ANTIBIOTIC PROPHYLAXIS IN BILIARY TRACT SURGERY

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG Meijer, Willem Simon

Antibiotic prophylaxis in biliary tract surgery / Meijer Willem Simon Thesis Rotterdam. - With ref. - With summary in Dutch. ISBN 90-9005090-6 Subject headings: antibiotic prophylaxis / biliary tract surgery

ANTIBIOTIC PROPHYLAXIS IN BILIARY TRACT SURGERY

ANTIBIOTICA-PROFYLAXE IN DE GALWEGCHIRURGIE

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR
AAN DE ERASMUS UNIVERSITEIT ROTTERDAM
OP GEZAG VAN DE RECTOR MAGNIFICUS
PROF.DR.C.J.RIJNVOS
EN VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN.
DE OPENBARE VERDEDIGING ZAL PLAATSVINDEN OP
20 mei 1992 om 15.45 uur

DOOR

WILLEM SIMON MEIJER GEBOREN TE 'S-GRAVENHAGE

PROMOTIECOMMISSIE:

Promotor: Prof.Dr.J.Jeekel
Co-promotor: Dr.Ir.P.I.M.Schmitz

Overige leden: Prof.Dr.M.F.Michel

Prof.R.van Strik Prof.Dr.O.T.Terpstra

To my parents,

Marion, Susan, Evert-Jan

The publication of this thesis was financially supported by Glaxo, Bayer, the Dr. A.A. van Puyvelde Foundation, Van Hemmen Lippmann, Nationale Nederlanden, Lederle and Auto Suture Nederland.

VOORWOORD

De herhaalde opmerking van mijn vader "een niet-gepromoveerde specialist is een halve specialist" is voor mij de voornaamste drijfveer geweest om dit proefschrift te schrijven. Hoewel het idee van een promotie-onderzoek al lang door mijn hoofd speelde, is het toch bij toeval zover gekomen. Na deelname van de heelkundige afdeling van het Sint Clara Ziekenhuis (Rotterdam) aan een multicentrisch onderzoek over antibiotische behandeling van een geperforeerde blindedarmontsteking onder leiding van Dr.J.C.J.Wereldsma, chirurg uit het Sint Franciscus Gasthuis (Rotterdam), werd door hem het voorstel gedaan de samenwerking te continueren. Gedacht werd aan een nieuwe antibiotica-studie, met eveneens een nieuwe studie-coördinator. Gaarne ben ik op zijn voorstel ingegaan. Met medewerking van chirurgen en microbiologen uit het Sint Clara Ziekenhuis en Sint Franciscus Gasthuis te Rotterdam werd een protocol opgesteld voor een prospectieve multicentrische studie: de GALANT-trial. GALANT werd afgeleid van GALweg en ANTibiotica.

Het is niet mogelijk om iedereen, die aan de totstandkoming van dit proefschrift heeft bijgedragen, persoonlijk te bedanken. Allen die hebben meegewerkt aan de trial wil ik hartelijk danken, vooral de trial-coördinatoren, apothekers en microbiologen van de deelnemende klinieken. Door uw aller inzet is het mogelijk gebleken een grote multicentrische studie tot een goed einde te brengen.

Enkelen wil ik in het bijzonder noemen. Ten eerste mijn promotor, Prof.Dr.J.Jeekel. Beste Hans, ik dank je zeer voor de tijd die je geïnvesteerd hebt in het kritisch doornemen van het manuscript. De meeste dank ben ik zonder meer verschuldigd aan Dr.Ir.P.I.M. Schmitz, mijn co-promotor. Beste Paul, wat jij voor mij, voor de studie en voor dit proefschrift hebt betekend, is zeer veel en moeilijk onder woorden te brengen. Voor je inbreng, enthousiasme, behulpzaamheid en vriendschap ben ik je zeer erkentelijk. Je hulp betrof niet alleen de statistische bewerking van de Galant-trial, maar vooral ook de meta-analyse. Daarnaast ben ik je dankbaar voor alle nuttige adviezen bij de publicatie van een aantal hoofdstukken van dit proefschrift.

De begeleiding en statistische bewerking van de Galant-trial werd financiëel mogelijk gemaakt door Glaxo B.V.. In het bijzonder wil ik Paul Jonker en Arthur Storm hiervoor dankzeggen. Hun belangstelling voor de studie en de hulp bij het bewerken van een aantal trial-formulieren werd zeer gewaardeerd. De begeleiding van

de trial werd grotendeels verzorgd door Cader Research B.V.. Harm Scholte en Rob de Vries hebben veel inzet getoond, waarvoor mijn oprechte dank. Het was spijtig, dat Cader Research aan het einde van de studie moest afhaken.

Cora Bouman wil ik bedanken voor het inbrengen van alle gegevens in de computer, een enorm werk, waar ik zelf geen gat meer in zag.

Laraine Visser was onmisbaar voor de Engelse vertaling c.q. tekstuele correcties.

Mijn collegae chirurgen van het Sint Clara Ziekenhuis te Rotterdam, alsook de chirurgische arts-assistenten, hebben mij regelmatig "gespaard" en steeds belangstelling getoond voor mijn promotie-onderzoek. Hiervoor ben ik hen zeer erkentelijk.

Mijn echtgenote en kinderen werden het meest getroffen door mijn tijdelijke "afwezigheid". Maar mijn aandacht zal nu weer op andere, meer huislijke, zaken gericht zijn, dus: Susan en Evert-Jan, proefschrift wordt weer proefwerk!

CONTENTS

Chapter 1	INTRODUCTION	
1.1	Introduction	3
1.2	Historical aspects	4
	1.2.1 Asepsis and antisepsis	4
	1.2.2 Antimicrobial prophylaxis of wound infections	6
	1.2.3 Gallstone disease and cholecystectomy	7
1.3	Aetiology of wound infections	9
	1.3.1 Exogenous and endogenous contamination	9
	1.3.2 Bacteriology of the bile	9
1.4	Basic principles of antibiotic prophylaxis	10
1.5	Aims of the study	11
1.6	References	11
Chapter 2	ANTIBIOTIC PROPHYLAXIS IN BILIARY TRACT SURGERY - CURRENT PRACTICE IN THE NETHERLANDS	
2.1	Introduction	17
2.2	Methods	17
2.3	Results	18
	2.3.1 Antibiotic prophylaxis	18
	2.3.2 Antimicrobial agents	18
	2.3.3 Duration of antibiotic prophylaxis	20
	2.3.4 Acute cholecystitis	20
2.4	Discussion	21
2.5	References	23
Chapter 3	CHOLECYSTECTOMY IN THE NETHERLANDS: FREQUENCY, MORTALITY AND MORBIDITY (1987-	
	1989)	
3.1	Introduction	27
3.2	Methods	27

		3.2.1	Definitions	28
:	3.3	Results	3	28
		3.3.1	Frequency	28
		3.3.2	Mortality	28
		3.3.3	Morbidity	30
		3.3.4	Wound infection	30
		3.3.5	Wound dehiscence	31
;	3.4	Discus	sion	31
	3.5	Refere	nces	33
Chapter	4		A-ANALYSIS OF RANDOMIZED, CONTROLLED	
			ICAL TRIALS OF ANTIBIOTIC PROPHYLAXIS	
		IN BU	LIARY TRACT SURGERY	
	4.1	Introdu	action	37
	4.2	Metho	ds	38
		4.2.1	Definitions	38
		4.2.2	Selection of trials	38
		4.2.3	Statistical methods	39
		4.2.4	Criteria for subgroup meta-analysis	40
		4.2.5	Assessment of study quality	40
	4.3	Results	S	42
		4.3.1	Group I trials	43
		4.3.2	Assessment of study quality	45
		4.3.3	Group II trials	46
		4.3.4	Group III trials	46
	4.4	Discus	sion	47
	4.5	Refere	nces	51

Chapter 5	PROPHYLACTIC USE OF CEFUROXIME IN BILIARY SURGERY: RANDOMIZED, CONTROLLED DOUBLE-BLIND MULTICENTRE TRIAL OF SINGLE-DOSE VERSUS MULTIPLE-DOSE IN 1004 HIGH RISK PATIENTS (Galant-Trial)	
5.1	Introduction	61
5.2	Patients and Methods	62
	5.2.1 Patient population	62
	5.2.2 Exclusions	62
	5.2.3 Treatment regimens	62
	5.2.4 Randomization and blinding	64
	5.2.5 Definitions	64
	5.2.6 Surveillance of postoperative infection	64
	5.2.7 Other data	65
	5.2.8 Bacteriological assessment	65
	5.2.9 Number of patients	65
	5.2.10 Withdrawals	66
	5.2.11 Statistical analysis	66
5.3	Results	66
	5.3.1 Patient population	66
	5.3.2 Protocol violations	68
	5.3.3 Mortality	69
	5.3.4 Bacteriological assessment	69
	5.3.5 Postoperative infections	70
	5.3.6 Wound infections per hospital	71
	5.3.7 Prognostic factors	71
	5.3.8 Additional antibiotics	73
	5.3.9 Other outcomes	74
	5.3.10 Adverse effects	74
5.4	Discussion	74
5.5	References	76
Chapter 6	COST ASPECTS OF ANTIBIOTIC PROPHYLAXIS IN BILIARY TRACT SURGERY	01
6.1	Introduction	81

	6.2	Materi	ials and methods	81
	6.3	Result	s	83
		6.3.1	Cost of a major wound infection	83
		6.3.2	Calculation of cost effects	83
		6.3.3	Further observations	85
		6.3.4	Potential cost savings	89
	6.4	Discus	ssion	90
	6.5	Refere	ences	91
Chapter	7	GENI	ERAL DISCUSSION AND CONCLUSIONS	
	7.1	Discus	ssion	95
	7.2	Future	e directions	99
	7.3	Refere	ences	100
SUMM	ARY			103
SAMEN	VAT	TING		107
APPEN	DICE	S		111
CURRI	CULU	M VIT	`AE	121

Chapter 1

INTRODUCTION

INTRODUCTION

1.1 Introduction

Even in health, man's environment is one of ubiquitous bacterial presence. As a consequence all wounds are, to a certain extent, contaminated, if only from the normal skin flora. Along with a number of other factors, the development of a wound infection is related to the degree of this bacterial contamination^{1,2}. Prior to Pasteur's studies on bacteriology and Lister's application of them to wounds most, if not all, wounds became infected. The treatment of established wound infections, however, is beyond the scope of this thesis. Attention will focus on the prevention of wound infections. Lowering the incidence of wound infections can be directed to (1) destroying organisms after they have reached the wound, and (2) preventing the arrival or growth of organisms in subcutaneous tissues. The aim of antibiotic prophylaxis is to prevent any bacteria, released into the operative field at the time of surgery, from multiplying^{3,4}. The use of antibiotics for prophylaxis has only recently been accepted as a useful adjuvant to the established principles of antisepsis in surgery.

In cholecystectomy, the problems of operative mortality and serious morbidity have been largely solved. At present, the most common complication of traditional cholecystectomy is wound infection⁵. The importance of reducing this source of morbidity is obvious. Presented in this thesis is a randomized study designed to assess the efficacy of a preoperative, single-dose prophylaxis of cefuroxime.

This introductory chapter of the thesis includes some historical aspects of asepsis, antisepsis, and antimicrobial prophylaxis of wound infection, as well as the history of cholecystectomy. The aetiology of wound infections and the bacteriology of bile are also discussed in this chapter. Furthermore the basic principles of antibiotic prophylaxis and the objectives of the study are outlined. The following five chapters include the original studies. At the end of the thesis a general discussion and conclusions drawn from the study are presented. The thesis is concluded with a summary.

1.2 Historical aspects

1.2.1 Asepsis and antisepsis

Postoperative infections have been a source of problems for as long as surgery existed. A little over 100 years ago the mortality rate due to infected wounds approached levels up to 90 per cent. Generally, pus was the expected concomitant of wounds, but there was virtually no understanding of how it was produced. At that time, even those who accepted the principle that disease could be transmitted from person to person failed to see the connection between contamination and the gangrenous complications of surgical wounds. It was Ignaz Philipp Semmelweis (1818-1865; Figure 1.1) who noted that the annual mortality rate on one of the obstetrical wards of the Allgemeines Krankenhaus in Vienna reached almost 20 per cent, mainly due to puerperal fever. He discovered that the physicians and students usually came to the ward to examine patients directly from the autopsy room. Furthermore, he noted that the patients succombing to infections were usually those in a row of beds conforming to the routine of examination that day. His next step was to require physicians and students under his charge to scrub hands with soap and water and soak them in a chlorinated lime solution before entering

Figure 1.1 Portrait of Ignaz Semmelweis, in 1857, who realized that fatal fevers after childbirth were caused by contamination on doctors' hands

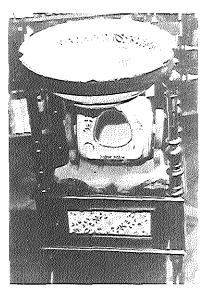


Figure 1.2 Basin and stand used by Ignaz Semmelweis to scrub his hands before examining each patient

the clinic or ward (*Figure 1.2*) and to repeat this after each examination. Over the next months, the obstetrical mortality rate declined to a low of 1.2 per cent. Semmelweis may be credited with being the first to construct a statistically tested system of asepsis (keeping germs away from the patient) before the germ theory had arrived⁶.

Trained as a chemist, Louis Pasteur (1822-1895) discovered that bacteria acted differently on two types of tartaric acid crystals and he applied these observations to the problems of beet alcohol production (for the French wine industry), which a local manufacturer had asked him to investigate. Pasteur demonstrated that microscopic live creatures (microbes) are responsible for fermentation, and that some of these organisms grow in the presence of oxygen (aerobic) while others exist in the absence of free oxygen (anaerobic). The result was an entirely new focus; the germ concept of infection gradually developed and wound complications were viewed with a new perspective.

Joseph Lister (1827-1912), a British surgeon, noticed that broken bones over which the skin was intact usually healed without complication, but complicated fractures commonly developed infections and drainage of pus⁷. He thought that something circulating in the air was responsible - possibly invisible particles which he called "disease dust". When the work of Pasteur was brought to his attention, he appreciated the connection between his own observations on wounds and the microscopic bacteria involved in fermentation. Therefore, Lister sprayed carbolic acid over the patient during an operation in order to kill any bacteria before they could multiply in the wound (Figure 1.3)⁸.

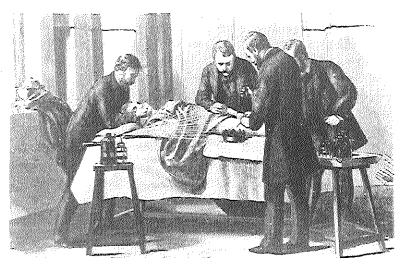


Figure 1.3 Antiseptic surgery (1882) depicting use of Lister carbolic spray as antiseptic precaution during an operation

Many surgeons failed to see the implications of the revelation that infections in wounds came from something "foreign" introduced at operation. They focused on the antiseptic itself (carbolic acid) and the mechanics of its use in sprays and soaks, thereby missing entirely the main concept. Later on, the principles and practice of aseptic surgery were further developed in Germany by Von Bergmann (1836-1907), assisted by Schimmelbusch (1860-1895)^{9,10}.

Ways of fighting microorganisms were given by the ideas and works of Paul Ehrlich (1854-1915). The advent of sulfonamides for the treatment of bacterial infections was a direct, though delayed, outgrowth of Ehrlich's demonstration that dyes could be antibacterial agents. Ehrlich had set in motion the activities of the 20th century that were to revolutionize the therapy of microbial diseases. In 1929, Alexander Fleming (1881-1955) reported in the British Journal of Experimental Pathology his observations on the antibacterial action of *Penicillium noctatum*, with the suggestion that the mold culture could be used to inhibit bacteria as a help in obtaining their culture isolation¹¹. Whatever Fleming may have thought of the eventual usefulness of what he called penicillin, there was virtually no further research until Howard Florey and Ernst Chain from Oxford, England made studies in 1941, which convinced them that penicillin had great therapeutic potential. Other types of antibiotics followed in rapid order. Streptomycin was obtained from *Streptomyces griseus* in 1944. Since 1948 many other similar agents have entered the medical armamentarium, each with a special potency but also with its own limitations.

1.2.2 Antimicrobial prophylaxis of wound infections

After the discovery of penicillin in 1929, antibiotics were fairly extensively used in surgical procedures during the 1940s and 1950s. Although the initial use of antimicrobial prophylaxis was excessive and poorly focused, early studies reported no benefit¹²⁻¹⁶, or even higher infection rates with such prophylaxis^{17,18}. Many of these studies, however, were retrospective and badly controlled; moreover the basic principles of antimicrobial prophylaxis were not well understood. In fact, as many patients already had an infection, this could be seen as a "therapeutic" use of antibiotics. The disadvantages of prophylaxis were also emphasized, including the risks of hematological and hypersensitivity reaction, development of resistance and the masking of concomitant infectious diseases.

From reports published by Howes and Miles *et al.* it became apparent that the immune system of tissue, namely reaction of the wound to existing bacteria, was in fact active for only 1-3 hours after development of the wound^{19,20}. Burke (1961) demonstrated that if penicillin, erythromycin, chloramphenicol or tetracyclin was injected 0-1 hour previously, the reaction to live *Staphylococcus aureus*, intracutaneously injected or

delivered via experimental incisions, was the same as the reaction to dead cultured staphylococci²¹. Burke, who was the first to speak of "prophylactic" antibiotics, proposed that the antibiotic should be given early in order to achieve an effective tissue concentration at the moment of entry of bacteria. This proved to be the scientific basis of antimicrobial prophylaxis. Based on these experimental studies, Linton suggested preoperative administration of clinical antibiotics²². This was evaluated prospectively by Bernard and Cole³. In their randomized study on gastrointestinal and gallbladder procedures 66 patients received, 1-2 hours preoperatively, an intramuscular injection of a combination of penicillin, methicillin and chloramphenicol. Compared with 79 patients receiving placebo only, there was a significant reduction in percentage wound infections from 21 to 5 per cent.

The clinical importance of preoperative administration of prophylactic antibiotics was established in a retrospective study on abdominal perforation wounds²³, and in the much-cited prospective study of Stone *et al* ²⁴. In the latter study it appeared that the group of patients receiving antibiotics 1-4 hours postoperatively had the same percentage wound infections as those receiving no antibiotics. Increasing numbers of studies continue to demonstrate the beneficial effects of antimicrobial prophylaxis. Currently, prophylaxis is a generally accepted procedure, providing that basic principles are observed (see *Chapter 1.4*).

1.2.3 Gallstone disease and cholecystectomy

As early as 2,000 B.C. there was anatomic knowledge of the liver, bile ducts and gallbladder, as demonstrated by clay models of sheep livers made by the Babylonians²⁵. Despite this knowledge, the recognition of gallstones was not recorded until the 5th century. Alexander (525-606), a Greek physician, described concretions within the bile ducts²⁶. In the 13th and 14th centuries observations of human gallstones were made with increasing frequency. Gradually, physicians began to associate the presence of gallstones with symptoms of abdominal pain, peritoneal inflammation and jaundice. Recognition of the manifestations of gallstones by physicians in the 16th and 17th centuries, when specific diagnostic methods were absent, is remarkable.

The possibility of surgical treatment of cholelithiasis had its origin in the 17th century. Johannus Jaenis has received credit for the first cholecystolithotomy in 1673 but, apparently, he extracted gallstones from a biliary fistula following spontaneous drainage of a suppurative gallbladder²⁷. In 1743, Jean Louis Petit, a French surgeon, reported the puncture of an enlarged gallbladder by trocar and cannula, probably being the first invasive procedure of the gallbladder²⁸. On June 15, 1867, John S. Bobbs of Indianapolis, U.S.A. performed the first elective cholecystostomy for hydrops of the gallbladder, or an appendage of this, on a 30-year-old patient²⁹.

From animal studies and various experiments in the mortuary, Carl Langenbuch of Berlin (1846-1901; Figure 1.4) concluded that the absence of the gallbladder had no adverse effects. The easiest way to perform this was via a laparotomy and extirpation of the gallbladder following ligation of the cystic duct and artery. Late in June, 1882 a 43-year-old man with episodes of colic for 16 years, was referred to him as chief of the Lazarus Hospital. An operation was set for the 15th of July. Before the operation measures of extraordinary exactness were taken to secure aseptic conditions. On that day Langenbuch performed the first cholecystectomy in man³⁰. The next morning the patient was found to be without pain and enjoying a cigar. He was discharged early September, 1882. The operation was universally criticized. Robert Lawson Tait, a great pioneer in the field of abdominal surgery, advocated cholecystostomy as the procedure of choice in gallstone disease. He saw no reason for removing the gallbladder merely

Figure 1.4 Carl Langenbuch (1846-1901)

because of the presence of stones. Moreover, he opined that gallstones were derived from the intrahepatic bile ducts, and removal of the gallbladder would not change this condition³¹. Langenbuch, however, maintained that the gallbladder should be removed not because it contained stones, but because it formed them³².

The controversy on cholecystostomy and cholecystectomy would last for several decades and retarded the further development of cholecystectomy. In 1890, eight years after the first operation, only 47 cholecystectomies had been performed by twenty surgeons³³. Nowadays, approximately 400,000 cholecystectomies in the United States³⁴, 43,000 in the United Kingdom³⁵ and 17,000 cholecystectomies in The Netherlands³⁶ are performed every year.

1.3 Aetiology of wound infections

1.3.1 Exogenous and endogenous contamination

The cause of postoperative wound infection is multifactorial. Infection can be considered as the negative result of the degree and type of bacterial contamination on the one hand, and the patient's local defence mechanism on the other. The source of bacterial contamination was initially thought to be exclusively exogenous, caused by non-sterile instruments, personnel or operation room air. Even contamination via the patient's skin was generally seen as being exogenous. Since the times of Lister and Semmelweis much research has focused on prevention of exogenous contaminations: disinfecting the hands of surgeons and operating personnel³⁷; cleaning the skin around the area to be operated^{38,39}; use of surgical masks⁴⁰; cleaning the air in the operation room by means of ultraviolet rays^{41,42}, positive pressure ventilation⁴³, and laminar flow⁴⁴. Many of these aseptic and antiseptic techniques have generated strict rules, which should be observed by all operation department personnel^{45,46}. Through these means, effective control of the major sources of exogenous bacteria has been achieved.

In spite of this, the percentage of wound infections did not reduce significantly⁴⁷. This is attributable to the fact that, apart from exogenous forms, endogenous contamination is also possible. These endogenous contaminations stem from bacterial flora in the intestinal, urogenital or respiratory tracts - thus from the patient self⁴⁸. Endogenous contamination of a wound, caused by opening of infected viscera, is the most frequently occurring cause of wound infections in abdominal operations⁴⁹. In biliary tract surgery endogenous contamination is mainly due to infected bile⁵⁰.

1.3.2 Bacteriology of bile

In the normal gallbladder, bile is generally sterile. In diseases of the gallbladder bile may be infected; the reported incidence of bactobilia is variable, ranging from 8-42 per

cent⁵¹⁻⁵⁵. It is well established that bacteria are more common in bile if the patient is jaundiced particularly if biliary obstruction is due to stones or a benign bile duct stricture, with significant lower numbers of bacteria in the bile of patients with malignant obstruction. The most frequently occurring diseases with infected bile include acute cholecystitis, choledocholithiasis, jaundice due to obstructive gallstones and biliodigestive fistula. Infection is also more common in patients aged over 70 years and patients with a resolving acute cholecystitis⁵⁶⁻⁵⁸.

Infected bile is usually colonized by more than one organism. The more complex the pathology the greater the chance of mixed infections. More complicated cases are also characterized by a greater number of bacteria; these can be high as 10⁶ per ml bile in patients with common bile duct stones or strictures⁵⁹. In approximately 45 per cent of the patients with infected bile anaerobes are present, nearly always as part of a mixed infection⁶⁰. The most frequently occurring aerobes are Escherichia coli, Klebsiella species and Streptococcus faecalis, whereas Bacteroides fragilis and other Bacteroides species form the largest genus of anaerobics^{61,62}. Clostridium perfringens is sometimes present, but seldom of clinical relevance.

Furthermore Chetlin and Elliot, in a retrospective study of 1421 gallbladder operations, found that the chance of wound infection was 40 times greater in patients with infected bile⁶³. Correlation between positive gallbladder cultures and wound infections with the same microorganisms has been confirmed by others^{53,56,59,61}.

1.4 Basic principles of antibiotic prophylaxis

Antimicrobial prophylaxis is defined as the use of antibiotics to prevent infection. This does not involve prevention of secondary infections of wound or drain, but concerns only those infections caused by contamination during the operative procedure. Surgical antibiotic prophylaxis has defined principles governing the absolute and provisionally established requirements for antibiotics. Needless to say, antimicrobial prophylaxis is no alternative for inferior surgical practice or insufficient aseptic management. The general principles of antibiotic prophylaxis are:

- (1) Antimicrobials should be directed against the organisms most likely to be encountered in that particular operation;
- (2) Antibiotics should be present in target tissues at the time of incision;
- (3) The agent should be for short-term use and adequate plasma and tissue levels should be maintained for the duration of the operation and the immediate postoperative period only;
- (4) The operations should have a significant risk of contamination or postoperative infection (i.e. clean-contaminated, contaminated and dirty operations);

- (5) In situations where postoperative infection is rare, prophylaxis should be given only when infection would have catastrophic results;
- (6) Potent antibiotics used for resistant organisms should not be used prophylactically (exceptions include those operations where infection could prove disastrous);
- (7) The benefits of prophylaxis should outweigh the risks, e.g. the antibiotic should have no toxic effects and should not contribute to the emergence of antibioticresistant bacteria.

1.5 Aims of the study

- (1) Assessment of the mode of current antibiotic prophylaxis in biliary tract surgery in The Netherlands. Herefore, a questionnaire was sent to the Chairmen of the Departments of Surgery of all Dutch hospitals. The results of this enquiry are presented in *Chapter 2*.
- (2) A study on the traditional cholecystectomy was conducted in The Netherlands. Recent data from the Public Health Information Center about frequency, mortality and morbidity of cholecystectomy are reported in *Chapter 3*.
- (3) The value of antibiotic prophylaxis in biliary tract surgery was reviewed by meta-analysis. The results of this meta-analysis are presented in *Chapter 4*.
- (4) Assessment of the efficacy of single-dose prophylaxis of a short-acting antimicrobial in high risk biliary surgery. Herefore, a new major trial was designed in which single-dose cefuroxime was compared with multiple-dose cefuroxime. The results of this trial are presented in *Chapter 5*.
- (5) Assessment of the cost effects of different prophylactic regimens in biliary surgery and potential cost savings, based on the results of the abovementioned studies. The cost aspect are reported in *Chapter 6*.
- (6) The thesis is concluded with a general discussion and conclusions (Chapter 7).

1.6 References

- 1. Pollock AV. Surgical wound sepsis. Lancet 1979; i: 1283-6.
- Cruse PJE, Foord R. The epidemiology of wound infection. A 10-year prospective study of 62,939 wounds. Surg Clin North Am 1980; 60: 27-40.
- 3. Bernard HR, Cole WR. The prophylaxis of surgical infection: The effect of prophylactic antimicrobial drugs on the incidence of infection following potentially contaminated operations. Surgery 1964; 56: 151-6.
- Griffiths DA, Simpson RA, Shorey BA et al. Single-dose peroperative antibiotic prophylaxis in gastrointestinal surgery. Lancet 1976; 2: 325-8.

- 5 Public Health Information Center (SIG), Utrecht, The Netherlands, 1990.
- Céline L-F. La vie et l'oeuvre de Philippe Ignace Semmelweis (1818-1865). Thesis, 1936.
- Lister J. On a new method of treating compound fractures, abscesses, etc., with observations on the conditions of suppuration. Lancet 1867; 1: 357.
- Lister J. On the effects of the antiseptic system of treatment upon the salubrity of a surgical hospital. Lancet 1870; 1: 4.
- Bergmann E von. Ueber antiseptische Wondbehandlung. Deutsche Med Wochenschr 1882;
 559.
- Schimmelbusch C. Die Durchführung der Asepsis in der Klinik des Herrn Geheimrath von Bergmann, in Berlin. Arch Klin Chir 1891; 42: 123.
- 11. Fleming A. On the antibacterial action of cultures of a penicillium with special reference to their use in the isolation of B.influenzae. Br J Exper Path 1929; 10: 226.
- Howe CW. Postoperative wound infections due to Staphylococcus aureus. N Engl J Med 1954; 251: 411-7.
- Garrod LP. Present position of the chemotherapy of bacterial infections. Br Med J 1955;
 756.
- Adams R. Prevention of infections in surgical wounds. N Engl J Med 1957; 256: 625.
 Sanchez-Ubeda FE, Rousselot LM. The value of penicillin and streptomycin as post-
- operative prophylaxis. N Engl J Med 1958; 259: 1045.

