 and is referred to as CD34 + cells. The labeling and cell sorting procedures have 

been described. 21 

In 14 experiments the progenitor cells were further enriched following an additional separation step: 

contaminating monocytes were removed by complement mediated cytolysis preceding CD34 + 

sorting. The cells (20x1 06/ml in PBS with 5% heat inactivated FCS) were incubated with the MoAb 

VIM-2 ([gM, reactive with myelo-monocytic cetls;179 final dilution 1:50) or 844.1 (lgM, CD14, 

monocytes;237 final dilution 1:1 000} for 30 min. on ice, then incubated with rabbit complement 

(40%) for another 30 min. at 25°C and washed twice. This procedure resulted in a recovery of 

51 ±13% of nucleated cells. Following complement mediated cytolysis the CD34+ cells were 

sorted as described above. The final cetl population, designated as CD34 +/Mono-, comprised 2-5% 

of the originat Fico!l-lsopaque separated celt fraction and contained less than 1% monocytes as 

checked by a differential count on a May~GrUnwa!d-Giemsa stained cvtospin preparation. 

In four separate experiments we focussed on the recoveries of the myeloid colonies throughout the 

subsequent enrichment steps in order to ensure that no specific loss of myeloid progenitor cells oc­

curred. This was done by culturing (A) fico!! fractionated bone marrow cells, (8) monocyte-depleted 

ceHs and {C) CD34 +/Mono- cells in direct comparison, stimulated with either PHA-LCM, GM-CSF 

or IL-3. The colony numbers obtained from each fraction were related to the numbers obtained in 

the ficoH fraction, in order to assess the progenitor cell recoveries. 

Recombinant human CSFs: Recombinant human GM-CSF was a highly purified E. Coli product and 

a kind gift from Dr JF Delamarter {8iogen SA, Geneva, Switzer!and35). A dose-response curve was 

made and the optimal concentration (1 000 U/ml) was used. In one experiment that was designed 

to directly compare the stimulating abilities of two GM-CSF preparations we employed another GM­

CSF product (expressed in CHO cell-tine and used at 1000 U/ml; kindly provided by Dr. S. Clark, 

Genetics institute, Cambridge, USA) and observed an identical spectrum of activity upon 

CD34 +/Mono~ cells {data not shown). Recombinant human ll-3, expressed in monkey COS-celts, 
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was generously donated by Drs l. Dorssers and G. Wagemaker (Radiobiological lnstitute TNO, 

Rijswijk, The Netheriands21
•
71

) and used at 1 0 U/ml. 59 Recombinant human erythropoietin IEpo) was 

purchased from Amgen Biologicals (Thousand Oaks, California) and used at 1 U/ml. 

Colony culture assay: The enriched progenitor cells ( 0.5-1 x1 04 ) were cultured in a 1 ml mixture 

of lscove's modified Dulbecco's medium (IMDML 1.1% methylcellulose, 30% autologous 

heparinized plasma, BSA, transferrin, lecithin, sodium-selenite and 2-mercapto-ethanol exactly as 

described before. 21 Epa and GM~CSF and/or ll-3 were supplemented to the cultures as growth 

stimuli. PHA-LCM was added to control cultures to apply an impure but rich source of CSFs as in 

the original CFU-GEMM assay.81 A constant batch of PHA-LCM 21 was used throughout these 

studies and was added along with Epa at a concentration of 1 0%. Colonies of more than 50 cells 

were scored at day 15. Duplicate cultures were set up for each point. Colonies were identified at 

a 1 OOx magnification. Regularly the colony morphology was checked by examining MGG stained 

cytospin preparations of plucked single colonies. In selected experiments we stained granulocytic 

colonies with a-naphthyl-esterase and found that they did not contain monocytes. 

Effect of GM-CSF on purified marrow progenitors: The numbers of colonies stimulated in vitro by 

GM-CSFfrom CD34 + enriched progenitor cells (n =7 experiments) and CD34+ /Mono- cells (n = 14 

experiments) are presented in table 1. For comparison the results obtained after stimulation with 

?HA-LCM are also given. Apparently from highly enriched (C034 +/Mono-) progenitor ce!ls GM-CSF 

stimulates BFU-E, CFU-Eo and CFU-GEMM selectively, but not CFU~GM, CFU-G nor CFU-M. The 

inability of GM~CSF to induce CFU-GM, CFU-G and CFU-M held up for supraoptimal concentrations 

of GM-CSF (up to 5000 U/mll. PHA-LCM stimulation confirmed that colonies from CFU-GM, CFU-G 

and CFU-M could be generated from the stem eel! concentrates indicating that these progenitor 

ceHs had been retained following the one-step (CD34 +} or two-step (CD34 +/Mono-) cell separati­

on procedures. None or only minimal numbers of CFU-G and CFU-M and no CFU-GM could be 

induced to colony formation by GM-CSF from the highly enriched (CD34 +/Mono-) progenitor cells. 

GM-CSF stimulation of the CD34 + (one step separation) cells resulted in intermediate numbers of 

CFU-GM, CFU-G and CFU-M. 
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Table 1 GM-CSF compared to PHA-lCM stimulation of C034+ or 

CD34+/Mono- enriched progenitor cells 

CD34 + marrow fraction CD34 +/Mono- marrow fraction 

GM-CSF PHA-LCM GM-CSF PHA-LCM 

BFU-E 65 ± 42 99 ± 62 53± 38 104 ± 68 

CFU-Eo 21 ± 11 19 ± 11 18 ± 14 19 ± 17 

CFU-GEMM 5 ± 3 7 ± 5 5 ± 5 6 ± 5 

CFU-G 23 ± 22 25 ± 9 2 ± 2 17 ± 12 

CFU-M 6 ± 8 21 ± 15 2 ± 4 16 ± 15 

CFU-GM 3 ± 4 7 ± 3 0 6 ± 6 

CD34+ cells or monocyte depleted CD34+ cells (CD34+ /Mono-) were cultured in the 
presence of Epa and GM-CSF or PHA-LCM. Colony numbers are expressed per 5000 
plated ceHs and are mean values± SO of 7 experiments (CD34 +) or 14 experiments 
{C034+/Mono-L In the absence of growth factors, no colony growth occurred. 

Comparison between the stimulating spectrum of ll-3 and GM-CSF: 

We next assessed the stimulating abilities of GM-CSF in direct comparison to those of ll-3 or 

GM-CSF pius IL-3 on purified progenitor cells (table 2). 

The numbers of CFU·GEMM induced by ll·3 and GM·CSF were not significantly different. The 

effects of the two factors were additive in 6 of 7 experiments with CD34 + cells and in 12 of 14 

experiments with CD34+/Mono- cells, i.e., the combination of GM·CSF and IL·3 stimulated more 

CFU·GEMM than did GM·CSF or IL·3 alone. As regards BFU·E: IL-3 gave rise to more BFU·E in all 

cultures of CD34 + cells or CD34 +/Mono- cells than did GM·CSF. Stimulation with IL·3 plus 

GM-CSF did not elevate BFU-E numbers above the level obtained with IL·3 alone. Thus it appears 

that IL·3 is the most active stimulus of erythroid colony formation and can trigger all BFU·E, 

including those responsive to GM·CSF. 

On the other hand, ll-3 was less potent in stimulating CFU-Eo, as greater numbers of CFU-Eo arose 

in response to GM-CSF. This was evident in atl seven experiments with CD34 + cells and in 12 of 

the 14 experiments with CD34 +/Mono· cells. However, ll-3 enhanced the CFU·Eo stimulating 
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effect of GM-CSF as the combination of GM-CSF plus !L-3 stimulated more CFU-Eo in 20 of the 

21 cumulated experiments than did either factor alone. 

Table 2 Comparison between stimulating efficiency of ll-3 and GM-CSF upon 

purified marrow progenitors. 

GM-CSF ll-3 ll-3 + GM-CSF 
lno.l (no.) 1%1 (no.) (%) 

BFU-E 57± 39 91 ± 53 179 ± 40 84 ±52 162 ± 34 

CFU-Eo 19 ± 13 15 ± 12 81 ± 25 32 ± 20 181 ± 49 

CFU-GEMM 5 ± 5 4± 2 98 ± 47 8 ± 6 220 ± 116 

C034 + cells or monocYte depleted CD34 + cells {CD34 +/Mono-) were cultured in the 
presence of GM-CSF (first column). lL-3 (second column} or GM-CSF plus IL-3 (third 
column). All cultures contained Epo. Since the results from both populations of 
progenitor cells were identical. they were pooled. The results are presented as the 
mean±SD of the colony numbers from 21 experiments. Within each experiment the 
colony numbers obtained after stimulation with IL-3 or GM-CSF plus lL-3 were 
expressed as a percentage of the colony numbers generated by GM-CSF. The mean ± 
99% confidence limits (Students t-test} of these percentile values are given ("%" 
columns). 

Comoarison of purification procedures: To exclude whether specific Joss of myeloid progenitor cells 

had occurred following the subsequent steps of the enrichment procedure, we compared the 

growth stimulating abilities of PHA-LCM, GM-CSF and IL-3 on ficoll fractionated marrow cells, on 

monocyte depleted cells and on the C034+/Mono- fraction (fig.1). These results confirm the 

inability of GM-CSF and ll-3 to induce most myeloid colony forming cells from CD34 +/Mono- cells. 

The moderate decrease of CFU-Eo numbers suggests some aspecific loss. However PHA-LCM 

stimulation shows that CFU-G, CFU-Eo, CFU-M and CFU-GM had been retained in the highly enrich­

ed cell fractions. 
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Figure 1. Recovery of c!onogenic cells following enrichment: Increasingly enriched bone 
marrow cells were cultured in the presence of PHA-LCM, GM-CSF or IL-3. FicoH frac­
tionated celts (panel Al were cultured at a cell concentration of 0. 75x1 05 per mi. 
Exactly the same cell portions were cultured following monocyte depletion (pane! Bl or 
monocyte depletion followed by CD34 + sorting (panel C) with no correction for 
removal of cells. Colony recoveries from CFU-G, CFU-Eo, CFU-M and CFU-GM in panels 
A, 8 and C are therefore directly comparable. 

Discussion 

in this paper we present evidence that human GM-CSF stimulates selectively BFU-E, CFU-Eo and 

CFU-GEMM and, to a very limited extent, CFU-G and CFU-M, when assayed with highly enriched 

progenitor cells, i.e. the CD34 positive fraction of monocyte depleted human bone marrow cells 

(CD34 +/Mono-). When however progenitor ceHs are used which are concentrated to a lesser 

degree, i.e. the CD34 positive fraction without prior monocyte depletion, not only BFU-E, CFU-Eo 

and CFU-GEMM but also moderate numbers of CFU-GM, CFU-G and CFU-M were induced to colony 

formation by GM-CSF. Thus relatively minor alterations in the composition of the cell suspension 

plated may significantly influence the proliferative outcome in vitro. Although the name designates 

GM-CSF as a major growth factor for granulocyte-macrophage progenitors, these data support the 

idea that GM-CSF rather stimulates the outgrowth of multipotent, erythroid and eosinophil 

progenitors. ln this sense the progenitor target cell spectrum of GM-CSF is strikingly similar to that 

of IL-3. 

The culture results demonstrating the limited spectrum of stimulation of GM-CSF are not artifacts, 

since recovery experiments have shown that CFU-G, CFU-M and CFU-GM had not been eliminated 

from the highly enriched cell fractions. As a matter of fact, significant numbers of these progenitors 

can be demonstrated in the CD34 +/Mono- cell fractions when PHA-LCM, a potent mixture of 

growth factors, is added to the cultures. 

The lack of stimulating effects of GM-CSF exerted upon CFU-GM, CFU-G and CFU-M, as noted 
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here, is not at all in agreement with results concerning the in vitro stimulative activities of human 

GM-CSFthat have been published until today.35•
198·=271 •

306 Stimulation by GM-CSF of CFU-Eo, CFU­

GM, CFU-G and CFU-M has been a common observation in previous studies. The target cell 

populations plated in culture in those studies varied and represented "unfractionated", 198 or "non 

adherent light--density" bone marrow cells,35
•
306 or progenitor cells that were depleted of accessory 

cells using several MoAbs and adherence to lg-coated plates. 271 Based upon the observations of 

this paper, indicating that CD34 positive cells may sti!l be contaminated by accessory cells which 

significantly modify the stimulating spectrum, we believe that most likely the different conditions 

of enrichment and the variable stem cell purity resulting from these procedures can explain the dif­

ferent colony responses to GM-CSF in those and our reports. The mechanism by which GM-CSF 

can only stimulate significant numbers of CFU-GM, CFU-G and CFU-M in the presence of accessory 

cells was not analyzed. A similar contaminating ceH phenomenon has been well established for 

urinary CSF207 as well as for human IL-3.21 In reconstitution experiments with different subpopula­

tions the monocytes were identified as the major auxiliary cells of JL-3. Monocytes, when present 

in small numbers, may extend the stimulating spectrum of IL-3 to include also CFU-GM, CFU-G and 

CFU-M. In a similar experimental approach we noted that GM-CSF would also stimulate the latter 

types of progenitor cells when 844.1 positive monocytes or 84.3 positive myeloid cells,317 but not 

T-lymphocvtes were supplemented to the cultures (data not shown). 

Two recent studies with highly enriched murine progenitor cells339•340 show murine GM-CSF to be 

a potent stimulator of murine CFU-GM. Thus our data suggest an as yet not noted difference in the 

stimulating spectrum of GM~CSF in vitro between mouse and man. The basis of this difference 

cannot readily be explained. 

As regards the colony stimulating abilities of GM-CSF and il-3 it is evident that both factors act 

on CFU-GEMM, BFU-E and CFU-Eo. This similarity in stimulating capacities of GM-CSF and JL-3led 

us to compare the relative stimulating potencies of these growth factors. CFU-GEMM numbers 

induced by IL-3 or GM-CSF from purified marrow cells were found to be equivalent but increased 

when both lL-3 and GM-CSF were supplemented to the cultures. Greater numbers of BFU-E were 

stimulated by ll-3 than by GM-CSF. Combined stimulation by JL-3 and GM-CSF did not increase 

the BFU-E numbers beyond those stimulated by ll-3 alone. This suggests that those BFU-E which 

are responsive to GM-CSF are stimulable by lL-3 as well and that IL-3 recruits an additional BFU-E 

population into colony growth. GM-CSF is more potent than ll-3 in stimulating eosinophil progenitor 

cells and the combination of the two factors further enhances CFU-Eo growth. This supports the 

notion that subpopulations of CFU-Eo exist that are susceptible to stimulation by either IL-3 or 

GM-CSF. 

These studies emphasize the importance of very stringent cell purification when growth factor 

effects upon hematopoietic progenitor cells per se are to be defined, as major changes of the target 

cell spectrum may result from small admixtures of accessory cells. 
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Chapter 4 

EFFECTS OF HUMAN INTERLEUKIN-3 ON GRANULOCYTIC COLONY FORMING 

CELLS IN HUMAN BONE MARROW 

Fredrik J Bot, loes van Eijk, Pauline Schipper and Bob LOwenberg 

Blood 73:1157-1160, 1989 
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Abstract 

Human multi!ineage colony stimulating factor (multi~CSF/!L~3) induces colony formation from 

CFU-GEMM, BFU~E and CFU-Eo when applied to in vitro cultures of highly enriched hematopoietic 

progenitor cells. No granulocytic colonies are formed in response to IL-3. However, using 

appropriate assays we demonstrate here that il-3 increases the size of G-CSF induced granulocytic 

colonies; these colonies contain greater proportions of immature cells as compared to colonies 

stimulated by G-CSF alone. Furthermore, IL-3 promotes the survival of CFU-G in vitro, whereas in 

cultures not supplemented with !L-3 CFU-G extinguishes within 7 days. We conclude that IL-3, 

although by itself not stimulating granulocytic colony formation, regulates the survival and 

proliferative rate of granulocytic progenitors. 

Introduction 

We have recently reported that human recombinant interleukin-3 (IL-3) stimulates multilineage 

progenitor cells (CFU-GEMMJ, erythroid progenitor ceHs (BFU-EL and the eosinophilic progenitor 

cells {CFU-Eo) when added to enriched human hematopoietic progenitor cells in vitro. 21
•
71 No 

stimulatory effect of IL-3 was apparent on the granulocytic (CFU~G}, the granulocyte-macrophage 

(CFU-GM) and the macrophage (CFU-Ml progenitor ceUs, when colony numbers were taken into 

account. 

Here we report experiments that demonstrate stimulative effects of JL-3 exerted on CFU-G. Using 

highly purified marrow progenitors we show that ll-3 promotes the survival of CFU-G in vitro, 

increases the size of colonies stimulable by G-CSF213·288 (granulocytic colony stimulating factor) and 

modifies the composition of these granulocytic colonies. 

Materials and methods 

Preparation of ceri suspension: Bone marrow was obtained by posterior iliac crest puncture from 

hemato!ogical!y normal adults, which had given their informed consent. The marrow was coHected 

in Hanks balanced salt solution {HBSS) with heparin and the mononuclear ceHs were separated over 

Ficoll-lsopaque (1.077 g/cm2; Nycomed, Oslo, Norway) as described. 21 

Enrichment of progenitor ce!ls: Since monocytes can significantlY influence lL-3 stimulated colony 

formation from hematopoietic progenitor cells in vitro, 21 monocytes were rigorously removed from 

the cell suspension utilizing complement mediated cytolysis with the monoclonal antibody {MoAb) 
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VIM~2 UgM, reactive with myelo-monocytic ceHs; 179 final dilution 1 :50) or anti-CD14 (MoAb 844.1, 

lgM, monocytes;237 final dilution 1:1 000) exactly as described.21 This procedure resulted in an 

average recovery of 58± 18% of nucleated cells. Subsequent enrichment was achieved following 

fluorescence activated sorting of the cel!s expressing the CD34 antigen (MoAb Bf3C5, !gG-1; Sera­

lab, Crawley Down, UK133). Labeling and cell sorting were performed as described before.21 The 

final cell population {CD34 + Mono~ progenitor cells) contained 2-3% of the original fico!! separated 

cells and consisted of immature blast cells with less than 1% monocytes as evaluated by a differen­

tial count on May-GrUnwa!d-Giemsa stained cytospin preparations. The recoveries of clonogenic 

ceHs following the purification procedures were always assessed: in al! experiments control cultures 

with an impure CSF source (PHA-LCM) were included in order to verify that the diverse progenitor 

cells had not been selectively eliminated during the cell separation procedures. This method of 

enrichment resulted in a recovery of all types of progenitor cells, including CFU-G, of 80 to 1 00% 

ofthe number of progenitors present in the ficotl fraction (based upon PHA-LCM stimutation). There 

was an average 40x enrichment of CFU-G. 

