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Lung cancer

Incidence and etiology
With approximately 1.6 million cases in 2008 according to GLOBOCAN 2008, lung 
cancer is currently the cancer with the highest mortality rate (28%) in the World.1-2 
Although this type of cancer is easier to detect compared to other cancers it is difficult 
to cure, because of poor response to systemic therapy.
The vast majority (80-90%) of lung cancer cases is due to cigarette smoking.1 Other 
etiological factors include asbestos, radon gas, ionizing radiation and certain industri-
al agents and compounds (carcinogens) such as chloromethyl, arsenic, ether, nickel-
cadmium and chromium. Tobacco smoking is thought to be synergistic with many of 
these carcinogens.3-4 
Lung cancer death among women continues to increase slowly, like the increase of 
cigarette smoking in women. Passive smoking accounts for 3-5% of all lung cancer 
cases.4-5 
The 5-year survival rate for all patients is about 16%, but survival is related to tumor 
stage and presentation.3 
The occurrence of lung cancer varies between male and female. The male to female 
ratio is 3.47 in patients over 45 years of age and 1.7 in patients younger than 45 
years.4-5 

Pathology
Lung cancer is a cancer that forms in tissues of the lung, usually in the cells lining 
air passages.6 Primary lung neoplasms are for 95% of epithelial origin (carcinoma), 
which comprises two different main types: non-small cell lung cancer (NSCLC) and 
small cell lung cancer (SCLC). These carcinomas can be divided based on clinical 
and biological features and are diagnosed based on how the cells appear under a 
microscopic view. 

Figure 1. Different types of lung cancer. A) Adenocarcinoma.  B) Squamous cell carcinoma. C) Large                 
cell carcinoma. D) Small cell lung carcinoma. 
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Non-small cell lung cancer consists of three main subtypes, adenocarcinoma (Figure 
1a), squamous cell carcinoma (Figure 1b) and large cell carcinoma (Figure 1c). NSCLC 
comprises 75% of all lung cancers and can be divided in 35% adenocarcinoma, 30% 
squamous cell carcinoma and 10% large cell carcinoma. Adenocarcinoma originates 
in two-third of cases from peripheral airways and alveoli (Figure 2). The other third 
of cases arise centrally in large bronchi (Figure 2) from either the surface epithelium 
or the submucosal glands. Adenocarcinoma can also spread to other organs with a 
metastatic frequency of 50-82%.5 

Figure 2. Anatomy of the lung. This figure is adapted from the National Cancer Institute with permission 
of the illustrater Teresa Winslow.

Most of the squamous cell carcinomas are arising in the central or proximal tracheal-
bronchial tree in areas of squamous cell metaplasia and dysplasia. Squamous cell 
carcinomas are slowly growing tumors and one third of the carcinomas is poorly dif-
ferentiated.5 Metastasis can occur in squamous cell carcinoma, but with a lower fre-
quency (25-54%) compared to adenocarcinoma.5

Large cell carcinoma is characterized by large cells. Most patients with large cell car-
cinoma show large, bulky, peripheral tumors. At an early stage metastasis can occur 
(48-86%) and has a 5-year survival rate of less than 5%.5

Small cell lung cancer (SCLC) occurs in approximately 10-20% of all lung cancers (Fig-
ure 1d). This type of lung cancer is an extremely fast-growing aggressive cancer that 
forms in tissue of the lung and is often associated with distant metastases (74-96%).5 
The cancer cells are small and oval-shaped. The prognosis is very poor.5, 7 
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Diagnosis and Staging
Clinical manifestations of lung cancer can differ among patients. Patients can be 
asymptomatic or symptomatic. The asymptomatic lung cancer patients (5-10%) are 
most of the time detected during evaluation of an unrelated medical problem or on 
a chest radiograph at an early stage of cancer development. The symptomatic lung 
cancer patients are often detected at the time the cancer is already at an advanced 
stage. The most occurring symptoms are cough, dyspnea, weight loss, chest pain, he-
moptysis, bone pain and fatigue.4 If a patient has any of these symptoms the clinician 
will ask for a chest X-ray. This X-ray may reveal suspicious areas but from this infor-
mation a clinician is unable to decide if these areas are cancerous or not. CT scans 
can be performed when X-rays did not show an abnormality or sufficient information 
about the size or location of the tumor. Also, for precise location of the tumor an MRI 
scan can be performed, as CT and MRI scans are focused on the anatomical struc-
tures of the tumor, PET (positron emission tomography) scans measures the activity 
and function of the tissues. They can determine if a tumor is growing and determine 
the type of cells within the tumor. Besides performing different scans, confirmation of 
malignant cells is required to make a diagnosis of lung cancer. A pathologist will ex-
amine tumor cells for diagnosis. This can be done by sputum cytology, bronchoscopy 
or needle biopsy through the skin.4, 6  
To select the most effective treatment the physician needs to know the stage of the 
tumor. Staging is very important to find out if the cancer has spread to other organs. 
Lung cancer spreads most often to lymph nodes, brain, bones, liver and adrenal 
glands. To check if the lung cancer cells have spread to other parts of the body differ-
ent techniques can be used: CT scan, bone scan, MRI or PET scan. 
The International Staging System (ISS) is the most common used system using TNM 
(primary Tumor; regional lymph Nodes; distant Metastases) categories in staging lung 
cancer. This system categorizes patients into four stages, I-IV, each having a more 
progressive and poor survival rate.8 

High risk population and screening
The risk of dying from lung cancer is associated with cigarette smoking. Eighty to 
ninety percent of all lung cancer patients are attributable to smoking.4, 9 Such active 
cigarette smoking populations have a higher chance to develop lung cancer. Besides 
high risk of developing lung cancer in these populations, diagnosis occurs most of the 
time at an advanced stage and complicates even more adequate therapy. Therefore 
high risk population screening is of great importance. High risk screening popula-
tions can be obtained by selecting individuals based on risk factors such as cigarette 
smoking (smoking history) and non-smoking factors such as professional exposure to 
asbestos or family history of lung cancer.10 
Studies have been performed on finding a tool that can be used for early detection of 
lung cancer and thereby reducing the lung cancer mortality rate.11-14 All studies have 
failed until the results of the NLST (National Lung Screening Trial) study were pub-
lished recently.15 They showed a lung cancer mortality reduction rate of 20.3% higher 
in high-risk participants who were screened with low-dose spiral CT compared with 
participants who were screened by chest X-ray, all with a follow-up of 7 years. Why 
such a screening tool has not been found much earlier might be due to low sensitivity 
in detecting a curable stage of lung cancer. 



General introduction

13

NELSON trial
The NELSON (Nederlands-Leuvens Longkanker Screenings Onderzoek) trial, -the 
Dutch-Belgian Lung Cancer Screening trial-, is one of the largest randomized con-
trolled lung cancer screening trials. The trial started in 2003 with its purpose to es-
tablish a reduction in lung cancer mortality of at least 25% by lung cancer screening 
using low-dose spiral CT-scan in a high risk population. The second aim was to esti-
mate the cost-effectiveness of lung cancer screening.  
Recruitment has started in 2003 by sending questionnaires (smoking history and 
demographic data) to 548,489 males and females between 50-75 years of age from 
population registries of 7 public health districts in the Netherlands and population 
registries of 14 municipalities around Leuven in Belgium. Participants had to be cur-
rent or former smokers for at least 25 years, smoking at least 15 cigarettes per day or 
smoking at least 30 years, smoking at least 10 cigarettes per day. Participants with a 
moderate or bad self-reported health who were unable to climb 2 flights of stairs and 
weighted over 140 kg were excluded from the trial. Furthermore, people with current 
or past renal or breast cancer or melanoma were also not included. Individuals with a 
diagnosis of lung cancer or treatment related to lung cancer within the last five years 
were excluded and persons who had a chest CT scan less than one year before the 
first NELSON questionnaire was filled in were also excluded from the trial. Eligible 
responders were sent a second questionnaire, a NELSON trial information brochure 
and an informed consent form. From the 548,489 males and females 15,822 par-
ticipants met the selection criteria and signed the informed consent. These partici-
pants were randomized to the screen or control arm. The screen arm received CT 
screening in years 1, 2 and 4. The control arm participants received no screening 
(usual care).16 The CT scans were interpreted by a novel nodule management strategy 
based on volume and volume doubling time (VDT).17 Participants with a positive test 
result were referred to a pulmonologist. If the diagnosis lung cancer was established 
the patient was treated and went off screening. Participants with an indeterminate 
test result underwent a follow-up scan three months later. If a negative test result 
was obtained the second-round CT scan was scheduled for 12 months later. From 
the screen arm (n=7,915) 70 participants have been diagnosed for lung cancer at 
baseline. More than 6,600 serum samples have been collected at baseline. For the 
studies described in this thesis we used serum samples from cases and controls of 
the screen arm at baseline.  

Ongoing studies
Besides the NELSON and NLST studies as described above, more lung cancer screen-
ing trials are ongoing. A small overview of the main large-scale randomized lung 
cancer screening trials is shown in Table 1. The ITALUNG trial started in 2003 and 
included 3.206 participants.18 In 2005 the DANTE trial was started with 2.472 par-
ticipants.19 The DLCST (Danish Lung Cancer Screening Trial) trial started in 2004 and 
is comparable with the NELSON trial, but with a smaller number (4.104) of partici-
pants.20 In 2007 the LUSI trial was started with 4.000 participants in Germany and 
the UKLS (UK lung cancer screening trial) trial has just started (2011-2012) in the 
UK with 4.000 participants in their pilot study.21-22 All these trials have the same main 
objective reducing the lung cancer mortality rate to 20-25%.
All these trials are comparing CT screening vs. chest X-ray or usual care. For CT screen-
ing a low-dose spiral CT scan is most of the time used. Different studies have shown 
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Table 1. Main large-scale randomized controlled lung cancer screening trials.

Trial Country Year started N Comparison Years of 
screening

Age range 
(years)

NLST USA 2002 53,456 CT vs. CXR 3 50-74
ITALUNG Italy 2003 3,206 CT vs. uc* 5 55-69
NELSON Netherlands/Belgium 2004 15,822 CT vs. uc* 5 50-75
DLCST Denmark 2004 4,104 CT vs. uc* 5 50-70
DANTE Italy 2005 2,472 CT vs. clinical review 4 60-74
LUSI Germany 2007 4,000 CT vs. uc* 5 50-69
UKLS UK 2011-2012 4,000 CT vs. uc* Pilot study 50-75

NLST: National Lung Screening Trial; NELSON: Dutch-Belgian lung cancer screening trial; DLCST: Danish 
Lung Cancer Screening Trial; UKLS: UK lung cancer screening trial; *uc: usual care.

that this type of scan is an appropriate tool for identifying lung cancer at an early 
stage.23-27 Some drawbacks of using low-dose spiral CT scan for lung cancer screen-
ing is the high rate of false-positive scan results. This results in unnecessary follow-
up, additional tests or even surgery, which results in high costs and inconvenience for 
the patient. Therefore, the American College of Chest Physicians guideline does not 
recommend CT screening unless it is used as part of a clinical trial.28   

Biomarkers

Research has been and is still performed on finding a biomarker panel in blood to 
detect lung cancer at an early stage. Finding a panel that could distinguish lung can-
cer patients from lung cancer-free patients would be ideal as CT screening has still 
drawbacks as mentioned above. In the search of a biomarker for lung cancer it is 
important to know the biology of lung cancer. Lung cancer cells have defects in the 
pathways which generate normal cell proliferation and homeostasis.29 Lung cancers 
are insensitive to growth-inhibitory signals and show limitless replication, tissue in-
vasion, evasion of apoptosis and metastasis. Transformation of normal cells to ma-
lignant lung cancer cells occurs in multiple steps in time, initiating tumor genesis 
from mutations followed by additional/different mutations and epigenetic alterations 
during clonal expansion where cell growth becomes dominant. These (pre)neoplastic 
changes in the epithelial cells of the bronchial epithelium cause lung cancer. It is 
not known if all these cells are sensitive to malignant transformation or if only a sub-
set of these epithelial cells is sensitive for this transformation.30-31 Identifying these 
molecular changes is important for prevention, early detection and treatment of the 
disease. 
Lung cancer is highly heterogeneous at the clinical, biological, histological and mo-
lecular level. Why this cancer is such a heterogeneous type of cancer is still unclear. 
This heterogeneity and molecular complexity make it difficult to unravel the patho-
genesis of lung cancer. Multiple oncogenes, signaling pathway components, tumor 
suppressor genes and other cellular processes are involved in the pathogenesis of 
lung cancer.
Cancer immunology, also known as cancer immunosurveillance, is associated with 
cancer growth and progression. The hypothesis of immunosurveillance is that the 
immune system will recognize malignant cells as foreign cells and has the aim to 
eliminate these cells. This elimination of the cells occurs in the elimination phase. Tu-
mor cells that survive this elimination phase will move into the equilibrium phase. In 
this phase the tumor cells are kept up or they change to produce new tumors. These 
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tumors will keep on growing in an uncontrolled way and will finally be detected in the 
escape phase.32-33 Therefore, it would be interesting to investigate which antigens or 
antibodies are involved in failing the immunosurveillance for lung cancer. 

Biomarker research
A routine blood test for lung cancer does not exist, yet.  Cancer patients produce au-
toantibodies to certain tumor-associated antigens (TAA’s).  In Table 2 a list of TAAs is 
shown that have been found in lung cancer by different groups until now.34-49 

Table 2.Single TAAS and panels of TAAs recognized by (auto)antibodies that distinguish lung cancer 
patients from controls.

Single TAA / Panel of TAA Method Sensitivity Specificity Reference
α-enolase SERPA + ELISA 28% 98% He et al.
Annexin I SERPA 30% NA Brichory et al.
Annexin II SERPA 33% NA Brichory et al.
LAMR1 Protein microarray NA NA Qiu et al.
Livin ELISA 51% NA Yagihashi et al.
PGP9.5 SERPA 14% NA Brichory et al.
PRKCB1 Phage-display NA NA Leidinger et al.

Prx-1 Western Blot 47%1

34%2
92%1

98%2 Chang et  al.

ROCK1 Phage-display NA NA Leidinger et al.
SOX2 ELISA 33% 97% Maddison et al.
Survivin ELISA NA + 58% NA + NA Rohayem et al.+ Yagihashi et al.

14-3-3 theta, Annexin I, PGP9.5 Western blot +             
protein microarray 55% 95% Pereire-Faca et al.

Annexin I, 14-3-3 theta, LAMR1 Protein microarray 51% 82% Qiu et al.
c-myc, cyclin A, cyclin B1, cyclin 
D1, CDK2, survivin ELISA 81% 97% Rom et al.

HSP70, HSP90, p130, GAGE, 
BMI-1 Phage-display + ELISA 82% 83% Zhong et al.

P53, NY-ESO-1, CAGE, GBU4-5, 
Annexin 1, SOX2 ELISA 39%3

37%4
89%3

90%4 Boyle et al. + Lam et al.

P53, c-myc, HER2, NY-ESO-1, 
CAGE, MUC1, GBU4-5 ELISA 76% 92% Chapman et al.

Paxillin, SEC15L2, RP11-
499F19, XRCC5, MALAT1 Phage-display 91%3

88%4
91%3

83%4 Zhong et al.

ROCK1, PRKCB1, KIAA0376 Phage-display 93% 93% Leidinger et al.
Survivin, Livin ELISA 71% 100% Yagihashi et al.

TAA: Tumor associated antigens; ELISA: Enzyme-Linked Immuno Sorbent Assay; SERPA: Serological Pro-
teome Analysis. 1 Tested against autoantibodies. 2 Tested against antigens. 3 Discovery. 4 Validation.

Although, research has been performed, yet a reliable marker has not been found. 
The limitations of autoantibodies as a marker are low reproducibility and low sensitiv-
ity and specificity of the test. A single autoantibody as marker lacks high sensitivity 
and specificity. For example, Brichory and coworkers showed a sensitivity of 14%, 
30% and 33% for PGP 9.5, annexin I and II, respectively.35-36, 50 Moreover, specific 
TAAs, e.g. p53, are present in different cancers. Therefore, a panel of markers might 
be of interest.34, 38, 40, 43-45, 47-48, 51-58 The group of Robertson developed the EarlyCDT-
Lung test that is currently used to aid early detection of lung cancer and has been ap-
proved by Clinical Laboratory Improvement Amendments (CLIA). This test measures 
autoantibodies against a panel of seven TAAs (p53, NY-ESO-1, CAGE, GBU4-5, SOX2, 
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HuD and MAGE A4). This panel gave a sensitivity of 41% and a specificity of 93%. After 
analyzing the performance of this panel in an independent clinically relevant sample 
set the sensitivity and specificity were 47% and 90%, respectively.51 
Koziol et al. were able to distinguish lung cancer patients from normal individuals with 
a panel of seven TAAs.  A sensitivity of 80% and a specificity of 90% was observed.59 
Unfortunately no validation was performed on these initial findings.

Antibodies as biomarker
Auto-antibody profiling could be a powerful tool for early detection when incorporated 
into a comprehensive screening strategy. In 1955, Robert Baldwin was the first to 
ascertain the presence of an immune response to solid tumors.60 From then an in-
creasing number of reports describe the presence of a humoral immune response 
in the form of autoantibodies that target specific tumor-associated antigens (TAAs) 
in lung cancer and other solid tumors.61-66 This immune response to TAAs destructs 
precancerous lesions at an early stage of carcinogenesis.67-68 Tumors are thought to 
induce the release of many TAAs into the blood. They can be overexpressed, aber-
rantly expressed, mutated, misfolded or aberrantly degraded such that an auto-reac-
tive immune response is induced.61-62 Post-translational modifications (PTM) of TAAs 
could also induce an immune response by generating a neo-epitope or by enhancing 
self-epitope presentation and affinity to the major histocompatibility complex or T-
cell receptor.61-62, 64 Many of the aberrantly expressed proteins (e.g. HER2/neu, P53, 
MAGE, NY-ESO-1, SSX2) that trigger an immune response in cancer patients contrib-
ute to carcinogenesis processes.69-72

Figure 3. Structure of an immunoglobulin (IgG) molecule. Fab: Fragment antigen binding; CDR: comple-
mentarity determining region; JL Joining segment of the light chain;  CL: Constant region of the light chain; 
DH: Diversity segment of the heavy chain; JH: Joining segment of the heavy chain; CH1 Constant region no. 
1 of the heavy chain; CH2:Constant region no. 2 of the heavy chain; CH3:Constant region no. 3 of the heavy 
chain; Fc: Fragment crystallisable.
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Recently Liu et al. showed that the concentration of circulating IgG autoantibodies 
against ABCC3 transporter was significantly higher in female adenocarcinoma pa-
tients than in female controls.73 Therefore, diagnosing cancer based on serum profil-
ing is an attractive concept especially because cancer autoantibodies can be detect-
able up to 5 years before radiological detection.48, 74 Secondly, autoantibodies are 
inherently stable and persist in serum for a relatively long period of time at consider-
ably higher concentrations than TAAs because they are usually not subject to exten-
sive proteolysis and clearance. 
A human immunoglobulin molecule consists of four chains, two identical heavy chains 
and two identical light chains. Every light chain has a variable (VL) and constant (CL) 
part. The heavy chains have three different constant parts (CH1, CH2 and CH3) and 
a variable part (VH) (Figure 3). The first constant part and variable part of the heavy 
chain together with the constant and variable part of the light chain form the antigen 
binding fragment (Fab). The remaining two constant parts of the heavy chain form the 
Fc region. Within the Fab three complementarity determining regions (CDR1, CDR2 
and CDR3) are located between frameworks (Figure 3). These CDRs determine the 
antigen specificity and form a surface complementary to a shape that is part of the 
antigen.75-76 CDRs are the hypervariable regions of the immunoglobulin molecule. The 
enormous diversity in antibodies originates from B-cell development when rearrange-
ments of the V-, D-, and J-genes (Figure 3) occur and by somatic hypermutations dur-
ing affinity maturation.75, 77-79 Rearranged immunoglobulins specific to an antigen can 
have a very specific amino acid sequence, may be present among different patients 
and could be used as a marker for different cancers or autoimmune diseases. 

Autoantibody identification
Various methods for identifying autoantibodies have been described in the literature, 
each of them with its specific advantages and disadvantages (Table 3). All these 
methods have in common that the autoantibodies are identified either by screening 
against a panel of known tumor antigens or to lysates of autologous tumor tissue or 
cancer cell lines. 
Serological analysis of tumor antigens by recombinant cDNA expression cloning 
(SEREX) was first developed in 1995 by Sahin et al.. With this approach the TAAs are 
identified by screening patient sera against a cDNA expression library obtained from 
autologous tumor tissues.71 In 1998 Gure et al. first applied SEREX to lung cancer 
patients.63 
With the phage display method a cDNA phage display library is constructed from 
tumor tissue or cancer cell line. The autoantibodies in patient sera are captured by 
the phage display library by consecutive rounds of immunoprecipitation. The corre-
sponding antigens are identified by sequencing. Leidinger et al. applied this method 
to squamous cell lung carcinoma patients.41 
The Serological Proteome analysis (SERPA) approach was developed by Klade et al. 
in 2001.80 This approach is based on a combination of 2D electrophoresis, western 
blotting and mass spectrometry (MS). Proteins from tumor tissues or cell lines are 
separated by 2D electrophoresis, transferred onto membranes by western blotting 
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Table 3. Overview of different techniques used for identification of autoantibodies. 

Principle Source of candidate 
autoantigens Comments Reference

ELISA or 
Western-blot

Hypothesis-driven immunom-
ics
Candidate-based approach

Known antigens from 
literature 

Availability of the anti-
gens is required

Engvall et al. + van Wee-
men et al.

SEREX Discovery-driven immunomics
cDNA expression library

Autologous tumour tis-
sue or cancer cell lines

Only linear epitopes 
detectable
Bias towards highly ex-
pressed TAA’s antigens; 
low abundance TAA’s 
missed
PTM’s missed
High throughput impos-
sible

Sahin et al. + Gure et al.

Phage 
Display

Discovery-driven immunomics
cDNA phage display library. In-
dividual phage library plaques 
arrayed on nitrocellulose 
membranes

Tumour tissue or cell 
lysate

Each positive phage 
clone must be individu-
ally sequenced
Epitopes of native anti-
gens must be precluded
Post-translational modi-
fications missed
High throughput pos-
sible

Leidinger et al.

SERPA Discovery-driven “top-down” 
immunomics
Combination of 2D electro-
phoresis and Western blotting 
followed by “top-down” im-
munomics

Tumour tissue or cell 
lysate

PTM’s  detectable
No cDNA constructs 
needed
Bias to abundant 
proteins
Difficulty in producing 
reproducible 2D gels
Only linear epitopes 
detectable

Klade et al. + Brichory 
et al.

Protein 
microarray

Discovery-driven “top-down” 
immunomics
Microarrays on different plat-
forms (2D or 3D) 

Known and unknown 
purified or recombinant 
proteins or fractionated 
proteins from  tumour 
or cell lysate

PTM’s detectable
Identification of un-
known TAA’s possible
Modifications of 
epitopes on the array 
surface possible
High throughput 
feasible

Leuking et al. + Joos et al.
Qiu et al. + Madoz-Gurpide 
et al.

MAPPing Discovery-driven “top-down” 
immunomics
Affinity-based enrichment by 
2D immunity chromatography 

Tumour tissue or cell 
lysate

High throughput 
feasible

Caron et al.

