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A model ot asynchronous left ventricular relaxation
predicting the bi-exponential pressure decay
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SUMMARY A new model for the pressure relaxation of the left ventricle is proposed. The model
presumes that the myocardium relaxes asynchronously, but that when regions begin to relax, after a
delay, the local wall stress decays as a mono-exponential process. This formulation results in an
apparently bi-exponential process (two time constants) which has been previously reported. It is
shown that the ratio of the two time constants (T,/T;) can be interpreted as the fraction of the
myocardium which relaxes synchronously. Data are presented 1llustrating the model during transient
coronary occlusion in patients undergoing percutaneous transluminal coronary angioplasty.

Most models of the time course of left ventricular
pressure decay focus on an exponential process. There
1s evidence that the relaxation of isolated gpapillary
muscles can be approximated by this model,” and as a
first approximation 1t appears to apply to the
myocardium as a whole.” The exponential function is
an Eigen function of the differential operator, and
would be expected to occur when the rate of decay 1is
proportional to the dependent variable.

Recent studies, however, have focussed on those
cases where the simple mono-exponential model does
not appear to be followed. Ad hoc modifications have
been proposed to provide a better fit to the data. For
example, Thompson® found that the pressure,
especially 1n the latter phase of relaxation, is described
by P = A + B exp (-t/T), ie mono-exponential with
offset. Rousseau,’ using a similar rationale, developed
the model P = A exp (-tT,) + B exp (-t/T»), ie
bi-exponential, primarily on the basis that the pressure
curve when plotted on semi-log paper was noted to
follow two straight lines rather than the one predicted
by the mono-exponential.

Further studies have clearly shown that the
measured pressure departs from the mono-exponential
model under a variety of stimuli and circumstances,
and that asynchronous relaxation may be
involved.' * * For example, fig 1a shows the log P vs
time curve, from peak —dP/dt to 5 mmHg above the
previous end-diastolic pressure, for a patient with
coronary artery disease. Fig 1b shows the same patient
15 s after the onset of percutaneous transluminal
coronary occlusion during angioplasty, when
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asynchronous relaxation was confirmed by
echocardiography. The pressure deviates substantially
from the simple mono-exponential model. In this
report we develop this 1dea further and propose a
plausible model of pressure relaxation of the left

ventricle explicitly incorporating asynchronous
relaxation.

Methods

THEORETICAL MODEL

The model of LV pressure relaxation developed here
assumes that the onset of relaxation is governed by the
distribution function g(t). That is, in an infinitesimal
time interval dt, g(t)-dt fraction of the myocardium
initiates relaxation. The integral [g(x) dx gives the
total fraction of the myocardium initiating relaxation
from time O to t. Once the onset of relaxation has
begun, regions of the myocardium relax as a simple
mono-exponential with the same time constant T>. The
observed time constant T, results from the combined
action of that fraction of the myocardium in the process
of relaxing and the remainder yet to initiate relaxation.
The LV pressure during the relaxation phase is thus
given by:

P()=P,(1 - ['g(x) dx + ['g(x) exp(~(t-x)T;) dx] (1)

where Py 1s the pressure at time t = 0. The term 1 —
0_[ g(x) dx in equation (1) represents the fraction of the
myocardium not having initiated relaxation up to time
t. The other term 1n equation (1) represents the total
contribution to pressure at time t of that fraction of the
myocardium having initiated relaxation at a time
governed by the distribution function g(x).
A further condition is that

L -
0] g(x) dy = 1
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FIG 1A Logarithm of left ventricular pressure vs time
in a patient with coronary artery disease. Pressure is
measured from the moment of peak —dP/dt to 5 mmH g
above the previously measured EDP . The pressure curve
is shifted 8 ms 1o the right for purposes of illustration.

and that g(x) is zero for x <0 and x>L, where L
represents the time at which all regions have
commenced relaxation. the pressure, P(t), is a directly
measureable quantity, but for sake of argument
suppose that it can be idealised from that shown in fig
laand 1b. P(t) over the entire time interval is idealised
as

P(t) — P{] CXp (—'UTI) U= t<I (2)
= Py exp (-L/T,) exp—(t—-L)/T> (=L  (3)
T,=T,

EXACT SOLUTION
[t can be shown that a solution for g(x) in equation (1)
1S

g(.’l’)-_—"K{] 6(1)+K] exp (—.l’/Tl)
g(x)=0 for x<0 and x>L

K: S(Y—L) (4)

where o is the Dirac delta function (see Appendix for
explanation).