Recombinant human CSFs: The preparation and biological effects of recombinant human IL-3 have 

been described.21
•
71 It was generously donated by Drs l. Dorssers and G. Wagemaker (Radiobio~ 

logical Institute TNO, Rijswijk, The Netherlands). Two preparations of lL-3 (at 10 U/ml) either 

expressed in COS-cells or E. Coli gave identical results. One U was defined as giving half~maximal 

stimulation in a c!onogenic assay of a particular case of AML that was absolute[y dependent on the 

exogenous supply of IL-3, as described.59 Recombinant human G-CSF was a medium conditioned 

by a Chinese hamster ovary (CHOJ celt line expressing the human G-CSF gene. It was a gih from 

DrS. Clark (Genetics Institute, Cambridge, MAl and was used at a concentration of 1:1 ,000 or as 

indicated. Recombinant human erythropoietin was purchased from Amgen Biologicals {Thousand 

Oaks, California) and used at 1 U/ml. 

Colony assay: The CD34 + fraction sorted from 8x1 0 4 monocyte depleted cells, i.e. real cell 

number plated: 0.4-1x104 /ml. was cultured in a 1 ml mixture of lscove's modified Dulbecco's 

medium (IMDML 1.1% methylce!lulose, 30% autologous heparinized plasma, BSA, transferrin, 

lecithin, sodium-selenite and 2-mercapto-ethano! as reported. 21 Exogenous growth stimuli were 

added as Epa plus G-CSF with or without IL-3. in selected cultures the addition of G-CSF was 

detayed for 7 or 1 0 days; G-CSF was then carefully dispersed over the culture layer in a volume 

of 0.050 ml and allowed to diffuse through the medium. Colonies of more than 50 cells were 

scored at day 15 following plating and identified according to their appearance at a magnification 

of 1 OOx. ln selected experiments the morphology of single granulocytic colonies was further 

determined (see below). 
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Determination of colony size and momhology: ln certain experiments the colony size was 

determined as follows: six groups of 5 colonies were randomly plucked from the plates using a 

finely drawn Pasteur pipette and pooled in 0.050 ml PBS, the nucleated cells per group were then 

counted to give the average cell number per colony. Thus each value represents the mean estimate 

of 6 collections of five colonies. To determine the morphology these pooled colonies were put onto 

slides in a cytocentrifuge and stained using May-GrUnwald-Giemsa {MGG) stain. A differential count 

was then performed on 200 cells. in selected experiments separate granulocytic colonies were 

picked from the plates, stained with non-specific esterase and found to be devoid of monocytes. 

!L-3: effects on monocvte depleted CD34 + progenitor cells. In table 1 we present the results from 

34 experiments demonstrating that from monocyte depleted CD34 + enriched progenitor cells il-3 

stimulates BFU-E, CFU-Eo and CFU-GEMM. The other progenitor cells CFU-G, CFU-M and CFU-GM 

could on!y be stimulated by a mixture of growth factors as PHA-LCM, indicating that they had not 

been removed from the cell suspension during the enrichment procedure. 

Table 1 Effect of il-3 on enriched CD34+ progenitor cells. 

IL-3 PHA-LCM 

BFU-E 169 ± 99 209 ± 130 

CFU-Eo 20 ± 13 32 ± 18 

CFU-GEMM 6 ± 3 9 ± 4 

CFU-G < 36 ± 21 

CFU-M < 30 ± 16 

CFU-GM < 9 ± 5 

The CD34 + fraction of 8x1 04 monocyte depleted cells {absolute number 0.4- 1 x1 04 ) 

was cultured. lL-3 plus Epo or PHA-LCM plus Epo were used as colony stimulating 
factors. The mean number of colonies per dish ( ± SDl from 34 experiments is given. 

!L-3: effect on numbers of G-CSF stimulated colonies. In 10 experiments using bone marrow 

samples from different normal subjects the numbers of granulocytic colonies induced from the 
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enriched progenitor cell fraction after stimulation with G~CSF atone (median 81 CFU~G per 8x1 04 

sorted cells; range 38~163) were directly compared to those following induction with G~CSF plus 

ll-3 (median 66 CFU-G per 8x104 sorted ce!ls; range 53-164). Although some variation in colony 

numbers was evident between different experiments, no significant difference appeared between 

CFU-G numbers induced by G-CSF and G-CSF plus IL-3. 

ll-3: effect on size and ceflular composition of G-CSF stimulated colonies. !n 3 experiments the size 

and ceHular composition of the granulocytic colonies induced by G-CSF at concentrations from 

1 :30,000 to 1 :300 in the absence or presence of ll-3 (1 0 U/ml) were determined. The average 

numbers of ceBs per colony of 3 experiments are plotted in fig.1. The granutocytic colonies induced 

by G-CSF in the presence of IL-3 were significantly larger than those grown with G-CSF alone. The 

data of the morphological analysis of these colonies are plotted in Fig. 2. The colonies stimulated 

by G-CSF alone (fig.2 panels A 1 and A2} mainly contain mature granulocytic celts (band forms and 

segmented cetls), whereas the ll-3 plus G-CSF stimulated colonies (panels 81 and 82) show greater 

proportions of immature (promyelocytes) cetls. 

P<0.002 P<0.02 P<0.001 
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Fig 1. Granulocytic colony formation in response to G-CSF with and without il-3: size 
of the cotonies. The celt numbers per granulocytic colony produced from 
CD34 +/Mono- progenitor cells in response to G-CSF with ( +) or without H ll-3 {1 0 
U/mll are given. Data from 3 separate experiments are shown. G-CSF was added at 
concentrations of 1:3,000 {exp.#1J and 1:1,000 (exp.#2 and #3). Each vatue repres­
ents the mean± SD of 6 pools of 5 randomly sampled colonies each. The data were 
compared according to Students t-test and the significance of differences is indicated. 
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G-CSF: composition of colonies G-CSF + IL3: composition of colonies 

Fig 2. Granulocytic colony formation in response to GMCSF with and without ILM3: 
cellular composition of colonies. The celtu!ar composition of granulocytic colonies 
grown from CD34 +/Mono- progenitor cells in response to G-CSF in the absence 
(panels A) or presence (panels B) of tl-3 (1 0 U/mO is plotted. Each chart presents the 
differential counts (mean± SDJ of three poo!s of five randomly sampled colonies (200 
cells scored). A 1 and 81 indicate the distribution of eel! types in the colonies from 
experiment #1 {G-CSF 1 :3,000), A2 and 82 the results related to experiment #3 
{G-CSF 1:1 ,OOOJ(see fig.1 ). In exp.#3 the colonies were not only examined morphologi­
cally for the 1:1,000 G-CSF level but also for other G-CSF concentrations (1 :3,000 and 
1 :300). The results of the latter analyses were identical {not shown). 

!L-3: enhances survival of CFU-G in vitro. Four experiments were done in which G-CSF was added 

to the cultures at day 0 or withheld for 7 or 1 0 days and then added. Cultures were run with and 

without IL-3 to evaluate the effect of tl-3 on the maintenance of G-CSF responsive progenitor celts 

in the cultures that were deprived of G-CSF for the initial 7-1 0 days. Epa was also added and atl 

colonies induced were scored. A representative experiment is shown in fig.3. ln response to G-CSF 

64 granulocytic colonies were formed in culture. When the addition of G-CSF was postponed for 

7-10 days, rare CFU-G survived to form colonies upon subsequent addition of G-CSF. When IL-3 

was added the decline of CFU-G numbers resulting from the delayed addition of G-CSF could partly 

be prevented. Thus a significant proportion of CFU-G could be maintained in culture in the presence 

of !L-3 and were stili able to form colonies when G-CSF was added following the 7-day interval. 
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Fig 3. Effect of IL-3 on in vitro survival of CFU-G. Colony numbers grown in response 
to G-CSF (concentration 1: 1,000) added at the beginning of culture {day Ol or after a 
detay of 7 or 10 days {upper section). When G-CSF was withheld from the cultures 
during the first 7 days and no !L-3 added, CFU-G numbers fell rapidly (panel A). When 
G-CSF was withheld but IL-3 supplemented, the drop of CFU-G numbers within 7 days 
was partially prevented (panel 8). Data of contra[ cultures with no G-CSF are also 
shown. Each point represents the mean value of duplicate cultures of the CD34 
positive fraction of 8x104 monocyte-depleted ceHs {CD34+/Mono-). BFU-E, CFU-Eo 
and CFU-GEMM numbers did not vary as a result of the delay in G-CSF addition (lower 
section). The figure presents the complete set of data of one experiment that is 
representative of a series of four experiments (see table 21. 

Table 2 shows the granulocytic colony data compiled from 4 experiments. On the average less than 

1% of granulocytic colony forming celts survived when the addition of G-CSF was delayed for 7 

days. When, however, IL-3 was supplemented to the cultures at their initiation {day 0), the fraction 

of CFU-G that survived in the absence of G-CSF (for 7 days) was 29 ±4% (mean± SD). ll-3 could 

not prevent the decline of CFU-G in cu[tures without G-CSF beyond a 1 0-day interval. It is of note 

that the delayed supplementation of G-CSF did not at all modify the numbers of BFU-E, CFU-Eo and 

CFU-GEMM that were scored in para!lel, indicating that G-CSF does not regulate their proliferation 

or survival (Fig.3). 
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Table 2 Effect of ll-3 on in vitro survival of CFU-G. 

No ll-3 With ll-3 
G-CSF 
added at: day 0 day 7 day 10 day 0 day 7 day 10 

Exp. #1 42 0 nd 53 15 nd 

#2 135 0.5 nd 95 22 nd 

#3 64 2 0 57 18 0.5 

#4 38 0 63 20 0 

Mean{%} ± SO 100 0.9±0.9 100 29±4 

The addition of G-CSF to the cultures was delayed for 7 or 1 0 days and the effect of 
IL-3 on the in vitro maintenance of CFU-G was then assessed. The results of the 
comparative cultures "without !L-3" {panel A) versus .. with IL-3" (panel B) are shown 
{4 experiments). Each value represents the average number of colonies of duplicate 
cultures of the CD34 + fraction derived from 8x1 04 monocyte-depleted marrow cells. 
The mean CFU-G numbers (±SO) obtained following the delay of added G-CSF were 
expressed as percentage of the recoveries of CFU-G numbers of cultures to which 
G-CSF had been added at day 0 (-= 1 00%). Nd denotes nnot donen. 

Discussion 

in cultures of purified hematopoietic progenitor cetls from human marrow no granulocytic colonies 

are induced following stimulation with ll-3. In this paper we show that the granulocytic colony 

forming cells, however, are not really unresponsive to ll-3. When colony size is taken into account, 

a positive effect of !l-3 on G-CSF induced colony formation was apparent. The colonies generated 

in response to G-CSF became significantly greater when !l-3 was added to those cultures as well. 

The morphological analysis revealed an increase of immature cells in the IL-3 plus G-CSF stimulated 

colonies whereas mainly mature cells were found among colonies induced by G-CSF alone. Thus 

it appears that !L-3 enhances the rate of proliferation of more immature myeloid cells leading to 

!arger colonies containing a greater proportion of early cell stages. It is presently unclear how this 

effect of il-3 on the colony forming abilities of CFU-G is achieved. One could hypothesize that 

CFU-G do concomitantly express receptors for the two hematopoietic growth factors (G-CSF and 

JL-3) and that the exposure to G-CSF will preferentially stimulate maturation whereas tL-3 mainly 
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controls self-renewal of CFU-G, so that the simultaneous exposure to both G-CSF and !L-3 will 

result in colonies with a greater proportion of immature celts. Evidently IL-3 is not able to stimulate 

a sufficient number of cell divisions to permit the formation of a granulocytic colony. If IL~3 

stimulates a few cell divisions, G~CSF could then evoke additional cell divisions and induce terminal 

differentiation. This interpretation wou!d be consistent with the observations indicating that in 

cultures deprived of G~CSF, CFU~G disappeared within approximately one week, while this 

extinction of CFU~G could partially be counteracted by exposure of the cells to IL~3. Whether these 

G~CSF responsive cells are maintained in culture due to a self-renewal effect of IL-3 or promotion 

of survival needs further investigation. Another explanation for these results may be that IL-3 

induces proliferation of a less mature, i.e. multi~potent, progenitor cell after which differentiation 

of this cell is directed by G-CSF into the granulocytic lineage. We consider this a less likely 

explanation since the absolute number of granulocytic colonies did not increase in G-CSF plus IL~3 

stimulated cultures indicating that no additional progenitor cells were recruited as a result of IL~3 

addition to G~CSF stimulated cultures. 

In two recent studies, one employing gibbon IL-3272 and one human !l-3, 229 positive effect of IL~3 

on numbers of human CFU-G were reported. The discrepancy between those results and the data 

of this study is not immediately clear, but is most likely explained by differences in the progenitor 

cell enrichment procedures. We have utilized complement mediated cytolysis to remove accessory 

ceHs followed by a positive selection of progenitor cells using a MoAb against the CD34 antigen 

and cell sorting. Sieff et al. 236 used several MoAbs and adherence to lg-coated plates as a method 

to deplete accessory celts. Otsuka et al. 229 also used immune panning to enrich for CD34 + cells, 

followed by overnight depletion of adherent cells. As it has been clearly demonstrated that few 

admixed monocytes can extend the stimulative spectrum of IL-3 to include CFU-G,21 it is 

conceivable that relatively smaH differences in the quantitative admixtures of accessory celts 

modulating the effect of IL~3 on CFU-G are responsible for these dissimilarities. 
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Chapter 5 

SYNERGISTIC EFFECTS BETWEEN GM-CSF AND G-CSF OR M-CSF 

ON HIGHLY ENRICHED HUMAN MARROW PROGENITOR CELLS 

Fredrik J Bot, Lees van Eijk, Pauline Schipper, Bianca Backx 

and Bob LOwenberg 

Leukemia 4:325-328, 1990 
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Abstract 

The human multilineage hematopoietic growth factor granulocyte-macrophage colony stimulating 

factor (GM-CSA induces muttipotent, erythroid and eosinophil colony formation from highly 

enriched normal bone marrow ceHs. We have examined the effects of GM-CSF combined with 

granu!ocyte-CSF (G-CSFJ or macrophage-CSF (M-CSF) on the monolineage granulocytic, 

eosinophilic and macrophage progenitor cells {CFU-G, CFU-Eo and CFU-M) in accessory cell 

depleted marrow fractions. GM-CSF effects were assessed in direct comparison with those of inter­

[eukin-3 (lL-3) plus G-CSF or M-CSF. GM-CSF strongly synergized with G-CSF in the formation of 

granulocytic colonies with respect to number and size and enhanced the in-vitro survival of CFU-G. 

More immature cells were present in colonies induced by the mixture of GM-CSF and G-CSF than 

by G-CSF alone. GM-CSF also synergized with M-CSF in the formation of macrophage colonies 

(number and size). The addition of G-CSF and M-CSF did not influence eosinophil colony formation 

induced by GM-CSF or tL-3. Experiments directly comparing GM-CSF and IL-3 revealed that the 

effects of GM-CSF on G-and M- co!ony forming cells were significantly greater than those of IL-3. 

The potent positive effects between GM-CSF and G-CSF as we][ as between GM-CSF and M-CSF 

provide a powerful mechanism of amplification of granulopoiesis and monocytopoiesis. 

fntroduction 

Human hematopoiesis is under the control of a number of hematopoietic growth factors, e.g. 

inter!eukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor {GM-CSFJ, granulocyte-CSF 

(G-CSFL macrophage-CSF (M-CSF) and erythropoietin (Epa). GM-CSF when added to cultures of 

highly enriched human hematopoietic progenitor celts, mainly stimulates erythroid (BFU-E), eosino­

phil (CFU-Eo) and multipotential (CFU-GEMM) precursors.22 Direct comparisons between the 

proliferative stimulating activities of GM-CSF and !L-3 have shown that both factors have a very 

similar target cet! spectrum. 21
·22 Thus GM-CSF and !L-3 do not induce colonies from granulocyte 

and macrophage progenitors (CFU-G, CFU-M and CFU-GM) when accessory cells are rigorously 

depleted from the target marrow ceH suspension. On the other hand G-CSF, M-CSF and Epo 

predominantly stimulate colony formation from committed progenitors. Interactions between the 

ear[y UL-3, GM-CSFJ and !ate acting factors (G-CSF, M-CSF and Epa} may occur. These cooperative 

effects between CSFs are assumed to represent essential features of the physiologic regulation of 

hematopoiesis. Several murine studies on synergistic effects between CSFs have been 

pubtished.192
·341 As regards human marrow, synergism between IL-3 and G-CSF or GM-CSF has 

been demonstrated in one study using unpurified marrow cef!s338 and in another more recent study 

onty with respect to GM-CFC.193 We have recently demonstrated positive effects of IL-3 on G-CSF-
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responsive precursors. 23 This work was extended and in the present study we have examined the 

cooperative effects between GM-CSF and G-CSF or M-CSF on several aspects of colony formation. 