ELISA: Enzyme-Linked Immuno Sorbent Assay; SEREX: Serological analysis of tumor antigens by Recom-
binant cDNA Expression cloning; SERPA: Serological Proteome Analysis; MAPPing: Multiple Affinity Protein 
Profiling; TAA: Tumor associated antigens; PTM: Post-translational modification; CDR: Complementarity 
determining regions.

and probed with sera from healthy individuals or patients with cancer. 
The immunoreactive profiles are screened and the cancer associated spots are iden-
tified by mass spectrometry. Brichory and coworkers applied SERPA to lung cancer 
patients.35 
Lueking et al. and Joos et al. were the first who described the development of antigen 
arrays for analyzing autoantibodies.81-82 Purified or recombinant proteins, or fraction-
ated proteins from tumor or cancer cell lysates are spotted onto microarrays and 
incubated with sera. Qiu et al. and Madoz-Gurpide et al. applied this method to lung 
cancer patients.44, 83 
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Caron et al. developed the multiple affinity protein profiling (MAPPing) approach in 
2005. This approach is aimed at purification of putative autoantigens, digestion of 
this purification product followed by nano-LC-MS/MS analysis.84 
Moreover, the group of Zhong combined some approaches. They introduced the ap-
plication of T7 phage display libraries to the identification of circulating antibodies to 
non-small cell lung cancer antigens and in 2005 they implemented a protein microar-
ray to this method.49, 58 
All these methods were able to detect autoantibodies against TAAs which may be 
used as biomarkers for lung cancer. But none of these autoantibodies are applied in 
the clinic yet. Why? First of all, most of the studies performed with these techniques 
were not validated in a new independent sample set and/or not tested in different 
cancers beside lung cancer as many autoantibodies occur in different cancers and 
autoimmune diseases in which cancer is not a characteristic. Furthermore, these 
methods were not able to provide sensitivity and specificity comparable or even high-
er than observed with CT scan. Another problem is that most of these methods are 
time-consuming and are not applicable as high-throughput methods. Also, a disad-
vantage of these methods is that one needs an antigen panel beforehand. Therefore, 
development of a sensitive and specific autoantibody method where the antigens 
itself are not known beforehand would be of clinical interest. 

Proteomics

The aim of lung proteomics is to characterize proteins and/or peptides and to obtain 
a more detailed view of the molecular biology of lung cancer in relation to other can-
cers or diseases. Proteins are responsible for the function of the majority of biology 
systems. Many crucial proteins are primary regulated by posttranslational modifica-
tions. Therefore, full knowledge of the alterations in the expression, modification and 
function of the protein in cancer cells is very important. New proteomic techniques 
are developed to analyze thousands of proteins in cancer cells and to understand 
their structure, function and interactions with other proteins. These techniques can 
be used in lung cancer to obtain new insights in the biology of lung cancer and new 
therapeutic targets or to identify novel biomarkers.
For early detection strategies for cancer, proteomic analysis of different complex mix-
tures can be used such as serum, plasma, sputum or exhaled breath condensate. 
Mass spectrometry (MS) is one of the most frequently - used proteomics tools for bio-
marker discovery, yielding an enormous number of proteins identified in a very short 
time from clinical samples, including all kinds of body fluid. It enables not only iden-
tification of proteins but also quantification of proteins. A mass spectrometer consist 
of three different basic elements, 1) an ion source for converting proteins/peptides 
to gaseous ions, 2) a mass analyzer for separating the ions by mass and 3) a detector 
for detecting the ionized proteins/peptides.  
The proteome is probably orders of magnitude more complex than the genome. Re-
ducing this complexity is a necessity and can be achieved by separation and enrich-
ment of specific proteins from the sample and their subsequent identification. The 
identification can be performed by MS/MS. To reach this, proteins are first digested 
with proteases, e.g. trypsin, which results in a mixture of peptides. In general, mass 
spectrometers are not able to identify amino acid sequences without reducing the 
size of proteins into peptides.  The proteins digested into peptides are analyzed in 
such a way that the peptide ions are separated at a first stage, then each peptide is 
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fragmented in a so-called collision cell. These fragmented peptides are then separat-
ed by a second analyzer and the amino acid sequence of the peptide is determined.  
The advantages of mass spectrometry include high sensitivity, accuracy and speed. 
Dekker at al. showed that immunoglobulin peptides of a spiked antibody were de-
tectable in serum at attomole levels.85 These advantages make MS an attractive 
approach for biomarker discovery. Besides advantages there are also limitations of 
mass spectrometry based biomarker discovery approaches.  The limitations can be 
divided in three categories 1) pre-analytical, 2) analytical and 3) post-analytical. Pre-
analytical limitations such as storage and sample preparations have influence on the 
analyses by causing bias. Analytical limitations include poor reproducibility between 
institutions or even between different runs or limited sensitivity due to the presence 
of abundant proteins. This last limitation occurs when no extra sample preparation 
is applied. In this case the detection limit of most proteins is around 1 μg/ml, while 
known biomarkers are approximately 1,000 times less concentrated in serum. Bio-
informatics/biostatistics is the main post-analytical technique used for analyzing the 
acquired data. Small numbers of samples generate large numbers of spectra which 
increases the risk of over-fitting the data. Therefore, these techniques need more at-
tention. Furthermore, more than half of the proteins/peptides found in a sample can-
not be identified by current computational methods and databases.86 Besides these 
limitations, some research groups were able to discover some proteins in blood for 
lung cancer detection by proteomics with reasonable sensitivity and specificity. Patz 
et al. found a panel of four proteins that could distinguish lung cancer cases from con-
trols with a sensitivity and specificity of 89% and 85%, respectively. In a new indepen-
dent validation set they found a sensitivity of 78% and a specificity of 75%. The group 
of Yildiz observed a panel of seven proteins with sensitivity and specificity of 67% and 
89%, respectively in a sample set of NSCLC patients and controls. The validation of 
the panel gave a sensitivity of 58% and a specificity of 86%.57, 87 Recently, the research 
group of Carbone published an article were they showed new differentially expressed 
proteins in tissue which are of interest as diagnostic biomarkers. These proteins were 
confirmed by multiple reaction monitoring (MRM) mass spectrometry. Furthermore, 
a subset of these proteins was differentially expressed in plasma samples from lung 
cancer patients and matched controls. They observed an AUC of 0.72 for the predic-
tion of the diagnosis of squamous cell carcinoma and for adenocarcinoma an AUC of 
0.59 was observed.88 
As mentioned before, specific amino acid sequences of rearranged immunoglobulins 
specific to an antigen may be used as marker among patients for different cancers 
or autoimmune diseases. Arentz et al. recently published that uniquely mutated V re-
gions peptides as surrogates detected anti-Ro52 autoantibodies in sera from primary 
Sjögren’s syndrome patients by mass spectrometry. They observed high sensitivity 
and specificity, 87.5% and 92.9% respectively, compared to ELISA. This study has not 
been validated yet, but provides a proof-of-concept for targeted mass spectrometry 
using autoantibodies as a marker for different autoimmune diseases and may also 
be used for cancer.89 Although, many studies have found markers by proteomic ap-
proaches which were able to distinguish patients from controls, these markers are 
still not used in the clinic. A reason why they are not applied yet is that most of the 
studies were not validated and if they were validated the sensitivity and specificity 
was not high enough compared to for example CT screening or they were not evalu-
ated parallel to the already applied approaches in the clinic. 
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Aim and outline of the thesis
As CT screening is not recommended unless it is used as part of a clinical trial, bio-
markers can be useful complementary to CT screening. Many studies have been 
performed on different antigens as blood biomarkers for lung cancer using known 
antibodies. We instead hypothesized that disease – related antibodies without a re-
quired prior knowledge of the antigen could function as a biomarker for lung cancer. 
Therefore, the aim of this thesis is to determine if similar or identical CDR sequences 
of antibodies are involved in lung cancer and to develop an immunomics method with 
high sensitivity and specificity. 

To accomplish the aim we started to develop an immunomics method. The study of 
the immune system using genome-wide approaches is called immunomics.90-91 In this 
thesis we extend immunomics with a proteomics approach. In Chapter 2 we describe 
the IgG Fab purification mass spectrometry approach. We discuss the reproducibility 
of the approach and the suitability to determine qualitative and quantitative differ-
ences in IgG Fab peptides of healthy individuals and if the identification of a CDR 
signature as biomarker for (lung) cancer or autoimmune diseases is feasible.
As an immunoglobulin molecule is a very complex molecule it would be ideal to re-
duce the complexity of this molecule for mass spectrometry. In Chapter 3 we describe 
molecular dissection of IgG to reduce the complexity for mass spectrometry. We show 
the benefits of molecular dissection of IgG into Fab-κ, Fab-λ, κ and λ as an addition to 
the Fab approach mentioned in Chapter 2. Furthermore, we discuss the likelihood of 
finding lung cancer-related CDR sequences by the use of this approach.
Finally, we would like to apply our IgG fab purification method on a case-control study. 
In Chapter 4 we discuss the involvement of antibodies in lung cancer. We show a 
panel of immunoglobulin peptides that might be of interest in distinguishing lung 
cancer patients from controls. This study shows the proof-of concept that identical 
sequences of specific antibodies are produced by lung cancer patients detected by 
IgG Fab purification mass spectrometry approach. For this study we used lung cancer 
patients and controls from the NELSON trial.
In Chapter 5 we discuss the new version of the open source software package Peptrix 
for Orbitrap LC-MS data. We compared this software package with three other open 
source and commercially available software packages for Orbitrap LC-MS data.
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Abstract 

In cancer and autoimmune diseases, immunoglobulins with a specific molecular sig-
nature which could potentially be used as diagnostic or prognostic markers are re-
leased into body fluids. An immunomics approach based on this phenomenon relies 
on the ability to identify the specific amino acid sequences of the complementarity-
determining regions (CDR) of these immunoglobulins, which in turn depends on the 
level of accuracy, resolution and sensitivity that can be achieved by advanced mass 
spectrometry. Reproducible isolation and sequencing of antibody fragments (e.g. 
Fab) by high-resolution mass spectrometry (MS) from seven healthy donors revealed 
43,217 MS signals: 225 could be associated with CDR1 peptides, 513 with CDR2 
peptides, and 19 with CDR3 peptides. Seventeen percent of the 43,217 MS signals 
did not overlap between the seven donors. The Fab isolation method used is repro-
ducible and fast, with a high yield.  It provides only one Fab sample fraction for subse-
quent characterization by high-resolution MS. In 17% and 4% of these seven healthy 
donors qualitative (presence/absence) and quantitative (intensity) differences in Fab 
fragments could be demonstrated, respectively. From these results we conclude that 
the identification of a CDR signature as biomarker for autoimmune diseases and can-
cer without prior knowledge of the antigen is feasible. 
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Introduction 

Most immunoglobulin molecules are composed of four polypeptide chains: two iden-
tical heavy chains and two identical light chains. A light chain has one variable (VL) 
and one constant (CL) domain. These two domains pair with the variable (VH) and first 
constant (CH1) domain of the heavy chain and are referred to as the antigen-binding 
fragment (Fab). The remaining two domains of the heavy chain (CH2 and CH3) form the 
Fc region. The amino acid sequence variation in the variable domains (both VL and VH) 
is mainly confined to three small hypervariable loops, which determine antigen speci-
ficity by forming a surface complementary to the antigen, and are more commonly 
termed complementarity-determining regions, or CDRs (CDR1, CDR2, and CDR3). 
The enormous antibody diversity originates from B-cell development, during which 
variable gene segments are joined and a large combinatorial diversity is created. This 
diversity is enhanced by insertions and deletions between the gene segments during 
rearrangement (junctional diversity), and also by somatic hypermutations in the rear-
ranged immunoglobulin coding sequence.1-3 Rearranged immunoglobulins specific to 
an antigen will thus have very specific sequences which could be used as a molecular 
signature. Antibody sequences from a subject are most commonly characterized on 
the level of cDNA. This cDNA derived from lymphocytes is characterized by using DNA 
techniques. However, there are few published articles of the characterization of anti-
body sequences at protein level, such as techniques for serum or CSF.1, 4-8 
It has been demonstrated that cancer growth and progression are associated with 
cancer immunosurveillance and inflammation.9-12 Not only in autoimmune diseases 
like multiple sclerosis8 but also in cancer13-16, large numbers of immunoglobulins are 
released into blood.2, 5, 13-17 The molecular signatures of such immunoglobulins could 
potentially be used as diagnostic or prognostic markers. Screening for disease-related 
immune responses is generally performed by testing patients’ sera against antigens 
or antigen libraries. Although successful, techniques such as serological expression 
cloning (SEREX) are aimed at detecting the targeted antigens, rather than the reac-
tive immunoglobulins.18-19 
An alternative strategy is to directly compare the amino acid sequences of immuno-
globulin molecules between cases and controls, using high-resolution Orbitrap mass 
spectrometry. The approach depends primarily on the ability to reveal differences 
between healthy controls in the amino acid sequence of the variable CDRs, which in 
turn depends on the level of accuracy, resolution and sensitivity that can be achieved 
by high-resolution mass spectrometry and bioinformatics tools. The differences can 
be expressed qualitatively, in terms of the presence or absence of specific identified 
sequenced peptides (CDRs), and quantitatively, by comparing the normalized peak 
intensities of peptide masses of interest. The next step would be the identification of 
a single molecular signature or a set of such signatures from a case control training 
set, followed by independent validation. 
Our study had two aims. The first was to investigate whether our IgG Fab isolation ap-
proach could reproducibly generate immunoglobulin samples for mass spectrometry 
analysis. The second was to ascertain whether this is a suitable approach for deter-
mining qualitative and quantitative differences in IgG Fab peptides, especially in the 
mutated CDRs of healthy individuals, obtained by means of high-resolution MS.
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Materials and Methods 

Purification of IgG Fab 
Seven healthy donor serum samples were obtained from the Sanquin Blood Bank 
Rotterdam, the Netherlands. In accordance with the general guidelines of the Blood 
Bank, the donors had given written consent for the serum to be used for scientific 
research. The donors (five males and two females, median age 60 years, range 50-
66 years) were not on any medication. Their serum IgG concentrations were analyzed 
turbidimetrically on the Modular P800 (Roche, Almere, Netherlands) and were found 
to be within the normal range (7.0-16.0 g/L).
Nine mL venous blood (without additives) from each donor was allowed to clot for 
one hour at room temperature, centrifuged for 10 min at 2880 g, stored at 4°C up 
to 2 hours, distributed into 100 μL aliquots and stored at -80°C. Serum IgG fractions 
were purified using the Melon Gel IgG purification kit (Pierce, Rockford, IL), according 
to the manufacturer’s instructions.20 The concentration of the purified IgG protein 
was determined by means of the mass extinction coefficient of 1.37 (mg/mL) cm-1 
at 280 nm on a NanoDrop Spectrophotometer (ND-1000, Nanodrop Technologies, 
Wilmington, DE).  
After purification, 400 µL IgG was digested overnight by papain immobilized on 
agarose beads according to the manufacturers instructions (Figure 1) (http://www.
piercenet.com/ files/0107as4.pdf). After digestion, 2700 µL of the papain digested 
and purified IgG was concentrated approximately ten times and exchanged in 0.1 M 
sodium phosphate buffer (Coupling Buffer MicroLink Protein kit, Pierce) (http://www.
piercenet.com/files/1509as4.pdf) by an Amicon Ultra 3K centrifugal filter device (Mil-
lipore, Amsterdam, Netherlands).

Figure 1. Flow-chart illustrating the different steps in Fab purification and data analysis. The upper part 
of the chart describes the purification of Fab (including in-solution (papain) digestion) from serum and 
subsequent in-gel (trypsin) enzymatic digestion of Fab. The lower part describes the mass spectrometry 
and data analysis used for identification, database searching, and de novo sequencing.

To separate Fab from Fc fragments and undigested IgG, protein affinity chromato-
graphy was performed using the MicroLink Protein Coupling kit (Pierce) (Figure 1). 
Briefly, Fc fragment specific ImmunoPure anti-human IgG, (250 µL) was immobilized 
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on MicroLink Protein support of the AminoLink Plus coupling gel spin column at 4°C 
overnight with gentle end-over-end mixing. The papain digested purified IgG (200 µL) 
was loaded onto this column and incubated at 4°C overnight with gentle end-over-
end mixing. Finally, the flow-through containing the Fab was collected and analyzed 
by SDS-PAGE electrophoresis. 
After separation by SDS-PAGE under reducing conditions, the proteins were fixed for 
10 min in 50% (v/v) methanol and 10% (v/v) acetic acid. The protein bands were vi-
sualized with the Colloidal Blue staining kit (Invitrogen, Breda, Netherlands) and gels 
were destained for a minimum of 4 hours in deionized water. 

Sample preparation for mass spectrometry
The intensity of the protein bands on the stained SDS-PAGE gel was determined 
by scanning on a Molecular Imager GS-800 Calibrated densitometer (Bio-Rad, 
Veenendaal, Netherlands) with Quantity One® 1-D analysis software (version 4.6.5; 
Bio-Rad). 
After imaging and analysis of the SDS-PAGE gels, the selected protein bands were 
manually excised from the gels. The gel plugs were washed with 100 µL ultrapure 
water, destained twice with 200 µL 100 mM NH2HCO3 in 70% (v/v) acetonitrile/30% 
H2O and washed with 200 µL ultrapure water. Liquid was removed and the gel plugs 
were dried for 35 min in a vacuum centrifuge (SPD 1010 Speedvac System; Thermo 
Fisher Scientific Inc., Waltham, MA) until they were completely dry. Digestion of the 
corresponding gel plugs were performed in 20 µL or up to 40 µL of a solution of 0.1 
mg/mL trypsin (Promega, Leiden, Netherlands) in 50 mM Tris-HCl (pH 8.8) to fully 
submerge the gel plugs. The digestion was performed overnight at room temperature 
(Figure 1). Subsequently, the tryptic peptides were extracted from the gel by add-
ing three times 50 µL 0.5% (v/v) formic acid in 30% (v/v) acetonitrile/H2O, mixed 
by means of an ultrasonic bath (Branson 2510, Danbury, CT).  Eventually the three 
extraction fluids were pooled. The samples were then evaporated for approximately 2 
hours in a vacuum centrifuge until they were completely dry. For the nano-LC-MS/MS 
analysis, the dried peptides were dissolved in 20 µL of an aqueous solution of 0.1 % 
(v/v) formic acid and 2% (v/v) acetonitrile, using an ultrasonic bath. 

NanoLC Orbitrap MS analyses
LCMS measurements were carried out by an Ultimate 3000 nano LC system (Dionex, 
Amsterdam, Netherlands) online coupled to a hybrid linear ion trap/Orbitrap MS (LTQ 
Orbitrap XL; Thermo Fisher Scientific, Bremen, Germany). Five µL of the digested Fab 
were loaded onto a C18 trap column (PepMap C18, 300µm ID × 5mm, 5 µm particle 
size, 100 Å pore size; Dionex) and desalted for  10 min at a flow rate of 20 µL/min 
0.1% TFA (Biosolve, Valkenswaard, Netherlands). Next, the trap column was switched 
online to an analytic column (PepMap C18, 75µm ID × 150mm, 3 µm particle size 
and 100 Å pore size; Dionex). Peptides were eluted using a 180 min gradient with 
the following binary gradient: 0%-25% solvent B in 120 min and 25%-50% solvent B 
in the next 60 min, where solvent A consists of 2% acetonitrile and 0.1% formic acid 
in water and solvent B consists of 80% acetonitrile and 0.1% formic acid in water (all 
solvents used purchased from Biosolve). Column flow rate was set at 300 nL/min. 
The analytic column was then washed and equilibrated. 
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To identify the Fab fragments of the seven donors we used a CAD fragmentation. 
High resolution full scan MS was obtained from the Orbitrap (resolution 30,000; AGC 
1,000,000), MS/MS spectra were obtained by CAD fragmentation, and detection was 
conducted. MS/MS was performed on the top five masses in the full scan spectra. 
Dynamic exclusion was used, with a repeat count of one; exclusion duration was set 
at 3 min and exclusion width at +/- 5 ppm. 

Data analysis 
MS/MS spectra were extracted from raw data files and converted into mgf files using 
extract msn (part of XCalibur version 2.0.7, Thermo Fisher Scientific Inc.). Mascot (ver-
sion 2.2.06; Matrix Science Inc., London, UK) was used to perform database searches 
against the human subset NCBInr database (version nrHuman_database_20090311; 
Homo sapiens species restriction; 222,071 sequences) of the extracted MS/MS data. 
The following settings were used for the database search: a maximum of two miss 
cleavages and methionine as a variable modification of oxidation (15.995); trypsin 
as enzyme; a permissible peptide mass tolerance of 10 ppm; a permissible fragment 
mass tolerance of 0.5 Da; an ion score of 25 as a cut-off. A decoy database search 
was conducted to determine the false discovery rate for the identity threshold ranging 
from 4.30% - 5.25% for the three replicates and 1.98% - 3.83% for the seven donor 
samples. 
Progenesis software (Version 2.5; Nonlineair Dynamics Ltd, New Castle, UK) was used 
to calculate the reproducibility and variation of Fab on the basis of peak intensity 
(peak area) in the donor samples. In addition, the technical reproducibility of three 
replicate measurements was determined and calculated. The Progenesis software 
processes the raw data files in two steps: alignment, followed by normalization.21-22 
The data file that yielded most features (Donor 4) was used as reference, towards 
that the retention time of all other measurements were aligned and intensities (area 
under the peak) normalized. Correction for experimental variations was done by cal-
culating the robust distribution of all ratios (log(ratio)). The peaks (features) are con-
verted into an intensity list by using the intensities from the raw data files without any 
converting, except for peaks not observed in the raw data for that specific sample. If 
such peaks occur Progenesis generates a zero.
The data was filtered using the following criteria: peaks (features) with charge state 
two to seven and >2 isotopes. In addition, the last 10 minutes were filtered out of the 
MS run. A minimal threshold of at least 3 isotope peaks per peptide was set.
A matrix of all donor samples was generated, consisting of all masses with corre-
sponding peak intensities (area under the peak) of every donor. 
The Mascot search result files from all seven donors were used for the identification 
of CDR sequences. Regardless of the protein identification, the BLAST algorithm was 
then used to align all unique peptides from all seven donors identified by Mascot 
to databases containing human V, J or C-region germline sequences derived from 
the IMGT database (IMGT®, the international ImMunoGeneTics information system® 
http://www.imgt.org ).23 Peptides with a sufficient match (>70% sequence alignment) 
to the V-region database were assigned to a position on the immunoglobulin molecule 
of the specific germline sequence to which the peptide had been aligned according to 
the IMGT numbering system. This allows for consistent residue numbers in molecules 
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with varying CDR lengths. For CDR3 identification, high score (>70% sequence align-
ment) V-region and J-region sequences with high matching BLAST scores to V-region 
and J-region germline sequences were traced.
De novo sequencing was performed on the raw data files using the Peaks Studio 5.1 
software package (Bioinformatics Solutions Inc., Waterloo, ON, Canada). In combina-
tion with a blast and IMGT alignment search against the Human J-region database 
(IMGT) the CDR3 peptide sequence was found as described above. The de novo score 
was assigned on the basis of the reliability of the amino acid (b- and y-ions; ALC%). 

Statistical analysis
Coefficient of variance (CV%) was used to measure the reproducibility of the three 
repetitive injections of an identical Fab sample (technical variation). It was defined as 
the ratio of the standard deviation to the mean. 
The seven healthy donors were randomly divided into two groups: group 1 consisted 
of four donors and group 2 of three. The variation in peak intensities between these 
groups was determined by calculating the p-value (p<0.05) using the ANOVA option 
(equivalent to two sample t-test) of the Progenesis software. Ten different composi-
tions of the two groups were created randomly before analysis. There was no identical 
grouping. A matrix was generated for each of these ten compositions; each matrix 
comprised all masses with corresponding peak intensities of every donor. From each 
matrix, the difference in peak intensities (based on assigned p-value; p>0.05) be-
tween group 1 and 2 was determined.
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Results 

Fab isolation
Densitometry showed a recovery rate of ≥95% for IgG and ≥60% for Fab. The lower 
yield of Fab is mainly attributable to incomplete papain cleavage. The densitometry 
intensity of 5 purified Fabs had a coefficient of variation (CV) of 7.5% (n=5). 