 16. Barnes J, Pace WG, Trump DS et al. Prophylactic postoperative antibiotics: a controlled
- study of 1007 cases. A M A Arch Surg 1959; 79: 190.
- 17. McKittrick LS, Wheelock FC Jr. The routine use of antibiotics in elective abdominal surgery. Surg Gynecol Obstet 1954; 99: 376-7.
- Johnstone FRC. An assessment of prophylactic antibiotics in general surgery. Surg Gynecol Obstet 1963; 116: 1-10.
- Howes EL. Prevention of wound infection by injection of non-toxic antibacterial substances. Ann Surg 1946; 124: 268.
- Miles AA, Miles EM, Burke J. The value and duration of defence reactions of the skin to the primary lodgement of bacteria. Brit J Exper Path 1957; 38: 79-96.
- 21. Burke JF. The effective period of preventive antibiotic action in experimental incisions and dermal lesions. Surgery 1961; 50: 161-8.
- Linton RR. The prophylactic use of antibiotics in clean surgery. Surg Gynecol Obstet 1961; 112: 218-20.
- 23. Fullen WD, Hunt J, Altemeier WA. Prophylactic antibiotics in penetrating wounds of the abdomen. *J Trauma* 1972; 12: 282-9.
- Stone HH, Hooper CA, Kolb LD et al. Antibiotic prophylaxis in gastric, biliary and colonic surgery. Ann Surg 1976; 184: 443-52.
- Glenn F and Grafe WR Jr. Historical events in biliary tract surgery. Arch Surg 1966; 93: 848-52.
- Glenn F. Biliary tract disease since antiquity. Bull NY Acad Med 1971; 47: 329-50.
- Gulik TM van. Langenbuch's cholecystectomy, once a remarkably controversial operation. Neth J Surg 1986; 38: 138-41.
- Beal JM. Historical perspective of gallstone disease. Surg Gynecol Obstet 1984; 158: 181-9.

- Cutter IS. John Stough Bobbs and lithotomy of the gallbladder. Int Abst Surg 1928; 47: 409-11.
- Langenbuch C. Ein Fall von Extirpation der Gallenblase wegen chronischer Cholelithiasis: Heilung. Berliner Klin Wochenschr 1882; 19: 725-7.
- 31. Lawson Tait R. Note on cholecystostomy. Br Med J 1884; 13: 1224.
- Halpert B. Fiftieth anniversary of the removal of the gallbladder. Arch Surg 1932; 25: 178-82.
- Kehr H. Vorwort. In: Die Praxis der Gallenwege-Chirurgie. München: J.F.Lehmann's Verlag, 1913: VII-XXV.
- Maki DG, Lammers JL, Aughey DR. Comparative studies of multiple-dose cefoxitin vs. single-dose cefonicid for surgical prophylaxis in patients undergoing biliary tract operations or hysterectomy. Rev Infect Dis 1984; 6 (Suppl 4): S887-95.
- Crumplin MKH, Jenkinson LR, Kassab JY et al. Management of gallstones in a district general hospital. Br J Surg 1985; 72: 428-32.
- Otter G den. De klinische letaliteit van operaties wegens galsteenziekte. Ned Tijdschr Geneeskd 1985; 129: 1183-5.
- Lowbury EJL, Lilly HA. Disinfection of the hands of surgeons and nurses. Br Med J 1960; 1: 1445-50.
- Cole WR, Bernard HR. Inadequacies of present methods of surgical skin preparation. Arch Surg 1964; 89: 215-22.
- Davies J, Babb JR, Ayliffe GAJ et al. Disinfection of the skin of the abdomen. Br J Surg 1978; 65: 855-8.
- 40. Dineen P. Microbial filtration by surgical masks. Surg Gynecol Obstet 1971; 133: 812-4.
- 41. Hart D. Bactericidal ultraviolet radiation in the operating room: Twenty-nine year study for control of infections. *JAMA* 1960; 172: 1019.
- 42. Howard JM, Barker WF, Culbertson WR et al. The influence of ultraviolet irradiation of the operating room and of various other factors. Ann Surg 1964; 160 (Suppl): 1-192.
- Shooter RA, Taylor GW, Ellis G et al. Postoperative wound infection. Surg Gynecol
 Obstet 1956; 103: 257.
- Lowbury EJL, Lidwell OM. Multi-hospital trial on the use of ultraclean air systems in orthopedic operating rooms to reduce infection. J R Soc Med 1978; 71: 800-6.
- Dineen P. Influence of operating conduct on wound infection. Surg Clin North Am 1975;
 55: 1283-7.
- Altemeier WA, Burke JF, Pruitt BA et al. Preparation of the operating team and supporting personnel. In: Manual on control of infection in surgical patients. Philadelphia, J.B. Lippincott, 1984; 95-123.
- 47. Alterneier WA. Control of wound infection. J R Coll Surg Edinb 1966; 11: 271-82.
- Altemeier WA, Culbertson WR, Hummel RP. Surgical considerations of endogenous infections - sources, types, and methods of control. Surg Clin North Am 1968; 48: 227-40.
- Greenall MJ, Froome K, Evans M et al. The influence of intra-incisional clindamycin on the incidence of wound sepsis after abdominal operations. J Antimicrob Chemother 1979;
 5: 511-6.
- Robson MC, Bogart JN, Heggers JP. An endogenous source for wound infections based on quantitative bacteriology of the biliary tract. Surgery 1970; 86: 471-6.

- Edlund YA, Mollstedt BO, Ouchterlony O. Bacteriological investigation of the biliary system and liver in biliary tract disease correlated to clinical data and microstructure of the gallbladder and liver. Acta Chir Scand 1958; 116: 461-76.
- Lykkegaard Nielsen M, Justesen T. Anaerobic and aerobic bacteriological studies in biliary tract disease. Scand J Gastroent 1976; 11: 437-46.
- 53. Keighley MRB, Flinn R, Alexander-Williams J. Multivariate analysis of clinical and operative findings associated with biliary sepsis. *Br J Surg* 1976; 63: 528-31.
- Keighley MRB, Blenkharn JI. Infection and the biliary tree. In: Blumgart LH, ed. Surgery of the Liver and Biliary Tract. London: Churchill Livingstone, 1987; 121-32.
- Ulrich C. Bacteriologische aspecten van ziekten van de galwegen. Ned Tijdschr Geneesk
 1981: 125: 187-90.
- Ulrich C. Wondinfectie na operatie aan de galwegen. Ned Tijdschr Geneesk 1981; 125: 190-5.
- Huber D, Martin E, Cooperman M. Cholecystectomy in elderly patients. Am J Surg 1983;
 146: 719-22.
- Lewis RT, Goodall RG, Marien B et al. Biliary bacteria, antibiotic use, and wound infection in surgery of the gallbladder and common bile duct. Arch Surg 1987; 122: 44-7.
- Ausobsky JR, Polk HC. Aspects of biliary sepsis. In: Moody FG, ed. Advances in Diagnosis and Surgical Treatment of Biliary Tract Disease. New York: Masson Publishing USA, 1983; 133-46.
- Brook I. Aerobic and anaerobic microbiology of biliary tract disease. J Clin Microbiol 1989; 27: 2373-5.
- Howard RJ. Bacteriology of the biliary tree: Indications for antibiotic therapy. Contemp Surg 1986; 28: 41-9.
- Leeuwen PAM van, Keeman JN, Butzelaar RMJM et al. Correlation between a positive gallbladder culture and subsequent wound infection after biliary surgery - A retrospective study of 840 patients. Neth J Surg 1985; 37: 179-82.
- 63. Chetlin SH, Elliot DV. Biliary bacteriaemia. Arch Surg 1971; 102: 303-7.
- Hirschmann JV, Inui TS. Antimicrobial prophylaxis: A critique of recent trials. Rev Infect Dis 1980; 2: 1-23.
- Watts JMcK, McDonald PJ, Woods PJ. Clinical trials of antimicrobials in surgery. World J Surg 1982; 6: 321-6.
- 66. Guglielmo BJ, Hohn DC, Koo PJ et al. Antibiotic prophylaxis in surgical procedures: A critical analysis of the literature. Arch Surg 1983; 118: 943-55.
- 67. Evans M, Pollock AV. Trials on trial. A review of trials of antibiotic prophylaxis. Arch Surg 1984; 119: 109-13.
- 68. Evans M, Pollock AV. The inadequacy of published random control trials of antimicrobial prophylaxis in colorectal surgery. *Dis Colon Rectum* 1987; 30: 743-6.

Chapter 2

ANTIBIOTIC PROPHYLAXIS IN BILIARY TRACT SURGERY – CURRENT PRACTICE IN THE NETHERLANDS

This chapter has been published before in: The Netherlands Journal of Surgery 1990; 42: 96-100.

ANTIBIOTIC PROPHYLAXIS IN BILIARY TRACT SURGERY – CURRENT PRACTICE IN THE NETHERLANDS

W.S. Meijer

Department of Surgery, Sint Clara Hospital, Rotterdam, The Netherlands.

2.1 Introduction

Although wound infections are not common after biliary tract operations, infections vary from 15 to 30 per cent when antibiotic prophylaxis is not used ^{1,2}. Meta-analysis of several randomized trials has confirmed the effectiveness of prophylaxis, with a stronger effect in patients at high risk³. Although many studies indicate that single-dose prophylaxis is effective, there is no consensus about timing and optimal duration of prophylaxis³⁻⁵. We, therefore, assessed the influence of data in the literature on the surgical practice in The Netherlands as well as the influence of different types of residency in general surgery.

2.2 Methods

In October 1988, a questionnaire (Appendix A) was sent to the Chairmen of the Departments of Surgery of 175 hospitals registered in the Yearbook 1987/1988 of the Association of Surgeons of The Netherlands. The questionnaire was sent with a prepaid reply envelope. No follow-up was given to non-responders. The surgical clinics in The Netherlands are classified into three categories:

- 1. **A-clinic:** University or affiliated teaching hospital in general surgery with 6-years residency (32 clinics with 293 consultant surgeons and senior registrars);
- 2. **B-clinic:** teaching hospital with two-years residency in general surgery (23 clinics with 124 consultant general surgeons); and
- 3. C-Clinic: no training programme in general surgery (112 clinics with 375 consultant general surgeons).

The questionnaire sought information about: 1. Details of antibiotic use in elective cholecystectomy, 2. high risk factors as an indication for antibiotic prophylaxis, 3. details of agents used, and 4. treatment of acute cholecystitis.

The study comprised 167 out of a total of 175 departments of surgery, because cholecystectomy is seldom performed in children's hospitals and cancer centres, eight were excluded from the study.

2.3 Results

Eighty per cent (133/167) of the surgical clinics responded to the questionnaire (*Table 2.1*). One respondent refused to participate in the enquiry. The results of 132 hospitals i.e. a total of 652 surgeons are included in the study.

2.3.1 Antibiotic prophylaxis

Antibiotic prophylaxis is used in elective cholecystectomy in 100 surgical clinics, routinely in eight and selectively in 92 (*Table 2.2*). The high risk factors and the indications for antibiotic prophylaxis are listed in *Table 2.3*. The most frequent indications for prophylaxis are immuno-suppressive therapy (59 per cent) and recent rigors (54 per cent of the clinics). Morbid obesity is rarely considered an indication for prophylaxis (7 per cent of the clinics). The number of indications vary per hospital (mean per hospital 3.3). On an average, indications for prophylaxis are more often used in A-clinics (mean 4.0) than in B- or C-clinics (mean 3.3 and 3.0) (*Table 2.3*).

2.3.2 Antimicrobial agents

In the 100 hospitals with antibiotic prophylaxis in elective cholecystectomy, cephalos-

Table 2.1 Response to the questionnaire sent to 175 hospitals in The Netherlands

	Number of clinics (percentage)				
	A-clinic	B-clinic	C-clinic	Total	
No response	2 (6)	5 (22)	27 (24)	34 (20)	
Response	30 (94)	18 (78)	85 (76)	133 (80)	
Total	32 (100)	23 (100)	112 (100)	167 (100)	

Table 2.2 Antibiotic prophylaxis in 132 hospitals in The Netherlands

	Number of clinics (percentage)					
	A-clinic	B-clinic	C-clinic	Total		
Never	3 (10)	3 (16)	26 (31)	32 (24)		
Routinely	2 (7)	0	6 (7)	8 (6)		
Selectively	25 (83)	15 (84)	52 (62)	92 (70)		
Total	30 (100)	18 (100)	84 (100)	132 (100)		

Table 2.3 Specification of indications for antibiotic prophylaxis in 92 hospitals in The Netherlands

		Number of clinics (percentage)			
		A-clinic	B-clinic	C-clinic	Total
Indi	cations				,
1.	Age over 60-70 years	11 (44)	7 (47)	12 (23)	30 (33)
2.	Rigors <1 week before operation	15 (60)	10 (67)	25 (48)	50 (54)
3.	Attack of acute cholecystitis <1 month		5 (40)	- - (00)	
	before operation	11 (44)	6 (40)	17 (33)	34 (37)
4.	Jaundice	15 (60)	6 (40)	17 (33)	38 (41)
5.	Stones or planned exploration of the common bile duct	16 (64)	4 (27)	22 (42)	42 (46)
6.	Former biliary tract operation	10 (40)	1 (7)	7 (13)	18 (20)
7.	Diabetes mellitus	6 (24)	2 (13)	11 (21)	19 (21)
8.	Obesity	2 (8)	1 (7)	3 (6)	6 (7)
9.	Immuno-suppressive therapy	8 (32)	10 (67)	36 (69)	54 (59)
10.	Other	5 (20)	3 (20)	7 (13)	15 (16)
Nu	nber of indications				
	1 to 4	15 (60)	12 (80)	44 (85)	71 (77)
	5 to 8	10 (40)	3 (20)	8 (15)	21 (23)

porins account for 65 per cent (65/100), and penicillins for 21 per cent (21/100) of the agents used. First generation cephalosporins (cefazolin, cefradine) comprise 29 per cent (19/65) of all cephalosporins prescribed, second-generation (cefuroxime, cefamandole, cefamycine) 63 per cent (43/65), and third-generation (cefotaxime, ceftriaxone) eight per cent (6/65). Cefuroxime is most commonly used (36/65), followed by cefazolin (18/65). In 37 per cent metronidazole is added to cephalosporin.

Penicillins (ampicillin, amoxycillin, amoxycillin/clavulanic acid and piperacillin) are used in 21 surgical clinics, and in 14 of these clinics in combination with metronidazole or gentamicin. From the remaining 14 hospitals seven use metronidazole alone or in combination with gentamicin, and seven clinics have no fixed antibiotic regimen.

	Number of clinics (percentage)					
	A-clinic	B-clinic	C-clinic	Total		
Single-dose	8 (30)	2 (13)	18 (31)	28 (28)		
4-24 hours	17 (63)	11 (74)	29 (50)	57 (57)		
2-5 days	2 (7)	2 (13)	9 (16)	13 (13)		
Variable	0	0	2 (3)	2 (2)		
Total	27 (100)	15 (100)	58 (100)	100 (100)		

Table 2.4 Duration of antibiotic prophylaxis in 100 hospitals in The Netherlands

2.3.3 Duration of antibiotic prophylaxis

Single-dose prophylaxis is adopted in 28 clinics using prophylaxis (28 per cent). Multiple-dose regimens from four to 24 hours postoperatively are used in 57 clinics (57 per cent), and prophylaxis for more than 24 hours postoperatively in 13 surgical clinics (13 per cent) (*Table 2.4*).

2.3.4 Acute cholecystitis

The treatment of choice in acute cholecystitis is an emergency operation in 82 per cent (108/132) of the surgical clinics. Antibiotics are used less than 48 hours in 73 clinics, between two and six days in 20 clinics and in 15 clinics antibiotics are not used (*Table 2.5*).

- An *elective operation* as soon as possible is the treatment of choice in 15 per cent of the surgical departments (20/132). Peri-operative prophylaxis (less than 48 hours) is used in 14 clinics, in three the antibiotic treatment is started immediately after admission to the hospital, and in three clinics antibiotics are not used.
- Initial conservative therapy followed by delayed elective surgery is the treatment of choice in three hospitals (two per cent). Under specific circumstances (e.g. poor general condition of the patient), conservative treatment is stated as alternative to acute or elective operation in another eight surgical departments.

The use of cephalosporins does not vary clearly between operations for chronic and those for acute cholecystitis: most surgeons use the same antibiotic throughout. From the 32 hospitals without a regimen of antibiotic prophylaxis in elective cholecystectomy, 16 do administer antibiotics for treatment of acute cholecystitis, four clinics use no antibiotics at all, in the remaining 12 clinics the antibiotic regimen was not indicated.

Table 2.5 Treatment of acute cholecystitis in 132 hospitals in The Netherlands

Management	Number of clinics (percentage)					
	A-clinic	B-clinic	C-clinic	Total		
Emergency operation	25 (83)	16 (89)	67 (80)	108 (82)		
- perioperative prophylaxis	20	9	44	73		
- antibiotics > 48 hours	3	2	15	20		
- no antibiotics	2	5	8	15		
Elective operation as soon as possible	5 (17)	2 (11)	13 (15)	20 (15)		
- perioperative prophylaxis	4	1	9	14		
 starting antibiotics immediately after admission 	0	1	2	3		
- no antibiotics	1	0	2	3		
Initial conservative treament	0	0	3 (4)	3 (2)		
- with antibiotics	0	0	1	1		
- without antibiotics	0	0	2	2		
Varied management	0	0	1 (1)	1 (1)		

2.4 Discussion

The enquiry about the mode of antibiotic prophylaxis in biliary tract surgery seems representative of the current practice in The Netherlands. The results reflect the policy of 652 out of a total of 792 surgeons (82.3 per cent). It is uncertain, however, whether all surgical departments have a fixed prophylaxis protocol. A response rate of 80 per cent of the clinics is somewhat lower than a similar enquiry in the United Kingdom (response rate of 90 per cent)⁶, but far higher than that of a national survey in Italy (response rate of 45.6 per cent)⁷.

Almost one-third of the patients with chronic cholecystitis and two-thirds of the patients with acute cholecystitis have positive bile cultures^{8,9}. The presence of bacteria in bile is related to postoperative wound infection¹⁰. Ideally, only patients with infected bile should be given prophylactic antibiotics. Although several studies have identified subsets of patients at high risk for postoperative infectious complications^{11,12}, selective

prophylaxis has been disappointing in practice¹³ and can easily lead to errors or omission¹⁴. Moreover, it is difficult to identify a truly low risk group¹⁵. Therefore, routine antibiotic prophylaxis in all cholecystectomies is probably the best policy, particularly in A- and B-clinics with residents. Also in Scotland there have been significant increases over the last five years in the routine use of prophylactic antibiotics during elective cholecystectomy (from 21 to 53 per cent of the surgeons)¹⁶.

Since many antibiotics have proven to be effective in prophylaxis³, the choice of antimicrobial agent seems rather irrelevant. Serum and tissue levels of antibiotics appear to be more important than bile concentrations¹. Of course, individual factors and local patterns of bacterial resistance have to be considered. In general, it is advisable to reserve those antibiotics for prophylaxis that have the least side effects, and not to use antibiotics that may be required for therapy¹⁷. Cephalosporins are most commonly used because of the spectrum of activity in vitro and the rare toxicity. Although Enterococcus presents a gap in the antimicrobial spectrum, cephalosporins have a proven efficacy and ensure adequate serum and tissue levels. There is no evidence that second- or third-generation cephalosporins are associated with a lower postoperative infection rate^{18,19}.

The incidence of anaerobic bacteria in bile is low, especially at elective cholecystectomy and the clinical importance is not evident⁹. Metronidazole is the current choice of supplement therapy for possible anaerobic infections.

Biliary tract operations are a popular area for study of single-dose prophylaxis. Overall, the results of the trials support the single-dose regimen^{3,20}. Still, only 28 surgical departments have adopted single-dose prophylaxis. Several trials on single-dose prophylaxis are directed to the effect of long-acting agents like third-generation cephalosporins²¹⁻²⁴. There is only little information about single-dose short acting agents. However, it is well established that prophylaxis beyond 24 hours has no additional effect⁴.

It is generally accepted that prophylaxis should be given to patients at risk of endogenous infection^{1,25}. By definition, these patients with bactobilia have bacterial contamination of bile, which is common in acute cholecystitis^{1,17,26,27}. Therefore, antibiotic prophylaxis in the surgical management of patients with acute cholecystitis is mandatory.

In the management of acute cholecystitis this enquiry shows a strong preference for emergency surgery (82 per cent). The literature shows a preference for so-called early surgery, especially in elderly patients²⁶⁻³⁰. However, the question may have been misinterpreted because "emergency surgery" and "elective surgery as soon as possible" were not defined in the questionnaire. Emergency surgery can be defined as surgical intervention within 24 hours after admission²⁸, as acute surgery within 12 hours of seriously ill patients, almost always concomitant diffuse peritonitis, or as acute surgery

due to failed conservative treatment (5-25 days after onset of symptoms)²⁶. Early surgery can be defined as intervention between 24 hours and seven days²⁸, or as operation within 24-72 hours after onset of symptoms²⁶. Since definitions were omitted in the questionnaire, the exact timing of the operation is unknown.

The subdivision of the surgical clinics into three categories shows some interesting findings, like the 31 per cent of C-clinics that never use antibiotics in elective cholecystectomy, and the low percentage of single-dose prophylaxis in B-clinics (13 per cent). Also the four per cent of C-clinics with initial conservative treatment of acute cholecystitis is remarkable. In some way the differences in policy between the three categories must be related to the presence or absence of residents.

It is clear from this enquiry that some surgeons always use antibiotics and others do not. Apparently, surgical practice is often based on personal preference and not on published data. In all, the use of antibiotic prophylaxis in biliary surgery in The Netherlands is more or less in agreement with the policy of surgeons in the United Kingdom and Italy^{6,7}.

Because prophylaxis for more than 24 hours has no additional effect and the prophylaxis in the management of acute cholecystitis is mandatory, antibiotic prophylaxis in biliary tract surgery is inappropriate in at least 31 Dutch hospitals (23 per cent).

2.5 References

- Keighley MRB, Flinn R, Alexander-Williams J. Multivariate analysis of clinical and operative findings associated with biliary sepsis. Br J Surg 1976; 63: 528-31.
- Kaufman Z, Engelberg M, Eliashiv M et al. Systemic prophylactic antibiotics in elective biliary surgery. Arch Surg 1984; 119: 1002-4.
- Meijer WS, Schmitz PIM, Jeekel J. A meta-analysis of randomized, controlled clinical trials of antibiotic prophylaxis in biliary tract surgery. Br J Surg 1990; 77: 283-90.
- Stone HH, Haney BB, Kolb LD et al. Prophylactic and preventive antibiotic therapy. Timing, duration and economics. Ann Surg 1979; 189: 691-9.
- Bates T, Siller G, Crathern BC et al. Timing of prophylactic antibiotics in abdominal surgery: trial of a pre-operative versus an intra-operative first dose. Br J Surg 1989; 76: 52-6.
- Cahill CJ, Pain JA. Current practice in biliary surgery. Br J Surg 1988; 75: 1169-72.
- Mozzillo N, Greco D, Pescini A et al. Chemoprophylaxis in the surgical ward: results of a national survey in Italy. Eur J Epidemiol 1988; 4: 357-9.
- Pitt HA, Postier RG, Cameron JL. Biliary bacteria: significances and alterations after antibiotic therapy. Arch Surg 1982; 117: 445-9.
- Keighley MRB, Drysdale RB, Quoraishi AH et al. Antibiotic treatment of biliary sepsis. Surg Clin North Am 1975; 55: 1379-90.
- Keighley MRB, Lister DM, Jacobs SI et al. Hazards of surgical treatment due to microorganisms in the bile. Surgery 1974; 75: 578-83.

- Chetlin SH, Elliott DW. Preoperative antibiotics in biliary surgery. Arch Surg 1973; 107: 319-23.
- Kanter MA, Geelhoed GW. Biliary antibiotics: clinical utility in biliary surgery. Southern Med J 1987; 80: 1007-15.
- 13. Raina S, Spillert CR, Najem AZ et al. Current attitudes in the management of obstructive biliary tract disease. Am Surg 1986; 52: 193-6.
- Ambrose NS, Morris DL, Burdon DW et al. Comparison of selective and nonselective single-dose antibiotic cover in biliary surgery. World J Surg 1987; 11: 101-4.
- Stubbs R. Wound infection after cholecystectomy: a case for routine prophylaxis. Ann R Coll Surg Engl 1983; 65: 30-1.
- Haddock G, Hansell DT, McArdle CS. Survey of antibiotic prophylaxis in gastrointestinal surgery in Scotland - 5 years on. J Hosp Infect 1988; 11: 286-9.
- Alexander-Williams J. Bacteriology of biliary disease. In: Way LW, Pelligrini CA, eds. Surgery of the Gallbladder and Bile Ducts. Philadelphia, W.B.Saunders, 1987; 93-102.
- 18. DiPiro JT, Bowden TA, Jr, Hooks III VH. Prophylactic parenteral cephalosporins in surgery. Are the newer agents better? *JAMA* 1984; **252**: 3277-9.
- Rotman N, Hay J-M, Lacaine F et al. Prophylactic antibiotherapy in abdominal surgery.
 First- vs third-generation cephalosporins. Arch Surg 1989; 124: 323-7.
- DiPiro JT, Cheung RPF, Bowden TA, Jr et al. Single dose systemic antibiotic prophylaxis
 of surgical wound infections. Am J Surg 1986; 152: 552-9.
- Kellum JM, Gargano S, Gorbach SL et al. Antibiotic prophylaxis in high-risk biliary operations: Multicenter trial of single preoperative ceftriaxone versus multidose cefazolin. Am J Surg 1984; 148: 15-8.
- Shatney CH. Antibiotic prophylaxis in elective gastro-intestinal tract surgery: a comparison of single-dose pre-operative cefotaxime and multiple-dose cefoxitin. J Antimicrob Chemother 1984; 14 (Suppl B): 241-5.
- 23. Fabian TC, Zellner SR, Gazzaniga A et al. Multicenter open trial of cefotetan and cefoxitin in elective biliary surgery. Am J Surg 1988; 155: 77-80.
- 24. Garcia-Rodriguez JA, Puig-LaCalle J, Arnau C et al. Antibiotic prophylaxis with cefotaxime in gastroduodenal and biliary surgery. Am J Surg 1989; 158: 428-32.
- Guglielmo BJ, Hohn DC, Koo PJ et al. Antibiotic prophylaxis in surgical procedures: a critical analysis of the literature. Arch Surg 1983; 118: 943-55.
- Sianesi M, Ghirarduzzi A, Percudani M et al. Cholecystectomy for acute cholecystitis: timing of operation, bacteriologic aspects, and postoperative course. Am J Surg 1984; 148: 609-12.
- Norrby S, Herlin P, Holmin T et al. Early or delayed cholecystectomy in acute cholecystitis? A clinical trial. Br J Surg 1983; 70: 163-5.
- 28. Van der Linden W, Edlund G. Early versus delayed cholecystectomy: the effect of a change in management. Br J Surg 1981; 68: 753-7.
- Van der Ham AC, Lange JF, Yo TI. Acute cholecystitis in the elderly A retrospective study. Neth J Surg 1986; 38: 142-6.
- Pellegrini CA, Way LW. Acute cholecystitis. In: Way LW and Pellegrini CA, eds. Surgery of the Gallbladder and Bile Ducts. Philadelphia, W.B.Saunders, 1987; 251-64.

Chapter 3

CHOLECYSTECTOMY IN THE NETHERLANDS: FREQUENCY, MORTALITY AND MORBIDITY (1987-1989)

This chapter has been published before in: Nederlands Tijdschrift voor Geneeskunde 1991; 135: 1688-91 (in Dutch)

CHOLECYSTECTOMY IN THE NETHERLANDS: FREQUENCY, MORTALITY AND MORBIDITY (1987-1989)

W.S. Meijer

Department of Surgery, Sint Clara Hospital, Rotterdam, The Netherlands.

3.1 Introduction

The "traditional" cholecystectomy, until recently one of the most commonly performed operations of the digestive tract, is currently being replaced by laparoscopic cholecystectomy and, to a lesser extent, by extracorporeal shock wave lithotripsy. The advantages include a shorter postoperative recovery time and, therefore, shorter hospitalization, less pain and a quicker resumption of normal activities – factors which undoubtedly offer related savings in costs. Moreover it offers a better cosmetic result. On the other hand sepsis, peritonitis, distended bowel and pregnancy are absolute contraindications for laparoscopic cholecystectomy. Other, relative contraindications include acute cholecystitis, cholangitis, acute pancreatitis, common duct stones, portal hypertension and coagulopathy¹. With these new techniques, however, no definite conclusions can yet be drawn concerning mortality and morbidity. The first series of patients show favourable results^{2,3}.

Even with the current rapid development in gallbladder surgery, the traditional cholecystectomy remains the gold standard against which new techniques are evaluated. Therefore, a study on this procedure was conducted in The Netherlands. Use was made of data from the Public Health Information Center (SIG) for the period 1987-1989. Apart from frequency and mortality, postoperative complications (namely, wound infection and wound dehiscence) are investigated. The results on frequency and mortality are compared with those from the period 1979-1981, the data for which was supplied by the Medical Registry Foundation (SMR)⁴.

3.2 Methods

Data for the years 1987-1989 are based on the number of registered hospitalizations (about 99 per cent), rounded off to "Total Netherlands" by the Public Health Information Center. In order to achieve a reasonable comparison with data from 1979-1981, which represented only 95 per cent of the patients concerned, the data were extrapolated to 100 per cent. Frequencies were calculated per 100.000 of the total population in the period concerned, using data from the Central Statistics Office⁵.