The function g(x) is illustrated in fig 2. The
parameters K,, K,, K, are simply related to the
idealised pressure vs time curve by the following
conditions.

Ko=T>/T, (5)
K,=(T, = T,)/T,? (6)
K,=(T, — T,)/T, exp (-L/T)) (7)

The presence of the Dirac delta function, 3(t) in the
distribution function, g(t), is interpreted as a process
which occurs quickly in relation to other events.
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FIG 1B Pressure inthe same patient 15 s after the onset of
percutaneous transluminal coronary occlusion during
angioplasty. A bi-exponential pressure decay is now
apparent. Asynchronous relaxation was confirmed with
echocardiography.

T'he physiological significance of the parameter K,
1S that it is the fraction of the myocardium which
begins to relax synchronously. In the interval 0<t<L.
an additional fraction of myocardium relaxes.
governed by K, exp(—t/T,). At t=L all the remaining
unrelaxed fractions of the myocardium (fraction K-)
begin to relax. After this point the pressure ceases to
have a relaxation time constant T, and abruptly

6G(T)

TIME (MS)

FIG 2 Thedistribution function, g(t) giving a precise
solution to equations I to 3, showing that some
asynchrony in the relaxation process can give rise to a
bi-exponential pressure decay.
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FIG 3 A computeddistribution function (fromfig IB)

which was filtered to eliminate noise in the second
derivative. The trailing Dirac delta function is not
present nor does the curve have to have an exponential
shape to reproduce the apparent bi-exponential
observed.

switches to T5, the inherent time constant of relaxation
of the myocardial tissue. The time constant T, 1s not
directly related to a relaxation process per se.

[t is interesting to note that in an intervention or
disease which affects the synchrony of relaxation, the
parameter Ko=T,/T; would most directly quantify the
fraction of the heart unaffected.

The distribution function, g(x) during the remainder
of asynchronous relaxation i1s not critical to the
reproduction of the shape of the pressure curve, and as
discussed below, can take on other forms.

MEASUREMENT OF THE DISTRIBUTION FUNCTION
The distribution function, g(t), in equation (4) 1s an
exact solution given the pressure decay described in

G(T)

TIME (MS)

FIG 4 Anidealised and simplified distribution function
which more closely predicts the measured pressure decay
than the exact solution.
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equations (2 and 3). However, as equations (2 and 3)
are an idealised statement of the pressure decay, it 1s
certain that, should the measured pressure be
substituted in equation (1), a different distribution
function would be obtained. A mathematical solution
of g(t), given P(t), can be shown to be

g(t)=—P/Py — T, P/P, (8)

where P and P are the first and second derivatives with
respect to time.

An example of g(t) so computed from fig 1b 1s
shown in fig 3. It is dissimilar to that of fig 2 in two
ways: first, the absence of the trailing Dirac delta
function; second, there i1s no exponential curve in the
period O0<t<L. This and similar results have
suggested a simplification of the distribution function
which 1n fact results in pressure curves which more
closely conform to those measured as opposed to the
idealised pressure decay in equations (2 and 3).

SIMPLIFIED DISTRIBUTION FUNCTION
The distribution function, g(t), may be simplified to

g(t) = Kpd(t)+ K, h(t) 0<
=0

on condition that Ko+(K,-L) = 1. This distribution
function 1s 1llustrated in fig 4. The physiological
significance 1s similar to that of fig 2: the first term, K,
d(t), represents that fraction of the myocardium
relaxing synchronously; the second term, K, h(t)
represents a uniform rate of recruitment of the
remaining myocardium in the relaxation process.
When all the myocardium 1s recruited, at t=L,

t<L (9)
t=L
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FIG S5 Thedashed curve shows the calculatedlog P vs
time curve using the exact solution, while the solid curve
shows that predicted from the simplified model.
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pressure relaxation continues as a mono-exponential
of time constant T>.

Substituting equation (9) in equation (1) results in

P()=P, [1 - K,t+(K,T, - Ko) (1 — e7/T,)], 0<t<L (10)

P()=P, e /T, (Ko+K,T, (¢“/T, — 1) t=L (11)
where K{}:Tg/Tl (12)
Ki=(T; = To)/T; (13)

In this simplified model L, the time at which all
regions have commenced relaxation, is shown to equal
the first time constant of relaxation.