Technical reproducibility of Orbitrap FT mass spectrometry
To determine the variability between MS measurements, Fab isolated from one donor 
was measured three times on an LTQ Orbitrap XL. The Progenesis software revealed 
a total of 23,654 MS signals (average 23,645; SD 0.58) in the three injections. When 
the CV of the intensities of all these peaks observed in the three injections was calcu-
lated, 82% of all MS signals were found to have a CV of <20% (Table 1).

Range of CV% Number of masses Cumulative %
>0-10% 13206 55.83%
>10-20% 6242 82.22%
>20-30% 2205 91.54%
>30-40% 917 95.42%
>40-50% 439 97.27%
>50-60% 208 98.15%
>60-70% 152 98.80%
>70-80% 69 99.09%
>80-90% 63 99.35%
More 153 100.00%
Total 23654 

Technical reproducibility of Fab purification injected 3 times on the LTQ Orbitrap XL. 82% of all the MS 
signals had a CV < 20%.

A database search against the NCBI database revealed that the 23,654 MS signals 
contained 1,515 peptide masses obtained from all three injections. These identified 
peptides included 1,458 different Ig peptide sequences with a range of 1,072-1104 
per individual sample. From these 1,458 peptide sequences 768 sequences (53%) 
occurred in all three injections. Of the remaining sequences, 19% occurred in two 
injections, and 29% in one injection.

Variation in individual IgG molecules
All MS signals (43,217) obtained by the Orbitrap method in the seven donor samples 
were used to generate a Table (Table 2), which shows that 83% of the MS signals oc-
curred in all seven donor samples. Figure 2a shows the distribution of all observed 
peaks of the seven healthy donors and Figure 2b shows the distribution of the data-
base-dependent identified peaks of the seven healthy donors. 

Table 1. Technical reproducibility of Orbitrap FT mass spectrometry.
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mass 
occur-
rence

Fab 1 Fab 2 Fab 3 Fab 4 Fab 5 Fab 6 Fab 7 Total % Avg SD

7x 35726 35726 35726 35726 35726 35726 35726 35726 82.7 35726.00 0.00
6x 3995 3985 3879 3099 3958 3864 2006 4131 9.6 3540.86 746.92
5x 1189 1212 1067 685 1134 1135 758 1436 3.3 1025.71 213.89
4x 479 490 390 262 484 481 398 746 1.7 426.29 83.93
3x 246 257 193 114 245 262 249 522 1.2 223.71 53.45
2x 107 106 70 63 122 157 169 397 0.9 113.43 39.97
1x 17 27 3 31 21 35 125 259 0.6 37.00 40.20
Total 41759 41803 41328 39980 41690 41660 39431 43217 100.0 41093.00 973.12 

Variation between the 7 healthy donors in the number of Fab derived MS signals obtained by Progenesis.
Avg: Average MS signals; SD: Standard deviation.

When Groups 1 and 2 were compared in terms of the mass intensity of each pep-
tide mass (10 different randomizations), a very high resemblance (96%) was found,                           
though in the remaining 4% there was a significant difference (p<0.05), ranging 
from 1%-8%. These results show that the observed immunoglobulin repertoire of 
these 7 healthy donors is very similar

. 

 
Figure 2. Distribution of MS signals and assigned peptides of the sera of seven healthy donors.  The dis-
tribution of A) the total MS signals and B) the peptides assigned by the NCBInr database observed by the 
Progenesis software. On the x-axis bins of m/z are shown and on the y-axis the number of MS signals/
assigned peptides are shown, respectively.

Table 2. Variation between 7 healthy donors in IgG Fab derived peptides.

A

B
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Identification of CDRs
NanoLC Orbitrap MS measurements of the digested Fab of the seven donor serum 
samples yielded a combined compound list of 43,217 MS signals (average 41,093; 
SD 973.12) found by Progenesis. According to the IMGT database, 1755 peptide se-
quences from these MS signals corresponded to the V region, 109 sequences to the 
J region and 101 sequences to the C region (Figure 3). 

Figure 3. Overview of all immunoglobulin peptides sequenced. The start positions of the sequences are 
shown on the horizontal axis in bins of 10 amino acids. The blue bar indicates the number of sequences 
in each bin (vertical axis). The drawing below the graph shows the position of the variable and constant 
parts of the immunoglobulin molecule. CDRs are shown in yellow in the antigen-binding fragment (Fab) of 
the heavy and light chains. 

The smaller number of C region sequences found is in line with the Fab recovery 
results shown earlier. According to the IMGT database, 225 peptide sequences cor-
responded to CDR1, 513 to CDR2 and 19 to CDR3. In Table 3 we show eight ex-
amples of sequences with mutations according to IMGT for each CDR. Many peptide 
sequences have been assigned to a CDR3 that includes parts of the V region as well 
as the J region. Two CDR3 peptide sequences (DSSGNHVVFGGGTK; DSSGNHLVFG-
GGTK) including a V region as well as a J region part are shown in Table 3. 
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Examples of CDR1, 2, and 3 with germline matches and mutations are shown. Gray bars show the 
position of the CDRs. The mutated amino acids are shown in red and the amino acids with reliable MS2 
spectra are underlined.

Figure 4 shows an example of the spectra of a CDR sequence m/z observed in all 
donor samples. The retention times generated by the Progenesis software were used 
from each individual sample. 
To check if the CDR sequences assigned by Mascot with a score above 25 can also be 
confirmed by PEAKS, we performed a Mascot search and used PEAKS to de novo se-
quence the raw data files. We found a 73% overlap between the sequences assigned 
by PEAKS and Mascot-assigned sequences. In this calculation we did not take into ac-
count changes in the assignment of isoleucine and leucine (isobaric amino acids). 

Table 3. Overview of identified CDR sequences. 
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Figure 4. Spectra of an identified CDR3 sequence in various serum samples. The mass spectra of the 
CDR3 sequence DSSGNHVVFGGGTK are shown with m/z 681.3259 (boxes). This peptide was observed 
in all sera of the healthy donors.

De novo sequencing of unmatched peptides
Figure 5a shows an example of de novo sequencing data of an unidentified mass 
spectrum from one Fab from one of the seven donors (m/z 898.910, z=2). We 
screened de novo sequences generated by the PEAKS software package by aligning 
them against a database containing J-regions (IMGT). The example (ALC% 53%) in Fig-
ure 5a shows homology to the IGHJ3*01 germline sequence (Figure 5b), and extends 
into the CDR3. This makes it possible to perform de novo sequencing, and to identify 
the result as a CDR3 based on homology to the conserved region located C-terminal 
and N-terminal to the highly variable section of the CDR with a 63% identity score. 
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Figure 5. De novo sequencing of a non-assigned peptide by the NCBInr database. An example of de 
novo sequencing of a non-assigned peptide with an m/z of 898.910 generated by the PEAKS Studio 
5.1 software package. A) The calculated sequences with a confidence score (ALC%) of this peptide are 
shown; b (blue) and y (red) ions of the sequence with the highest confidence are listed; MS/MS line mass 
spectrum showing peaks with corresponding masses. B and y ions resulting in an amino acid sequence 
are shown in the lowest panel. B) Alignment of the de novo sequenced peptide with the germline J region 
sequence (IGHJ3*01). The numbers indicated correspond for the de novo sequence to the amino acid 
position within the total de novo sequence. For the germline sequence the numbers indicate the position 
of the de novo sequence aligned to the J region germline. The middle line is the overlap between the two 
sequences. 

A

B
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Discussion 

The immunoglobulin repertoire (immunomics) present in patients’ sera can serve as 
a molecular signature in cancer and autoimmune disorders. The utility of IgG Fab as 
a marker for cancer and autoimmune diseases depends on two factors: 1) the re-
producibility of IgG Fab purification and identification, and 2) the ability to determine 
qualitative and quantitative differences in IgG Fab between healthy donor serum 
samples by high-resolution MS. 
Using our approach, we were able to demonstrate that 17% of the 43,217 MS signals 
did not overlap between the seven donor samples and that 4% of the MS signals dif-
fered significantly in peak intensity. In addition, we found that the method used for 
Fab purification is fast, reproducible and leads to high recovery rates and eventually 
provides only one sample for subsequent sequencing by high-resolution MS. 
A large number of masses measured in the Fab samples did not result in a peptide 
identification after a database (NCBInr) analysis by Mascot. This does not reflect a 
poor sample quality, but rather the poor coverage in the database of mutated and 
rearranged immunoglobulins. Only a small fraction of the possible sequences is rep-
resented in the (NCBInr) database, and hence the remaining peptide masses will not 
be identified by such a database approach. In addition, there is need for high quality 
MS2 spectra in order to be able to identify these peptide masses by de novo sequenc-
ing. Only in some subjects it was possible to identify a peptide that was present in the 
database, yet the corresponding parent mass with high mass accuracy actually was 
present in all samples. Hence, the absence of a signal can be explained by either real 
absence in a sample or presence below the detection threshold of the instrument. 
At higher concentrations, the signal will initially show up as a mass at MS1 level, but 
when the concentration is high enough it can also be triggered for an MS2 spectrum. 
When a peptide is present in the database, it can be identified by search engine 
programs like Mascot. Otherwise, de novo sequencing can be used to elucidate an 
entire or partial sequence for a particular mass, potentially assisted by a database 
of homologous sequences during the de novo process and the high mass accuracy 
of the Orbitrap mass spectrometer. Using peptides identified by Mascot via NCBInr 
database, 59% had an overlap with the results revealed by PEAKS (Mascot score 
>25). Peptides sequences obtained by de novo sequencing are difficult to assign to 
a CDR3, especially CDR3 of the heavy chain, as it is a highly diverse region of the im-
munoglobulin molecule. Due to the combination of V, D, and J genes, and especially 
the insertions, deletions and frameshifts around the D gene generated by J diversity, 
it is difficult to de novo sequence high quality CDR3 sequences. We should keep in 
mind that de novo sequencing technique is not yet totally reliable because the start 
and end amino acids are still difficult to de novo sequence. De novo sequencing will 
become increasingly successful when better and more MS2 spectra are available for 
the peptide of interest. Improvement can be achieved by optimizing the MS method 
by acquiring MS2 spectra with high resolution and high mass accuracy. Furthermore, 
utilizing developments in column chromatography that allow more loading without 
reducing the resolution of the separation will result in better quality and more MS2 
spectra. In this way, signals of better quality can be acquired by the mass spectrom-
eter. 
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In our donors, several peptides derived from CDRs were found with mutations from 
their germline sequence. We assessed the likelihood of finding the same mutated 
CDR peptide in different donors. For a CDR1 or CDR2 peptide with a length of 15 resi-
dues, the number of possible sequences after 1, 2, 3, and 4 mutations on a random 
position is about 102, 105, 107 and 109 respectively. As human blood contains approx-
imately 1012 B-cells, and given that many B-cells belong to a clonal subpopulation, the 
maximum number of different antibodies that can be found in a subject must be less 
than 1012. Typical examples of CDR1 and CDR2 sequences show up to 4 mutations; 
these numbers suggest there is a reasonable probability that such sequences are 
shared by individuals based on statistics alone. 
Due to the combination of V, D, and J genes, the CDR3 of the heavy chain is much 
more random. In particular, the junctional diversity that results in insertions, dele-
tions, and frameshifts around the D gene yields an almost random amino acid se-
quence within the CDR3.1 The combinatorial diversity is about 106: a random sec-
tion of 6 amino acids adds enough diversity to surpass the number of B-cells in a 
human, and is well within the range of CDR3 lengths.24 Somatic mutations add even 
more diversity, making it statistically unlikely that a CDR3 peptide is found in multiple 
subjects by chance alone. Such sharing has nevertheless been described in the lit-
erature, which suggests that antibody sequences do not arise totally at random, but 
rather emerge from a convergent process.25 The large overlap (83%) in MS signals 
observed from the seven healthy donors supports the idea that mutated CDRs are 
shared between individuals more than would be expected by chance. In our small 
panel of masses that contained a confirmed highly variable CDR3 of the heavy chain 
(e.g. EGWISALNGWGQGTLVTVSSASTK), we only observed this peptide in the donor in 
which it was identified, even when looking at the parent mass (MS1).  However, we 
observed identical identified mutated CDR sequences with a limited number of mu-
tations between the seven donors, which suggests that a nonrandom development 
of antibodies to certain CDRs occurs, rather than a random selection of all possible 
CDRs. The requirement that antibodies bind a particular antigen structure will severe-
ly reduce the sequence diversity. This is illustrated by the phenomenon of repertoire 
bias, which describes the preferential use of particular germline V genes in response 
to particular antigens. Other studies have also found similar CDR3 sequences in hu-
man subjects, and an extensive DNA sequencing project performed by Weinstein et 
al. including nucleotide sequencing of the VDJ repertoire of zebrafish confirmed that 
CDRs are not generated fully at random.25-26 A study in T-cell TCRβ sequences in mice 
revealed similarity between different individual animals.27 These data indicate that 
the detection and analysis of antibody-derived peptides may be a viable prognostic 
or diagnostic tool. 
The variation between individual IgG molecules in donor sera can be expressed both 
by the mass identity and concentration (peak intensity) of the peptide masses de-
tected. Based on the fact that we have been able to demonstrate 17% differences in 
the 43,217 MS signals between the seven healthy donor samples, and that 4% of the 
MS signals differed significantly in peak intensity, we may conclude that our approach 
is suitable for identifying differences in IgG variable regions between healthy controls 
and that despite the variation observed among normal controls, this approach may 
also be used to detect specific differences between cancer or autoimmune case and 
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control groups. Furthermore, it may be possible to improve the method by molecular 
dissection of Fab into CDR parts and column chromatography with the highest resolu-
tion characteristics, in order to reduce the complexity of the IgG molecule. As tryptic 
digestion has its limitations, the use of other cleavage enzymes could be an option 
to obtain heavy chain CDR3 sequences. For example, at the beginning of most CDR3 
sequences is a lysine or arginine, the cleavage sites for trypsin, which makes it dif-
ficult to identify the CDR3 regions with part of the flanking sequences. These flanking 
regions facilitate the sequencing of the CDR regions. Alternative enzymes could help 
in this respect.
Obermeier et al. used primary antibody structures determined by mass spectrom-
etry in multiple sclerosis B cell samples. They compared the immunoglobulin tran-
scriptomes of B cells with the corresponding immunoglobulin proteomes in CSF of 
four patients with multiple sclerosis, and created an immunoglobulin subject-specific 
database from the B-cell cDNA transcripts from the CSF of these four patients. They 
analyzed the IgG proteome by purifying IgG, which was then separated by isoelectric 
focusing (IEF), subsequently followed by mass spectrometry.5 They were able to iden-
tify 13-46 peptides related to VDJ, somatic hypermutations or CDR3 regions in the 
four patients. The positions of these CDRs were established according to the results 
of the study of Kabat et al..28 The authors concluded that the immunoglobulin tran-
scriptome of the four patients correlated well with the immunoglobulin proteome. 
Unlike Obermeier et al., we used the whole IgG Fab purified method, and in contrast 
with IEF technology, our approach provides only one Fab sample fraction for analysis, 
opening ways to compare larger numbers of samples. By choosing the positions of 
the CDRs in the different IgG variable region proteins according to IMGT, we were able 
to sequence 757 different CDRs from the purified Fab. The large difference in the 
number of different CDRs detected is attributable to the use of different databases, 
different analytical methods (mass spectrometer) and the fact that Obermeier et al. 
used CSF instead of serum. 
Three of the other approaches to identify new antibodies as biomarkers for cancer or 
autoimmune diseases are 1) serological expression cloning (SEREX), 2) a combina-
tion of the phage display method and serological spot assays, and 3) a combination 
of autoantibody purification and protein microarray.15, 18-19, 29-32 All three approaches 
are primarily based on the identification of new disease-specific antigens (present 
or absent), such as the cancer antigens ROCK1, KIAA1344, SOX2, SART1, MUPP1 
and Ubiquilin 1. These newly identified antigens are subsequently used to identify 
disease-related autoantibodies. 
Our goal is to search directly for disease-related antibodies without a required prior 
knowledge of the antigen.  Our technique detects by MS if changes occur at primary 
amino acid structure level, we can detect them by mass spectrometry. This approach 
will make it possible to select and identify specific antibodies related to an autoim-
mune disease or cancer. Using serological assays, one is more restricted to searching 
for one specific antibody for an antigen.
In autoimmune diseases and cancer, disease-related antibodies are produced by plas-
ma cells and circulate in the blood at relatively high concentrations, which facilitates 
their detection. In contrast, antigens (including auto antigens) and other proteins and 
peptides secreted by tumors occur in much lower concentrations in the blood (e.g. 
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PSA <6.5 µg/L; CA125 <35 kU/L) due to a lower rate of production, degradation and 
specific clearance.2, 33 Therefore, antibodies have much more potential as prognostic 
or diagnostic markers than antigens. 
In conclusion, the IgG Fab isolation approach used was not only fast and reproducible 
but also provided a high yield and produced only one Fab sample fraction for subse-
quent sequencing by high-resolution Orbitrap MS. Because it identifies qualitative 
and quantitative differences in Fabs between healthy donors, this method may have 
an important impact on the prognostic and diagnostic marker discovery of cancer and 
autoimmune diseases by identifying CDRs of disease-specific antibody fragments 
without a required prior knowledge of the antigen.
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Abstract

Sera from lung cancer patients contain antibodies against tumor associated anti-
gens. Specific amino acid sequences of the complementarity determining regions 
(CDRs) in the antigen-binding fragment (Fab) of these antibodies have potential as 
lung cancer biomarkers. Detection and identification of CDRs by mass spectrometry 
can significantly be improved by reduction of the complexity of the immunoglobulin 
molecule. Our aim was to molecular dissect IgG into kappa and lambda fragments 
to reduce the complexity and thereby identify substantially more CDRs than by just 
total Fab isolation. We purified Fab, Fab-κ, Fab-λ, κ and λ light chains from serum from 
10 stage I lung adenocarcinoma patients and 10 matched controls from current and 
former smokers. After purification, the immunoglobulin fragments were enzymatically 
digested and measured by high-resolution mass spectrometry. Finally, we compared 
the number of CDRs identified in these immunoglobulin fragments with that in the 
Fab fragments. Twice as many CDRs were identified when Fab-κ, Fab-λ, κ and λ (3330) 
were combined than in the Fab fraction (1663) alone. The number of CDRs and κ:λ 
ratio was statistically similar in both cases and controls. Molecular dissection of IgG 
identifies significantly more CDRs, which increases the likelihood of finding lung can-
cer-related CDR sequences.
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Introduction

Only 15-20% of all lung cancers are detected at an early and potential curable stage 
today (American Cancer Society, Cancer Facts & Figures 2010 http://www.cancer.
org/acs/groups/content/@nho/documents/document/acspc-024113.pdf). An early 
detection and treatment of lung cancer can reduce the high lung cancer mortality 
rate. This is currently investigated in several randomized lung cancer CT screening 
trials 1-4. At the moment, there is no early detection biomarker for lung cancer avail-
able. Biomarkers could be used to stratify people according to their risk to develop 
lung cancer. The different strata could, dependent on their cancer risk, be invited for 
baseline CT screening and for subsequent screening rounds. A biomarker for early 
detection of lung cancer could be used as a complement to CT screening in order to 
reduce the rate of false-positive tests results and the number of unnecessary biop-
sies, surgical interventions or serial CT scans 5.
There is increasing evidence that during tumor development a humoral immune re-
sponse evolves to various tumor types, including lung cancer 6-8. Immunoglobulins 
against different tumor associated antigens (TAAs) in lung cancer have been identi-
fied by different strategies 9-14 up to 5 years before the tumor was detectable by a 
CT scan 15-16. These strategies use immunoglobulins to identify the targeted tumor 
antigens as potential biomarkers, rather than using the reactive immunoglobulins 
as potential biomarkers. In contrast to antigens, immunoglobulins are excreted and 
circulate in the blood at relatively high levels, which support their detection.
We previously described a new approach in which tryptic fragments of the immuno-
globulins themselves are used as potential biomarkers 17. Three hypervariable com-
plementarity determining regions (CDR1, CDR2 and CDR3) in the variable regions of 
the light and heavy chains of an immunoglobulin form the binding surface comple-
mentary to the antigen. As such, these CDRs determine the specificity of the immuno-
globulin to the antigen. During immune response and B-cell development, CDRs are 
generated by somatic rearrangements of different (V, or V, D and J) germline genes 
to form a specific combination. In both light and heavy chains, the diversity of CDR3 
is even further enhanced by the insertions and deletions of nucleotides between the 
genes. The estimated potential immunoglobulin diversity varies from 1013 to more 
than 1050 18-19. Despite this large range there is evidence for repertoire bias, which 
means that certain germline genes are preferentially used in response to a particular 
antigen 20-21. Moreover, similar and identical CDR3 sequences have been found in 
humans and in zebrafish, respectively 22-23. Our hypothesis is that a specific molecular 
profile of CDRs may distinguish lung cancer patients from controls and can thus be 
used as lung cancer biomarker.
The ability to find differences in CDRs between lung cancer cases and controls de-
pends on the number of CDRs identified, which in turn depends on the accuracy, 
resolution, sensitivity and reproducibility of the mass spectrometry to identify these 
very low-abundant CDR peptides. However, ion suppression in the mass spectrometer 
especially for complex peptide mixtures can reduce the sensitivity 24. Reduction of 
this complexity reduces ion suppression and leads to a significantly higher sensitivity 
to detect CDR peptides. In our previous paper, we presented our method to sequence 
Fab fragments by using mass spectrometry 25. To identify as many CDRs as possible, 
the complexity of the immunoglobulin molecule can be reduced by separating Fab 
into Fab-κ and Fab-λ, and even further by purifying only the kappa (κ) or lambda (λ) 
light chain. The normal overall κ: λ ratio in human immunoglobulins is approximately 
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2 (κ:λ of: IgG 2.34 ± 0.80; IgA 1.59 ± 0.40; IgM 1.86 ± 0.76) with most of the immu-
noglobulins consisting of IgG 26.
Our aim was to use molecular dissection of IgG into kappa and lambda fragments to 
identify substantially more CDRs than obtained by the Fab method. To determine if 
we would be able to identify more CDRs by molecular dissection of IgG in kappa and 
lambda fragments than of Fab, we designed a pilot study. In this study, we purified 
Fab, Fab-κ, Fab-λ, κ and λ light chains from serum from 10 stage I lung adenocarci-
noma patients and 10 matched controls from current and former smokers of the 
NELSON trial 3. After purification, the immunoglobulin fragments were enzymatically 
digested by trypsin and measured by high-resolution mass spectrometry. Finally, we 
compared the number of CDRs identified in these immunoglobulin fragments with 
the number of CDRs identified in the Fab fragments. 

Materials and Methods

Cases and Controls from the NELSON Trial
Sera from 20 current and former smokers were obtained from the Dutch-Belgian 
randomized lung cancer screening trial (NELSON), as described previously 3, and col-
lected under uniform conditions. The subjects were between 53 and 73 years of age 
(50 % males and 50% females, median age 61 years) and had a smoking history of 
3-7 cigarettes per day for 6-11 years. Ten serum samples of stage I lung adenocar-
cinoma patients without history of other cancer were collected. As non-cancer con-
trols, 10 matched serum samples were taken from participants in the same trial. The 
controls were matched for gender, smoking status, COPD status, absence of previ-
ous cancer and asbestos history. All participants gave written informed consent as 
approved by the Dutch Minister of Health and the ethics board at each participating 
center. Samples were blinded and analyzed in random order.