Highly enriched marrow progenitor cell fractions were used and we have evaluated the stimulating 

effects on granulocytic, eosinophilic and macrophage progenitors separately. 

Materials and methods 

Preparation of cell suspension: Bone marrow was obtained by posterior iliac crest puncture from 

hematologically normal adults, after informed consent. The marrow was coilected in Hanks 

balanced salt solution {HBSSJ with heparin and the mononuclear cells were separated over Ficoll­

lsopaque (1.077 g/cm3; Nycomed, Oslo, Norway) as described.21 

Enrichment of oroqenitor cells: A two-step progenitor ce!l enrichment procedure was employed as 

described. 24 First, non-donogenic accessory cells were removed by complement mediated cytolysis 

with a mixture of monoclonal antibodies (MoAb} against the antigens C014 (844.1, lgM, mono­

cytes;237 final dilution 1:1000L CD15 (84.3, lgM, granulocytic cells;317 final dilution 1:500) and 

CD3 (T3, !gG2, final dilution 1:1 0). By FAGS-analysis we had previously verified that the antigens 

CD14, CD15 and CD3 are not expressed on progenitor cells. The lysis-procedure resulted in an 

average recovery of 51%± 7% of nucleated cells. Secondly, cells were positively selected following 

CD34 labeling {Bl3C5, lgG1; Sera-Lab, Crawley Down, UK133} and cell sorting {FACS 440, Becton 

Dickinson, Mountain View, Cal.). The final cell population contained 4%-6% of the original ficoll 

separated cells and mainly represented morphologically immature blast cells. This method of 

enrichment has been shown to provide an efficient separation of clonogenic cells from accessory 

cells. 24 The complete recovery of clonogenic cells following cell separation was evaluated in 

individual experiments by running control cultures with PHA-LCM (phytohemagglutinin-leucocyte 

conditioned medium) as described. 21 ln each experiment the discarded CD34- fraction was cultured 

with PHA-LCM as stimulus and found to contain only a minor number ( < 1 0%} of erythroid 

colonies, but never myeloid colonies. The purified fraction of accessory cell depleted, CD34 + bone 

marrow cells is also referred to as enriched (progenitor) cells in the text. 

Recombinant human CSFs: Recombinant human IL-3, obtained from Drs l Dorssers and G 

Wagemaker (Daniel den Hoed Cancer Center, Rotterdam and Radiobiological Institute TNO, Rijswijk, 

The Netherlandsl 21 ·71 was used at the optimal concentration of 10 U/ml. 21 Purified recombinant 

human G-CSF was a gift from Dr S Gil!1s ([mmunex Corp., Seattle, WA), specific activity > 

10,000,000 CFU/mg protein and was used in a concentration of 10 ng/mL Purified recombinant 

M-CSF was donated by Dr P Ralph (Cetus Corp., EmeryviHe, CA}, specific activity 5x1 07 U/mg and 
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used in a concentration of 20 ng/ml. E.Co!i derived purified recombinant human GM-CSF (from Dr 

JF Delamarter; Biogen SA. Geneva, Switzerland35), specific activity 105 U/ml was used at a con­

centration of 1:1,000. The abovementioned optimal stimulatory concentrations were determined 

for each growth factor batch separately (data not shown} and used throughout the experiments 

unless stated otherwise. 

Coronv culture assay: The CD34 + fraction of 8x1 0 4 accessory cell depleted bone marrow cells 

(actual number plated: 0.5-1x104 cells/mil was cultured in a 1 ml mixture of !scove's modified 

Dulbecco's medium (IMDMJ, 1.1% methy!ce!iulose, 30% autologous heparinized plasma, BSA, 

transferrin, lecithin, sodium-selenite and 2-mercapto-ethano[ as reported.22 Cultures were stimulated 

by the addition of GM-CSF, ll-3, G-CSF, M-CSF or PHA-LCM. [n selected cultures the addition of 

G-CSF or M-CSF was delayed for 2, 7 or 10 days foHowing the initiation of culture as described.23 

In a!l experiments a control culture of enriched cells without added growth factors was done; 

colonies never formed in these cultures. Estimates are based upon duplicate cultures. Colonies of 

more than 50 cells were scored at day 15 following plating. 

Determination of colony size and morohologv: ln three experiments the size of colonies stimulated 

by G-CSF alone and G-CSF plus IL-3 or GM-CSF was determined after picking-off colonies from the 

culture dishes as described. 23 In each experiment the mean cell number per colony was derived 

from 6 pools of five colonies each. To determine the morphology these pooled colonies were put 

onto slides in a cytocentrifuge and stained using May-GrUnwald-Giemsa (MGGJ stain. A differentia! 

count was then performed on 200 cells. 

Granulocvtic and eosinophilic colony formation after costimulation with GM-CSF + G-CSF: 

Stimulation of enriched bone marrow cells with G-CSF resulted in the formation of granulocytic 

colonies. Significantly more CFU~G were induced by G-CSF when GM-CSF was added to cultures 

as well (1 00 ±45 lSD I versus 37 ±30/5000 cells;t-test, p< 0.001; n = 17)(Fig.1A). GM-CSFalone 

induced rare G-co!onies from the enriched marrow fraction (2±2) (Fig.1A}. The dose-response 

curves for GM-CSF added to G-CSF stimulated cultures (n =3 experiments) demonstrated that 

enhancement of G-colony formation by GM-CSF became apparent at GM-CSF concentrations 

between 1 to 10 U/m!, and was maxima! at 100 U/ml of GM-CSF (Fig.1 8). 

Eosinophilic colony numbers in GM-CSF versus GM-CSF plus G-CSF stimulated cultures were 

identical (20 ± 13 and 21 ± 11/5000 ce!ls, respectively), indicating that G-CSF does not influence 

eosinophilic colony growth. 
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Fig 1. Synergy between hematopoietic growth factors on granulocYtic and macrophage 
colony numbers. Highly enriched normal bone marrow progenitor cells were incubated 
with different combinations of CSFs. All colony numbers are expressed per 5000 plated 
cells. Panel A: numbers of G~colonies {mean ± SO; n = 17 experiments) are shown 
after culture with GM-CSF, G-CSF or GM-CSF + G-CSF. Panel 8: Numbers of 
G-colonies induced by G~CSF pius titrated concentrations of GM~CSF (0.1 to 1,000 
U/ml). The dose~response curves from three experiments are plotted. Panel C: Numbers 
of G-colonies {mean ± SD; n=14 experiments) after culture with ll~3, G-CSF or !L~3 
+ G-CSF. Panel 0: Numbers of CFU-M (mean ± SO; n = 11 experiments) after culture 
with GM-CSF, M-CSF or GM-CSF + M-CSF. Panel E: Numbers of CFU-M induced by 
M-CSF plus titrated concentrations of GM-CSF (data from three experiments). 
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By comparison, optimal concentrations of ll-3 did not affect G-CSF induced colony numbers 

{Fig.1 C). 23 Equal numbers of eosinophilic colonies were formed in cultures stimulated by 

G-CSF+IL-3 versus IL-3 alone !13±5 and 13±7/5000 cells; n=14). 

Macroohage colony formation after costimulation with GM-CSF + M-CSF: GM-CSF synergized 

strongly with M-CSF and induced a significant increase in macrophage colony formation (Fig.1 0). 

Both GM-CSF and M-CSF alone produced few macrophage colonies from purified normal marrow 

progenitors (2 ± 2 and 6 ± 4/5000 cells, respectively). Considerably greater numbers of CFU-M 

{38 ± 20; p < 0.001; n = 11) were induced in response to stimulation with GM-CSF plus M-CSF. 

This effect was clearly dose-dependent, beginning at a GM-CSF concentration of 0.1 U/ml (Fig.1 E). 

Maximal synergy between GM-CSF and M-CSF was evident at approximately 10 - 100 U/ml 

GM-CSF. The numbers of eosinophilic colonies were identical in cultures stimulated with GM-CSF 

(22±7) as compared to those in cultures stimulated with GM-CSF plus M-CSF (22±6). The 

addition of IL-3 did not influence M-CSF induced colony formation (data not shown). 

Effect of GM-CSF and !l-3 on granutocvtic and eosinophilic colony size: The average numbers of 

cells per granulocytic colony induced by G-CSF alone, G-CSF plus ll-3 or G-CSF plus GM-CSF were 

determined (fig.2). The latter estimates were derived from three experiments i.e. from 18 series 

of 5 colonies. A progressive increase {p < 0.001; t-testl of the average granulocytic colony size was 

apparent in the following order: G-CSF {1056±276 cells/coL), G-CSF + IL-3 {1832±586) and 

G-CSF + GM-CSF !3726 ± 11461. 

Eosinophilic colonies induced by ll-3 (1 011 ± 197 ceHs/col.l were significantly smaller than those 

induced by GM-CSF (4587 ± 1976 cells/col.; n =4). The size of the latter colonies did not change 

as a result of G-CSF addition, confirming the lack of activity of G-CSF on eosinophilic colony forma­

tion {data not shown). 

The size of macrophage colonies could not be determined reliably, because it was difficult to pick 

them from the plates completely. An approximation of the relative size was made from the appear­

ance of the colonies in the dishes. M-CSF induced colonies were generally small and were 

estimated to contain 50-100 cells. In contrast M-CSF plus GM-CSF-induced colonies appeared 

considerably larger, regularly containing more than 200 cells. !L-3 did not influence the size of 

M-CSF induced colonies. 
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Fig 2. Size of granulocytic colonies formed in response to G-CSF, G-CSF + JL-3, or 
G-CSF + GM-CSF. The size of the colonies is expressed as average numbers of cells 
per colony (x1 o-3}. Results are derived from three experiments and each estimate 
represents the mean ( ± SD) of 1 8 pools of five colonies. 

Effect of GM-CSF and /L-3 on eel! maturation within colonies: In three experiments the cellular com­

position of granulocytic colonies induced by G-CSF, G-CSF plus GM-CSF or G-CSF plus IL-3 was 

assessed (Fig.3). G-CSF stimulated colonies consisted mainly of mature segmented granulocytes. 

The addition of GM-CSF to cultures as a costimulus of G-CSF enhanced the proportion of immature 

cells in the colonies: almost 50 o/o of the cells were promyelocvtes and myelocytes while 

segmented granulocytes were virtually absent (see fig.3). The addition of IL~3 resulted also in 

colonies containing more immature cells although the effect was less prominent. Maturation of 

eosinophilic colonies induced by GM-CSF or ll-3 did not change as the conseQuence of G-CSF 

addition. 

Effect of GM-CSF on survival of CFU:G and CFU-M· The effect of GM-CSF on the in vitro survival 

of CFU-G was examined in two experiments. This was done by postponing the addition of G-CSF 

to the cultures for 2, 7 or 10 days. The majority of CFU-G disappear within 2 - 7 days in non­

supplemented cultures {Fig.4, panels A and BJ. 
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Fig 3. Comparison between the cellular composition of granulocytic colonies induced 
by G-CSF, G-CSF + ll-3 and G-CSF + GM-CSF. Differential counts {200 cells) were 
performed on cvtospin slides of pooled granulocytic colonies. Estimates are the mean 
results of six slides. One representative of three experiments is shown. X-axis: propor­
tions of cells in colonies expressed by length of bars; Y-axis: morphologically identified 
granulocytic cells. 

Addition of GM-CSF to those cultures during G-CSF deprivation prevented the drop of CFU-G 

numbers at least partially. Thus the presence of GM-CSF permitted the survival of a considerable 

fraction of CFU-G in vitro until day 7. 

Data from a similar pair of experiments for CFU-M are shown in panels C and D. M-CSF alone 

stimulates very few macrophage colonies, and a positive effect of GM-CSF on M-CFU numbers is 

apparent. We cannot draw conclusions on the survivat of CFU-M in the presence of GM-CSF, since 

the numbers of macrophage colonies stimulated by M-CSF alone are too low to measure significant 

survival promoting effects of GM-CSF on CFU-M. 
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Fig 4. ln vitro survival of CFU-G and CFU-M in the presence of GM-CSF. Cultures of 
enriched progenitor cells without GM-CSF (dotted bars) and with GM-CSF (hatched 
bars) to assess the survival of CFU-G (paners A and 8) and CFU-M (panels C and D). 
The in vitro survival of CFU-G and CFU-M was determined at day 0, 2, 7 and 1 0. 
Colony numbers are expressed per 5000 plated cells. 

Discussion 

We have demonstrated that the multilineage hematopoietic growth factor GM-CSF, although by 

itself not stimulating CFU-G or CFU-M from highly enriched marrow blast cells, strongly synergizes 

in a dose-dependent way with the single lineage hematopoietic growth factors G-CSF and M-CSF. 

Thus small doses of GM-CSF may considerably elevate G-CSF and M-CSF stimurating activities. 

The positive effects of the GM-CSF plus G-CSF combination on size, maturation and survival of 

granulocytic progenitors have previously been reported for IL-3.23 The experiments reported here 
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however show that the magnitude of the effect of GM-CSF on CFU-G is considerably greater than 

the effect of IL-3. Macrophage colony formation was enhanced similarly by adding GM-CSF to 

M-CSF. In contrast costimulation of M-CSF with lL-3 did not promote the formation of M-cotonies. 

Synergism between GM-CSF and M-CSF was already apparent at low doses of GM-CSF and is 

consistent with a previously described synergistic effect between GM-CSF and M-CSF.42 The latter 

investigations however were carried out with !ess enriched bone marrow progenitors and this may 

explain that GM-CSF alone could induce CFU-M proliferation in those studies accessory cells 

releasing endogenous hematopoietins may modify the growth factor response considerably.21 A 

remarkable feature is the poor stimulative effect of M-CSF alone. Apparently macrophage-CFU 

generally need two factors, GM-CSF plus M-CSF, to express full colony forming potential.42 !L-6 

plus M-CSF have also been demonstrated to be a potent stimulatory combination for M-CFU.24 

Eosinophilic colonies induced by IL-3 or GM-CSF did not change in number, size or maturational 

status after the addition of G-CSF, indicating that G-CSF does not modify proliferation and 

maturation of CFU-Eo. 

From our studies it appears that G- and M-progenitors do respond to GM-CSF, however GM-CSF 

stimulation alone is insufficient to elicit colony formation. This can only be achieved when G-CSF 

and M-CSF are also present, either exogenously added to the cultures, or endogenously produced 

by accessory cells, e.g. monocytes. 22 The exact mechanism by which GM-CSF synergizes with 

both G-CSF and M-CSF cannot be deduced from these experiments; we have considered four 

different mechanisms: (a) GM-CSF may upregutate receptors for G-CSF and M-CSF respectively, 

thereby recruiting more immature cells to become responsive to these factors, (b) GM-CSF may 

induce onty a few ceH divisions but no maturation while G-CSF and M-CSF subsequently trigger 

further cell divisions and maturation so that fuH size colonies appear. This mechanism could very 

well explain the survival experiments: a few cell-divisions would suffice to keep the cells alive until 

the late acting factor is added, (c) different subpopulations of CFU-G and CFU-M may coexist, as 

has been suggested before, 193 e.g. one subset responding to G-CSF or M-CSF alone and another 

subset that requires the dual combination of GM-CSF and G-CSF or GM-CSF and M-CSF for 

effective stimulation, or (d) the requirement of CFU-M for multiple hematopoietins for optimal 

proliferation may be compatible with a "priming" function of GM-CSF or IL-6, rendering CFU-M 

responsive to the proliferation inducing factor M-CSF, as has been suggested before for GM-CSF.42 

It is now clear that the multipoietins IL-3 and GM-CSF have a broad progenitor cell spectrum of 

stimulation 21
•22·35·

42 that depends on their combination with other factors. The diverse interactions 

between different factors and the strong synergistic effects between GM-CSF and G-CSF or 

between GM-CSF and M-CSF significantly enhance certain proliferative effects. This mechanism 

of cooperation may provide a powerful system of positive regulation e.g. in situations of stress 

hemopoiesis. 
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Chapter 6 

INTERLEUKIN-6 (IL-6) SYNERGIZES WITH M-CSF IN THE FORMATION OF 

MACROPHAGE COLONIES FROM PURIFIED HUMAN 

MARROW PROGENITOR CELLS 

Fredrik J Bot, Loes van Eijk, Lianne Breeders, Lucien A Aarden and Bob LOwenberg 

Blood 73:435-437, 1989 
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Abstract 

We have examined the in vitro stimulative effects of recombinant human interleukin-6 OL-6, or 

interferon-S2) on purified human bone marrow progenitor cells. IL-6 alone or in combination with 

Epo, ll-3, GM-CSF or G-CSF did not induce colony formation. However IL-6 strongly synergized 

with M-CSF in stimulating macrophage colony formation (colony numbers and size}. The magnitude 

of IL-6 synergism with M-CSF was dose-dependent, maximal potentiation of M-colony formation 

being evident at approximately 1 00-1 000 U/ml ll-6. When the addition of !l-6 to M-CSF supple­

mented cultures was delayed for more than one day after the beginning of culture, enhancement 

of macrophage colony formation was lost. IL-6 stimu[ation of M-CSF responsive colony formation 

was not apparent when non purified marrow cells were plated, most likely due to endogenous IL-6 

release. These observations suggest that IL-6 besides its role in 8 lymphocyte proliferation can 

potentiate the human immune defence mechanism by stimulating monocyte-macrophage develop­

ment as well. 