Operation code 535 (gallbladder extirpation) of the Classification of Operations was used as a basis for the retrieval of computer data⁶. Code 535 is subdivided into cholecystectomy without (code 535.0) and with common bile duct exploration (code 535.1). As mortality and morbidity are closely related to a number of risk factors, the following subgroups were investigated by means of cross tabulation: (1) patients aged 70 years and over, (2) patients operated for acute cholecystitis, and (3) patients, in which the common bile duct has been opened (code 535.1). In the Classification of Diseases acute cholecystitis is listed under codes 574.0, 574.3 or 575.0⁷. Chronic cholecystitis (codes 574.1, 574.2, 574.4 or 574.5) and other diseases of the gallbladder (codes 575.1-575.9) are combined and reported under "remainder".

3.2.1 Definitions

Mortality is defined as the number of patients dying during hospitalization for surgery divided by the number of operated patients, irrespective of the duration of hospitalization or cause of death.

Morbidity is defined as the number of patients with one or more complications, if these are registered under the Classification of Diseases codes 996-999 or E870-E876⁷, divided by the number of operated patients.

Wound infections include all postoperative infections registered under code 998.5 of the Classification of Diseases⁷. These include wound abscess, intra-abdominal or subphrenic abscess, as well as sepsis.

Wound dehiscence is listed under code 998.3 of the Classification of Diseases⁷.

3.3 Results

3.3.1 Frequency

The frequency distribution for cholecystectomy in the periods 1979-1981 and 1987-1989 is given in *Table 3.1*. In the first period, 53.453 cholecystectomies were performed (after extrapolation to 100 per cent), whereas in the second period 41.869 operations were performed: the crude number decreased by 21.7 per cent and by 25.5 per cent, when calculated per 100.000 of the total population. The number of gallbladder extirpations with choledochotomy (code 535.1) decreased by 43.8 per cent. The male/female ratio in both periods was 1:2.6.

3.3.2 Mortality

The overall mortality rate of 41.869 cholecystectomies (code 535) was 1.4 per cent (*Table 3.2*) (compared to 1.9 per cent in the period 1979-1981). Age proved to be an important risk factor: the mortality rate for patients below 70 years of age was 0.5 per

Table 3.1 Number of cholecystectomies per 100.000 of the total population in the periods 1979-1981 and 1987-1989, and the reduction in the number of cholecystectomies performed in the second compared with the first period

Operation Code*	1979-1981 [†]	1987-1989 [‡]	Reduction (%)
535.0	297.8	236.8	61.0 (20.5)
535.1	81.6	45.9	35.7 (43.8)
535	379.4	282.7	96.7 (25.5)

[†] SMR (Medical Registry Foundation) data extrapolated to 100%

Table 3.2 Mortality of 41,869 cholecystectomies (code 535), 35,064 without (code 535.0), and 6,805 with common bile duct exploration (code 535.1) in the period 1987-1989; Cross tabulation of diagnosis (acute cholecystitis and the remainder) and age group (younger or older than 70 years of age); Number of deceased patients (%)

Operation Code		Age (years)			
		<70 (%)	≥70 (%)	Total (%)	
535.0	- acute	12 (0.5)	54 (3.9)	66 (1.8)	
	- remainder	89 (0.4)	232 (3.9)	321 (1.0)	
	- total	101 (0.4)	286 (3.9)	387 (1.1)	
535.1	- acute	8 (1.9)	28 (7.6)	36 (4.5)	
	- remainder	39 (1.0)	141 (6.9)	180 (3.0)	
	- total	47 (1.1)	169 (7.0)	216 (3.2)	
535	- acute	20 (0.7)	82 (4.6)	102 (2.2)	
	– remainder	128 (0.4)	373 (4.7)	501 (1.3)	
	- total	148 (0.5)	455 (4.7)	603 (1.4)	

cent and 4.7 per cent for patients aged 70 years and over. Acute cholecystitis also increased the mortality rate: 2.2 per cent compared to 1.3 per cent for all other gallbladder diseases. With opening of the biliary tract (code 535.1) the mortality rate was 3.2 *versus* 1.1 per cent for gallbladder extirpations without common bile duct exploration (code 535.0).

[‡] SIG (Public Health Information Center) data

^{*} Code 535: cholecystectomy; code 535.0: cholecystectomy without common bile duct exploration; code 535.1: cholecystectomy with common bile duct exploration.

Table 3.3 Postoperative morbidity, wound infections and wound dehiscence of 41.869 cholecystectomies (code 535) in the period 1987-1989, 35,064 without (code 535.0), and 6.805 with common bile duct exploration (code 535.1), per age group. Number of patients with complication(s) (%)

		Age (years)		
		<70 (%)	≥70 (%)	Total (%)
Morbidity				
Operation co	de			
-	- 535.0	768 (2.8)	529 (7.2)	1297 (3.7)
	- 535.1	276 (6.3)	225 (9.4)	501 (7.4)
	- 535	1044 (3.2)	754 (7.7)	1798 (4.3)
Wound infect	tion			
Operation co	de			
	- 535.0	282 (1.0)	188 (2.6)	470 (1.3)
	- 535.1	96 (2.2)	68 (2.8)	164 (2.4)
	- 535	378 (1.2)	256 (2.6)	634 (1.5)
Wound dehis	cence			
Operation co	ode			
_	- 535.0	36 (0.1)	38 (0.5)	74 (0.2)
	- 535.1	6 (0.1)	28 (1.2)	34 (0.5)
	- 535	42 (0.1)	66 (0.7)	108 (0.3)

3.3.3 Morbidity

The overall percentage of postoperative complications was 4.3 per cent (*Table 3.3*); 3.2 per cent for patients under 70 years of age, and 7.7 per cent for those aged over 70 years. With acute cholecystitis the incidence of complications was almost double that of operations for other gallbladder diseases (7.3 versus 3.9 per cent, respectively; not mentioned in *Table 3.3*). Similarly, a choledochotomy resulted in doubling of the incidence of complications: 7.4 versus 3.7 per cent.

3.3.4 Wound infection

About 35 per cent of all postoperative complications were caused by wound infections. The overall percentage of wound infections was 1.5 per cent (*Table 3.3*). Older patients are at higher risk for wound infections than younger ones: 2.6 *versus* 1.2 per cent. With acute cholecystitis the incidence of wound infection was almost doubled (2.7 *versus* 1.4 per cent; not mentioned in *Table 3.3*). A similar result was seen with common bile duct exploration: 2.4 per cent incidence of wound infections against 1.3 per cent when the common bile duct was not opened.

3.3.5 Wound dehiscence

The overall percentage for wound dehiscence was 0.3 per cent (*Table 3.3*). For patients aged over 70 years the risk of wound dehiscence was sevenfold (0.7 *versus* 0.1 per cent), after choledochotomy double (0.5 *versus* 0.2 per cent) and with acute cholecystitis threefold (0.7 *versus* 0.2 per cent, not mentioned in *Table 3.3*).

3.4 Discussion

In the light of the fast growing popularity of laparoscopic cholecystectomy, an analysis of the "traditional" gallbladder extirpation in The Netherlands was performed in the period 1987-1989. Although only a randomized study could indicate the actual advantages of both techniques – such a study, for various reasons, would be difficult to realize⁸. The reported low mortality rates of laparoscopic cholecystectomies may well reflect the fact that the patients were a select population undergoing elective surgery³.

An increase of the number of cholecystectomies would be expected, because of a high prevalence of gallstones in the older age categories in an "aging population"5,9. Instead, the number of gallbladder operations decreased by 25.5 per cent in a relatively short period of about 8 years. Similarly, in Sweden there has been a steady decreasing frequency of cholecystectomies in the period 1969-1982¹⁰. A possible explanation for this was attributed to a reduction in the prevalence of gallstones, especially among young women11. However, no obvious decrease has been observed in established risk factors such as obesity, fertility and use of oral contraceptives or postmenopausal estrogens. On the contrary, it is suggested that the frequency of cholecystectomies does not reflect the prevalence of gallstones, but rather factors such as operation indication, and availability of surgeons and hospital beds 12,13. In a study of Thijs et al. there appeared to be a high prevalence of silent gallstones, especially in the oldest age groups9. The fact, that asymptomatic gallstones are no longer an indication for cholecystectomy, appears to be the main reason for the decrease in the number of gallbladder extirpations 14,15. This corresponds to a decrease in admission rates for gallstone disease in the period 1970-198516.

The decrease in the number of choledochotomies in the same time period is dramatic (43.8 per cent). There is no evidence for a change in the incidence of common duct stones. The decrease could be explained, in part, by a reduction in the number of gallbladder extirpations. In fact common duct stones present few specific symptoms and are often found coincidentally at operation. In addition, there has been a comparatively steady reduction in common bile duct explorations, from 21.5 per 100 cholecystectomies in 1979-1981 to 16.3 in 1987-1989. The main reason for this appears to be the

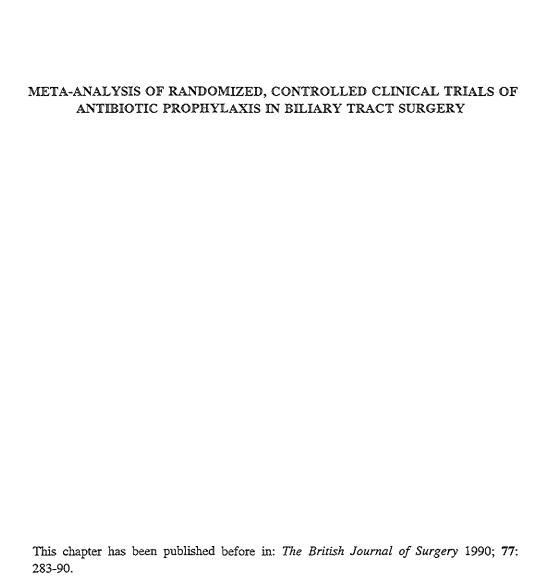
Table 3.4 Number of cholecystectomies with common bile duct exploration (code 535.1), per 100.000 of the population, per age group in the years 1980 (extrapolated SMR data), 1987 and 1989 (SIG data). The relative reduction (%) is stated above the arrows

Age	Period				
(years)	1980		1987		1989
< 70	18.8	- 40.2%	11.2	- 8.0%	10.3
≥ 70	126.9	- 41.9%	73.7	- 23.6%	56.3

SMR = Medical Registry Foundation
SIG = Public Health Information Center

introduction of endoscopic sphincterotomy. This procedure is the therapy of choice, especially for older and/or seriously ill patients^{17,18}. In the last years, there is indeed evidence of a marked decrease in the number of choledochotomies in patients aged 70 years and over (*Table 3.4*).

Concerning mortality, the results of this study correlate well with reports in the literature. Generally, the mortality rate is about 1 per cent^{4,19,20}. Basically, all complications harmful to the patient could be attributed to the postoperative morbidity. Comparison of the reported incidence of complications (4.3 per cent) is difficult, because the definitions of complications are not given in the literature. With careful registration of all complications following biliary tract surgery an overall percentage of even 34 per cent has been reported and after common duct exploration this value is reported to be as high as 46 per cent²¹. Generally, only the clinically relevant complications are considered. Under-reporting of postoperative complications due to nonregistered data is a well-known phenomenon, especially in retrospective studies. In the literature, wound infections following biliary surgery have been reported for 0-30 per cent of the cases. Such a variety can exist due to the following factors: (1) definition of wound infection, (2) selection of patients, (3) use of antibiotic prophylaxis, and (4) under-reporting in retrospective studies. Doubt no longer exists about the effectiveness of antibiotic prophylaxis, with the most marked effects observed in high risk patients²². In The Netherlands antibiotic prophylaxis is widely applied²³, which partly explains its favourable results. With subcostal incision, wound dehiscence is reported in 1.1 per cent of the cases, whereas with medial laparotomies the incidence is higher (2.3-4.1 per cent)^{21,24}. Wound dehiscence appears to be related to pulmonary complications and ileus in the postoperative course. Age seems to play a less important role in these cases²⁴.


The cross tabulation clearly indicates the marked effect of risk factors. Age 70 years and over, acute cholecystitis and common duct exploration account for a significant increase in mortality and morbidity. Finally, a brief remark about statistical interpretation of the results. It is generally accepted that statistics of demographic data, involving large numbers, results in statistical significance for nearly all the factors. Therefore calculation of, for example, P-values is of little use.

3.5 References

- Gadasz TR, Talamini MA. Traditional versus laparoscopic cholecystectomy. Am J Surg 1991; 161: 336-8.
- Reddick EJ, Olsen DO. Laparoscopic laser cholecystectomy: a comparison with mini-lap cholecystectomy. Surg Endosc 1989; 3: 131-3.
- The Southern Surgeon Club. A prospective analysis of 1518 laparoscopic cholecystectomies. N Engl J Med 1991; 324: 1073-8.
- Otter G den. De klinische letaliteit van operaties wegens galsteenziekte. Ned Tijdschr Geneesk 1985; 129: 1183-5.
- Centraal Bureau voor de Statistiek. Bevolking naar burgelijke staat, geslacht en leeftijd.
 's-Gravenhage: Statistisch Zakboek, jaargangen 1981, 1988 en 1990.
- Centrum voor informatieverwerking voor de Nederlandse ziekenhuizen. Classificatie van operaties voor de medische registratie van ziekenhuizen. Utrecht, 1977.
- 7. Stichting Medische Registratie. Classificatie van ziekten 1980. Utrecht: Stichting Medische Registratie, 1980.
- 8. Neugebauer E, Troidl H, Spangenberger W et al. Conventional versus laparoscopic cholecystectomy and the randomized controlled trial. Br J Surg 1991; 78: 150-4.
- Thijs CT, van Engelshoven JMA, Knipschild PG. Een echografisch onderzoek naar de prevalentie van galsteenziekte in Maastricht en omstreken. Ned Tijdschr Geneesk 1989; 133: 110-4.
- National Swedish Board of Health and Welfare. En studie av allmän, ortodedisk och urologisk kirurgi. Stockhlom, 1983; PM 52/83.
- Ahlberg J, Bergstrand L-O, Sahlin S. Changes in gallstone morbidity in a community with decreasing frequency of cholecystectomies. Acta Chir Scand 1984; Suppl 520: 53-8.
- Plant JC, Peroy I, Bates T et al. Incidence of gallbladder disease in Canada, England and France. Lancet 1973; 2: 249-51.
- Vayda E. A comparison of surgical rates in Canada, England and Wales. N Engl J Med 1973; 289: 1224-9.
- 14. Gibney EJ. Asymptomatic gallstones. Br J Surg 1990; 77: 368-72.
- McSherry CK, Ferstenberg H, Calhoun F et al. The natural history of diagnosed gallstone disease in symptomatic and asymptomatic patients. Ann Surg 1985; 202: 59-63.

- Hoogendoom D. Opmerkelijke verschuivingen in het epidemiologisch patroon van galsteenziekte en van kanker van de galblaas. Ned Tijdschr Geneesk 1988; 132: 1243-8.
- Vroonhoven ThJMV van. Het sterftecijfer van operaties wegens galsteenziekte. Ned Tijdschr Geneesk 1985; 129: 1173-4.
- Lambert ME, Betts CD, Hill J et al. Endoscopic sphincterotomy: the whole truth. Br J Surg 1991; 78: 473-6.
- MacVicar FT, McNair TJ, Wilken BJ. Death following gallbladder surgery. Enquiry into cause. J R Coll Surg Edinb 1967; 12: 139-48.
- 20. Ganey JB, Johnson PA Jr, Prillaman PE et al. Cholecystectomy: clinical experience with a large series. Am J Surg 1986; 151: 352-7.
- Crumplin MKH, Jenkinson LR, Kassab JY et al. Management of gallstones in a district general hospital. Br J Surg 1985; 72: 428-32.
- Meijer WS, Schmitz PIM, Jeekel J. Meta-analysis of randomized, controlled clinical trials of antibiotic prophylaxis in biliary tract surgery. Br J Surg 1990; 77: 283-90.
- Meijer WS. Antibiotic prophylaxis in biliary tract surgery Current practice in the Netherlands. Neth J Surg 1990; 42: 96-100.
- Wissing JC. The closure of a laparotomy. Thesis, Erasmus University Rotterdam, The Netherlands. Wibro dissertatiedrukkerij, Helmond, 1988.

Chapter 4

META-ANALYSIS OF RANDOMIZED, CONTROLLED CLINICAL TRIALS OF ANTIBIOTIC PROPHYLAXIS IN BILIARY TRACT SURGERY

W.S. Meijer, P.I.M. Schmitz* and J. Jeekel**

Department of Surgery, Sint Clara Hospital, *Department of Trials, Documentation and Statistics, Rotterdam Cancer Centre, and Departments of *Biostatistics and **General Surgery, Erasmus University, Rotterdam, The Netherlands.

4.1 Introduction

Results of many controlled clinical trials seem to provide clear answers to the value of antibiotic prophylaxis in biliary tract surgery (Appendix 4A: 2a,10a,11a,16a,21a,22a,32a,33a,35a). However, some studies did not show any statistically significant difference in wound infection rates between treatment and control groups (Appendix 4A: 8a,12a,24a,39a) so that there are conflicting results concerning the effectiveness of prophylaxis in biliary surgery.

Experimental animal studies have demonstrated the relationship between timing of antimicrobial administration and its prophylactic efficacy^{1,2}. In one prospective, clinical trial^(Appendix 4A: 36a) it was demonstrated that antibiotic prophylaxis reduces the risk of postoperative infection after biliary tract operations if begun before operation. The experimental and clinical studies showed that effective systemic antibiotic prophylaxis requires that the antibiotic is present in the tissue at the time that contamination occurs³. Several other aspects of antibiotic prophylaxis are still the subject of debate. Although another animal model showed the efficacy of single-dose prophylaxis⁴, clinical studies have not provided definite answers (Appendix 4A: 20a,23a,29a,37a,45a,46a,58a).

Additionally, reviews of reported prophylaxis studies have identified important methodological problems that question the published conclusions⁵⁻¹¹. Guglielmo *et al.*¹⁰ included biliary tract operations in their review and concluded on the basis of ten studies that antibiotic prophylaxis in biliary tract surgery reduces the incidence of wound infection only in high risk patients.

The sample size of randomized, controlled clinical trials is one of the most important reasons for controversy in antibiotic prophylaxis. Usually trials are too small to detect clinically important differences. The optimal duration of prophylaxis, the value of the newer generation cephalosporins, and the effectiveness of prophylaxis in low risk patients are other subjects of debate 9,12-15. We decided to perform a systematic overview, also called meta-analysis 16-22, because pooling the data from many trials

might overcome the problem of small sample sizes of individual trials and give a more precise estimate of the effectiveness of antibiotic prophylaxis. Looking at subgroups by meta-analysis might solve some of the controversial problems. Therefore, consideration included the following subgroups: single dosage *versus* multiple dosage, low risk *versus* high risk, and first generation *versus* second and third generation cephalosporins.

We also examined whether inadequacies of the trials analysed had any impact on the final outcome. This was determined by use of a scoring system designed to assess the quality of randomized, controlled clinical trials²³.

4.2 Methods

4.2.1 Definitions

Biliary tract operations. All operations on the gallbladder and/or common bile duct, including cholecystectomy, exploration of the common bile duct and choledochoenterostomy were included.

Wound infection. There is a wide variation in the definition of wound infection in the analysed trials and sometimes no definition is given at all. Discharge of pus from the wound was most commonly used. Purulent exudate from the wound and non-purulent exudate that yielded pathogens on culture was used by others. We have classified wound sepsis into major and minor infections. Wound infection was considered major if there was discharge of pus irrespective of culture results. Redness and wound edge necrosis were consisered minor infections if there was no constitutional disturbance or delay in patient's recovery.

High risk patients. All patients meeting one or more of the following ten criteria were included: (a) acute cholecystitis within 4 weeks of surgery; (b) emergency cholecystectomy; (c) common duct stone or ductal exploration; (d) jaundice at the time of surgery; (e) age over 60 years; (f) previous biliary tract surgery; (g) morbid obesity; (h) non-visualization of the gallbladder on oral cholecystography; (i) diabetes mellitus; and (j) concomitant alimentary procedures.

4.2.2 Selection of trials

Because randomization is necessary to avoid selection bias, this overview was restricted to randomized, controlled trials of prophylaxis in biliary tract surgery. Randomization between two or more treatment groups, and between one or more treatment groups and a control group were both allowed. If a study consisted of more than two treatment arms, only two were used in the analysis.

All randomized clinical trials of biliary tract surgery alone or of general and gastrointestinal surgery (if biliary tract operations were specified and analysed separately) which met the following criteria were included: (a) published between 1965 and 1988; (b) antimicrobials were given to prevent infection (prophylaxis); (c) wound infection was one of the end-points. If data on the same set of patients were published more than once, only one study was included.

An extensive search has been carried out using the literature databases, Current Contents, reference lists, review articles and proceedings of international congresses. The initial search was performed by a computer-assisted examination throughout 1988 of two literature databases, MEDLINE and MEDLARS-2 (Deutsches Institut für medizinische Dokumentation und Information, FRG). References were retrieved by the following keywords: biliary surgery, cholecystectomy, prospective, randomized trial and prophylaxis. A manual search of Current Contents (1985-1988) was performed using the following keywords: biliary, biliary tract, cholecystectomy, clinical trial, prophylactic, prophylaxis, prospective, prospective study and randomized. The reference list of each retrieved report was scanned for potential eligible studies. Review articles were consulted. Because there is a tendency not to publish "negative" trials, we also looked for unpublished studies in proceedings of international congresses on chemotherapy.

Only trials with comparable treatment arms can be pooled. If possible, we classified each trial into one of the three following groups (in each group a different comparison of treatments was studied): treatment regimen versus control or placebo (group I); treatment with first generation cephalosporins versus treatment with second or third generation cephalosporins (group II); and single-dose versus multiple-dose regimen (group III). Most of the trials could be classified in this manner.

4.2.3 Statistical methods

For each of the three groups of trials a meta-analysis was performed using the percentage of wound infection as an endpoint. We distinguished two different measures for assessment of differences in effect between treatment regimens. First, we calculated the differences in percentage wound infection (treatment minus control in group I trials; first minus second or third generation cephalosporins in group II trials; and single-dose minus multiple-dose administration in group III trials). Secondly, the odds ratio was computed for each trial. In the group I trials this is the ratio of the odds of the presence of wound infection in the treated group to the odds of the presence of wound infection in the control group. An odds ratio equal to one indicates no effect of treatment, a ratio less than one means a beneficial treatment effect, a ratio greater than one means a harmful treatment effect. The odds ratio was similarly defined in the group II trials (a ratio less than one means a preference for first generation cephalosporins) and the

group III trials (a ratio less than one means a preference for single-dose administration). Besides the estimates of percentage differences and odds ratios, 95 per cent confidence intervals were computed for each trial separately, while a common percentage difference (with 95 per cent confidence interval) and a common odds ratio (with 95 per cent confidence interval) were estimated using the methods described by DerSimonian and Laird²⁴. Estimates and confidence intervals for the odds ratios were graphically displayed on a log scale²⁵. A test of homogeneity of both percentage differences and odds ratios was performed using the method also described by DerSimonian and Laird²⁴.

In the group I trials several factors were studied which might explain the heterogeneity of treatment effect differences. We used linear regression analysis for the percentage differences and logistic regression for the odds ratios. On the basis of these results subgroups of trials were formed for which common effect estimates were calculated.

4.2.4 Criteria for subgroup meta-analysis

We studied whether the treatment effects in the group I trials (treatment versus control) differed in relation to one of the following six criteria: (1) route of administration of the prophylaxis (intravenous, intramuscular, local or combination); (2) the use of single or multiple doses; (3) the definition of wound infection, major versus minor plus major; (4) the moment of wound inspection, i.e. in hospital or during follow-up; (5) first versus second or third generation cephalosporins; and (6) administration of the treatment in "high" or "low" risk patients. A trial was classified as high risk when at least 50 per cent of the patients in the trial were high risk patients. Trials not classified as high risk were considered low risk.

4.2.5 Assessment of study quality

For assessing the quality of randomized, controlled trials we used a scoring system (Table 4.1) based on that of Chalmers et al.²⁶ and modified by Evans and Pollock²³. Basically it is a checklist of 31 questions: 15 are about design and conduct of the trial, eight are about analysis and eight are about presentation. Quality scores ranging from zero to 100 were given to each study. The quality assessment of the first ten studies was performed by two reviewers and the outcomes were compared. When questions were poorly defined it was difficult to answer "yes" or "no", and different interpretations had a remarkable influence on the outcome. After postulating special criteria for those questions we were able to obtain identical results from the two reviewers. The remaining trials were then scored only by one reviewer (W.S.M.). Details of the special criteria used for this scoring system are available from the authors.

Table 4.1 Scores for design and conduct, analysis and presentation of reports of clinical trials

	Yes	No
Design and conduct		
Is the sample defined?	2	0
Are exclusions specified?	2	0
Are known risk factors recorded?	3	0
Are therapeutic regimens defined?	5	0
Is the experimental regimen appropriate?	5	0
Is the control regimen appropriate?	5	0
Were appropriate investigations carried out?	2	0
Are endpoints defined?	5	0
Are endpoints appropriate?	5	0
Have numbers required been calculated?	2	0
Was patient's consent sought?	1	0
Was the randomization blind?	3	0
Was the assessment blind?	4	0
Were additional treatments recorded?	4	0
Were side effects recorded?	2	0
Analysis		
Withdrawals: are they listed?	3	0
is their fate recorded?	4	0
are there fewer than 10%	4	0
Is there a comparability table?	3	0
Are risk factors stratified?	3	0
Is the statistical analysis of proportions correct?	3	0
Is the statistical analysis of numbers correct?	3	0
Are confidence intervals reported?	2	0
Are values of both test statistic and probability given?	1	0
In negative trials is the Type II error considered?	4	0
Presentation		
Is the title accurate?	2	0
Is the abstract accurate and helpful?	3	0
Are the methods reproducible?	3	0
Are the sections clear-cut?	2	0
Can the raw data be discerned?	2	0
Are the results credible?	3	0
Do the results justify the conclusions?	3	0
Are the references correct?	2	0
Total	100	0

4.3 Results

All 78 retrieved trials, which were eligible according to the criteria described above, are listed in the appendices (*Chapter 4.5*). From these trials 18^(Appendix 4B: 1b-18b) have been withdrawn for various reasons: (1) study not eligible for one of the three groups of meta-analysis^(Appendix 4B: 1b-15b); (2) sample size less than ten^(Appendix 4B: 16b); and (3) abstract with incomplete data^(Appendix 4B: 17b,18b). Sixty studies accepted for meta-analysis were divided into three groups depending on randomization (some studies with more than two treatment arms could be classified in more than one group):

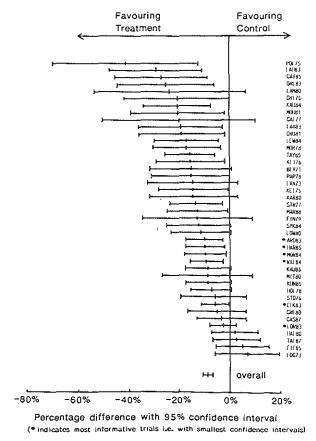


Figure 4.1 Percentage differences with 95 per cent confidence intervals for 42 trials comparing treatment versus control and common 95 per cent confidence interval. *Most informative trials, i.e. those with the smallest confidence intervals

- I. Treatment regimen versus control or placebo (42 trials) (Appendix 4A: 1a-41a);
- II. First generation cephalosporins versus second or third generation drugs (11 trials) (Appendix 4A: 42a-52a);
- III. Single-dose versus multiple-dose regimen (15 trials) (Appendix 4A:3a,5a,9a,37a, 46a,51a,53a-60a)

4.3.1 Group I trials

The overall percentage difference between wound infection in the treated group and wound infection in the control group is 9 per cent in favour of antibiotic treatment (95 per cent confidence interval 7-11 per cent; *Figure 4.1*). The corresponding results for

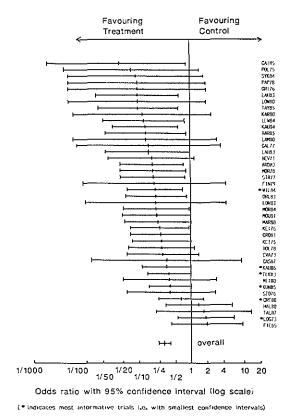


Figure 4.2 Odds ratios with 95 per cent confidence intervals (log scale) for 42 trials comparing treatment versus control and common 95 per cent confidence interval. *Most informative trials, i.e. with the smallest confidence intervals

the odds ratios (*Figure 4.2*) is 0.30 in favour of antibiotic treatment (95 per cent confidence interval 0.23-0.38). In terms of percentage differences the test revealed significant heterogeneity (P<0.005) in contrast to the odds ratios (P>0.10).

In the subgroup analyses of the group I trials only two factors appeared to have a significant effect on the percentage differences: (a) high risk (administration of the treatment in high or low risk patients) and (b) inspection time (the moment of wound inspection, in hospital or during follow-up). Therefore, we formed four subgroups: (1) low risk patients with early (in hospital) wound inspection; (2) low risk patients with late (follow-up) wound inspection; (3) high risk patients with early wound inspection; and (4) high risk patients with late wound inspection. Common estimates and 95 per cent confidence intervals were calculated within each subgroup for the percentage differences (Figure 4.3) and the odds ratios (Figure 4.4). The percentage differences were respectively 8, 10, 13 and 25 per cent.