Reference Sample
One reference donor sample (male; 59 years), with a normal serum IgG of 9.75 g/L, 
was used as a quality control for each analysis step 255252. In accordance with the 
general guidelines of the Sanquin Blood Bank Rotterdam (The Netherlands), the 
healthy donor gave written consent for the serum to be used for scientific research.

Purification of IgG
Serum IgG (80 µL) was purified using the Melon Gel IgG purification kit (Pierce, Rock-
ford, IL), according to the manufacturer’s instructions. The concentration of the puri-
fied IgG protein (800 µL) was determined by means of the mass extinction coefficient 
of 1.37 (mg/mL) cm-1 at 280 nm on a NanoDrop Spectrophotometer (ND-1000, Nano-
drop Technologies, Wilmington, DE).

Purification of Fab
After purification, purified IgG (400 µL) was digested in Fab and Fc fragments over-
night by immobilized papain on agarose beads according to the manufacturer’s 
instructions (Pierce, Rockford, IL). Then this digest (2.800 mL) was concentrated 
approximately ten times by an Amicon Ultra 3K centrifugal filter device (Millipore, 
Amsterdam, the Netherlands).
Finally, the Fab fragments were separated from Fc fragments and undigested IgG 
by SDS-PAGE under reducing conditions 25. The proteins were fixed and visualized 
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with the Colloidal Blue staining kit (Invitrogen, Breda, the Netherlands) and gels were 
washed for a minimum of 4 h in deionized water (Figure 1).

Purification of IgG Fab kappa and IgG Fab lambda
For purification of IgG Fab kappa (Fab-κ) 100 µL λ-specific-anti-human IgG and for 
purification of IgG Fab lambda (Fab-λ) 200 µL κ-specific-anti-human IgG was immo-
bilized onto the MicroLink Protein support of two AminoLink Plus coupling gel spin 
column (Pierce, Rockford, IL). Concentrated papain digested IgG (100 µL) was loaded 
onto the columns and incubated at 4°C overnight with gentle end-over-end mixing. 
Finally, the IgG Fab-κ and IgG Fab-λ were individually collected in the flow-throughs 
and separated from the Fc proteins by SDS-PAGE under reducing conditions and visu-
alized as described above (Figure 1).

Purification of Kappa and Lambda
The Melon Gel purified IgG (100 µL) was loaded onto the λ-specific-anti-human IgG 
(100 µL) and κ-specific-anti-human IgG (200 µL) columns and incubated at 4°C over-
night with gentle end-over-end mixing. Finally, the IgG-κ and IgG-λ were individually 
collected in the flow-throughs and the heavy chain (H) and light chain, κ or λ, were 
separated by SDS-PAGE under reducing conditions and visualized as described above 
(Figure 1).

Figure 1. Flow-chart of the different steps in molecular dissection and data analysis. A) Purified IgG and 
concentrated papain digested IgG were loaded onto anti-λ IgG and anti-κ IgG columns. Subsequently, 
IgG-κ, IgG-λ, Fab-κ and Fab-λ were individually collected in the flow-throughs. The heavy chain (H) and light 
chain (κ or λ) of IgG-κ and IgG-λ, and Fab and Fc of IgG Fab-κ and IgG Fab-λ were separated by SDS-PAGE 
under reducing conditions. B) After in-gel-tryptic digestion, the peptides were measured by nano-LC-LTQ 
Orbitrap (MS). MS signals were quantified by Progenesis and analyzed by Mascot and de novo sequenc-
ing. Mascot and de novo peptide sequences were used for the identification of CDR sequences.

Sample Preparation for LTQ Orbitrap Mass Spectrometry
Recovery and reproducibility of the purifications were determined by densitometry. 
Intensities of the protein bands of the reference sample on the stained SDS-PAGE gel 
were quantified by scanning on a Molecular Imager GS-800 Calibrated densitometer 
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(Bio-Rad, Veenendaal, the Netherlands) with Quantity One® 1-D analysis software 
(version 4.6.5; Bio-Rad).
After imaging and analysis of the SDS-PAGE gels, the selected protein bands were 
excised from the gels and cut into plugs. The in-gel trypsin digestion was performed 
in Rapigest detergent solution according to the manufacturer’s instructions (Waters, 
Milford, MA). 

Nano-LC Orbitrap MS Analyses
LCMS measurements of the tryptic peptides were performed on an Ultimate 3000 
nano-LC system (Dionex, Amsterdam, Netherlands) online coupled to a hybrid linear 
ion trap/Orbitrap MS (LTQ Orbitrap XL; Thermo Fisher Scientific, Bremen, Germany). 
For identification of the IgG peptides we used CAD fragmentation. High resolution 
full scan MS was obtained in the Orbitrap (resolution 30,000; AGC 1,000,000) and 
CAD fragmentation was performed on the five most abundant masses in the full scan 
spectra. 

Data Analysis
Progenesis software (Version 2.5; Nonlinear Dynamics Ltd, Newcastle, UK) was used 
for the label-free quantification of MS data. In total five Progenesis analyses were per-
formed, one for each individual dissected IgG fraction. The raw data files were aligned 
by their retention time, features were selected and intensities were normalized (Non-
linear Dynamics http://www.nonlinear.com/support/progenesis/lc-ms/faq/how-
alignment-works.aspx, http://www.nonlinear.com/support/progenesis/lc-ms/faq/
how-normalisation-works.aspx) 25. Data matrices containing the feature intensities 
(area under the peak) were exported for further calculations.
Database searches were performed with Mascot (version 2.2.06; Matrix Sci-
ence Inc., London, UK) against the NCBInr human database (version nrHuman_
database_20090311; Homo sapiens species restriction; 222,0660 sequences). 
Parameters used for the database search were as follows: a maximum of two miss 
cleavages; carbamidomethylation of cysteine as a fixed modification and oxidation of 
methionine as a variable modification; trypsin as enzyme; a peptide mass tolerance 
of 10 ppm; a fragment mass tolerance of 0.5 Da; an ion score of 25 as a cut-off.
De novo sequencing was used for features not identified by a Mascot search against 
the database (NCBInr). Therefore, raw data files were processed by the Peaks Stu-
dio 5.1 software package (Bioinformatics Solutions Inc., Waterloo, ON, Canada). The 
Average Local Confidence score (ALC%) was assigned on the basis of the positional 
confidence for each amino acid in the peptide sequence divided by the total number 
of amino acids.
Peptide identifications from both Mascot and Peaks were imported into Progenesis, 
which keeps the best scoring sequence for each MS signal. To this end, Peaks data 
were manually converted to Mascot XML format for import into Progenesis, and the 
ALC% scores were divided by a factor of 100. By doing so Mascot scores obtained 
from the data-dependent search always overruled the ALC% scores. Finally, all inten-
sities and sequences from Mascot and Peaks were combined in a single Progenesis 
file per individual fraction for further analysis.
Mascot and de novo peptide sequences were used for the identification of CDR se-
quences. Irrespective of the protein identification, the BLAST algorithm was subse-
quently used to align all peptides to databases containing human V, D, J or C-region 
germline sequences obtained from the IMGT database (IMGT®, the international 
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ImMunoGeneTics information system® http://www.imgt.org). All peptides with a bit 
score of at least 12.5 were assigned to these germline sequences and selected for 
further analysis. Peptides aligned to a V-region germline sequence were also aligned 
using the IMGT/DomainGapAlign tool. This tool positions the peptide to the germline 
sequence in the IMGT unique residue numbering system and helps to identify the 
peptide as a framework or CDR in the immunoglobulin molecule. Only peptides with 
an identity score of at least 70% were assigned to a CDR sequence. Total numbers of 
CDRs were calculated based on the CDRs found by Mascot and de novo sequencing.

Statistical Analysis
Coefficient of variation was used to measure the reproducibility of three replicate 
purifications of the reference sample for each individual IgG fraction. For each indi-
vidual IgG fraction and each combination of IgG fractions, descriptive summary sta-
tistics (number of measurements (N), mean, standard deviation (SD) and Confidence 
Interval (95% CI)) were provided for the number of CDRs identified in the cases and 
controls. 
The two sample t-Test (two-sided) was used to compare differences in the κ:λ ratio 
in Fab molecules between cases and controls. We used Microsoft Excel 2007 for 
the descriptive summary statistics and the t-Tests. Pearson Chi-square tests were 
performed to establish the existence of significant differences between cases and 
controls in the number of CDRs identified in each specific molecular dissected IgG 
fraction and each combination of IgG fractions compared with that of Fab. These 
tests, odds ratios and 95% confidence intervals were calculated by the application 
of Vassarstats software (http://faculty.vassar.edu/lowry/VassarStats.html). The non-
parametric Kruskal-Wallis test (two-sided) was performed to compare the CDR3 ratio 
in the three Fab fractions (Fab, Fab-κ, Fab-λ) with the CDR3 ratio in the light chain 
fractions (κ and λ). Analyses were done using STATA, version 11 (StataCorp, Texas, 
US).
To determine if the number of significant different CDRs increases by molecular dis-
section of IgG, we used the Anova available in the Progenesis program and the two 
sample t-Test (two-sided). By a permutation test that was repeated 20 times we de-
termined the random chance on such an event. Two standard deviations of this per-
mutation test were used as a threshold to determine if the number of CDRs identified 
was significantly different.  For all statistical tests a p value <0.01 was considered 
statistically significant. 
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Results

Fab, Fab-κ, Fab-λ, Kappa and Lambda Purification
To calculate recovery and reproducibility of protein band intensities, triplicate purifi-
cations of the reference sample were quantified by densitometry. A total recovery of 
91% for IgG of total IgG-κ (heavy + light chain) and total IgG-λ (heavy + light chain) 
combined and, ≥95% for Fab of Fab-κ and Fab-λ combined was calculated. Coeffi-
cients of variation of the densitometry intensity of triplicate purifications of the refer-
ence sample were 2.1% for κ, 4.8% for λ, 3.1% for Fab-κ and 4.4% for Fab-λ.

Kappa to Lambda Ratio
Calculated serum IgG concentration of controls and cases were on average 9.5 g/L 
(95% CI 7.4-11.5 g/L) and therefore within the normal range (7.0-16.0 g/L). To deter-
mine the κ:λ ratio of the κ and λ purification, Fab, Fab-κ, Fab-λ, κ and λ fractions from 
the reference donor sample were purified in duplicate and each fraction was mea-
sured twice on an LTQ Orbitrap XL. Figure 2 represent the distribution of all Mascot 
peptide sequences corresponding to the V,D, J, and C region of the κ, λ and heavy 
chain (BLAST identity score ≥ 70%) and their normalized intensities in the Fab and the 
total IgG light chain (κ and λ). The κ:λ ratio was calculated by counting all V, D, J and C 
spectra, with a normalized intensity >0. We found a normal κ:λ ratio of 2.0 in the Fab 
and 2.1 in the total light chain of IgG (κ and λ) fraction in this healthy donor sample. In 
addition, we calculated the κ:λ ratio in the Fab of all controls and cases and observed 
a normal mean ratio of 1.9 (SD 0.1) and 2.0 (SD 0.0), respectively. The unpaired two 
sample t-Test revealed no statistically significant difference (p=0.10) between the κ:λ 
ratio in cases and controls. 

Enrichment of Kappa and Lambda Peptides
Kappa and lambda enrichment of the cases and controls was calculated by the κ:λ 
ratio in the Fab-κ, Fab-λ, κ and λ fractions, as described above. After purification we 
obtained a 7-fold enrichment of κ in the Fab-κ (κ:λ ratio 14:1) and a 3-fold enrichment 
of λ in the Fab-λ fraction (κ:λ ratio 2:3). An 8-fold increase in enrichment factor was 
observed in the κ and a 4-fold increase in the λ fractions of IgG. In addition, less than 
9% peptides of the heavy chain were found in the light chain fractions of IgG. 

Replicate measurements of Reference Sample
In mass spectrometry, replicate measurements can increase the number of peptides 
identified. To determine whether the total number of CDRs identified in the multiple 
IgG fractions might increase due to the multiple MS measurements of the sample, we 
compared the number of CDRs identified in four replicate measurements of the Fab, 
Fab-κ, Fab-λ, κ, λ fractions of the reference sample. Although, the number of CDRs 
reached a maximum at each third or fourth replicate measurement, the combined 
fractions revealed more CDRs than the individual fractions (Figure 3). We found 617 
CDRs in the Fab and 1238 CDRs in the combined fractions.
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Figure 2. Distribution of VDJC peptides in Fab and IgG light chain of reference sample. All peptides se-
quences corresponding to the V region, D region, J region and C region of the κ (Blue), λ (Red) and heavy 
chain (Green) found by Mascot in the IMGT database and their normalized intensities in the Fab (a) and 
the IgG light chain (b).

Figure 3. Number of CDRs peptides identified in replicate MS measurements of the fractions individually 
and combined of the reference sample. Fab (Blue), Fab-κ (Red), Fab-λ (Green), kappa (κ) (Purple), lambda 
(λ) (Light Blue) fraction and all fractions combined (Orange).

A

B
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Number of CDRs Identified in Cases and Controls
Nano-LC-LTQ Orbitrap MS measurements of the respective digested Fab, Fab-κ, Fab-λ, 
κ and λ of the cases and controls yielded a combined peak list of 13061, 12441, 
8246, 10294 and 11853 features reported by Progenesis. Automatic alignment in 
Progenesis was not possible for one Fab, one Fab-λ and one κ sample of the controls 
and one Fab-λ sample of the cases. Therefore they were excluded from data analysis.  
Figure 4 shows the number of features (MS signals) and the number of CDR peptide 
sequences identified by Mascot and de novo sequencing according to IMGT for each 
individual IgG fraction. In addition, we have listed the V, D, J and C regions (VDJC) and 
the V-region-related peptides. 
To compare the number of CDRs identified between the fractions, only samples ana-
lyzed by Progenesis for each fraction were selected. Redundant peptide sequences of 
these 16 samples were counted once in order to reveal the number of unique CDRs 
per fraction. Alignment to the IMGT database showed that 1663 peptide sequences 
of Fab, 1422 of Fab-κ, 971 of Fab-λ, 859 of κ and 991 of λ corresponded to CDRs. 
The numbers of the three types of CDR are shown in Figure 5. In all three types of 
Fab (Fab, Fab-κ, Fab-λ) we observed a mean CDR1:CDR2:CDR3 ratio of approximately 
1.0:2.0:1.0 and in the light chains different CDR ratios of approximately 1.4:2.4:0.2 
for κ and 1.0:2.7:0.3 for λ were seen.  The CDR3 ratio in the three Fab fractions (Fab, 
Fab-κ, Fab-λ) was significantly (p <0.001) higher than the CDR3 ratio in the light chain 
fractions (κ and λ).
The mean number of CDRs identified in the individual and combined IgG fractions 
compared with that of the Fab fraction of lung cancer cases and controls are listed in 
Table 1. We found 1.73 times more CDRs in the combination of Fab-κ, Fab-λ, κ and λ 
(Comb 6, Table 1), than in Fab for both cases and controls. Pearson Chi-square tests 
with odds ratios were performed to measure the association between cases and con-
trols in the number of CDRs identified in the individual and combined IgG fractions 
compared with that of Fab (Table 1). We found no statistically significant difference 
(p>0.50) between cases and controls for these numbers.
We calculated the mean additional number of unique CDRs (mean %, Confidence In-
terval 95%) found in the different individual and combined IgG fractions to the mean 
number of CDRs of the Fab fraction. Kappa gave 320 CDRs (23.1%, 20.6-25.5%), 
lambda 501 CDRs (36.0%, 34.2-37.8%), Fab-κ 679 CDRs (48.7%, 46.2-51.2%) and 
Fab-λ 315 CDRs (22.7%, 20.1-25.4%) additional to Fab. Combined κ and λ fractions 
resulted in 804 additional CDRs (57.8%, 54.4-61.3%), and combined Fab-κ and Fab-λ 
fractions in 978 additional CDRs (70.3, 66.8-73.7%). In addition, these four fractions 
combined showed an additional 1683 unique CDRs (121.0%, 115.5-126.5%) com-
pared with the original Fab.
Figure 6 shows a Venn diagram of all the fractions of the cases and controls and the 
total number of CDRs found by Mascot and de novo sequencing. We found a total of 
1663 CDRs in the Fab and an additional 2441 unique CDRs (146.8%) in all the other 
fractions combined.
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Figure 4. Number of MS signals and number of peptide sequences identified by Mascot and de novo 
sequencing for each individual IgG fraction. Redundant peptides corresponding to the VDJC-region and 
the V-region, and non-redundant (unique) peptides corresponding to the V-region and CDR (CDR1, 2, 3) 
region germline sequences from the IMGT database are shown. The graph illustrates the total number of 
CDR1, CDR2 and CDR3 identified for each individual IgG fraction. (Published as supplementary Figure 4.)

Figure 5. Numbers of CDR1, CDR2 and CDR3 identified in the individual IgG fractions. The total number 
of CDR1 (light grey), CDR2 (grey) and CDR3 (black) identified in each individual IgG fraction.
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Fractions Number of CDRs OR 95% CI p

Lung cancer cases Controls

 N mean (±SD) odds  N mean (±SD) odds     

Fab 9 1412 (± 72) ND 7 1370 (± 80) ND ND ND ND

Fab-κ 9 1119 (± 115) 0.79 7 1072 (± 97) 0.78 1.01 0.91-1.13 0.82

Fab-λ 9 715 (± 90) 0.51 7 706 (± 113) 0.52 0.98 0.86-1.12 0.79

κ 9 585 (± 82) 0.41 7 582 (± 83) 0.42 0.98 0.85-1.12 0.72

λ 9 748 (± 55) 0.53 7 700 (± 57) 0.51 1.04 0.91-1.18 0.58

Comb 1 32 1211 (± 100) 0.86 32 1172 (± 91) 0.86 1.00 0.90-1.12 1.00

Comb 2 32 1652 (± 127) 1.17 32 1609 (± 121) 1.17 1.00 0.90-1.10 0.92

Comb 3 32 1724 (± 85) 1.22 32 1690 (± 83) 1.23 0.99 0.90-1.09 0.84

Comb 4 32 2105 (± 144) 1.49 32 2032 (± 125) 1.48 1.01 0.91-1.11 0.92

Comb 5 48 2400 (± 146) 1.70 48 2335 (± 117) 1.70 1.00 0.91-1.10 1.00

Comb 6 64 2449 (± 159) 1.73 64 2376 (± 170) 1.73 1.00 0.91-1.10 1.00

Comb 7 80 3119 (± 165) 2.21  80 3024 (± 167) 2.21  1.00 0.92-1.09 1.00
Odds ratios between lung cancer cases and controls of the number of CDRs identified in individual and 
combined IgG fractions compared with Fab. Abbreviations: ND, the value was not determined; OR, odds 
ratio; CI, confidence interval; p, p-value of Pearson Chi-square test; Comb 1, κ+λ; Comb 2, Fab-κ+Fab-λ; 
Comb 3, Fab+Fab-λ; Comb 4, Fab+Fab-κ; Comb 5, Fab+Fab-κ+Fab-λ; Comb 6, Fab-κ+Fab-λ+κ+λ; Comb 7, 
Fab+Fab-κ+Fab-λ+κ+λ.

Figure 6. Venn diagram of all fractions of the cases and controls and the total number of CDRs found by 
Mascot and de novo sequencing. 

Number of significantly different CDRs between cases and controls
We analyzed the CDR identified sequences of cases and controls obtained via 
database-dependent and de novo sequencing with Anova and the two sample t-Test. 
We observed that in Fab-κ the number of significantly identified CDR (p< 0.01) was 
significantly increased compared to random chance as determined by a permutation 
test (data not shown). 

Discussion

In this study, we demonstrated that molecular dissection of IgG into kappa and lamb-
da fragments (Fab-κ, Fab-λ, κ and λ) identifies approximately twice as many CDRs 

Table 1. Number of CDRs identified in individual and combined IgG fractions compared with Fab: Lung 
cancer cases vs. controls.
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than the Fab method.
In all fractions CDRs were identified exclusive to the specific fraction resulting in a 
total of 4104 CDR sequences. Results from all fractions and of combinations of them 
were evaluated. Although multiple MS measurements of an individual fraction also 
increase the number of CDRs identified, the combination of the various molecular 
fractions exceeds this significantly. In addition, the method we used to isolate Fab-κ, 
Fab-λ, κ and λ chains of IgG is reproducible and shows high recovery rates. The techni-
cal variation in MS measurements and variation in individual IgG molecules was de-
scribed previously 25. More specifically, the normal κ:λ ratio in the Fab and light chain 
of the healthy donor sample and the Fab of the controls and cases demonstrated 
a sufficient purification with preserved κ:λ ratio, and was validated by MS measure-
ment. By means of the κ:λ ratio we were able to determine the κ or λ enrichment for 
the different IgG fractions.
As the whole Fab fraction includes the heavy and light chains (both κ and λ), this frac-
tion yielded the most features and as a result more CDRs were identified in the Fab 
fraction than in the other individual IgG fractions. The MS sample of the Fab-κ frac-
tion yielded more features than the Fab-λ fraction, and therefore the Fab-κ fraction 
revealed more CDRs than the Fab-λ fraction. The lower number of CDRs identified 
in κ and λ light chain fractions is very likely caused by the fact that CDRs specific to 
the heavy chain are missing, including the highly diverse CDR3 of the heavy chains 
27. This is supported by the observation of a different ratio for CDR1:CDR2:CDR3 in 
the light chains, which shows an approximately 4-fold lower ratio of CDR3 in the light 
chains than in the three types of Fab (Fab, Fab-κ, and Fab-λ). In general, in all frac-
tions the CDR3 peptides were relatively difficult to assign. These peptides are highly 
diverse and their N-terminal side often contains a cleavage site for trypsin (lysine or 
arginine). As a result, their tryptic digested peptides often contain a mostly conserved 
V-region fragment or a highly diverse fragment, which makes it difficult to align to the 
germline sequence. Interestingly, more significantly different CDRs were observed 
in the Fab-κ than in the other fractions. This points to the possibility of finding lung 
cancer-related CDRs and in general of finding tumor-related CDRs.
Peptides from the constant regions gave the highest peak intensities. By choosing 
the maximum injection volume based on the highest peak intensity in the UV chro-
matogram we were able to maximize the loading of the CDRs on the C18 trap column. 
Nano-LC-LTQ Orbitrap MS measurements of additional fractions cause an increase in 
measurement time. Even though, measuring both Fab and Fab-κ fractions instead of 
only the Fab fraction requires twice as much measurement time, it makes the effort 
worthwhile because of the additional 50% CDRs identified. In addition, when measur-
ing twice this is the best combination of all fractions because the immunoglobulin 
molecules that are occasionally expressed by cancer cells have been reported to 
consist predominantly of the heavy chains and κ chains 28. This can be explained by 
the fact that during B cell differentiation first the heavy chain genes rearrange fol-
lowed by the κ chain genes. Only if none of the κ chain gene rearrangements leads 
to a functional κ chain the λ chain genes start to rearrange 18. Another explanation is 
that the heavy chain contains the highly diverse CDR3, which plays a prominent role 
in antigen binding 27. Both heavy chains and κ chains are present in the Fab and Fab-κ 
fractions.
Recent studies have shown that antibody specificity is determined by a limited num-
ber of amino acid residues of the CDRs. Synthesized small peptides based on these 
CDRs retained the antigen-binding properties and functions of the intact immuno-
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globulin 29-30. Administration of synthetic CDR peptides inhibits tumor cell growth in 
mice and thereby increases their survival time 31. These reports support the hypothe-
sis that a specific molecular profile of CDRs may distinguish lung cancer patients from 
controls. In agreement, we found an increase in the number of significantly different 
CDRs in the Fab-κ fraction. 
In our study, the lung cancer cases did not differ in their normal κ:λ ratio of Fab and in 
the number of detected CDRs in all the different IgG fractions from the controls. These 
findings show that our method is technical suitable to compare CDRs in IgG fractions 
between lung cancer patients and controls. Our approach revealed more CDRs than 
the original Fab method, which may enhance the possibility to identify a biomarker 
model for the early detection of lung cancer. However, there is most probably a larger 
sample set required to identify such statistically and physiologically relevant model. 
Sample size calculations 32 based on unpublished data estimate that a sample set of 
approximately 30 lung cancer cases and 30 controls is required to acquire this.
Improvements in sequence coverage and annotation may help to further increase the 
number of CDRs that is possible to identify. Alternative proteases could be used to 
obtain larger sequences coverage for a better alignment to the germline sequence. 
Other potential improvements are using ultra high pressure chromatography tech-
niques to improve resolution for a better identification of sequences and depletion 
of constant regions by partial digestion of immunoglobulins to enrich CDR regions. 
In addition, complementing fragmentation spectra by higher energy collision induced 
dissociation (HCD) and electron transfer dissociation (ETD) can improve de novo pep-
tide sequencing compared to CID fragmentation 33-35.
The ability to detect specific tumor-related CDR peptides by mass spectrometry de-
pends on the proportion of total IgG that has affinity to the tumor antigen. Affinity 
purification of rat sera revealed that 1-3% of IgG had affinity for the antigen used for 
the immunizations 17. Such a polyclonal antibody response to an antigen has been 
estimated to derive from approximately 100 B cell clones 22. In another study, an 
upper limit of 0.1-0.3% of the human B cell population was found to have originated 
from a particular clone 36. Based on these data, we estimate that 0.01-0.3% of the 
total IgG may present a particular immunoglobulin, depending on the degree of the 
immune response against the antigen and the diversity of the B cell clones. In pre-
viously published papers we showed that it is possible to detect CDRs of specific 
immunoglobulins at these levels 17, 25 and in particular, by our recent paper 35 In this 
paper, we showed that specific CDR peptides of a spiked antibody could be detected 
at attomole levels which were 5 orders of magnitude lower than the total IgG serum.
In conclusion, we have demonstrated that molecular dissection of IgG into kappa and 
lambda fragments is a valuable addition to Fab purification. Molecular dissection of 
IgG into kappa and lambda fragments identifies significantly more CDRs than Fab 
purification alone. This approach will increase the likelihood of finding lung cancer-
related CDR sequences.
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Abstract 