Introduction 

lnterleukin 6 (lL-6, originally described as interferon S2263·264·336 and also known as B-ee!! 

stimulating factor-2) is produced by many cell types and was recently cloned from monocytes, 27 

fibroblasts 104 and a T-cell line. 113 [t has a regulatory function in the differentiation of B lymphocyt­

es. 113 lL-6 also supports, in synergy with IL-3, the proliferation of granulocyte macrophage- and 

multilineage progenitors from murine bone marrow.123 1L-6 and !L-3 showed synergistic activity in 

the human marrow blast cell colony assay as well. 157 IL-6, when added to IL-3 stimulated cultures, 

acce[erated the appearance and increased the numbers of blast cell colonies. This suggested that 

lL-6 acts as a competence factor mediating the transition of cells from G0 to a cycling state.123·
157 

IL-6 did not induce colony formation from other hematopoietic progenitors neither as a single 

factor, nor in combination with ll-3 or !l-1a. We demonstrate here that IL-6 enhances M-CSF 

induced co tony formation in cultures of highly enriched progenitor cells from human bone marrow. 

Materials and methods 

Enrichment of marrow progenitor cells: Bone marrow was obtained from hematologically normal 

adults, which had given their informed consent, and separated over FicoH-lsopaQue (1.077 g/cm 3; 

Nycomed, Oslo, Norway} according to standard procedures. 21 As a first step of enrichment marrow 

cells were depleted of non-c!onogenic accessory cells fotlowing complement mediated cytolysis 
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with a cocktail of monoclonal antibodies {MoAb) against the antigens C014 {844.1, lgM, 

monocvtes;237 final dilution 1:1 000), CD15 \84.3, lgM, granulocytic ceHs;317 final dilution 1 :500) 

and CD3 {T3, igG2, final dilution 1:1 0). This resulted in an average recovery of 51± 7% of 

nucleated cells. Further enrichment {second step) was achieved following fluorescence activated 

sorting of the cells bearing the CD34 antigen (813C5, lgG1; Sera~lab, Crawley Down, UK133). The 

labeling and cell sorting procedures have been described.21 Thus 4-6% of the original ficoll separa~ 

ted cells were recovered as the final cell population and consisted mainly of immature blast cells. 

The latter fraction is designated as CD34 + fraction of accessory cell depleted marrow or enriched 

progenitor cell fraction. 

Recombinant human CSFs: E. Co!i derived recombinant human IL-6 was purified to apparent 

homogeneity and had a specific activity of 1 09 units/mg. 1 The concentration used in culture was 

1000 U/ml or as indicated. Recombinant human !L~3 was generously donated by Drs L Dorssers 

and G Wagemaker (Radiobiological Institute TNO, Rijswijk, The Netherlands21
•71 ), recombinant 

human G-CSF and M-CSF by Dr S Clark (Genetics Institute, Cambridge, MAl and recombinant 

human GM-CSF by Dr JF DeLamarter (Siogen SA, Geneva, Switzerland35) and used at optimat con­

centrations of 10 U/mt 23 1:1,000, 1:1,000 and 1000 U/ml respectively. 

Colony culture assay: The CD34 + fraction of 8x1 04 accessory cell depleted bone marrow cells 

(real number plated: 0.5-1 x1 04 cel!s/ml} was cultured in methylce!lulose as reported21 • Recombinant 

growth factors were added in several combinations, or an impure PHA~LCM (phytohaemagglutinin­

leucocYte conditioned medium) was used as control. in selected cultures the addition of JL-6 was 

delayed for 1 ,3 or 6 days after which lL-6 was carefully dispersed over the culture layer in a 

volume of 0.050 m! and aU owed to diffuse through the medium. Estimates are based upon the data 

from duplicate cultures. Colonies were scored at day 15 following plating. Macrophage colonies 

were defined as aggregates of more than 50 cells which were recognized as macrophages at a 

1 OOx magnification, presenting as large, often dark, vacuolated cells and verified using May­

GrUnwatd-Giemsa stained cytospin preparations of single colonies. 

ll~6 did not induce colonies in vitro from enriched bone marrow progenitor cells (n=:-8 experiments). 

A synergistic effect was noted between IL-6 and M-CSF (fig. 1 A). In response to costimulation with 

lL-6 and M-CSF significantly more CFU-M were induced to form colonies (at day 15) as compared 

to stimulation with M-CSF alone. Furthermore, M-CSF induced colonies were loosely arranged and 

contained 50-100 cells while M-CSF plus lL-6 stimulated colonies with more compact appearance 
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contained over 200 cells. For comparison, similarly elevated colony numbers were also obtained 

in cultures after stimulation with impure PHA-LCM. 
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Fig 1. Synergism between H-6 and M·CSF. The CD34+ fraction from 8x1 04 accessory 
eel! depleted bone marrow celts ( = 0.5-1 x1 04 ) was plated per mi. Pane! A shows the 
results from 8 experiments with bone marrow from 8 different donors. Numbers of 
CFU-M stimulated by M-CSF, M-CSF p!us lL-6 or PHA-LCM are shown. In panel B the 
results are shown from three [L-6-dose titration experiments in which lL-6 at con­
centrations from 0 to 1000 U/ml was added to cultures containing M-CSF. Each point 
is the mean of duplicate cultures. In the presence of 11-6 alone or without any factor no 
CFU-M were stimulated to colony formation. 
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IL-6 did not modify the colony forming efficiency when added to cultures containing Epa, IL·3, GM­

CSF or G-CSF {data not shown). The dose-effect relationship (figure 1 B) reveals that the potentia­

ting effect of ll-6 is concentration dependent and begins to be expressed at concentrations of 1-10 

U/ml. Plateau values of IL-6 synergistic activity are reached at concentrations between 1 00-1000 

U/ml. 

When IL-6 was not supplemented at the initiation of cultures but with a delay of 1-3 days it 

appeared that the synergistic effect of ll-6 on M-CSF dependent colony formation was lost (figure 

21. 

no. of CFU-M •• ,co~~~~-------------------, 

no ll-8 day o Clay 1 Clay 3 Clay 8 

day of addition of ll-6 

Fig 2. JL-6 enhances M-CSF induced colony formation: delayed addition of IL-6. The 
CD34 + fraction isolated from 8x1 04 accessory cell depleted bone marrow cells ( = 
0.5-1 x1 04 ) was plated. Numbers of macrophage colonies stimulated by M-CSF are 
given. IL-6 (1 000 U/ml) was added at the beginning of culture (day 0) or at day 1, 3 
or 6 of culture. Data are from two separate experiments. Each point is the mean of 
duplicate cultures. 

These experiments were conducted with highly enriched bone marrow progenitor cells in an 

attempt to exclude interference of accessory cells. In three experiments the effects of ll-6 on 
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M-CSF induced colony formation from enriched marrow progenitor cells were directly compared 

with those on non-enriched marrow cells, i.e. ficoll separated cells. It appeared that M-CSF 

stimulated greater numbers of CFU-M from fico!! separated marrow mononucleated cells (20, 16 

and 48 macrophage colonies per 1 05; n =3 experiments) than from the purified fraction (5, 1 and 

28 colonies per 1 05 cells, respectively). When IL-6 was added to M-CSF stimulated cultures of 

ficoll fractionated cells the synergistic activity of IL-6 could not be demonstrated (M-CSF + IL-6: 

23, 20 and 31 colonies per 105 cells). 

Discussion 

We demonstrate that !L-6 has no colony stimulating effect on enriched human hematopoietic 

progenitor cells. However ll-6 synergizes with M-CSF in the stimulation of CFU-M with respect to 

both number and size of macrophage colonies. A delay in the addition of IL-6 to M-CSF stimulated 

cultures of more than one day abolishes the potentiating effect of IL-6. Thus there is an immediate 

requirement of the M-CFU target cell population for IL-6, suggesting that M-CFU rapidly lose their 

susceptibility to !L-6 in vitro in the absence of IL-6 or extinguish in culture when they are deprived 

of ll-6. One explanation for the synergism between tL-6 and M-CSF is that IL-6 upregulates the 

sensitivity of M-CFU for M-CSF or recruits additional subsets e.g. by up regulating M-CSF receptor 

expression. As an alternative explanation these data could fit the theory123·157 that ll-6 acts as a 

competence factor that induces CFU-M from the resting G0 state into G1, after which M-CSF acts 

as a progression factor that induces proliferation of CFU-M. These and other possible mechanisms 

to explain the effects described here will require additional investigation. 

The synergistic effect of IL-6 on M·CSF induced colony formation could not be demonstrated in 

ficoH·fractionated bone marrow. Furthermore M·CSF induced considerably more CFU-M from this 

impure population of marrow cells than from the enriched progenitor cell population. As monocytes 

are potent ll-6 producers1 and ll-6 synergism is evident already at relatively low concentrations 

of ll·6 (1-1 0 U/mi), we believe that the release of endogenous ll-6 by monocytes retained in the 

fico !I fraction of bone marrow bypasses the dependence of CFU-M on exogenous ll-6. 

IL-6 is a stimulator of 8-cells and is thought to have an important role in the immune defence 

system. The observations presented here support a broader role of IL-6 in host defence, i.e. not 

only along the 8-!ineage but also through the generation of monocyte-macrophage cells from their 

progenitors. 
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Chapter 7 

INTERLEUKIN-1a (IL-1) REGULATES THE PROLIFERATION 

OF IMMATURE NORMAL BONE MARROW CELLS 

Fredrik J Sot, Pauline Schipper, Uanne Breeders, 

Ruud Oelwel, Kenneth Kaushansky and Bob LOwenberg 

Blood 76:307-311, 1990 
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Abstract 

The cytokine interleukin-1 {lL-1) plays a role in the regulation of normal as well as leukemic 

hematopoiesis. !n acute myeloid leukemia {AML), IL-1 induces autocrine GM-CSF and TNF 

production and these factors may then synergistically induce proliferation in AML blast cells. Here 

we demonstrate that ll-1 stimulates DNA-synthesis of highly enriched normal bone marrow btast 

cells (CD34 positive, adherent ceH depleted, CD3/CD14/CD15 negative). The stimulative effect of 

ll-1 can be blocked with neutratizing anti-TN Fa and anti-GM-CSF antibodies and most efficiently 

by the combination of anti-TNFa and anti-GM-CSF but not with anti-G-CSF antibody, suggesting 

that IL-1 induced proliferation was initiated through TNF and GM-CSF release. Concentrations of 

TNF and GM-CSF increased in the culture medium of normal bone marrow blast cells after ll-1 

induction. Twelve percent of those lL-1 induced cells were positive for GM-CSF mRNA by in-situ 

hybridization as opposed to 6% of non-induced cells. Thus !L-1 acts in addition to its effect on 

leukemic blast cells also on normal marrow blast cells. We propose a scheme where IL-1 stimulation 

of normal bone marrow blast cells leads to the induction of TN Fa and GM-CSF which in association 

stimulate DNA-synthesis efficiently according to a paracrine or autocrine mechanism within the 

marrow blast eel! compartment. 

Introduction 

The hematopoietic growth factors interleukin-3 (ll-3), granulocyte-macrophage colony-stimulating 

factor (GM-CSF), granulocyte-CSF (G-CSFJ and macrophage-CSF {M~CSF) stimulate proliferation 

and differentiation of hematopoietic progenitor cells. The pleiotropic factors interleukin-1 {IL-1_) and 

tumor necrosis factor {TNF} are also involved in the regulation of hematopoiesis, e.g., through the 

induction of CSF re!ease. lnterleukin-1 may exert positive effects on hematopoietic progenitor cells 

in vitro while TNF may exhibit both stimulatory and inhibitory effects. 149 Whether ll-1 and TNF act 

directty on the progenitor ceHs themselves in addition to indirect effects via accessory cells has not 

been settled. 

ll-1 has recently been demonstrated to stimulate the proliferation in vitro of acute myeloid leukemia 

(AML} cells through the induction of GM-CSF production, 60 suggesting that the latter mechanism 

of autocrine GM-CSF mediated growth of AML blast ceils355 is under the control of the inducer ll-1. 

As yet it is not clear whether the phenomenon of autocrine stimulation of proliferation is related 

to the pathophysiology of AML growth. In some cases of AML IL-1 has the ability to induce the 

production of TNF as well, 61 furthermore, costimulation of TNF and GM-CSF may show strong 

synergism in stimulating AML cell proliferation in vitro.113 Based on these observations it appears 

that ll-1 serves as an inducer of TNF and GM-CSF release foHowed by enhanced growth depending 
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on the TNF/GM~CSF ratio. 

Here we present experiments to investigate whether similar cascades of stimulation involving IL~1, 

TNF and GM~CSF are operative in the in vitro proliferative activity of norma! bone marrow blast 

cells. 

Materials and methgds 

Enrichment of marrow orogenitor cells: Bone marrow was obtained from hematologically normal 

adults, which had given their informed consent, and separated over FicoH-Isopaque (1.077 g/cm3 ; 

Nycomed, Oslo, Norway) according to standard procedures. 21 To ensure a thorough removal of 

accessory celts, progenitor cetls were enriched in two steps. Initially marrow cells were depleted 

of adherent- and other accessory celts using a combined adherence/complement mediated cytolysis 

procedure. The marrow cell suspension (20x1 06/ml in phosphate buffered saline (PBSJ/5% fetal 

calf serum (FCS}) was incubated with a cocktail of monoclonal antibodies {MoAb) against the 

antigens CD14 (844.1, lgM, monoevtes;237 final dilution 1:1 000), CD15 (84.3, lgM, granulocytic 

cells;317 final dilution 1 :500) and CD3 (T3, lgG2, final dilution 1:1 0) for 15 minutes on ice. Next 

rabbit complement was added (40%), the ceHs were adjusted to a concentration of 10 x 106/ml, 

and allowed to adhere onto the surface of a 60 mm petri-dish at 37 °C for one hour. The 

nonadherent cells were harvested and washed in cold HBSS. This resulted in an average recovery 

of 26% ± 7% of nucleated cells. As a second step the cells expressing the CD34 antigen (Bl3C5, 

lgG1; Sera-Lab, Crawley Down, UK133
) were positively selected using a FACS 440 (Becton 

Dickinson, Mountain View, Cal.). The labeling and cell sorting procedures have been described. 21 

Thus 3% ± 1% of the original ficoH separated cells were recovered as the final cell population. This 

fraction is designated as CD34 + fraction of accessory cell depleted marrow or enriched blast cell 

fraction and consists of more than 95% immature blast cells. Rare lymphocytes/plasma cells were 

present but monocytes and mature myeloid cells were not distinguishable in these cell preparations 

by cytochemical examinations. 

Hematopoietic growth factors and antibodies: Human !L-1 a and polydona! rabbit anti-G-CSF were 

kindly donated by DrS. Gillis {Jmmunex Corporations, Seattle, WAJ. IL-1 was used at a concentra­

tion of 1 00 U/ml, 50 based on maximal stimulating abilities as established in dose-response 

experiments {data not shown). Polyclonal sheep anti-GM-CSF was a gift from Dr. S Clark (Genetics 

Institute, Cambridge, MA) and was used in a concentration of 0.25%. Anti-G-CSF was also used 

in a concentration of 0.25%. The antibodies at these concentrations neutralized 2000 U/ml of 

GM~CSF and G-CSF in a dilution of 1:10,000, as described.60 Monoclonal antibodies against TN F-a 

and TNF-S were provided by Dr. GR Adolf (Ernst Boehringer Institute, Vienna, Austria). Anti-TNF 
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antibody at a concentration of 1:10,000 neutralized up to 10,000 U/ml of TNF in in-vitro 

proliferation assays of 8-Cll cells204 (data not shown). This concentration of anti-TNF was chosen 

to ensure a complete neutralization of all TNF present in the medium. Recombinant human eryth­

ropoietin was purchased from Amgen Biologicals (Thousand Oaks, Catifomia) and used at 1 U/m!. 

Tritiated thymidine incornoration assay: Proliferation of the enriched normal bone marrow blast cells 

was measured by 3H-TdR uptake. The cens were cultured for 48 hours in round-bottom 96-weH 

microtiter plates (mean 8200 ± 1700 cells/we][) in 0.1 mL of a serum-free medium257 composed of 

BSA, transferrin, Na-selenite, linoleic acid, cholesterol, insulin, B-mercapto-ethanol and lscove's 

modified Dulbecco's medium {lMDML supplemented with growth factors and antibodies, exactly 

as reported. 5° 

Preparation of conditioned media: In three experiments conditioned media were collected foHowing 

culture of enriched normal marrow cells with and without tL-1 in serum-free medium. In parallel a 

control medium with ll-1 but without cells was also prepared. The media were harvested after 64 

hours of culture, centrifuged to remove cells and stored at -20°C. The cells from which these 

supernatants were derived were also examined cytological!y foHowing May-GrUnwald-Giemsa 

staining. 

TNF- and GM-CSF assays: Immunoreactive TNF was measured with the TN Fa immunoradiometric 

assay (IRMA;lRE-Medgenix, Fleurus, Belgium), which makes use of several monoclonal antibodies 

directed against distinct epitopes of TN Fa. The assay showed no cross-reactivity with TNFB, !L-1, 

ll-2 and interferon a, Band y. The detection limit was 2 pg/ml TNF and the inter-assay coefficient 

of variation at a level of 131 pg/ml was 7.2% (n = 1 OJ. 

GM-CSF was measured by EUSA {Zymogenetics lnc, Seattle, Washington), with a sensitivity 

threshold of 8 ng/L. For positive release of GM-CSF and TNF in the culture medium, values were 

required to be 1 0 ng/l or more. 

ln situ hybridization with eDNA GM-CSF: In situ hybridization was performed as described, 131 with 

minor modifications. Enriched bone marrow blast cel!s (approximately 2x1 05/group) were cultured 

with or without lL-1 in serum-free medium, harvested after 18 hours, washed twice with a-Minimal 

Essential Medium (Gibco) and resuspended in 0.050 mL. Then 0.010 ml of this cell suspension 

was applied to fibronectin-precoated {4pg/ml in PBS; 1 hour) glass slides and permitted to stick 

for 10 min. Subsequently, the slides were washed in PBS followed by fixation with formaldehyde 

(3. 7% diluted in PBSJ for 2 min, dehydration in 70% ethanol for 5 min and air-dried. The 0.8 Kbp 

eDNA GM-CSF probe (obtained from Genetics lnstitute347
) and a control1.8 Kb eDNA EGF-receptor 

probe312 were nick-translated using 35S-dATP resulting in a specific activity of 2-6x108 cpm/pg, 
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with a fragment size of ±300 bp. Prehybridization (1 hour) and hybridization (1 8 hours) were done 

at 37 °C applying 1 ng of radio!abelled probe per slide. Fol!owing autoradiography (using NTB-2 

Kodak photoemulsionl for 6 to 28 days the slides were stained with May-GrUnwatd-Giemsa and 

examined at 1 OOOx magnification. 

