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This thesis concerns the use of natural language processing for improving biomedical 

concept normalization and relation mining. We begin this chapter by introducing the 

background of biomedical text mining, and subsequently we will continue by describing 

a typical text mining pipeline, some key issues and problems in mining biomedical texts, 

and the possibility of using natural language processing to solve these problems. Finally, 

we end with an outline of the work done in this thesis.  

 

BACKGROUND 

What is text mining and why do we need it? 

Information overload is one of the most widely felt problems in our modern society. 

Especially in the biomedical and clinical domain, most knowledge is only available in 

unstructured textual form, such as scientific literature and clinical notes [1]. Due to the 

fact that the amount of data in these resources is huge and expanding quickly, there is a 

pressing need for a more efficient approach to accessing and extracting information in a 

format that can be easily assimilated by humans or further processed by other automated 

tools. One approach is the use of computer systems to automatically process and extract 

useful information from these resources [2]. This approach is called text mining, 

sometimes alternately referred to as text data mining. It is a relatively new field that 

attempts to retrieve meaningful information from natural language texts. It may be 

loosely characterized as the process of analyzing texts to extract information that is useful 

for particular purposes [3]. In this way, the knowledge expressed in texts could be 

identified, extracted, managed, integrated, and exploited. Furthermore, new or tacit 

knowledge may also be discovered by using these methods [4]. 

The pioneering work that used text mining in biology was done by Swanson [5], who 

showed that text mining could help with the construction of hypotheses from associations 

found from vast amounts of research abstracts. Some of these hypotheses were later 

experimentally validated by experts. In recent years, text mining has been applied in 

numerous areas, such as finding interesting concepts from text, establishing functional 

annotations and relations among genes, discovering protein-protein interactions, 

interpreting microarray experiments, associating geno- and phenotypes, fact extraction, 

etc [6]. These areas use not only the traditional linguistic approaches, but also semantic 

approaches.  

 

Why is there so much interest in the field of text mining? 

As shown in Figure 1, the goal of biomedical text mining is to allow researchers to 
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identify information more efficiently, to find relationships between biomedical concepts, 

or to obtain a summary of literature. By applying algorithmic, statistical, and data 

management methods to the vast amount of biomedical literature as well as the free text 

fields of biomedical databases, the problem of information overload can be shifted from 

the researcher to the computer, and can be addressed more efficiently [7].  

In this way, end users do not face having to read several tens of thousands of retrieved 

documents, but rely on text mining systems to accurately extract relevant information 

from these documents, and thus end users are enabled to discover interesting associations 

and potentially new knowledge [6]. This type of text mining has been used to 

automatically extract relationships between biomedical concepts (e.g. protein-protein 

interactions, genes and diseases, drugs and side effects, drugs and diseases) from 

biomedical texts. 

Typically, text mining aims to build a system to correctly extract the intention (meaning) 

from a text in a machine processable form. The assumption here is that human language 

follows strict "rules" and that these rules have to be implemented with grammar and 

syntax to capture the intention of a text. However, human language is very flexible, and 

is difficult to grasp in a set of rules, which very much complicates the text mining task. 

In some controlled domains, after much training these systems can achieve acceptable 

performance rates. However, in the biomedical domain, with different text genres (e.g., 

electronic patient records, scientific texts), the performance of a text mining system drops 

if it has been trained on one genre, and then is applied on another genre. 
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Figure 1. Using text mining to solve the information overload problem. 

 

The usage and benefits of text mining in biology and biomedicine are being discussed in 

various major conferences, workshops, special tracks, and tutorials. For instance, the 

American Medical Informatics Association (AMIA), the Association for Computational 

Linguistics (ACL), the BioCreative and BioNLP initiatives, the Intelligent Systems for 

Molecular Biology (ISMB), the Text REtrieval Conference (TREC), and the Pacific 

Symposium on Biocomputing (PSB) have been addressing this topic for many years now. 

 

TEXT MINING PIPELINE 

An example of a typical text-mining pipeline 

Figure 2 shows an example of a typical text-mining pipeline. Normally, the input of a 

text mining system is the plain text from scientific papers or clinical records. The first 

step of a text-mining pipeline is to make a syntactic analysis, including sentence splitting, 

tokenization, part-of-speech (POS) tagging, and chunking. This step is more or less 

domain independent, only syntax information is used. After the first step, named entity 

recognition is used to annotate named entities of interest with semantic groups, such as 

drugs or diseases, and subsequently to assign concept unique identifiers to the recognized 

named entities. Finally, relations between concepts are extracted. These steps are domain 

dependent, and semantic information is also used for analysis. Since each step uses the 

results from the previous steps, the performance of each step directly impacts the 

performance of the following steps.  
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Abstract from scientific paper, or clinical record

We tested the hypothesis that oral beclomethasone dipropionate (BDP) would control 

gastrointestinal graft-versus-host disease (GVHD) in patients with anorexia....

Sentence splitting, tokenization, part-of-speech, chunking

We [NP]

tested [VP]

the hypothesis that 

oral beclomethasone dipropionate (BDP) [NP] 

would control [VP] 

gastrointestinal graft-versus-host disease (GVHD) [NP] 

in patients with anorexia...

Named entity recognition

We tested the hypothesis that 

oral beclomethasone dipropionate (BDP) [drug] 

would control

gastrointestinal graft-versus-host disease (GVHD) [disease] 

in patients with anorexia...

Concept normalization

We tested the hypothesis that 

oral beclomethasone dipropionate (BDP) [CUI: 4359132] 

would control

gastrointestinal graft-versus-host disease (GVHD) [CUI: 18133] 

in patients with anorexia...

Relation mining

We tested the hypothesis that 

oral beclomethasone dipropionate (BDP) [CUI: 4359132] 

would control [associate]

gastrointestinal graft-versus-host disease (GVHD) [CUI: 18133] 

in patients with anorexia...
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Figure 2. An example of the text-mining pipeline. 

 

Detailed steps in a typical text mining pipeline 

In general, document annotations are comments, notes, explanations, or other types of 

external remarks of the document. In the biomedical text mining domain, document 

annotations  follow the principles set in natural language processing (NLP) by adding 

annotations at multiple levels of syntactic analysis, such as grammatical and semantic 

annotations [8]. There are mainly three approaches for the annotation of biomedical text: 
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a complete manual annotation that is based on annotators’ knowledge; or pre-annotation 

by an annotation system, and then manual correction by domain experts; or fully 

automatic annotation by annotation systems. Each of these approaches has its strengths 

and weaknesses. For instance, manual annotations are usually more accurate, but they 

could be very expensive because of the time required from domain experts. Automatic 

annotations are usually much quicker, the size of the annotated corpora could be larger, 

but the quality is in general lower. Automatic annotation systems are dictionary-based, 

rule-based, machine learning-based, or hybrid. Normally, machine learning-based 

systems always need an annotated corpus for training, therefore in the traditional way, 

manual annotation is always needed to create such a training corpus. In the biomedical 

domain, corpora mainly consist of annotated journal and conference abstracts that are 

provided by MEDLINE [9], which is the first, and one of the most important databases 

in the biomedical domain. The 2011 MEDLINE contains over 18 million references from 

over 5,500 journals worldwide. 

Depending on its purpose, different systems have different components. The 

performance of a text mining application depends on the performance of each component 

in the pipeline. Although each of these components has its own features, they achieve 

their goals by employing similar methods. Below are the steps of a typical text mining 

pipeline described in more detail. 

 

Sentence splitting 

Sentence splitting is the first step in a typical text mining pipeline. It is the process of 

splitting abstracts or paragraphs into sentences. For instance, in the example below, the 

sentence splitter splits the text into three sentences. 

We tested the hypothesis.[Sentence]  

The result showed that oral beclomethasone dipropionate (BDP) would control 

gastrointestinal graft-versus-host disease (GVHD).[Sentence] 

GVHD exists in patients with anorexi.[Sentence] 

Recognizing the end of a sentence may not be a trivial task for a computer. In English, 

punctuation marks that usually appear at the end of a line may not indicate the end of a 

sentence, but could be part of an abbreviation or acronym, a decimal number, or part of 

a bracket of periods surrounding a Roman numeral. For some unstructured texts such as 

clinical records, sentence splitting may even be much more complex [10].  
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Tokenization  

Tokenization is the step after the sentence splitting. It is the process of splitting a sentence 

into words, phrases, symbols, or other meaningful elements called tokens. For instance, 

in this example, the tokenizer splits the sentence into word tokens. 

The[T] result[T] showed[T] that[T] oral[T] beclomethasone[T] dipropionate[T] 

([T]BDP[T]) [T] would[T] control[T] gastrointestinal[T] graft-versus-host[T] 

disease[T] ([T]GVHD[T]) [T]. 

The tokenizer uses white space such as blanks and tabs as the primary clue for splitting 

the text into tokens. Punctuation marks are split from the initial tokens. This is not as 

easy as it sounds. For example, when should a token containing a hyphen be split into 

two or more tokens? When does a period indicate the end of an abbreviation or a number? 

Some domain-dependent tokens, such as chemicals, are even more difficult to annotate 

because they can be very complex, with many special characters. 

 

Part-of-speech tagging 

Part-of-speech (POS) tagging is the process of marking up a word in a text as 

corresponding to a particular part of speech, based on both its definition, as well as its 

context, i.e., its relationship with adjacent and related words in a phrase, sentence, or 

paragraph. In the example below, all tokens are annotated with different POS tags from 

a POS annotation scheme. For instance, [DT] means definite article, [NN] means noun, 

and [VB] means verb. More information about these POS tags can be found elsewhere 

[11]. 

The[DT] result[NN] showed[VBD] that[IN] oral[JJ] beclomethasone[NN] 

dipropionate[NN] ([-LRB-] BDP[NNP] )[-RRB-] would[MD] control[VB] 

gastrointestinal[JJ] graft-versus-host[JJ] disease[NN] ([-LRB-] GVHD[NNP] )[-

RRB-] .[.] 

POS tagging is based on both the meaning of the word and its positional relationship 

with adjacent words. A simple list of the POS includes adjectives, adverbs, conjunctions, 

nouns, prepositions, pronouns, and verbs. Over the years, many POS annotation schemes 

have been developed and applied to different systems and corpora. Compared with more 

advanced text mining tasks, the tasks of sentence splitting, tokenization, and POS tagging 

are much easier. Most systems can achieve F-scores of more than 95% [12].  
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Chunking 

Chunking (also called shallow parsing or chunk parsing) is a technique that attempts to 

provide some machine understanding of the structure of a sentence [13]. It splits text into 

groups of words that constitute a grammatical unit, such as noun phrase (NP), verb phrase 

(VP), or prepositional phrase (PP). In the following example, all tokens are grouped with 

different chunking annotations. 

We [NP] 

tested [VP] 

the hypothesis [NP] that  

oral beclomethasone dipropionate (BDP) [NP]  

would control [VP]  

gastrointestinal graft-versus-host disease (GVHD) [NP]  

in patients with anorexia... 

Chunking annotations are based on the annotation information of sentence, token, and 

part-of-speech (POS) [14]. There are several well-known chunking systems available, 

such as the GATE chunker [15], the Genia Tagger [16], Lingpipe [17], MetaMap [18], 

OpenNLP [12], and Yamcha [19]. Only few chunkers are rule-based, and all the others 

are machine learning-based. These chunkers also use different annotation schemes, 

similar to the different schemes used for POS. Most chunking systems can achieve F-

scores of between 80% and 90%. There are a few chunking corpora available, such as 

the GENIA Treebank corpus [20], and the PennBioIE corpus [21]. These corpora also 

include the annotation information of sentence splitting, tokenization, and POS. Previous 

comparisons of chunking systems include CoNLL-2000 [15, 23]. 

The use of chunkers for the biomedical domain is mainly on the annotation of noun 

phrases and verb phrases. Noun phrases are important for the recognition and 

identification of biomedical entities, such as diseases and genes [18, 23]. Patterns of noun 

phrases and verb phrases can be used for mining relations between biomedical entities 

[24]. Although chunking is an essential pre-processing step in information extraction 

systems, no comparative studies of chunking systems are available for the biomedical 

domain. 

 

Named entity recognition 

Named entity recognition (NER) (also known as entity identification or entity extraction) 

is a subtask of information extraction that seeks to locate and classify atomic elements 
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in a text into predefined categories such as the names of persons, organizations, locations, 

etc. In the biomedical domain, NER has been used to annotate concepts such as genes, 

proteins, drugs, and diseases. Recognizing a concept does not require the annotation 

system to name it with a specific concept id, but just to determine if it belongs to a 

specific concept type [25]. For instance, in this example, drug and disease have been 

annotated as named entities. 

We tested the hypothesis that  

oral beclomethasone dipropionate (BDP) [drug]  

would control 

gastrointestinal graft-versus-host disease (GVHD) [disease]  

in patients with anorexia... 

For NER, semantic information may also need to be involved to categorize the entities. 

There are several biomedical knowledge resources available for getting semantic 

information, such as the Unified Medical Language System (UMLS) [9], and the Linking 

Open Drug Data (LODD) [26]. Among these resources, the UMLS is the most important. 

It is maintained by the NLM, and provides more than 100 dictionaries, terminologies, 

and ontologies in its Metathesaurus [9]. It also contains a semantic network that contains 

relations between semantic types. The UMLS Metathesaurus has been widely used by 

different biomedical text mining systems, especially by dictionary-based systems. 

There are many named-entity recognition challenges and shared tasks in the biomedical 

domain, such as BioCreAtivE [27–29], BioNLP [30, 31], i2b2 [32–34], JNLPBA [35], 

TREC [36, 37], and CALBC [38]. These challenges and shared tasks developed many 

corpora for machine learning-based named entity recognition systems, such as the 

Collaborative Annotation of a Large Biomedical Corpus (CALBC) [38], the i2b2/VA 

corpus [34], the BioCreative corpora [39–41], the Colorado Richly Annotated Full-Text 

(CRAFT) corpus [42], and the BioNLP corpus [30, 31]. 

Although there are many NER systems and corpora available, they achieve similar 

performances: around an F-score of 80% for exact matching, and around 90% for loose 

matching. An exact match means that the gold standard and chunker annotations are 

identical, i.e., both annotations have the same start and end location in the corpus. A 

loose match means that at least the start position or the end position from the chunker 

annotations has to be the same as the gold standard position. 

Further improvement of a single system or algorithm may be difficult. This is the reason 

for the introduction of ensemble-based systems. Systems that combine different 

classifiers are called ensemble-based systems, also known by various other names, such 
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as multiple classifier systems, a committee of classifiers, or a mixture of experts [43]. 

The general idea is that the combined methodology of multiple classifiers reduces the 

risk of errors, and performs better than the best individual classifier for a broad range of 

applications and under a variety of scenarios. There are many popular ensemble based 

algorithms, such as bagging [44], boosting [45], AdaBoost [46], stacked generalization 

[47], and a hierarchical mixture of experts [48], as well as commonly used combination 

rules, including algebraic combination of outputs or voting based techniques.  

Multiple classifier systems have been applied to many domains, including biomedical 

text mining and information extraction domains. For instance, Smith et al. [40] combined 

the results of 19 systems for gene mention recognition and found that the combined 

system outperformed the best individual system by 3.5 percentage points in terms of its 

F-score. Kim et al. [30] combined eight systems for event extraction and showed that the 

performance of the combined system increased by 4 percentage points as compared to 

the best individual system.  

Although ensemble systems appear to work well in various biomedical domains, it has 

not yet been investigated whether the approach is also effective for concept recognition 

in clinical records, which is regarded as more difficult than concept recognition in 

scientific literature [49]. The outcome is uncertain because it is still unclear which 

characteristics of individual systems contribute best to an ensemble system.  

Apart from using ensemble systems to improve performance, it is also an innovative way 

to use ensemble systems for automatically generating a so-called silver standard corpus 

(SSC), which is closer to a gold standard corpus (GSC) for annotation quality. The 

creation of a GSC is tedious and expensive: annotation guidelines have to be established, 

domain experts must be trained, the annotation process is time-consuming, and 

annotation disagreements have to be resolved [38]. An SSC, on the other hand, is much 

easier to generate, and the size could be much larger. For machine learning-based systems, 

a training corpus is essential, thus the quality and size of a training corpus could have a 

direct impact on the performance of a machine learning-based system. Unfortunately, 

there are very few annotated corpora available for each sub-domain of the biomedical 

text mining field [7], so an SSC is a possible approach to tackle the minimal availability 

of relevant GSCs. 