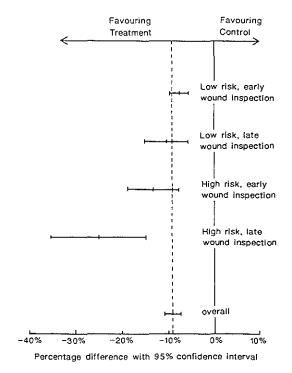


Figure 4.3 Common percentage differences with 95 per cent confidence intervals for four subgroups of 42 trials comparing treatment versus control

4.3.2 Assessment of study quality

None of the items which score study quality was associated with the heterogeneity in percentage differences. The distribution of the quality sum-scores for design and conduct, analysis, presentation, and overall score (maximum values of 50, 30, 20 and 100 respectively) of the 40 papers (42 trials) from group I are shown in *Table 4.2*.

Table 4.2 Distribution of scores as specified in Table 4.1 for 40 reports of 42 trials comparing treatment versus control

- 1000	Range	Mean (s.d.)	
Design and conduct	17-42	29.0 (5.9)	
Analysis	4-21	10.2 (3.5)	
Presentation	2-17	9.2 (3.3)	
Total	34-66	48.5 (7.9)	

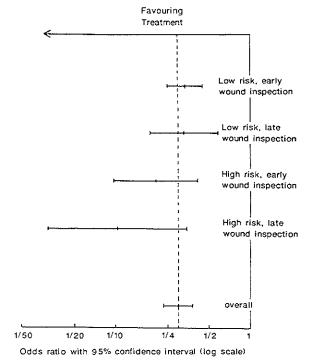


Figure 4.4 Common odds ratios with 95 per cent confidence intervals (log scale) for four subgroups of 42 trials comparing treatment versus control

4.3.3 Group II trials

Percentage differences and odds ratios for the 11 trials in group II (first generation cephalosporins *versus* second or third generation) did not reveal any significant differences. The common percentage difference is 0.5 per cent in favour of the newer generation (95 per cent confidence interval -1.5 per cent to +2.5 per cent; *Figure 4.5*); the common odds ratio is 1.18 in favour of the newer generation (95 per cent confidence interval 0.69-2.00; *Figure 4.6*).

4.3.4 Group III trials

From the 15 group III trials (single-dose versus multiple-dose regimen) we also

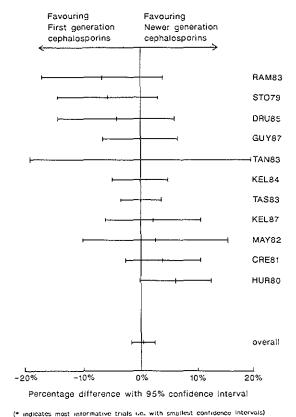


Figure 4.5 Percentage differences with 95 per cent confidence intervals for 11 trials comparing first versus second or third generation cephalosporins and common 95 per cent confidence interval. *Most informative trials, i.e. with the smallest confidence intervals

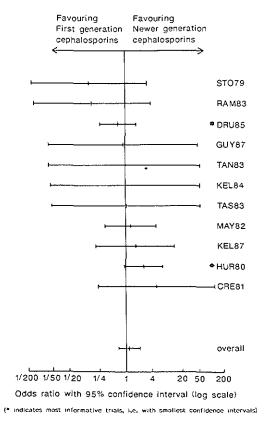


Figure 4.6 Odds ratios with 95 per cent confidence intervals (log scale) for 11 trials comparing first versus second or third generation cephalosporins and common 95 per cent confidence interval. *Most informative trials, i.e. with the smallest confidence intervals

could not detect any significant difference. Here, the common percentage difference is 0.4 per cent favouring single-dose therapy (95 per cent confidence interval from -1.1 per cent to +1.9 per cent; *Figure 4.7*), while the common odds ratio is 0.80 favouring single-dose therapy (95 per cent confidence interval 0.41 to 1.57; *Figure 4.8*).

4.4 Discussion

Although wound infections are not common after cholecystectomy (0-30 per cent are quoted in the literature), improvement is still a worthwhile aim because cholecystectomy is one of the most common operations on the digestive system. Many controlled

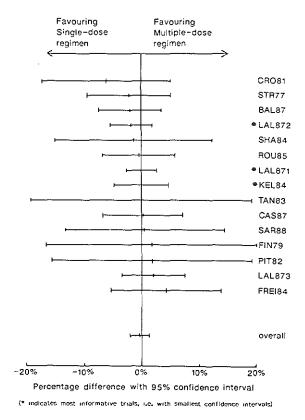


Figure 4.7 Percentage differences with 95 per cent confidence intervals for 15 trials comparing single-dose versus multiple-dose regimens and common 95 per cent confidence interval. *Most informative trials, i.e. with the smallest confidence intervals

clinical trials have been performed to show the effectiveness of prophylactic antimicrobials, or to show whether one treatment is better than another. Individually, most trials are too small to detect small differences with sufficient statistical power. If we assume a 15 per cent infection rate without treatment, the expected infection rate with antibiotic prophylaxis is approximately 6 per cent since we showed a 9 per cent overall difference. To demonstrate that such difference is statistically significant (with a 90 per cent power and use of one-sided testing alpha = 0.05) it is necessary to study a total of at least 350 patients. The size of the largest study in this meta-analysis was 330 patients (Appendix 4A: 6a).

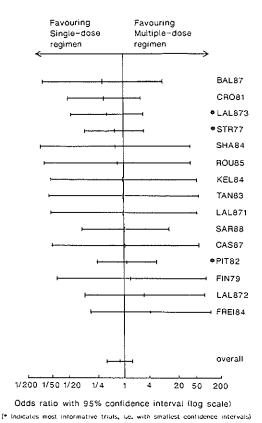


Figure 4.8 Odds ratios with 95 per cent confidence intervals (log scale) for 15 trials comparing single-dose versus multiple-dose regimens and common 95 per cent confidence interval. *Most informative trials, i.e. with the smallest confidence intervals

To obtain a stable estimate of the effect of prophylactic antibiotics and more reliable answers to several subjects of debate, such as single-dose prophylaxis and the use of newer cephalosporins, we have performed this meta-analysis.

Only prospective randomized trials were included in the analysis to overcome selection bias. Results of trials with pooled data from all kinds of general or gastro-intestinal operations may be different from biliary tract surgery alone. Therefore, only biliary tract operations have been included in this meta-analysis. To avoid publication bias as much as possible, we decided to include all trials we could retrieve, including abstracts from proceedings of international congresses. Trials with a sample size less then ten were withdrawn from analysis. Because of study heterogeneity, included trials

have been divided into three groups: (I) treatment *versus* no-treatment control; (II) first generation *versus* second or third generation cephalosporins; and (III) single-dose *versus* multiple-dose regimens.

For assessment of the effectiveness of antibiotic prophylaxis we used two different measures: the difference in percentage wound infection and the odds ratio. Although the odds ratio has certain favourable mathematical properties, the difference in percentages is easier to interpret. The data did not show a preference for one of these measures, and generally both measures led to the same results, with exception of the test for homogeneity in the group I trials. We found a 9 per cent difference in wound infection percentage, favouring antibiotic treatment versus controls. The demonstrated effectiveness of prophylaxis in biliary tract surgery is evidence against further use of notreatment controls. Future trials should be performed versus a proven prophylactic regimen, for instance a first generation cephalosporin.

Besides the effectiveness of antibiotic prophylaxis we found a stronger protective effect in high risk patients. In addition, the timing of wound inspection had an important influence on treatment effect. Late (follow-up) wound inspection showed a higher infection rate than early (in hospital) wound inspection. Percentage differences in the four subgroups (low risk, early inspection; low risk, late inspection; high risk, early inspection; high risk, late inspection; high risk, late inspection) are 8, 10, 13 and 25 per cent respectively (all favouring treatment). The variation in definition of wound infection had no influence on treatment effect: there was no significant difference between major alone and major plus minor wound infections. Nevertheless, a better and widely accepted definition of wound infection is warranted to make comparison of different trials more reliable.

Results of the scoring system for study quality showed striking inadequacies in most analysed trials. These findings are quite comparable to a similar quality assessment of reports of antibacterial prophylaxis in colorectal surgery²⁷. However, none of the different items of the score system had a significant influence on treatment effect.

The meta-analyses of the trials from group II and III showed that no greater benefit could be detected for the newer generation cephalosporins (in comparison with first generation the common percentage difference is 0.5 per cent) and for use of a multiple-dose regimen (in comparison with a single-dose regimen the common percentage difference is 0.4 per cent). From the confidence intervals it can be deduced that a difference larger than 2 per cent is unlikely. Even if a 2 per cent difference were to be considered as interesting, a clinical trial to detect such a difference with statistical significance would need to include many thousands of patients. The small confidence intervals (3-4 per cent width) suggest that the choice of prophylactic agent can be made largely on the basis of cost.

An interesting question is whether meta-analysis can replace future clinical trials. The answer is no. Clinical trials in antimicrobial research should be carried out because one trial based on a single protocol, provided that sufficient patient numbers can be acquired, will always avoid the heterogeneity disadvantages inherent in an overview. One of the reasons for conducting such an analysis is to identify the need for and planning of major trials. Trials which have as primary objectives the comparison of single-dose versus multiple-dose regimens or first versus newer generation cephalosporins will almost certain fail to detect any clinically or statistically significant differences with respect to wound infection rates. However, it has to be noted that almost all of the 15 group III trials (single versus multiple dosage) compared a multiple-dose, short-acting, first generation cephalosporin with a single-dose, long-acting, third generation cephalosporin. Therefore, we feel that a major trial comparing single versus multiple dosage of the same antimicrobial is still worthwhile.

Although it is widely accepted that the first dose of prophylactic antibiotics should be given before operation, this was confirmed by only one prospective trial (Appendix 4A: 36a). Recently, another randomized, double-blind trial a failed to show any advantage to starting antibiotics before operation. We endorse the view of Brumfitt and Hamilton-Miller, who made a plea for further studies into the timing of administration of prophylactic antibiotics 29.

In conclusion, antibiotic prophylaxis in biliary tract surgery is effective, especially in high risk patients. Late (follow-up) wound inspection essentially influenced the treatment effect reported. The choice of antimicrobial agent can largely be made on the basis of its cost. Future trials must be directed to timing and duration of antibiotic prophylaxis, such as the need of a first dose before operation and single *versus* multiple dosage of the same antimicrobial.

4.5 References

- Miles AA, Miles EM, Burke JF. The value and duration of defense reactions of the skin to the primary lodgement of bacteria. Br J Exp Path 1957; 38: 79-96.
- 2. Burke JF. The effective period of preventive antibiotic action in experimental excisions and dermal lesions. Surgery 1961; 50: 161-8.
- Polk HC Jr, Lopez-Mayor JF. Postoperative wound infection: A prospective study of determinant factors and prevention. Surgery 1969; 66: 97-103.
- Scher KS, Wroczynski AF, Jones CW. Duration of antibiotic prophylaxis. An experimental study. Am J Surg 1986; 151: 209-12.
- Chodak GW, Plaut ME. Use of systemic antibiotics for prophylaxis in surgery. Arch Surg 1977; 112: 326-34.
- Berger SA, Nagar H, Weitzman S. Prophylactic antibiotics in surgical procedures. Surg Gynecol Obstet 1978; 146: 469-75.

- Freiman JA, Chalmers TC, Smith H Jr et al. The importance of beta, the type II error and sample size in the design and interpretation of the randomized control trial: survey of 71 "negative" trials. N Engl J Med 1978; 299: 690-4.
- Hirschmann JV, Inui TS. Antimicrobial prophylaxis: A critique of recent trials. Rev Infect Dis 1980; 2: 1-23.
- Polk BF. Antimicrobial prophylaxis to prevent mixed bacterial infection. J Antimicrob Chemother 1981; 8 (Suppl D): 115-29.
- Guglielmo BJ, Hohn DC, Koo PJ et al. Antibiotic prophylaxis in surgical procedures: A critical analysis of the literature. Arch Surg 1983; 118: 943-55.
- Evans M, Pollock AV. Trials on trial. A review of trials of antibiotic prophylaxis. Arch Surg 1984; 119: 109-13.
- Watts JMcK, McDonald PJ, Woods PJ. Clinical trials of antimicrobials in surgery. World J Surg 1982; 6: 321-6.
- DiPiro JT, Bowden TA Jr, Hooks VH III. Prophylactic parenteral cephalosporins in surgery. Are the newer agents better? JAMA 1984; 252: 3277-9.
- Kaiser AB. Antimicrobial prophylaxis in surgery. N Engl J Med 1986; 315: 1129-38.
- Hirschmann JV. Controversies in antimicrobial prophylaxis. Chemioterapia 1987; VI: 202-7.
- Elashoff JD. Combining results of clinical trials. Gastroenterology 1978; 75: 1170-2.
- Anonymus. Whither meta-analysis? Lancet 1987; i: 897-8.
- L'Abbe KA, Detsky AS, O'Rourke K. Meta-analysis in clinical research. Ann Intern Med 1987; 107: 224-33.
- Peto R. Why do we need systematic overviews of randomized trials? Stat Med 1987; 6: 233-40.
- Sacks HS, Berrier J, Reitman D et al. Meta-analyses of randomized controlled trials. New Engl J Med 1987; 316: 450-5.
- 21. Bulpitt CJ. Meta-analysis. Lancet 1988; ii: 93-4.
- Thacker SB. Meta-analysis. A quantitative approach to research integration. JAMA 1988;
 259: 1685-9.
- Evans M, Pollock AV. A score system for evaluating random control clinical trials of prophylaxis of abdominal surgical wound infection. Br J Surg 1985; 72: 256-60.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clin Trials 1986; 7: 177-88.
- Galbraith RF. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med 1988; 7: 889-94.
- Chalmers TC, Smith H Jr, Blackburn B et al. A method for assessing the quality of a randomized control trial. Controlled Clin Trials 1981; 2: 31-49.
- Evans M, Pollock AV. The inadequacy of published random control trials of antibacterial prophylaxis in colorectal surgery. Dis Colon Rectum 1987; 30: 743-6.
- Bates T, Siller G, Crathern BC et al. Timing of prophylactic antibiotics in abdominal surgery: trial of a pre-operative versus an intra-operative first dose. Br J Surg 1989; 76: 52-6.
- Brumfitt W, Hamilton-Miller JMT. Dangers of chemo-prophylaxis. In: Karran S, ed. Controversies in Surgical Sepsis. New York: Praeger Publishers, 1980; 77-86.

- (1) Studies used for comparison of treatment versus control (publication 21a contains two trials)
- Bevan PG, Williams JD. Rifamide in acute cholecystitis and biliary surgery. Br Med J 1971; 3: 284-7.
- Cainzos M, Potel J, Puente JL. Prospective randomized controlled study of prophylaxis with cefamandole in high risk patients undergoing operations upon the biliary tract. Surg Gynecol Obstet 1985; 160: 27-32.
- 3a. Castoldi R, Ferrari G, Di Palo S et al. Prophylactic use of cefotaxime in biliary surgery: comparison of single dose versus multiple dose schedule. Proceedings of the 17th International Congress on Chemotherapy, Istanbul, 1987: 1182-4 (Abstract).
- Creve U, Hubens A. Single-dose parenteral antibiotic prophylaxis in gastrointestinal surgery. Acta Chir Belg 1980; 79: 27-33.
- Croton RS, Sykes D, Treanor J et al. The evaluation of cefuroxime in the prevention of postoperative infection. Postgrad Med J 1981; 57: 363-5.
- Elke R, Widmer M, Gerber H et al. Mezlocillin single-dose prophylaxis in biliary tract surgery. Eur Surg Res 1983; 15: 297-301.
- Evans C, Pollock AV. The reduction of surgical wound infections by prophylactic parenteral cephaloridine. A controlled clinical trial. Br J Surg 1973; 60: 434-7.
- Fielding G, Rao A, Davis NC et al. Prophylactic topical use of antibiotics in surgical wounds: a controlled clinical trial using "polybactrin". Med J Austr 1965; 2: 159-61.
- 9a. Finch DRA, Taylor L, Morris PJ. Wound sepsis following gastrointestinal surgery: a comparison of topical and two-dose systemic cephradine. *Br J Surg* 1979; 66: 580-2.
- Galland RB, Mosley JG, Saunders JH et al. Prevention of wound infection in abdominal operations by peroperative antibiotics or povidone-iodine. A controlled trial. Lancet 1977;
 ii: 1043-5.
- Griffiths DA, Simpson RA, Shorey BA et al. Single-dose peroperative antibiotic prophylaxis in gastrointestinal surgery. Lancet 1976; ii: 325-8.
- 12a. Halsall AK, Welsh CL, Craven JL et al. Prophylactic use of metronidazole in preventing wound sepsis after elective cholecystectomy. Br J Surg 1980; 67: 551-2.
- 13a. Harnoss B-M, Hirner A, Kruselmann M et al. Antibiotic infection prophylaxis in gallbladder surgery a prospective randomized study. Chemotherapy 1985; 31: 76-82.
- 14a. Holub K. Untersuchungen zur Frage der Berechtigung prophylaktischer Cefazolingaben bei Operationen an der Gallenblase und den Gallenwegen. Acta Chir Austr 1978; 1: 13-4.
- Karran SJ, Allen S, Lewington V et al. Cefuroxime prophylaxis in biliary surgery. R Soc Med Int Congr Symp Series No.38 1980; 27-34.
- 16a. Kaufman Z, Engelberg M, Eliashiv A et al. Systemic prophylactic antibiotics in elective biliary surgery. Arch Surg 1984; 119: 1002-4.
- 17a. Kaufman Z, Dinbar A. Single dose prophylaxis in elective cholecystectomy. Am J Surg 1986; 152: 513-6.
- 18a. Keighley MRB, Baddeley RM, Burdon DW et al. A controlled trial of parenteral prophylactic gentamic in therapy in biliary surgery. Br J Surg 1975; 62: 275-9.
- 19a. Keighley MRB, Drysdale RB, Quoraishi AH et al. Antibiotics in biliary disease: the relative importance of antibiotic concentrations in the bile and serum. Gut 1976; 17: 495-500.
- 20a. Kune GA, Hunt RF, Jed A et al. Wound infection in elective biliary surgery: controlled

- trial using one dose cephamandole. Aust NZJ Surg 1985; 55: 19-22.
- 21a. Lahtinen J, Alhava EM, Katila M-L et al. Prophylactic antibiotics for acute cholecystitis treated by early surgery. A double-blind, controlled trial. Proceedings of the 13th International Congress on Chemotherapy, Vienna, 1983; SE 7.19/1, Part 68: 28-32 (Abstract).
- 22a. Lambert WG, Mullinger BM. Single-dose cefuroxime in the prophylaxis of abdominal wound sepsis. Curr Med Res Opin 1980; 6: 404-6.
- 23a. Lewis RT, Allan CM, Goodall RG et al. A single preoperative dose of cefazolin prevents postoperative sepsis in high-risk biliary surgery. Can J Surg 1984; 27: 44-7.
- 24a. Logan CJH. The effect of topical ampicillin on wound-infection rate after cholecystectomy. Br J Surg 1973; 60: 355-6.
- 25a. Lord JE Jr, LaRaja RD, Daliana M et al. Prophylactic antibiotic wound irrigation in gastric, biliary, and colonic surgery. Am J Surg 1983; 145: 209-12.
- 26a. Lowrey L, Trachtenberg L, Ray JW et al. Infection complicating cholecystectomy. Am Surg 1980; 46: 386-90.
- McArdle CS, Morran CG, Thomson G et al. Prophylactic cefuroxime in biliary surgery. Res Clin Forums 1983; 5: 65-9.
- 28a. Marosvolgyi P, Molnar L, Dobi I et al. Single dose cefamandole in biliary surgery. A prospective randomised study of 112 cases. 2nd World Congress on HPB Surgery, Amsterdam, 1988: FP 158 (Abstract).
- 29a. Mitchell NJ, Evans DS, Pollock D. Pre-operation single-dose cefuroxime antimicrobial prophylaxis with and without metronidazole in elective gastrointestinal surgery. J Antimicrob Chemother 1980; 6: 393-9.
- Morran C, McNaught W, McArdle CS. Prophylactic co-trimoxazole in biliary surgery. Br Med J 1978; 2: 462-4.
- 31a. Morran CG, Thomson G, White A et al. Wound sepsis after low risk elective cholecystectomy: the effect of cefuroxime. Br J Surg 1984; 71: 540-2.
- 32a. Mourot N, Ghesquiere F, Leveque C et al. Complications parietales après cholecystectomie intérêt d'une antibiotherapie prophylactique par la cefazoline. Semin Hôp Paris 1981; 57: 909-11.
- 33a. Orlowski T, Lewandowski A, Weuta H. Mezlocillin to prevent infection in gallbladder surgery a placebo-controlled comparison. Proceedings of the 13th International Congress on Chemotherapy, Vienna, 1983; PS 7.19/2, Part 120; 95-8 (Abstract).
- 34a. Papachristodoulou AJ, Mackenzie A, Norman J et al. Single dose cephazolin prophylaxis in biliary tract surgery. J R Coll Surg Edinb 1978; 23: 178-83.
- 35a. Pollock AV, Evans M. Povidone-iodine for the control of surgical wound infection: a controlled clinical trial against topical cephaloridine. Br J Surg 1975; 62: 292-4.
- Stone HH, Hooper A, Kolb LD et al. Antibiotic prophylaxis in gastric, biliary and colonic surgery. Ann Surg 1976; 184: 443-52.
- Strachan CJL, Black J, Powis SJA et al. Prophylactic use of cephazolin against wound sepsis after cholecystectomy. Br Med J 1977; 1: 1254-6.
- 38a. Sykes D, Basu PK. Prophylactic use of cefotaxime in elective biliary surgery. J Antimicrob Chemother 1984; 14 (Suppl B): 237-9.
- 39a. Talpacci A, Bastianini L, Pensi F et al. Ruolo della chemiprofilassi antimicrobica a breve termine nella chirurgia biliare a basso rischio. Min Chir 1987; 42: 525-9.

- 40a. Taylor TV, Dawson DL, De Silva M et al. Preoperative intraincisional cefamandole reduces wound infection and postoperative inpatient stay in upper abdominal surgery. Ann R Coll Surg Engl 1985; 67: 235-7.
- 41a. Willis RG, Lawson WC, Hoare EM et al. Are bile bacteria relevant to septic complications following biliary surgery? Br J Surg 1984; 71: 845-9.
- (2) Studies used for comparison of first versus second or third generation cephalosporins
- 42a. Crenshaw CA, Glanges E, Webber CE et al. A prospective, randomized, double blind study of preventive cefamandole therapy in patients at high risk for undergoing cholecystectomy. Surg Gynecol Obstet 1981; 153: 546-52.
- Drumm J, Donovan IA, Wise R. A comparison of cefotetan and cephazolin for prophylaxis against wound infection after elective cholecystectomy. J Hosp Infect 1985; 6: 277-80
- 44a. Guyot L, Allouch P, Fabre JP et al. Antibiotherapie prophylactique en chirurgie biliaire, cefazoline versus cefoperazone. Path Biol (Paris) 1987; 35: 661-4.
- 45a. Hurlow RA, Strachan CJL, Wise R. A comparative study of the efficacy of cefuroxime for preventing wound sepsis after cholecystectomy. R Soc Med Int Congr Symp Series No.38 1980: 1-17.
- 46a. Kellum JM Jr, Gargano S, Gorbach SL et al. Antibiotic prophylaxis in high-risk biliary operations: Multicenter trial of single preoperative ceftriaxone versus multidose cefazolin. Am J Surg 1984; 148: 15-8.
- Kellum JM, Duma RJ, Gorbach SL et al. Single-dose antibiotic prophylaxis for biliary surgery. Arch Surg 1987; 122: 918-22.
- 48a. Mayer AD, Brennan SS, Pickford IR et al. The prophylaxis of surgical wound infection: is cefuroxime any better than cephaloridine? J Hosp Infect 1982; 3: 143-8.
- 49a. Ramirez-Ronda R, Maldonado J, Ramirez-Ronda CH et al. Comparative effectiveness and safety of moxalactam vs cefazolin in the prophylaxis of potentially contaminated elective intraabdominal surgery. Proceedings of the 13th International Congress on Chemotherapy, Vienna, 1983; SE 7.19/1, Part 68: 10-5 (Abstract).
- 50a. Stone HH, Haney BB, Kolb LD et al. Prophylactic and preventive antibiotic therapy. Timing, duration and economics. Ann Surg 1979; 189: 691-9.
- 51a. Tan JS, Kelly T, File TM Jr. Perioperative use of ceftriaxone in biliary surgery. Proceedings of the 13th International Congress on Chemotherapy, Vienna, 1983; SS 7.19/4, Part 42: 19-21 (Abstract).
- 52a. Tasker DG, O'Malley V, Lewis P et al. Cefotaxime in the prophylaxis of wound infection following cholecystectomy. Proceedings of the 13th International Congress on Chemotherapy, Vienna, 1983; SE 7.19/3, Part 69: 22-5 (Abstract).
- (3) Studies used for comparison of treatment given in single versus multiple dose
- (In addition, publications 3a, 5a, 9a, 37a, 46a, 51a were used; publication 56a contains two trials.)
- 53a. Balbo G, Farina EC, Garino M et al. Single-shot versus short-term prophylaxis with mezlocillin in biliary tract surgery. Proceedings of the 17th International Congress on Chemotherapy, Istanbul, 1987: 1193-4 (Abstract).
- 54a. Freischlag J, McGrattan M, Busuttil RW. Topical versus systemic cephalosporin administration in elective biliary operations. Surgery 1984; 96: 686-91.

- 55a. De Lalla F, Savio S, Castelli A et al. Piperacillin prophylaxis in high-risk elective biliary tract surgery. Proceedings of the 17th International Congress on Chemotherapy, Istanbul, 1987: 1195-7 (Abstract).
- 56a. De Lalla F, De Nunno T. Mezlocillin prophylaxis in high-risk biliary tract surgery. Proceedings of the 17th International Congress on Chemotherapy, Istanbul, 1987: 1443-5 (Abstract).
- 57a. Pitt HA, Postier RG, Gadacz TR et al. The role of topical antibiotics in "high-risk" biliary surgery. Surgery 1982; 91: 518-24.
- 58a. Roufail WM. Comparison of cefonicid and cefoxitin for prophylaxis in biliary tract surgery. Adv Ther 1985; 2: 225-32.
- 59a. Sarr MG, Parikh KJ, Sanfey H et al. Topical antibiotics in the high-risk surgical patient. A prospective, randomized study. Am J Surg 1988; 155: 337-42.
- 60a. Shatney CH. Antibiotic prophylaxis in elective gastro-intestinal tract surgery: a comparison of single-dose pre-operative cefotaxime and multiple-dose cefoxitin. J Antimicrob Chemother 1984; 14 (Suppl B): 241-5.

APPENDIX 4B. Trials withdrawn from meta-analysis

- (1) Studies not eligible for one of the three groups of meta-analysis
 - Ambrose NS, Morris DL, Burdon DW et al. Comparison of selective and nonselective single-dose antibiotic cover in biliary surgery. World J Surg 1987; 11: 101-4.
- Germiniani R, Bragherio L, De Nunno R et al. Single dose antibiotic prophylaxis in elective biliary surgery: cefotaxime versus ceftriaxone. Proceedings of the 17th International Congress on Chemotherapy, Istanbul, 1987: 1189-92 (Abstract).
- Gillen P, Ryan W, Peel ALG. A prospective randomised controlled trial of mezlocillin versus netilmicin in biliary surgery. Ann R Coll Surg Engl 1985; 67: 376-8.
- 4b. Greenall MJ, Atkinson JE, Evans M et al. Single dose prophylaxis of surgical wound sepsis: which route of administration is best? A controlled clinical trial of intra-incisional against intravenous cephaloridine. J Antimicrob Chemother 1981; 7: 223-7.
- Guyot L, Legue E, Kwantes M et al. Initial curative antibiotherapy in biliary surgery. Proceedings of the 17th International Congress on Chemotherapy, Istanbul, 1987: 1409-11 (Abstract).
- 6b. Harnoss B-M, Hirner A, Dibbelt A et al. Peri-operative antibiotic prophylaxis in cholecystectomy: two prospective randomised trials. Chemotherapy 1987; 33: 297-301.
- Jensen LS, Anderson F, Gjøde P et al. Preoperative cefuroxime v. long-term ampicillin and metronidazole in high-risk biliary and gastric surgery. Acta Chir Scand 1987; 153: 193-7.
- 8b. Kujath P, Hugelschaffer Ch, Kunz E et al. Antibiotic prophylaxis in the surgery of bile ducts ciprofloxacin versus ceftriaxone. Proceedings of the 17th International Congress on Chemotherapy, Istanbul, 1987: 1185-8 (Abstract).
- Murray WR, Bradley JA. Antibiotic prophylaxis in elective biliary surgery. Res Clin Forums 1983; 5: 97-101.
- 10b. Pollock AV, Evans M. The prophylaxis of surgical wound sepsis with cephaloridine experiences in 2491 general surgical operations and reporting a controlled clinical trial

- against framycetin. J Antimicrob Chemother 1975; 1 (Suppl): 71-83.
- Pollock AV, Leaper DJ, Evans M. Single dose intra-incisional antibiotic prophylaxis of surgical wound sepsis: a controlled trial of cephaloridine and ampicillin. Br J Surg 1977; 64: 322-5.
- Stoker TAM, Ellis H. Wound antibiotics in gastro-intestinal surgery. Comparison of ampicillin with penicillin and sulphadiazine. Br J Surg 1972; 59: 184-6.
- 13b. Targarona EM, Munoz Ramos C, Roset F et al. Single dose antibiotic prophylaxis in high risk biliary surgery. A prospective randomized comparative trial between cefonicid and mezlocillin. 2nd World Congress on HPB Surgery, Amsterdam, 1988: PO 107 (Abstract).
- 14b. Wilson SE, Hopkins JA, Williams RA. A comparison of cefotaxime versus cefamandole in prophylaxis for surgical treatment of the biliary tract. Surg Gynecol Obstet 1987; 164: 207-12.
- 15b. Yellin AE, Berne TV, Heseltine PNR et al. Sulbactam-Ampicillin (SA) versus Moxalactam as an adjunct to surgery for acute cholecystitis. Proceedings of the 17th International Congress on Chemotherapy, Istanbul, 1987: 1420-1 (Abstract).
- (2) Studies with sample size of less than ten
- 16b. Louie TJ, Blanchard R, Yaffe C et al. Randomized, double-blind comparison of cefotaxime, cefoxitin, cefazolin or placebo as prophylaxis during gastric, small bowel or complicated biliary surgery. J Antimicrob Chemother 1984; 14 (Suppl B): 255-62.
- (3) Studies with incomplete data (Abstracts)
- 17b. Dewar EP. Piperacillin prophylaxis in biliary surgery. Proceedings of the 13th International Congress on Chemotherapy, Vienna, 1983, SE 7.19/1, Part 68: 33-5 (Abstract).
- 18b. Karran S, Papachristodoulou AJ, Moore L et al. Single dose chemoprophylaxis in 500 biliary operations. Proceedings of the 15th Congress of the European Society for Surgical Research, Brussels, 1980; SS97: 88-9 (Abstract).