An example of P(t) so computed is shown in fig 5
(solid line). The idealised pressure curve is shown as a
dashed line. It is clear that the simplified distribution
function for equation (9) provides a more realistic fit to
the measured pressure (eg fig 1b).

An essential similarity with equations (4 to 7)
remains however, and that is the definition of K and
K,. This also applies to their physiological
Interpretation.

MEASUREMENT METHODOLOGY
[eft ventricular pressure was measured with a Millar
micromanometer catheter and digitised at 250 samples
per s. Combined analogue and digital filtering resulted
in an effective time constant of less than 10 ms. This
employed an updated version of the beat to beat
analysis program described previously.'

The two time constants of relaxation were computed
using a least squares fit to the log P vs time curve over
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the period from peak negative dP/dt to 5 mmHg above
the prior end-diastolic pressure to assure analysis
during the isovolumic period.

Results

By way of a preliminary investigation, we have
applied this model to percutaneous transluminal
coronary occlusion during angioplasty (PTCA) which
is known temporarily to induce asynchronous
contraction and relaxation of the myocardium.

Six patients were studied using an on-line computer
system and high fidelity tip manometry.
Bi-exponential fitting of the pressure curve was
computed during the isovolumic relaxation period as
defined from peak —dP/dt to 5 mmHg above the
previous EDP (to estimate the opening of the muitral
valve during the relaxation phase).

An example of one such patient is shown in fig 6.
This shows, from top to bottom, LV end-diastolic
pressure, end-systolic pressure, peak —dP/dt, and the
time constants of relaxation. The gap at beats 8 to 10
represent the inflation of the catheter tip balloon at the
onset of PTCA. For the time constant (tau) panel, three
lines are shown: the topmost dashed line represents T,
the bottom-most dotted line represents T,, and the
middle solid line represents the time constant obtained
from a mono-exponential fit.

Five beats after occlusion of the coronary artery,
both —dP/dt and T, begin to change. It is clear that T,
reaches a peak by beat 30 while —dP/dt continues to
decline up to beat 45. Both ESP and EDP show a later
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FIG 6 Haemodynamic measurements ina patient during percutaneous transluminal coronary occlusion during
angioplasty. EDP (scale 15 mmHg), end-systolic pressure ( scale 60 mmHg, with 60 mmHg offset), peak —dP/d1 expressedasa
percentage of control values, the time constants of relaxation with T, dashed line, T solid line, T dotted line (scale 50 ms).
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TABLE  Results of percutaneous transluminal coronary occlusion during angioplasty for 18 procedures in six patients.

M1 M?2 M3 M4

Measurement mean=*SD mean=*SD f eh mean=*SD P< mean=*SD P<
GCVF (ml-min™!) 88+37 s = 49+22 0.001 1 14+44 0.01
LAV (mmol-litre™') 0.17+0.13 - = = —2 -0.77+0.76 0.001
EDP (mmHg) 14+5 16+6 0.01 23+5 0.001 13+5 NS
T, (ms) 56+7 89+11 10~ 68+13 102 577 NS
T, (ms) 41 +7 46+7 0.01 56+ 10 103 41 +6 NS
[0S 0.74+0.12 0.52+0.09 16-° 0.83+0.10 5%107% - - 0.72%0:1] NS

_— e e ™

GCVF=great cardiac vein blood flow, LAV =arterio-venous lactate difference (mmol-litre™'), EDP=end diastolic pressure, T =early time

constant of relaxation, T,=late time constant of relaxation. IOS=T,/T,
15 s during PTCA (M2), at 45 s during PTCA (M3), and 2 min after co

Index of synchrony. Data were obtained at a control period (M1), at

mpletion of PTCA (M4). Data are reported as mean + SD. Student’s

paired r-test with respect to measurements at M1. NS=no significant difference at the 0.01 level.

and less dramatic change. T, demonstrates very little
change until beat 40. Compared with T; the
mono-exponential fit is relatively unaffected during
PTCA.