The notion that a combination of systems can be used to create an SSC has been explored 

in the CALBC (Collaborative Annotation of a Large Biomedical Corpus) project [38], in 

which the NLP community has been invited to annotate a large biomedical corpus with 

a variety of named-entity recognition systems. However, it is still not clear if a machine 

learning-based system which is trained on an SSC could get the same performance as 
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when it is trained on a GSC, and if an SSC could be a viable alternative, or supplement, 

to a GSC when training text mining systems in a biomedical domain. 

 

Concept normalization 

Although NER can extract entities from text and classify them into semantic categories, 

without precise identification of textual representation of particular entities, it is difficult 

for computers to understand the meaning and delivered message from articles and reports 

[50]. To solve this problem, some information retrieval (IR) and information extraction 

(IE) systems use concept identification tools to recognize useful terms from texts, such 

as diseases, genes, proteins, drugs, and chemical compounds, etc [51]. The concept 

identification task labels the terms with concept identifiers from a resource that contains 

further information about the terms. It is considered a more difficult task than the named 

entity recognition task [2]. Below is an example of the concept identification of a drug 

and a disease with UMLS concept identifiers. 

We tested the hypothesis that  

oral beclomethasone dipropionate (BDP) [UMLS id: 4359132]  

would control 

gastrointestinal graft-versus-host disease (GVHD) [UMLS id: 18133]  

in patients with anorexia... 

Much research has been done in named entity recognition, but fewer studies have 

addressed the more difficult task of concept normalization. Concept normalization 

systems are often dictionary-based, i.e., they try to find concept occurrences in a text by 

matching text strings with concept names and their corresponding identifiers in a 

dictionary. The dictionary is composed of entries from one or more knowledge sources, 

such as Gene Ontology [52], Entrez Gene [53], or UMLS [54]. Typically, dictionary-

based systems use little or no linguistic information to find concepts.  

There are only a few corpora in the biomedical domain that incorporate concept 

annotations, notably the Arizona Disease Corpus (AZDC) [55], the BioCreative gene 

normalization corpora [39–41], the Colorado Richly Annotated Full-Text (CRAFT) 

corpus [42], and the Gene Regulation Event Corpus (GREC) [56]. These corpora are 

widely used to train and test concept normalization systems. 

Most well-known concept normalization systems are dictionary based. These systems 

include MetaMap [18], Mgrep [57], Negfinder [58], Peregrine [59], and Whatizit [60]. 

Although several systems, such as MetaMap, perform some lexical analysis in the 
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normalization process, more advanced NLP techniques such as chunking are mostly not 

considered. Even though dictionaries contain many concepts and terms, it is nearly 

impossible to cover all term variations, or to keep these resources complete as science 

progresses. Furthermore, most concept normalization systems have difficulties in dealing 

with linguistic constructs such as coordination, with abbreviations, disambiguation, and 

finding the precise term boundaries. 

Compared with the variety of named-entity recognition challenges and shared tasks in 

the biomedical domain, there are only a few challenges and shared tasks for concept 

normalization. Substantial work on gene normalization has been done in a series of gene 

normalization tasks that were part of the BioCreative competitions [39–41]. In these 

challenges, the best systems achieved F-scores of about 70%. 

 

Relation extraction 

Chunking, NER and concept identification of well-defined terms, such as genes or 

proteins, have achieved a good level of maturity such that it can form the basis for the 

next step: the extraction of relations that exist between the recognized terms, entities and 

concepts [61]. The goal of the relation extraction task is to identify occurrences of 

particular types of relationships between pairs of given entities. 

Although common concept classes (e.g., genes or drugs) are normally very specific, the 

types of relationships between concepts may be broad, including any type of biomedical 

association. In the biological domain, many studies have been done on the extraction of 

relations between genes and proteins, or protein-protein interaction [62–65]. Other 

associations of interest include interactions between proteins and single nucleotide point 

mutations [66], proteins and their binding sites [67], and genes and diseases [68]. In the 

clinical domain, relationships between drugs and diseases [69] and drugs and adverse 

effects [70] are becoming increasingly important, now that more and more of these data 

are stored in electronic health record systems. Below is an example of a relation between 

a drug and a disease. 

Oral beclomethasone dipropionate (BDP) [UMLS id: 4359132]  

would control [associate] 

gastrointestinal graft-versus-host disease (GVHD) [UMLS id: 18133]  

in patients with anorexia... 

There are many issues that still need to be solved for extracting relations from biomedical 

texts. One of the biggest problems is the performance of the current approaches. 
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Compared with the performance of other biomedical text mining tasks, the performance 

of relation extraction is still quite low [71, 72]. In order to satisfy the demands of specific 

tasks, such as automatically building high-quality biomedical relation databases, the 

performance of current approaches needs to be improved.  

In recent years, many relation extraction systems have been developed, such as JRex [73], 

Semantic Knowledge Representation (SKR) [74], java Simple Relation Extraction (jSRE) 

[75], etc. These systems use approaches such as simple co-occurrence approaches, rule-

based approaches, machine learning-based approaches, and NLP. There have been 

several relation extraction challenges in the biomedical domain, e.g., BioCreative [29, 

76, 77] and BioNLP [30, 31]. Performances in these challenges are quite different 

depending on the complexity of the given tasks. For instance, in the Biocreative II 

protein-protein interaction task, the highest F-score of 78% was obtained for the 

interaction detection subtask [76]. In BioCreative III, a maximum F-score of 55% was 

achieved [77] for detecting protein-protein interactions in full-text articles. There are 

several publicly available corpora in the biomedical domain that incorporate relation 

annotations, notably the corpora generated for the Biocreative [29, 76, 77] and BioNLP 

[30, 31] challenges, the EDGAR corpus[78], the GENIA event corpus[20], the CLEF 

corpus[79], the PharmGKB knowledge base[80], the EU-ADR corpus[81], and the ADE 

corpus[70].  

In the domain of relation mining, both entities such as proteins, genes, diseases, drugs 

and their effects have to be correctly identified to find a relationship between them [82]. 

One possibility of improving performance of relation mining is to use existing 

knowledge. This is, however, a new research area that has not yet been addressed in much 

detail. 

 

RESEARCH QUESTIONS 

Although text mining has been widely used in the biomedical domain and yields 

promising results, there are still limitations, issues and problems that need to be 

addressed. The performance of text mining systems is probably the biggest issue. Most 

systems, especially machine learning-based systems, are tuned for a particular domain 

but performance degrades when applied to another domain. Another problem is how to 

analyze unstructured texts such as clinical records that often have frequent spelling errors 

and do not follow grammatical rules. These texts are more difficult to analyze than well-

written texts such as research papers. The third issue is how to cope with the lack of 

annotated corpora for training machine-learning algorithms. Although many systems use 

syntactic information to improve their performance, there are limitations because of 
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grammatical errors, spelling mistakes, abbreviations, etc.  

A number of approaches can be followed to mitigate this situation.  

1. Assume that different systems have different strengths and weaknesses, and that 

performance should be improved if we build a kind of consensus between a number of 

systems - ensemble approaches. This approach is not new, but has never been applied in 

some domains, such as chunking. 

2. Increase the training set of text mining systems. This approach increases the chances 

that we encounter many of the language constructs that we want to capture with text 

mining. However, it makes the task very expensive because domain experts need to be 

involved. If we could use an automatic system to build such a large corpus and/or extend 

an existing corpus with acceptable quality, then we could also automatically generate 

corpora for the different sublanguages and domains.  

3. Exploit the use of existing knowledge resources that can help us to understand the 

texts, such as the implicit relations mentioned in a text, correct concept identification in 

case of homonyms and abbreviations, and anaphora resolution.  

 

Improve text mining 

The performance of relation mining is directly impacted by the quality of chunking and 

concept identification. In order to obtain high precision relation mining we need high 

precision chunking and concept identification. Chapter 2 contains an analysis of the 

performance of six chunkers trained and evaluated on the GENIA corpus. In order to 

improve the quality of chunking the results of the chunkers are combined using a simple 

voting scheme. The combination of these systems shows an improvement in performance 

beyond any of the individual systems.  

All text-mining systems that are based on machine learning need a corpus for training. 

The size of most GSCs is small due to the tedious and expensive creation work. The 

research question is to see if we can automatically combine and harmonize with sufficient 

quality the results from different concept identification systems into a single SSC. 

Although we can automatically generate a large SSC, we still need to investigate the 

differences between an SSC and a GSC, and the possibilities of using this approach to 

supplement a GSC.  

In chapter 3 we address these research questions and explore two scenarios using an SSC. 

In the first scenario, a chunker has to be trained for a biomedical subdomain for which a 

GSC is not available. Rather than creating a new GSC, we generate an SSC for this 
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domain and use this SSC for training the chunker. In the second scenario, a GSC from 

the domain of interest is available but its size is small and a chunker trained on it gives 

suboptimal performance. Rather than expanding the GSC, we supplement the GSC with 

an SSC derived for the same domain and train the chunker on the combination of GSC 

and SSC to improve chunker performance. 

In Chapter 4, we leverage the performance of a number of systems that recognize medical 

concepts in clinical records by combining the output of the individual systems. Apart 

from performance improvement, we show that with this approach the balance between 

precision and recall of the ensemble system can be easily adjusted. This feature makes it 

ideally suited for tasks that require either a high precision or a high recall. We test our 

approach by participating in the concept extraction task of the 2010 i2b2/VA challenge 

on clinical records. 

 

Integrate biomedical knowledge 

To improve the performance of concept normalization we describe in chapter 5 the 

contribution of NLP techniques to biomedical concept normalization. We present a set 

of rules that utilize NLP information, and show that these rules substantially improve 

the performance of two concept normalization systems, MetaMap and Peregrine, in 

recognizing and normalizing diseases in biomedical texts. In chapter 6, we investigate 

the combination of a knowledge base and NLP techniques to improve biomedical 

relation mining. We present a knowledge base system that utilizes known relations 

between biomedical concepts and show that the system substantially improves the 

performance of a standard NLP and machine learning-based biomedical relation mining 

system for mining drugs and adverse effects in biomedical texts.  

Finally, in chapter 7, we provide a general discussion of the results described in this thesis 

and provide suggestions for future research.  
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ABSTRACT 

 

Text chunking is an essential pre-processing step in information extraction systems. No 

comparative studies of chunking systems, including sentence splitting, tokenization and 

part-of-speech tagging, are available for the biomedical domain. We compared the 

usability (ease of integration, speed, trainability) and performance of six state-of-the-art 

chunkers for the biomedical domain, and combined the chunker results in order to 

improve chunking performance. 

We investigated six frequently used chunkers: GATE chunker, Genia Tagger, Lingpipe, 

MetaMap, OpenNLP, and Yamcha. All chunkers were integrated into the Unstructured 

Information Management Architecture framework. The GENIA Treebank corpus was 

used for training and testing. Performance was assessed for noun-phrase and verb-phrase 

chunking. 

For both noun-phrase chunking and verb-phrase chunking, OpenNLP performed best (F-

scores 89.7% and 95.7%, respectively), but differences with Genia Tagger and Yamcha 

were small. With respect to usability, Lingpipe and OpenNLP scored best. When 

combining the results of the chunkers by a simple voting scheme, the F-score of the 

combined system improved by 3.1 percentage point for noun phrases and 0.6 percentage 

point for verb phrases as compared to the best single chunker. Changing the voting 

threshold offered a simple way to obtain a system with high precision (and moderate 

recall) or high recall (and moderate precision). 

This study is the first to compare the performance of the whole chunking pipeline, and 

to combine different existing chunking systems. Several chunkers showed good 

performance, but OpenNLP scored best both in performance and usability. The 

combination of chunker results by a simple voting scheme can further improve 

performance and allows for different precision-recall settings.  
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INTRODUCTION 

Chunking (also called shallow parsing or chunk parsing) is a natural language processing 

technique that attempts to provide some machine understanding of the structure of a 

sentence, but without parsing it fully into a parsed tree form [1]. It splits text into groups 

of words that constitute a grammatical unit, like noun phrase (NP), verb phrase (VP), or 

preposition phrase (PP). For example, a chunker may annotate the sentence “The 

production of human immunodeficiency virus type 1 was followed in the U937 

promonocytic cell line.” with the following information: 

[NP The production] [PP of] [NP human immunodeficiency virus type 1] [VP was 

followed] [PP in] [NP the U937 promonocytic cell line]. 

The concept of text chunking was introduced by Steven Abney in 1991 [1]. As a good 

approach to parsing he proposed to start with finding correlated chunks of words. In 1995, 

Ramshaw and Marcus used a machine learning method for chunking annotation [2]. 

Their work has inspired many others to proceed along the same lines. Until now, there 

are mainly two approaches for chunking annotations. One is a rule-based approach, in 

which the chunker consists of a set of regular expression statements. Rule-based systems 

are relatively easy to develop, do not need a training corpus, but are difficult to adapt to 

a new domain. The other approach is a statistical one, which uses statistical machine 

learning methods. Statistical systems are easy to reuse in a new domain, but need a large 

training corpus. 

Typically,  Natural language Processing (NLP) applications make use of a “pipeline” 

of text processing components in order to extract information from text (see figure 1). 

The performance of an NLP application depends on the performance of each sub-

component in the pipeline. Errors made by an “upstream” component will propagate to 

the “downstream” components and thus negatively impact the performance of the NLP 

application. Chunking performance always has a direct impact on the NLP system which 

uses a chunking system as a sub-component. For instance, in [3] it is shown that many 

concept annotation errors are caused by wrong chunking annotations. In [4], it is stated 

that for concept annotation in clinical records only complete chunks are considered 

correct. 
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Figure 1. Natural language processing pipeline. 

 

Chunking annotations are based on the annotation information of sentence, token, and 

part-of-speech (POS). The focus of chunkers for the biomedical domain is mainly on the 

annotation of noun phrases and verb phrases. Noun phrases are important for the 

recognition and identification of biomedical entities, such as diseases and genes [5, 6]. 

Patterns of noun phrases and verb phrases can be used for mining relations between 

biomedical entities [7]. 

There is a general paucity of data on the performance of text chunkers in the biomedical 

domain. During the last decade, the performance of different chunking system has been 

assessed in two comparative evaluation efforts. The first was the shared task in CoNLL-

2000 [8], in which the Wall Street Journal (WSJ) corpus was annotated by eleven 

different chunkers. The six best performing systems had F-scores between 91% and 93%. 

Interestingly, the three top-ranking systems combined the results of different chunk 

taggers by majority or weighted voting [9-11], but none of the individual chunkers that 

were combined, are publicly available. Five years later, a study presented at SMBM-

2005 evaluated the performance of four general-purpose chunkers [12]. These chunkers 

were trained on the Penn TreeBank corpus and were tested for noun-phrase chunking in 

a biomedical corpus. The results in terms of F-score ranged between 85% and 89%. 

Most chunkers in these evaluation studies were not specifically trained for the biomedical 

domain or are no longer available, and several more recent biomedically-oriented 

systems were not included. Also, in these evaluation studies the gold standard sentence 

splitting, tokenization, and POS annotations were used, which is different from what is 

applicable in a real-life environment. In addition, the GENIA corpus [13], a publicly 

available biomedical corpus, has recently been greatly expanded, which permits a more 

comprehensive performance assessment in the biomedical domain. In addition to the 

traditional focus on noun phrases, the recognition of verb phrases should also be taken 

into consideration as both can be important in mining biomedical relationships. Finally, 

the combination of currently available chunkers has not yet been tested as a means to 

improve chunking performance. A simple voting scheme with different voting thresholds 

may offer a way to configure precision and recall of a combined system.  
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In this study we compare six chunkers trained and evaluated on the GENIA corpus. Both 

the recognition of noun phrases and verb phrases is included in the evaluation. Also 

usability issues, such as ease of integration and trainability, are compared. We combine 

the results of the chunkers to improve chunking performance and show how a simple 

voting scheme can be used to balance precision and recall of a combined system. 

 

METHODS 

Chunking software 

Six well-known, publicly available and actively maintained chunkers were selected for 

comparison. All chunkers were downloaded directly from their official websites, and are 

briefly described below. Table 1 gives an overview of the chunker characteristics. 

1. GATE chunker (http://gate.ac.uk): GATE, the General Architecture for Text 

Engineering [14], is a framework for developing and deploying software components for 

natural language processing, and can be compared to UIMA. GATE contains many 

default plug-ins, including the Noun Phrase Chunker, a Java implementation of the 

Ramshaw and Marcus BaseNP chunker [15]. This chunker inserts brackets marking noun 

phrases in text using POS tags generated by the GATE plug-in ANNIE. 