JL-1 stimulation of DNA-svnthesis of purified normal bone marrow blasts: The results of stimulation 

of highly enriched blast cells from 1 6 different norma! bone marrow donors with !L-1 in the 

presence or absence of neutralizing antibodies against TNFa, GM-CSF and G-CSF are shown in 

table 1. IL-1 stimulates DNA-synthesis significantly above background 3H-TdR incorporation in ali 

cases (mean ( ±SD) stimulation index {Sil: 3.5 ± 2.1 ). The addition of antibodies against TN Fa to 

the cultures abrogated IL-1 dependent proliferation ("blocking") in S/16 cases partiatly and in 2116 

cases completely. 

Similarly, among those cases the addition of anti-GM-CSF antibody suppressed IL-1 induced 

proliferation in 4/16 instances partially and in 3/16 cases completely. In 5/16 cases DNA-synthesis 

was not reduced when either anti-GM-CSF or anti-TNFa were added to lL-1 stimulated cultures. 

The combination of anti-TNFa and anti-GM-CSF suppressed DNA-synthesis significantly in 13 of 

14 cases and complete suppression was evident ln 7 of those. In the 5 cases where the single an­

tibodies had not reduced DNA-synthesis the combination of anti-TNF and anti-GM-CSF was clearly 

active and in two of the latter cases blocking was comp!ete. In 11 of the 14 cases DNA-synthesis 

was suppressed more efficiently in the presence of both anti-TN Fa and anti-GM-CSF antibodies 

than with either antibody alone, indicating that the effects of the antibodies were additive. 

Anti-G-CSF antibody did not diminish 3 HTdR uptake in four cases tested. Anti-TNFB had no 

inhibitory effect on IL-1 induced DNA-synthesis in two experiments (#12 and #16 of table 1) with 

significant suppression by anti-TNFa (data not shown). 

Finally in comparison with lL-1, the ability of LPS (lipopolysaccharide) to stimulate DNA-synthesis 

of normal bone marrow blast cells was also assessed. LPS (E.Coli serotype 0127:88; Sigma, 

St.Louis,MO,USA) added to cultures in concentrations of 0.01 pg/ml up to 1 pg/ml did not induce 

any stimulation of DNA-synthesis, indicating that the IL-1 effect could not be the result of LPS 

addition. 
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Table 1 

Stimulation of normal bone marrow progenitor cells by ll-1 and 

blocking of this effect by anti-TNF. anti-GM-CSF and anti-G-CSF 

IL-1 without tl-1 plus antibody (a} 
antibody 

exp no aTNF 
no. factor Sl aTNF aGM·CSF aGM-CSF aG·CSF 

2269±699 5792±527 2.6 5708 6630 4877 

2 3721 ±1589 8124±2047 2.2 6790 8601 3788 

3 3503±573 7333± 1584 2.1 6241 4857 4502 

4 512±289 2488±197 4.9 1971 2260 1668 

5 3305±175 5781 ±884 1.7 5077 5411 4125 

6 687±115 1990±102 2.9 1087 1666 

7 3404±157 4926±606 1.4 2985 3812 

8 528±141 4684±445 8.9 3675 3336 4771 

9 3304±192 8443±532 2.6 5925 3710 4128 

10 378± 138 1891±564 5.0 815 1019 504 

1 1 722±173 2873 ±396 4.0 1916 2004 1840 2816 

12 618±298 4423±854 7.2 3164 2842 1914 4542 

13 3326 ±708 4970±584 1.5 3292 3260 2247 4871 

14 387 ± 109 776 ±81 2.0 596 477 349 712 

15 731 ±399 3010±593 4.1 1586 1827 856 

16 1252±245 2877±256 2.3 2092 1721 1653 

Triplicate cultures of accessory ceH depleted!CD34+ normal bone marrow cells were 
set up with or without ll-1 (1 00 U!mll and in the presence of anti-TN Fa, anti-GM-CSF 
and anti-G-CSF antibodies in several combinations. After 48 hours of culture DNA­
synthesis was assessed Values are expressed as mean desintegrations per minute 
(DPMJ ± standard deviations. The stimulation index (Sl) is defined as the quotient of 
dpm of !L-1 stimulated cultures and dpm of noninduced cultures. Blocking is considered 
positive (figures in bold face) when dpm ± SD are significantly less (P < 0.05; Stu­
dents t-testl in cultures with antibody as compared to cultures without antibody. 
Underlined values are not significant[y different from the background incorporation (i.e. 
complete blocking). 
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TNFq and GM-CSF production by enriched bone marrow blast cells: Conditioned media were 

prepared from accessory cell depleted CD34 positive blast cells from three donors and the 

concentrations of immunoreactive TNFa and GM-CSF in those supernatants determined. No 

GM-CSF and low levels of TN Fa were demonstrated in medium conditioned by those cells without 

JL-1. Both TN Fa and GM-CSF concentrations increased significantly in the supernatants of marrow 

blasts that had been cultured with IL-1 {table 2). 

When 10% IL-1 marrow blast derived conditioned medium was added to a standard culture system, 

no myeloid colonies were induced, however an increase in the number of Epa-induced BFU-E from 

100% to 193 % ± 49% In =31 was noted {data not shown). This suggested the presence of burst 

promoting activity, a well-known function of GM-CSp2·2.139•262 in those supernatants. 

Table 2 

TNF- and GM-CSF-concentration in supernatants of enriched blast cells 

from normal marrow induced with il-1 

TNF and GM-CSF (ng/1} in supernatants 

blast cells blast cells cell-free medium 

incubated with il-1 with no IL-1 with IL-1 

TNF GM-CSF TNF GM-CSF TNF GM-CSF 

exp #1 373 nd 186 nd nd 

exp #2 638 61 400 

exp #3 69 12 18 nd 

Accessory cell depleted/CD34 + normal bone marrow cells were incubated for 64 hours 
with or without !l-1 {1 00 U/ml) and the supernatants collected. Control medium 
without cells but with IL-1 was incubated similarly. The TNF and GM~CSF concentra­
tions are expressed as ng/l. - : negative, i.e., values of 1 Ong/l or less; nd = not done 
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In situ demonstration of GM-CSF messenger RNA !mRNAl in normal marrow blasts: Enriched normal 

bone marrow progenitor cells were incubated with and without tl-1 for 18 hours in serum-free 

medium. In-situ hybridization of the cells with a GM-CSF eDNA probe revealed GM-CSF mRNA in 

6% of unstimulated and in 12% of IL-1-stimulated cells (table 3). The percentage of strongly posi­

tive cells (> 20 grains/cell) was 3% in non-induced cultures, and 7% in IL-1 induced cultures. 

Figure 1 shows a cytospin slide of bone marrow blast cells after incubation with ll-1 and probed 

with GM-CSF eDNA. 

Table 3 

In situ hybridization of GM-CSF mRNA on normal bone marrow 

blast cells with and without IL-1 stimulation 

no. of grains 
per cell 

0-5 

6- 10 

11 - 20 

21 -50 

>50 

unstimulated 

94.25 

1.75 

3 

0 

% positivity 

stimulated 
with !l-1 

88 

3.75 

1.5 

5 

1.75 

In-situ hybridization with a GM-CSF probe was performed on unstimulated and !l-1-
stlmulated {100 U/mll enriched normal bone marrow blast cells. After autoradiography 
the number of grains were counted per cell (400 cells counted). The distribution of cells 
with 0-5, 6-10, 11-20, 21-50 and more than 50 grains per eel! is given for noninduced 
normal marrow blasts (!eft column) and ll-1 induced blasts (right column}. Control 
hybridization with an EGF-receptor eDNA probe was less than 0.5 grain/cell. 
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Fig 1. An autoradiogram of a cvtospin slide of accessory cell depteted/CD34 + normal 
bone marrow cells, incubated with IL-i (100 U/ml) and in-situ hybridized with 35$­
labeled GM-CSF eDNA. A cell with multiple grains indicating strong positivity for 
GM-CSF mRNA is visible among several negative cefls. 

Discussion 

We demonstrate here that ll-1 may induce proliferation of highly enriched immature normal bone 

marrow cells. The stimulating effect of ll-1 is apparently the result of a two-stage process that 

includes the induction of TN Fa and GM-CSF as a first step and a ceflular response of DNA-synthesis 

as a second event. The notion that IL-1 induces cytokines in normal blast cefls to elicit proliferation 

is supported by three sets of experimental findings: (a) the inhibition of ll-1 induced DNA-synthesis 

with specific antibodies against TN Fa and GM-CSF; (b) the increased release of immunoreactive 

TN Fa and GM-CSF by bone marrow blasts into the culture supernatant following JL-1 induction; {c) 

the increase of GM-CSF mRNA positive cells among normal marrow blasts and the appearance of 

ceHs strongly positive for GM-CSF mRNA ( > 50 grains/eel!) in response to lL-1. The role of il-1 

in the regulation of human hematopoiesis is diverse. Hitherto direct effects of IL-1 upon blast ceHs 

have not been recognized. Indirect effects of ll-1 however are well established. For instance 

GM-CSF and G-CSF production is induced in fibroblasts and endothelial cetls following stimulation 
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by IL-1.29•137•262·275 The enriched blast cell poputation which was separated from normal marrow 

and used in the experiments described here was carefully depleted of accessory cells and consisted 

almost exclusively of cells with blast-morphology. After 64 hours in culture there was no 

cytological change in the cell population. Nevertheless we cannot absolutely exclude that minimal 

numbers of accessory cells were admixed with the immature cell fraction and responsible for the 

IL-1 effect. We however do not consider this a likely exptanation since up to 12% of lL-1 induced 

ceHs expressed GM-CSF mRNA and this fraction does not correlate with the number of morphologi­

ca!ly recognizable accessory celts. Our observations suggest that certain normal marrow blast ceHs 

may produce GM-CSF and TN Fa. In analogy leukemic blast celts are able to produce GM-CSF in 

response to IL-1 and thus stimulate their own proliferation. 60·352 It follows that autocrine stimu[ation 

of blast cells may be a physiologic event rather than being leukemia specific (pathologic). 

Observations that TNF may strongly enhance GM-CSF induced proliferation of human AML­

cells61·1 13 suggest an important role for TNF and its inducer IL-1 in the regulation of hematopoiesis. 

Even at low levels of GM-CSF significant proliferative activity can be induced in immature marrow 

celts when TNF is present as costimulus. Thus positive interactions between TNF and GM-CSF 

permit powerful stimulatory effects that appear under control of the common inducer lL-1. ln 

addition it is conceivable that as an extension of the here described stepwise mechanism of positive 

regulation primed by lL-1, TNF may in turn trigger the release of GM-CSF and G-CSF in tertiary 

blast cells in analogy to its ability to induce GM-CSF and G~CSF in fibroblasts and endothelial 

cells28,208 thereby further augmenting the hematopoietic response. Furthermore it has been shown 

that TN Fa induces the production of IL-1 in endothelial cells and fibroblasts. 150,218 The evidence that 

IL-1 and TNF may reciprocally stimulate the production of each other in different target cells implies 

that both molecules may significantly amplify their positive effects on CSF production providing a 

very powerful mechanism for expansion of hematopoiesis in times of stress. 
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Chapter 8 

GENERAl DISCUSSION 
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8.1 lnterleukin-3 and Granulocvte-Macroohage-CSF 

The colony-inducing abilities of the two mu!tipotent growth factors il-3 and GM-CSF were 

examined and compared. The experiments described in chapter 3 demonstrate that IL-3 and 

GM·CSF have partly overlapping targets in vitro. Both molecules induce corony formation from 

BFU-E, CFU-GEMM and CFU-Eo {chapters 2 and 3). The narrow spectrum of target cell stimula­

tion contrasts to the stimulation of a broad array of progenitor cetls that has been reported by 

other investigators.156·Hla,
196

•
198

·271 ·
272

•
306 Our findings suggest that the published wider range of 

target cells stimulated by IL-3 and GM-CSF is probably due to costimulation by admixed 

accessory cells. 71
• 
1 68· 

191
· 
196

• 
198

•
231

·
271

·
272

•286•306 The limited stimulative spectrum of il-3 and G M­

CSF becomes apparent only when the target progenitor cells are separated from accessory 

cells. The admixture of monocytes (for ll-3 and GM-CSFJ or granulocytes (for GM-CSF) with 

progenitor cells results in the outgrowth of CFU-G, CFU-M and occasional CFU-GM in ll-3 or 

GM-CSF stimulated cultures. This most probably relates to the abilities of monocytes to produce 

G-CSF, M-CSt= and possibly GM-CSF in response to IL-3 and GM-CSF {table 8.1), and of the 

abilities of granulocytic cefls to produce G-CSF and M-CSF in response to GM-CSF (table 8.2). 

The cytokines with regulatory functions in hematopoiesis that are produced by monocytes are 

listed in table 8.1 Many other cytokines are also produced by monocytes (reviewed by 

Nathan216
). The hematopoietic regulators that may be produced by neutrophilic granulocytes are 

listed in table 8.2. 

The experiments described in chapter 3 demonstrate that even in the progenitor cell-enriched 

CD34·positive ceH fraction a strong accessory cell effect may stili be apparent. Additional 

depletion of myeloid cel!s and monocytes with immune cytolysis restricts the stimulating effects 

of IL-3 and GM-CSF significantly. The results from chapters 2 and 3 thus emphasize the need 

for a rigorous elimination of accessory cells from the target ceH population in order to separate 

direct effects of growth factors from indirect effects. Recently the limited spectrum of 

stimulation of IL-3 and GM-CSF has been confirmed by others. The effect of JL-3 was shown to 

be confined to early progenitors170 and eosinophil progenitor cells.54·286 The IL-3 effects on more 

mature granulocytic progenitors have been demonstrated to be largely dependent on the 

presence of lineage-specific growth factors in culture, e.g. G-CSF and/or serum components. 284 
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table 8.1 CYTOKINES PRODUCED BY MONOCYTES 

Following stimulation by References 

M-CSF adherence PHA 
ll-1 IFN-y 117,118,161,173 
TNF IL-3 226,227,248,275 
LPS GM-CSF 320,340 
IL-4 
phorbolesters 

G-CSF adherence PHA 
IL-1 IFN-y 161' 173, 227, 228 
TNF IL-3 275,320,340 
LPS GM-CSF 
ll-4 

GM-CSF adherence LPS 161,275 
TNF IL-1 

TNF adherence LPS 
ll-1 TNF 39, 107, 112, 125 
ll-3 GM-CSF 161,219,238 
M-CSF 329, 332 
LFA-3, CD44, CD45 

IL-1 adherence LPS 
TNF M-CSF 83, 112,282 
IFN-y+ IL-2 GM-CSF 329,332 
LFA-3, C044, CD45 

IL-6 adherence 1, 14 
LPS IL-1 120,308 

With respect to GM-CSF several studies have shown that the stimulatory spectrum of GM-CSF 

depends largely on the level of enrichment of the bone marrow and the culture 

conditions.13
•
84

•200 GM·CSF is a muttipotential hematopoietin with effects on early maturation 

stages. 284 Part of the GM-CSF production may be autocrine and tl-1 driven, with an enhancing 

role of unknown significance for TNF (chapter 7). The stroma is part of a positive feedback loop 

that includes ll-1 and TNF-a resulting in the production of GM-CSF. The colony stimulating 

effects of GM-CSF on CFU-G and CFU·M mainly depend on accessory cells and synergistic 

activity with other growth factors (Chapters 3 and 513·
84

·193). CFU-Eo are stimulated strongly by 

GM-CSF.54 
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table 8.2 CYTOKINES PROOUCEO BY NEUTROPHIL$ 

Following stimulation by References 

IFN-a G-CSF 269 

IL-6 GM-CSF 49 
TNF 
LPS + PMA 

IL-1 GM-CSF 165.184 

TN F-a GM-CSF 166 
G-CSF 
M-CSF 

BFU-E CFU-Eo 

IL-3 

GM-CSF 

CFU-GEMM 

GM-CSF IL-3 

Figure 8.1. A comparison of the stimulatory effects of IL-3 and GM-CSF on BFU-E, CFU-Eo and 

CFU-GEMM. 
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Although !L-3 and GM-CSF stimulate largely similar types of progenitor cells, they differ in the 

magnitude of their response (figure 8.1). IL-3 is a more efficient stimulator of BFU-E. In cultures 

stimulated with optimal concentrations of !L-3, the addition of GM-CSF does not further 

enhance BFU-E numbers. This indicates that the population of ll-3 responsive progenitors 

includes the population of GM-CSF responsive BFU-E. Equivalent numbers of CFU-GEMM are 

induced in response to GM-CSF and ll-3. The colonies formed do not differ with respect to size 

and maturational status. 

CFU-Eo are stimulated equally well by GM-CSF and il-3 with respect to numbers. Furthermore 

the effects of GM-CSF and IL-3 on eosinophilic progenitor cells are partially additive indicating 

that incompletely overlapping populations of CFU-Eo are stimulated by GM-CSF and IL-3. 

Eosinophil colonies stimulated by GM-CSF tend to be larger than colonies stimulated by IL-3. 