Late diagnosis of lung cancer is still the main reason for high mortality rates in lung 
cancer. Lung cancer is a heterogeneous disease which induces an immune response 
to different tumor antigens. Several methods for searching autoantibodies have been 
described that are based on known purified antigen panels. Aim of our study is to find 
evidence that parts of the antigen-binding-domain of antibodies are shared among 
lung cancer patients. This was investigated by a novel approach based on sequenc-
ing antigen-binding-fragments (Fab) of immunoglobulins using proteomic techniques 
without the need of previously known antigen panels. 
From serum of 93 participants of the NELSON trial IgG was isolated and subsequently 
digested into Fab and Fc. Fab was purified from the digested mixture by SDS-PAGE. 
The Fab containing gel-bands were excised, tryptic digested and measured on a nano-
LC-Orbitrap-Mass-spectrometry system. Multivariate analysis of the mass spectrom-
etry data by linear canonical discriminant analysis combined with stepwise logistic 
regression resulted in a 12-antibody-peptide model which was able to distinguish 
lung cancer patients from controls in a high risk population with a sensitivity of 84% 
and specificity of 90%. 
With our Fab-purification combined Orbitrap-mass-spectrometry approach, we found 
peptides from the variable-parts of antibodies which are shared among lung cancer 
patients.
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Introduction

Lung cancer is currently the most common cancer with the highest mortality rate 
(28%) in the World due to late diagnosis at an advanced stage.1-2 However, with the 
demonstration of a 20% lung cancer mortality reduction by the NLST trial (National 
Cancer Screening Trial) low dose CT screening for lung cancer is receiving increasing 
interest.3 The NELSON trial (Dutch-Belgian lung cancer screening trial) showed that 
after three screening rounds 3.6% of all participants of this study had a false-positive 
screen result.4 Although, still approximately 27% of the participants were subjected 
to invasive procedures that revealed benign lung diseases at baseline screening (first 
round NELSON trial).5 A good biomarker (panel) will reduce this number of unneces-
sary invasive procedures. At the moment selection of high risk individuals for screen-
ing is done by age and smoking history. A biomarker or biomarker panel would be 
helpful in selecting high risk individuals for CT screening as this may detect lung 
cancer at an earlier stage than CT. 
Antibodies can be interesting as markers for distinguishing lung cancer patients from 
lung cancer-free individuals. These antibodies are produced by the immune response 
that target specific tumor-associated antigens (TAAs) during cancer development, 
probably at an early stage.6-12 Recently Liu et al. showed that the concentration of 
circulating IgG autoantibodies against ABCC3 transporter was significantly higher in 
female adenocarcinoma patients than in female controls.13

Antibodies, or immunoglobulins, are highly complex molecules with large variation in 
their amino acid sequence. The possible diversity in immunoglobulins is estimated 
between 1013 and 1050 and therefore the finding of similar or even identical sequenc-
es in different individuals by chance is in theory, highly unlikely.14-15 However, studies 
of different research groups have recently demonstrated that despite this theoretical 
small chance to have identical antibodies among individuals, it is possible to iden-
tify similar or identical sequences.16-19 A study performed by us showed that in PNS 
(paraneoplastic neurological syndrome) patients identical mutated primary amino 
acid sequences of complementarity determining regions (CDRs) exist. These CDRs 
are specific for known onconeural antigens, such as HuD and Yo in PNS patients, and 
most interestingly were shared between different PNS patients.20 
The aim of this study is to find evidence that specific antibody peptides are shared be-
tween lung cancer patients in contrast to lung cancer-free individuals. As lung cancer 
is a heterogeneous disease and with the variability of an antibody it might be a chal-
lenge to detect identical tumor-related antibodies in serum. We experimentally test 
the hypothesis that specific highly variable regions of an antibody including comple-
mentarity determining regions (CDRs) can be shared between lung cancer patients. 
Our experimental approach to verify this hypothesis is based on sequencing antibody 
peptides by mass spectrometry. Measurement of serum by a mass spectrometer 
might be too complex due to the high variability as mentioned above. Purifying IgG 
Fab from serum will reduce the complexity of the sample from a lung cancer patient 
and will give the possibility to focus on pure antibody fractions.
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Material & Methods

Study population
For this study, we selected 44 lung cancer cases and 49 controls (Figure 1) from the 
NELSON lung cancer screening trial.5, 21 For the cases of the discovery set, NELSON 
1, only early stage (I and II) squamous cell (n=4) or adenocarcinomas (n=21) were 
selected. They were carefully matched to the controls by age, gender, smoking status, 
duration and number of cigarettes smoked per day, chronic obstructive pulmonary 
disease (COPD) status, asbestos exposure and site of blood sampling (Table 1). The 
selection criteria for the cases of the NELSON 2 (validation) set (n=19) were similar, 
except that all non-small cell histology’s and disease stages were allowed (Table 1) 
in order to challenge the results of the discovery phase. On purpose the clinical char-
acteristics of the control patients are dissimilar with the NELSON 1 set in respect to 
smoking and COPD. Therefore, this NELSON 2 set is not matched with the NELSON 
1 set. Serum samples were collected for both NELSON 1 and NELSON 2 obtained 
from baseline CT screening (first round). The NELSON trial was approved by the Dutch 
Health Council, the Minister of Health and by the Medical Ethical Committees of all 
participating centers (clinical trial number ISRCTN63545820). All participants for this 
study provided written informed consent for the use of their serum samples. The 
donor of the reference sample used throughout this study provided written consent 
for the use of his/her serum for scientific purposes according to the guidelines of the 
Sanquin Blood Bank, Rotterdam. 

NELSON 1

50 cases 50 controls

47 cases 47 controls

NELSON 2

40 cases 40 controls

Excluded matching 
       controls n=3

Excluded cases n=3
No material available

40 cases 43 controls

Excluded controls n=4
No alignment during 
Progenesis analysis

Excluded cases n=7
No alignment during
Progenesis analysis

34 cases 38 controls

Excluded controls n=2
No alignment during 
Progenesis analysis

Excluded cases n=6
No alignment during

Progenesis analysis (n=2)
No NSCLC (n=4)

19 cases 20 controls

Excluded controls n=18
R-square <0.70

Excluded cases n=15
R-square <0.70

25 cases 29 controls

Excluded controls n=14
R-square <0.70

Excluded cases n=15
R-square <0.70

Discovery Validation

Figure 1. Technical reproducibility of replicate measurements of the reference sample. Reference sample 
measured at different time points during measurement of the NELSON 1 sample set. A replicate of the 
reference sample (x-axis) was compared to each other replicate sample based on the raw abundance 
of each feature. An r-square value was calculated. Each dot represents an r-square (y-axis) value for the 
comparison of that specific replicate with another replicate. For each replicate the average r-square and 
standard deviation (SD) is shown.
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IgG Fab purification and NanoLC Orbitrap MS analyses
Prior to all sample preparation procedures, all samples were blinded and the key for 
unblinding was put at the database coordinator of the NELSON trial. IgG Fab purifica-
tion and nano-LC Orbitrap MS analyses were performed according to the method de-
scribed before.22 In brief, IgG was isolated from serum and digested into Fab and Fc. 
The Fab part was purified from the digested mixture by SDS-PAGE. The Fab containing 
gel bands were excised and tryptic digested. A blank piece of gel that was not loaded 
with protein was excised and treated like the excised Fab bands for background as-
sessment.
LCMS measurements were performed on an Ultimate 3000 nano LC system (Thermo 
Fisher Scientific/Dionex, Amsterdam, the Netherlands) online coupled to a hybrid lin-
ear ion trap/Orbitrap MS (LTQ Orbitrap XL; Thermo Fisher Scientific, Bremen, Germa-
ny). Four µL of the digested Fab was loaded onto the system. For further settings and 
solutions we refer to previous published work.22 All samples were randomized before 
measurement and were measured in batches of 11 samples including a reference 
sample. A blank sample was run at the start and end of the measurement to deter-
mine background and the existence of carry-over during chromatography. 

Data analyses 
Raw data files were loaded into the software Progenesis (Version 3.1; Nonlineair Dy-
namics Ltd, New Castle, UK) and processes as described previously.22 In addition, we 
performed a Progenesis analysis where instead of detecting features (peptide mass-
es (m/z)) in all the samples at the same time by the software program, feature detec-
tion was performed individually per sample. Features picked thereby were matched 
to the Progenesis result table containing all samples with a mass tolerance of 5 ppm. 
This was of advantage, since often features occur with low intensities in one sample 
and are subsequently matched by Progenesis in all other samples. This result in er-
rors related to background if one takes the respective mass spectra into account. 
With this relative small adjustment it assures that a feature is detected more correctly 
throughout the samples. The data acquired by this approach was filtered using the 
same default settings.22 A separate data matrix for every case and control was gener-
ated consisting of all features with corresponding raw abundance and retention time. 
To generate one large data matrix that includes all cases and controls from these 
separate data matrices, we searched masses from the separate data matrices per 
case or control in the complete data matrix generated from the standard Progenesis 
analyses. Every mass had to meet three criteria: 1) m/z (±5 ppm), 2) retention time 
(±1 min) and 3) identical charge. If a mass met these three criteria the raw abun-
dance from the complete matrix (generated by a general procedure22 recommended 
by the manufacturer) was used. If a mass did not meet these criteria a zero was gen-
erated for the raw abundance. 
MS/MS spectra were extracted from raw data files and converted into mgf files us-
ing extract-msn (part of Xcalibur version 2.0.7, Thermo Fisher Scientific Inc.). Mas-
cot (version 2.3.01; Matrix Science Inc., London, UK) was used to perform database 
searches against the human subset NCBInr database (version March 11th, 2009; 
Homo sapiens species restriction; 222,066 sequences) of the extracted MS/MS 
data.  Database (NCBInr) dependent peptide identification and de novo sequenc-
ing results (software PEAKS; Version 5.2; Bioinformatics Solutions Inc., Waterloo, 
Canada) were also included in the Progenesis provided matrix. For settings used for 
the database search and de novo sequencing we refer to previous published work.22 
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For de novo sequences so far not known from a database, the Peaks software identi-
fies a leucine for the isobaric amino acids leucine and isoleucine. Database depen-
dent peptide identification results or de novo sequencing results were included in the 
matrix based on the highest peptide identity score. All peptide sequences from the 
cases and controls identified by Mascot or PEAKS were subsequently aligned to data-
bases containing V, D, J or C-region germline sequences derived from IMGT database 
(IMGT®, the international ImMunoGeneTics information system® http://www.imgt.
org) using the BLAST algorithm.23 Peptides with sufficient match (bitscore ≥12.5 and 
alignment score ≥70%) to the V-region database were assigned to a position on the 
immunoglobulin molecule with varying CDR lengths.
Raw data files of the reference samples of each data set were separately loaded into 
the software Progenesis and followed the standard procedures as mentioned above. 
To determine the proportion of variation between the reference sample measure-
ments performed on different time points, median r-squares were calculated for each 
sample. Each sample was compared to all the other reference samples measured in 
that dataset and a median r-square was calculated for each sample. The comparison 
was based on the raw abundance of each feature. This was performed separately for 
both independent datasets, NELSON 1 and NELSON 2. To determine the proportion 
of variation between the samples (cases and controls) of the two separate datasets, 
the same calculations were performed as described above for each case and control 
sample. This analysis was performed separately for the two datasets. Based on the 
distribution of the median r-squares of each sample, we decided to set a cut-off at 
r-square >0.70. The cases and controls that obtained a median r-square below 0.70 
were excluded from the dataset and further analyses. Calculations were conducted 
using Microsoft Excel 2007.

Statistical analysis
Two independent data sets have been used, NELSON 1 and NELSON 2. The initial 
step in the statistical analysis consisted of testing for normality using skewness and 
kurtosis distribution characteristics on the intensity of the raw abundance of the fea-
tures.24 
Subsequently, univariate analysis was performed, applying either an unpaired t-test 
(parametric) or a Mann-Whitney U-test (non-parametric) to detect significant differ-
ences in raw abundance between cases and controls in the NELSON 1 set.25  The 
significance limit was set at 0.05 (two-sided). All identified features that were found 
significantly different were used for the selection of features to distinguish lung can-
cer patients from controls. 
Secondly, we used for multivariate analysis only the significantly identified features 
that had ≥ 2 triggered MS spectra. We applied a multivariate analysis on features 
fulfilling these criteria with a (logistic) stepwise regression model (y= a1x1 + a2x2 + a3x3 
…..anxn + c) in combination with canonical linear discriminant analysis.26-27 This result-
ed in a combination of features with high sensitivity and specificity in the NELSON 1 
dataset. This combination of features was then tested in the NELSON 2 dataset using 
the same methodology as described above.26-27 Note that for the NELSON 2 dataset it 
was necessary to optimize the coefficients in the model equation in order to optimize 
the sensitivity and specificity in the NELSON 2 dataset. 
To avoid a random-error effect in modeling, we verified the statistical background of 
the combination of features in a permutated dataset. The background evaluation 
consisted of the same workflow as used for the model building, except that at the be-
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ginning the assignment of cases and controls of NELSON 1 were permutated (Figure 
2). This permutation was performed twelve times and the results obtained were test-
ed for significance against the model outcome by z-test (one-sided; p<0.05). Since 
model building was based on the data as provided in NELSON 1 after which validation 
of this model was done using the data in NELSON 2, the same approach was taken 
after each individual permutation. Also here, note that for NELSON 2 dataset the co-
efficients in the model equation were optimized. 
All analyses on model building, validation and background evaluation were done us-
ing STATA, version 12 (StataCorp, Texas, US). Throughout the study, using two-sided 
testing (except for one-sided testing for Z-values), p-values of 0.05 or lower were con-
sidered to be statistically significant. Statistical analyses of the data shown in Table 1 
were generated by SPSS (IBM SPSS Statistics 20).

Figure 2. Statistical analysis flow-chart. Before background analysis is performed, cases and controls of 
the NELSON 1 dataset are shuffled randomly. (Submitted as Supplementary Figure 2)

Model building

NELSON 1

Peptide selection based on p<0.05

Model building is generated with this list resulting 
in a model with the highest sensitivity and specificity

List of peptides p<0.05

12 peptide model using linear canonical discriminant 
analysis combined with stepwise logistic regression

12 peptide model tested in NELSON 1

Validated in NELSON 2

Background evaluation

Cases & controls are shuffled in NELSON 1

Peptide selection based on p<0.05

Model building is generated with this list resulting 
in a model (consisting of 12 peptides) with the highest

sensitivity and specificity

List of peptides p<0.05

12 peptide model using linear canonical discriminant 
analysis combined with stepwise logistic regression

12 peptide model tested in NELSON 1

Validated in NELSON 2
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Results

Clinical characteristics of the study population
There was no significant difference in the clinical characteristics between the cases 
and controls in the NELSON 1 set (Table 1). In the NELSON 2 set, current or former 
smoker and COPD status differed significantly between cases and controls (Table 1). 
In 72% and 84% of the cases of the NELSON 1 set, and NELSON 2 set, respectively, 
the time interval between blood sampling and lung cancer diagnosis was between 
0-1.5 years. The median follow-up duration after blood sampling was for the control 
population 1925 days (range 1075-2086 days) and 1861 days (range 347-2135) in 
the NELSON 1 set and NELSON 2 set, respectively. None of the controls developed 
lung cancer during the follow-up period.

Technical variation
During the measurements of the biological samples we measured a reference sam-
ple at different time points. R-square values were calculated from the abundances of 
identified proteins in each reference measurement to show technical reproducibility. 
The lowest r-square value observed in the different measurements ranged between 
0.84 and 0.93 (Figure 3).

Figure 3. Technical reproducibility of replicate measurements of the reference sample. Reference sample 
measured at different time points during measurement of the NELSON 1 sample set. A replicate of the 
reference sample (x-axis) was compared to each other replicate sample based on the raw abundance 
of each feature. An r-square value was calculated. Each dot represents an r-square (y-axis) value for the 
comparison of that specific replicate with another replicate. For each replicate the average r-square and 
standard deviation (SD) is shown.

We performed the same r-square calculation for 5 random biological samples taken 
from the NELSON 1 set that were measured on two different LC-columns (same batch) 
at different time points. The technical reproducibility within each column resulted in 
lowest r-square values ranging from 0.75-0.93, but the technical reproducibility of 
the five biological samples measured on two independent similar columns was lower. 
For the two independent similar columns a median r-square of 0.52 was observed. In 
Figure 4 the correlation between each sample and between columns are shown.
An estimation of the biological variation was performed and resulted in a median r-
square of 0.43. This result was much lower than the lowest r-square (0.84) observed 
for the technical variation. Therefore, the biological variation is higher compared to 
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the technical variation.
These results show that technical variation should be taken into account and ad-
justment is needed for comparison of independently measured sample sets since 
the NELSON 1 and NELSON 2 dataset were measured on two different columns at 
different time points. To overcome this technical variation, we applied a number of 
filters on the data before we could start a data analysis as described in the Material 
& Methods section. 

Figure 4. Technical reproducibility of five biological samples measured on two different columns at differ-
ent time points. This dendrogram shows the correlation between five different biological samples mea-
sured on two different columns from same batch, column 1 and column 2 (y-axis). On the y-axis the five 
different samples are shown. Sample 1-5 are measured on column 1 and 6-10 are measured on column 
2. Sample 1 and 6 are from the same individual. This also applies for sample 2 and 7, 3 and 8, 4 and 9 
and 5 and 10. On the x-axis the Euclidian distance between each sample is shown. A strong correlation 
per column is found. 

With this data we performed separate univariate analysis on all peptides found in 
cases and controls from the separate NELSON 1 and NELSON 2 data set. We were 
able to observe 49 peptides that were significantly different between cases and con-
trols in the NELSON 1 dataset.  However, these peptides, with one exception, did not 
show this difference in the NELSON 2 dataset. There was no trend observed (r-square 
0.004) in p-values for the two datasets. Therefore, testing univariately in this manner 
was either not the right analysis strategy or the process generated randomly selected 
features (chance). Therefore, the significant peptides from NELSON 1 were analyzed 
as a next step in a multivariate way. 
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Antibody peptide model 
An optimal combination of 12 peptides was identified by the multivariate statistics 
used on the NELSON 1 set (discovery set). This combination of peptides could dis-
tinguish lung cancer patients from controls with sensitivity and specificity of 96% 
and 100%, respectively. This antibody peptide model was able to detect lung cancer 
373 days on average (range 39-1193 days) before the diagnosis was determined. In 
Figure 5 we show that the combination of the 12 peptides was able to distinguish 
cases from controls. The 12 peptides corresponded to 1 sequence overlapping with 
the CDR2 region, 1 sequence overlapping CDR3 region, 7 sequences overlapping the 
Framework 1 region and 3 sequences overlapping with the Framework 3 region ac-
cording to the IMGT database (Table 2). 

Figure 5. Distribution of the antibody peptide model outcome of the NELSON 1 and NELSON 2 sets. The 
raw abundances are filled-in in the model equation (y= a1x1 + a2x2 + a3x3 …..anxn + c) of the relevant 
sample set.  On the y-axis (in arbitrary units) the figures generated by the equation are shown. 

We performed an external validation in the NELSON 2 (validation) set. When we ap-
plied the same 12 peptide model to this set, cases and controls could no longer be 
distinguished. However, with the same peptides but after re-optimization of the model 
coefficients, we observed a sensitivity and specificity of 84% and 90%, respectively. 
As the coefficients of the equation are adjusted we had to check for the chance of 
overfitting of the data. Therefore, a background evaluation was performed which will 
be described later. Within the NELSON 2 validation set the combination of peptides 
was able to detect lung cancer 281 days on average (range 54-777 days) before the 
diagnosis of lung cancer. 
We compared the raw abundance of the 12 peptides between the two NELSON data-
sets. We observed that the average raw abundance of five peptides was higher in 
the cases compared to the average abundance of the controls from the NELSON 1 
dataset. These data were consistent with the findings from the NELSON 2 dataset. 
The other seven peptides had a higher average raw abundance in the controls of the 
NELSON 1 dataset compared to the abundance in the cases of this dataset. For only 
one of these seven peptides, this difference could be confirmed in the NELSON 2 
dataset. 
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Background evaluation of antibody peptide model 
In addition to the finding of the optimal combination of peptides which significantly 
distinguished cases from controls, a background analysis was performed. As the co-
efficients of the equation of the model were adjusted for each dataset we verified 
the results for a contribution of random selection of the data and thereby the chance 
of finding a comparable model by chance. The same workflow was applied for the 
model building except that at the beginning of the workflow the cases and controls 
of NELSON 1 were permutated at random. Discovery and validation was performed 
12 times in the permutated NELSON 1 and NELSON 2 datasets, each time with 12 
different peptides showing the lowest p-value (p<0.05) in the NELSON 1 set for that 
particular permutation. The performance of the multivariate model of the permutated 
discovery sets (NELSON 1) is shown in Figure 6A and the corresponding power in the 
validation sets (NELSON 2) in Figure 6B. Also, the performance found for the actual 
dataset was plotted. It can be observed that the multivariate fitting produces reason-
able models even for permutated data in the discovery set. 