2. Genia Tagger (http://www-tsujii.is.s.u-tokyo.ac.jp/ GENIA/tagger): Genia Tagger is a 

combination of a POS tagger, chunker, and named entity recognition tool. It has been 

developed for processing biomedical texts, in particular  Medline abstracts [16]. The 

Genia Tagger utilizes an algorithm that is based on a maximum entropy model. The 

models provided with the Genia Tagger are based on the WSJ, GENIA, and PennBioIE 

corpora. It is not possible to use other corpora for training a model.  

3. Lingpipe (http://alias-i.com/lingpipe): Lingpipe is a suite of Java libraries for natural 

language processing, including POS tagging, named entity recognition, spelling 

correction, etc. The Lingpipe chunker supports rule-based, dictionary-based, and 

statistical chunking. We chose to use the statistical chunker, which is based on a hidden 

markov model, because according to the Lingpipe website, the statistical chunker is the 

most accurate one. The architecture of Lingpipe makes it easy to integrate with other 

systems, such as UIMA. Lingpipe supports a training mode and a variety of precompiled 

models for different domains. 

4. MetaMap SPECIALIST (http://mmtx.nlm.nih.gov): MetaMap is a highly configurable 

program developed by the National Library of Medicine to identify concepts from the 

UMLS Metathesaurus in biomedical text [6]. Based on the SPECIALIST minimal 

http://www-tsujii.is.s.u-tokyo.ac.jp/
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commitment parser texts are split into chunks and identified as a concept. The 

SPECIALIST parser is based on the notion of a special set of so-called barrier words that 

indicate boundaries between phrases [17]. These barrier words make it possible to run 

MetaMap without a training model. MetaMap Transfer (MMTx) is a distributable 

version of MetaMap written in Java.  

5. OpenNLP (http://opennlp.sourceforge.net): OpenNLP is an organizational center for 

open source projects related to natural language processing. The OpenNLP chunker is 

based on a maximum entropy model [18]. An OpenNLP UIMA wrapper has been 

developed by JULIE Lab (http://www.julielab.de). The wrapper divides the OpenNLP 

package into small modules that perform sentence detection, tokenization, POS tagging, 

chunking, named entity recognition, etc, which makes it easy to configure the pipeline 

for different purposes. The chunker supports a training mode, and two precompiled 

models based on the PennBioIE and GENIA corpora are provided. 

6. Yamcha (http://chasen.org/~taku/software/yamcha): Yamcha is a generic, 

customizable, and open source text chunker oriented toward many natural language 

processing tasks, such as POS tagging, named entity recognition, and text chunking. The 

Yamcha chunker is based on a support vector machines algorithm. Yamcha can be 

trained and has been integrated in a variety of applications. 

 

Characteristics 
GATE 

chunker 
Genia Tagger Lingpipe MetaMap OpenNLP Yamcha 

Used version 5.0 3.0.1 3.8 2008 v2 2.1 0.33 

Release year 2008 2007 2009 2009 2008 2005 

Methoda TBL MEM HMM BW MEM SVM 

Coding 

language 

Java C++ Java Java Java C++ 

Integration Easy Medium Easy Medium Easy Medium 

Training mode No No Yes No Yes Yes 

License GPL GPL-like Multib GPL-like LGPL LGPL 

Speed 

(ms/abstract) 

230 303 165 337 237 283 

Table 1. Chunker characteristics. 

aTBL=Transformation-Based Learning; MEM=Maximum Entropy Model; 

HMM=Hidden Markov Model; BW=Barrier Words; SVM=Support Vector Machine. 
bMulti: Lingpipe provides four license versions, including a free version. 
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Corpus 

There are only a few publicly available corpora that incorporate chunk annotations. We 

used the GENIA Treebank corpus [13]. The latest version of the GENIA Treebank 

corpus was released in 2009 and consists of 1,999 Medline abstracts selected from a 

query using the MeSH terms “human”, “blood cells”, and “transcription factors”. The 

corpus has been annotated with various levels of linguistic and semantic information, 

such as sentence, tokenization, POS tagging, chunk annotation, and term and event 

information. The corpus includes 18,541 sentences, 510,239 tokens, and 258,380 chunk 

annotations, of which 139,624 are noun phrases and 38,603 are verb phrases. 

 

Training and testing of the chunkers 

For the chunkers that do not provide a training mode, we used the default settings (GATE 

chunker, MetaMap) or a pretrained model that is provided by the developers (Genia 

Tagger). Although OpenNLP can be trained, we also chose to use a pretrained model 

supplied by the developers. Both the pretrained models had been learned on a subset of 

500 abstracts from the GENIA corpus. The same subset of abstracts was used to train the 

two other chunkers, Lingpipe and Yamcha, both of which provide a training mode but 

not a pretrained model. For testing, we used the GENIA corpus after excluding the 500 

abstracts that had been used for training. 

 

Evaluation pipeline 

We used the Unstructured Information Management Architecture (UIMA) framework 

[19] to integrate the chunking software and assess the performance of the different 

chunkers. 

The workflow of the integrated chunking UIMA framework includes five parts. First, the 

UIMA Collection Reader reads the texts and gold standard annotations of the GENIA 

corpus. Subsequently, each of the chunkers is activated to parse the text corpus and 

annotate them with chunk tags. Since GATE chunker, Lingpipe and OpenNLP already 

have a UIMA wrapper, they were easily integrated with UIMA. For Genia Tagger, 

MetaMap and Yamcha, we developed a java process to communicate between these 

chunkers and UIMA. The annotation results of the chunkers are fed back into UIMA 

pipeline. Subsequently, the Stopword Filter removes all stopwords from chunks (see next 

section) and aligns the start and stop position of the phrases. Finally, the Annotation 

Comparator calculates the precision, recall, and F-score for each chunker. 
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Performance evaluation 

We used a stopword filter followed by exact matching to compare the gold standard 

annotations with the chunker annotations. To reduce the effect of insignificant 

differences between chunks, stopwords from the stopword list in PubMed 

(http://www.medparse.com/umlsstop.htm) and punctuation marks were removed from 

both the gold standard and the chunker annotations. Subsequently, phrases were 

compared by exact match, similar to the procedure followed in the CoNLL-2000 task. A 

phrase was counted as true positive if the gold standard and chunker annotations were 

identical, i.e., both annotations had the same start and end location in the corpus. A 

phrase annotated by the gold standard was counted as false negative if the chunker did 

not match it exactly; a phrase annotated by the chunker was counted as false positive if 

it did not exactly match the gold standard. Two phrases that overlapped but did not match 

exactly were thus counted as a false-positive one and a false-negative one. The 

performance of the chunkers was evaluated in terms of precision, recall, and F-score. 

These measures are commonly used to quantify the performance of NLP systems and 

were also used in CoNLL-2000 and SMBM-2005, facilitating performance comparison 

across studies. 

 

Combination of chunker results 

We combined the results of the different chunkers by a simple voting scheme. For each 

phrase annotated by a chunker, the number of chunkers that exactly matched the phrase 

was counted. If the count was larger or equal than a preset voting threshold, the phrase 

was considered to be annotated by the combined system, otherwise it was not annotated. 

The voting threshold was varied between one and the maximum number of chunkers (six 

for noun phrases, five for verb phrases). 

 

RESULTS 

Performance of the chunkers 
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 Noun phrases  Verb phrases 

Chunker Precision Recall F-score  Precision Recall F-score 

GATE 

chunker 
73.2 78.9 76.0 

 
n.a n.a n.a 

Genia 

Tagger 
88.0 90.0 88.9 

 
95.0 95.5 95.2 

Lingpipe 83.0 86.0 84.5  90.3 90.2 90.3 

MetaMap 80.8 87.1 83.8  74.4 83.1 78.5 

OpenNLP 89.4 90.0 89.7  96.2 95.2 95.7 

Yamcha 87.4 88.8 88.1  94.7 93.6 94.1 

Table 2. Performance of six chunkers on the GENIA corpus. 

 

Table 2 shows the performance of the chunkers on the 1,499 GENIA abstracts that had 

not been used for training. GATE chunker was not evaluated for verb-phrase recognition 

since it does not recognize verb phrases. For noun phrases, the best performing chunker 

is OpenNLP (F-score 89.7%), with Genia Tagger and Yamcha performing slightly less 

(F-scores 88.9% and 88.1%, respectively). For verb phrases, OpenNLP also performed 

best (F-score 95.7%), followed by Genia Tagger and Yamcha (F-scores 95.2% and 94.1%, 

respectively). 

 

Error analysis 

For each chunker, 100 noun phrase errors and 100 verb phrase errors were randomly 

selected and manually classified into different error types (table 3). This error 

categorization has previously been used by Wermter et al. [12]. Both for noun and verb 

phrases, the majority of errors are due to coordination errors or incorrectly chunked 

parenthesized items. Most chunkers combine noun phrases that are separated by “and” 

or “or” into one noun phrase, which explains why the number of false negatives in the 

coordination category is about twice the number of false positives. For verb phrases, 

coordination errors are mostly made by Genia Tagger, OpenNLP, and MetaMap. Genia 

Tagger and OpenNLP often erroneously combine adjacent verb phrases into one verb 

phrase, whereas MetaMap splits a long verb phrase into smaller phrases. For example, 

in the sentence “IL-4 gene expression is tightly controlled at the level of transcription”, 

MetaMap annotates “is” as a be-verb, “tightly” as an adverbial phrase, and “controlled” 

as a verb phrase, whereas other chunkers annotate “is tightly controlled” as a verb phrase.  
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 Noun-phrase error typea   Verb-phrase error typea  

Chunker Coor Par Verb Adv Adj Noun Total  Coor Verb Adv Adj Noun Total 

GATE chunker 5/10b 29/16 3/1 1/1 5/6 14/9 57/43  n.a. n.a. n.a. n.a. n.a. n.a. 

Genia Tagger 8/20 32/12 2/3 1/1 4/7 5/5 52/48  18/35 23/9 4/4 1/5 1/0 47/53 

Lingpipe 8/17 16/16 4/2 2/1 9/8 9/8 48/52  0/0 13/50 8/8 13/0 8/0 42/58 

MetaMap  2/7 28/13 6/4 4/3 11/11 4/7 55/45  29/14 13/13 10/1 9/1 10/0 71/29 

OpenNLP 12/24 11/7 4/4 1/2 7/11 9/8 44/56  11/21 25/25 0/0 5/11 1/1 42/58 

Yamcha 13/31 9/17 1/1 3/2 5/8 5/5 36/64  1/1 38/42 1/1 1/10 5/0 46/54 

Table 3. Number of false-positive and false-negative errors for different error types in 

noun-phrase and verb-phrase recognition. 

a See http://www.biosemantics.org/index.php?page=chunk for a description of the error 

types and examples. 
b 5 false positives/10 false negatives. 

 

To test the impact of errors on sentence splitting, tokenization, and POS-tagging, we 

reran three of the chunkers (OpenNLP, Yamcha, and GATE) using the gold standard 

sentence, token, and POS annotations in the GENIA corpus. The other three chunkers 

had no option to use this gold standard information as their input and were not tested. 

For noun phrases, the F-score was 91.6% for OpenNLP (an improvement of 1.9 

percentage point, cf. table 2), 89.0% for Yamcha (increase 0.9), and 78.2% for GATE 

(increase 2.2). For verb phrases, the F-score was 95.8% for OpenNLP (increase 0.1) and 

94.5% for Yamcha (increase 0.4).  

 

Usability  

Apart from chunker performance, other considerations also play a role when a chunker 

has to be integrated with other components in a natural language processing system. 

These include coding language, ease of integration (documentation, well-defined APIs, 

technical support), execution speed, and possibility to train the chunker. Support of a 

training mode may be particularly important if the chunker has to be applied in an 

application field for which it was not trained before. Table 1 gives an overview of the 

different characteristics of the six chunkers. We assessed different aspects of usability 

by a point-scoring system, as shown in table 4. Overall, Lingpipe and OpenNLP score 

highest. Both are easy to integrate in other systems, provide detailed technical 

http://www.biosemantics.org/index.php?page=chunk
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information, are fast, and support a training mode. Lingpipe is the only system that 

provides technical support. 

 

 GATE 

chunker 

Genia 

Tagger 
Lingpipe MetaMap OpenNLP Yamcha 

Recent releasea 1 0 1 1 1 0 

Technical 

support 
0 0 1 0 0 0 

Speedb 1 0 1 0 1 0 

Supports 

training mode 
0 0 1 0 1 1 

Easily 

integrated with 

UIMAc 

1 0 1 0 1 0 

Documentationd 1 0 1 1 1 0 

Annotates both 

NPs and VPs 
0 1 1 1 1 1 

Total score 4 1 7 3 6 2 

Table 4. Usability assessment scores of the different chunkers. 

a Most recent version released less than 2 years ago. 
b Annotation speed is faster than the median speed of the chunkers (260 ms/abstract). 
c Has UIMA interface or can be integrated into UIMA within 100 lines of code. 
d Has comprehensive user manual and detailed API documentation. 

 

Performance of the combined annotations 

Table 5 shows the performance of the combined chunker annotations for different voting 

thresholds. The highest F-scores are obtained with a voting threshold of three: 92.8% for 

noun phrases and 96.3% for verb phrases. As compared to the best single chunker, 

OpenNLP, these results are 3.1 percentage point higher for noun phrases and 0.6 

percentage point for verb phrases. Lowering the voting threshold improves recall and 

decreases precision, whereas a higher threshold improves precision and decreases recall. 

The highest recalls, for a voting threshold of one, are 98.5% for noun phrases and 99.5% 

for verb phrases (with moderate precisions of 59.9% and 72.7%, respectively). The 

highest precisions are 98.4% for noun phrases (threshold six) and 99.1% for verb phrases 

(threshold five), with recalls of 58.2% and 74.1%, respectively. 



Chapter 2 

44 

 

 Noun phrases  Verb phrases 

Voting 

thresholda 
Precision Recall F-score 

 
Precision Recall F-score 

1 59.9 98.5 74.5  72.7 99.5 84.0 

2 82.4 96.7 89.0  91.3 98.0 94.5 

3 91.8 93.8 92.8  96.7 95.9 96.3 

4 94.6 90.5 92.5  98.3 89.9 93.9 

5 96.8 79.9 87.5  99.1 74.1 84.8 

6 98.4 58.2 73.1  n.a n.a n.a 

Table 5. Performance of the combined chunker annotations on the GENIA corpus for 

different voting thresholds. 

a The minimum number of chunkers that have to agree on an annotation for it to be 

accepted as an annotation of the combined system. 

 

DISCUSSION 

To our knowledge, this is the first study to compare the performance of the whole 

chunking pipeline for both noun- and verb-phrase chunking in the biomedical domain, 

and the first that combines multiple existing systems to improve chunking performance. 

Our results indicate that OpenNLP performs best for both noun-phrase recognition and 

verb-phrase recognition, followed by Genia Tagger and Yamcha. The other three 

chunkers performed less well. The reason that MetaMap showed low performance on 

verb phrases is because it always splits a long verb phrase into smaller phrases. The other 

chunkers recognize verb phrases much better than noun phrases. One explanation is that 

verb phrases are typically less complex than noun phrases. For example, verb phrases do 

not include parenthesized or bracketed elements, which proved an important source of 

error for noun-phrase recognition. Also, most verb phrases contain only one word. 

The two chunking systems in our comparison that use maximum entropy models, 

OpenNLP and Genia Tagger, showed the highest performance, both for noun phrases and 

for verb phrases. However, we should be cautious to suggest that these models generally 

perform better than the other methods because only a small number of systems were 

compared, because the difference with the next best performing chunker (Yamcha), 

which is SVM-based, is not large, and because there are factors other than the chunking 

method that may impact performance. 
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The precision and recall of noun-phrase chunking in our study is lower than the results 

reported by CoNLL-2000 [8], Wermter et al. [12], and Buyko et al. [18]). There are 

several possible reasons: (1) CoNLL-2000 used the WSJ corpus for training and testing. 

This corpus is likely easier to annotate than a biomedical corpus; (2) Wermter et al. [12] 

used the WSJ corpus for training and 200 abstracts from the GENIA beta version corpus 

for testing, and Buyko et al. [18] used 500 GENIA abstracts for training and testing. We 

used a large set of 1,499 GENIA abstracts for testing, which may have yielded a more 

precise performance estimate; (3) Previous studies used the gold standard sentence, token 

and POS annotations for testing chunking performance, whereas in this study those 

annotations were generated by the chunkers themselves. Indeed, when we tested 

OpenNLP and Yamcha using the gold standard annotations, similar results were obtained 

as previously reported. 