For full expansion and maturation of eosinophils IL-5, produced by T-ceUs, is also required.164•278 

The resemblance in activity between GM-CSF and IL-3 is supported by similarities in their 

receptor binding capacities. !L-3 and GM-CSF reciprocally inhibit binding of the other growth 

factor to its receptor on eosinophils 171 and on monocytes which has led to the speculation that 

a common receptor chain may be involved.75 Park et ai 233 have shown that a subclass of IL-3 

receptors binds GM-CSF. Budel et al34 demonstrated a common IL-3/GM-CSF binding site on 

monocyt:es and leukemic cells. These investigators also found low affinity GM-CSF binding sites 

that cannot bind !L-3 and high affinity !L-3 sites that cannot bind GM-CSF on monocytes. A 

structural explanation for these phenomena was at least partially provided by the demonstration 

of the existence of a common B-chain for the GM-CSF and !l-3 receptors. 108
•
142 Later the 

common .B-chain was also found to be associated with the ll-5 receptor. 297
·298 The B-chain 

together with the specific GM-CSF or lL-3 or ll-5 a-chain thus may create the high-affinity 

GM-CSF, IL-3 and !L-5 receptors respectively. The GM-CSF, IL-3 and IL-5 a-chain per se bind 

the corresponding ligand with low affinity {recently reviewed by Nicola & Metcalf, Cell 67:1, 

1991). 

The fact that ll-3 and GM-CSF seem to act largely on identical target cells may suggest 

redundancy within the system of growth factor regulation of hematopoiesis. The overlap in 

target cell spectrum between ll-3 and GM-CSF may however be incomplete with IL-3 stimulat­

ing the more immature progenitors and GM-CSF stimulating the more mature progenitors. This 

is supported by the finding that ll-3 responsive CFU-b!ast are not responsive to GM-CSF151.224
• 

At the other end of the spectrum it appears that the synergistic effects between GM-CSF and 

G-CSF/M-CSF are greater than the synergistic effects between IL-3 and G-CSF/M-CSF (see 

below). 
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8.2 Granulocvte-CSF and Macrophaqe:CSF 

As is evident from the experiments described in chapters 4 and 5, the unipotent CSFs G-CSF 

and M-CSF stimulate the formation of mature granulocytic colonies and small numbers of 

macrophage colonies, respectively. The stimulatory efficiency of these factors increases 

considerably in synergy with IL-3 or GM-CSF. GM-CSF synergizes strongly with G-CSF: G-CSF 

induced colonies are augmented in number and size with an increased proportion of immature 

cells when GM-CSF is present in culture as costimulus. Hematopoietic progenitor cells generally 

survive in the presence of hematopoietic growth factors. Following the withdrawal of these 

factors the cells undergo active eel! death (apoptosis) and expire. Hematopoietic growth factors 

factors can prevent or postpone apoptosis, a mechanism that has recently been demonstrated 

in cell !ines.309
•
343 The survival of CFU-G in culture which depends on the presence of G-CSF 

improves when GM-CSF is also added to the cultures. ll-3 in combination with G-CSF has a 

positive effect on CFU-G colony size and CFU-G survival and inhibits maturation moderately. 

The magnitude of the response to ll-3 is however considerably smaller than that to GM-CSF 

and the numbers of G-CSF induced colonies are not elevated in the presence of ll-3. 

The colony response to M-CSF alone, that is comparatively small, is also enhanced by GM-CSF. 

Costimulation with M-CSF and GM-CSF augments numbers and size of macrophage colonies. ll-

3 however has no measurable effect on M-CSF induced colony formation. 

lt is thus apparent that IL-3 and GM-CSF show in addition to the similarities in action (see 

section 8.1 J differences as regards their synergistic effects with G-CSF and M-CSF. It is 

apparent from the results of chapter 4 and 5 that GM-CSF has a great influence on colony 

numbers from CFU·G and CFU-M while ll-3 has not. Apparently with progressive maturation 

the cells remain dependent on GM-CSF but meanwhile loose responsiveness to ll-3.224 

The newly characterized hematopoietic growth factor SCF also synergizes with G-CSF resulting 

in increased numbers and larger CFU-G colonies. 17
·
194 Broxmeyer et al32 demonstrate enhance­

ment of size only with respect to CFU·G colonies in response to G-CSF + SCF. Thus SCF has a 

role that adds to that of IL-3 and GM-CSF on CFU-G. SCF has no effect on M-CSF induced 

CFU-M colonies. 

The three pluripotent stages with declining self-renewing abilities, stem ceH, CFU-blast and 

CFU-GEMM are indicated in Fig.8.2. Following entry into ceH cycle these progenitors become 

dependent on il-3 for survival and proliferation.157•223·
224 The total number of cell divisions that 

the progeny of a particular stem cell undergoes may be genetically programmed.224 The role of 

SCF183
·359 in stimulating CFU-blast is still unclear. SCF {in cooperation with Epa) stimulates more 
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and larger CFU-GEMM and BFU-E colonies than do ll-3 and GM-CSF.17·32•
194 Furthermore SCF 

synergizes with IL-3 and GM-CSF in the formation of CFU-GEMM and BFU-E colonies. Respon­

siveness to GM-CSF becomes apparent at the CFU-GEMM stages of the stem cell compartment. 

CeU division of CFU-GEMM marks the transition from immature pluripotent progenitor cells 

towards lineage restricted progenitor cells. This transition depends on !L-3 and GM-CSF, 

however it is not clear how the actual choice between the major myeloid lineages is made. It 

has been hypothesized224 that the latter decision is the result of a process of sequential loss of 

differentiation options, proceeding in a stochastic fashion. In in-vitro experiments the majority 

of the colonies are single-lineage, either erythroid (from BFU-E). or myeloid (from CFU-G, CFU-M 

or CFU-Eol or megakaryocytic {from CFU-Meg). A minority of the colonies represent more than 

one lineage and every combination of mixed colonies may appear.154 This is considered as evi­

dence that the loss of differentiation options does not proceed in a fixed order but randomly. 

The relative ratio of the end products is then determined by the relative concentrations of the 

growth factors involved. In addition the myeloid progenitors may become responsive to ll-5 in a 

stochastic manner. 153•154 

The progenitor eel! termed "CFU-GM" may require further discussion. In most of the older 

literature on in-vitro bone marrow cultures the term "CFU-GM" is used as a coHective name for 

progenitor cetls for ail types of myeloid colonies. The use of the term CFU-GM indicates the 

existence of a myeloid stem cell which can give rise to lineage specific progeriitor ce!ls like 

CFU-G, CFU-M, CFU-Eo and CFU-Baso. Analogous to the CFU-GEMM, CFU-GM should also be 

able to form mixed colonies with exclusively myeloid elements. In our experiments with high!y 

enriched progenitor cells and pure recombinant growth factors, either as single factors or as 

combinations, these mixed myeloid colonies were very rare. Even with the combined stimulation 

of ll-3, GM-CSF, G-CSF and M-CSF scarce CFU-GM colonies were detected. Mixed 

granulocyte-macrophage colonies appear in appreciable numbers on!y when PHA-LCM is 

applied. This is perhaps best demonstrated by figure 1 and table 1 in chapter 3. With increasing 

level of enrichment of the target cell population GM-CSF loses its ability to stimulate CFU-GM 

(as well as CFU-G and CFU-Ml, while PHA-LCM continues to stimulate CFU-GM. This may 

indicate that PHA-LCM contains an additional substance needed for the outgrowth of GM-colo­

nies. 

Efficient stimulation of colony formation requires the cooperation of a variety of growth factors 

of which ll-3, GM-CSF, G-CSF and M-CSF and SCF have been identified. Not unlikely the 

existence of more molecules that regulate the proliferation and survival of committed myeloid 

progenitor cells may continue to be discovered This complex network of enhancing interactions 

suggest the functional importance of synergism for steady state and/or compensatory control of 

hematopoiesis.42
•
84

•
195

•
259 In addition it most likely has important implications for the therapeutic 

use of these molecules in vivo for stimulating hematopoiesis optimally. 

83 



BFU-E 

GM-CSF 

SCF 

IL-9 

Epo 
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CFU-GEMM 
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CFU-Meg 

??? 
ll-6 

ll-'11 

CFU-Eo CFU-Baso CFU-G CFU-M 

j IL-3 

GM-CSF 

ll-5 

eosinophil 

SCF j G-CSF j M-CSF 

IL-4 Jl-6 

SCF 

neutrophil macrophage 

erythroid basophil megakaryocyte 

Figure 8.2. The hierarchical system of hematopoietic progenitor cells with the growth factors 

and cytokines that are active at the transitions between the various cell types. 
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8.3 lnterleukin-6 Tumor Necrosis Factor and lnterleukin-1 

From the experiments described in chapter 6 it appears that IL-6 when applied in vitro to highly 

enriched progenitor cells, neither stimulates colony growth, nor affects colony growth induced 

by IL-3, GM-CSF or G-CSF. However when combined with M-CSF a strong synergistic effect 

appears with respect to number and size of macrophage colonies (chapter 6). Furthermore IL-6 

has a positive effect on the primitive pluripotent progenitor cells. These celts are generally 

dormant (in G0-phase) and enter active cell cycle after variable G0 periods. lL-6 shortens the G0 

period and recruits more stem cells into the G1 -phase. 157
•
223

•
224 ll-6 has been shown to 

counteract wild-type p53 induced apoptosis in myeloid leukemia cells. 354 Furthermore IL-6 

promotes the survival of an IL-3 dependent cell-line possibly by delaying apoptosis.309•343 It may 

be speculated that IL-6 also can promote survival of stem celts by delaying apoptosis. 

Thus !L-6 has an effect on at least one type of committed progenitor cell (CFU-Ml as well as on 

immature progenitor cells. The effect on CFU-M was recently confirmed by Jansen et a!. 128, 

who found ll-6 to be "a permissive factor for monocYtic colony formation". 

IL-6 is a prime mediator in the host response to infection and injury.3-49 and the ll-6 effects on 

hematopoiesis could be part of this response. IL-6 production is an early event in the response 

to infection and likely leads to stimulation of hematopoiesis as a whole and to an expansion of 

the monocYte/macrophage pool in addition to its positive action on B cells. The macrophages 

capable of producing !L-6 thus may establish an autocrine feedback loop. 

The effects of interleukin-1 became evident in a proliferation assay of highly enriched bone 

marrow blast cells (chapter 7). IL-1 induced the production of TNF and GM-CSF from this 

population of very immature celts. These secondary factors in concert induced proliferation of 

the cetls (chapter 7). Schaafsma et a1259 have shown that lL-1 also induces G-CSF from a 

population of CD34/HLA-DR enriched bone marrow celts. We did not demonstrate the latter 

effect. The discrepancy between these results could be due to a different method of progenitor 

enrichment and consequently different numbers of contaminant monocvtes which may have 

been responsible for the IL-1 induced G-CSF production. ll-1 is an efficient inducer of diverse 

hematopoietic growth factors and other cytokines in monocvtes, endothelial cells and fibro­

blasts (table 8.31. 

Another indirect effect of IL-1 on hematopoiesis is its synergistic activity with ll-3 in the 

induction of CFU-bfast. This effect has later been attributed to (ll-1 induced) IL-6 production 

from accessory cells157
, i.e., !L-6 acting as the actual synergistic factor. The observation that 

JL-1 can induce secondary growth factors in normal bone marrow blast cells as well as in 

accessory ceHs emphasizes its potential!y important role in the regulation of hematopoiesis. 
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table 8.3 

M-CSF 

G-CSF 

GM-CSF 

ll-1 

ll-6 

CYTOKINES PRODUCED BY ENDOTHELIAL CEllS AND FIBROBlASTS 

Following stimulation by 

ll-1 
TNF 
lPS 

ll-1 
TNF 
LPS 

ll-1 

TNF 

LPS 
TNF 
IL-1 

ll-1 
TNF 
LPS 

References 

88,261,273,274,275 
261, 275 
275 

29,86,88,261,273, 275,358 
30, 144, 261' 275 
275 

29, 86, 88, 137, 261,262 
274,275,358 
28,30,308,261,273,275 

162, 167, 202, 324 
150,162,167,218 
187,327 

55. 129, 146, 188, 189,279 
129, 145, 188, 189 
129, 188, 189 

Apparently IL-1 occupies a central position in the cytokine network that directs the hemato­

poietic and immune systems as well as the response to infection and injury. 

ll-1 87, and perhaps TNF and IL-6 as well, may provide continuous signals to the bone marrow 

stroma production of G-CSF and M-CSF, factors that are essential for the survival and 

proliferation of mature hematopoietic progenitor cells. Tovey et at310 have demonstrated high­

level expression of the genes for ll-1, TNF and IL-6 in tissues of normal individuals. The 

constitutive expression of IL-1 may promote hematopoiesis in three ways, at three different 

levels of maturity: 

a. induction of ll-6 which, in synergy with JL-3, recruits stem cefls from the G0-phase into cell 

cycle, 

b. induction of the production of GM-CSF (and TNF-a) by very immature progenitor cells for 

their own survival and proliferation, 

c. induction of the production of GM-CSF, G-CSF and M-CSF by endothelial cells and 

fibroblasts, for survival and proliferation of the more mature types of progenitor cells. 
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In the response to infection and injury the elevated production of IL-1 may augment hematopoi­

esis according to the same mechanisms. 

TNF-a clearly has indirect effects on the proliferation of immature progenitor cells. The release 

of TNF-a and GM-CSF as triggered by IL-1 may result in a proliferative response in bone marrow 

blast cells {see above).ln addition TNF-a may further augment the release of GM-CSF. Whether 

TNF-a also exerts a direct stimulative effect on the blast cells remains a possibility, since in 

several experiments proliferation can be blocked only with antibodies to TNF-a and not with 

antibodies to GM-CSF. This can be explained by the intermediate production of a factor other 

than GM-CSF by TNF-a, or by a direct effect of TN F-a. 

Our observations are in agreement with recent data,11
•
239 indicative of a positive stimulatory 

effect of TNF-a on IL-3- or GM-CSF-induced progenitors. 

TN F-a inhibits the proliferation of G-CSF induced progenitors. This may relate to the observed 

TNF-induced down-regulation of G-CSF receptors on myeloid cells.73 Apparently TNF-a has dual 

effects on hematopoiesis: enhancement of the immature stages and suppression of the mature 

stages. At the same time TNF-a is a strong inducer of GM-CSF, G-CSF and M-CSF in mono­

cytes, endothelial cells and fibroblasts. 

These positive and negative actions may be part of the physiologic response to infection and 

injury: a centra[ response directed at expansion of the early stages of myelopoiesis, combined 

with a peripheral response characterized by stimulation of monocytic and granulocytic effector 

ce!ls.40 

These investigations shed some light on the complex interactions in the humoral regutation of 

hematopoiesis. With the emergence of an increasing number of new growth factors, research 

wit! continue. On the one hand this will be done at the single cell level, eliminating all accessory 

cell effects. On the other hand research will focus on growth factor-receptor interactions and 

signal-transduction pathways. Eventually this may lead to a full description of the human 

hematopoietic stem ce!l in terms of growth factor requirements and possibly to the ability to 

propagate this stem cell in vitro. 
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Summarv 

Hematopoiesis is the process of cell division, differentiation and maturation that begins at the 

hematopoietic stem cell and terminates at the functional end cells. This process is controlled by 

a set of glycoprotein molecules termed hematopoietic growth factors. The cDNAs encoding far 

the major hematopoietic growth factors have been cloned and expressed and the pure recom­

binant growth factors became available for research. In this thesis in vitro experiments are 

described concerning the regulation of growth and differentiation of hematopoietic progenitor 

cells by recombinant hematopoietic growth factors. 

In chapter 1 the growth factors and cytOkines that were part of the experimental work, i.e. 

IL-3, GM-CSF, G-CSF, M-CSF, IL-1, IL-6 and TNF, are d;scussed br;efly. 

Chapter 2 describes the effects of ll-3 on in-vitro colony formation from enriched, Bl3C5-

{CD34)-positive, bone marrow progenitor cefls. We demonstrate that IL-3 stimulates colony 

formation from BFU-E, CFU-Eo and CFU-GEMM. A broader spectrum of stimulation, i.e. 

including CFU-G, CFU-M and CFU-GM becomes evident when monocytes are added to the cul­

tured cell suspension. T-lymphocytes and granulocytes do not show this effect. Apparently 

monocytes produce secondary growth factors, e.g. GM-CSF and/or G-CSF, which induce 

additional colony formation from CFU-G, CFU-M and CFU-GM. 

The important role of accessory cells in the expression of the colony stimulating activity of 

hematopoietic growth factors is also demonstrated in chapter 3. GM-CSF is considered a multi­

lineage colony stimulating factor, similar to IL-3. The experiments described in chapter 3 

provide evidence that from a population of highly enriched progenitor cells GM-CSF stimulates 

colony formation from BFU-E, CFU-Eo and CFU-GEMM only. When unpurified marrow is 

cultured, GM-CSF also stimulates colony formation from CFU-G, CFU-M and CFU-GM. ll-3 and 

GM-CSF thus have a similar restricted spectrum of target cell stimulation, i.e. BFU-E, CFU-Eo 

and CFU-GEMM. They mainly differ in a quantitative sense. ll-3 is a more potent stimulus for 

BFU-E. GM-CSF is a more efficient stimulator of CFU-Eo. 

When we take into account that IL-3 and GM-CSF have a limited spectrum of stimulation, full 

outgrowth of all types of colonies can only occur when these early acting hematopoietic growth 

factors cooperate with other factors e.g. G-CSF and M-CSF. In chapter 4 the cooperative 

effects of ll-3 and G-CSF are described. Although ll-3 does not induce colony formation from 

CFU-G, we demonstrate that IL-3 has significant effects on granulocytic colony size, composi­

tion and survival. 