 

Figure 6. Background determination in NELSON 1 and NELSON 2 datasets. Twelve times a permutation 
(Background) was performed on the NELSON 1 and NELSON 2 dataset. The sensitivity and specificity 
of the antibody peptide model are shown in red.  Background assessment: A) Twelve permutation runs 
are shown with the corresponding sensitivity and specificity of the NELSON 1 dataset (blue). The same 
12 peptides found in the background evaluation of NELSON 1 were tested in NELSON 2. B) The 12 runs 
are shown with the corresponding sensitivity and specificity of NELSON 2 dataset (blue). Note, as some 
results of the background analysis occurred more than once, a random number between -1 and 1 were 
added to each sensitivity and specificity number to make sure each analysis (blue dot) can be seen in the 
figure.

A

B
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However, especially in the validation dataset, the real data performed significantly 
better (p<0.05) than the permutated datasets, suggesting that the immunoglobulin 
peptides harbor information related to the disease state of the patient. Thus, the re-
sults we obtained do not stem from an artifact in the data processing. 

CT screening result in NELSON 1 and NELSON 2 dataset
In Figure 7A and 7B the screening results of the baseline CT scans are shown for the 
NELSON 1 and NELSON 2 set, respectively. According to the screening protocol of the 
NELSON trial, a repeat CT scan was performed following an indeterminate screening 
result, approximately 3 months later.
We observed that 68% of the cases had a positive screening result in both the NEL-
SON 1 and NELSON 2 set during the first 3 months of the screening program, the 
other lung cancers were diagnosed following another repeat CT scan after 3 months 
or during the second screening round. After on average 367 days (range 39-1193 
days) for NELSON 1 and 269 days (range 54-777 days) for NELSON 2, the screening 
result was positive, i.e. suspect for lung cancer and resulting in clinical work-up by the 
pulmonologist and eventually finally diagnosis of lung cancer.     

25 Cases

NELSON 1

12 indeterminate12 positive

5 positive

1 negative

1 indeterminate 5 negative 1 no CT scan

2 indeterminate17 positive 6 negative

29 Controls

9 indeterminate1 positive

0 positive

19 negative

3 indeterminate 6 negative

3 indeterminate1 positive 25 negative

Baseline

Follow-up

A

B

19 Cases

NELSON 2

6 indeterminate8 positive

5 positive

5 negative

0 indeterminate 1 negative

0 indeterminate13 positive 6 negative

20 Controls

1 indeterminate0 positive

0 positive

19 negative

0 indeterminate 1 negative

0 indeterminate0 positive 20 negative

Baseline

Follow-up

Figure 7. CT scan results of the NELSON 1 and NELSON 2 sample set. CT scan results of the A) NELSON 
1 and B) NELSON 2 sample sets are shown at time of blood sampling (Baseline). Also, CT results are 
shown of the follow-up CT scan after approximately three months (Follow-up). For one case from the NEL-
SON 1 set no Follow-up CT scan result was available. The last row represents the numbers of positive, 
indeterminate and negative CT scan results of baseline including follow-up results.
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Discussion
By mass spectrometry we found evidence that a proportion of peptides of the variable 
part of antibodies differ between lung cancer patients and controls. A combination of 
12 different peptides was able to distinguish lung cancer patients from controls in a 
high risk population. A sensitivity of 96% and a specificity of 100% were observed in 
the discovery set. An external validation in an independent case–control set was per-
formed and generated a sensitivity of 84% and a specificity of 90%. The background 
evaluation showed that the 12 antibody peptide model performed significantly better 
than a model generated based on permutated data. 
Recently, Arentz et al. published that uniquely mutated V regions peptides could be 
used as a proxy for the detection of anti-Ro52 autoantibodies in sera from primary 
Sjögren’s syndrome patients by mass spectrometry.28 Why these and other studies 
were able to identify similar or identical sequences could be explained by reper-
toire bias and the convergent evolution of antibodies during somatic mutation and 
selection.19-20 This selection favors specific alleles and sequences of antibodies with 
the optimal affinity towards the specific antigens during immune response.18, 29-30

We were able to identify peptide sequences which were distributed differently be-
tween lung cancer patients and controls. The antibody peptide model consisted not 
only of peptide sequences positioned at the CDR regions of an immunoglobulin but 
also at the framework region surrounding the CDRs. It may appear surprising that 
most of the peptides that are represented in the antibody peptide model derive from 
framework regions of the immunoglobulin, rather than from the hypervariable CDRs. 
This may be explained by their abundance in the immunoglobulin pool. Peptides car-
rying only few mutations relative to the germline are more likely to occur in several 
antibody clones, and thus have a higher abundance. This favors their detection by 
the mass spectrometer, especially in samples of high complexity. While technological 
advances may enable the reliable quantitation of also lower abundant peptides, it 
may even be that hypermutated CDRs are not as likely to be common among patients 
sharing an immune response. But moderately mutated peptides strike the best bal-
ance between specificity, abundance and sharing for the purposes of a diagnostic 
marker. The large heterogeneity of lung cancer could also contribute to the presence 
of fewer CDR peptides shared between lung cancer patients.
We observed that the average raw abundance of 6 from the 12 peptides where dis-
tributed differently in the cases and controls between the two datasets. The average 
raw abundance of these six peptides was higher in the controls in the NELSON 1 set 
but in the NELSON 2 set the average raw abundance was higher in the cases. Prob-
ably this is due to technical problems such as measurements on different LC columns 
or changes in sample composition over time. The mass spectrometer is probably not 
able to detect every time the same peptides and at similar intensities. This was also 
observed with the five different biological samples we measured on two separate LC 
columns which were manufactured at the same time (same batch).
Beside technical problems we also have to cope with the high variability of immuno-
globulins, which make the samples probably too complex for the mass spectrometer. 
A solution to this problem could be reduction of the complexity of the sample before it 
is measured on the mass spectrometer. This reduction could be established by frac-
tionation into smaller protein fragments such as Fab-κ and Fab-λ, or by producing im-
munoglobulin fragments containing just the variable domains of the IgG molecule.   
It was our aim to offset biological variation by including a relatively large number of 
patients in this study, but unfortunately large sample numbers translate to extended 
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measurement times of up to 8 weeks for a dataset. These measurement times intro-
duce technical variation that counteracts the advantage gained from the number of 
included patients.
We were not able to distinguish lung cancer cases from controls univariately by one 
peptide. Instead we needed a panel of different peptides to discriminate significantly 
between cases and controls. Lung cancer is a very heterogeneous disease which 
results in high variability between patients and cancer types. This might induce vari-
ous immune responses to different tumor antigens.6-12 Therefore, finding only one 
antibody that is shared between all lung cancer patients is highly unlikely. Brichory 
et al. for instance showed for PGP 9.5, annexin I and II a sensitivity of only 14%, 30% 
and 33%, respectively.31-32 Chapman et al. tested a panel of seven TAAs and found a 
sensitivity of 41% and a specificity of 93%. Validation of this panel in an independent 
sample set showed a sensitivity and specificity of 47% and 90%, respectively.33 Koziol 
et al. were able to distinguish lung cancer patients from normal individuals with a 
panel of seven TAAs.  A sensitivity of 80% and a specificity of 90% were observed, 
but no validation was performed.34 Moreover, Khattar et al. and Zhong et al. were 
able to identify validated autoantibody peptide panels for lung cancer screening with 
sensitivity and specificity ranging from 84%-91% and 73%-91%, respectively.35-36 It is 
therefore not surprising that no single peptide could be found in the current data set 
that distinguishes cases from controls. 
Using a multivariate model, we were able to distinguish lung cancer patients from 
controls. However, due to the experimental and biological variation, it was necessary 
that we recalibrated our model for each group of patients. This limits the current 
applicability of the method in the clinical practice, at least until significant technical 
advances enable a more robust quantification and identification of peptides in such 
complex samples. Still, we conclude from our data that differences exist between the 
immunoglobulin-derived peptides from early lung cancer patients and controls. This 
is corroborated by data from earlier studies in our own group as well as in other re-
search groups that showed conservation and sharing of rearranged immunoglobulin 
sequences in immunoglobulins against a particular antigen.19-20, 28 
So far, only age and smoking history have been used as selection criteria for enrol-
ment in screening trials, but it is well known that even though over 80% of all lung 
cancer cases are directly related to smoking, only 11% of female smokers and 17% 
of male smokers will be diagnosed with lung cancer during their lifetimes.37-38 There-
fore, additional diagnostic tests might select high risk individuals more precise when 
combined with the selection criteria age and smoking history in screening trials. The 
cases and controls we used for this study were selected based on their diagnosis 
of lung cancer within three years (range 39-1193 days) after the baseline CT scan. 
Therefore, calculation of sensitivity and specificity of CT screening in our subset of 
cases and controls from the NELSON trial are not applicable in this retrospective 
study. However, in this study we have demonstrated that 68% of the cases were de-
tectable for lung cancer by CT screening. Eventually after approximately 1 year the 
screening result of all cases were positive.
In the high risk population of the NELSON trial still approximately 27% of the par-
ticipants are subjected to invasive and expensive follow-up studies that revealed in 
benign disease at baseline CT screening.5 The performance of CT improves after fol-
low-up scans, but only after an amount of time has passed, on average a year for the 
sets in this study. Thus, there is need for additional diagnostic capabilities that can 
improve the performance of the current testing at baseline. For example, the group 
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of Massion recently published their results on a combination of a serum proteomic 
biomarker panel with clinical and CT data.39 In the current study, we were able to de-
tect lung cancer with an antibody peptide model in the NELSON 1 and NELSON 2 set 
with sensitivities of 96% and 84% and specificities of 100% and 90%, respectively at 
an early stage. This indicates that specific antibodies are present at an early disease 
stage and that such a panel of antibodies is able to detect lung cancer at an earlier 
stage than CT. Auto-antibody profiling has the potential to be a tool for early detection 
when incorporated into a comprehensive screening strategy if technical challenges 
described in this study can be overcome.
In conclusion, a panel of antibody peptides is identified that discriminates samples of 
lung cancer patients from controls. This is a first indication that peptides generated 
from the variable part of antibodies are shared between lung cancer patients and can 
be used to discriminate lung cancer patients and control groups. More quantitative 
work is still needed to assess the use of these peptides in clinical settings. 
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Abstract 

We developed a new version of the open source software package Peptrix that can 
yet compare large numbers of OrbitrapTM LC-MS data. The peptide profiling results 
for Peptrix on MS1 spectra were compared with those obtained from a small selec-
tion of open source and commercial software packages: msInspect, SieveTM and Pro-
genesisTM. The properties compared in these packages were speed, total number of 
detected masses, redundancy of masses, reproducibility in numbers and CV of inten-
sity, overlap of masses, and differences in peptide peak intensities. Reproducibility 
measurements were taken for the different MS1 software applications by measuring 
in triplicate a complex peptide mixture of immunoglobulin on the OrbitrapTM mass 
spectrometer. Values of peptide masses detected from the high intensity peaks of the 
MS1 spectra by peptide profiling were verified with values of the MS2 fragmented and 
sequenced masses that resulted in protein identifications with a significant score. 
Peptrix finds about the same number of peptide features as the other packages, but 
peptide masses are in some cases approximately 5 to 10 times less redundant pres-
ent in the peptide profile matrix. The Peptrix profile matrix displays the largest overlap 
when comparing the number of masses in a pair between two software applications. 
The overlap of peptide masses between software packages of low intensity peaks 
in the spectra is remarkably low with about 50% of the detected masses in the indi-
vidual packages. Peptrix does not differ from the other packages in detecting 96% of 
the masses that relate to highly abundant sequenced proteins. MS1 peak intensities 
vary between the applications in a non linear way as they are not processed using 
the same method. Peptrix is capable of peptide profiling using OrbitrapTM files and 
finding differential expressed peptides in body fluid and tissue samples. The number 
of peptide masses detected in OrbitrapTM files can be increased by using more MS1 
peptide profiling applications, including Peptrix, since it appears from the comparison 
of Peptrix with the other applications that all software packages have likely a high 
false negative rate of low intensity peptide peaks (missing peptides).
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Introduction 

High throughput OrbitrapTM (Thermo Fischer Scientific, Germany) mass spectrometry 
(MS) makes it possible to obtain full MS1-spectra and fragmentation-MS2 (MS/MS) 
spectra of peptides for comparison and identification purposes. The technique can be 
applied to compare the differences in quantities of proteins in body fluid and tissue 
samples. The peptides from enzymatic digested proteins are separated on an LC col-
umn. During elution, depending on sample complexity 1-100% of separated peptides 
detected in the spectra of the MS1 scans can be MS2 triggered by the Xcalibur™ 
instrument software for MS2 fragmentation 1.
The Peptrix application can handle raw OrbitrapTM files as well as MALDI-TOF and 
MALDI-FT-ICR mass spectra 2-7. Peptide profiling requires the following basic steps: 
1) peak picking from the raw mass spectra; 2) time alignment of the extracted peak 
masses between different LC runs; 3) aggregation of masses and corresponding in-
tensities of different sample runs on the OrbitrapTM in a peptide profile matrix; and 
4) statistical analysis to highlight masses differentially expressed between different 
groups. A peptide profile matrix, frequently called Peptide Array or PepArray, is created 
as an output file. Peptide peak intensities are presented in this matrix for all masses 
detected in every OrbitrapTM measurement. These MS1 masses can eventually be 
linked to protein identifiers using MS2 sequence information and available protein 
databases. Table 1 shows a fragment of such a peptide profile matrix. Replicate mea-
surements from a tryptic digested IgG Fab sample are presented as numbers 1, 2 and 
3 in the matrix columns, with the retention time and mass of a peptide in the matrix 
rows, e.g. peptide mass 1239.259 Da eluting at a retention time of 7969.383 s. The 
three replicate peak intensities measured for the mass 1239.259 Da are given in the 
matrix cells, e.g. the values 10005, 13333, 19683 in arbitrary units. 
Peptrix is not completely new software, but an extension of already published name-
less software. The architecture of Peptrix is described in 7. The application consists 
of: 1) a JavaTM graphical interface; 2) Mysql database for storage of meta-data; 3) 
ftp storage of raw data and processed files: and 4) an interface to R for statistical 
analysis. The software has changed in many aspects with respect to the previously 
reported version. Firstly, the peptide profile matrix created from LC-MS experiments 
contains an extra retention time dimension as peptides elute at different time points 
from the nano-LC column. Peak-picking algorithms over time are implemented com-
bining more OrbitrapTM scans. Time alignment has to be implemented between differ-
ent LC runs of the sample. Nano-spray ionization from LC-MS also generates multiple 
charged peptide ions and a different de-isotoping algorithm was implemented than 
was required for single charged peptides in MALDI-TOF and MALDI-FTICR measure-
ments. Instead of eliminating isotopes from the peak-lists, which is possible in MALDI 
experiments, mono-isotopes have to be selected from the raw OrbitrapTM spectra by 
peak-picking algorithms based on expected isotopic intensity distributions.
Other software packages exist for comparing the raw Xcalibur™ MS1 data between 
samples, possibly converted into mzXML formatted files, e.g. msInspect, MZMine, 
OpenMS, VIPER, PEPPer, MSight 8-10. These tools generate peptide profile matrices, 
in which spectral intensities and retention times of peptide masses from samples 
belonging to different groups are presented in various ways. 
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MH+ time (s)
Peak 

intensity in 
sample 1

Peak 
intensity in 
sample 2

Peak 
intensity in 
sample 3

Peptide 
present in 
sample 1

Peptide 
present in 
sample 2

Peptide 
present in 
sample 3

Total 
count of 
peptides 

1238.712 5702.29 30528 25175 23642 1 1 1 3

1238.735 7770.22 12416 9487 7326 1 1 1 3

1238.899 713.267 7848 5629 6229 1 1 1 3

1239.259 7969.383 10005 13333 19683 1 1 1 3

1239.53 4314.73 7110 10243 7283 1 1 1 3

1239.597 8150.09 5207 6428 2798 1 1 1 3

1239.599 4408.91 8264 7158 6992 1 1 1 3

1239.601 7048.683 4542 8373 6982 1 1 1 3

1239.621 1190.17 370540 333496 302810 1 1 1 3

1239.622 6657.29 69391 66874 53379 1 1 1 3

1239.624 5446.54 26198 32726 20632 1 1 1 3

1239.635 4654.07 60855 59416 159055 1 1 1 3

1239.638 6675.558 10973 0 14356 1 0 1 2

1239.64 3143.02 6429 6080 5409 1 1 1 3

1239.642 5808.01 192225 191568 159055 1 1 1 3

1239.692 4271.67 256980 297801 209433 1 1 1 3

1239.734 10051 6161 6481 5449 1 1 1 3

1239.749 7239.35 18034 14470 16265 1 1 1 3

1239.75 6547.471 7043 8459 5901 1 1 1 3

1240.065 5805.98 14427 14851 6499 1 1 1 3

1240.098 5509.82 19378 25322 20168 1 1 1 3

1240.499 2631.25 17863 9718 15101 1 1 1 3

1240.521 4792.05 15576 14008 16506 1 1 1 3
The replicate measurements of an tryptic digested IgG Fab sample are presented as numbers 1, 2 and 3 
in the columns of the matrix whereas the retention time and mass of a peptide are presented in the rows 
of the matrix, e.g. peptide mass 1239.259 Da eluting at a retention time of 7969.383 s. The measured 
peak intensities for the three replicate measurements of peptide mass 1239.259 Da are presented in 
the cells of the matrix, 10005, 13333, 19683 in arbitrary units. 

Some of these software packages, such as SuperHirn and SpecArray, did at the time 
of analysis not run on the Windows Operating System (OS) but only on Linux 9. Other 
applications required customized data input formats or connection to pre-filled da-
tabases with equipment-dependent retention times for sequenced peptide masses. 
The OrbitrapTM files contains all the necessary MS1 and MS2 information (for time 
alignment), and full analysis only requires an internet connection to a protein data-
base interface, e.g. MascotTM, as implemented in ProgenesisTM. Some applications 
cannot handle the approximately 1.8 GB big mzXML files, processed by readw.exe 
version 4.2.1 from  the raw files 11. This can be due to the size of the files causing RAM 
related issues. Another reason might be that readw.exe generates not entirely correct 
structurized mzXML files. In some files mzXML closing tags are missing. Readw.exe 
could not process files larger than 2 GB on our hardware; Intel Xeon W3520 Quad-
Core 2.67 GHz processor with 3.5 GB RAM.
The result of peptide profiling by Peptrix on MS1 spectra were compared with that 
obtained from a small selection of open source and commercial Windows software 
packages, i.e. 1) commercial SieveTM 1; 2) open source msInspect 12-13; and 3) com-

Table 1. A fragment of a peptide profile matrix or PepArray. 
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mercial ProgenesisTM 14. The aspects compared were: 1) speed; 2) total number of 
detected masses in the profile matrix; 3) redundancy of masses; 4) reproducibility of 
number of masses and CV of intensity; 5) overlap of masses between the selected 
packages; and 6) differences of peptide peak intensities determined by the software 
packages. The (basic) workflow of activities for the software tools compared - Peptrix, 
SieveTM, msInspect, and ProgenesisTM - is shown in Figure 1.
To compare the four packages, we analyzed three technical replicates of tryptic di-
gested immunoglobulin G (IgG) Fragment antigen binding (Fab) of human serum. We 
used Peptrix to compare the output of the triplicate measurements from the software 
packages. Unless important for interpretation of the results, we will not describe how 
they actually work in terms of algorithms, time alignment, peak selection by isotopic 
pattern recognition, using peak maxima, features or framing. For these matters, we 
refer you to the manufacturer’s documentation, the comparison study in 9 or the (ba-
sic) workflow of activities for the tools compared - Peptrix, SieveTM, msInspect, and 
ProgenesisTM - depicted in Figure 1.
As a practical example of Peptide profiling by Peptrix, we present the analysis results 
of OrbitrapTM measurements of in total 40 micro-dissected tissue samples, 10 spec-
tra of glioma blood vessels, 10 spectra of tissue surrounding the glioma vessels, 10 
spectra of normal endothelial vessels, and 10 spectra of endothelial tissue surround-
ing the normal vessels, previously analyzed by FT-ICR MS 15 .



Chapter 5

94

Figure 1. The (basic) workflow of activities for the compared tools: a) Peptrix, b) Sieve™, c) msInspect, 
and d) Progenesis™.
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Materials and Methods 

The purification of IgG Fab in human serum sample, tryptic digestion of the isolated 
Fab for MS and the mass spectrometry measurements are described in previous pub-
lished work.16  MS1 Peptide profile matrices of the IgG Fab serum replicate samples 
were created from raw OrbitrapTM files using Peptrix version 2.4.9, SieveTM version 
1.2, ProgenesisTM version 2.0 and msInspect (build 382, 2004-2009) after conver-
sion into mzXML files. The software packages Peptrix and msInspect de-convolute 
charged masses in isotopic clusters to the mono-isotopic MH+ values. All peptide pro-
file matrices were created with the software package default settings, such as exclu-
sion of single charged masses.

Mass and retention time window
To prevent software packages recording too much redundant peptide masses and 
misfits through the use of a retention time window that is too narrow when the pep-
tide profile matrix is being constructed, expected retention time differences of pep-
tides were determined between two consecutive LC runs of replicates.
Based on the maximum expected retention time differences observed (data not 
shown), we used a conservative time window of 5 min 17  (400 frames for msInspect) 
and mass window of 0.02 Da (10 ppm for Peptrix) for the software packages Peptrix 
and SieveTM to produce the four MS1 peptide profile matrices for the three IgG Fab 
replicates for mainly double and triple charged peptides. A setting of 50,000 frames 
was used for SieveTM. Mass and retention time windows could not be set for Progen-
esisTM.
The time window of 5 minutes is used in an additional way in Peptrix. Peptrix has 
an algorithm that avoids redundancies of peptide masses. When a peptide mass is 
detected by Peptrix at a specific retention time it is recorded in the Peptide profile 
matrix. When the same eluting peptide mass is detected again at a later moment 
within the time window of the previous measurement it is not recorded twice in the 
Peptide profile matrix. 