Differences between the gold standard sentence, token, and POS annotations, or the 

annotations generated by the systems themselves, do not appear to have a major impact 

on chunking performance. For noun phrases, differences in F-scores for OpenNLP, 

Yamcha, and GATE varied between 0.9 and 2.2 percentage point. For verb phrases, 

differences were less than 0.5 percentage point. The usability of a chunker is not only 

determined by its performance, but also depends on its ease of integration with other 

systems, execution speed, and trainability. Lingpipe and OpenNLP scored high on each 

of these points. 

We used a simple voting scheme to combine the annotations of the different chunkers. 

The combined annotations performed better than the best single chunker, both for noun 

phrases (F-scores 89.7% vs. 92.8%) and for verb phrases (F-scores 95.7% vs. 96.3%). 

The relatively small performance improvement for verb phrases may be explained by the 

fact that the performance for verb-phrase recognition is already quite high for most 

chunkers, which makes further improvement more difficult. Another reason may have to 

do with the number of chunkers that are used to create the combined annotations: five 

chunkers for verb phrases, six chunkers for noun phrases. Interestingly, when we left out 

one chunker when generating the combined noun phrases, performance always decreased, 

varying between 92.0% (OpenNLP left out) and 92.6% (GATE left out). This suggests 

that each chunker, even the worst performing, contributes to the improved performance 

of the combined annotations. One may speculate whether the combination of more than 

six chunkers would further improve the results. 

Several previous studies also combined the annotations of different chunkers, using a 

variety of (weighted) voting techniques [9-11, 20, 21]. Contrary to our approach, 

however, in these studies only one chunking method was used to train different chunkers 

for various sets of input features. The difference in performance between the individual 
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chunkers was always small, and although in all studies the combined system performed 

better than the best single system, the difference in F-score was never larger than 0.8 

percentage point. We used a simple voting scheme to combine the output of multiple 

existing chunkers and found a much larger performance improvement for noun phrases. 

The greater heterogeneity of the chunkers in our study appears to be advantageous in 

improving chunking performance. 

Whether the chunking systems that we evaluated are good enough for application in 

practical NLP tasks is still an open question. Clearly, there seems to be room for 

improvement, in particular for noun-phrase detection. A simple alternative to improving 

the performance of individual chunkers, is to use the combined annotations of several 

chunking systems. We showed that a combined system for noun-phrase recognition 

performs substantially better than the best single system. Another consideration is that 

the system with the highest F-score is not necessarily always the best. Some NLP tasks 

require high precision, even if this implies moderate recall and F-score, whereas other 

tasks require high recall. The individual chunkers show some limited variability in their 

performance figures (cf. table 2), but none of the precision or recall values is really high. 

Our combination approach offers the possibility to vary the combined system across a 

large range of precision and recall by varying the voting threshold. Thus, the performance 

of a combined system can easily be tuned to best meet specific requirements.  

Whether the current chunking results are good enough is also determined by the impact 

of different chunking errors on the performance of the whole information extraction 

pipeline. For example, it may well be that splitting or joining a verb phrase is less 

important than missing or inserting a noun or verb phrase when it comes to information 

extraction. It would be interesting to investigate the impact of chunking errors on real 

NLP tasks. 

Few studies have compared the performance of chunkers on different test corpora. In the 

study by Wermter et al. [12], a significant performance loss (in the order of 4 percentage 

points) was observed when various chunking systems trained on the WSJ corpus were 

tested on a small subset of the GENIA corpus. Campbell et al. [22] argued that general-

purpose NLP tools cannot be readily applied to the analysis of medical narratives, 

although this has been questioned for POS taggers [23]. There is some evidence that a 

system trained in one domain performs equally well when retrained in another domain. 

POS taggers trained on clinical text achieved similar performance as the same taggers 

trained on Penn Treebank [24, 25]. Buyko et al. [18] compared the performances of the 

NLP components of OpenNLP, including the chunker, when trained on the WSJ corpus 

and on two biomedical corpora (GENIA and PennBioIE). They conclude that the 

performance figures from the newspaper domain are comparable with those from the 
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biology domain. This weakly suggests that our results can be generalized to other 

domains provided that systems are properly retrained on domain-specific corpora. 

 

CONCLUSION 

OpenNLP performed best on both noun-phrase and verb-phrase recognition, closely 

followed by Genia Tagger and Yamcha. With respect to usability, Lingpipe and OpenNLP 

scored best. Combination of the annotations of the different chunkers by a simple voting 

scheme is a straightforward way to improve chunking performance, and allows to 

balance precision and recall of the combined system.  
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Error type Example 

Noun phrases  

Coordination/enumeration (Coo) Corpus: [Hormonal interactions]NP and [glucocorticoid 

receptors]NP in patients… 

Chunker: [Hormonal interactions and glucocorticoid 

receptors]NP in patients… 

Parenthesized/bracketed items (Par) Corpus: …incubated with [RA]NP ([10(-7) M]NP) or DMSO solvent 

Chunker: …incubated with [RA]NP ([10]NP([-7]NP)[M]NP) or 

DMSO solvent 

Verbs (Ver) Corpus: …the cell cycle has been identified and linked at 

[varying degrees]NP 

Chunker: …the cell cycle has been identified and linked at 

[varying]VP [degrees]NP 

Adverbs (Adv) Corpus: …in which only [extremely low levels]NP of HIV-1 

expression are detected 

Chunker: …in which only extremely [low levels]NP of HIV-1 

expression are detected 

Adjectives (Adj) Corpus: …and has been shown to have [immunomodulatory 

activities]NP in vivo. 

Chunker: …and has been shown to have immunomodulatory 

[activities]NP in vivo. 

Nouns (Nou) Corpus: The footprinted binding site is homologous to the 

[consensus AP1 motif]NP 

 Chunker: The footprinted binding site is homologous to the 

[consensus]NP [AP1 motif]NP 

Verb phrases  

Coordination/enumeration (Coo) Corpus: TCF-1 alpha, [originally identified]VP and [purified]VP 

through its… 

Chunker: TCF-1 alpha, [originally identified and purified]VP 

through its… 

Verbs (Ver) Corpus: …the cell cycle has been identified and linked at 

[varying degrees]NP 

Chunker: …the cell cycle has been identified and linked at 

[varying]VP [degrees]NP 

Adverbs (Adv) Corpus: Constructs were [stably transfected]VP into murine 

erythroleukemia… 

Chunker: Constructs were [stably]VP [transfected]VP into murine 

erythroleukemia… 

Adjectives (Adj) Corpus: …TAD-B remains [unphosphorylated]ADJP by protein 

from… 

Chunker: …TAD-B remains [unphosphorylated]VP by protein 

from… 

Nouns (Nou) Corpus: Brief exposure to [fludarabine]NP [led to]VP a sustained 

loss of STAT1… 

Chunker: Brief exposure to [fludarabine]VP [led to]VP a sustained 

loss of STAT1… 
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Appendix 1. Categorization of noun phrase and verb phrase error types 
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ABSTRACT 

 

Background 

To train chunkers in recognizing noun phrases and verb phrases in biomedical text, an 

annotated corpus is required. The creation of gold standard corpora (GSCs), however, is 

expensive and time-consuming. GSCs therefore tend to be small and to focus on specific 

subdomains, which limits their usefulness. We investigated the use of a silver standard 

corpus (SSC) that is automatically generated by combining the outputs of multiple 

chunking systems. We explored two use scenarios: one in which chunkers are trained on 

an SSC in a new domain for which a GSC is not available, and one in which chunkers 

are trained on an available, although small GSC but supplemented with an SSC. 

 

Results 

We have tested the two scenarios using three chunkers, Lingpipe, OpenNLP, and Yamcha, 

and two different corpora, GENIA and PennBioIE. For the first scenario, we showed that 

the systems trained for noun-phrase recognition on the SSC in one domain performed 

2.7-3.1 percentage points better in terms of F-score than the systems trained on the GSC 

in another domain, and only 0.2-0.8 percentage points less than when they were trained 

on a GSC in the same domain as the SSC. When the outputs of the chunkers were 

combined, the combined system showed little improvement when using the SSC. For the 

second scenario, the systems trained on a GSC supplemented with an SSC performed 

considerably better than systems that were trained on the GSC alone, especially when 

the GSC was small. For example, training the chunkers on a GSC consisting of only 10 

abstracts but supplemented with an SSC yielded similar performance as training them on 

a GSC of 100-250 abstracts. The combined system even performed better than any of the 

individual chunkers trained on a GSC of 500 abstracts. 

 

Conclusions 

We conclude that an SSC can be a viable alternative for or a supplement to a GSC when 

training chunkers in a biomedical domain. A combined system only shows improvement 

if the SSC is used to supplement a GSC. Whether the approach is applicable to other 

systems in a natural-language processing pipeline has to be further investigated. 
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BACKGROUND 

Chunking is a natural language processing technique that splits text into groups of words 

that constitute a grammatical unit, e.g., a noun phrase or a verb phrase. It is an important 

processing step in systems that try to automatically extract information from text. Most 

chunkers are based on machine learning methods and require a text corpus annotated 

with chunks for training the system. The creation of a gold standard corpus (GSC) is 

tedious and expensive: annotation guidelines have to be established, domain experts must 

be trained, the annotation process is time-consuming, and annotation disagreements have 

to be resolved. As a consequence, GSCs in the biomedical domain are generally small 

and focus on specific subdomains, which limit their usefulness. 

In this study we investigate an alternative, automatic approach to create an annotated 

corpus. We have shown before that a system combining the outputs of various chunkers 

performs better than each of the individual chunkers. Here we postulate that the 

annotations of such a combined system on a given corpus can be taken as a reference 

standard, establishing a “silver standard corpus” (SSC). 

To test the practical value of this approach, we explore two use scenarios of such an SSC. 

In the first scenario, a chunker has to be trained for a biomedical subdomain for which a 

GSC is not available. Rather than creating a new GSC, we generate an SSC for the new 

domain and train the chunker on the SSC. In the second scenario, a GSC from the domain 

of interest is available but its size is small and a chunker trained on it gives suboptimal 

performance. Rather than expanding the GSC, we supplement the GSC with an SSC from 

the same domain and train the chunker on the combined GSC and SSC to improve 

chunker performance. 

 

Related work 

During the past decade, much research has been devoted to systems that combine 

different classifiers, also called multiple classifier systems or ensemble-based systems 

[1]. The general idea is that the combined wisdom of multiple classifiers reduces the risk 

of errors, and indeed it has been shown many times that a combined system performs 

better than the best individual classifier. Multiple classifier systems have been applied in 

many domains, including biomedical text mining and information extraction. For 

instance, Smith et al. [2] combined the results of 19 systems for gene mention recognition, 

and found that the combined system outperformed the best individual system by 3.5 

percentage points in terms of F-score. Kim et al. [3] combined eight systems for event 

extraction and showed that the performance of the combined system increased by 4 
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percentage points as compared to the best individual system. We previously combined 

six publicly available text chunkers using a simple voting approach [4]. The F-score of 

the combined system improved by 3.1 percentage points for noun-phrase recognition and 

0.6 percentage point for verb-phrase recognition as compared to the best single chunker. 

The notion that a combination of systems can be used to create a “silver standard” corpus 

has been explored in the CALBC (Collaborative Annotation of a Large Biomedical 

Corpus) project [5]. Through CALBC, the natural-language processing community has 

been invited to annotate a very large biomedical corpus with a variety of named-entity 

recognition systems. The combined annotations of multiple systems may provide a 

valuable resource for system development and evaluation, and the automatically 

generated creation of an SSC would allow corpora of unprecedented size. In a very recent 

study, Chowdhury and Lavelli compared a gene recognition system trained on an initial 

version of the CALBC SSC against the system trained on the BioCreative GSC [6]. The 

system trained on the SSC performed considerably worse than when trained on the GSC, 

but the authors propose several ways to automatically improve the quality of the SSC 

and are of the opinion that, in the absence of a GSC, a system trained on the SSC could 

be useful in the semi-automatic construction of a GSC. 

 

METHODS 

Chunking systems 

To generate a silver standard, we used five well-known and publicly available chunkers: 

GATE chunker 5.0 [7], Lingpipe 3.8 [8], MetaMap 2008v2 [9], OpenNLP 2.1 [10], and 

Yamcha 0.33 [11]. Three of these chunkers are trainable (Lingpipe, OpenNLP, Yamcha), 

the other two do not have a training option. Sentence splitting, tokenization, and part-of-

speech tagging were included in our chunking pipeline, either as integral part of the 

chunkers (Yamcha, Lingpipe) or as separate components (OpenNLP). We used the gold-

standard sentence, token, and part-of-speech annotations for training, but did not use this 

information in creating the SSC or evaluating the trained models: the input of the 

annotation pipeline consisted of plain abstracts, the output were chunking annotations. 

All chunkers annotate noun phrases and verb phrases, except for GATE which only 

generates noun phrases. More information on characteristics and performance of these 

chunkers can be found in our previous comparative study of chunkers [4], which also 

included Genia Tagger. Since Genia Tagger comes with a fixed pre-trained model based 

on the corpora that we use in this study, it could bias the results of our experiments and 

was not included. All chunkers were used with default parameter settings. 
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Corpora 

There are only a few publicly available corpora in the biomedical domain that incorporate 

chunk annotations. We used the GENIA Treebank corpus [12] and the PennBioIE corpus 

[13]. 

The GENIA corpus [12] has been developed at the University of Tokyo. The 1.0 version 

of the corpus was released in 2009 and consists of 1,999 Medline abstracts selected from 

a query using the MeSH terms “human”, “blood cells”, and “transcription factors”. The 

corpus has been annotated with various levels of linguistic and semantic information, 

such as sentence splitting, tokenization, part-of-speech tagging, chunking annotation, 

and term-event information. For chunker training, we selected a subset of 500 abstracts 

that constituted a previous version of the GENIA corpus [12]. 

The PennBioIE Treebank corpus [13] has been developed at the University of 

Pennsylvania. The 0.9 version of the corpus was released in 2004 and includes the CYP 

and Oncology corpora of the Linguistic Data Consortium. The CYP corpus consists of 

324 Medline abstracts on the inhibition of cytochrome P450 enzymes. The Oncology 

corpus consists of 318 Medline abstracts on cancer and molecular genetics. The corpus 

has been tokenized and annotated with paragraph, sentence, part-of-speech tagging, 

chunking annotation, and biomedical named-entity types. 

 

Creation of the silver standard 

We used a simple voting scheme to generate silver standard annotations from the 

annotations produced by the different chunkers. For each phrase identified by a chunker, 

the number of chunkers that gave exactly matching annotations was counted. If the count 

was larger than or equal to a preset voting threshold, the phrase was considered a silver 

standard annotation, otherwise it was not. In all our experiments, we used a voting 

threshold of three out of five chunkers for noun phrases, and a threshold of two out of 

four for verb phrases (GATE only generates noun phrases). These thresholds gave 

uniformly the best results in terms of F-score when the silver standard annotations of the 

training data were evaluated against the gold standard. The Unstructured Information 

Management Architecture (UIMA) framework [14] was used to integrate all chunking 

systems and combine their result. 

 

Silver standard as alternative for gold standard 
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To test whether an SSC could serve as a substitute for a GSC, we compared the 

performance of chunkers trained on silver standard annotations of the abstracts in the 

PennBioIE corpus with the performance of the chunkers trained on the gold standard 

annotations of the same corpus. To create the SSC, the trainable chunkers (Lingpipe, 

OpenNLP, Yamcha) were trained on the gold standard annotations of 500 abstracts of the 

GENIA corpus. The chunkers then annotated the PennBioIE corpus and the annotations 

of all chunkers were combined to yield the silver standard. Subsequently, Lingpipe, 

OpenNLP, and Yamcha were trained on the PennBioIE SSC and on the PennBioIE GSC, 

using 10-fold cross-validation. In the cross-validation procedure for the SSC, the 

annotations of the abstracts in each test fold were taken from the GSC. Thus, the 

performance of chunkers trained on either SSC or GSC was always tested on the GSC. 

 

Silver standard as supplement of gold standard 

To test whether an SSC would have additional value as a supplement for a given GSC, 

we compared the performance of chunkers trained on a subset of the GENIA GSC with 

the performance of the chunkers trained on the same subset supplemented with an SSC. 

Specifically, subsets of 10, 25, 50, 100, and 250 abstracts were selected from the initial 

GENIA training set of 500 abstracts, each subset being contained in the next larger one. 