Specific interactions between certain early acting and late acting hematopoietic growth factors 

are discussed in chapter 5. GM-CSF, that does not stimulate colony formation from CFU-G, 

CFU-M or CFU-GM, exhibits a strong synergistic effect on G-CSF and M-CSF derived colony 

formation. Colonies stimulated by G-CSF plus GM-CSF are considerably larger and contain more 
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immature cells than colonies stimulated by G-CSF alone. Furthermore the in-vitro survival of 

CFU-G is enhanced by GM-CSF. M-CSF by itself stimulates scarce macrophage colonies from 

highly enriched progenitor cells. In combination with GM-CSF however many CFU-M are 

induced to colony formation. Eosinophil colony formation induced by GM-CSF or ll-3 is not 

affected by the supplementation of G-CSF or M-CSF to culture. The two multilineage growth 

factors, ll-3 and GM-CSF, have been compared directly. IL-3 only synergizes with G-CSF with 

respect to colony size and stage of maturation, not with respect to numbers. ll-3 has no effect 

on M-CSF induced colony formation. 

Apart from the four classical hematopoietic growth factors many other cytokines influence 

hematopoiesis, directly or indirectly. Some of these cytokines have been listed and briefly 

described in chapter 1. In chapter 6 the effects of IL-6 on in-vitro cultures of highly enriched 

hematopoietic progenitor cells are discussed. Strong synergism is observed when lL-6 is 

combined with M-CSF with respect to macrophage colony number and size. ll-6 itself does not 

induce colony formation, nor does it affect colony formation induced by Epa, ll-3, GM-CSF or 

G-CSF. This effect of ll-6 on CFU-M is not observed in unpurified marrow cells, presumably 

because of endogenous !l-6 production by monocytes in the cultures. Monocytes are efficient 

producers of IL-6 and the synergistic effect of ll-6 and M-CSF on CFU-M can be regarded as a 

positive feedback mechanism. 

Chapter 7 describes another approach to the assessment of effects of cytokines on immature 

bone marrow cells. ll-1 induces proliferation of highly enriched bone marrow cells (as tritiated 

thymidine incorporation) through the intermediate production of TNF-a and GM-CSF. G-CSF 

production is not induced by ll-1. Since the cultured ceH population consists almost completely 

of blast ce!ls, we suggest that the blast cells themselves can be induced to produce TN F-a and 

GM-CSF. This was confirmed for GM-CSF by in-situ hybridization experiments. An estimated 

proportion of 12% of IL-1 induced bone marrow blast cells produce GM-CSF mRNA versus 6% 

of noninduced cells. Furthermore TNF-a and GM-CSF are detected by immunologic assays in the 

supernatants of cu!tured IL-1 induced blast cells. In cooperation with accessory cells several 

positive feedback loops can be postulated encompassing IL-1, TNF, GM-CSF, G-CSF and 

M-CSF. This highlights the importance of the inflammatory mediators ll-1 and TNF in the 

stimulation of the early stages of hematopoiesis. !L-1 may thus have a function in the regulation 

of base-line hematopoiesis in three ways: induction of GM-CSF production by immature bone 

marrow cells and induction of the production of IL-6 and late acting growth factors by 

accessory cells. These experiments also demonstrate that blast cells can serve as paracrine 

accessory cells in the stimulation of other blast cells. 

In chapter 8 the results are discussed in the context of current knowledge of the humoral 

regulation of hematopoiesis. 
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Samenvaning 

Hematopoiese is het proces van celdeling, differentiatie en maturatie wat bij de hematopoie­

tische stamce! begint en eindigt bij de uitvoerende ceHen. Dit proces wordt gestuurd door een 

aantai glycoproteinen welke hematopoietische groeifactoren worden genoemd. De eDNA's 

we!ke voor de voornaamste hematopoietische groeifactoren coderen zijn gec!oneerd en tot 

expressie gebracht, waarna de gezuiverde recombinant groeifactoren beschikbaar kwamen 

t.b.v. wetenschappelijk onderzoek. In dit proefschrift worden in-vitro experimenten beschreven 

aangaande de regulatie van de groei en differentiatie van hematopoietische stamcellen door 

recombinant hematopoietische groeifactoren. 

ln hoofdstuk 1 worden de groeifactoren die onderwerp waren van het onderzoek, te weten il-3, 

GM-CSF, G-CSF, M-CSF, ll-1, il-6 en TNF kart besproken. 

Hoofdstuk 2 behandelt het effect van IL-3 op de in-vitro kotonievorming door verrijkte 8!3C5-

(CD34)-positieve beenmerg stamcelten. Wij Iaten zien dat BFU-E, CFU-Eo en CFU-GEMM tot 

ko!onievorming worden gestimu!eerd door !l-3. Een breder stimulatiespectrum, inclusief CFU-G, 

CFU-M en CFU-GM wordt bereikt wanneer monocyten aan de kweken worden toegevoegd. Met 

T -lymfocyten en granu!ocyten wordt dit effect niet bereikt. Klaarblijkelijk produceren monocyten 

secundair groeifactoren, bijvoorbeetd GM-CSF en/of G-CSF wefke op hun beurt kolonievorming 

door CFU-G, CFU-M en CFU-GM induceren. 

De belangrijke rot van accessoire ceHen bij de expressie van koJonie-stimulerende activiteit van 

hematopoietische groeifactoren wordt ook aangetoond in hoofdstuk 3. GM-CSF wordt be­

schouwd als een mu!tipotente kolonie-stimulerende factor, evenats il-3. De experimenten 

beschreven in hoofdstuk 3 Iaten zien dat in een populatie van sterk verrijkte hematopoietische 

voorlopercellen GM-CSF aileen kolonievorming induceert door BFU-E, CFU-Eo en CFU-GEMM. 

Wanneer ongezuiverd beenmerg wordt gekweekt, stimuleert GM-CSF oak kolonievorming door 

CFU-G. CFU-M en CFU-GM. IL-3 en GM-CSF hebben dus een overeenkomend beperkt stimula­

tiespectrum, te weten BFU-E, CFU-Eo en CFU-GEMM. Zij verschi!len voornametijk in kwantitatie­

ve zin. tl-3 is de sterkere stimulus voor BFU-E. GM-CSF is een efficii§ntere stimulator van 

CFU-Eo. 

Wanneer we er van uitgaan dat tL-3 en GM-CSF een beperkt stimulatiespectrum hebben, dan 

kan uitgroei van a!le typen koionies aileen plaatsvinden wanneer deze vroeg aangrijpende 

hematopoietische groeifactoren samenwerken met andere groeifactoren, zoais G-CSF en M-CSF. 

In hoofdstuk 4 worden de effecten van de gezamenlijke ·stimulatie door JL-3 en G-CSF beschre­

ven. Hoewe! ll-3 geen kolonievorming door CFU-G induceert, biijkt toch dat il-3 significante 

effecten heeft op groone, samenstelling en overieving van granulocytaire kolonies. 

Specifieke interacties tussen vroeg aangrijpende en taat aangrijpende hematopoietische 

groeifactoren worden besproken in hoofdstuk 5. GM-CSF, dat zelf geen kolonievorming door 

CFU-G, CFU-M en CFU-GM induceert, vertoont een sterk synergistisch effect op kolonie 

vorming door CFU-G en CFU-M. Kolonies gestimuleerd door G-CSF plus GM-CSF zijn aanzienlijk 

grater en bevanen meer onrijpe cellen dan kolonies gestimuleerd' door G-CSF aHeen. Bovendien 
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wordt de in-vitro overleving van CFU-G door GM-CSF bevorderd. M-CSF zelf stimuleert geringe 

aantallen macrofagen-kolonies uit sterk verrijkte voorlopercellen. In combinatie met GM-CSF 

echter worden vele CFU-M aangezet tot kolonievorming. Eosinofiele kolonievorming geinduceerd 

door IL-3 of GM-CSF wordt niet beinvioed door G-CSF of M-CSF. De twee multipotente 

groeifactoren IL-3 en GM-CSF werden direct vergeleken. ll-3 vertoont aileen synergisme met 

G-CSF met betrekking tot grootte en maturatiestadium van de kolonies, niet met betrekking tot 

aantallen kolonies. il-3 heeft geen effect op M-CSF geinduceerde kolonievorming. 

Behalve de vier klassieke hematopoietische groeifactoren hebben vele andere cytokines direct of 

indirect invtoed op de hematopoiese. Enkele van deze cytokines worden kart beschreven in 

hoofdstuk 1. in hoofdstuk 6 worden de effecten van tL-6 op in-vitro kweken van hoog­

gezuiverde hematopoietische voorlopercellen besproken. Sterk synergisme met betrekking tot 

aanta! en grootte van macrofagen-kolonies wordt gezien wanneer ll-6 wordt gecombineerd met 

M-CSF. ll-6 zelf induceert geen kolonievorming, noch beinvloedt het de kolonievorming geindu­

ceerd door Epo, IL-3, GM-CSF of G-CSF. Dit effect van IL-6 op CFU-M wordt niet gezien in 

ongezuiverde beenmergceHen, waarschijnlijk a.g.v. endogene IL-6 produktie door monocyten in 

de kweken. Monocvten zijn krachtige producenten van lL-6 en het synergistisch effect van IL-6 

en M-CSF op CFU-M kan worden beschouwd als een positief terugkoppelingsmechanisme. 

Hoofdstuk 7 beschrijft een andere benadering van het onderzoek naar de effecten van cytokines 

op onrijpe beenmergcetlen. ll-1 induceert pro!iferatie van sterk verrijkte beenmergcellen 

(gemeten ats tritium-thymidine incorporatiel via de intermediaire produktie van TNFa en 

GM-CSF. G-CSF produktie wordt niet geinduceerd door [L-1. Aangezien de gekweekte celpopu­

latie vrijwel geheel uit blastaire ceHen bestaat, veronderstet!en wij dat de blastaire ceilen zelf 

kunnen worden aangezet tot produktie van TN Fa en GM-CSF. Ten aanzien van GM-CSF werd 

dit bevestigd door in-situ hybridizatie experimenten. 12 % van de il-1 geinduceerde beenmerg 

blast cellen bleken GM~CSF mRNA te produceren tegen 6 % van de niet-geinduceerde ceHen. 

Bovendien werden TN Fa en GM-CSF door middet van immuno!ogische bepalingen aangetoond in 

de supernatanten van de gekweekte !L-1 geinduceerde blastaire ceHen. [L~1, TNF, GM-CSF, 

G-CSF en M-CSF nemen dee\ aan positieve terugkoppelingsmechanismen in samenwerking met 

accessoire ceHen. Oit onders~hrijft het belang van de ontstekingsmediatoren IL-1 en TNF bij de 

stimu!atie van de vroege stadia van de hematopoiese. ll-1 kan op drie manieren een plaats 

hebben bij de regulatie van de hematopoiese: inductie van GM-CSF produktie door onrijpe 

beenmergcelten en inductie van de produktie van lL-6 en taat aangrijpende groeifactoren door 

accessoire cellen. Deze experimenten tonen eveneens aan dat blastaire celten kunnen dienen ats 

paracriene accessoire ceHen bij de stimulatie van andere blastaire celien. 

In hoofdstuk 8 worden de resultaten besproken in de context van de thans bekende gegevens 

over de humorale regulatie van de hematopoiese. 
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APPENDIX 

A culture system for human bone marrow 

A historical overview 

The development of colony assays for hematopoietic progenitor celts started in the early sixties using inbred mouse­

strains. Till & McCulloch~02 developed the in-vivo spleen colony assay in irradiated recipient mice. True in-vitro cell­

culture techniques using agar gel or methylcellulose based culture media240 (Bradley & Metcalf 1966} were initially 

developed for murine progenitors. Culture systems for human myeloid240 .267 end erythroid127 progenitor cells followed. 

These cultures did not permit the formation of colonies from pluripotent stem cells, equivalent to the murine spleen 

colony forming cell. Based on en in vitro assay for murine cells':JO Fauser & Messnerl"·02 then developed a culture 

system. later modified by Ash et al (5), that permined the colony formation from both erythroid end myeloid progenitor 

cells. Among the single-lineage colonies a smell fraction of colonies was recognized, composed of both erythroid and 

myeloid elements. These mixed lineage colonies were assumed to have originated from a more immature cell-type, 

possibly the pluripotent stem cell itself. This cell was named CFU-GEMM, i.e., colony-forming-unit granulocyte-erythroid­

macrophage-megakaryocyte. 

The development of an assav for CFU-GEMM. 

After analysis of several variables a culture medium was prepared that was used for our experiments with normal bone 

marrow; it was based on the system originally described by Fauser & Messncr.01
•
82 The formula of the medium is listed 

in table A. 

Table A 

ingredient 

methylcel!ulose 2.8% 

human plasma 

mixture of nutrients 

erythropoietin 

PHA-LCM 

cells 

{a) 

{b) 

,,, 
{d) 

{e) 

{f) 

lscove's modified Dulbecco's medium (lMDM) 

add to medium 

40% 

30% 

10% 

1 U/ml 

10% 

a. Methyleol!ulose: This substance makes the medium semi-solid. thus immobilizing the cells and allowing the formation 

of compact colonies. Throughout aU experiments we have made use of Methocel A4M premium Quality CDOW Chemical, 

Rotterdam) with a visoosity of 3500-5600 cps. The powderod methylcellulose is dissolved in lscove's modified 

Dulbecco's medium (IMDMJ. First double strength !MOM is prepared by dissolving one package of lMDM (Gibco) in 500 

ml water, adding 3.024 g NaHC03, 100,000 units penicillin and 100,000 pg streptomycin, followed by filter 
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sterilization using a .22 filter. Next. 14 g of methylcellulose is put into an erlenmeyer flask together with a magnetic 

stirring bar; the flask is capped and autoclaved. Then. while stirring, 235 ml boiling water is added and afte~r the 

methocel has dissolved it is boi!e~d again for 2 minutes. The solution is now allowe~d to cool (white stirring) to a 

temperature of 40"C followed by tho addition of 235 mt double strength !MOM. This method is neccossary to avoid 

boiling lMDM which leeds to deterioration. Stirring proceeds for two hours at room temperature and then overnight at 

4°C. The materiel is divided in small aliquets while checking for the homogeneity of the solution. and frozen at ·20°C. 

A culture medium containing 40% of this methylcellulose will have e final methylceltulos~concentration of 1.12%. 

Many researchers employ mothylcellulose in a concentration of 0.8 % to 0.9 %. The advantage of the higher 

concentration is that in the more viscous medium the colonies ere more compact and separated from each other, thus 

diminishing tho occurence of overlapping colonies. An extra advantage is that the medium remains in place when the 

culture dish is inverted, allowing the dish to be examined under an ordinary microscope. which is definitely superior to 

an inverted microscope. The possibility of inversion is however also dependent on the type of dish. 

b. ~ For reasons of convenience we prefer to use autologous heparinized plasma. When this is not available 

pooled human plasma will also de. in order of preference AS-plasma or blood group compatible plasma. Citrated plasma 

can also be used, however EDT A·p!asma has adverse efects on colony formation. The plasma is centrifuged at 11 OOg 

for 10 minutes. collected, centrifuged again and filtrated through a .22 filter. 

c.~ The mixture of nutrients was modified by Swart & LOwenberr after Guilbert & 1scove.' 03 [t contains 

bovine serum albumin (BSA, 10% in !MOM; Sigma, fraction V, dialysed): 75%; human transferrin (9.62 X 104 M) in a 

solution of FeC! 3 (1.92 x ·10-3M): 8%; egg lecithin (3.75 x 10"3M): 8%; sodium-selenite (1.25 x 10"5M): 8% and rs­
mereaptoethanol (0.5 x 10-3M): 0.5%. This mixture is added in a 10% final concentration to the culture medium. 

d. Ervthropoietin !Epol: Sheep Epo (Connaught, step [II) was used until recombinant human Epo (Amgenl became 

available. In several experiments they were compared and found to be equally effective. 

e. PHA·LCM'0 : This medium is used as a source of colcny stimulating activity (CSAJ. For the preparation of PHA·LCM, 

human blood was separated over a Ficoll-gradient and the mononuclear cells were harvested and washed. To prevent 

proliferation they were irradiated (25 Gy) and suspended in a concentration of 2 x 106/ml in a medium of 10% fetal calf 

serum (FCSJ and 1% PHA (We!lcome) in a-MEM (Gibco) in 14 ml tubes (max. 4 ml). After 7 days incubation at 37°C 

the tubes were centrifuged and the supernatant was sterilized by mambrane filtration (0.22). Each batch of PHA-LCM 

was tested for optima! co!ony stimulating abilities (number and diversity of colonies) and discarded when not satisfying. 

In most experiments however pure, recombinant growth factors were used; PHA·LCM was then, of course, not added 

to the cultures. 

f. Cells: The number of eons per dish depends on the level of enrichment of the cultured cell fraction. In general too high 

a cell concentration should be avoided as this may lead to inadvertently low colony counts.30r. The cell number cultured 

must therefore always balance between the formotion of a sufficient amount of colonies and possible negative effects 

due to crowding of cells. 

During preparation of the culture medium the abovedescribed ingredients are added together in a tube of suitable size. 

Methylcetlulose has to be added using a syringe. Due to the viscosity of the medium, one has to prepare more than the 

desire<! culture volume, e.g. for a 1 ml culture, 1.5 m! medium is prepared and for duplo 1 m! cultures 2.5 mi. After 

addition of alt ingredients the medium is thoroughly mixed by shaking or vortexing to ensure homogeneity. It is then 

plated into the desired number of dishes using a syringe. The dishes are collectively positioned into a large glass petri-
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dish including a water dish and then placed into the incubator {37°C, air with 5% C02. 100% humidity). Tho incubation 

period is ideally 15 days; a longer period will lead to increasing degeneration, while a shorter period leaves insufficient 

time for especially erythroid colonies to mature. 