The results for six patients during 18 attempts at
PTCA are summarised in the table. This shows the
great cardiac vein blood flow (GCVF) measured by
thermodilution, arterio-venous lactate difference in
the great cardiac vein (A-GCV), end-diastolic
pressure (EDP), the two time constants of relaxation
(I'yand T5), and the index of asynchrony (I0S=T-/T))
prior to PTCA, at 15 s and 45 s during PTCA, and at 2
min after PTCA. The fact that there is a significant fall
in GCVF during the procedure with a negative A-V
lactate difference after the end of PTCA demonstrates
that PTCA did have a potent effect on the
myocardium. The haemodynamic parameters show a
response only during PTCA and fully recover within 2
min. At 15 s the early time constant of relaxation (T))
increases by 33 ms (59%) while T, 1s relatively
unchanged (+5 ms, 12%). The index of synchrony
(I08=T>/T)) decreased by 0.22 (-30%). Later at 45 s
during PTCA | T, increases as T, decreases so that both
are now significantly greater than control values. but
with the difference between the two less clear. The
ratio To/T, is now actually slightly greater than control
values by 12%. Echocardiographic studies have
shown that in the early phase of PTCA the dominant
effect is asynchronous relaxation, but later at 45 s, the
asynchronous region often becomes akinetic. neither
contributing to contraction nor relaxation. and is
effectively eliminated from the model. Thus. the ratio
T5/T, actually increases above control values during
which the occluded region was participating in the
relaxation process.

Two min after completion of PTCA, EDP and the
time constants of relaxation have returned to control
levels.

It the premise of the two time constant mode]
developed here is correct, the early change in T, with
constant T, represents an exaccerbation in the

asynchrony of relaxation with the underlying time
constant of relaxation, T,, unaffected until much later
in the procedure. T, thus represents one of the earliest
and most sensitive indicators of regional perfusion
deficit in as much as synchrony of relaxation is
atfected.

Discussion

The connection between transient asynergy,
myocardial ischaemia, and alterations in the time
course of contraction and relaxation was pointed out as
carly as 1969 by Tyberg er al.” Indeed, the possibility
that a non-exponential pressure decay may be directly
connected to asynchronous relaxation has already
been proposed.' 3 ¢ 7 &

The contribution of the work reported here is to take
this idea one step further and show that a model of
asynchronous relaxation can quantitatively reproduce
the pressure relaxation curve reported 1n numerous
experimental protocols.

This modification to the Weiss-Weisfeldt model?
attempts to account for the problems of: 1) deviations
from the simple mono-exponential LV relaxation: and
2) asynchronous regional relaxation which occurs in
settings such as ischaemia and hypertrophy. The
model is illustrated using data from patients
undergoing transluminal coronary angioplasty, and if
valid, is interesting in its implications for
pathophysiology. However, the model employs
several simplifying assumptions which require
Justification or further study. The model assumes that
all myocardial segments, 1Ischaemic  and
nonischaemic, share an identical underlying
relaxation rate (time constant T>). Certainly there is a
statistical distribution in time constant of relaxation of
different myocardial regions even for the normal heart
Computations based on a rather broad Gaussian
distribution in relaxation rate show that. when these
regions relax synchronously, the resulting pressure is
well described by a mono-exponential process with a



Bi-exponential pressure decay

time constant equal to the mean relaxation rate. During
regional ischaemia there is evidence that the relaxation
rate does change, which on the face of it, would
invalidate the model.

For a population of two constants, or a bi-modal
distribution in time constants, the effect on the log
pressure curve is to develop a positive curvature with
the faster process occurring first, rather than the
observed negative curvature with the apparently
slower process (T,) occurring first. The question
therefore is whether during ischaemia the change in the
distribution of time constants of relaxation or the
occurrence of asynchrony of relaxation has the greater
effect on the isovolumic pressure decay. Mathematical
studies conducted i1n connection with the model
suggested that asynchronous relaxation was the
dominant mechanism i1n the generation of the
bi-exponential pressure decay, but this 1s an important
question which does require further clarification.

The fact that a group of asynchronously relaxing
mono-exponentials can give rise to a bi-exponential 1s
not entirely obvious. Thompson et al® even incorrectly
state that it is not possible. It is true that given a set of
several 1dentical exponentials, having started at
slightly different times, the measured pressure will
yield a mono-exponential, but only afrer all the units
have started to relax. It i1s precisely the period of
recruitment of the identical exponentials that the other
time constant in the bi-exponential process appears,
and it relates directly to the extent of the myocardium
not relaxing synchronously, ie, delay in onset of
relaxation.