Lingpipe, OpenNLP, and Yamcha were trained on the gold standard annotations of each 

subset and the total set, and tested on the 1,499 GENIA abstracts that were not used for 

training. For each subset, the chunkers trained on that subset were subsequently used to 

create an SSC of the abstracts in the set of 500 abstracts that were not part of the subset, 

i.e., for the GSC subset of 10 abstracts, the SSC consisted of the remaining 490 abstracts; 

for the subset of 25 abstracts, the SSC consisted of 475 abstracts; etc. The GSC and 

corresponding SSC (together always totaling 500 abstracts) were then used to train the 

chunkers. Their performance was tested again on the 1,499 GENIA abstracts not used 

for training. The above experiment was repeated 10 times, each time starting with a 

different randomly selected subset of 10 abstracts. The reported results are the averaged 

F-scores of the 10 experiments. 

 

Performance evaluation 

The chunker and silver standard annotations were compared with the gold standard 

annotations by exact matching, similar to the procedure followed in CoNLL-2000 [15]. 

An annotation was counted as true positive if it was identical to the gold standard 

annotation, i.e., both annotations had the same start and end location in the corpus. A 
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phrase annotated by the gold standard was counted as false negative if the system did not 

render it exactly; a phrase annotated by a system was counted as false positive if it did 

not exactly match the gold standard. Performance of the chunkers and silver standard 

was evaluated in terms of precision, recall, and F-score.  

To reduce the effect of insignificant differences between chunks, words from the 

stopwords list in PubMed [16] and punctuation remarks were removed before matching 

if they appeared at the start or the end of a phrase. For instance, “[the protein’s binding 

site on the DNA molecule]NP is...” is considered the same annotation as “the [protein’s 

binding site on the DNA molecule]NP is...”, and “the medicine [often causes]VP…” is 

considered the same as “the medicine often [causes]VP…”. 

 

RESULTS 

Silver standard as alternative for gold standard 

Table 1 shows the performance of the three trainable chunkers and the combined system 

on the PennBioIE GSC when trained on three different corpora: GENIA GSC, PennBioIE 

SSC, or PennBioIE GSC. GATE and MetaMap could not be trained and when tested on 

the PennBioIE GSC had F-scores of 78.2% (MetaMap) and 72.8% (GATE) for noun 

phrases, and 77.7% (MetaMap) for verb phrases. Clearly, the trainable chunkers perform 

better if they are trained on the PennBioIE SSC than on the GENIA GSC. The increase 

in F-scores varies between 1.7 and 3.1 percentage points for noun phrases and between 

1.0 and 3.3 percentage points for verb phrases. Although performance further increases 

when training on PennBioIE GSC instead of PennBioIE SSC, differences are not large: 

0.2 to 0.8 percentage point for noun phrases, 0.3 to 1.7 percentage point for verb phrases. 

OpenNLP consistently shows the best performance both for noun and verb phrases. The 

combined system performs better than any of the individual chunkers, including GATE 

and MetaMap which proved to have F-scores lower than each of the three trainable 

chunkers, in agreement with our previous findings [4]. The largest improvement of the 

combined system is seen when the individual chunkers are trained on the GENIA GSC. 

Remarkably, the performance difference between the combined systems based on 

GENIA GSC and PennBioIE SSC is only small (0.2 percentage point). To test the 

consistency of this result, we redid the experiment with interchanged corpora, i.e., 

GENIA GSC was used for training the chunkers and generating the SSC, and PennBioIE 

GSC was used for testing. The F-score of the combined system by using GENIA SSC 

for training was 0.5 (noun phrases) and 0.4 (verb phrases) percentage point better than 

the F-score of the combined system by using PennBioIE GSC for training, which is 

comparable with the results of the initial experiment. 
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  Training set for noun phrases  Training set for verb phrases 

System  GENIA 

GSC 

PennBioIE 

SSC 

PennBioIE 

GSC 

 GENIA 

GSC 

PennBioIE 

SSC 

PennBioIE 

GSC 

Lingpipe  75.8% 78.5% 78.7%  90.6% 91.6% 91.9% 

OpenNLP  80.8% 83.9% 84.7%  90.7% 93.2% 94.8% 

Yamcha  80.1% 83.2% 84.0%  89.5% 92.8% 94.2% 

Combined  84.3% 84.5% 87.2%  93.7% 93.9% 95.5% 

Table 1. Performance (F-score) of chunkers and their combination when trained for 

noun-phrase and verb-phrase recognition on different training sets. All systems are 

tested on the PennBioIE corpus. 

 

Silver standard as supplement of gold standard  

Table 2 shows the performances of chunkers and the combined system when trained on 

GSCs of varying sizes and on the GSCs supplemented with an SSC. For all sizes of the 

GSC, the systems trained on a combination of GSC and SSC always perform better than 

the systems trained on the GSC alone. Clearly, the improvement is largest for small sizes 

of the GSC, leveling off with increasing size. The performance obtained with a small set 

of GSC abstracts combined with an SSC is comparable to a larger GSC set without SSC. 

For instance, each system trained on a GSC of only 10 abstracts supplemented with the 

SSC performs better than the system trained on a GSC of 100 abstracts alone; For larger 

GSC sizes, the performance of OpenNLP or Yamcha trained on 100 or 250 GSC abstracts 

plus the SSC is within 1 percentage point of the performance of the system trained on 

the next larger size of the GSC alone (250 and 500 abstracts, respectively). 
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 Lingpipe OpenNLP Yamcha Combined 

GSC 

size 

GSC GSC+ 

SSC 

GSC GSC+

SSC 

GSC GSC+ 

SSC 

GSC GSC+ 

SSC 

Noun 

phrases 

        

10 65.8% 80.8% 83.0% 87.9% 82.7% 85.6% 86.8% 90.7% 

25 72.2% 81.1% 85.7% 88.3% 84.3% 86.0% 87.9% 90.9% 

50 76.8% 81.3% 87.5% 88.6% 85.4% 86.2% 88.9% 91.2% 

100 78.2% 81.9% 87.9% 88.9% 85.6% 86.6% 89.3% 91.5% 

250 82.4% 82.8% 88.3% 89.3% 86.7% 87.2% 90.6% 92.0% 

500 84.5% n.a 89.7% n.a 88.1% n.a 92.8% n.a 

Verb 

phrases 

    

10 64.1% 86.9% 84.3% 93.6% 86.2% 92.5% 91.3% 94.6% 

25 73.8% 87.3% 88.8% 94.0% 89.7% 92.9% 93.0% 94.9% 

50 79.2% 87.6% 92.1% 94.4% 91.7% 93.1% 94.4% 95.5% 

100 83.6% 87.9% 93.6% 94.7% 92.3% 93.4% 95.4% 95.8% 

250 88.3% 88.7% 95.0% 95.3% 93.8% 93.9% 95.8% 96.0% 

500 90.3% n.a 95.7% n.a 94.1% n.a 96.3% n.a 

 

 

DISCUSSION 

We have investigated the use of an SSC as a substitute or a supplement of a GSC for 

training chunkers in the biomedical domain. The SSC as a substitute for a GSC 

corresponds with a use scenario in which a chunker created for one subdomain has to be 

adapted to another, where a GSC for the new domain is not available. We have shown 

that a system trained on an SSC for the new domain performs considerably better than if 

that system is trained on the GSC of another subdomain, and only slightly worse (<1 

percentage point) than if the system was trained on a GSC for the new domain. In the 

second use scenario, we supplemented a (small) GSC with an SSC for the same domain 

as the GSC. The addition of the SSC always improved the chunker performance, 

particularly if the size of the initial GSC was small. 
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Our results on the practical value of an SSC are different from those that were recently 

reported by Chowdhury and Lavelli [6]. They found a considerable drop in performance 

of a gene recognition system trained on the CALBC SSC as compared to the system 

trained on the BioCreative GSC, and also noticed that the system trained on a 

combination of SSC and GSC performed worse than on the GSC only. There may be 

several reasons for these differences. One is that the SSC that we used for training the 

chunkers was evaluated against the GSC of the same subdomain, whereas in the other 

study the domains from which the CALBC SSC and the BioCreative GSC are taken, are 

more divergent. Another possible reason is that the quality of the CALBC SSC is simply 

not good enough, which may be related to the difficulty of the CALBC task. Named 

entity recognition is generally considered more difficult than chunking, having to deal 

with increased complexities in boundary recognition, disambiguation, and spelling 

variation of entities. Clearly, the better a silver standard will approach a gold standard 

for the domain of interest, the better the performance of systems trained on an SSC. It 

should be noted that the performance of the silver standard compared with the gold 

standard in our study is far from perfect: the PennBioIE SSC has an F-score of 84.5% 

for noun phrases and 93.9% for verb phrases. Performance figures of the CALBC SSC 

against GSCs for named-entity recognition are not yet available, but we presume that 

they will be much lower. However, despite the differences between an SSC and GSC, 

chunking systems trained on these corpora showed remarkably similar performances. It 

is still an open question how an SSC of lower (or higher) quality affects the performance 

of a system trained on the SSC. 

We used a simple voting approach to create an SSC. More sophisticated voting methods 

exist, such as weighted voting [17] or Borda count [18], but these methods require 

information about the confidence or rank of the chunks, information that is not available 

for the chunkers in this study. We also tested a combined system based on the output of 

the three trainable chunkers instead of all five chunkers. When trained on GENIA GSC 

and tested on PennBioIE GSC, the F-score of the combined system dropped to 82.1% 

for noun phrases and 91.9% for verb phrases. Since this performance is considerably 

lower than that of the combined system based on all chunkers, we did not further pursue 

the use of an SSC based on the three trainable chunkers only. 

We used exact matching in performance assessment of the chunkers and creation of the 

SSC. By removing stopwords before matching we tried to remove “uninformative” 

words that should not play a role in determining whether phrases are the same, similar to 

other studies (e.g., [19, 20]). Our main consideration to remove stopwords was that 

chunking is usually an intermediate step in the information extraction pipeline, and 

whether an unimportant word (e.g., “the” at the start of a noun phrase) is detected or not, 
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is unlikely to affect subsequent processing steps (e.g., named entity recognition). 

Stopword removal can be seen as a relaxation of the strict matching requirement. When 

systems trained on GENIA GSC were tested on PennBioIE GSC but without removing 

stopwords, performances dropped by 3.7-5.5 percentage points for noun phrases and 3.6-

6.3 percentage points for verb phrases. This shows that chunkers may considerably differ 

with the gold standard with respect to the annotation of stopwords. We did not want to 

further relax the matching criterion, e.g., by allowing partially matching boundaries, first 

because this would produce matches between phrases that differ in other than 

uninformative words (and thus should be considered different), and second because it is 

not obvious how partially matching phrases should be combined in a single phrase for 

inclusion in the SSC. 

Since the creation of an SSC is automatic, its size can be very large. For different text-

processing applications, increasing amounts of data for training classifiers have been 

shown to improve classifier performance [21-23]. Use of an SSC may be beneficial in 

mitigating the “paucity-of-data” problem [21]. 

The combination of systems always performed better than any of the individual systems, 

but performance increase of the combined system was larger when the individual systems 

were trained on GENIA or PennBioIE GSCs than when they were trained on the 

PennBioIE SSC (cf. Table 1). A possible explanation for this phenomenon is that the SSC 

incorporates results from the chunkers that are subsequently trained on it. As a 

consequence, the diversity of the chunkers trained on the SSC may be less than those 

trained on the GSCs. Indeed, when we pairwise determined the F-score between two 

chunkers trained on GENIA GSC and PennBioIE GSC, the average score was 78.2% and 

80.2%, respectively, in comparison to 87.4% for PennBioIE SSC (without stopword 

removal these figures were 72.6%, 73.9%, and 82.5%, respectively). This indicates better 

agreement between the chunkers (less diversity) for the SSC. Since annotation diversity 

is generally considered a key factor for the improvement seen by ensemble systems (4), 

it may be expected that the combined chunker system shows a smaller increase of 

performance when based on the SSC than on the GSCs. 

We showed that chunkers can obtain almost similar performances whether trained on an 

SSC or a GSC, but this does not mean that we can dispose of GSCs altogether. Obviously, 

to create the SSC we need trained chunkers, and thus a GSC for their initially training. 

We explored the use of a GSC from another, but related, domain than the domain of 

interest. Alternatively, we supplemented a GSC with an SSC in the same domain of 

interest. Using this approach, good results can be achieved with remarkably small-sized 

GSCs. Our experiments indicated that a GSC consisting of only 10 or 25 abstracts but 

expanded with an SSC yields similar performances as a GSC of 100 or 250 abstracts. 
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Practically, these results suggest that the time and effort spent in creating a GSC of 

sufficient size may be much reduced. 

We have tested two use scenarios of an SSC in the field of text chunking, but the proposed 

approach is general and could be used in any field in which GSCs are needed to train 

classifiers. Further investigations will have to reveal how the quality of an SSC affects 

classifier performance and whether the use of SSCs in other application areas is equally 

advantageous as their use in text chunking. 

 

CONCLUSIONS 

We have shown that an automatically created SSC can be a viable alternative for or a 

supplement to a GSC when training chunkers in a biomedical domain. A combined 

system only shows improvement if the SSC is used to supplement a GSC. Our results 

suggest that the time and effort spent in creating a GSC of sufficient size may be much 

reduced. Whether the approach is applicable to other systems in a natural-language 

processing pipeline has to be further investigated. 
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ABSTRACT 

 

Recognition of medical concepts is a basic step in information extraction from clinical 

records. We wished to improve on the performance of a variety of concept recognition 

systems by combining their individual results. 

We selected two dictionary-based systems and five statistical-based systems that were 

trained to annotate medical problems, tests, and treatments in clinical records. Manually 

annotated clinical records for training and testing were made available through the 2010 

i2b2/VA (Informatics for Integrating Biology and the Bedside) challenge. Results of 

individual systems were combined by a simple voting scheme. The statistical systems 

were trained on a set of 349 records. Performance (precision, recall, F-score) was 

assessed on a test set of 477 records, using varying voting thresholds. 

The combined annotation system achieved a best F-score of 82.2% (recall 81.2%, 

precision 83.3%) on the test set, a score that ranks third among 22 participants in the 

i2b2/VA concept annotation task. The ensemble system had better precision and recall 

than any of the individual systems, yielding an F-score that is 4.6 percentage point higher 

than the best single system. Changing the voting threshold offered a simple way to obtain 

a system with high precision (and moderate recall) or one with high recall (and moderate 

precision). 

The ensemble-based approach is straightforward and allows the balancing of precision 

versus recall of the combined system. The ensemble system is freely available and can 

easily be extended, integrated in other systems, and retrained. 
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INTRODUCTION 

Automated extraction of information from unstructured text in clinical records is a 

burgeoning field of research, with applications in clinical decision support, diagnostic 

coding of diseases, adverse event detection, and clinical text mining, among others [1, 

2]. The recognition of named entities or concepts, such as medical problems, tests, and 

treatments, is a basic initial step in information extraction from clinical records. Many 

different methods for named entity recognition in the biomedical field have been 

developed, but no single method has yet been shown to generally perform best.  

In this study, we leveraged the performance of a number of systems that recognize 

medical concepts in clinical records by combining the output of the individual systems. 

Apart from performance improvement, our approach should allow for easy adjustment 

of the balance between precision and recall of the ensemble system, which could be fitted 

for tasks that require either a high precision or a high recall. We tested our approach by 

partaking in the concept extraction task of the 2010 i2b2/VA (Informatics for Integrating 

Biology and the Bedside) challenge on clinical records [3]. The ensemble system, called 

ACCCA (A Combined Clinical Concept Annotator), is available as a web service or can 

be downloaded (http://www.biosemantics.org/ACCCA_WEB). 

 

BACKGROUND 

A number of systems have specifically been developed for information extraction from 

clinical records, e.g., HITEx [4], MedLEE [5], cTAKES [6], MPLUS [7], 

MEDSYNDIKATE [8], and BioTeKS [9]. These systems have been applied to many 

different tasks, e.g., detection of adverse events in medical records of hospitalized 

patients [10], extraction of family history from discharge summaries [11], and detection 

of signs of pneumonia in radiology reports [12], to name a few. Although these systems 

generally perform very well, many contain rule-based components that are not easily 

trained and may require considerable effort to adjust to the task at hand. Also, many of 

the systems are not publicly available, or only under a license construction. 