MS2 sequenced and identified masses
Values of peptide masses found in MS1 spectra by peptide profiling were verified 
using values of  MS2 sequenced masses that resulted in protein identifications with 
a significant score and a Gene Identifier (GI), using the MascotTM Daemon interface 
(Matrix Science, UK) 18. MS2 triggered means that the XcaliburTM software selects the 
peak mass in the MS1 spectrum for MS2 fragmentation and sequencing depending 
on inclusion settings. The MS2 fragmentation does not necessarily result in peptide 
identifications of proteins with a GI. The quality of the MS2 spectra may be too low to 
have a significant score from the search engine used. Also sequences of good quality 
MS2 spectra are sometimes not found in the in-silico digested protein databases.
The Thermo Fischer Scientific extract_msn.exe 18 program embedded in MascotTM 
Daemon version 2.2.2 18 interface extracts MascotTM generic files (MGF files). The 
resulting MGF files contain the precursor masses (m/z), their charge states (z), scan 
identifiers, and peak lists of all MS2 spectra. The MGF files were then sent to the 
MascotTM server and the following settings were used for the NCBI human database: 
tryptic digestion considering 1 possible missed cleavage, variable modification oxida-
tion of Methionine (M) (mass + 15.9994 Da), 10 ppm precursor and 0.6 Da fragment 
tolerance.
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Comparison matrix
We used Peptrix to compare the matrices from the 4 software packages investi-
gated together with the list of MS2 spectra triggered and MS2 sequenced masses 
where applicable. It is possible in Peptrix to create a profile matrix of mass-intensity 
peak-lists from MS experiments 6. A total of 4 peak-lists containing masses and in-
tensities (1 for each matrix), together with one list of MS2 triggered masses and one 
list of the MS2 fragmented masses where sequencing succeeded were extracted 
from the 4 software package peptide profiles. An artificial reference list or grid of 
20,275 masses, approximately equal to the number of features in the MS1 profile 
matrices, was constructed in a mass range between 1,600 and 2,400 Da with fixed 
distances of 20 ppm between the grid masses. A somewhat greater tolerance than 
the maximum expected mass inaccuracy of 10 ppm was used to reduce the pos-
sibility of slightly different masses being measured in the profile matrices of two 
different software applications for the same peptide end in two bins.
Peak masses from the generated 6 peak lists: 4 extracted from the matrices pro-
duced by the four software packages; the list of MS2 triggered masses; and the list 
of MS2 triggered masses where fragmentation and sequencing succeeded were 
matched with the artificial reference list using Peptrix. A mass window setting of 
plus or minus 10 ppm was used. This forces all the masses between 1,600 and 
2,400 Da from the peptide profile matrices to match with at least one of the 20,275 
grid points of the reference list. The numbers of overlapping and non-overlapping 
masses from the software packages were calculated using this constructed com-
parison matrix (Table 2).
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A total of 4 peak-lists containing masses and intensities (1 for each matrix), together with one list of 
MS2 triggered masses and one list of the MS2 fragmented masses where sequencing succeeded were 
matched plus or minus 10 ppm with an artificial reference list or grid of masses with fixed distances of 
20 ppm. The comparison matrix contains unoccupied space of MH+ mass values, roughly separated by 
the dashed lines. The triple charged peptide mass 581.69 Da, which when recalculated to the MH+ value 
of 1743.0563 Da is only detected by Peptrix. 

Mass MH+ ms2 triggered ms2 sequenced msInspect Peptrix ProgenesisTM SieveTM

(for 
fragmentation) (proteins found)

Peak intensity 
(x 103)

Sum peak 
intensities (x 103)

Peak intensities 
(x 103)

Peak intensities 
(x 103)

1741.6671 0 0 0 0 0 0
1741.7007 0 0 473 0 0 652985
1741.7447 1 1 30698 73319 133568 73185
1741.7638 1 0 277640 995497 107051 256383
1741.8094 1 0 3816 222852 14080 0
1741.8397 1 0 41071 146578 58422 78170
1741.8707 1 1 26311 92368 74067 2169410
1741.9122 0 0 3738 19527 6889 0
1741.9355 1 0 202031 95472 564808 273129
1741.9807 0 0 0 0 0 0
1742.008 0 0 1547 0 0 0

1742.0503 0 0 0 0 0 0
1742.0852 0 0 0 0 0 0

1742.12 0 0 0 0 0 0
1742.1472 0 0 0 0 0 101289
1742.193 0 0 0 0 0 45510

1742.2281 0 0 0 2691996 0 0
1742.2594 0 0 0 0 0 0
1742.2909 0 0 1407 69951 0 70092
1742.3208 0 0 0 0 0 3561843
1742.3641 0 0 2474 56134 0 106378
1742.3994 0 0 424 0 0 0
1742.4336 0 0 0 0 0 0
1742.4685 0 0 0 0 0 0
1742.5033 0 0 0 0 0 0
1742.5382 0 0 0 0 0 0
1742.573 0 0 0 0 0 0

1742.6079 0 0 0 0 0 0
1742.6389 0 0 0 0 621012 0
1742.6776 0 0 0 0 0 0
1742.7124 0 0 0 0 0 0
1742.7512 0 0 460 17303 0 60179
1742.7796 0 0 242 5676 0 467398
1742.8157 1 0 1002 67850 82288 43121
1742.8449 0 0 15846 10995 5417 56105
1742.8839 1 1 582 102837 26609 27587
1742.9085 0 0 15849 120678 69898 54135

1742.95 0 0 0 25553 8075 263965
1742.9913 0 0 0 0 0 0
1743.0287 0 0 1005 0 0 0
1743.0563 0 0 0 4248221 0 0
1743.0959 0 0 0 0 0 0
1743.1307 0 0 0 0 0 0

Table 2. A fragment of the comparison matrix. 
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Results 
Computation time
Table 3 displays the computation time for Peptrix and the 3 compared software 
packages. ProgenesisTM has the lowest computation time of 1 hour (with 24 MB 
RAM). The software packages msInspect and SieveTM need somewhat more time 
with 2 hours, while Peptrix processes the data in a slightly longer period of 3.5 
hours. This is due to: 1) storage of the peak list on an FTP server for every MS1 
scan; and 2) the extra comparison steps indicated by the grey boxes in Figure 1a 
when preparing the matrix. Peptide masses found in at least 4 MS1 scans (file size 
~1MB) are also compared with mono-isotopic masses present in less than 4 MS1 
scans (file size ~9 MB). These necessary extra comparison steps guarantee repro-
ducibility of peak intensities in the three replicate measurements when working with 
peak lists.

Processor
Peptrix
Intel Xeon W3520 
Quad-Core 2.67 GHz

SieveTM

Intel Xeon X5472 
Quad Core 3 GHz 

msInspect
Intel Xeon 5160 
Dual Core 3 GHz

ProgenesisTM

Intel Xeon E5430 
Quad Core 2.66 GHz

RAM (Giga Byte, GB) 3.5 3 2 24
Analysis Time (hours) 3.5 2 2 1

Numbers and reproducibility of peptide masses in the peptide profile 
matrices
Figure 2 shows a histogram representing the number of peptide masses, recalcu-
lated to MH+ values, detected in 1, 2 or 3 technical replicate measurements of the 
IgG Fab at a specific retention time in MS1 peptide profile matrices produced by the 
four software packages. Ideally all masses should be measured with the same in-
tensity in the 3 replicate measurements in the sample. The peptide profile matrices 
produced by the software packages contain about 20,000 to 70,000 mass-retention 
time entities (Figure 2). The Peptrix profile matrix contains a total number of 30,986 
MH+ masses mainly detected in double or triple charged peak clusters in the spectra. 
86% of all masses are measured in all three replicates.
SieveTM displays a larger total number of 33,967 peptide masses in the profile matrix 
detected in 50,000 frames with charge states > 0, of which about 21,000 masses 
have charge states 2 or 3. The peptide profile matrix produced by SieveTM contains 
peak masses that are nearly present in all 3 replicates for all charge states. 
The peptide profile matrix produced by msInspect displays the largest number of 
masses, i.e. 72,895 masses (Figure 2). The most important reason for the large num-
ber of masses and the relative lower overlap in msInspect is that it includes peptide 
masses that are only present in a few OrbitrapTM MS1 scans. The other software pack-
ages use more scans, e.g. Peptrix requires a peptide mass in at least 4 consecutive 
MS1 scans. In msInspect, most masses occur in one replicate, i.e. 76% of the total 
number. This is due to the fact that msInspect creates the peptide profile matrix in 
a sequence-dependent way. It matches a mass in the third replicate if it is already 
measured in the first and second replicate. Therefore, masses that occur only in the 
second, third or both measurements are not included in the peptide profile matrix. 
ProgenesisTM measures a low total number of 23,654 masses, of which 19,039 have 

Table 3. Analysis times of the software packages investigated
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charge states 2 or 3. Like for SieveTM, nearly all masses measured in all 3 replicates 
for all charge states (Figure 2). However, this matrix contains redundant peptide 
masses deviating less than 10 ppm from each other measured at consecutive reten-
tion times.

Figure 2. Histogram representing the number of MS1 peptide masses detected in 1, 2, or 3 technical 
replicate measurements and the total number of peptide masses in 4 different MS1 software packages.
Ideally all masses should be measured in the 3 replicate measurements of the sample, since the spectra 
originate from the same sample.

Repeated measurement of a single peptide mass in the peptide profile 
matrices
The four software packages show problems with peak tailing of high abundant peaks. 
Although the intensities in the peak tail are just fractions (≤ 0.1%) of the apex intensi-
ties, they still can be detected minutes after the peak, and in extreme cases smear until 
the end of the run. Such an example is shown for MH+ peptide mass 1502.756993 Da 
of Ig kappa chain C region (Table 4) with the sequence DSTYSLSSTLTLSK, which elut-
ed from approximately 85 to 180 minutes. The peptide mass was measured 28 times 
in the ProgenesisTM peptide profile matrix, about 27 times in the SieveTM profile matrix, 
8 times in msInspect, and only 1 time in the Peptrix profile matrix. 
Another extreme example is the peptide VYACEVTHQGLSSPVTK with mass MH+ 

1818.9042 Da of Ig kappa chain C region (Table 4). This peptide eluted between 
approximately 50 and 130 minutes and the mass was measured 19 times in the Pro-
genesisTM peptide profile matrix, 10 times in the SieveTM profile matrix, about 18 times 
in msInspect, and 3 times in the Peptrix profile matrix. 
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Overlap of peptide masses between the MS1 peptide profile matrices
A number of 1,578 Peptrix peptide masses between 1,600 and 2,400 Da differ 
more than 20 ppm from each other. This number represents 27% of the grid points 
in the comparison matrix. In reality, 38% (> 27%) of the total number of grid points 
match with a Peptrix single peptide. This means that some Peptrix masses within 
20 ppm split-up and match with two grid-points. Therefore, the non-matching pep-
tide masses measured between the packages are really significant for 100 * 27/38 
≈ 70%. The other grid points match with more than one mass in the Peptrix peptide 
profile matrix. Percentages: 36%, 16%, 7%, 2% and 1% of the 5,777 grid points 
are measured for combinations with 2, 3, 4, 5 and 6 masses of the Peptrix peptide 
profile matrix respectively. This means that overlap between packages is likely to be 
overestimated using the comparison matrix grid, not taking the retention time into 
account.
Figure 3 shows the pair-wise overlap between two packages in descending overlap 
order, using the comparison matrix. The average number of 5,618 masses in the 
comparison matrix for each package is about four times lower than the 20,275 refer-
ence points between 1,600 and 2,400 Da, since the grid in the comparison matrix 
contains unoccupied space of MH+ mass values (see Table 2). The overlap between 
each time two packages is relatively low with 1/3 of the number of matches with the 
grid of two software packages together. Most overlap was determined between Pep-
trix and msInspect, and the least overlap was between SieveTM and ProgenesisTM.  

Figure 3. A pair-wise comparison of overlapping peptide masses, each time between the peptide profile 
matrices of two MS1 software packages. A comparison matrix was constructed by Peptrix using an artifi-
cial grid of 20275 masses between 1600 and 2400 Da with distances of 20 ppm between the masses. 
Peak masses from two peptide profile matrices for the software packages Peptrix, Sieve™, Progenesis™ 
and msInspect were matched with this grid in the comparison matrix, using a mass window with 10 ppm 
in two directions and a total distance of 20 ppm.
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The numbers of matched masses between more than 2 software packages are 
presented in the 4-way Venn diagram in Figure 4. The number of non-overlapping 
masses from the software packages is relatively large for Peptrix, SieveTM and msIn-
spect, i.e. 1,302 for Peptrix, 1,920 for SieveTM and 2,791 for msInspect, while 168 
is measured for ProgenesisTM. The number of non-matching MH+ peptide masses in 
Figure 4 increases with the size of the peptide profile matrices (Figure 2). Only a 
small number of masses (1,802) overlap between all software packages. This num-
ber represents approximately 32% of the average total number of 5,618 possible 
matches with the grid for each software package. If the number of masses present 
in three applications reflects real masses, the same number represents the num-
ber of missing masses, since these masses should be detected by the four software 
packages. In total 1,561 distinct missing masses MH+  are measured between 1,600 
and 2,400 Da; 759+124+258+420 (Figure 4). The ratio between detected and not-
detected MH+ masses for each software application, irrespective of their accuracy, 
can be estimated at 1,561:1,802 ≈ 1:1.

Progenesis

Peptrix msInspect

Sieve

Figure 4. A 4-way Venn diagram representing the numbers of peptide masses in each profile matrix for 
Peptrix, Sieve™, Progenesis™ and msInspect, which match between 1, 2, 3 or 4 software packages. A 
comparison matrix was constructed by Peptrix using an artificial grid of 20275 masses between 1600 
and 2400 Da with distances of 20 ppm between the masses. Peak masses from the individual software 
package peptide profile matrices were matched with the grids for the comparison matrix, using a mass 
window with 10 ppm in two directions and a total distance of 20 ppm.

Overlap of MS2 triggered and sequenced masses
A sub-selection from the comparison matrix in Table 2 was taken for MS2 triggered 
masses where sequencing succeeded and proteins were identified, using the MGF 
files from the 3 technical replicates. Figure 5 shows the pair-wise overlap of MS2 
triggered, sequenced, and identified masses between two software packages in de-
scending order of overlap. The most overlap (96%) is measured between Peptrix and 
ProgenesisTM, with the least overlap (78%) between SieveTM and msInspect. We find 
just 260 MS2 precursors identified in a 3 h gradient between 1,600 and 2,400 Da. 
One major reason for this relatively low number is that we are working with an IgG 
Fab fragment sample yielding a lower number of identifications, presumably because 
quite a proportion of the peptides have unknown sequences not present in the pro-
tein database, which means they are MS2 triggered and sequenced, but protein iden-
tification did not succeeded. 
Figure 6 shows the overlap of MS2 triggered and MS2 sequenced and identified pep-
tide masses between all software packages, presented in a 4-way Venn diagram. 
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When comparing identified MS2 precursors from MS2 spectra with a MascotTM score 
> 25, the overlap between all software packages is relatively high with approximately 
76% (197/260) of the total number of sequenced and identified masses.

Figure 5. A pair-wise comparison of peptide masses overlapping with identified protein GI’s, each time 
between the peptide profile matrices from two MS1 software packages All masses are sequenced and 
identified, including the non-overlapping masses in the individual packages. A comparison matrix was con-
structed by Peptrix using an artificial grid of 20275 masses between 1600 and 2400 Da with distances of 
20 ppm between the masses. Peak masses from two peptide profile matrices identified with protein GI’s for 
the software packages Peptrix, Sieve™, Progenesis™ and msInspect were matched with the comparison 
matrix grid, using a mass window with 10 ppm in two directions and a total distance of 20 ppm.

Figure 6. A 4-way Venn diagram representing the numbers of peptide masses identified with protein GI’s 
in each matrix for Peptrix, Sieve™, Progenesis™ and msInspect, which match between 1, 2, 3, or 4 soft-
ware packages. A comparison matrix was constructed by Peptrix using an artificial grid of 20275 masses 
between 1600 and 2400 Da and distances of 20 ppm between the masses. Peak masses identified with 
protein GI’s from the individual peptide profile matrices for the software packages were matched with the 
comparison matrix grid, using a mass window with 10 ppm in two directions and a total distance of 20 
ppm.
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Differences in peak intensities
Table 4 shows peptide masses MH+ for the in-silico digested highly abundant, most 
frequently sequenced protein Ig kappa chain C region, GI 157838230, found in 
any of the investigated software packages. The corresponding GI protein number is 
presented in the MascotTM Daemon columns of Table 4. It appears that the non-
sequenced peptide mass 2553.22833 Da is found exclusively by SieveTM, and is 
absent from the matrices of the other packages. Conversely, the low intensity MS1 
masses 888.49378 and 2069.04844 are found by all software applications in one 
or more replicates, but are never triggered for MS2.
The peak intensities do not vary much between different replicate measurements 
in one application, but vary greatly between the investigated applications as shown 
in Table 4. An exception to this is msInspect. Low intensity peaks are not always 
detected in triplicate by msInspect as was already visible in the histogram in Figure 
2, e.g. for mass 2069.04844 Da, which has only one intensity of 30 arbitrary units 
measured in replicate number 1. 
On average, the peak intensity increases in the order: msInspect, SieveTM, Peptrix, 
ProgenesisTM. This ranking is not consistent over all peptide masses, however. For 
example, the high intensity of mass 1502.75844 Da ranks in the order: msInspect, 
SieveTM, ProgenesisTM, Peptrix; and the lower intensity of the mass 1740.87377 Da 
ranks in the order: msInspect, Peptrix, ProgenesisTM, SieveTM. For the lower peak in-
tensities, with presumably low signal to noise ratios SieveTM measures a relative high 
intensity, while for the relative high peak intensities with presumably high signal to 
noise ratios ProgenesisTM and Peptrix measure relative high peak intensities.
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Discussion  

Peak picking from individual spectra before generation of the profile matrix as imple-
mented in Peptrix has the advantage of parallel processing and scalability to a large 
number of spectra and distributed computer power. Peptrix, SieveTM, and msInspect 
run on average computer systems. Comparison of spectral intensities over all samples 
at once requires a lot of RAM for ProgenesisTM, which may be a disadvantage with an 
increasing size of datasets. We determined the reproducibility of the measurements 
by triplicate LC runs for one sample. We are aware that the number of samples used 
(3 replicates) does not really reflect an experimental setup for regular proteomics 
studies, but allows in-depth analysis how these software packages perform techni-
cally. The biological replicates used usually far exceed the numbers presented. There-
fore we present as a practical example of Peptide profiling by Peptrix, the analysis 
results of OrbitrapTM measurements of in total 40 micro-dissected tissue samples. 
Peptrix can analyze the 40 OrbitrapTM raw files of the micro-dissected tissue samples, 
each of approximately 500 MB in 53 hours, 1 hour and 20 minutes for each file, using 
a 2.67 GHz Intel Xeon W3520 Quad-Core processor and 3.5 GB of RAM, a relatively 
low Java memory heap size (XMX) with settings of 1024 Mega Byte (MB).
In particular, the software packages that compare the spectral patterns over all sam-
ples directly, such as ProgenesisTM and SieveTM, produce very reproducible peak lists 
with a low CV of intensity as was demonstrated in the histogram of the triplicate 
measurements for the IgG Fab. A single replicate measurement of a sample in large 
sample datasets should be sufficient in peptide profiling studies.
When matrices are prepared from peak lists, it is important to also store the masses 
of rejected peaks into “noise” lists (grey boxes in Figure 1a) to improve reproducibility 
of the measurements (Figure 2), since low intensity peaks can either just fit or not 
fit the selection criteria. These additional noise-lists can be used when preparing the 
peptide profile matrix. First, a peak mass in the list from one sample is matched with 
the peak mass in the list from another sample. If this mass is not present in the peak 
list from the other sample, it is searched for in the noise-list from the other sample. 
An FT-ICR MS example of such an approach was presented in our previous paper 6, 
and we have extended this approach for LC-MS.
High intensity peptide mass peaks in the MS1 spectra result most frequently in bet-
ter MS2 fragmentation spectra and lead to more identified proteins after searching 
for peptide sequences in the protein databases. As expected, the peak picking of the 
high intensity peaks is more effective since the overlap between the software pack-
ages for these sequenced mass lists is higher as been demonstrated in Figures 5 and 
6 than for all peptide masses as been demonstrated in Figures 3 and 4. The peptide 
masses in Figures 3 and 4 include low abundant peptide masses digested from low 
abundant proteins. It shows that all packages are capable of detecting peptides of 
high abundant proteins in a reliable way, but that they differ in detection of low con-
centration peptides. The average overlap for low abundant peptides is ½ / (½ + ½ 
+ ½) ≈ 32% (Figure 3) as approximately ½ of the peaks are not found. Peak finding 
might be especially difficult for low intensity overlapping isotopic clusters in the mass 
spectra. 
MS2 sequencing and protein identification requires accuracy of the mono-isotopic 
mass. The applications that perform isotopic pattern recognition, such as Peptrix, 
msInspect, and ProgenesisTM, show the largest overlap in Figure 5. The software ap-
plication msInspect has the largest number of non-overlapping masses. In compar-
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ing numbers of peptide features detected alone (Figure 2), one could conclude that 
SieveTM works the best, followed by Peptrix and ProgenesisTM. SieveTM does not per-
form isotopic pattern recognition. This has the disadvantage that isotopes of a pep-
tide mass can be wrongly assigned as the mono-isotopic mass. This may explain why 
SieveTM measures a relative high intensity for the lower peak intensities, with presum-
ably low signal to noise ratios (Table 4). Some features in the SieveTM profile matrix 
also display non integer values for the charge state, because the real MH+ value is for 
one reason or another difficult to calculate (for example overlapping peaks). SieveTM 
presumably combines different peptides with different charge states in a single frame 
(Figure 1b). 
False Discovery Rates (FDRs) could be calculated, by comparing the peptide masses 
in the profile matrices with those from hand-picked peaks in a single MS1 scan, for 
example scanning 9919 at a retention time of 113.48 minutes. However, in this sin-
gle scan, hundreds and perhaps even thousands of low intensity peptide features can 
be detected, making a manual FDR calculation impossible. This indicates that the 
software packages have likely a high false negative rate (missing peptides).
When comparing the peak lists for in-silico digested peptide masses from IgG Fab, it 
appears that all software packages are capable of extracting almost 100% of the pep-
tide masses, however, with different intensities, and by contrast for msInspect not al-
ways in a reproducible way in replicates. Apparently, peak intensities are established 
by the MS1 software packages investigated in a different way. Peptrix determines the 
highest intensity of a peptide MH+ mono-isotope mass in a LC elution profile. The in-
tensities of double and triple charged peptides are combined.  SieveTM takes the inte-
gral of intensity under the elution curve of a frame (Figure 1b). The software package 
msInspect determines the highest intensity of an isotopic mass in an isotopic cluster 
as a function of LC time. This is not necessarily the mono-isotope. ProgenesisTM cal-
culates the integral of intensity in two dimensions, in direction of mass and retention 
time in a 2-D gel view (Figure 1). 
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General discussion & summary

As lung cancer is most of the time detected at an advanced stage it is one of the can-
cers with the highest deaths among cancer. The risk of dying from lung cancer is as-
sociated with cigarette smoking. Populations of smokers have a higher risk to develop 
lung cancer. Therefore, screening of high risk populations is of great importance. Low-
dose spiral CT scan is used for lung cancer screening. Although, CT screening is not 
yet recommended unless it is used as part of a clinical trial, because of the drawback 
of high rate of false-positive scan results. Therefore, biomarkers may be useful com-
plementary to CT screening in a screening strategy or most ideally as an independent 
biomarker. Autoantibody profiling could be a powerful tool for early detection of lung 
cancer when incorporated into a screening strategy. In Chapter 2 we described our 
approach for identification and quantification of IgG Fab and CDRs by mass spectrom-
etry. With this approach we tried to determine the possibility of using immunoglobu-
lins with specific molecular signatures for diagnostic use in different cancers and au-
toimmune diseases.  We were able to demonstrate that our approach is reproducible 
with a high recovery, fast and provides sequencing information by mass spectrometry. 
Immunoglobulins, or antibodies, are complex molecules with large variation. The pos-
sible diversity in immunoglobulins is estimated between 1013 and 1050.1-2 Therefore, 
sequence variation is extremely high and one could assume that finding similar or 
even identical sequences in different individuals is highly unlikely. However, different 
studies including ourselves have shown the opposite.3-7 We described in Chapter 2 a 
similarity of 83%, based on MS signals, between seven healthy individuals by mass 
spectrometry. The group of Weinstein performed a sequencing project in zebra fish 
and found identical CDR3 sequences in different zebra fishes.8 For PNS patients IgG 
autoantibodies against onconeural antigens such as HuD, Yo, amphiphysin and CV2, 
are occurring in serum. Maat et al. showed that primary amino acid structures of the 
antibodies that were specific for these antigens were shared between different PNS 
patients.9 Why these studies were able to identify similar or identical CDR sequences 
could be explained by repertoire bias. During immune response antibodies could be 
subjected to some kind of selection after rearrangement and affinity maturation.10-13 
VanDuijn et al. showed with their recombinant HuD protein immunized rat study that 
the development of immunoglobulins is not a random process but selection do occur 
during immune response and that this selection is shared between different rats.6