Chapter 5

PROPHYLACTIC USE OF CEFUROXIME IN BILIARY TRACT SURGERY: RANDOMIZED, CONTROLLED DOUBLE-BLIND MULTICENTRE TRIAL OF SINGLE-DOSE VERSUS MULTIPLE-DOSE IN 1004 HIGH RISK PATIENTS

This chapter has been submitted for publication to The British Journal of Surgery.

PROPHYLACTIC USE OF CEFUROXIME IN BILIARY TRACT SURGERY: RANDOMIZED, CONTROLLED DOUBLE-BLIND MULTICENTRE TRIAL OF SINGLE-DOSE *VERSUS* MULTIPLE-DOSE IN 1004 HIGH RISK PATIENTS

W.S. Meijer and P.I.M. Schmitz* for the Galant-Trial Study Group**

Department of Surgery, Sint Clara Hospital, *Department of Trials, Documentation and Statistics, Rotterdam Cancer Centre, Rotterdam, The Netherlands. **A list of participating members of the Galant-Trial Study Group can be found in the Appendix B.

5.1 Introduction

Biliary tract operations are a popular area for study of single-dose antibiotic regimens. In placebo-controlled trials in which patients received a single-dose of cefazolin, cefuroxime, cefamandole, cefotaxime, gentamicin or cotrimoxazole, the antimicrobial group showed lower rates of postoperative wound infections 1-10. In comparative trials single-dose cefotaxime, cefotetan, ceftriaxone and moxalactam were as effective as multiple-dose cefazolin or cefoxitin 11-15. In spite of all efforts, duration of antibiotic prophylaxis remains a subject of debate. Questions about the efficacy and effectiveness of single-dose prophylaxis of short-acting antibiotics versus single-dose of long-acting agents and versus multiple doses of short-acting agents are yet to be answered. Because the sample size of most published trials was too small, clinically important differences could not be detected. In a meta-analysis of randomized, controlled clinical trials in biliary surgery the comparison of wound infection rates in patients treated with single-dose versus multipledose regimens did not reveal any significant effect¹⁶. However, in almost all included studies a single-dose, long-acting antibiotic has been compared with a multiple dosage of a short-acting agent. It is impossible to assess from these trials whether single-dose regimens of short-acting antibiotics are as effective in preventing infection as multiple-dose regimens of short-acting agents. Therefore, we conducted a randomized, controlled doubleblind multicentre evaluation of single versus multiple dosage of cefuroxime in biliary surgery patients with infection risk factors. Since the value of prophylactic antibiotics in high risk biliary surgery is now well established, it was considered unethical to use placebo or a no-treatment control group to compare the incidence of sepsis.

5.2 Patients and methods

5.2.1 Patient population

Patients were enrolled between February 1, 1987 and May 31, 1990 at 14 Dutch hospitals (The Galant-Trial Study Group). Eight of these 14 clinics are affiliated teaching hospitals in general surgery with a 6-year residency. The other 6 hospitals have no training programme in general surgery. Ethical Committee approval was obtained from each participating hospital. All patients scheduled for biliary tract surgery were eligible for the study if they presented with at least one of the risk factors detailed in *Table 5.1*. These factors are associated with an increased risk of positive bile cultures¹⁷⁻²⁰. Patients with an acute cholecystitis or an emergency operation were also eligible.

5.2.2 Exclusions (before randomization)

Patients were not eligible if they met one of the following exclusion criteria: Allergy to cephalosporins, haemodynamic instability, severe renal insufficiency (creatinin > 300 μ mol/l), pregnancy or lactation, any antibiotic therapy within one week before operation, immuno-suppressive therapy, concomittant intraabdominal procedures as appendectomy or gastric resection, and resection of the common bile duct (Whipple's procedure).

5.2.3 Treatment regimens

Cefuroxime, a second generation cephalosporin with an elimination half-life of less than 1.5 hours, was chosen because this agent is considered a suitable antimicrobial drug for prophylaxis in surgery involving the gastrointestinal tract above the caecum. It has a wide range of activity against most species of bacteria present in the intestine²¹. In several studies cefuroxime was effective in the reduction of wound sepsis following biliary surgery²²⁻²⁵. In addition, most participating institutes already used cefuroxime for prophylaxis of their surgical procedures.

All study patients received cefuroxime 1.5 g as a rapid intravenous infusion at the time of induction. Subsequently, 8 and 16 hours postoperatively patients received either 0.75 g of cefuroxime intravenously (mixed in 100 ml saline with 1 ml riboflavin; Group II) or an identical appearing placebo intravenously (1 ml riboflavin in 100 ml saline; Group I).

In order to minimize the effects of different operation techniques on the results, cholecystectomy was standardized as much as possible: routine draining of the subhepatic space during a maximum of 48 hours; no irrigation of the abdominal cavity or subcutaneous tissues; closure of the fascia with a running monofilamentous suture; atraumatic closure of the skin. Violation of this protocol was no reason for withdrawal from analysis.

Table 5.1 Distribution of risk factors in 1004 eligible patients* and the incidence of bacteria in bile per inclusion criterion (high risk factor)#

Risk factor	Number of patients (percentages)							
	Group I [†] (n = 501)	Group II (n = 503)	P- value	Total number of patients	Number of obtained bile specimens (%)	Number of positive bile cultures (%)		
Age ≥ 60 years	417 (83.2)	406 (80.7)	0.30	823	766 (93)	292 (38.1)		
Jaundice (bilirubin ≥ 50 μmol/l)	51 (10.2)	36 (7.2)	0.09	87	82 (94)	38 (46.3)		
Acute attack of cholecystitis within 1 month before operation	156 (31.1)	159 (31.6)	0.87	315	297 (94)	124 (41.8)		
Stones in common bile duct	73 (14.6)	53 (10.5)	0.06	126	114 (90)	59 (51.8)		
Previous biliary tract surgery	10 (2.0)	13 (2.9)	0.53	23	19 (83)	13 (68.4)		
Chills or fever within 1 week before operation	18 (3.6)	12 (2.4)	0.26	30	17 (57)	17 (100)		

^{*} More than one risk factor could be present in one patient.
In 70 of the 1004 patients no bile culture was obtained.
† Group I is the single-dose treatment arm, group II is the multiple-dose treatment arm.

5.2.4 Randomization and blinding

Randomization was accomplished by computer-generated sheets retained in the hospital pharmacies. At each hospital, patients eligible for the study were randomly assigned separately in blocks of 10 to receive a single or multiple dosage of cefuroxime. Block randomization was used to ensure a balanced assignment to the two regimens within each institution.

Postoperative cefuroxime or placebo was supplied by the institute's pharmacist in identical appearing vials. The treatment codes were not known by the surgeon, other medical personnel, or the patient. The only way to break the code was to contact the pharmacist retaining the randomization list. As a consequence, drug assignments were not known during any follow-up evaluation or during data-processing.

5.2.5 Definitions

Wound infections were graded as follows: (0) no sign of infection; (I) minor infection: erythema, stitch abscess or skin edge necrosis; (II) major infection: purulent discharge and superficial or deep wound dehiscence. The presence of pus may be detected within a few days of an operation (in hospital wound infection) or its appearance may be delayed for as long as three weeks (delayed wound infection).

Bacteremia was defined as positive blood cultures and/or chills with rectal temperature higher than 39°C or axillary temperature higher than 38.5°C.

Urinary tract infection was defined as otherwise unexplained fever with local symptoms of urinary tract infection and/or positive urine culture.

Pneumonia was defined as purulent sputum as well as otherwise unexplained pulmonary infiltrates and either fever or respiratory symptoms.

Acute cholecystitis was defined as acute abdominal pain existing more than 24 hours but less than one week, with tenderness in the right upper abdomen and/or palpable gallbladder, leucocytosis $>10 \times 10^9/l$ and/or rectal temperature higher than 38°C, or axillary temperature higher than 37.5°C, and optionally proven gallstones or pathological HIDA-scan.

5.2.6 Surveillance of postoperative infection

Wounds were assessed at day five and day ten postoperatively (or the day before discharge from the hospital). In addition, all patients were reviewed in the outpatient department four to six weeks after discharge from the hospital to detect any evidence of late sepsis. Wounds and drain sites were inspected by the surgeon or resident responsible for postoperative patient care. In case of unexplained fever radiological and bacteriological assessment of respiratory or urinary infections was made in the postoperative period. All data were recorded on specially designed study-forms (Appendix C).

5.2.7 Other data

Many other variables were recorded for each patient: duration of hospital stay; type and duration of symptoms; previous abdominal diseases and operations; preoperative radiological examinations; medication within two weeks before operation; length and weight of the patient; relevant physical examination; type and timing of shaving of the operative site; date and duration of the operation; time of administration of the first dose of the antibiotic; details of the surgical procedure including the surgeon (consultant or resident), incisional technique, condition of the gallbladder and common bile duct, and type of drainage; protocol violations; pathological findings of the gallbladder; antibiotic usage in the postoperative period; complications as wound haematoma, ileus, thromboembolic and cardiac events; date of onset of wound infection or other complications; date of discharge from the hospital and cause of death.

5.2.8 Bacteriological assessment

Samples of gallbladder bile were aspirated aseptically during operation and sent to the laboratory in a syringe with a rubber stopper on the needle. Deep wound swabs were obtained after closure of the abdominal cavity, and other wound swabs were taken in the postoperative period in case of wound drainage. All materials were dispatched to the bacteriology departments immediately, or stored in transport medium for later culture. Specimens were cultured aerobically and anaerobically. The media for aerobic cultures were 5 per cent sheep blood, chocolate, MacConkey and PA agar plates. For anaerobic cultures specimens were plated onto anaerobic sheep blood agar and sheep blood agar with vancomycin, colistin and nystatin, and incubated in an anaerobic tent. The aerobic plates were examined after 24, 48 and 72 hours for bacterial growth. The anaerobic plates were examined at 48 and 72 hours.

5.2.9 Number of patients

Calculation of the sample size for this study was based on the following two assumptions: (a) the percentage of grade I (minor) or grade II (major) wound infection in the multiple-dose treatment group is ten; (b) the percentage of grade I or grade II wound infection in the single-dose treatment group is at least 15. Testing will be based on significance level alpha = 0.05 (two-sided), and a power (1 - beta) of 95 per cent. Using these parameters it can be shown that 1174 patients in each treatment arm (2348 patients in total) are necessary.

During the enrollment of patients it became evident that the accrual (within a reasonable duration of approximately 3 years) would not be more than 50 per cent of the planned number. New power calculations, however, have led to the conclusion that the final number of approximately 1000 patients (500 in each trial arm) is appropriate for two

reasons: (a) the original sample size calculation was based on "overall" wound infections (10 per cent versus 15 per cent), while major wound infections (approximately 5 per cent in the multiple-dose treatment group) are clinically more significant. Assuming that we want to detect at least five percent more major infections in the single-dose treatment group, in that case a smaller number of patients is required; (b) the detection of a significant difference between the five, respectively ten percent major wound infections with 500 patients in each treatment group has a power of approximately 80 per cent, which is often used in sample size calculations.

5.2.10 Withdrawals

A sufficient number of patients were randomly assigned to ensure that 1000 would meet the criteria for evaluation. After randomization no exclusion was allowed, but patients were withdrawn from analysis if they did not meet one of the inclusion criteria, or if they met one of the exclusion criteria. In addition, patients were withdrawn if no eligible procedure was performed (i.e. irresectable carcinomas), or postoperative follow-up could not be performed (lost to follow-up or death within four weeks after surgery). If the study medication was inadvertently omitted or another antibiotic was given as prophylaxis, the patient was included in the analysis on the basis of the intention-to-treat principle.

5.2.11 Statistical analysis

Percentages or two-way tables were analysed with the chi-square test. For two by two tables with small expected frequencies Fisher's exact test was used. If relevant, 95 per cent confidence limits were calculated for the difference of two percentages. Approximately continuous data were tested with the Mann-Whitney-U test. Logistic regression analysis was used to detect prognostic factors in the development of major wound infections.

5.3 Results

5.3.1 Patient population

In the period of enrollment approximately 2500 patients were scheduled for eligible procedures. This number has been extrapolated from data of two hospitals in which the inclusion and exclusion criteria of *all* cholecystectomy patients were registered precisely. A total of 1077 from these 2500 patients were randomly assigned to receive 1.5 g cefuroxime preoperatively and either cefuroxime or placebo at 8 and 16 hours post-operatively. The reasons for not including the remainder in the randomization were: (a) the absence of an inclusion criterion (± 850 patients); (b) existence of an exclusion criterion (± 470 patients); (c) the surgeon's omission or refusal to allow the patient to participate (± 100 patients). The number of patients included in the analysis and the total number of

randomized patients were 1004 of 1077 (93 per cent, ranging from 88 per cent to 100 per cent in the participating hospitals; *Table 5.2*). A total of 73 patients were withdrawn from analysis after randomization for the reasons shown in *Table 5.3*. Two major wound infections developed in this group of patients (2.7 per cent). From the 1004 analysed patients 689 (68 per cent) were included on the basis of one risk factor, 243 patients (24 per cent) had two risk factors, 60 patients (6 per cent) had three and 11 patients (1 per cent) had four risk factors. One patient was included with all five risk factors present.

Base-line characteristics of the 1004 patients included in the analysis, are shown in *Table 5.4*. There were no important differences between the two treatment groups with regard to the variables shown, or any other evaluated parameters. Only a previous gastric resection showed a significant higher incidence in the multiple-dose treatment group (40 *versus* 23 patients; p=0.03). Selected characteristics of the surgical procedures are shown in *Table 5.5*. Cholecystectomy was performed through a right subcostal incision in 90 per cent of the cases. Common bile duct exploration was planned in 126 patients, but ultimately performed in 207 (20.6 per cent). Opening of the common bile duct, with or without choledochoscopy, revealed common bile duct stones in only 56 per cent of the

Table 5.2 Participating hospitals, period of participation, number of randomized and eligible patients and their proportion (in percentages)

Hospital	Period	Number of p	atients	Proportion
•	of participation	randomized	eligible	eligible/
	(month/year)			randomized
St.Ignatius Hospital	2/88 - 2/89	27	25	93
Reinier de Graaf Gasthuis	5/87 - 12/89	100	92	92
Van Weel-Bethesda Hospital	3/87 - 11/89	74	70*	95
Groot Ziekengasthuis	9/88 - 5/90	42##	38	90
Bronovo Hospital	4/89 - 1/90	18	18*	100
Rode Kruis Hospital	4/89 - 6/90	25	22*	88
St.Joseph Hospital	3/87 - 11/89	42	39	93
Eudokia Hospital	11/87 - 11/89	48	45	94
St.Franciscus Gasthuis	6/87 - 3/90	121	113*	93
St.Clara Hospital	2/87 - 6/90	272	258*	95
Zuiderziekenhuis	4/87 - 6/90	82#	73	89
Schieland Hospital	4/87 - 12/89	80#	76	95
Hospital Rivierenland	6/87 - 4/90	149	45	92
St.Maartens Gasthuis	3/87 – 5/90	97#	90*	93
Total	2/87 – 6/90	1077	1004	93

^{*} one patient included on the basis of intention-to-treat

[&]quot; one patient died

Table 5.3 Reasons for withdrawal from analysis after randomization*

Reason	Number of pa	tients
	Group I	Group II
No inclusion criterion present	10	7
Another antibiotic given within 1 week before the day of surgery	6	9
Incomplete follow-up after surgery	5	3
Patient died before completion of follow-up	4	1
No biliary operation performed	7	3
Concomittant disqualifying procedure performed including Wipple's procedure	5	4
Immuno-suppressive medication at the time of operation	4	2
Haemodynamic instability of the patient at the time of operation	0	3
Total	41	32#

^{*} In six patients the study medication was inadvertently omitted; they are included in the analysis on the basis of the intention-to-treat principle

cases. A dilated duct on peroperative cholangiography was frequently the only reason for exploration of the common bile duct.

5.3.2 Protocol violations

Modifications to the "standardized" technique of cholecystectomy was never reason for withdrawal of the patient from analysis, but the modifications were noted on the patient-form as protocol violation: (a) no draining of the subhepatic space in 5 per cent; (b) irrigation of the abdominal cavity in 9 per cent; (c) irrigation of the subcutaneous tissue at the end of the operation in 1.8 per cent; (d) closure of the fascia with nonabsorbable materials in 6 per cent; (e) closure of the fascia with interrupted sutures in 3.7 per cent; and (f) closure of the skin with traumatic sutures in 21 per cent of the cases. None of the above protocol violations showed a significant difference between the two treatment groups (p > 0.1) nor any significant effect on the development of major wound infections (p > 0.1).

[#] Binomial test, p > 0.05

Table 5.4 Base-line characteristics of the patients studied *

Characteristic	Group I (n = 501)	Group II (n = 503)	P-value
Female	344 (68.7)	346 (68.8)	0.97
Age - yr (mean ± SD)	66.0 ± 11.8	64.7 ± 12.4	0.09
Body-mass index (mean ± SD)#	25.9 ± 3.9	26.4 ± 4.0	0.18
Acute cholecystitis	109 (21.8)	113 (22.5)	0.79
Acute admission to the hospital	184 (36.7)	191 (38.0)	0.68
Emergency operation	33 (6.6)	42 (8.3)	0.29
Preoperative length of stay >1 day	160 (31.9)	161 (32.0)	0.98
Diabetes mellitus	44 (8.8)	31 (6.2)	0.11
Cardiovascular diseases	176 (35.1)	171 (34.0)	0.71
Chronic respiratory disease	35 (7.0)	39 (7.8)	0.64
Previous gastric resection	23 (4.6)	40 (8.0)	0.03

^{*} Unless otherwise indicated, values are numbers of patients. Percentages are in parentheses.

5.3.3 Mortality

Five patients (mean age 70.8 yr, range 64-80 yr) died within four days after surgery and were withdrawn from analysis. Four patients were randomized in the single-dose treatment group. All five patients had a cardiac history; in four patients the probable cause of death was myocardial infarction. There were no signs of septic complications. One patient with signs of a hypovolemic shock and liver failure showed massive bleeding from the liver and liver cell necrosis at autopsy.

5.3.4 Bacteriological assessment

Bile culture specimens were obtained from 934 (93 per cent) patients. Overall, bile cultures were positive in 34.2 per cent (319/934), ranging from 38.1 to 100 per cent for the various risk factors (*Table 5.1*). The predominant aerobic organisms were *Escherichia coli* (187 isolates), streptococci (111 isolates), *Klebsiella* sp. (71 isolates) and staphylococci (17 isolates) (*Table 5.6*). The predominant anaerobic bacteria were *Clostridium* (33 isolates, including 28 *C.perfringens* isolates) and *Bacteroides* sp. (15 isolates, including 8 *B.fragilis* isolates). Polymicrobial colonization was present in 115 instances (36 per cent).

Body-mass index is calculated as weight in kilogram divided by square of height in meters.

Table 5.5 Details of the surgical procedures in 1004 patients*

Procedure		Num	ber of patients (percentage)
Incision:	right subcostal	906	(90.2)
	medial	69	(6.9)
	paramedial	27	(2.7)
	other	2	(0.2)
Cholecystectomy	: antegrade	745	(74.2)
	retrograde	259	(25.8)
Peroperative cholangiography		320	(31.9)
Common bile du	ct exploration	207	(20.6)
Choledochoscop	у	115	(11.5)
Choledocho-ente	rostomy	10	(1.0)
Spillage of bile:	none	810	(80.7)
	moderate	165	(16.4)
	severe	29	(2.9)

^{*} There were no statistically significant differences between the two study groups.

5.3.5 Postoperative infections

The follow-up evaluations at day 5, day 10 (or the day before discharge from the hospital), and at 4 to 6 weeks postoperatively occurred in all patients. Minor wound infections were detected in 64 patients (6.4 per cent) and 42 patients (4.2 per cent) developed a major wound infection (Table 5.7). Differences between the two study groups were not statistically significant (p = 0.78 and p = 0.52, respectively). The estimated difference in major wound infection rates between the two study groups was 0.8 per cent (95 per cent confidence interval from -1.7 per cent to +3.3 per cent). Delayed wound infections developed in 22 patients (2.2 per cent): 14 minor and 8 major wound infections. Deep wound dehiscence was observed in 11 patients, 9 of whom were in the single-dose group (p = 0.04).

Fever postoperatively (>39°C and/or >38°C during ≥4 days) was noted in 109 patients (11 per cent). Fever was unexplained in 47 patients, otherwise related to pneumonia, urinary tract infection, bacteremia, or wound infection. The overall incidence of pneumonia was 2.1 per cent (21 patients), urinary tract infection 4.3 per cent (43 patients) and bacteremia 1.9 per cent (19 patients). Differences between the two study groups were not statistically significant.

Table 5.6 Organisms isolated from 323 positive bile cultures, 221 positive cultures of peroperative wound swabs and 26 positive cultures of draining wounds postoperatively

Organisms	Number of isol	ates		
	Bile	Wound (peroperatively)	Wound (postoperatively)	
No. of specimens(%)	323 (100)	221 (100)	26 (100)	
Aerobic	<u></u>			
Gram-positive				
Streptococci	111 (34)	43 (19)	9 (35)	
Staphylococci	17 (5)	66 (30)	10 (38)	
Gram-negative				
Escherichia coli	187 (58)	65 (29)	16 (62)	
Klebsiella	71 (22)	19 (9)	3 (12)	
Enterobacter	16 (5)	7 (3)	2 (8)	
Proteus	12 (4)	3 (1)	1 (4)	
Pseudomonas	1 (0.3)	3 (1)	0 (0)	
Anaerobic				
Gram-positive				
Clostridium	33 (10)	6 (3)	0 (0)	
Streptococci	5 (1.5)	2 (1)	0 (0)	
Gram-negative				
Bacteroides	15 (5)	4 (2)	0 (0)	
Other organisms	41 (13)	52 (24)	4 (15)	
Total number of isolates	509	270	45	

5.3.6 Wound infections per hospital

The wound infection rate per hospital (with 95 per cent confidence interval) is presented in Figure 5.1. The overall wound infection rate was 4.2 per cent (range 0 - 8.9 per cent; 95 per cent confidence interval from 3.0 to 5.6 per cent). The lowest incidence of wound infection was seen in the clinics with the lowest number of randomized patients. These lower numbers were mostly due to a shorter time of participation to the trial. The difference in overall wound infection rates between the two ultimates (Eudokia Hospital and St.Maartens Gasthuis) is statistically significant (Fisher exact test, p = 0.05). Differences in wound infection rates between the two study groups within hospitals were not statistically significant.

Table 5.7 Comparison of the results of the study in the two groups*

	Group I (n=501)	Group II (n=503)	P- value
Wound infection			· · · · · · · · · · · · · · · · · · ·
Minor	33 (6.6)	31 (6.2)	0.78
Major	23 (4.6)	19 (3.8)	0.52
Wound dehiscence	9 (1.8)	2 (0.4)	0.04
Delayed wound infection: minor	6 (1.2)	8 (1.6)	0.46
major	2 (0.4)	6 (1.2)	0.08
Other infectious complications			
Fever#	60 (12.0)	49 (9.7)	0.26
Bacteremia	10 (2.0)	9 (1.8)	0.80
Urinary tract infection	19 (3.8)	24 (4.8)	0.44
Pneumonia	12 (2.4)	9 (1.8)	0.50
Mortality [†]			
Sepsis-related	0 (0)	0 (0)	
Non-septic	2 (0.4)	0 (0)	0.25
Patients receiving antibiotics postoperatively other			
than trial medication	56 (11.2)	37 (7.4)	0.04
Length of postoperative stay			
mean ± S.D. median (range) in days	11.8 ± 5.4	11.7 ± 7.1	0.02
Uncomplicated (n = 899)	10 (4 - 49)	9 (4 - 45)	
Major wound infections (n = 42)	18 (9 - 44)	15 (5 - 72)	
Other septic complications (n = 172)	13 (4 - 41)	10 (4 - 72)	
Overall $(n = 1004)$	10	(4 - 49)	

^{*} Unless otherwise indicated, values are numbers of patients (percentages in parentheses)

5.3.7 Prognostic factors

Analysis of the 1004 included patients with respect to prediction of major wound infection (42 patients) revealed several univariate significant prognostic factors. With logistic regression three factors were selected with high prognostic value considered in a multivariate analysis: (a) previous gastric surgery; (b) local tenderness in the right upper abdomen; (c) perforation of the gallbladder (durante operationem or spontaneously). *Table 5.8* summarizes the results of the logistic regression. From this model it can be derived that if none of the three prognostic factors are present (319 patients) there is a probability of

[#] Temperature > 39°C or ≥ 38°C during ≥ 4 days

[†] Five deaths were withdrawn from analysis

1 per cent of a major wound infection. If only one factor is present (514 patients) this probability is approximately 3.5 per cent, while if at least two of these factors are present (171 patients) the probability of a major wound infection is at least 10 per cent.

From the literature it is suggested that many other factors may affect normal wound healing, including body mass index, hospitalization exceeding one week immediately prior to operation, shaving the operative site one day before surgery, duration of the operation, and wound haematoma. None of these factors revealed any prognostic effect on the development of major wound infections in this study.

5.3.8 Additional antibiotics

Overall, additional antibiotics postoperatively were used in 93 patients (9.3 per cent) with a significant difference between the two study groups (p = 0.04). In 74 patients (7.4 per cent) the antibiotics were given for septic complications: 43 in the single-dose group *versus*

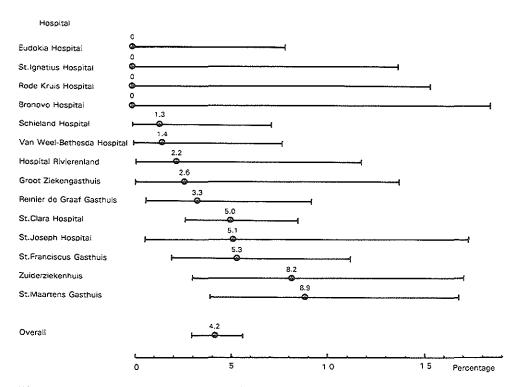


Figure 5.1 Major wound infection rate per hospital (percentage and 95% confidence interval)

			-	
Factor	Logistic	Standard	P -	
	Coefficient	Error	Value	

Table 5.8 Multivariate prognostic factors of major wound infection using logistic regression

Factor	Logistic Coefficient	Standard Error	P - Value
Previous gastric surgery	1.18	0.48	0.014
Local tenderness in the right upper abdomen	1.35	0.45	0.003
Perforation of the gallbladder	1.29	0.33	<0.001

31 in the multiple-dose group (p = 0.12). The septic complications were: bacteremia (8 patients), urinary tract infection (21 patients), pneumonia (12 patients), minor wound infection (4 patients), major wound infection (5 patients), multiple factors (11 patients), and unexplained fever (13 patients). In other instances antibiotics were administered prophylactically to prevent septic complications due to ERCP or T-tube-cholangiography.