In addition to these clinical record processing systems, there are numerous other tools 

that were originally designed for named-entity recognition (NER) in biomedical 

literature, but also have been applied to clinical records. A well-known example is 

MetaMap [13], a program that identifies concepts from the Unified Medical Language 

System (UMLS) Metathesaurus [14] in biomedical text. MetaMap is a dictionary-based 

system and cannot be automatically trained, but many other systems, such as Lingpipe 

[15] or tools from the OpenNLP suite [16], are based on a statistical model and can be 

http://www.biosemantics.org/ACCCA_WEB
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trained for a particular task if an appropriate training set is available. 

Several recent reports [17-23] describe a number of systems that were used in the 2010 

i2b2/VA challenge. These systems utilize a variety of machine learning classifiers or are 

based on existing NER tools that were retrained for the i2b2 concept annotation task. 

Most systems operate on large feature sets, derived from the text itself or from external 

sources, such as UMLS. Several systems combine the statistical model with 

postprocessing rules for error correction and disambiguation [17, 19, 22]. An overview 

of all systems that participated in the i2b2 challenge can be found in [3]. 

For our ensemble system, we selected five statistical and two dictionary-based NER 

systems. The statistical systems include ABNER [24], Lingpipe [15], OpenNLP Chunker 

[25], JNET [26], and StanfordNer [27]. They are all publicly available, can easily be 

trained, and utilize a variety of statistical models. The dictionary-based systems are 

MetaMap [13] and Peregrine [28], a concept-recognition tool developed in our institute. 

Both systems could easily be adapted to the i2b2 challenge task. 

Ensemble systems, also called multiple classifier systems, combine the output of 

different classifiers, and have been shown to perform better than the best individual 

classifier [29]. They have been applied in many different fields, including that of 

biomedical text processing. For example, Smith et al. [30] combined the results of 19 

systems for gene mention recognition in the BioCreative II corpus. They found that the 

combined system outperformed the best individual system by 3.5 percentage points in 

terms of F-score. In a study by Baumgartner et al. [31] with the same data set, the results 

of three systems for gene name recognition were combined. The combined system had 

an F-score that outperformed the best single system by 3.4 percentage point. In the same 

study six gene tagging systems were combined using a voting threshold of 1 in order to 

maximize recall. Kim et al. [32] combined eight systems for event extraction related to 

protein biology and showed that the performance of the combined system increased by 

4 percentage points with respect to the best individual system. We previously combined 

six publicly available text chunkers using a simple voting approach [33]. The F-score of 

the combined system improved by 3.1 percentage points for noun-phrase recognition and 

by 0.6 percentage point for verb-phrase recognition as compared to the best single 

chunker. 

Although ensemble systems appear to work well in various biomedical domains, it has 

not yet been investigated whether the approach is also effective for concept recognition 

in clinical records, which is regarded as more difficult than concept recognition in 

scientific literature [1]. The outcome is uncertain because there is still much unclarity 

about what the characteristics of individual systems should be for an ensemble system to 
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work. System diversity is generally acknowledged to be an important factor [29, 34], but 

although many measures have been proposed to quantify diversity, studies that correlated 

diversity measures with system performance have shown inconclusive results [35]. 

 

METHODS 

Clinical records 

The clinical records used in this research were provided by the i2b2 National Center for 

Biomedical Computing. The data consisted of discharge summaries from Partners 

Healthcare and Beth Israel Deaconess Medical Center, and discharge summaries and 

progress notes from the University of Pittsburgh Medical Center. All records had been 

manually annotated for three types of concepts or named entities (medical problems, tests, 

and treatments), according to guidelines provided by the i2b2/VA challenge organizers. 

A total number of 18550 medical problems, 12899 tests, and 13560 treatments were 

annotated. An example annotation is: “The patient had [increasing dyspnea]PROBLEM on 

exertion, he had [a bronchoalveolar lavage]TREATMENT performed, and [CBC]TEST was 

unremarkable.” A set of 349 records was made available for training, and an additional 

set of 477 records was released for testing.  

 

Concept annotation systems 

We selected seven annotation systems that reflect a variety of approaches to the 

recognition of named entities. Two of them were dictionary-based systems, the other five 

were statistical named-entity recognizers and chunkers. All of them were downloaded 

directly from their official websites, except our locally developed Peregrine [28]. For all 

systems their default configurations and parameters were used for both training and 

testing, and no attempt was made to optimize their performance. The following systems 

were used.  

1. ABNER (A Biomedical Named Entity Recognizer) 

(http://pages.cs.wisc.edu/~bsettles/abner/) is a software tool for text analysis in 

molecular biology [24]. The core of the system is a statistical machine learning system 

using a linear-chain conditional random field (CRF) model [36] with a variety of 

orthographic and contextual features. We used version 1.5, released in 2005. 

2. Lingpipe (http://alias-i.com/lingpipe) is a suite of Java libraries for natural language 

processing, including part-of-speech (POS) tagging, named entity recognition, spelling 

correction, etc [15]. The Lingpipe chunker supports rule-based, dictionary-based, and 
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statistical chunking. We used the statistical chunker based on a hidden Markov model 

[37], which according to the Lingpipe website is the most accurate one. The version we 

used is 3.8, released in 2009. 

3. MetaMap (http://mmtx.nlm.nih.gov/) is a dictionary-based system to identify concepts 

from the UMLS Metathesaurus in biomedical text [13]. Based on a minimal commitment 

parser texts are split into chunks, in which concepts are identified. MetaMap cannot be 

trained. MetaMap Transfer (MMTx) is a distributable version of MetaMap written in 

Java. We used the 2010 version. UMLS concepts identified by MetaMap were mapped 

to the three concept types in the i2b2/VA task following guidelines from the challenge 

organizers [3]. 

4. OpenNLP Chunker (http://opennlp.sourceforge.net) is made available by OpenNLP, 

an organizational center for open source projects related to natural language processing. 

An Unstructured Information Management Architecture (UIMA) [38] wrapper for 

OpenNLP has been developed by JULIE Lab (http://www.julielab.de) [25]. The wrapper 

divides the OpenNLP package into small modules that perform sentence detection, 

tokenization, POS tagging, chunking (OpenNLP Chunker), etc., which makes it easy to 

configure the pipeline for different purposes. OpenNLP Chunker is based on a maximum 

entropy model [39]. We used version 2.1, released in 2008. 

5. JNET (JULIE Lab Named Entity Tagger) (http://www.julielab.de/) is a generic and 

configurable named entity recognizer [26]. The comprehensive feature set allows to 

employ JNET for most domains and entity types. JNET uses a CRF model. The version 

we used is 2.3, released in 2008. 

6. Peregrine is a dictionary-based concept recognition and identification tool, developed 

at the Erasmus University Medical Center (http://biosemantics.org). Peregrine includes 

a number of disambiguation rules to improve performance [28]. For the i2b2/VA 

challenge, we used the UMLS 2009 Metathesaurus filtered for relevant semantic types, 

in combination with chunking annotations to improve precision. The UMLS semantic 

types were mapped to the clinical concept types as specified in the i2b2/VA challenge 

guideline.  

7. StanfordNer (http://nlp.stanford.edu/software/CRF-NER.shtml) is a named entity 

recognizer developed by the Stanford Natural Language Processing Group [27]. It is 

based on a linear chain CRF model. We used version 1.1, released in 2009. 

 

Training of systems 

All five statistical systems were trained on the 349 records of the i2b2/VA training corpus. 

http://mmtx.nlm.nih.gov/
http://www.julielab.de/
http://www.julielab.de/
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The i2b2 record annotations were easily converted to the required input format for each 

of the systems. All systems used tokens and contextual information as their input features. 

Some systems (OpenNLP Chunker and JNET) also needed part-of-speech (POS) 

information. We used the OpenNLP POS module to generate the POS tags, and integrated 

them in the training records. As MetaMap and Peregrine are dictionary-based systems, 

training was not needed. 

 

Processing and evaluation pipeline 

All systems were integrated in the UIMA framework, which was easily accomplished 

since the systems either had UIMA components or a webservice interface. The 477 

records in the i2b2/VA test set were read by the UIMA Collection Reader and annotated 

by each of the seven systems. Subsequently, for each record the annotation results of the 

systems were combined into a combined annotation, output in the i2b2/VA annotation 

format, and submitted for evaluation in the i2b2/VA challenge. Precision, recall, and F-

score of the individual annotation systems and the ensemble system were computed for 

two boundary matching strategies: exact matching (both the start and the end of the 

system annotation must match the reference annotation), and inexact matching (at least 

one of the annotation boundaries must match). Exact and inexact matching was done 

both with and without the requirement that the concept types (problem, test, treatment) 

of the annotations should match. 

 

Combination of annotations 

We used a simple voting scheme to combine the results of the different systems. For each 

annotation by a system, the number of systems that exactly matched that annotation was 

counted. If the count was larger or equal than a preset voting threshold, the annotation 

was considered to be confirmed by the combined system, otherwise it was discarded. In 

case systems made two different but overlapping annotations that both qualified for the 

voting threshold, the annotation that was supported by the largest number of systems was 

selected and the other one discarded. If the number of systems that supported each 

overlapping annotation was the same, one annotation was randomly selected. 

 

RESULTS 

Performance of individual and combined annotation systems 

The performance of the seven individual annotation systems on the test set, as well as 
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the performance of the combined system with and without incorporating MetaMap, are 

given in Table 1. The voting thresholds for the two combined systems were based on the 

thresholds that gave the highest F-score on the training set: 3 for the system with 

MetaMap, 2 for the system without. In terms of F-score, the three trainable named-entity 

recognizers (ABNER, JNET, and StanfordNer) performed best, the dictionary-based 

systems (Peregrine and MetaMap) performed worst. Since performance of the combined 

system increased, however slightly, when MetaMap was excluded, we chose to do our 

further analyses based on the ensemble system without MetaMap. 

 

Annotation system Recall Precision F-score 

ABNER 69.3 79.6 74.1 

JNET 76.5 78.8 77.6 

Lingpipe 74.0 73.1 73.5 

Metamap 21.2 22.5 21.8 

OpenNLP Chunker 63.3 78.4 70.0 

Peregrine 40.0 56.5 46.8 

StanfordNer 72.3 82.0 76.8 

Combined system (with MetaMap) 81.0 83.1 82.0 

Combined system (without MetaMap) 81.2 83.3 82.2 

Table 1. Performance of the annotation systems on the i2b2 test set. 

 

Recall, precision, and F-score of this system are all higher than those of any individual 

system. The improvement in F-score of the combined system as compared to the best 

performing single system, JNET, is 4.6 percentage points. The F-score of this ensemble 

system ranked third among the performances of 22 different systems that participated in 

the i2b2/VA concept annotation task. When we derived the combined annotation from 

five rather than six individual systems, the F-score of the combined system decreased by 

0.1 percentage point (leaving out Peregrine) to 0.9 percentage point (leaving out JNET). 

When we stepwise varied the number of systems in the ensemble system from six to 

three, at each step removing the system with the smallest performance contribution to 

the ensemble, performance decreased from 82.2% (six systems) to 82.1% (five systems, 

Peregrine removed), 81.1% (four systems, OpenNLP Chunker removed), and 79.7% 
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(three systems, Lingpipe removed). 

To measure the diversity between the systems, we pairwise determined the F-score and 

assumed that the higher the F-score, the lower the diversity (an F-score of 100% 

indicating perfect agreement, i.e., no diversity). The F-scores ranged from 47.2% 

(MetaMap and JNET) to 82.1% (JNET and StanfordNer). The averaged diversity 

between the dictionary-based systems and the statistical systems (57.5%) was much 

higher than the diversity between MetaMap and Peregrine (73.6%), or than the averaged 

diversity between the five statistical systems (77.3%). 

 

Effect of varying the voting threshold 

When we varied the voting threshold from 1 to 6, precision increased from 60.7% to 

97.6%, and recall dropped from 84.0% to 19.3% (Figure 1). The F-score was highest for 

a threshold of 2. 

 

 

Figure 1. Performance of the ensemble system for varying voting threshold. 

 

Error analysis  

Table 2 shows detailed performance results of the combined system with voting threshold 

2 for different matching strategies. A number of errors were due to mismatches in concept 
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type (problem, test, treatment) of the combined annotation and the reference annotation. 

When the concept types were not required to match, the F-score increased by 2.5 

percentage points, to 84.7%. If additionally only one of the boundaries of the combined 

annotation had to match the reference annotation, the F-score further rose to 92.3%. The 

remaining errors (false positive and false negative annotations) had a mismatch at both 

the start and the end of the annotation boundaries. The differences in F-scores of the 

combined system for each of the three concept types were at most 1.8 percentage point. 

For the individual systems, these differences were within 3 percentage points. 

 

Boundaries Concept type Recall Precision F-score 

Exact Same 81.2 83.3 82.2 

Exact Different 83.6 85.8 84.7 

Inexact Same 90.9 90.3 90.6 

Inexact Different 91.2 93.5 92.3 

Table 2. Performance of the combined annotation system for different boundary and 

concept type matching of the annotations against the reference. 

In a further analysis, we randomly selected ten clinical records and categorized the errors 

made by the ensemble system, based on exact match. It was found that 35% of the errors 

were caused by completely wrong or missed annotations, 20% were caused by 

overlapping but not exactly matching annotations, 16% by punctuation differences, 15% 

by coordination handling, and 14% of the errors were caused by wrong concept types. 

Table 3 shows some examples of these errors. Note that overlap, punctuation, and 

coordination errors disappear if inexact boundary matching is applied. 
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Error type Example 

wrong/missed Reference: …[new T wave inversion in III]PROBLEM in patients… 

System: …new T wave inversion in III in [patients]PROBLEM… 

overlap Reference: He denies [increased urinary frequent]PROBLEM ... 

System: He denies increased [urinary frequent]PROBLEM ... 

punctuation Reference: … For [Pain]PROBLEM , Mild (1-3), ... 

System: … For [Pain, Mild]PROBLEM (1-3), ... 

coordination Reference: He denies [increased urinary frequent]PROBLEM or 

[urgency]PROBLEM ... 

System: He denies [increased urinary frequent or urgency]PROBLEM ... 

concept type Reference: Exam remarkable for [b / l carotid bruits]PROBLEM ... 

System: Exam remarkable for [b / l carotid bruits]TREATMENT ... 

Table 3. Examples of common errors made by the combined annotation system. 

 

DISCUSSION 

To our knowledge, this is the first study showing that the recognition of medical concepts 

in clinical records can be improved considerably by combining the output of different 

annotation systems through a simple voting scheme. The ensemble system had higher 

precision, recall, and F-score values than any of the individual systems considered in this 

study. In terms of F-score, the combined system outperformed the best single system, 

JNET, by 4.6 percentage point. The system is freely available 

(http://www.biosemantics.org/ACCCA_WEB), can easily be extended or integrated with 

other systems, and can be retrained for other tasks. 

The statistical systems that were designed for NER (ABNER, JNET, StanfordNer) 

performed better than the other systems, as might be expected. Remarkably, the two 

chunkers in our study, Lingpipe and OpenNLP Chunker, which we used here for a 

concept recognition task, did not lag far behind in performance. The low performance of 

MetaMap and Peregrine may partly be explained by the use of UMLS, which is not 

specifically geared towards terms in clinical records. Also, these systems carry out 

concept identification, a more difficult task than concept recognition [40], and then 

assign the identified concepts to the three categories at hand, a somewhat roundabout 
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way of named entity recognition. A better filtering of UMLS terms, possibly expanded 

with the reference annotations in the i2b2/VA training corpus, would likely improve these 

systems’ results. Another factor that may well have affected the results, is that the 

statistical systems were specifically trained for the current task, whereas the dictionary-

based systems were not. 

Contrary to other top-ranking systems in the i2b2/VA challenge [17, 20, 22, 23], we did 

not try to optimize the parameters of the individual systems in our study, nor did we use 

more advanced contextual features, e.g., those based on negation or speculation detection, 

which might have further improved the performance of our systems. It is notable that 

even with the simple and straightforward approach that we took, the ensemble system 

ranked among the best-achieving systems in the i2b2 challenge, which shows the 

practicality and viability of the approach. 

Removal of the worst performing system, MetaMap, from the ensemble system slightly 

increased its performance, but subsequent removal of any of the other individual systems 

resulted in performance degradation of the ensemble system. This suggests that almost 

all systems, even a low-performing system like Peregrine, contribute to the high 

performance of the combined annotation system.  

What characteristics of the individual systems make our ensemble system perform well? 