In Chapter 2 we also showed that we were able to purify and sequence many CDR 
sequences by mass spectrometry. By using different databases we were able to iden-
tify even significantly more CDR sequences compared to Obermeier and colleagues.14 
Besides the use of different databases, it might be possible to improve the method 
by molecular dissection. This reduces the complexity of the immunoglobulin molecule 
which may lead to an increase of identifying CDR sequences and therefore more dis-
ease - related CDR sequences could possibly be detected. In Chapter 3 we described 
a novel method to reduce the complexity of the immunoglobulin by molecular dissect 
IgG into κ and λ fragments. The method developed was reproducible with a high recov-
ery of IgG-κ and IgG-λ for IgG and Fab-κ and Fab-λ for Fab. We observed a higher yield 
of identified CDRs in the Fab fraction than in the IgG fractions. This can be explained 
by the fact that IgG κ and λ are missing CDRs of the heavy chain. This was also sup-
ported by this study as we found a four times higher CDR ratio (CDR1:CDR2:CDR3) 
in Fab, Fab-κ and Fab-λ compared to IgG-κ and IgG-λ. We showed a twofold higher 
yield of identified CDRs when Fab-κ, Fab-λ, κ and λ were combined and compared 
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to the yield of Fab. Fab-κ consisted of more CDRs than Fab-λ and more significantly 
different CDRs were observed in Fab-κ compared to the other three fractions. This 
can be explained by the fact that during B-cell differentiation the heavy chain genes 
are first rearranged. After rearrangement of the heavy chain genes the κ chain genes 
are rearranged followed by the λ chain genes.1  In literature, the antibodies that are 
described to be expressed during cancer development are the heavy chains and κ 
chains.15 Therefore, we advised in this chapter to use Fab-κ next to Fab. Applying two 
purifications and two different mass spectrometry measurements results in twice as 
much measurement time, but the effort is worthwhile as one receives an addition of 
50% more identified CDRs. These results may imply an increase of the likelihood of 
finding (lung-) cancer related CDR sequences.
In chapte4 we showed a panel of 12 different antibody peptides that were able to 
distinguish lung cancer patients from controls in a high risk population by the ap-
proach described in Chapter 2. This antibody peptide model consisted not only out of 
peptide sequences which originated purely from the CDR regions of an immunoglobu-
lin but also from the framework regions. Why we did not obtain an antibody peptide 
model consisting of only CDR region peptides but also peptides derived from frame-
work regions of an immunoglobulin could be explained by biological issues such as 
abundance in the immunoglobulin pool. It is more likely that peptides with only few 
mutations compared to the germline, occur in several antibody clones and therefore 
having a higher abundance. This results in more chance of being detected by a mass 
spectrometer.
 Moreover, the samples we used in this study might be too complex for a mass spec-
trometer. Therefore, purifying CDR fragments would be ideally, but unfortunately sam-
ple preparation procedures do not exist yet. 
Besides the high variability of an antibody, lung cancer is a heterogeneous disease 
which results in high variability between patients and may induce immune responses 
to various tumor antigens.16-22 Therefore, it is not surprising that we were not able to 
find only one antibody peptide that could distinguish lung cancer patients from con-
trols. A study performed by Brichory et al. showed low sensitivities for single TAAs.23-24 
Instead of using a single TAA, Khattar et al. and Zhong et al. tested a panel of TAAs 
and validated the panel. They showed sensitivities ranging from 84%-91% and speci-
ficities from 73%-91%.25-26 We observed in the NELSON 1 (discovery) and NELSON 
2 (validation) set a sensitivity of 96% and 84% and specificities of 100% and 90%, 
respectively. Due to technical problems we had to recalibrate our model for each pa-
tient group. The background evaluation showed that our antibody peptide model per-
formed significantly better than a model generated based on just permutated data. 
Until now only age and smoking history have been used as selection criteria for enrol-
ment in screening trials. Additional diagnostic test might select high risk individuals 
more precise when combined with age and smoking history. CT screening has dem-
onstrated its ability to detect lung cancer with high sensitivities and specificities at 
different screening rounds (baseline and one year later).27 However, in the NELSON 
trial 27% of the participants are subjected to invasive and expensive follow-up stud-
ies that revealed in benign disease at baseline CT screening. The performance of CT 
improves after follow-up scans, but only after a long period of time, on average a year. 
Therefore, additional diagnostic tests are needed. Massion et al. showed their results 
on a combination of a serum proteomic biomarker panel with clinical and CT data.28 
In Chapter 4 we were able to detect lung cancer with an antibody peptide model at an 
early stage. Our results indicate that specific antibodies are able to detect lung can-
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cer at an earlier stage than CT screening. Auto-antibody profiling has the potential to 
be a powerful additional test for early detection of lung cancer in a screening strategy. 
But still technical challenges have to be improved before this method is applicable in 
the clinical practice.  
Besides correct sample handling and preparation and mass spectrometry measure-
ment, proper data analysis is very important. In Chapter 5 we discuss the software 
package developed by our group and compared it with three other open source and 
commercial available software packages. Peak picking is a very crucial step in data 
analysis. The reproducibility of finding peptide masses in different replicates should 
be high and correct. For example we showed that 86% of all peptides masses were 
observed by Peptrix in all the three replicates of an IgG Fab sample. In contrast, msIn-
spect, one of the compared software packages, had less overlap in peptide masses, 
76% of the total number of masses was observed in only one replicate. This is related 
to the fact that this software package only matches a mass in a second or third repli-
cate if it was detected in the first replicate. Therefore, a mass observed in the second 
and third replicate but not in the first replicate will not be observed in the final peptide 
profile matrix, the matrix that contains all the results of the detected masses from all 
samples. This can lead to loss of interesting peptides for biomarker discovery.
A solution could be storage of rejected peaks in to a list, as is included in the Peptrix 
software. In this way a peak that was detected as described above in the second 
and third sample could be included in the peptide matrix when this peak was stored 
on the list of the first sample. This will increase the reproducibility of the peak lists 
between different samples. 
The four software packages differ in detection of low abundant peptides. One has 
more difficulties in detecting them than the other. This results in large numbers of 
non-matching peptides that do not overlap between the four software packages. The 
more MS1 spectra the higher the number of non-matching peptides was observed. 
For example, Progenesis had less MS1 spectra compared to msInspect and had less 
non-matching peptides than msInspect. The overlap of peptides between the four 
software packages was therefore only 32%. 
Also, peak intensity is an important feature during data analysis. The intensities did 
not differ between replicates for each software package, but the intensity differed be-
tween the software packages. This may be related to the different way of establishing 
peak intensities by the software package. 
In conclusion, using more software packages can increase the number of detect-
ed peptide masses and give understanding of how, especially commercial software 
packages work.

Future research
Our Fab purification combined Orbitrap mass spectrometry approach is well suited for 
the discovery of an antibody panel for lung cancer. It reaches high levels of accuracy, 
resolution and sensitivity. A limitation of this method is that it is not a high-through-
put approach. Therefore, we are interested to validate our panel with techniques like 
MRM (multiple reaction monitoring) or SRM (selective reaction monitoring). 
Validation of peptides or proteins that are of interest for a specific disease is still a 
critical point. Antibodies or ELSIA kits are not available for the majority of interesting 
peptides or proteins. Techniques such as MRM and SRM are relatively new proteomic 
techniques to quantify proteins at the ng/ml level and are interesting alternatives to 
measure panels of peptides or proteins. SRM can be used for monitoring and quan-
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tification of roughly 10 to 50 specific peptides within complex mixtures.29-30 Besides 
applying this technique for validation it is also suitable for biomarker discovery.29, 31  
The development of SRM might result in using proteomics as a biomarker discovery 
tool but also as a diagnostic method itself. 

With the studies included in this thesis we have shown that one can obtain an in-
crease of CDR sequences by molecular dissection of IgG. Besides this, molecular 
dissection improvements in sequence coverage may also be an option. Improvement 
of the resolution by using ultra high-pressure chromatography techniques, better se-
quence identification and depletion of constant regions of immunoglobulins can in-
crease the enrichment of specific CDRs that are interesting for lung cancer detection. 
Secondly, increasing the spectra quality and mass accuracy, identification of de novo 
sequencing peptides can be improved. A combination of CID (collision-induced dis-
sociation) and HCD (higher energy collision-induced dissociation) spectra will improve 
the identification of de novo peptides. With HCD low mass regions can be measured 
because of the additional fragments that can be obtained. Furthermore, ETD (elec-
tron-transfer dissociation) can also increase the identification of de novo peptides. 
By ETD fragmentation, longer peptides can be detected and compared to CID to gain 
more sequence information.32-34 
In conclusion, with the research performed for this thesis we have accomplished a 
proof of concept that shows that specific antibody related peptides exist which shows 
that lung cancer patients and controls can be discriminated.  This research work 
needs further evaluation with relative high-throughput techniques such as immuno-
assay or SRM to determine the value for clinical use. 
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Dutch Summary
Longkanker is op dit moment één van de meest voorkomende vormen van kanker met 
het hoogste sterftegetal (28%) in de wereld. Het risico om longkanker te ontwikkelen 
is geassocieerd met het roken van sigaretten. Tachtig tot negentig procent van alle 
longkankerpatiënten zijn te wijten aan roken. Slechts 15% van deze patiënten wordt 
daadwerkelijk in een vroeg stadium gediagnosticeerd en kunnen geopereerd worden. 
Het is daarom van belang om longkanker in een vroeg stadium te kunnen detecteren. 
Het is bewezen dat CT screening longkanker in een vroeg stadium kan opsporen, 
maar helaas wordt er nog een percentage van ongeveer 27% van de patiënten foutief 
gediagnosticeerd voor longkanker wat onnodige stress bij deze patiënten geeft en/
of dat er zelfs onnodige operaties uitgevoerd worden wat extra kosten met zich mee 
brengt. Hoog risico screening op longkanker is daarom van groot belang. Op dit mo-
ment zijn alleen leeftijd en rookgedrag selectiecriteria voor het opnemen van indivi-
duen in een screening trial. Naast het includeren van individuen waarbij bekend is 
dat er longziekten in de familie voorkomt zou een biomarker ook hoog risicogroepen 
voor longkanker kunnen detecteren. Er zijn al een aantal studies uitgevoerd waarbij 
gezocht is naar biomarkers voor longkanker, maar ondanks dat een aantal van deze 
studies goede sensitiviteit en specificiteit opbrengen zijn deze biomarkers niet ge-
valideerd of waren ze niet reproduceerbaar. Dit proefschrift laat een andere aanpak 
zien dan die in andere studies gebruikt zijn.
Zoals gezegd zijn er al een aantal studies die getracht hebben een biomarker of 
biomarkerpanel te vinden voor longkanker. Deze studies zijn voornamelijk gefocus-
seerd op het vinden van een specifiek antigeen, waarbij men op voorhand al weet 
naar welk antigeen men op zoek gaat. Verschillende studies hebben aangetoond 
dat er een humoraal immuunrespons optreedt in longkanker maar ook in andere 
typen kanker. Tumoren zouden ervoor zorgen dat er veel TAAs (tumor geassocieerde 
antigenen) worden vrijgelaten in het bloed, waardoor er mogelijk autoantilichamen 
worden geproduceerd tegen deze antigenen. In hoofdstuk 2 laten wij een methode 
zien die mogelijk toegepast zou kunnen worden op het vinden van een biomarker 
voor longkanker of andere typen kanker of auto-imuunziekten. Bij deze methode 
hoeft men niet op voorhand te weten naar welk antigeen gezocht gaat worden. Deze 
methode is gebaseerd op het vinden van antilichamen die mogelijk een rol bij kanker 
of auto-imuunziekten spelen. Doordat men niet gericht op zoek gaat naar één of 
meerdere antigenen vergroot men de kans op het vinden van een marker die ook 
na validatie zowel een goede sensitiviteit als specificiteit zal geven. De methode die 
ontwikkeld is, is gebaseerd op het sequencen en kwantificeren van IgG Fab en CDRs 
(complementarity determining regions) met behulp van massaspectrometrie. Antili-
chamen, ook wel immuunglobulines genoemd, bestaan uit constante gedeelten en 
variabele gedeelten. Een IgG Fab is een fragment van een immuunglobuline type G 
waarin het variabele gebied van het molecuul zich bevindt in één derde van het con-
stante gebied. Binnen het variabele gebied bevinden zich drie verschillende CDRs, 
CDR1, CDR2 en CDR3. Deze CDRs zijn hypervariabel en zorgen voor de specificiteit 
en binding van het antigeen aan het antilichaam. De ontwikkelde methode bestaat 
uit een opzuiveringsstap van IgG Fab waarna deze fragmenten worden geanalyseerd 
op een massaspectrometer. De zuiveringsstap gaf ons reproduceerbare resultaten. 
Daarnaast is het een snelle methode die maar één sample geeft per individu om 
gemeten te worden op een massaspectrometer. Immuunglobulines zijn complexe 
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moleculen met een grote variatie. Theoretisch ligt de diversiteit van een immuun-
globuline tussen de 1013 en 1050 mogelijkheden. Daarom zou het erg moeilijk kunnen 
zijn om vergelijkbare of zelfs identieke aminozuur sequenties te kunnen vinden met 
de massaspectrometer. Wij hebben kunnen aantonen in hoofdstuk 2 dat 83% van de 
resultaten die wij gevonden hebben met de massaspectrometer overeenkomen tus-
sen zeven gezonde individuen.
Omdat het immuunglobuline zeer variabel is hebben we in hoofdstuk 3 geprobeerd 
om de complexiteit van het immuunglobuline te reduceren zodat de variatie van het 
immuunglobuline lager zou kunnen worden gebracht voor de massaspectrometer. 
Hierdoor zouden we de kans op het vinden van CDR sequenties die longkanker gere-
lateerd zijn kunnen vergroten ten opzichte van de methode die in hoofdstuk 2 is be-
schreven. Deze methode verlaagd de complexiteit van het immuunglobuline door uit 
IgG en Fab de kappa (κ) en lambda (λ) fragmenten op te zuiveren. Ook deze methode 
liet reproduceerbare resultaten zien met goede zuiveringsopbrengsten voor vier ver-
schillende fragmenten, IgG-κ en IgG-λ gezuiverd uit IgG en Fab-κ en Fab-λ gezuiverd 
uit Fab. Om uit te zoeken of deze methode een hogere opbrengst van CDR’s kan ge-
nereren hebben we de opbrengsten van CDR’s vergeleken tussen de twee methoden. 
Het aantal CDR’s dat in de Fab-κ, Fab-λ, IgG-κ en IgG-λ werd gevonden was twee keer 
zoveel als dat er aan CDR’s gevonden werd bij de Fab’s. Onze conclusie uit dit hoofd-
stuk was dat Fab-κ samen met Fab de meeste opbrengst aan CDR’s opleverde. Dit 
konden wij concluderen, aangezien Fab-κ meer CDR sequenties opleverde dan Fab-λ 
en meer significante CDR’s opleverde ten opzichte van de andere drie fragmenten. 
Deze methode kost weliswaar twee keer zoveel tijd ten opzichte van de Fab methode 
uit hoofdstuk 2, maar het levert wel 50% meer geïdentificeerde CDRs op wat de kans 
op het vinden van longkanker gerelateerde CDR sequenties verhoogt. 
In hoofdstuk 4 laten wij een antilichaam-peptide model zien bestaande uit 12 ver-
schillende peptiden. Dit model was in staat om longkanker patiënten van controles te 
onderscheiden in een hoog-risico populatie. Hierbij is gebruik gemaakt van de meth-
ode die beschreven is in hoofdstuk 2.
In de studie beschreven in hoofdstuk 4 hebben we zowel technische problemen als 
biologische problemen ondervonden. Zo zou het technisch zeer moeilijk kunnen zijn 
voor de massaspectrometer om vergelijkbare of identieke CDR peptide sequenties 
in elk individu te kunnen detecteren, omdat CDRs hypervariabele gebieden van een 
antilichaam zijn en er daarom een grote diversiteit aan mogelijkheden is. Dit zou een 
verklaring kunnen zijn voor het feit dat wij geen model hebben kunnen vinden dat 
alleen uit CDRs bestond, maar ook uit framework gebieden van het immuunglobu-
line. Daarnaast zouden CDR peptiden minder gemeenschappelijk kunnen voorko-
men in longkanker patiënten door hun hoge mate van diversiteit. De CDR-peptiden 
zouden ook lager in concentratie aanwezig kunnen zijn ten opzichte van specifiek 
gemuteerde framework gebieden die op hun beurt effect hebben op de detectie van 
CDRs door de massaspectrometer. 
Naast de hoge variabiliteit van een antilichaam, is longkanker een zeer heterogene 
ziekte. Dit resulteert in hoge variabiliteit tussen patiënten en zou een immuunre-
sponse tegen verschillende tumor antigenen kunnen opwekken.
Daarom waren wij net als andere onderzoekers niet in staat om één enkel antilichaam-
peptide te vinden dat longkanker patiënten van controles kon scheiden. In plaats 
van het zoeken naar één enkel antilichaam-peptide, zijn wij op zoek gegaan naar 
een model dat uit verschillende antilichamen-peptiden bestaat. Hiervoor hebben wij 
gebruik gemaakt van longkanker patiënten en controles (NELSON 1) uit de NELSON 
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trial. Wij waren in staat om een antilichaam-peptide model te vinden dat een sensi-
tiviteit van 96% en een specificiteit van 100% gaf. Dit model hebben wij getest in een 
nieuwe set met longkanker patiënten en controles (NELSON 2) uit de NELSON trial en 
vonden een sensitiviteit van 84% en een specificiteit van 90%.
Doordat wij een aantal technische problemen hebben ondervonden hebben wij het 
model moeten recalibreren voor elke patiëntengroep. Om te controleren op kans op 
random selectie van data hebben wij een achtergrond evaluatie uitgevoerd. Deze 
evaluatie liet zien dat het antilichaam-peptide model dat wij gevonden hadden signifi-
cant beter was dan een model dat bij de achtergrond evaluatie was gevonden door 
permutatie van de data.
Tot op heden zijn alleen leeftijd en rookhistorie selectiecriteria voor het opnemen van 
deelnemers in een screeningtrial. Het selecteren van hoog risico individuen zou meer 
nauwkeurig kunnen door additionele testen te combineren met leeftijd en rookhisto-
rie.
Longkanker screeningtrials waarbij gebruik gemaakt wordt van CT-screening hebben 
laten zien dat longkanker aangetoond kan worden op baseline (beginpunt van een 
screeningtrial). Daarnaast is ook aangetoond dat circa 27% van de deelnemers aan 
een CT screeningtrial onnodige invasieve en dure follow-up studies moeten onder-
gaan die resulteren in niet-kwaadaardige longziekten. Follow-up CT-scans verlagen 
dit aantal, maar helaas duurt deze follow-up ongeveer een jaar. Daarom zijn additio-
nele testen waardevol.
In hoofdstuk 4 laten wij zien dat wij longkanker in een vroeg stadium kunnen detec-
teren met een antilichaam-peptiden model. Onze resultaten wijzen in de richting dat 
specifieke antilichamen aanwezig zijn in een vroeg stadium van longkanker en dat 
ze mogelijk longkanker kunnen detecteren in een vroeger stadium dan CT-screening. 
Autoantilichamen hebben de potentie om een toegevoegde waarde te hebben als 
additionele test voor vroegtijdige detectie van longkanker in een screeningstrategie. 
Maar de technische problemen die wij hebben ondervonden moeten wel verholpen 
worden voordat deze methode toepasbaar is in de kliniek. 
Juiste samplebehandeling en correcte massaspectrometrie-metingen zijn zeer be-
langrijke aspecten voor een goed resultaat. Daarnaast is juiste data-analyse zeer 
belangrijk. In hoofdstuk 5 van dit proefschrift wordt het softwarepakket Peptrix be-
sproken dat door onze onderzoeksgroep ontwikkeld is om massaspectrometrie-data 
te analyseren. Dit softwarepakket is vergeleken met drie andere ‘open source’ en 
commercieel verkrijgbare softwarepakketten. 
Verschillende aspecten zijn belangrijk tijdens de data-analyse van massaspectrom-
etrie-data. Peak picking is een cruciaal punt in de data-analyse. Het vinden van de 
massa van peptiden moet zo reproduceerbaar mogelijk zijn tussen verschillende met-
ingen van hetzelfde sample.  Met het softwarepakket Peptrix konden wij 86% van alle 
peptiden massa’s terugvinden in drie metingen van één IgG Fab sample. In vergelijk-
ing tot de andere softwarepakketten was dit een zeer hoge reproduceerbaarheid. 
Een tweede belangrijk punt is het kunnen detecteren van low abundant peptiden. Het 
ene softwarepakket heeft er meer moeite mee dan het andere. Dit veroorzaakt dat er 
grote hoeveelheden niet geïdentificeerde peptiden worden gevonden die niet terug-
gevonden worden in alle vier de softwarepakketten. Er blijkt een relatie te bestaan 
tussen het aantal MS1 spectra en het aantal niet geïdentificeerde peptiden. Het soft-
warepakket Progenesis detecteerde bijvoorbeeld minder MS1 spectra wat in minder 
niet geïdentificeerde peptiden resulteerde vergeleken met het softwarepakket MS 
Inspect. Daarom werd er een laag percentage van 32% gevonden van peptiden die in 
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alle vier de softwarepakketten gevonden konden worden.  
Een derde belangrijk punt is piekintensiteit. Tussen de verschillende metingen van 
één IgG Fab sample was er geen verschil te meten in intensiteit, maar wanneer de 
metingen tussen de verschillende softwarepakketten vergeleken worden, wordt er 
wel een verschil in intensiteit opgemerkt. Dit komt doordat er mogelijk een verschil zit 
tussen de softwarepakketten in de manier waarop de piekintensiteit bepaald wordt.
De conclusie van dit proefschrift is dat specifieke antilichaam-gerelateerde peptiden 
bestaan die longkanker patiënten van controles kunnen onderscheiden in een hoog-
risicopopulatie. Verder onderzoek moet gedaan worden naar de methode die hiervoor 
is gebruikt om de toepasbaarheid in de kliniek te kunnen realiseren. Hierbij moet 
men denken aan high-throughput-technieken zoals immunoassays of SRM (Selective 
reaction monitoring). 
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CAD   collisionally activated dissociation
CDR   complementarity determining regions
CID   collision-induced dissociation
COPD   chronic obstructive pulmonary disease
CT   computed tomography
DLCST   Danish lung cancer screening trial
ELISA   enzyme-linked immuno sorbent assay
ETD   electron-transfer dissociation
Fab   fragment antigen binding
Fc    fragment crystallisable
HCD   higher energy collision-induced dissociation
IEF   isoelectric focusing
IgG   immunoglobulin G
ISS   international staging system
LC   liquid chromatography
MRI   magnetic resonance imaging
MRM   multiple reaction monitoring
MS   mass spectrometry
NELSON  Dutch-Belgian lung cancer screening
NLST   national lung screening trial
NSCLC   non-small cell lung cancer
PET   positron emission tomography
PTM   post-translational modifications
SCLC   small cell lung cancer
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEREX   serological expression cloning
SERPA   serological proteome analysis
SRM  selective reaction monitoring
TAA   tumor-associated antigens
TNM   tumor, node and metastases
UKLS   UK lung cancer screening 
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