5.3.9 Other outcomes

No significant differences between the two study groups were noted with respect to the other recorded data. The incidence of carcinoma of the gallbladder was 1.5 per cent (15 patients). Acute acalculous cholecystitis was seen in only 7 patients (0.7 per cent), corresponding to 3.2 per cent of patients with an acute cholecystitis. In 30 patients (3.0 per cent) a chronic acalculous cholecystitis was noted and eight cholecystectomy patients had no gallstones nor signs of cholecystitis.

5.3.10 Adverse effects

Only one instance of urticaria was noted in the group of 1077 randomized patients. No correlation to the antibiotic therapy was suspected in the patients who died.

5.4 Discussion

Results of the present study show that one dose of a short-acting agent (half-life time less than 1.5 hr) is as effective as a three-dose regimen in preventing major wound infections. Therefore, the duration of antibiotic prophylaxis should not be extended by multiple dosage of a short-acting agent. However, mean hospital stay, additional antibiotics in the postoperative period and development of deep wound dehiscence showed statistically significant differences at the expense of single-dose prophylaxis. These differences might correlate to the duration of prophylaxis. Possibly, long-acting agents will overcome these problems, but this cannot be concluded from this study. Anyway, it is obvious that these factors will play a major role in a cost-benefit analysis.

There is no reasonable explanation for a previous gastric resection being a prognostic factor in the development of major wound infections. A direct relationship between the length of operation and wound infection has been reported¹⁷, but in our 42 patients who developed a major wound infection, the duration of surgery was not significantly prolonged. The second prognostic factor was local tenderness in the right upper abdomen. This is one of the symptoms of acute cholecystitis, a condition with a high incidence of bactobilia. Although acute cholecystitis does not necessarily imply an infective etiology, approximately half of the patients have positive bile cultures¹⁸⁻²⁰. The present study showed a 47.4 per cent incidence of bactobilia in acute cholecystitis. Perforation of the gallbladder was the third prognostic factor. Subsequent severe spillage of bile is best related to the development of wound infections. It concurs with the "primary lodgment" theory of Miles *et al.*, in which direct contact of bacteria to the wound is presumed to be the origin of wound infections^{27,28}.

It is accepted that wound infections are usually caused by biliary micro-organisms²⁹⁻³¹. In 26 out of 42 major wound infections the drainage was cultured, from which 22 were positive. Eighteen (82 per cent) were associated with positive bile cultures, and in 14 of the 22 cases (64 per cent) the same organism was isolated from the subcutaneous tissue as had been previously cultured from the biliary tract. The most common organism cultured in bile and infected wounds was *Escherichia coli*. On the other hand, we found that staphylococci were uncommon in bile (5 per cent), and rather frequent in major wound infections (38 per cent). This finding has been reported by others³²⁻³⁴. Staphylococcus epidermidis was frequently grown from the subcutaneous tissues, and appeared to be of pathogenic significance in 5 patients (23 per cent). Although cefuroxime is less effective against *Streptococcus faecalis*, *Bacteroides fragilis* and *Pseudomonas* species (<50 per cent sensitivity), these organisms seem to play a minor role in the development of major wound infections. From the bacteriological assessment it is concluded that both endogenous and exogenous contamination were cause of wound sepsis. We conclude that prophylactic antibiotics should also be effective against the exogenous wound contaminants.

Whether or not all patients having cholecystectomy should receive antibiotic prophylaxis, remains controversial. It is generally accepted that patients undergoing biliary tract operations are at a higher risk of developing postoperative sepsis if bacteria are present in their bile at the time of operation^{29,34-37}. The incidence of bile colonization in low risk patients lies within the range of 8-19 per cent^{29,36-38}, and in high risk patients within the range of 30-45 per cent^{18,29,39}. Although antibiotic prophylaxis may not be essential in patients without risk factors undergoing biliary tract surgery, a beneficial effect has been reported in other clean operations⁴⁰.

Many clinically important questions can only be answered in multicentre trials to provide a sufficient number of patients. The organization and conduct of such a trial is difficult, time consuming and often expensive. Therefore, it is disappointing that most trials failed to detect statistically significant differences because their sample sizes were too small¹⁶, and also that many trials showed striking inadequacies with regard to the study quality⁴¹.

Finally, a few remarks on the recent development and fast growing popularity of laparoscopic cholecystectomy. The principles of prophylaxis are not changed by minimal invasive surgery. Although wound complications seem to play a minor role, there is a better chance of intraabdominal spillage of bile. As long as no alternative has proven its efficacy, antibiotic management in laparoscopic cholecystectomy should be identical to the management in traditional cholecystectomy.

5.5 References

- Strachan CJL, Black J, Powis SJA. Prophylactic use of cephazolin against wound sepsis after cholecystectomy. Br Med J 1977; 1: 1254-6.
- Lewis RT, Allan CM, Goodall RG et al. A single preoperative dose of cefazolin prevents postoperative sepsis in high-risk biliary surgery. Can J Surg 1984; 27: 44-7.
- 3. Karran SJ, Allen S, Lewington V et al. Cefuroxime prophylaxis in biliary surgery. International Congress and Symposium Series: Royal Society of Medicine, 1981: 27-34.
- Morran CG, Thomson G, White A et al. Wound sepsis after low risk elective cholecystectomy: the effect of cefuroxime. Br J Surg 1984; 71: 540-2.
- Taylor TV, Dawson DL, Silva De M et al. Preoperative intraincisional cefamandole reduces wound infection and postoperative inpatient stay in upper abdominal surgery. Ann R Coll Surg Engl 1985; 67: 235-7.
- Kune GA, Hunt RF, Jed A et al. Wound infection in elective biliary surgery: controlled trial using one dose cephamandole. Aust NZ J Surg 1985; 55: 19-22.
- Sykes D, Basu PK. Prophylactic use of cefotaxime in elective biliary surgery. J Antimicrob Chemother 1984; 14(suppl B): 237-9.
- 8. Castoldi R, Ferrari G, DiPalo S et al. Prophylactic use of cefotaxime in biliary surgery: comparison of single-dose versus multiple-dose schedule. Drugs 1988; 35(suppl 2): 151-3.
- Keighley MRB, Baddeley RM, Burdon DW et al. A controlled trial of parenteral prophylactic gentamicin therapy in biliary surgery. Br J Surg 1975; 62: 275-9.
- Morran C, McNaught W, McArdle CS. Prophylactic cotrimoxazole in biliary surgery. Br Med J 1978; 2: 462-4.
- Shatney CH. Antibiotic prophylaxis in elective gastro-intestinal tract surgery: a comparison of single-dose pre-operative cefotaxime and multiple-dose cefoxitin. J Antimicrob Chemother 1984; 14(suppl B): 241-5.
- Tasker DG, O'Malley V, Lewis P et al. Cefotaxime in the prophylaxis of wound infection following cholecystectomy. Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983; 69: 22-5.
- 13. Fabian TC, Zellner SR, Gazzaniga A et al. Multicenter open trial of cefotetan and cefoxitin in elective biliary surgery. Am J Surg 1988; 155: 77-80.

- Kellum JM Jr, Gargano S, Gorbach SL et al. Antibiotic prophylaxis in high-risk biliary operations: Multicenter trial of single preoperative ceftriaxone versus multidose cefazolin. Am J Surg 1984; 148: 15-8.
- Kellum JM, Duma RJ, Gorbach SL et al. Single-dose antibiotic prophylaxis for biliary surgery. Arch Surg 1987; 122: 918-22.
- Meijer WS, Schmitz PIM, Jeekel J. Meta-analysis of randomized, controlled clinical trials of antibiotic prophylaxis in biliary tract surgery. Br J Surg 1990; 77: 283-90.
- 17. Cruse PJE, Foord R. The epidemiology of wound infection. A 10-year prospective study of 62,939 wounds. Surg Clin North Am 1980; 60: 27-40.
- 18. Chetlin SH, Elliot DW. Biliary bacteraemia. Arch Surg 1971; 102: 303-7.
- Keighley MRB, Flinn R, Alexander-Williams J. Multivariate analysis of clinical and operative findings associated with biliary sepsis. Br J Surg 1976; 63: 528-31.
- Pitt HA, Postier RG, Cameron JL. Biliary bacteria: significance and alterations after antibiotic therapy. Arch Surg 1982; 117: 445-9.
- Kahng KU, Beaton HL. Infectious complications of biliary surgery in the antibiotic era. Infect Surg 1985; 4: 453-8.
- 22. O'Callaghan CH, Sykes RB, Griffiths RB et al. Cefuroxime, a new cephalosporin antibiotic: activity in vitro. Antimicrobial Agents and Chemotherapy 1976; 9: 511-9.
- Mitchell NJ, Evans DS, Pollock D. Pre-operative single-dose cefuroxime antimicrobial prophylaxis with and without metronidazole in elective gastrointestinal surgery. J Antimicrob Chemother 1980; 6: 393-9.
- Croton RS, Sykes D, Treanor J et al. The evaluation of cefuroxime in the prevention of postoperative infection. Postgrad Med J 1981; 57: 363-5.
- McArdle CS, Morran CG, Thomson G et al. Prophylactic cefuroxime in biliary surgery. Res Clin Forums 1983; 5: 65-9.
- 26. Jensen LS, Andersen F, Gjøde P et al. Preoperative cefuroxime v. long-term ampicillin and metronidazole in high-risk biliary and gastric surgery. Acta Chir Scand 1987; 153: 193-7.
- Miles AA, Miles EM, Burke JF. The value and duration of defense reactions of the skin to the primary lodgement of bacteria. Br J Exp Path 1957; 38: 79-96.
- Davidson AIG, Clark C, Smith G. Postoperative wound infection: a computer analysis. Br J Surg 1971; 58: 333-7.
- Wells GR, Taylor EW, Lindsay G et al. Relationship between bile colonization, high-risk factors and postoperative sepsis in patients undergoing biliary tract operations while receiving a prophylactic antibiotic. Br J Surg 1989; 76: 374-7.
- Keighley MRB. Micro-organisms in bile. A preventable cause of sepsis after biliary surgery.
 Ann R Coll Surg Engl 1977; 59: 328-34.
- 31. Pollock AV. Cholecystectomy wounds. J Hosp Infect 1982; 3: 314-5 (Letter).
- 32. Leeuwen PAM van, Keeman JN, Butzelaar RMJM et al. Correlation between a positive gallbladder culture and subsequent wound infection after biliary surgery A retrospective study of 840 patients. Neth J Surg 1985; 37: 179-82.
- Benjamin IS. Biliary tract infections. In: Pharmanual. The role of piperacillin in biliary tract infections. Ed. S.I.Benjamin, PharmaLibri, Montreal/Chicago 1990: 5-40.
- Mason GR. Bacteriology and antibiotic selection in biliary surgery. Arch Surg 1968; 97:
 533-7.

- Robson MC, Bogart JN, Heggers JP. An endogenous source for wound infections based on quantitative bacteriology of the biliary tract. Surgery 1970; 68: 471-6.
- Keighley MRB, Drysdale RB, Quoraishi AH et al. Antibiotic treatment of biliary sepsis. Surg Clin North Am 1975; 55: 1379-88.
- Lewis RT, Goodall RG, Marien B et al. Biliary bacteria, antibiotic use, and wound infection in surgery of the gallbladder and common bile duct. Arch Surg 1987; 122: 44-7.
- 38. Willis RG, Lawson WC, Hoare EM et al. Are bile bacteria relevant to septic complications following biliary surgery? Br J Surg 1984; 71: 845-9.
- Regan P, Flynn J, MacDermott S et al. Septic complications following cholecystectomy. Ir Med J 1985; 78: 13-4.
- Platt R, Zaleznik DF, Hopkins CC et al. Perioperative antibiotic prophylaxis for hemiorrhaphy and breast surgery. N Engl J Med 1990; 322: 153-60.
- 41. Evans M, Pollock AV. The inadequacy of published random control trials of antimicrobial prophylaxis in colorectal surgery. *Dis Colon Rectum* 1987; 30: 743-6.

Chapter 6

COST ASPECTS OF ANTIBIOTIC PROPHYLAXIS IN BILIARY TRACT SURGERY

This chapter has been submitted for publication to The British Journal of Surgery

COST ASPECTS OF ANTIBIOTIC PROPHYLAXIS IN BILIARY TRACT SURGERY

W.S. Meijer and P.I.M. Schmitz* for the Galant-Trial Study Group**

Department of Surgery, Sint Clara Hospital, Rotterdam and *Department of Trials, Documentation and Statistics, Rotterdam Cancer Centre, Rotterdam, The Netherlands. **A list of participating members of the Galant-Trial Study Group can be found in Appendix B.

6.1 Introduction

In addition to our prospective trial on single-dose and multiple-dose cefuroxime prophylaxis in high risk patients undergoing biliary surgery¹, it is interesting to look at the effects on costs. The effects consist of two main elements: (1) the cost of antimicrobial agents, and (2) the cost of wound infections. The cost of prophylactic antibiotics accounts for 30 per cent of the total cost of antimicrobial agents used in hospitals. Wound infection will add at least 3-7 days of hospitalization as well as delay the patient's return to productive activities^{2,3}. It is important to realize that hospital per diem costs and duration of stay dominate the health care expenses to such extent that they overshadow most other expenses. Therefore, we will focus on the cost of additional nursing- days. Due to the cost structure of Dutch hospitals and the application of an all-in tariff, there is no detailed cost differentiation after treatment.

In this study only the variable costs of a nursing-day will be considered; this because the number of cholecystectomies compared with the total number of admissions is relatively small and, therefore, the cost effect of wound infections after biliary surgery would barely be reflected in the total hospital costs. Although the effect of a wound infection, namely the increase of postoperative hospitalization, has a certain influence on the cost structure of hospitals (i.e. hospital budget), this aspect is beyond the scope of this investigation.

6.2 Materials and methods

For calculations on the cost effects of single-dose and multiple-dose cefuroxime prophylaxis in high risk biliary surgery we have adapted the results of a randomized controlled double-blind multicentre trial, in which 501 patients were treated with single-dose cefuroxime and 503 patients with a three-dose regimen¹. Overall, the trial showed 42 major wound infections (4.2 per cent). No statistically significant difference was

found between the two study groups (p = 0.52); 23 major wound infections (4.6 per cent) in the single-dose group (group I) and 19 infections (3.8 per cent) in the multiple-dose group (group II). For comparisons and other calculations we decided to use the wholesale price guide of drugs (Farmacotherapeutisch Kompas 1990-1991), although the actual drug acquisition cost is usually less than the wholesale price. Most hospitals purchase at least one antibiotic through competitive bargaining or a collective purchase arrangement.

For comparison of antibiotic prophylaxis with placebo or no-treatment controls we have used the results of a meta-analysis of randomized, controlled clinical trials in biliary tract surgery⁴. In terms of wound infection rates, a 9 per cent overall difference was found in favour of antibiotic prophylaxis. Derived from the meta-analysis (see *Figure 4.3*) the estimated wound infection rate in high risk patients without the use of prophylactic antibiotics was 18 per cent.

Costs of a nursing-day on a surgical ward were based on the 1990 data from the Department of Economics of the Sint Clara Hospital, Rotterdam, a general district hospital with 584 beds. The variable costs of one nursing-day are estimated at 104 Dutch guilders (Dfl.) (Table 6.1). These data will be applied to compare the costs of different antibiotic regimens combined with the costs of resulting wound infections. For convenience, calculations will be performed on the results of 500 operated patients, equal to the number of patients in groups I and II of the randomized trial. The calculated amounts in guilders will be rounded off.

Results of an investigation on antibiotic prophylaxis in biliary tract surgery in The Netherlands have given detailed information about the agents used (Chapter 2), and recent numbers of cholecystectomies performed in The Netherlands were derived from

Table 6.1 Construction of the variable costs of a nursing-day, based on the 1990 data from the Dept. of Economics of the St.Clara Hospital, Rotterdam

Nursing-day		Cost (Dfl.)	
Nursing-staff		62.50	
Nutrition		20.70	
Medical attendance		0.40	
Rental and laundry (Dfl. 5.69 + Dfl. 0.91)		6.60	
	Subtotal	90.20	
General charge (15 per cent)		13.80	
	Total	104	

the National Health Information Centre (Chapter 3). This information has been adapted to estimate potential savings.

6.3 Results

6.3.1 Cost of a major wound infection

In uncomplicated cases, the randomized controlled trial showed a median postoperative hospitalization of 10 days in group I and 9 days in group II. The median postoperative stay increased to 18 and 14 days, respectively, in cases of major wound infection (*Table 6.2*). Overall, the development of a major wound infection has added 6.5 days to the postoperative hospital stay, in line with findings from others studies^{2,3}. The cost of a major wound infection is calculated as follows: 6.5 (days) × Dfl. 104 (variable costs of a nursing-day) = Dfl. 676.

6.3.2 Calculation of cost effects

If: C = cost of the antibiotic regimen

P = probability of a major wound infection

W = cost of a major wound infection (Dfl. 676)

n = number of patients (set to 500)

T = total excess cost of n treated patients T = n(C + PW).

Then:

(A) In case of no treatment:

$$C_0 = 0$$
 and $P_0 = 0.18$
 $T_0 = n(C_0 + P_0W) = 500 \times \{0 + (0.18 \times Dfl. 676)\} = 500 \times Dfl. 121.68 = Dfl. 60,840$

(B) In case of single-dose cefuroxime prophylaxis:

```
C_1 = Dfl. 28.15 and P_1 = 0.046

T_1 = n(C_1 + P_1W) = 500 × {Dfl. 28.15 + (0.046 x Dfl. 676)} = 500 × Dfl. 59.25 = Dfl. 29,625
```

(C) In case of multiple-dose cefuroxime prophylaxis:

$$C_2$$
 = Dfl. 56.53 and P_2 = 0.038
 T_2 = $n(C_2 + P_2W)$ = 500 × {Dfl. 56.53 + (0.038 × Dfl. 676)} = 500 × Dfl. 82.22 = Dfl. 41,110

Another way of expressing the cost effects of different antibiotic regimens is to calculate the average excess cost of preventing one major wound infection in a certain number of patients (n), and compare the results with the excess cost of contracting one infection.

Table 6.2 Postoperative duration of hospitalization in relation to the type of infection. Data are based on results of the randomized controlled trial (Chapter 5) (n = number of patients)

	Group I (single-dose)		Group	Group II (multiple-dose)			
	n	days of postoperative hospitalization	Median (range)	n	days of postoperative hospitalization	Median (range)	Median
Uncomplicated	347	3690	10 (4-49)	352	3636	9 (4-45)	10
Minor wound infection	32	380	12 (4-21)	31	345	9 (5-40)	11
Major wound infection	23	435	18 (9-44)	19	333	14 (8-48)	16.5
Other septic complications*	53	775	12 (7-41)	56	928	12 (7-72)	12
Subtotal	455	5280		458	5242		
Non-septic complications	46	607	11 (6-27)	45	620	11 (7-49)	11
Total	501	5887	10 (4-49)	503	5862	10 (4-72)	10

^{*} Fever, bacteremia, pneumonia, urinary tract infection

Single-dose cefuroxime prophylaxis versus no treatment

Excess cost to prevent infections: $n(C_1 - C_0) = 500 \times Dfl. 28.15 = Dfl. 14,075$

Number of prevented infections: $n(P_0 - P_1) = 500 \times 0.134 = 67$

Excess cost to prevent one major wound infection:

$$n(C_1 - C_0) / n(P_0 - P_1) =$$

= Dfl. 14,075 / 67 = Dfl. 210

Multiple-dose cefuroxime prophylaxis versus no treatment

Excess cost to prevent infections: $n(C_2 - C_0) = 500 \times Dfl. 56.53 = Dfl. 28,265$

Number of prevented infections: $n(P_0 - P_2) = 500 \times 0.142 = 71$

Excess cost to prevent one major wound infection:

$$n(C_2 - C_0) / n(P_0 - P_2) =$$

= Dfl. 28,265 / 71 = Dfl. 389

Multiple-dose versus single-dose cefuroxime prophylaxis

Excess cost to prevent infections: $n(C_2 - C_1) = 500 \text{ x Dfl. } 28.38 = \text{Dfl. } 14,190$

Number of prevented infections: $n(P_1 - P_2) = 500 \times 0.008 = 4$

Excess cost to prevent one major wound infection:

$$n(C_2 - C_1) / n(P_1 - P_2) =$$

= Dfl. 14,190 / 4 = Dfl. 3,547

The excess cost to prevent one major wound infection by using single-dose or multiple-dose cefuroxime compared with no treatment is lower than the excess cost of contracting one infection (Dfl. 676). However, the excess cost of preventing one infection by multiple-dose cefuroxime compared with single-dose prophylaxis is much higher (Dfl. 3,547) than getting one infection (Dfl. 676). Thus, in this evaluation single-dose cefuroxime prophylaxis is more cost-effective.

6.3.3 Further observations

In the first part of this cost evaluation we focused on the costs of antimicrobial agents and wound infections. There are indications from the literature that prophylactic antibiotics might prevent other septic complications as well. A significant reduction in postoperative chest infection from 32 to 9 per cent was demonstrated in a prospective trial of elective cholecystectomy patients⁵; reduction in infection was confirmed in a trial of patients undergoing head and neck surgery⁶. In a meta-analysis of randomized controlled trials of antibiotic prophylaxis in abdominal hysterectomy the pooled data showed a statistically significant reduction of urinary tract infections, febrile episodes and the usage of additional antibiotics when prophylaxis was compared with placebo⁷. Benefit of prophylaxis on the duration of postoperative hospital stay could not be demonstrated (p > 0.05), although a one-day difference was noted (8.7 versus 7.7 days of mean hospitalization)⁷. In two other studies standard febrile morbidity was partially prevented by antibiotic prophylaxis^{8,9}.

The prospective Galant-trial revealed significant differences (p<0.05) between the two study groups with respect to (a) length of postoperative hospitalization, (b) use of additional antibiotics, and (c) the incidence of wound dehiscence. Supported by findings of the aforementioned studies it is suggested that the observed differences are affected by different prophylactic regimens. Related costs to these differences can be estimated as follows:

(a) Duration of postoperative hospital stay

In subgroups of patients with septic complications differences in median postoperative hospital stay were observed. From *Table 6.2* can be derived that the total duration of hospitalization in group I patients (single-dose prophylaxis) with septic complications showed an increase of 354 days, while the increase in group II patients (multiple-dose prophylaxis) was limited to 253 days. The excess cost was calculated on the basis of

Table 6.3 Cost of additional antibiotics postoperatively, derived from the randomized controlled trial (Chapter 5)

Agent	Day-price*	Group I (single-dose)		Group II (multiple-dose)	
		Total number of days of administration	Total cost (Dfl.)	of days of	ber Total cost tion (Dfl.)
Amikacin	129.30	5	646.50	0	0
Amoxycillin	2.17	32	69.44	<i>5</i> 3	115.01
Ampicillin	3.56	15	53.40	0	0
Cefradine	13.30	0	0	16	212.80
Cefotaxime	45.50	5	227.50	0	0
Cefuroxime	84.45	92	7769.40	41	3462.45
Cotrimoxazole	1.41	65	91.65	31	43.71
Doxycycline	2.01	7	14.07	15	30.15
Flucloxacillin	7.34	34	249.56	7	51.38
Gentamicin	22.50	6	135	18	405
Metronidazole	9.00	25	225	16	144
Netilmicin	58.50	10	585	0	0
Nitrofurodantoin	1.89	44	83.16	26	49.14
Norfloxacine	4.27	18	76.86	31	132.37
Oxytetracyclin	30.88	4	123.52	0	0
Piperacillin	132.70	9	1194.30	7	928.90
Total		371	11,540	261	5,575

^{*} Wholesale prices in Dutch guilders (Farmacotherapeutisch Kompas 1990-1991)

the variable costs of an additional nursing-day:

Excess cost in group I patients: 354 × Dfl. 104 = Dfl. 36,800 Excess cost in group II patients: 253 × Dfl. 104 = Dfl. 26,300

(b) Additional antibiotics

Not all additional antibiotics were used for the treatment of septic complications. However, in this evaluation only the cost of additional antibiotics prescribed for septic complications were included. The excess cost of additional antibiotics was calculated on the basis of wholesale prices (*Table 6.3*): Excess cost in group I patients: Dfl. 11,540

Excess cost in group II patients: Dfl. 5,575

(c) Deep wound dehiscence, re-admissions and re-operations

We have found 11 wound dehiscences in 42 patients with a major wound infection (26 per cent). This is in accordance with the results of a study of 1491 patients who underwent medial laparotomy; from 128 patients (8.6 per cent) with a wound infection, 20 per cent developed a wound dehiscence and 40 per cent an incisional hernia compared with 0.7 and 12.7 per cent, respectively, in patients without a wound infection¹⁰. Wissing (1988) concluded that wound dehiscence and incisional hernias are closely related to wound infections, although other complications as pneumonia and ileus are equally important¹⁰. In our study 4 of 11 patients with a wound dehiscence (36 per cent) were re-admitted and operated for incisional hernias.

Three other re-admissions were necessary for patients with a subhepatic mass or abscess: one patient in group I and two patients in group II. The excess cost of readmissions (Dfl. 4,900) was estimated on the basis of an average hospital stay of 7

Table 6.4 Estimated cost effects of single-dose (group I) versus multiple-dose (group II) cefuroxime prophylaxis

	Group I (n=501)	Group II (n=503)
	(costs in Dfl.)	
Prophylactic antibiotics	14,100	28,400
Increased hospitalization due to septic complications	36,800	26,300
Additional antibiotics for septic complications	11,540	5,575
Re-operations/re-admissions for septic complications	24,500	9,800
Total cost	86,940	70,075

Table 6.5 Cost of prophylactic regimens in biliary tract surgery in 132 Dutch hospitals (1988)

Prophylactic regimen	1	Duration of prophylaxis (range in hours*)	Total cost of prophylaxis* (tange in Dfl.)
ampicillin		0 - 24	3.60 - 74,04
benzylpenicillin		72	6.32
cefamandol		24	59.16
cefazolin		0 - 24	15.02 - 60.08
cefotaxim		24	86.19 - 114.92
cefoxitin		0 - 24	46.27 - 97.64
cefuroxime		0 - 24	14-19 - 84,45
clavulanate-potentiat	ed amoxycillin	0 - 120	16.20 - 81
metronidazole	-	120	179.25
piperacillin		0	46.55
ampicillin	+ metronidazole	72	181.50
cefamandole	+ metronidazole	24	73.05 - 102.63
cefazolin	+ metronidazole	0 - 24	26.97 - 95.93
cefotaxime	+ metronidazole	0 - 48	52.48 - 301.54
cefradin	+ metronidazole	48	147
ceftriaxon	+ metronidazole	72	204.57
cefuroxime	+ metronidazole	0 - 72	23.99 - 360.90
gentamicin	+ metronidazole	0 - 48	33.55 - 116.50
tobramycin	+ metronidazole	24	108.84
amoxicillin	+ gentamicin	24 - 4 8	35.20 - 231.96
ampicillin	+ gentamicin	24 - 120	48.90 - 579.90
clavulanate-potentiat	ed amoxycillin		
•	+ gentamicin	24	71.30
cefuroxime	+ gentamicin	24	91.26
flemoxin	+ gentamicin	72	96.69
clindamycin	+ gentamicin	24 - 48	96.72 - 193.44
amoxicillin	+ tobramycin	0	56.87
cefamandol	+ tobramycin	24	158.16
clavulanate-potentiat	ed amoxycillin		
•	+ doxycycline	0	33.07
ampicillin + gentami	icin + clindamycin	24	191.50

^{*} Based on wholesale prices in Dutch guilders (Farmacotherapeutisch Kompas 1990-1991)

days at the mean cost of hospital admission in The Netherlands in 1988¹¹, increased by 10 per cent for 1990.

Excess cost in group I patients: $5 \times Dfl$. 4,900 = Dfl. 24,500 Excess cost in group II patients: $2 \times Dfl$. 4,900 = Dfl. 9,800

^{*} Single-dose prophylaxis is indicated as 0 hours

Table 6.6 Co	st of prophylactic regimens in biliary tract surgery and potential savings in 132
Dutch hospital	s, derived from the results of a questionnaire performed in 1988 (Chapter 2)

Cost of prophylactic regimen (Dfl.)*	Number of clinics	Average cost (Dfl.)	Potential savings (Dfl.)
unknown	6	?	?
none	26	0	?
1 - 50	36	31.15	0
50 - 100	41	75.29	152,010
100 - 200	17	139.46	140,380
≥ 200	6	302.76	136,890
	· · · · · · · · · · · · · · · · · · ·	Total savings	429,280

^{*} Costs are based on wholesale prices in Dutch guilders (Farmacotherapeutisch Kompas 1990-1991)

The overall results of these calculations are listed in *Table 6.4*. The difference in costs between the two study groups was Dfl. 16,865 in favour of multiple-dose cefuroxime prophylaxis. Surprisingly, this does not correspond with the previous finding that single-dose prophylaxis was more cost-effective than a multiple dosage. On the assumption that septic complications are beneficially influenced by prophylactic antibiotics, the overall outcome might be in favour of the more expensive multiple-dose regimen. Since the financial consequences are significant, further investigation is warranted to confirm these findings.