Classifier diversity is generally considered a necessary condition for performance 

improvement of ensemble systems [29]. We have tried to achieve diversity by combining 

different types of classifiers. However, as mentioned above, it is difficult to quantify 

diversity, and the relationship between classifier diversity and performance of the 

combined system is not clear [35]. Moreover, the diversity measures proposed in the 

literature assume that a fixed set of samples is classified [29, 35], but this is not the case 

for our systems, which recognize varying amounts of concepts. In our approach, we used 

pair wise F-scores as a measure to quantify diversity between concept recognition 

systems. Apart from diversity, the accuracy of the classifiers should play a role: clearly, 

one would like classifiers to agree on a classification if it is correct. 

Our results suggest that classifier accuracy correlates better with the performance of the 

ensemble system than classifier diversity. The two systems with the lowest performance, 

MetaMap and Peregrine, had the largest diversity with the other systems but hardly added 

to, or even deteriorated, the performance of the ensemble system. When varying the 

number of systems in the ensemble, the least performing systems gave the smallest 

contribution to the ensemble performance. Improvement may be achieved by the addition 

of other, better performing systems than MetaMap or Peregrine, but considering the 

flattening F-score curve with increasing number of systems in the ensemble, we suspect 
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such improvement not to be large. 

Similarly to previous studies that used voting approaches in natural language processing 

tasks [30, 31, 33], we have used a simple voting scheme. Other, more advanced 

combination methods exist, e.g., weighted majority voting [41], Borda count [42], 

behavior knowledge space [43], decision templates [44], Bayesian approaches [45], and 

Dempster-Shafer rule [46], amongst other methods [47]. There is no consensus as to 

which of them performs best [29], although simple methods such as (weighted) majority 

approaches have shown consistent performance over a broad spectrum of applications 

[48, 49]. Other than for the simple voting approach that we used, these combination 

schemes require additional information, such as ranks or probabilities of the individual 

classifications, information which is not provided by the systems in our study. It might 

be possible to assign weights to the individual classifiers based on prior knowledge, and 

use this information in a weighted voting scheme, but whether this would result in better 

achievement of the ensemble system is left for future research. 

A potential benefit of an ensemble-based system is the possibility to tune the operating 

characteristics of the system to a specific application. The system with the highest F-

score is not under all circumstances the best. Some tasks may require high precision, 

even if this implies moderate recall and F-score, whereas other tasks require high recall. 

The individual systems show some variability in their performance figures (cf. Table 1), 

but none of their precision or recall values is really high. Our combination approach 

offers the possibility to vary the combined system across a large range of precision and 

recall values by varying the voting threshold (cf. Figure 1). Thus, the performance of a 

combined system can easily be tuned to best meet specific requirements.  

Our error analysis indicated that a small part of the errors of the combined system can be 

attributed to a wrongly assigned concept type. Almost half of the remaining errors were 

due to a mismatch in one of the annotation boundaries. Many of these errors resulted 

from incorrect handling of coordination or punctuation, which are also common error 

types for the recognition of noun phrases in biomedical text [33, 50]. The impact of these 

errors on the performance of a whole information extraction pipeline is still an open 

question. For example, it may well be that erroneously splitting or joining annotations is 

less important in terms of information extraction performance than missing or inserting 

annotations. It would be interesting to learn how different annotation errors affect real 

clinical record processing tasks. 

 

CONCLUSION 
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The combination of six existing systems for recognizing medical concepts in clinical 

records provides substantially better results than any of the individual systems. The 

ensemble-based approach is straightforward and allows the balancing of precision versus 

recall of the combined system. 
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ABSTRACT 

 

Objective  

In order for computers to extract useful information from unstructured text, a concept 

normalization system is needed to link relevant concepts in a text to sources that contain 

further information about the concept. Popular concept normalization tools in the 

biomedical field are dictionary-based. In this study we investigate the usefulness of 

natural language processing (NLP) as an adjunct to dictionary-based concept 

normalization. 

 

Methods  

We compared the performance of two biomedical concept normalization systems, 

MetaMap and Peregrine, on the Arizona Disease Corpus (AZDC), with and without the 

use of a rule-based NLP module. Performance was assessed for exact and inexact 

boundary matching of the system annotations with those of the gold standard and for 

concept identifier matching. 

 

Results  

Without the NLP module, MetaMap and Peregrine attained F-scores of 61.0% and 63.9%, 

respectively, for exact boundary matching, and 55.1% and 56.9% for concept identifier 

matching. With the aid of the NLP module, the F-scores of MetaMap and Peregrine 

improved to 73.3% and 78.0% for boundary matching, and to 66.2% and 69.8% for 

concept identifier matching. For inexact boundary matching, performances further 

increased to 85.5% and 85.4%, and to 73.6% and 73.3% for concept identifier matching. 

 

Conclusion  

We have shown the added value of NLP for the recognition and normalization of diseases 

with MetaMap and Peregrine. The NLP module is general and can be applied in 

combination with any concept normalization system. Whether its use for concept types 

other than disease is equally advantageous remains to be investigated. 
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INTRODUCTION 

Most biomedical knowledge comes only in unstructured form, such as in scientific 

articles and reports. The sheer volume of these textual sources requires computer 

processing to extract usable information. An important step in the information extraction 

task is the recognition and normalization of relevant concepts in a text [1]. Concept or 

named-entity recognition aims at finding text strings that refer to entities, and marking 

each entity with a semantic type, like “gene”, “drug”, or “disease”. Concept 

normalization goes beyond entity recognition. It assigns a unique identifier to the 

recognized concept, which links it to a source that contains further information about the 

concept, such as its definition, its preferred name and synonyms, and its relationships 

with other concepts. 

Much research has been done in concept recognition, but fewer studies addressed the 

more difficult task of concept normalization. Concept normalization systems are often 

dictionary-based, i.e., they try to find concept occurrences in a text by matching text 

strings with concept names and their corresponding identifiers in a dictionary. The 

dictionary is composed of entries from one or more knowledge sources, such as Gene 

Ontology [2], Entrez Gene [3], or the Unified Medical Language System (UMLS) [4]. 

Typically, dictionary-based systems use little or no linguistic information to find 

concepts, and the potential added value of such information is largely unknown.  

In this study, we investigate the usefulness of natural language processing (NLP) 

techniques to improve biomedical concept normalization. We present a set of rules that 

utilize NLP information, and show that these rules substantially improve the performance 

of two concept normalization systems, MetaMap [5] and Peregrine [6], in recognizing 

and normalizing diseases in biomedical text. 

 

BACKGROUND 

Compared to the number of named-entity recognition systems, the number of concept 

normalization systems in the biomedical field is small. Reported systems include 

MetaMap [5], Mgrep [7], Negfinder [8], Peregrine [6], and Whatizit [9]. All of these 

systems use a dictionary to find concepts in text and map them to concept identifiers. 

Several systems, such as MetaMap, perform some lexical analysis in the normalization 

process, but part-of-speech (POS) and chunking information are mostly not considered. 

Concept normalization is generally considered a more difficult task than concept 

recognition. This is reflected in the variety of named-entity recognition challenges in the 

biomedical domain, e.g., BioCreative [10] and BioNLP [11] (recognition of proteins and 



Chapter 5 

92 

genes in scientific literature), and TREC [12] and i2b2 [13] (drugs, diseases, and 

treatments in electronic patient records), whereas normalization challenges have been 

few. Substantial work on gene normalization has been done in a series of gene 

normalization tasks that were part of the BioCreative competitions [14–16]. In 

BioCreative I and II, the gene normalization task consisted of finding the identifiers of 

genes and gene products mentioned in sets of abstracts from four model organisms: yeast, 

fly, mouse (BioCreative I), and human (BioCreative II). In the gene normalization task 

in BioCreative III, systems had to assign identifiers to all named genes in full-text articles 

without being limited to a particular organism. For all tasks, unique gene identifiers had 

to be provided at the document level, rather than for individual gene mentions. The 

different systems participating in these challenges used a wide variety of methods, 

including pattern matching, machine learning, and lexical resources lookup [14–16]. 

Heuristic rules were mostly developed and implemented in an ad-hoc and custom manner. 

Hybrid use of rule-based and machine learning methods was observed in system 

descriptions [15,16]. For example, GNAT [17], the top-performing gene normalization 

system in BioCreative II, combines dictionary matching and machine learning to 

recognize gene mentions; the machine-learning component of such programs requires a 

subsequent step to match predicted mentions to identifiers. In the next steps, recognized 

gene names are validated by means of several dedicated filters to remove false positives, 

while ambiguous mentions are disambiguated by comparing the current text with several 

sources of background information existing for each candidate gene. Another example 

of a high-performance gene normalization system is GeNo [18]. This system also 

combines dictionary-based and machine-learning based gene name detection, using 

approximate string matching to link gene mentions with dictionary identifiers. It employs 

automatic term variant generation and false positive filtering. The system fully relies on 

publicly available data and resources. GeNo did not participate in BioCreative, but was 

shown to have a performance on par with GNAT. Another top-ranking system in 

BioCreative I and II was the proprietary ProMiner gene normalization system [19]. 

ProMiner employs a strictly dictionary-based approach, relying on well-curated 

dictionaries and approximate string matching. 

Species name recognition is an important subtask in many systems participating in the 

BioCreative III challenge. Some of the systems employed LINNAEUS, an open source 

species normalization system [20]. LINNAEUS follows a dictionary-based approach, 

using a time-efficient implementation of regular expressions for document tagging. Post-

processing includes acronym detection, filtering of common words, and disambiguation. 

Many algorithms and methods have been proposed to solve common problems 

encountered in concept recognition and concept normalization tasks [21]. For instance, 
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to solve the problem of gene mention coordination, multiple conditional random fields 

(CRFs) and n-gram language models were used [22]. CRFs were also used in another 

study to decompose complex coordinated entity expressions into constituent conjuncts, 

to determine the missing elements, and thus to reconstruct explicitly all the single named 

entity mentions [23]. Rule-based procedures for resolving simple conjunctions of gene 

mentions have also been used [17,24,25]. Many papers addressed the problem of 

abbreviation detection and expansion [26–29]. Proposed approaches range from simple 

rule-based algorithms to sophisticated machine-learning methods. Term variation is 

another common problem that concept normalization systems have to deal with. Methods 

that have been proposed include approximate string matching, heuristic pattern matching 

rules, enhanced dictionaries, etc [30–32]. Finally, a common problem addressed in many 

systems is the removal of false-positive mentions that result from the recognition stage. 

One often used approach is to filter out terms that have an ambiguous meaning in 

common English [33]. but more sophisticated methods (e.g., scoring the similarity 

between the semantic profile of a concept and the document in which it occurs [18]) have 

also been proposed. 

There are only a few corpora in the biomedical domain that incorporate concept 

annotations, notably the Arizona Disease Corpus (AZDC) [34], the BioCreative gene 

normalization corpora [14–16], the Colorado Richly Annotated Full-Text (CRAFT) 

corpus [35], and the Gene Regulation Event Corpus (GREC) [36]. Among these, AZDC 

is the only one that includes information about concept boundaries and UMLS concept 

identifiers, and that is publicly available. Based on the AZDC corpus, very recently the 

larger NCBI corpus was developed [37], but this corpus only contains annotations of 

disease mentions, not concept identifiers. Therefore, we used AZDC as the gold standard 

corpus (GSC) for our experiments. 

The AZDC was used before by Leaman et al. [34] to test the performance of one 

dictionary-based system and two statistical systems (BANNER [34] and JNET [38]). The 

dictionary-based system yielded an F-score of 62.2%, while BANNER and JNET 

achieved F-scores of 77.9% and 77.2%, respectively. Chowdhury and Faisal [39] 

developed another machine-learning based system, BNER, and tested it on the same 

corpus, achieving an F-score of 81.1%. Both these studies were targeted at concept 

recognition, not at concept normalization.  

 

METHODS 

Corpus 
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The AZDC has been developed at the Arizona State University. It was released in 2009 

[34]. The corpus has been annotated with disease concepts, including UMLS codes, 

preferred concept names, and start and end points of disease mentions inside the 

sentences. The whole corpus consists of 2784 sentences, taken from 793 Medline 

abstracts, and 3455 disease annotations. Annotations have been mapped to a concept 

unique identifier (CUI) in the UMLS Metathesaurus. Each annotation belongs to one of 

the following semantic types defined in the UMLS: disease or syndrome, neoplastic 

process, congenital abnormality, acquired abnormality, experimental model of disease, 

injury or poisoning, mental or behavioral dysfunction, pathological function, sign or 

symptom. 

We divided the corpus into two parts: one-third of the sentences was used for developing 

the NLP module, the other two-thirds for testing.  

 

Concept normalization systems 

We evaluated two concept normalization systems, MetaMap and Peregrine. Both systems 

were downloaded from their official websites with default configurations and parameters, 

and no attempt was made to optimize their performance. 

MetaMap (http://metamap.nlm.nih.gov/) is a dictionary-based system for normalizing 

concepts from the UMLS Metathesaurus in biomedical texts [5]. It makes use of a 

minimal-commitment parser, which splits texts into chunks in which concepts are 

identified. MetaMap also performs word-sense disambiguation (WSD). MetaMap is 

dictionary-based and cannot be trained. MetaMap Transfer (MMTx) is a distributable 

version of MetaMap written in Java. We used the 2011 version, which includes version 

2011AA of the UMLS Metathesaurus. 

Peregrine (https://trac.nbic.nl/data-mining/) is a dictionary-based concept recognition 

and normalization tool, developed at the Erasmus University Medical Center 

(http://www.biosemantics.org). Peregrine finds concepts by dictionary look-up, and 

performs WSD [6]. Rewrite and suppression rules are applied to the terms in the 

dictionary to enhance precision and recall [40]. In our experiments, we used Peregrine 

with version 2011AB of the UMLS Metathesaurus. 

 

NLP module 

The NLP module that we have developed consists of a number of rules that combine the 

annotations of a concept normalization system with POS and chunking information. We 

http://metamap.nlm.nih.gov/
https://trac.nbic.nl/data-mining/
http://www.biosemantics.org/
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used the OpenNLP tool suit (http://opennlp.apache.org/) to obtain the necessary POS and 

chunking information. The OpenNLP tool suit is based on a maximum entropy model. 

An OpenNLP UIMA wrapper has been developed by JULIE Lab (http://www.julielab.de). 

The wrapper divides the OpenNLP package into small modules that perform sentence 

detection, tokenization, POS tagging, and chunking, which makes it easy to configure 

the pipeline for different purposes [41]. The rules in the NLP module are divided into 

five submodules, which address specific tasks and are described in the following. A 

detailed description of the rules is available as Supplementary Material. 

1. Coordination. This submodule performs coordination resolution. The approach is 

straightforward and extends the one described by Baumgartner et al [24]. For instance, 

in the following sentence from the AZDC: “We calculated age related risks of all, 

colorectal, endometrial, and ovarian cancers in nt943+3 A--T MSH2 mutation carriers 

[…]”, MetaMap and Peregrine both recognize “ovarian cancers” as a concept, but miss 

“colorectal cancers” and “endometrial cancers”. Using POS- and chunking information, 

this module reformats the coordination phrase and feeds the reformatted text into the 

concept normalization systems for proper annotation of the concepts. 

2. Abbreviation. This submodule combines the abbreviation expansion algorithm of 

Schwartz and Hearst [26], with POS and chunking information to improve the 

recognition of abbreviations. We chose the Schwartz and Hearst algorithm because it is 

very easy to implement and to combine with other rules, and has shown consistently 

good performance in different studies [24,25]. For an instance of abbreviation errors, in 

the sentence “Deficiency of aspartylglucosaminidase AGA causes a lysosomal storage 

disorder Aspartylglucosaminuria AGU”, the concept normalization systems annotated 

“Deficiency of aspartylglucosaminidase” and “Aspartylglucosaminuria” as disease 

concepts, in agreement with the gold standard annotations, but they did not recognize the 

abbreviations. Since “AGA” is used as the abbreviation of “aspartylglucosaminidase”, 

an enzyme, it should not be annotated as a disease concept, but “AGU” should be 

identified as such. This was accomplished by means of a rule that checks whether the 

last noun in a noun phrase is an abbreviation of all preceding tokens in the noun phrase. 