Colonies formed in cultures of human bone marrow 

Introduction 

The assay that was described in the previous paragraph allows for the recognition of cells by their ability to form colo­

nies. A colony is defined as a group of 50 cells or more that have most likely originated from one parental cell. This cell 

is designated the •colony-forming-unit• {CFU) and several classes of these are distinguished according to the type of 

end cells they generate. 

Ideally, one should be able to enumerate and classify the colonies in the culture dishes, using an inverted microscope. 

With the necessary skill and experience this is possible using criteria like color, size and shape of the colony and the 

nature of tho cells that are lying in close proximity to the colony. For reasons of quality control the appearance of a 

colony has to be compared regularly with the morphology of the coils that make up tho colony. To this extent a finely 

drawn glass Pasteur pipette is used to aspirate single colonies under direct vision through an inverted microscope taking 

care not to aspirate other colonies or single cel!s surrounding the colony to be examined. The aspirated colony is then 

put onto a glass slide using a cytocentrifuge, stained with May-GrUnwald-Giomsa stain and examined under a 

microscope. 

Ervthroid colonies 

In cultures containing erythropoietin {Epol hemoglobinizod erythroid colonies are easily identified by their red color after 

15 days in culture. Erythroid colonies are named ·surst Forming Unit-Erythroid'" (BFU-E) and the method to culture them 

in methylcellu!ose was first described by lscovo et al.' 27 Tho name refers to tho tendency of these colonies to form sub­

colonies which are lying together as ·bursts". 

The red hue, so typical of colonies containing erythroid cells. cannot be relied on for identification of all BFU-E. When 

erythroid colonies are relatively immature, hemoglobinization has not yet taken place and the colonies are transparant 

with a faint brownish tint and may resemble myeloid colonies. Furthermore in cultures which have degenerated to a 

certain extent the red color becomes brown. 

The shape of the colonies is another clue to their identity. A typical feature of erythroid colonies is their compactness, it 

is often not possible to distinguish single cells along the rim of the colony. An alternative configuration can be seen 

when the colony lies on the bottom of the dish and a larger rim of single layered erythrocytes surrounds the red center. 

giv·mg it more or less the appearance of a fried egg. When it is possible to discern single cells. they are relatively large. 

i.e. being a size between that of nn eosinophil and a macrophnge, and arc not round but rather angular. 

Mixed colonies 

Mixed colonies. derived from CFU-GEMM. are generally defined as heterogeneous with areas of red cells and areas of 

colorless cells0un or as aggregates with a compact homoglobinized center and a peripheral ·lawn· of colorless cclls.5 

For the distinction of unilineage erythroid colonies from multilineage colonies two characteristics are important: the color 

of the colony and the appearance of the cells lying directly adjacent to the colony. As has been discussed above, the 
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color of the colony is not always helpful leaving as the most impor""..ant criterium the appearance of the cells surrounding 

the colony. The presence of myeloid cells in ctose proximity of the red center is the hallmark of a mixed colony. 

This directly relates to tho problem of overlapping colonies and the percentage of non-erythroid cells that must be 

present to classify a colony as muttitineage. 

A major critique to the CFU-GEMM culture system has been that two single-lineage colony-forming cells, e.g. a BFU-E 

end a CFU-Eo, could develop close to each other in such a way that the result resembles one mixed colony.243 However 

with careful observation it is possible to exclude a large part of these overlapping colonies. Tho use of highly concentra­

ted methylcetlulose is an advantage here as it results in a more viscous culture medium with more compact co!onies and 

preventing the outgrowth of large spread-out overlapping colonies.' 43 Furthermore, visualization through an ordinary 

microscope. which is superior to an inverted microscope. allows for a better distinction of separate colonies. Crowding 

of colonies has to be avoided by culturing low numbers of celts. Thus with critical colony scoring it is possible to give an 

accurate account of the number of mixed colonies, with a low number of wfalse-positivesw. 

When candidate mixed colonies are picke<l off in order to examine the morphology of the cells. surrounding myeloid 

cells may be aspirated inadvertently thus confounding tho differentia! count. To control for this error we have calculated 

the percentage of myeloid coUs in 60 carefully aspirated erythroid colonies. We found on average 0.5% ± 0.6% of 

myeloid cells (range 0 - 2.4%) and assumed that these gave background contamination levels. For a mixed colony we 

then required the minimal contribution of myeloid cells to be 5%. Ali in situ suspect mixed colonies. i.e. with a smatl 

number of myeloid cetls around tho red center, consistently contained more than 5% myeloid cells, which apparently 

were mixed with tho red cells and were not visible. 

Mixed colonies are composed of a mixture of erythroid and non-erythroid (myeloid) cells and are often named 

CFU-GEMM, i.e. derived from a cell that con form a colony incorporating granulocytes, erythrocytes, macrophoges and 

megakaryocytes. In practice part of the mixed colonies do not incorpowto all four lineages present in the name 

CFU-GEMM, however by definition at least two have to be present. 

Eosinophil colonies 

Eosinophil colonies have a distinct morphology and are easily recognized in culture dishes. They appear as sma!l and 

compact wtightw colonies composed of round cells with a highly refractile border.02·72.'26 The roundness of the celts is a 

very distinct feature and together with the refractileness it seems as if the cells are surrounded by a thin, black circular 

line. When eosinophil colonies are stimulated with a combination of IL-3 and GM-CSF they can reach a considerable 

size. Nicola ot al220 mentioned that most aosinophil colonies contain only eosinophils. In a minority of cases we found 

also mixed granulocytic/eosinophilic colonies. The very large and compact eosinophil colonies can easily be mistaken for 

a somewhat degenerated BFU·E. the size of the cells then serves to classify the colony correctly. 

Granulocvric colonies 

The name wgranulocytic colonyw usually refers to colonies of the neutrophil lineage. Granulocytic colonies are not easily 

discribed; they may appear in many patterns from compact round to loosely arranged and dispersed. The colonies are 

composed of clear cells which are slightly smaller than eosinophils. Usuully these cells are not round but angular. The 

smal! dispersed typo of colony is often composed of small and round cells which are mature segmented granulocytes. 

The diversity in colony- and cell type reflects differences in maturation state and depends largely on the type of stimulus 

used. 

Important in the classification of granulocytic colonies is the question whether other. non-granulocytic cells are ad­

mixed. This is not difficult in case of admixed eosinophils or mature macrophages, which are readily distinguished. 

However it may be particularly difficult to distinguish immature cells of the monocytic linoage. These cells are 
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somewhat larger than myeloid cells. A colony composed of cells of uneven size may be suggestive of a granulocyte­

macrophage (GMJ instead of a granulocytic colony. ln many cases it will be necessary to identify the nature of the 

colony by microscopical examination of a stained cvtospln preparation. 

Macrophage colonies 

Macrophages, together with megakaryocytos, arc tho largest cells that can be found in colony cultures of human 

marrow. The macrophages are apparent by their brown color and the abundance of internal structure. Megakaryocytes 

on the contrary appear empty and have a highly refractile border. 

Most macrophage colonies are loosely arranged and dispersed. They contain a comparatively small number of cells, i.e. 

rarely more than 200 (in tho mouse , macrophage colonies are the largest colonies, containing many cells). Under 

optimal stimulatory conditions however larger, compact colonies may arise as well. When immature monocytic cells are 

involved problems may arise in differentiating the colonies from granulocytic colonies. 

Granulocvte-macrophage colonies 

This appears to be a very rare type of colony (again, in the mouse this is a very common type of colony). Their occur· 

renee depending largely on the type of stimulus used. They arc composed of a mixture of myeloid cells and macro­

phages and are usually easily recognized. Identification may be more difficult when the macrophage part consists of 

immature monocytes or when a dispersed macrophage colony overlaps with a granulocytic colony. 

Megak:;~ryocvtic colonies 

In rare cases megakaryocytes can be encountered in the cultures. They are very easily recognized being large clear cells 

with a very peculiar refractile border. Because their appearence is not very reproducible, depending amongst other 

things on the plasma batch used in the cultures, we have elected not to evaluate them. In some cases mention is made 

of their appearance. however not in a quantitative way. 

Blast cell colonies 

Ogawa at al. have described a colony type which contains blast cells and has self-renewal capacity.''(,& These colony 

forming cells are more primitive than tho CFU·GEMM and as yet they represent the most immature progenitor cells that 

can be cultured routinely. The blast-cell colonies develop in cultures of enriched bone marrow cells that have been loft 

without growth factors for 14 days, allowing the more mature progenitor cells to die due to lack of growth factors. Next 

IL·3 and lL-S are added'~7 and after another 7 days colonies start to appear which consist mainly of immature blast-like 

cells and have a very high replating capacity. Since these blast-CFC are present at the initiation of the culture. it is 

possible that they develop during the 14 to 16 days of an ordinary bone marrow culture, however they are difficult to 

distinguish between the multitude of much larger mature colonies. 

Basophilic col~nies 

Basophilic colonies are potentially very interesting, since the multilineage growth factor IL-3 was originally described in 

the mouse as mast cell growth factor.;)'(,' Furthermore human basophils have iL-3 receptors and acquire a differentiated 

phenotype following stimulation with IL-3.;)';).:!14 Jt has been suggested that oosinophils and basophils share a common 

progenitor cell02 and many CFU-GEMM have been shown to contain histamine.tt:l Colonies consisting of basophilic 

96 



granulocytes however are not regularly seen in the normal bone marrow culturos described above. They are de.scribed 

as rather smsll loose.ly arranged colonies of cells that rese.mble eosinophils.152 

Enrichment of progenitor eeJ!Is 

Clonogenic versus accessorv cells 

The. clonogenic hematopoietic progenitor cells comprise only a small fraction of the total cell conte.nt of the bone 

marrow; depending on the definition of a progenitor cell this fraction is e.stimeted to be 0.05% • 0.1%. 100 The other 

cells present in bone marrow ond blood do not form colories themselves. However these accessory cells may gre.atly in­

fluence. co!ony formation by the clonogenic cells. The group of accessory cells comprises lymphocytes, monocytes and 

mature myeloid cel!s, and also stromal cells, e.g. endothelial cells and fibroblasts. In order to determine direct e.ffects of 

growth factors on progenitor cells, it is necessary to use a cell population which is depleted of ell possibly interfering 

accessory cells. Or, in other words. ideally e cell population consisting solely of progenitor cells. 

Methods of enrichment 

Instrumental in enrichment procedures is the availability of a useful characteristic of the cell to be enriched. Initially 

physical characteristics like size end density were employed in often very ingenious procedures. A variety of enrichment 

methods has raeently been reviewed by Visser & Van Bekkum.~23 

Velocity sedime.ntation is one such method. Its cell separating capacity depends on the size. of the cells; when used as a 

single method however high enrichment factors cannot be e.xpected.33" Counterflow ce.ntrifugation244,34(1 is s method 

that has the same physical basis as veloeity sedimentation. i.e. it separates on the basis of size' 62 and can process Iorge 

que.ntities of cells in relatively short time. 

Separation based on the density of ce.lls hss shown mora promise. Dicke et al00 reached e 70·1 OOx enrichment of 

human CFU-C with a two-step discontinuous albumin density centrifugation te.chnlque. Moore et al20"' enriched monkey 

CFU-C 1 OOx using buoyant density gradie.nts. A simplified variant of density centrifugation is the density-cut; this 

consists of layering the unseparated cells on top of a fluid with a fixed. specific density. After centrifugation the ee!ls 

with a higher density are pelleted under the separation fluid, while the. cells with a !ower density are accumulated on top 

of the separation fluid. The classic and most widely used example is Fieoli-Hypaque. with a density of 1.077 g/cm3 .2o:. It 

separates erythrocytes and granuloeyte.s {pellet) from mononuclear cells which remain in the interphase above the Fieoll 

layer. 

The methods listed above do not take advantage of specific phenotypic differences between populations of cells. The 

use of immunological markers to distinguish cells can serve for both positive or negative. selection. 

Antibody-labeled eel~ can be lysed following the addition of complement (usually rabbit-serum).21>1 

T·lymphocytes ere removed efficiently from the marrow specimen using the sheep-erythrocyte rosette technique 

followed by Ficoll-seporation'n.no.20• A variant of this techniQue is the method of immune-rosetting'00
·'

1
"': cells, labeled 

with antibodies of murine origin form rosettes with sheep erythrocytes coupled to rabbit anti-mouse antibodies. 

In the method of immune-panning236,:~r.o labeled cells are allowed to attach to petri-dishes coated with rabbit-anti-mouse 

lg and se.parated from the supernatant. 7tl.n.IXl 

A final method for selecting cells using several parameters at the same time employs the fluorescense-activated cell 

sorter {FAC$).'0 This method was selected for the work presented in this thesis. 
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Selection of the method for progenitor cell enrichment 

Our finally adopted method for progenitor cell enrichment is a combination of negative selection, i.e. depletion, and posi­

tive selection, combining the advantages of a crude method, i.e. f.!lst, simple and able to process large quantities of 

cells, with a highly selective method. Most authors rely on these combiMtions of methods. 

First, using a nylon filter, bone particles and debris ere separated from the marrow cells, which are suspended ln HBSS. 

Second, a density-cut (Ficoli-Hypaque) serves to isolate the mononuclear cells from the erythrocytes and most of the 

granulocytes. Third, tho mononuclear cell suspension is incub.!lted with monoclonal antibodies {MoAbsl against non· 

progenitor cells. We have made use of several MoAbs like VlM-2'71l directed against a broad range of myelo-monocytic 

cells, 944.1 {CD14)Zl7 against monocytes, 84.3 {CD15J:l17 against granulocytic cells and OKT-3 against T-lyrnphocytes. 

Subsequently the labeled cells were lysed using rabbit complement. In later experiments this labeling-lysis step was 

combined with an adherence-step. The fourth and final step consisted of selecting the cells positive for the CD34 

antigen using the FACS. CD34 is expressed on immature hematopoietic cells and a small subpopuletion of 

monocytes&o.&t.t!l!l.200.304.330.33t 

In summary, the combination of methods we have used consists of two preparative followed by a very selective 

enrichment step. 
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PeHens en Margien Wineveen hebben alien op eniger!ei wijze een aandeel geleverd en worden 

daarvoor bedankt. 

Carla SchOlze] heeft samen met Loes van Eijk belangrijk voorbereidend werk verricht bij het 

opzetten van het kweeksysteem en mij met eindeloos gedu!d het lastige scoren van de kweken 

bijgebracht. Bianca Backx heeft aok nag handwerk verricht aan dit onderzoek, samen met 

Lianne zelfs nadat ik a! weg was. Ruud Delwe! heeft veel geduld moeten opbrengen om mij te 

leren werken met de FACS en bij het te hu!p schieten bij technische storingen tijdens experi­

menten (gelukkig had je ook telefoon thuis ... ). Rob Oosterom wordt bedankt voor het uitvoeren 
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van de TNF-immunoassay. De wetenschappelijke discussies met Iva Tauw, Ruud De!wei, lneke 

S!aper, leo Budel, Valeria Santini, Machteld van der Feltz, Bianca Backx, Roel Moberts, Edo 

Vellenga, Jacqueline Groot, Harry Schouten en anderen waren vaak waardevol. leo, jouw vaak 

fantastische uitvindingen hebben voor vee! hilariteit gezorgd en ik zie er naar uit je als coHega te 

kunnen begroeten. Wanneer gaan we weer eten? 

De grate sprang voorwaarts voor dit onderzoek werd bereikt met het ktoneren van het humane 

ll-3 gen bij TNO in Rijswijk. lambert Dorssers, Herman Burger en Gerard Wagemaker ben ik 

zeer erkentelijk voor de geboden mogetijkheid recombinant ll-3 te gebruiken. 

Joke Krefft heeft me veel geleerd over de morfologie van gekweekte ce!len die zo anders is dan 

normale beenmergmorfologie. De mensen van het wetenschappelijk secretariaat, mevrouw 

Sugiarsi, lnge Dijkstra, Thea van Vlijmen en Mariska Drinkwaard zijn ook zeer behulpzaam 

geweest. De mensen van de technische dienst en de afde!ing elektronica waren altijd heel snel 

ter plaatse a!s de laser warm liep, of juist te koud was, water Iekte, of als de FACS stoorde, of 

als gewoon a!!es het begaf. De dames Yank en Westerhout beheerden de uitstekende bib!io­

theek, hadden vaak goede suggesties en brachten de nieuwste tijdschriften tot op het bureau 

(kam daar maar eens om, op de universiteit!!J. Van de afdeling fotografie wil ik vooral Johan 

Marselje danken, evenals Sten Sliwa en Hans Vuik. voor het altijd snei afleveren van prima werk. 

Yvonne Lauer zat c!icht bij het vuur en wist altijd wei wat nieuws te verte!len. in het Dijkzigt­

ziekenhuis zat Jeane Vlasveld in dezelfde positie en oak zij heeft veel gedaan om afspraken en 

"tussendoortjes" te regelen met mijn promotor. 

De chirurgen van de DdHK, met name Bert van Gee! en Thea Wiggers evenals de OK-verpleeg­

kundigen en anaesthesisten wH ik c!anken voor het opbrengen van het nodige gedu!d als ik door 

mijn beenmergpuncties het OK-programma weer eens ophield. 

Tenslotte wil de in vijf jaar apgebouwde intense haat-[iefde re!atie met mevrouw F.A.C.S. 

Becton-Dickinson memoreren. Met al haar nukk.en en streken, door mij afwisseiend zachtaardig 

en hardhandig beantwoord, vormde zij (inderdaad, vrouwelljk) tach een schitterend instrument 

en zij heeft een cruciale rot gespee!d in dit onderzoek. 

lk besluit met de volgende Stelling: "het is goed dat er geen bijt aanwezig is in de FACS-kamer". 
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