6.3.4 Potential cost savings

An inventory of antibiotic prophylaxis in biliary tract surgery in The Netherlands has been made (*Chapter 2*). Drugs, duration of prophylaxis, and total cost of the antibiotic regimens (based on wholesale prices) are listed in *Table 6.5*. Subsequently, 132 Dutch clinics were subdivided in groups according to the total cost of their prophylactic regimen (*Table 6.6*). Assuming that a prophylactic regimen of less than Dfl. 50 is efficacious, potential savings were estimated by multiplying the average excess cost of the antibiotic regimen by the number of clinics involved and by the average number of cholecystectomies performed per clinic each year (derived from *Chapter 3*). Potential savings up to Dfl. 400,000 per year can be achieved using a more rational (cost-effective) antibiotic prophylaxis nationwide. It has to be mentioned that competitive bargaining or collective purchase arrangements were not considered.

A system for monitoring, effective surveillance and reporting might also help to

decrease the risk of infection and improve the quality of patient care. Prevention of infection includes high standards of housekeeping, antisepsis and asepsis, as well as careful surgical techniques. Many of these measures are a matter of discipline of the personnel involved. There are indications that all these measures might lead to a substantial reduction in the overall wound infection rate. For example, a one per cent reduction would prevent about 140 major wound infections after 13,956 cholecystectomies performed each year in The Netherlands. In that case, the estimated savings are 140 × Dfl. 676 (cost of a major wound infection) = Dfl. 94,640.

6.4 Discussion

The economic importance of surgical wound infection has already been emphasized by Terry (1985)¹². Although prophylactic antibiotic regimens are established as being superior to placebo⁴, reports on cost effects are scarce. Only a few studies can be mentioned. In a study of 1036 patients undergoing elective surgical procedures Jones et al. (1987) calculated a saving of \$ 90.30 per patient when using cefotaxime instead of cefoxitin¹³. Garcia-Rodriguez et al. (1989) performed a cost-benefit analysis immediately following a prospective trial of single-dose cefotaxime prophylaxis versus four doses of cefoxitin in gastroduodenal and biliary surgery¹⁴. The authors found that cefotaxime resulted in a significant reduction of costs. However, the benefits are unclear and not specified. For many reasons comparison of our results with other cost analyses is hazardous; different agents are used, hospital costs and cost structure of hospitals may be incomparable, and the value of money and percentage of inflation can affect the results considerebly. Therefore, the discussion has to be confined to some general remarks, while the results of our calculations can only be applied to the present situation in The Netherlands.

Obviously, preventing wound infections is most beneficial to the patients concerned. But who else benefits? The words "cost-effective" and "cost-beneficial" are confusing, because they might have a variety of meanings, depending on who benefits. Most hospitals have no way of tracking patient outcomes from various therapies given, to even evaluate cost-effectiveness. A common cost-containment strategy in hospitals is to select the least expensive drug from a group of agents largely equivalent in terms of efficacy and toxicity. Indeed, cost savings can be achieved by introducing a less expensive antibiotic regimen (i.e. single-dose instead of multiple-dose cefuroxime prophylaxis) as we have demonstrated. From the results it can be concluded that both single-dose and multiple-dose cefuroxime prophylaxis are cost-effective compared with no prophylaxis, whereas single-dose prophylaxis is less expensive than multiple-dose cefuroxime prophylaxis.

The conclusion that single-dose cefuroxime prophylaxis is more cost-effective than a multiple dosage might be short-sighted if prophylactic antibiotics affect other septic complications to such an extent that the duration of postoperative hospital stay, the use of additional antibiotics, and the incidence of re-admissions or re-operations are reduced. In that case the final outcome might be quite different. The excess cost of multiple-dose cefuroxime did counterbalance the excess cost of infectious morbidity after single-dose cefuroxime prophylaxis, and we have estimated a difference of Dfl. 16,865 in favour of multiple-dose cefuroxime prophylaxis if these effects are taken into account. Apparently, multiple-dose cefuroxime was more efficacious than a single dosage. Although there is no clear evidence that newer, more powerful antibiotics are more efficacious in terms of wound infection than the established first-generation cephalosporins, the effect on septic complications other than wound infection were not mentioned^{4,15-18}.

In general, the more frequently a drug is administered the more expensive the total cost will be. However, since postoperative infectious complications are much more expensive than any difference in drug costs, the choice of a drug for prophylaxis should be based upon its clinical efficacy, not its cost. This is in contrast with a previous conclusion in *Chapter 4*. Reduction of postoperative hospitalization and, thus, in nursing-days always reduces costs, but this also has an impact on the hospital budgetting system, such as that introduced in The Netherlands in 1983. Therefore, the definite outcome of the cost effects can not be accurately determined and recommendations for an optimal antibiotic prophylaxis in biliary surgery in The Netherlands can not yet be given. Moreover, different assumptions or estimates have to be identified in order to test the sensitivity of the results and conclusions to such changes.

6.5 References

- Meijer WS, Schmitz PIM. Prophylactic use of cefuroxime in biliary tract surgery: randomized controlled double-blind multicentre trial of single-dose versus multiple-dose in 1004 high risk patients. Submitted for publication.
- Green JW, Wenzel RP. Postoperative wound infection: A controlled study of the increased duration of hospital stay and direct cost of hospitalization. Ann Surg 1977; 185: 264-8.
- al-Awani SM, al-Breiki H, Abdul-Khader AS et al. Wound infection following biliary surgery. A prospective survey. Int Surg 1991; 76: 77-80.
- Meijer WS, Schmitz PIM, Jeekel J. Meta-analysis of randomized, controlled clinical trials of antibiotic prophylaxis in biliary tract surgery. Br J Surg 1990; 77: 283-90.
- Morran C, McArdle CS. The reduction of postoperative chest infection by prophylactic co-trimoxazole. Br J Surg 1980; 67: 464-6.

- Mombelli G, Coppens L, Dor P et al. Antibiotic prophylaxis in surgery for head and neck cancer: Comparative study of short and prolonged administration of carbenicillin. J Antimicrob Chemother 1981; 7: 665.
- Wttewaall-Evelaar EW. Meta-analysis of randomized controlled trials of antibiotic prophylaxis in abdominal hysterectomy. Pharm Weekbl 1990; 12: 296-8.
- 8. Swartz WH. Prophylaxis of minor febrile and major infectious morbidity following hysterectomy. Obstet Gynecol 1979; 54: 284-8.
- 9. Polk BF, Tager IB, Shapiro M et al. Randomized clinical trial of perioperative cefazolin to prevent infection following hysterectomy. Lancet 1980; 1: 437-41.
- Wissing JC. The closure of a laparotomy. Thesis, Erasmus University Rotterdam, The Netherlands. Wibro dissertatiedrukkerij, Helmond, 1988.
- Hoogendoorn D. De gemiddelde kosten van een opname in het ziekenhuis. Ned Tijdschr Geneeskd 1990; 134: 2000-2.
- Terry BA. Cost-effective application of the Centers for Disease Control guidelines for prevention of surgical wound infections. Am J Infect Control 1985; 13: 232-5.
- 13. Jones RN, Wojeski W, Bakke J et al. Antibiotic prophylaxis of 1036 patients undergoing elective surgical procedures. A prospective, randomized comparative trial of cefazolin, cefoxitin, and cefotaxime in a prepaid medical practice. Am J Surg 1987; 153: 341-6.
- Garcia-Rodriguez JA, Puig-LaCalle J, Arnau C et al. Antibiotic prophylaxis with cefotaxime in gastroduodenal and biliary surgery. Am J Surg 1989; 158: 428-32.
- DiPiro JT, Bowden TA Jr, Hooks III VH. Prophylactic parenteral cephalosporins in surgery. JAMA 1984; 252: 3277-9.
- Targarona EM, Garau J, Munoz-Ramos C et al. Single-dose antibiotic prophylaxis in patients at high risk for infection in biliary surgery: a prospective and randomized study comparing cefonicid with mezlocillin. Surgery 1990; 107: 327-34.
- Berne TV, Yellin AE, Appleman MD et al. Controlled comparison of cefmetazole with cefoxitin for prophylaxis in elective cholecystectomy. Surg Gynecol Obstet 1990; 170: 137-40.
- 18. Aloj G, Bianco C, Covelli I et al. Antibiotic prophylaxis for biliary tract surgery: selection of patient and agent. Int Surg 1991; 76: 131-4.

Chapter 7

GENERAL DISCUSSION AND CONCLUSIONS

GENERAL DISCUSSION AND CONCLUSIONS

7.1 Discussion

From the results of the questionnaire on the current practice of antibiotic prophylaxis in biliary surgery in The Netherlands (Chapter 2) it was concluded that prophylaxis was inappropriate in at least 31 hospitals (23%). We realize, however, that the questionnaire is only a still-frame during an evaluating process. Meanwhile, in some of the hospitals antibiotic prophylaxis might have been adjusted to modern practice as new drugs are introduced, more is known about the value of single-dose prophylaxis and more is learned about the emergence of resistant organisms. In 1988, single-dose prophylaxis was employed in only 28 clinics; this number has probably since increased, because single-dose prophylaxis is now frequently recommended as the standard therapy in biliary surgery. Reasons for inappropriateness in the 31 clinics were attributed to the duration of prophylaxis for longer than 24 hours and the absence of prophylaxis in cases of acute cholecystitis. These observations are in accordance with a similar questionnaire survey conducted in England in 1987¹; prophylaxis was inappropriate in 20% of cases in biliary surgery due to the duration of use, choice of agents, and absence of prophylaxis in high risk patients. In a recent prospective survey of antibiotic use at five clinical departments of the Khon Kaen University, Thailand, 82.4% of the prescriptions for surgical prophylaxis were inappropriate, mostly due to delayed and excessive length of treatment². In addition to these results, we should be aware that inappropriate use is an important factor in the rising cost of prophylactic antibiotics³.

In 1976 the Dutch Health Council advised hospitals to formulate guidelines for use of antibiotics⁴. An inventory and comparison of these guidelines was performed in 1988-1989⁵. The results of this evaluation showed that guidelines are too often formulated in a non-committal way. This might explain our observation that within some hospitals surgeons use different prophylactic antibiotics for the same type of operation. We feel that a Hospital Infection Control Committee should be responsible for the control of infections within hospitals. This committee should develop imperative, written standards for an efficacious and cost-effective antibiotic prophylaxis. We can no longer afford the luxury of providing all physicians with an "open account" to order any drug or test that comes in mind.

The frequency of cholecystectomies in The Netherlands decreased by 25% within a period of eight years (1981-1989; Chapter 3). This is in line with findings in Sweden⁶, but in contrast with recently published data in the USA and the UK. Maki et al. (1984) reported 400,000 cholecystectomies each year in the USA⁷, whereas a number of 500,000 was published recently⁸. Crumplin et al. (1985) mentioned 43,000 cholecystectomies in the UK⁹ versus 50,000 as stated by Walsh and Russell recently⁸. The registered frequency of postoperative morbidity of biliary surgery in The Netherlands (SIG data 1987-1989) is only 4.3 versus 34% in a study of Crumplin et al.⁹. Undoubtedly, the Dutch results are underestimated. As long as complications are not properly defined, comparison between different studies is hazardous.

As the number of published and unpublished clinical trials continue to increase, there is a need for systematic synthesis of research results (Chapter 4). Meta-analysis is a relatively new statistical tool, a more rigorous approach than the traditional narrative research review. Simple addition of successes across all trials to give an overall average is an inadequate way of pooling results. As far as the results are concerned, our metaanalysis can be compared with two recently published meta-analyses of randomized controlled trials of antibiotic prophylaxis 10,11. All three meta-analyses revealed a significant difference in wound infection rates in favour of the use of prophylactic regimens compared with placebo or no-treatment controls. We found an overall difference of 9% (95% confidence interval from 7 to 11%). Wttewaall-Evelaar included 39 trials in her meta-analysis of randomized controlled trials of antibiotic prophylaxis in abdominal hysterectomy10. The 4.6% overall difference in wound infection rates (95% confidence interval from 2.7 to 6.5%) is comparable with our result. The meta-analysis of Velanovich¹¹ revealed a difference of 43.7% in favour of the use of antibiotics versus placebo. In this analysis only three prospective studies were included and the rate of infections ranged from 36 to 87%, while in the antibiotic arms, the rates were from 0 to 36%. Therefore, the relative difference had a rather wide 95% confidence interval of between 14.9 to 72.5%11.

In a review DiPiro et al. (1984) could not demonstrate a significant difference between various cephalosporins used in the prophylaxis of surgical infection¹². However, many studies compared groups of patients that were too small to rule out significant differences. Also in our meta-analysis the comparison of wound infection rates in patients treated with first generation versus second or third generation cephalosporins revealed no significant effect. From the 95% confidence interval (-1.5 to +2.5%) we concluded that trials which have as primary objective the comparison of first versus newer generation cephalosporins will almost certainly fail to detect any clinically or statistically significant difference in wound infection rates.

With respect to the methodology, the usual procedure for event data is the Mantel-

Haenszel test^{13,14}. This fixed-effect method was used in the meta-analysis of antibiotic prophylaxis in abdominal hysterectomy, performed by Wttewaall-Evelaar¹⁰. From another review of 26 trials evaluating the efficacy of antibiotic prophylaxis in colonic surgery¹⁵ it was demonstrated that not only is homogeneity within trials essential but also homogeneity of treatment effects between individual trials. DerSimonian and Laird introduced a method that incorporates the heterogeneity of effects in the analysis of the overall treatment efficacy¹⁶. We have adopted this random-effects method, as did Velanovich in his meta-analysis of randomized trials of antibiotic prophylaxis in head and neck surgery¹¹. Clinical heterogeneity between individual trials, however, remains a problem in meta-analysis¹⁷. One of the drawbacks of meta-analysis is a lack of expert agreement concerning the most appropriate form of statistical analysis¹⁸. A variety of statistical techniques have been developed for combining the results of separate studies.

Publication bias is another problem in pooling data. Because of the tendency of a publication bias towards positive trials in clinical research¹⁹, we tried to include all available trials, whether published or not. As reported by others, the search for unpublished data is unsatisfactory and, in fact, a registration of all clinical trials is essential²⁰. In the UK a directory of registries of clinical trials has recently been developed²¹. This is an example that should be followed in other countries. Although the approach of meta-analysis has its limitations¹⁷, it is the best available approach to making sense of a large number of individually inadequate trials²². Moreover, it might help in planning a new major trial.

Eventually, we conducted a trial of single-dose *versus* three doses of cefuroxime in the prophylaxis of biliary tract operations (*Chapter 5*). It proved very complicated to specify the minimum difference between treatment responses to conclude that one treatment has a clinically important advantage over the other. Information about side effects, complications, and costs against the benefits of the two treatment modalities are necessary to judge the size of the smallest clinically important difference²³. We have judged a 5 per cent difference in major wound infection rate between treatment arms as clinically important. Although the planned number of 2348 patients could not be attained, the final result of 1044 patients has a statistical power of 80 per cent. The use of group sequential analyses has been advocated to allow the trial to be terminated at the earliest point at which statistically valid conclusions can be drawn²⁴. We have performed only one interim analysis, because the decision to stop the trial was mainly dependent on practical aspects as time and costs. The interim analysis revealed no statistically significant difference between the two study groups.

The results of the present trial show an estimated 0.8% difference in major wound infection rate between the two study groups (95% confidence interval from -1.7 to +3.3%). These results can best be compared with another multicentre study of antibiotic

prophylaxis in 1451 patients with infection risk factors who underwent gastroduodenal and biliary surgery³¹. Single-dose cefotaxime was compared with four doses of cefoxitin. Cefotaxime is also a short-acting agent with a serum half-life of 1.2 hours. The frequency of wound infections was 3.3% in the cefotaxime group and 7.6% in the cefoxitin group. The 95% confidence interval of the estimated difference was from 1.9 to 6.7%. Our results broadly corroborate the results of this study. With an estimated 0.8% difference we feel that conclusions from the present multicentre trial have a representive base to allow extrapolation to the entire population of biliary surgery patients.

In recently published trials of antibiotic prophylaxis in primarily gallbladder surgery a variety of antimicrobial agents were investigated: single-dose cefonicid *versus* single-dose mezlocillin²⁵, multiple-dose cefmetazole *versus* multiple-dose cefoxitin²⁶, single-dose *versus* multiple-dose cefotaxime²⁷, single-dose aztreonam *versus* multiple-dose gentamicin²⁸, single-dose ceftizoxime *versus* single-dose cephradine²⁹ and single-dose piperacillin *versus* single-dose tobramycin³⁰. The largest group of patients in these trials comprised 99 patients²⁹. Wound infection rates varied between 0 and 19.5 per cent. Rodilico *et al.*²⁷ concluded from only 44 patients that aztreonam is safe and effective for the prevention of infections following biliary surgery. Lewis *et al.*²⁸ validated from a total of 26 patients the efficacy of single-dose cefotaxime prophylaxis in high risk patients undergoing gastroduodenal surgery. Perhaps superfluous to point out that the sample sizes of all the above-mentioned trials were too small to detect small differences with sufficient statistical power. The conclusions drawn from these studies are premature.

We did not perform a formal cost-benefit analysis, because differentiated hospital charges and costs were not available due to the cost structure of hospitals in The Netherlands (*Chapter 6*). Moreover, the cost effects of single-dose and multiple-dose cefuroxime prophylaxis can hardly be compared with other cost analyses of antibiotic prophylaxis. First, the literature is scarce. Secondly, hospital costs and the hospital cost structure are different in other countries. Thirdly, the value of money and percentage of inflation are not taken into account. Nevertheless, the method to estimate the excess cost/patient of a wound infection (C + PW) is similar to the method used by Garcia-Rodrigues et al. In our cost calculations (one U.S.dollar = 1.9 Dutch guilders) the excess cost/patient was \$31.18 in case of single-dose cefuroxime prophylaxis and \$43.27 in case of three doses of cefuroxime. Because the excess cost/patient without prophylaxis was estimated at \$64.04, we concluded that both single-dose and multiple-dose cefuroxime prophylaxis are cost-effective compared with no prophylaxis, while single dosage is less expensive. Garcia-Rodrigues et al. 19 estimated the cost of a wound infection to be 3.4 (days) × 144.43 U.S.dollar (hospitalization cost/day) = \$491. This

amount was increased by the average cost of therapeutic antibiotics (\$186.15). Consequently, the overall cost of a wound infection was \$677.15. The excess cost/patient was calculated at \$104.43 in case of cefoxitin prophylaxis and \$28.64 in case of cefotaxime prophylaxis. Savings related to the use of cefotaxime instead of cefoxitin averaged \$75.65 per patient in whom antibiotic prophylaxis was needed³¹.

We have pointed out the effect of septic complications other than wound infection on costs. As a consequence, the initial favourable effect of single-dose cefuroxime prophylaxis has changed into a final benefit in favour of the multiple-dose regimen. Based on 500 treated patients, an overall cost-difference of Dfl. 16,865 was calculated. In an excellent study on perioperative antibiotic prophylaxis for herniorrhaphy and breast surgery (single-dose cefonicid versus placebo) a similar effect was noted³². The authors concluded from their study that the difference between the two treatment groups in their need for postoperative interventions, including antibiotic therapy, extra visits to a physician and re-admissions, supported a clinically as well as biologically important effect of prophylaxis. The cost effect of septic complications other than wound infections can also be deduced from a study of antibiotic prophylaxis in vaginal and abdominal hysterectomies³³. In this analysis the total excess cost/patient increased significantly: \$1,777 for vaginal and \$716 for abdominal hysterectomies, compared to \$104.43 per patient when only the excess cost of wound infections was included in the analysis³¹.

In the Dutch system of hospital budgetting, profits of modern pharmacotherapy in the hospitals are earned outside the hospital³⁴. We should realize that these profits must be re-invested to ensure a healthy health-care system in the future. A true saving based on efficacious and cost-effective prophylaxis should be reflected in fewer staff positions for nurses and pharmacists in hospitals but this, probably, will not occur - at least not in The Netherlands.

7.2 Future directions

The development of laparoscopic cholecystectomy has enabled to minimize the problems of major wound infection in gallbladder surgery. Therefore, future trials in antibiotic prophylaxis are better directed to surgical procedures with higher wound infection rates, such as colorectal surgery.

Since the quality of medical care is related to its cost-effectiveness, it is a matter of concern to physicians. Our classic responsibility to our patients threatens to change in an economic marketplace. Therefore, cost analyses are essential and should be performed in all comparative clinical trials of antibiotic prophylaxis.

A sensitivity analysis should be considered in further economic evaluations. Uncertain or controversial estimates include hospitalization costs, discount rates, and effectiveness of new drugs.

7.3 References

- Cahill CJ, Pain JA. Current practice in biliary surgery. Br J Surg 1988; 75: 1169-72.
- Udomthavornsuk B, Tatsanavivat P, Patjanasoontorn B et al. Antibiotic use at a university hospital. J Med Assoc Thai 1990; 73: 168-74.
- Scher KS, Bernstein JM, Arenstein GL et al. Reducing the cost of surgical prophylaxis. Am Surg 1990; 56: 32-5.
- Gezondheidsraad. Herziene richtlijnen ter preventie en bestrijding van ziekenhuisinfecties. 's-Gravenhage, Staatsuitgeverij, 1977; 173.
- Everdingen JJE van, Klazinga NS, Van den Broek PJ et al. Inventory and comparison of guidelines for use of antibiotics in Dutch hospitals. Ned Tijdschr Geneeskd 1990; 134: 1604-7.
- Ahlberg J, Bergstrand LO, Sahlin S. Changes in gallstone morbidity in a community with decreasing frequency of cholecystectomies. Acta Chir Scand 1984; (Suppl 520): 53-8.
- Maki DG, Lammers JL, Aughey DR. Comparative studies of multiple-dose cefoxitin vs. single-dose cefonicid for surgical prophylaxis in patients undergoing biliary tract operations or hysterectomy. Rev Infect Dis 1984; 6(Suppl 4): S887-95.
- Walsh TN, Russell RCG. Cholecystectomy and gallbladder conservation. Br J Surg 1992;
 79: 4-5.
- Crumplin MKH, Jenkinson LR, Kassab JY et al. Management of gallstones in a district general hospital. Br J Surg 1985; 72: 428-32.
- Wttewaall-Evelaar EW. Meta-analysis of randomized controlled trials in abdominal hysterectomy. *Pharm Weekbl* 1990; 12: 296-8.
- Velanovich V. A meta-analysis of prophylactic antibiotics in head and neck surgery. Plast Reconstr Surg 1991; 87: 429-34.
- 12. DiPiro JT, Bowden TA Jr, Hook III VH. Prophylactic parenteral cephalosporins in surgery. Are the newer agents better? JAMA 1984; 252: 3277-9.
- Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. JNCI 1959; 22: 719-48.
- L'Abbé KA, Detsky AS, O'Rourke K. Meta-analysis in clinical research. Ann Int Med 1987; 107: 224-33.
- Baum ML, Anish DS, Chalmers TC et al. A survey of clinical trials of antibiotic prophylaxis in colon surgery: evidence against further use of no-treatment controls. N Engl J Med 1981; 305: 795-9.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clin Trials 1986; 7: 177-88.
- 17. Thompson SG, Pocock SJ. Can meta-analyses be trusted? Lancet 1991; 338: 1127-30.
- 18. Graney MJ, Engle VF. Meta-analysis techniques. J Gerontol Nurs 1990; 16: 16-9.
- Easterbrook PJ, Berlin JA, Gopalan R et al. Publication bias in clinical research. Lancet 1991; 337: 867-72.

- Hetherington J, Dickersin K, Chalmers I et al. Retrospective identification of unpublished controlled trials: lessons from a survey of obstetricians and pediatricians. *Pediatrics* 1989; 84: 374-80.
- 21. Easterbrook PJ. A directory of registries of clinical trials. Stat Med (in press).
- 22. Murray GD. Meta-analysis. Br J Surg 1990; 77: 243-4.
- Braitman LE. Confidence intervals assess both clinical and statistical significance. Ann Int Med 1991; 114: 515-7.
- Rowe-Jones DC, Peel ALG, Kingston RD et al. Single dose cefotaxime plus metronidazole versus three dose cefuroxime plus metronidazole as prophylaxis against wound infection in colorectal surgery: multicentre prospective randomised study. Br Med J 1990; 300: 18-22.
- Targarona EM, Garau J, Munoz-Ramos C et al. Single-dose antibiotic prophylaxis in patients at high risk for infection in biliary surgery: a prospective and randomized study comparing cefonicid with mezlocillin. Surgery 1990; 107: 327-34.
- Berne TV, Yellin AE, Appleman MD et al. Controlled comparison of cefinetazole with cefoxitin for prophylaxis in elective cholecystectomy. Surg Gynecol Obstet 1990; 170: 137-40.
- Rodolico G, Puleo S, Blandino G et al. Aztreonam versus gentamicin for short-term prophylaxis in biliary and gastric surgery. Rev Infect Dis 1991; 13 (Suppl 7): S616-20.
- Lewis RT, Goodall RG, Marien B et al. Efficacy and distribution of single-dose preoperative antibiotic prophylaxis in high-risk gastroduodenal surgery. Can J Surg 1991; 34: 117-22.
- Skipper D, Corder AP, Karran SJ. A randomized prospective study to compare ceftizoxime with cephradine as single dose prophylaxis in elective cholecystectomy. J Hosp Infect 1991; 17: 303-6.
- 30. Aloj G, Bianco C, Covelli I et al. Antibiotic prophylaxis for biliary tract surgery: selection of patient and agent. Int Surg 1991; 76: 131-4.
- 31. Garcia-Rodriguez JA, Puig-LaCalle J, Arnau C et al. Antibiotic prophylaxis with cefotaxime in gastroduodenal and biliary surgery. Am J Surg 1989; 158: 428-32.
- Platt R, Zaleznik DF, Hopkins CC et al. Perioperative antibiotic prophylaxis for herniorrhaphy and breast surgery. N Engl J Med 1990; 322: 153-60.
- 33. Shapiro M, Schoenbaum SC, Tager IB et al. Benefit-cost analysis of antimicrobial prophylaxis in abdominal and vaginal hysterectomy. JAMA 1983; 249: 1290-4.
- Steenhoek A. Prophylactic antibiotics and the hospital budget: controversy for patients and hospital financial strategies? Pharm Weekbl 1990; 12: 300-2.

SUMMARY

The topic of this thesis "Antibiotic prophylaxis in biliary tract surgery" has been approached in several ways. An introduction to the subject, including some historical aspects, is presented in *Chapter 1*.

First, the current practice of antibiotic prophylaxis in biliary surgery in The Netherlands has been investigated (Chapter 2). A questionnaire was sent to the Chairmen of the Departments of Surgery of 175 hospitals in The Netherlands. The surgical clinics are classified into three categories depending on the type of residency in general surgery: A, B, or C clinic. Overall, 80% replied. Antibiotic prophylaxis in elective cholecystectomy is given in 76% of the clinics (100/132), and single-dose prophylaxis is employed in 28% of these clinics (28/100). In patients with acute cholecystitis, emergency surgery is the treatment of choice in 108 hospitals (82%). Differences in antibiotic prophylaxis between the three categories of hospitals include the absence of prophylaxis in elective cholecystectomy in 31% of the C-clinics (versus 10% of the A-clinics and 16 per cent of the B-clinics), and the use of single-dose prophylaxis in 13% of the B-clinics (versus 30% of the A-clinics and 31% of the C-clinics).

Conclusion: Since prophylaxis for more than 24 hours has no additional effect and peri-operative prophylaxis in acute cholecystitis is mandatory, antibiotic prophylaxis in biliary tract surgery is inappropriate in at least 31 hospitals in The Netherlands (23%).

An overview of all cholecystectomies performed in The Netherlands from 1987-1989 is presented with details of frequency, mortality and morbidity (*Chapter 3*). Compared to the period 1979-1981 the number of cholecystectomies decreased by 25.5%, whereas the number of cholecystectomies with common bile duct exploration decreased by 43.8%. The mortality rate reduced from 1.9 to 1.4%. In the period 1987-1989 the frequency of postoperative complications, including wound infection was low: 4.3 and 1.5%, respectively. Acute cholecystitis, age 70 years and over, and common bile duct exploration appeared to be risk factors with significantly higher mortality and morbidity rates.

Conclusions: - The frequency of cholecystectomies in The Netherlands showed a 25%

- decrease within a period of eight years (1981-1989).
- In the same period the number of common bile duct explorations decreased by 43.8%.
- Mortality and morbidity rates are low: 1.4 and 4.3%, respectively.

The literature study comprises a meta-analysis (Chapter 4). In this study all available clinical trials of antibiotic prophylaxis in biliary tract surgery, published from 1965 to 1988, were examined. Results of 42 randomized controlled trials (4129 patients), in which a group of patients treated with antibiotics was compared with a group of patients not treated with antibiotics, were pooled. Wound infection rates in the control groups range from 3 to 47% and are 15% overall. The overall difference in infection rates is 9% in favour of antibiotic treatment (95% confidence interval 7% - 11%), while the common odds ratio is 0.30 (95% confidence interval 0.23-0.38). Subgroup meta-analysis showed a significant stronger protective effect in high risk patients, while early (in hospital) or late (follow-up) wound inspection markedly influenced the treatment effect reported. Comparison of wound infection rates in patients treated with first generation cephalosporins versus second or third generation (11 trials, 1128 patients), as well as single versus multiple-dose regimens (15 trials, 1226 patients) did not reveal any significant effect (p > 0.05) in each trial separately, as well as in the overall comparison.

Conclusions: - The overall difference in wound infection rates is 9% in favour of antibiotic prophylaxis compared with no prophylaxis (95% confidence interval from 7% to 11%).