For the analysis developed here we assumed that
small regions of the myocardium relax as a simple
mono-exponential with each region starting at a
slightly different time, governed by the distribution
function g(t). As this simple model explained the key
feature of the bi-exponential, there was no need to
consider yet more compiex models. It has been shown
that a mono-exponential with negative offset can
appear to mimic the measured pressure curve when
plotted as log P vs time.°® The physiological
significance of the negative offset is unclear, nor does
the off-set appear to be directly and independently
measurable except as a curve fitting exercise. From a
practical point of view, bi-exponential curves
generated in this way do not in fact have the
characteristic bi-exponential shape observed In
reality. The latter part of the predicted curve i1s not a
straight line (when plotted as log P vs time) and in fact
departs significantly from the data the closer P
approaches to the base line.

We avoided this particular error to some extent by
limiting the least squares fit to 5 mmHg above the prior
end-diastolic pressure.

As noted by Raff and Glantz® for a
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mono-exponential

0=d?P/dt*+ dP/dt
T

where T 1s the time constant of relaxation.
We show that the distribution function, g(t), can be

computed by a very similar expression (see equation
8):

(15)

—dP/dt d°P/dt?
L,

Py P
where T-> 1s the second time constant in the
bi-exponential process and P 1s the pressure at peak
—dP/dt. For a mono-exponential equation (15) applies
and g(t) = 0. The practical problems in calculating g(t)
from measured data should not be minimised. The
second derivative of LV pressure 1s exquisitely
sensitive to noise, and furthermore, g(t) 1s determined
as the difference between two large numbers, further
contributing to its sensitivity to any form of noise.
Filtering the signal 1s necessary and this results in some
apparent degradation in g(t).

The precise form of g(t) is not critical to reproducing
the bi-exponential log P vs time curve within the
measurement accuracy of pressure. For example, we
showed that a rectangular distribution of g(t) was as
good as the theoretical prediction of g(t). Numerncal
computation of g(t) using measured pressure has not
identified any particular characteristic shape of g(t). In

order to reproduce the bi-exponential shape, three
conditions appear essential:

g(H)=

1 g(t)=T-/T, o(t) at t=0
2 g(t)=0 O<t<L
g(t)=0 t>L
3 l=0}\ g(t) dt
where L represents the ‘‘break point’” of the

bi-exponential, and the time at which all regions have
commenced relaxation.

The physiological implications of this model
suggest anew approach to the interpretation of the time
constants of relaxation. The late time constant, T5,
according to this model reflects the effective
underlying relaxation rate of the myocardium, while
the early time constant, T,, reflects this in addition to
the effects of asynchrony in the onset of relaxation.
The quantity, IOS=T,/T,, which we define here as the
index of synchrony relates to the fraction of
myocardium participating in synchronous relaxation.
When IOS is near unity, as usually reported, the heart
1s relaxing synchronously and either T, or T, specifies
the relaxation time constant of the myocardium.

It 1s likely that T, and T, are to a large extent
independently affected by medical interventions and
loading changes. T, would be directly affected 1n
studies where asynchrony of relaxation is induced, for
example, in PTCA or regional administration of
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cardioactive drugs. In patients with coronary artery
disease, a certain amount of asynchrony may already
be present. Whether IOS measured at rest or during
stress testing proves to be a sensitive indicator of
regional disease remains to be established in further
studies.

Appendix

The step function h(t) and Dirac delta function 8(t) can
be simply described as follows:

h(t)=0 for t<0

h(t)=1 for t=0

o(t) can be defined as
o(t)=1/e for 0<t<e, € arbitrarily small
o(t)=0 otherwise.

The essential properties are that

h(y=[' 3 (x) dx
and f(To)= [~ f(t) 8(t-T,) dt

The physiological relevance of the step function is
that 1t 1s a useful formalism to describe a state which
rapidly changes from one condition to another. By
Tapidly’” it 1s understood to occur faster than the
ability to respond to the change. For example, the
turning on of an alarm or the abrupt increase in
pacemaker rate.

The Dirac delta function represents an impulse
which occurs once and is over. It can be considered as
the derivative of the step function. An example, would
be a quick loud noise (book dropping in a library) or a
single pulse from a pacemaker. The response is usually
called the *‘impulse response’’.

In the context of this report, the Dirac delta function
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appears in a probability density function, g(t). It
therefore represents a certain fraction of events which
occur instantaneously, that is, much more quickly than
the time constants involved in relaxation.
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