- Subgroup analysis showed a stronger protective effect in high risk patients.
- No significant difference in wound infection rates was found in patients treated with first generation versus newer generation cephalosporins, as well as single-dose versus multiple-dose regimens.
- A major trial comparing single versus multiple dosage of the same, short-acting antibiotic is worthwhile, provided that a sufficient number of patients can be included.

A randomized, controlled double-blind multicentre trial (so-called Galant-Trial) was conducted (*Chapter 5*). One-dose cefuroxime (1.5 g intravenously) was compared with a three-dose regimen as control (1.5 g cefuroxime preoperatively and two doses of 0.75 g postoperatively). The study group comprised 1004 patients with infection risk factors. All patients were followed up for four to six weeks after surgery. The characteristics of both groups were comparable. No statistically significant difference was found between

the two antibiotic regimens in preventing postoperative wound infections: 6.6 versus 6.2% minor wound infections (p=0.78) and 4.6 versus 3.8% major wound infections (p=0.52). The estimated difference in major wound infection rates between the two groups was 0.8% (95% confidence interval from -1.7% to +3.3%). However, the frequency of deep wound dehiscence, additional postoperative antibiotic therapy and mean postoperative hospital stay showed significant differences in favour of the multiple-dose regimen (p < 0.05). In a multivariate analysis three factors appeared to have a high prognostic value for the development of major wound infections: (a) previous gastric surgery; (b) local tenderness in the right upper abdomen; and (c) gallbladder perforation.

Conclusions: - In terms of major wound infections no statistically significant difference was found between single-dose and multiple-dose cefuroxime in the prophylaxis of biliary tract surgery.

- Previous gastric surgery, local tenderness in the right upper abdomen and gallbladder perforation at operation have a high prognostic value for the development of a postoperative major wound infections.
- Prophylactic antibiotics should be effective against endogenous as well as exogenous wound contaminants.

Results of the randomized controlled trial of cefuroxime prophylaxis in biliary tract surgery were adapted to estimate the effect of different antibiotic regimens on costs. The total excess costs of 500 treated patients were Dfl. 60,840 in case of no prophylaxis, Dfl. 29,625 in case of single-dose cefuroxime prophylaxis, and Dfl. 41,110 in case of a three-dose cefuroxime prophylaxis. If the effects of septic complications other than wound infection were taken into account, the difference in total excess cost between the two study groups was estimated at Dfl. 16,865 in favour of multiple-dose cefuroxime prophylaxis. In The Netherlands, potential savings up to Dfl. 400,000 per year can be achieved using a more cost-effective antibiotic prophylaxis in biliary surgery nationwide.

Conclusions: - The hospital per diem costs of a nursing-day overshadow most other expenses.

- Both single- and multiple-dose cefuroxime prophylaxis are costeffective compared with no prophylaxis, whereas single-dose cefuroxime prophylaxis is less expensive than multiple doses.
- If cost effects of septic complications, other than wound infection, are taken into account in the analysis, the outcome is in favour of multipledose cefuroxime prophylaxis.
- Further analysis is mandatory to test the sensitivity of the results.

The thesis is concluded with a general discussion and conclusions drawn from the study (Chapter 7).

SAMENVATTING

Het thema van dit proefschrift "Antibiotica-profylaxe in de galwegchirurgie" werd van verschillende kanten benaderd. Als eerste is een inleiding gegeven over het onderwerp, waarbij verscheidene historische aspecten zijn belicht (*Hoofdstuk 1*).

Vervolgens werd het huidige antibiotica-beleid bij galwegoperaties in Nederland nagegaan (*Hoofdstuk 2*). Een vragenformulier werd opgestuurd naar de hoofden van de chirurgische afdelingen van 175 Nederlandse ziekenhuizen. Deze ziekenhuizen zijn onderverdeeld in drie categorieën (A-, B-, of C-kliniek), afhankelijk van het type opleiding in de algemene heelkunde. In totaal beantwoordde 80% het vragenformulier. In 76% van de onderzochte klinieken (100/132) werd antibiotica-profylaxe gebruikt bij electieve galblaasextirpaties. Een éénmalige profylaxe werd toegepast in 28% van deze klinieken (28/100). Bij patiënten met een acute cholecystitis werd in 108 ziekenhuizen bij voorkeur een spoedoperatie verricht (82%). Wat betreft de verschillende opleidingscategorieën bleek er in 31% van de C-klinieken geen profylaxe gegeven te worden bij electieve galblaasextirpaties (*versus* 10% in A-klinieken en 16% in B-klinieken). Een éénmalige profylaxe werd gebruikt in 13% van de B-klinieken (*versus* 30% van de A-klinieken en 31% van de C-klinieken).

Conclusie: - Aangezien antibiotica-profylaxe langer dan 24 uur geen extra voordelen biedt en het nut van profylaxe bij patiënten met een acute cholecystitis bewezen is, moet het gebruik van antibiotica-profylaxe in de galwegchirurgie in minstens 31 Nederlandse ziekenhuizen (23%) als ontoereikend worden beschouwd.

Een overzicht van alle galblaasoperaties in Nederland in de periode 1987-1989 wordt gegeven in *Hoofdstuk 3*. Aan de hand van SIG-gegevens werden de frequentie, operatie-mortaliteit en postoperatieve complicaties (specifiek van wondinfecties en dehiscenties) bepaald. Ten opzichte van de periode 1979-1981 is er een daling van het aantal galblaasextirpaties van 25,5%. Het aantal galblaasextirpaties met choledochusexploratie is verminderd met 43,8%. De operatieve sterfte is gedaald van 1,9% in de periode 1979-1981 tot 1,4% in de periode 1987-1989. Postoperatieve complicaties, waaronder wondinfecties, kwamen relatief weinig voor, respectievelijk in

4,3 en 1,5% van de gevallen. Acute cholecystitis, leeftijd ouder of gelijk aan 70 jaar en choledochusexploratie blijken risicofaktoren te zijn met een significant hogere operatiemortaliteit en postoperatieve morbiditeit.

- Conclusies: De frequentie van galblaasextirpaties in Nederland is met 25% gedaald in een periode van 8 jaar (1981-1989).
 - In dezelfde periode daalde het aantal choledochotomieën met ruim
 - De operatieve sterfte is laag (1,4%) en postoperatieve complicaties komen relatief weinig voor (4,3%).

De literatuurstudie omvat een meta-analyse (Hoofdstuk 4). In deze studie werden alle beschikbare gerandomiseerde klinische trials over antibiotica-profylaxe in de galwegchirugie, gepubliceerd tussen 1965 en 1988, geanalyseerd. De resultaten van 42 gerandomiseerde trials (4129 patiënten), waarin patiënten behandeld met antibiotica werden vergeleken met patiënten die geen antibiotica kregen, werden gecombineerd. In de contrôle-groepen variëerde de wondinfectie percentages van 3 tot 47%, met een totaal gemiddelde van 15%. Het totale verschil in wondinfectie percentage bedroeg 9% ten gunste van de patiënten die profylaxe hadden gekregen (95% betrouwbaarheidsinterval van 7-11%). Meta-analyse van subgroepen toonde aan, dat het beschermend effect groter is bij patiënten met een "hoog risico", terwijl het moment van wondinspectie (ten tijde van de opname of bij een vervolgonderzoek na 4-6 weken) een duidelijke invloed op het behandelingsresultaat had. Bij vergelijking van wondinfectie percentages tussen patiënten, behandeld met een eerste generatie cefalosporine versus patiënten, behandeld met een tweede of derde generatie cefalosporine (11 trials, 1128 patiënten), werd geen significant verschil gevonden (p>0,05). Evenmin werd een significant verschil aangetoond tussen een éénmalige gift en meerdere giften van profylactische antibiotica (15 trials, 1226 patiënten).

Conclusies:

- Het totale verschil in wondinfectie percentage tussen wel of geen antibiotica profylaxe is 9% ten gunste van profylaxe (95% betrouwbaarheids-interval van 7 tot 11%).
- In een subgroep-analyse werd een sterker beschermend effect gevonden bij patiënten met een verhoogd risico voor infecties.
- Geen significant verschil in wondinfectie percentage werd gevonden tussen patiënten, behandeld met een eerste generatie versus een nieuwere generatie cefalosporine, en tussen patiënten, behandeld met een éénmalige dosis antibiotica versus een meervoudige gift.
- Een nieuwe trial, waarin een éénmalige gift van een kortwerkend antibioticum wordt vergeleken met meerdere giften van hetzelfde

middel, lijkt zinvol op voorwaarde dat het aantal deelnemende patiënten groot genoeg is.

De uitvoering en resultaten van een gerandomiseerde, dubbelblinde, multicentrische studie (Galant-trial) worden besproken in Hoofdstuk 5. Een éénmalige dosis cefuroxim (1,5 g intraveneus) werd vergeleken met een driemalige dosis als contrôle (1,5 g cefuroxim preoperatief en tweemaal 0,75 g postoperatief). De studiegroep bestond uit 1004 patiënten, allen met 1 of meer risico faktoren voor het ontwikkelen van een wondinfectie. Alle patiënten werden 4-6 weken na de operatie vervolgd. De kenmerken van beide studie-groepen waren vergelijkbaar. Tussen de twee groepen werd geen statistisch significant verschil gevonden wat betreft het percentage wondinfecties: 6.6 versus 6,2% graad I wondinfecties (p = 0,78) en 4,6 versus 3,8% graad II wondinfecties (p = 0,52). Het geschatte verschil in percentage graad II wondinfecties bedroeg 0.8 (95% betrouwbaarheids-interval van -1,7% tot +3,3%). Echter, de gemiddelde postoperatieve opnameduur, het aantal patiënten dat postoperatief met antibiotica werd behandeld en de frequentie van wondehiscenties vertoonden significante verschillen ten gunste van de behandeling met de driemalige profylaxe (p<0,05). In een multivariant analyse bleken drie factoren een grote voorspellende waarde te hebben voor de ontwikkeling van graad II wondinfecties: (a) een vroegere maagoperatie; (b) locale drukpijn in de rechter bovenbuik; en (c) galblaas-perforatie.

Conclusies:

- Er is geen statistisch significant verschil tussen een éénmalige en een driemalige dosis cefuroxim in de profylaxe van galwegoperaties.
- Een vroegere maagoperatie, locale drukpijn in de rechter bovenbuik en een galblaasperforatie durante operationem zijn prognostische factoren met een grote voorspellende waarde voor de ontwikkeling van een wondinfectie.
- Profylactische antibiotica moeten werkzaam zijn tegen zowel endogene als exogene wondcontaminanten.

De resultaten van de gerandomiseerde multicentrische trial werden gebruikt om het effect van verschillende antibiotica regimes op de kosten te bestuderen ($Hoofdstuk\ 6$). De extra kosten van antibiotica en eventuele wondinfecties per 500 geopereerde patiënten bedragen f 60.840,- indien geen antibiotica-profylaxe wordt gegeven, f 29.625,- bij éénmalige cefuroxim profylaxe en f 41.110,- bij een driemalige cefuroxim profylaxe. Indien de gevolgen van andere septische complicaties worden meegerekend, dan is het verschil in extra kosten tussen de twee studiegroepen f 16.865,- ten gunste van de driemalige cefuroxim profylaxe. Besparingen tot een bedrag van f 400.000,- per jaar zijn mogelijk, indien in alle Nederlandse ziekenhuizen

een effectiever beleid gevoerd zou worden ten aanzien van de kosten van antibioticaprofylaxe in de galwegchirurgie.

Conclusies: - De kosten van een verpleegdag zijn zo hoog, dat de meeste andere kosten hierbij in het niet vallen.

- Zowel een éénmalige als een driemalige cefuroxim profylaxe zijn kosteneffectief vergeleken bij het achterwege laten van profylaxe, waarbij éénmalig goedkoper is dan driemalig.
- Indien de effecten van andere septische complicaties naast wondinfecties worden betrokken in de kosten-analyse, dan is de uitkomst in het voordeel van de driemalige cefuroxim profylaxe.
- Nader onderzoek is nodig om de sensitiviteit van de resultaten te testen.

Het proefschrift wordt afgesloten met een algemene discussie, conclusies en aanwijzingen voor toekomstig onderzoek (*Hoofdstuk 7*).

APPENDIX A Questionnaire sent to the Chairmen of the Surgical Departments of 175 hospitals in The Netherlands

- 1. How do you use antibiotic prophylaxis in elective cholecystectomy?
 - a. Never
 - b. Routinely
 - c. Selectively
- 2. If selectively, which high risk factors are an indication for antibiotic prophylaxis?
 - a. Patients over ... years of age
 - b. Rigors within 1 week before operation
 - c. Attack of acute cholecystitis within I month before operation
 - d. Jaundice
 - e. Common duct stone(s) or planned common bile duct exploration
 - f. Previous biliary tract surgery
 - g. Diabetes mellitus
 - h. Morbid obesity
 - j. Immuno-suppressive therapy
 - k. Other reasons
- 3. If you do use antibiotic prophylaxis, which agent(s) in which dosis?
- 4. How long is the total duration of your antibiotic prophylaxis?
 - a. Single-dose
 - b. ... hours
 - c. ... days
- 5. How is the management of acute cholecystitis at your department usually?
 - a. Emergency operation with peri-operative antibiotic prophylaxis (less than 48 hours)
 - b. Emergency operation with "therapeutic" antibiotics (beyond 48 hours)
 - c. Elective operation as soon as possible with peri-operative antibiotic prophylaxis
 - d. Elective operation as soon as possible, starting antibiotic treatment immediately after admission
 - e. Initial conservative treatment and delayed cholecystectomy

APPENDIX B

The Galant-trial Study Group (14 Dutch hospitals):

P.J.Breslau, M.D., Ph.D., Rode Kruis Hospital, Den Haag;
W.A.H.Gelderman, M.D., Ph.D., Groot Ziekengasthuis, Den Bosch;
J.M.Heslinga, M.D., Ph.D., Bronovo Hospital, Den Haag;
C.M.Hoogenboom, M.D., Van Weel-Bethesda Hospital, Dirksland;
C.L.Koppert, M.D., Eudokia Hospital, Rotterdam;
H.Kuiken, M.D., Schieland Hospital, Schiedam;
A.C.van der Ham, M.D., Sint Clara Hospital, Rotterdam;
J.K.S.Nuytinck, M.D., Ph.D., Sint Ignatius Hospital, Breda;
K.H.Ong, M.D., Hospital Rivierenland, Tiel;
C.H.Ruseler, M.D., Sint Franciscus Gasthuis, Rotterdam;
M.K.M.Salu, M.D.,Ph.D., Zuiderziekenhuis, Rotterdam;
P.F.Verhagen, M.D., Ph.D., Sint Maartens Gasthuis, Venlo;
W.F.Weidema, M.D., Ph.D., Reinier de Graaf Gasthuis, Delft;
O.J.van West, M.D., Sint Joseph Hospital, Oosterhout.

APPENDIX C

GALANT-TRIAL

Plak hier sticker met ampul/pat.nr.

(via apotheek)

Algemene registratie

achternaam pat (eerste 2 letters)		geb. datum	dag	mnd ouw	jaar	ZIEKENHUI	S:	
<1 maand vo 4. choledocholi 5. anamnestisc	van cholecystitis or de operatie thiasis h reeds een tie ondergaan	twoord worden	neen	voor ce 2. indlen te intra-abrier verricht maagres 3. haemod patlent 4. ernstige (kreatini 5. zwanger 6. gebruik binnen 7. choledo (b.v. Wh	vragen n dag overgevoelighe falosporinen egelijkertijd een dominale ingree (bv appendecto sectle) ynamisch insta nierfunctiestor ne >300 umol/ii rschap van antibiotica 7 dagen voor op chusresectle lipple operatie)	andere p wordt mile of biele prinis)		
Opname-da	dag		ens Laar	verwij: - vla hu - via in	ternist nder specialism	nirurg:		

Anamnestische gegevens

Aard van de klachten	Ja	neen	Duur van de klachten			
kolleken			Aantal	uren		
koorts				dagen		
koude rilling				weken		
misselijk/braken				maanden		
icterus				Jaren		
Vroegere abdominale operatie	s/ziek	ten	 Bijkomende aandoeni	ngen/zie	kten	
	Ja	лееп			Ja	пееп
- pancreatitis			- hernia diafragmatica			
- diverticulosis/ltls			- ulcus pepticum			
- appendectomie			- cardio-vasculair			
- cholecystectomie			- CARA			
- colonoperatie			- overige			
- maagoperatie			Zo ja, beschrijf			
- uterusextirpatie						
- overige						
Zo ja, beschrijf						
Geneesmiddelen gedurende d afgelopen twee weken		neen	Onderzoek			
afgelopen twee weken	l e ∫a	neen	Onderzoek Lichamelijk onderzoek	· · · · · · · · · · · · · · · · · · ·		
afgelopen twee weken - antidiabetisa		neen				
afgelopen twee weken - antidiabetica - antistolling		neen	Lichamelijk onderzoek - temperatuur bij opname in		Ora	
afgelopen twee weken - antidiabetica - antistolling - diuretica		neen	Lichamelijk onderzoek - temperatuur bij opname in	°C _	ora], [] aal []
afgelopen twee weken - antidiabetica - antistolling - diuretica - anticonceptiva		neen	Lichamelijk onderzoek - temperatuur bij opname in rectaal a	°C _	ora], [] aal []
afgelopen twee weken - antidiabetica - antistolling - diuretica - anticonceptiva - antirheumatica		neen	Lichamelijk onderzoek - temperatuur bij opname in rectaal a - lengte in cm	°C _	ora	aai a
afgelopen twee weken - antidiabetica - antistolling - diuretica - anticonceptiva - antirheumatica - corticosteroiden		neen	Lichamelijk onderzoek - temperatuur bij opname in rectaal a - lengte in cm	°C _		
afgelopen twee weken - antidiabetica - antistolling - diuretica - anticonceptiva - antirheumatica - corticosteroiden - cardiale middelen		neen	Lichamelijk onderzoek - temperatuur bij opname In rectaal a - lengte in cm - gewicht In kg	°C _		
afgelopen twee weken - antidiabetica - antistolling - diuretica - anticonceptiva - antirheumatica - corticosteroiden - cardiale middelen - overige	ja		Lichamelijk onderzoek - temperatuur bij opname in rectaal a - lengte in cm - gewicht in kg - (sub)icterus	°C _		
afgelopen twee weken - antidiabetica - antistolling - diuretica - anticonceptiva - antirheumatica - corticosteroiden - cardiale middelen	ja		Lichamelijk onderzoek - temperatuur bij opname Interectaal a - lengte in cm - gewicht In kg - (sub)icterus - abdomen: lokale drukpljn	°C axillair 🔲		
afgelopen twee weken - antidiabetica - antistolling - diuretica - anticonceptiva - antirheumatica - corticosteroiden - cardiale middelen - overige	ja		Lichamelijk onderzoek - temperatuur bij opname in rectaal a - lengte in cm - gewicht in kg - (sub)icterus - abdomen: lokale drukpijn percussiepijn defense muscul	°C axillair 🗍 laire:		
afgelopen twee weken - antidiabetica - antistolling - diuretica - anticonceptiva - antirheumatica - corticosteroiden - cardiale middelen - overige	ja		Lichamelijk onderzoek - temperatuur bij opname in rectaal a - lengte in cm - gewicht in kg - (sub)icterus - abdomen: lokale drukpljn percusslepijn defense muscul - lokaal	°C axillair		
afgelopen twee weken - antidiabetica - antistolling - diuretica - anticonceptiva - antirheumatica - corticosteroiden - cardiale middelen - overige	ja		Lichamelijk onderzoek - temperatuur bij opname in rectaal a - lengte in cm - gewicht in kg - (sub)icterus - abdomen: lokale drukpljn percusslepijn defense muscul - lokaal - gegeneralis	°C axillair laire: eerd aas		
afgelopen twee weken - antidiabetica - antistolling - diuretica - anticonceptiva - antirheumatica - corticosteroiden - cardiale middelen - overige	ja		Lichamelijk onderzoek - temperatuur bij opname in rectaal a - lengte in cm - gewicht in kg - (sub)icterus - abdomen: lokale drukpljn percusslepijn defense muscul - lokaal - gegeneralis palpabele galbis	°C axillair alre: eerd aas ken		

	ERVOLG ONDER ntgenologisch o	•	1-		Gayandan afwiikingan	ام		211
		iidei20ek	Ja	neen	Gevonden afwijkingen - cholelithiasis	ja		n.v.t.
	echografie							
	orale cholecystografie				- niet opkomende galbiaas			
	ntraveneuze cholangi				- verdikte galblaaswand			
	percutane cholanglogi 	rafie (PTC)			- choledochollthiasis			
	ERCP				- verwijde intrahepatische galwegen			
	hepatoblda-scan				 verwijde extrahepatische galwegen 			
g. (CT-scan				 choledochusstenose/strlctuur 			
Gee	ef chronologische vol	gorde van de or	nderzoek	en aan:	- RIP in galblaas/leverhilus/pancreas			
			1.		overige		Ш	Ш
			2.		Zo Ja, beschrijf			
			3.					
	nisch-chemisch e-operatief)	onderzoek		***	Acute cholecystitis]a		neen
	НЬ		mmol	<i>t</i> I	Defi-Manager As		J	
	BSE		mm/u	iur	Definitie van acute cholecystitis: a. acute bulkpijn >24 uur en <7 dagen;			
	leuco's		g/I		 b. drukpijn in rechter hypochondrium en/of p c. leucocytose >10.000 x 10⁶/l en/of kool 	rts >3	eio gal 8°C re	biaas; ctaal,
	eo		%		of >37,5°C axillair gemeten; en eventueel d. aangetoonde galstenen.			
	baso		%					
	st		%					
	segm		%					
_	lymfo		%					
•	mono							
	mono	ja neen	%		Voorbereiding operatiegebied	l:		
	toxisch				- scheren met mes			
	bilirubine		umoli	1	, - scheren met tondeuse			
	alk. fosf.		U/I		- ontharingsmiddel			
	SGOT		U/I		- géén ontharing	$\overline{\Box}$		
	SGPT		U/I		good outlanding			
	gamma GT		U/I		Tijdstip van ontharing:			
	kreatinine		umol.	t I	- dag voor operatie			
			J.1101		aug .vo. opolatio] [
	amylase		U/I		- vlak voor operatie			

- In geval van acute cholecystitis
- -- facultatief

Operatiegegevei	18		Operatie-datum dag	g mnd	jaar
Algemene gegevens				Ja	nee
operateur: — chirurg — chir.assistent		assis	ctentie: - chlrurg - chir, assistent - co-assistent(e) - operatie-assistent(e)		
Duur van de ingreep:			minuten		
Tijd tussen toedlenen antibiotica en Incisie:			minuten		
Incisie			Aard van de ingreep		
- techniek huid scalpel	subcutis subcostaal mediaal paramediaan overige	fascie	 cholecystectomie antegraad (= vanaf funds retrograad peroperatieve cholangiografie choledochotomie choledochoscopie choledocho-enterostomie 	ja us)	
Toestand van de galbla	as ja	neел	Toestand van de choledoci geer explore	1	nee
- palpabele galstenen		Ш	- normaal		Ĺ
 ontsteking (vaatInjectle en/of oedeem) hydrops/witte gal empyeem gangreen infiltraat 			 Indien niet normaal: verwijd (mm) verdikte wand obstructie – steen tumor 		
- perforatie - spontaan - latrogeen			Spill van gal in het operatiegebied (contamina	tie)	Г
- overige			geen .		
Zo Ja, beschrijf			gering		_ _
			ernstig		L

(VERVOLG OPERATIEGEGEVENS)

Galstenen:		Ja	neen		
- zijn er bij het openen van de galbiaas stenen gevonden?					
Indien choledochotomie/scopie verricht is, zijn er choledochusstenen gevonden?					
Buikholte					
Gespoeld:	Type draînage:				
- neen	- gesloten drainage				
- Ja, met fys. zout/Ringers	 gesloten zu\u00e4gdrainage 				
- ja, met andere vloeistof	sump-drainage				
Zo]a, beschrijf	 geen drainage 				
	Drain uitgeleid:				
	 via aparte steekopening 				
	– vla wond				
Wond Ja neen		Ja	neen		
- peritoneum gesloten	Huid: atraumatisch gesloten				
- fascie gesloten met dexon	Cubautia				
met vicry!	Subcutis: - niet gesloten				
met PDS	gesloten met catgut				
	met dexon		$\overline{\Box}$		
	met vlcryl				
Protocol-violation	PA-uitslag				
DRAINAGE :		ja	neer		
- abdominale drain <u>niet</u> geplaatst	 tekenen van acute ontstekling 				
	- tekenen van chronische ontsteking				
- drainage subcutane redondrain wel geplaatst	 géén tekenen van ontsteking 				
WOND:					
- fascie <u>miet</u> doorlopend gesloten	Distriction				
- wond gespoeld met fys. zout/Ringers	Plak hier met ampu		1		
- wond <u>gespoeld</u> met andere vloeistof $ $	(via apo	theek))		
beschrijf					

Post-operatieve gegevens

Drains	Ja	neen			
 abdominale drain binnen 48 uur na operatie verwijderd 			zoniet, wanneer w	rel? na □	dagen
- T-drain (indien geplaatst): - post-operatief cholanglogram					
~ restconcrementen					
- T-drain verwijderd op dag	post-operatie	f			
- therapie van evt. rest-concrement(en):					
- percutane transhepatische extrac	tie				
- choledochoscopie vla kanaal van	T-drain				
- ERCP + papillotomie					
- spoeling via T-drain					
- re-operatie			zo Ja, datum	dag mn	d jaar
Antibiotica					
 heeft patl ént n á de profylaxe nog antibiotica gekregen 					
Zo ja, welke? 1.			gedurende	dagen	
2			gedurende 🔲	dagen	
3			gedurende	dagen	
Wondinspecties					
	DAG	5	DAG 10 (of dag ontslag ziekenhuis)	WEE	K 4-6
	ja	neen	ja neen	Ja	neen
 Wondinfectie 					
zo ja, klasse	Į I	11	[1]	1	11
labor of descriptions					
- Intra-abdominaal	ja ├ ┌┐	neen	ja neen	ja —	neen
- infiltraat					
- abces	L _				لبا
 aangetoond met echografie, CT-scan en/of punctie 					
- Sepsis					

Op de hoeveelste dag postoperatief trad bovengenoemde septische complicatie op?

Complicaties	1-		Mortaliteit tgv het volge	ende lijd	len
 temperatuur >39°C rectaal, of 38,5°C axillair]a	neen	- cardiaal	ja 	neen
 heeft patiënt binnen 24 uur bioedtransfusie gehad 			- sepsis		
 temperatuur >38°C rectaal, of 37,5°C axillair langer dan 4 dagen achtereen 			bloedinglongemboliepneumonle		
Interventie bij wondinfectie	ja	neen	- overige		
- punctie			Zoja, beschrijf		
 wond geopend 					
- wond defect (spontaan)			- obductle		
Overige complicaties			Datum ontslag/overlijden:		
 wonddehlscentie bulkwanddehlscentie lleus mechanisch paralytisch re-operatie? Zo ja, beschrijf 	ja	neen	dag mnd Jaar		
- wondhaematoom					
ontlast					
- luchtweginfectie					
- urinewegInfectie					
- thrombose/embolle					
- thrombophiebitis					
- decompensatio cordis					
overlge					

Kweekuitslagen


Grampreparaat van de gal: gr + coccen						
		Hoeveelheid van de geïsoleerde bacterie (gro- + = laag + + = matig + + +		1	voor cefuroxim of -	
MATERIAAL	DATUM AFNAME	GEISOLEERDE MICROÓRGANISME(N)	NIET INVULLEN	GROEIDICHTHEID	GEVOELIGHEID CEFUROXIM	
1. Gal	peroperatief					
2. Wond	peroperatief					
3						
					<u> </u>	
4						
	3 T T 1					
5						
	ļ					
6						

Paraaf:

Naam onderzoeker:

CURRICULUM VITAE

De schrijver van dit proefschrift werd geboren in 1947 te 's-Gravenhage. Hij behaalde zijn eindexamen HBS-B aan het Baarns Lyceum te Baarn in 1964. In dat zelfde jaar werd de medische studie aangevangen aan de Rijksuniversiteit te Leiden. Na het behalen van het candidaatsexamen was hij gedurende twee jaar werkzaam als student-assistent op de afdeling Anatomie van de Leidse Universiteit. In 1974 werd het artsexamen afgelegd. Hierna werkte hij als arts-assistent op de afdelingen Interne Geneeskunde en Chirurgie van het Ziekenhuis Antoniushove te Leidschendam (Dr.J.Blankespoor en H.Hollander). In 1975 begon hij de opleiding algemene heelkunde in het Sint Clara Ziekenhuis te Rotterdam (Opleider A.A.van Puyvelde). In 1981 werd hij ingeschreven in het specialisten register. In 1982 was hij werkzaam als Surgical Research Fellow in het Memorial Sloan-Kettering Cancer Center te New York (Dr.D.M.Kinne, Head of the Department of Breast Surgery and Dr.M.P.Osborne, Consultant Surgeon). Sinds 1983 is hij als algemeen chirurg verbonden aan het Sint Clara Ziekenhuis te Rotterdam.