3. Term variation. Dictionary-based systems can only find concepts if the terms by which 

these concepts are denoted in text are part of the dictionary. Although UMLS covers 

some term variation, many variations are missing. The submodule in question uses a 

shallow parsing based approach, similar to Ferrucci et al [42]. It contains a number of 

rules that adjust noun phrases and feed the adjusted phrase into the concept normalization 

system again, to check whether it refers to a concept. For instance, if a noun phrase 

includes a preposition, such as “deficiency of hex A”, which is not part of the UMLS, 

the word order is changed into “hex A deficiency”, which is contained in the UMLS. 

http://opennlp.apache.org/
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4. Boundary correction. This submodule contains several rules that correct the start- and 

end positions of concepts identified by the systems, based on POS- and chunking 

information. For instance, if the POS of the start- or end token from a concept annotation 

is a verb, preposition, conjunction, or interjection, it then uses POS information to adjust 

the concept start- or end position. By applying these rules, an erroneous annotation such 

as “phenylketonuria Is”, contrived from “classical phenylketonuria is an autosomal 

recessive disease”, could be corrected to “phenylketonuria”. 

5. Filtering. This submodule has two rules that suppress concepts although they had been 

identified by the system. The first rule removes a concept if the concept annotation in the 

text has no overlap with a noun phrase because in our experience, most UMLS concepts 

in biomedical abstracts belong to a noun phrase, or at least overlap with it. The second 

rule removes a concept if it is part of a concept filter list, a common approach to increase 

precision as used by many systems in the BioCreative competitions [14–16]. Our list 

contains 23 generic concepts (e.g., “disease”, “abnormality”) that were wrongly 

annotated by Peregrine in the training set.  

The rules in the NLP module were developed on the basis of an error analysis of the 

Peregrine annotations of the training set. The annotations of MetaMap were not used for 

this development.  

 

Performance evaluation 

The annotations of the concept normalization systems were compared with the gold 

standard annotations by exact and inexact matching, both of the concept boundaries 

(following the same procedure as in [34,39]) and of the concept identifiers. For exact 

boundary matching, an annotation was counted as true positive if it was identical to the 

gold standard annotation, i.e., if both annotations had the same start and end location in 

the corpus. If a gold-standard annotation was not given, or not rendered exactly by the 

system, it was counted as false negative; if an annotation found by the system did not 

exactly match the gold standard, it was counted as false positive. For concept identifier 

matching, the same rules applied as for exact boundary matching with the additional 

requirement that for a true positive outcome the concept identifiers had to match; if not, 

the annotations were counted as false positive as well as false negative. Performance was 

evaluated in terms of precision, recall, and F-score.  

The performance of the systems was also tested by using two methods of inexact 

boundary matching: one-side boundary matching (i.e., at least one boundary of the 

system annotation had to match the gold standard annotation) and overlap matching (i.e., 
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at least one word of the system annotation had to overlap with the corpus annotation). 

Inexact concept identifier matching followed the same rules as inexact boundary 

matching but in addition required the concept identifiers to match. 

An error analysis was carried out on a sample of 100 randomly selected errors that were 

made by each concept normalization system after applying the NLP module. Errors were 

grouped into five categories, following the task categorization of the five NLP 

submodules. 

 

Processing pipeline 

All systems and the NLP module were integrated in the Unstructured Information 

Management Architecture (UIMA) framework [43], which was easily accomplished 

since they either were available as a UIMA component [41] or had a web service interface. 

A UIMA processing pipeline was implemented, which first read the AZDC test set by 

the UIMA Collection Reader. Then the test set was annotated by MetaMap and Peregrine. 

Because the AZDC includes nine UMLS semantic types, only the annotated concepts 

belonging to these types were considered for evaluation. Subsequently, the NLP 

submodules post-processed the annotation results. Some rules, such as the coordination 

rules, not only processed the annotations but also modified the original input sentence. 

The modified text was then fed into the concept normalization systems for re-annotation. 

Finally, the system annotations before and after post-processing by the NLP submodules 

were evaluated separately against the gold standard annotations. 

 

RESULTS 

Performance of the concept normalization systems without and with NLP 

Table 1 shows the performance of the two concept normalization systems on the AZDC 

test set. Without the NLP module, MetaMap achieved an F-score of 61.0% for exact 

boundary matching, and 55.1% for concept identifier matching. The F-scores of 

Peregrine were 63.9% for exact boundary matching and 56.9% for concept identifier 

matching. With the aid of the NLP module, the F-scores of MetaMap and Peregrine 

increased by 12.3 and 14.1 percentage points, respectively, for exact boundary matching, 

and by 11.1 and 12.9 percentage points for concept identifier matching. Both for 

MetaMap and Peregrine, there is a larger increase in precision than in recall (table 1). 

For inexact, one-side boundary matching, MetaMap and Peregrine, without the NLP 

module, reached F-scores of 79.5% and 77.7%, respectively (table 1). With the NLP 
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module, these F-scores increased to 85.5% and 85.4%. The performances for concept 

identifier matching increased from 65.3% to 73.6% and from 64.9% to 73.3%, 

respectively. The F-scores for overlap matching showed only minimal improvement (<1 

percentage point, data not shown). 

 

 Exact matching  Inexact matching 

 Boundaries  Identifiers  Boundaries  Identifiers 

System Precision Recall F-

score 

 Precision Recall F-

score 

 Precison Recall F-

score 

 Precison Recall F-

score 

MetaMap 60.9 61.1 61.0  55.0 55.2 55.1  79.3 79.7 79.5  65.1 65.5 65.3 

MetaMap + 

NLP 

76.1 70.7 73.3  68.7 63.9 66.2  89.1 82.2 85.5  76.1 71.3 73.6 

Peregrine 63.5 64.3 63.9  56.6 57.3 56.9  77.1 78.4 77.7  64.6 65.3 64.9 

Peregrine + 

NLP 

82.2 74.2 78.0  73.5 66.4 69.8  89.6 81.6 85.4  76.7 70.2 73.3 

Table 1. Performance (in %) of MetaMap and Peregrine, with and without the NLP 

module, on the AZDC test set for exact and inexact matching of concept boundaries 

and identifiers. 

 

Performance of NLP submodules 

Table 2 shows the incremental performance improvement for the various NLP 

submodules, based on exact boundary matching. The baseline was the performance of 

MetaMap and Peregrine without any submodules. The coordination module, 

abbreviation module, and boundary correction module each contributed between 3.0 to 

3.5 percentage points to the betterment of performance. The smallest contribution to 

raising the F-score was by the filtering module, with the two rules in this module equally 

contributing to the performance improvement. 
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NLP submodules  MetaMap  Peregrine 

Precision Recall F-score Precision Recall F-score 

Baseline  60.9 61.1 61.0  63.5 64.3 63.9 

+Coordination  63.4 64.4 64.0  67.5 67.0 67.2 

+Abbreviation  66.7 67.7 67.2  70.7 70.8 70.7 

+Term variation  68.9 69.3 69.1  74.3 71.8 73.0 

+Boundary correction  73.7 70.7 72.2  78.8 74.2 76.4 

+Filtering  76.1 70.7 73.3  82.2 74.2 78.0 

Table 2. Performance (in %) of MetaMap and Peregrine with incremental contributions 

of the NLP submodules on the AZDC test set for exact boundary matching. 

 

Error analysis 

We randomly selected 100 errors that MetaMap and Peregrine, together with the NLP 

module, each made on the test set, and manually classified them into different error types 

(Table 3). The error profiles of MetaMap and Peregrine were very similar. The majority 

of errors were due to term variation and boundary errors. For instance, the term “alpha-

Gal A deficiency”, referring to the concept “alpha-galactosidase deficiency”, was not 

found as the term does not occur in UMLS. Boundary errors mainly occurred because of 

nested annotations in the gold standard. For example, in “Therefore, we screened eight 

familial gastric cancer kindreds of British and Irish origin [...]”, both “familial gastric 

cancer” and “gastric cancer” were annotated in the gold standard, whereas the systems 

only annotated “gastric cancer”. Filtering errors were mainly due to concepts that were 

inconsistently annotated by the gold standard. For example, in “Because of the variable 

expression of nm23-H1 in different tumors [...]”, “tumors” was annotated by the gold 

standard, but it was not in “In neuroblastoma, higher levels of p19/nm23 [...] were 

observed in advanced stage tumors compared with limited stage disease”. Coordination 

and abbreviation errors were relatively few. For example, in the sentence “the majority 

of familial breast/ovarian cancer”, the gold standard annotated “familial breast cancer” 

and “familial ovarian cancer”, whereas the coordination module recognized “breast 

cancer” and “ovarian cancer” but failed to include “familial”. An abbreviation error 

occurred in the sentence “One of five PWS/AS patients analyzed to date has an 

identifiable, rearranged HERC2 transcript derived from the deletion event.” The systems 

did not annotate “PWS” (Prader-Willi syndrome) and “AS” (Angelman syndrome), 

which had been defined (and correctly annotated) in a preceding sentence. 
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System Coordination Abbreviation Term variation Boundary Filtering 

MetaMap + NLP 12 13 28 24 23 

Peregrine + NLP 11 14 28 26 21 

Table 3. Distribution across five error types of 100 randomly selected errors of each 

system on the AZDC test set. 

 

DISCUSSION 

We have investigated the use of NLP to improve the performance of two concept 

normalization systems. By applying a set of post-processing rules that utilize POS and 

chunking information, the F-scores of MetaMap and Peregrine on AZDC improved by 

12.3 and 14.1 percentage points, respectively, for exact boundary matching, and by 11.1 

and 12.9 percentage points, respectively, for concept identifier matching. For inexact 

matching, the improvement was smaller but still in the order of 6-8 percentage points. 

To our knowledge, this is the first study that assesses the performance of systems in 

normalizing disease concepts. 

Concept recognition performed substantially better than concept normalization, even if 

the boundaries matched exactly. This may partially be explained by the fact that the 

systems assigned the wrong CUI to ambiguous terms. However, on closer inspection it 

turned out that the gold-standard annotators often took into account the context in which 

a term was used and assigned a more specific CUI than the systems. For instance, in the 

sentence “A DNA-based test for the HFE gene is commercially available, but its place 

in the diagnosis of hemochromatosis is still being evaluated.”, the systems assigned the 

concept “hemochromatosis” (C0018995), whereas the GSC annotated the concept 

“hereditary hemochromatosis” (C0392514). It should be noted that “hemochromatosis” 

is not part of the list of terms in the UMLS corresponding with the concept C0392514. 

Thus, this concept is not even considered by the disambiguation algorithms of the 

systems. Knowledge-based disambiguation approaches that can take into account the 

concept relationships defined in the UMLS may be able to solve these disambiguation 

problems. 

Usage of the NLP module gives a larger increase in precision than in recall (cf. Table 1), 

even though most rules are aimed at finding missed concepts. This can partly be 
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explained by the filtering submodule, which by its nature can only improve precision, 

but also some of the other submodules improve precision more than recall. The reason is 

that if a rule finds a missed concept it often suppresses one or more erroneous concepts 

that were initially found by the system, thus improving precision. 

Peregrine gave a slightly better performance than MetaMap when exact matching was 

used for evaluation, but for inexact matching the performances were similar, both for 

concept recognition and for concept identification. The two systems used different 

UMLS versions (2011AA and 2011AB), but the differences between these versions are 

very small and unlikely to be the cause of performance differences. Since the NLP 

module was developed on the basis of the errors made by Peregrine, one might suspect 

a performance bias in favor of this system in combination with the NLP module. 

However, when we determined the performance on the training set, the F-score turned 

out to be only 1.9 percentage point higher than on the test set, indicating hardly any 

overtraining. For MetaMap, this difference was 1.7 percentage point. With the use of the 

NLP module, Peregrine and MetaMap showed a comparable gain in performance. 

Many of the rules in our NLP module have not been used before in their specific form, 

but similar such rules have previously been proposed in many different studies. The 

combination of different types of rules in one system, showing the contribution of each 

submodule to total performance, and their application to disease normalization, a task 

which has not been addressed before, is novel in our study. The submodules are general 

and may be combined, as a whole or separately, with other concept normalization 

systems. 

In developing the NLP module, we manually constructed rules and did not use machine-

learning techniques, as did previous studies that used the AZDC for system development 

and evaluation [34,39]. These machine-learning based systems achieved comparable or 

slightly better performance for concept recognition as our rule-based systems, but did 

not address the normalization task. Moreover, we believe our approach offers several 

benefits. Firstly, machine-learning based systems are often not transparent, whereas the 

man-made rules are comprehensible. This is likely to ease error detection and correction, 

incremental rule improvement, and adaptation to other domains. Also, the rules combine 

input from heterogeneous systems in a very flexible way, which may be more difficult to 

achieve by machine learning methods that have a fixed knowledge representation model. 

Finally, machine learning methods require sufficiently large GSCs for training. Although 

this requirement apparently was met in the case of AZDC, this may not be true for other 

application areas. We also need a GSC for developing our rules, but the size can be 

relatively small because human experts also bring in background knowledge that can 

compensate for scarce data. Finally, although we did not put it to the test, it is conceivable 
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that machine-learning based concept recognition may still benefit from our NLP module 

because it may capture patterns not well handled by machine learning. Whether this 

would also translate into better concept normalization would also depend on the 

normalization step that needs to follow machine-learning based concept recognition.  

The error analysis indicated that about half of the errors that remain after applying the 

NLP module can be denoted as term variation and filtering errors. While further 

improvement of the submodules dealing with these errors may be possible, it is more 

likely that improved dictionaries and disambiguation methods will help to reduce these 

types of errors. In this respect, further work on the generation of term variants would be 

useful. We also noticed that shallow parsing sometimes provides insufficient information 

to resolve errors in complex sentences. Such information may possibly derive from deep 

parsing, but exploring the usefulness of these techniques for our purposes will be left to 

future research. 

We have shown the added value of the NLP module for the recognition and normalization 

of diseases with MetaMap and Peregrine. The module is general and can be applied in 

combination with any concept normalization system. Whether its use for the 

normalization of other concept types, such as genes or drugs, is equally advantageous 

still remains to be investigated. 
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ABSTRACT 

 

Background 

Many biomedical relation extraction systems are machine-learning based and have to be 

trained on large annotated corpora that are expensive and cumbersome to construct. We 

developed a knowledge-based relation extraction system that requires minimal training 

data, and applied the system for the extraction of adverse drug events from biomedical 

text. The system consists of a concept recognition module that identifies drugs and 

adverse effects in sentences, and a knowledge-base module that establishes whether a 

relation exists between the recognized concepts. The knowledge base was filled with 

information from the Unified Medical Language System. The performance of the system 

was evaluated on the ADE corpus, consisting of 1644 abstracts with manually annotated 

adverse drug events. Fifty abstracts were used for training, the remaining abstracts were 

used for testing. 

 

Results 

The knowledge-based system obtained an F-score of 50.5%, which was 34.4 percentage 

points better than the co-occurrence baseline. Increasing the training set to 400 abstracts 

improved the F-score to 54.3%. When the system was compared with a machine-learning 

system, jSRE, on a subset of the sentences in the ADE corpus, our knowledge-based 

system achieved an F-score of 88.8% which is 7 percentage points better than jSRE 

trained on 50 abstracts, and still 2 percentage points better than jSRE trained on 90% of 

the corpus. 

 

Conclusion 

A knowledge-based approach can be successfully used to extract adverse drug events 

from biomedical text without need for a large training set. Whether use of a knowledge 

base is equally advantageous for other biomedical relation-extraction tasks remains to be 

investigated. 
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BACKGROUND  

Vast amounts of biomedical information are only offered in unstructured form through 

scientific publications. It is impossible for researchers or curators of biomedical 

databases to keep pace with all information in the growing number of papers that are 

being published.[1, 2] Text-mining systems hold promise for facilitating the time-

consuming and expensive manual information extraction process,[3] or for automatically 

engendering new hypotheses and fresh insights.[4, 5] 

In recent years, many systems have been developed for the automatic extraction of 

biomedical events from text, such as protein-protein interactions and gene-disease 

relations.[2, 6] Relatively few studies addressed the extraction of drug-related adverse 

effects, information which is relevant in drug research and development, healthcare, and 

pharmacovigilance.[7] The reason that this subject has been studied less frequently may 

in part be explained by the scarcity of large annotated training corpora. Admittedly 

cumbersome and expensive to construct, these data sets are nonetheless essential to train 

the machine-learning based classifiers of most current event extraction systems. Relation 

extraction systems typically perform two tasks: first, they try to recognize the entities of 

interest, next they determine whether there are relations between the recognized entities. 

In many previous studies, system performance evaluation was often limited to the second, 

relation extraction task, and did not consider the performance of the entity recognition 

task. 

In this study, we describe the use of a knowledge base to extract drug-adverse effect 

relations from biomedical abstracts. The main advantage of our system is that it needs 

very little training data as compared to machine-learning approaches. Also, we evaluate 

the performance of the whole relation extraction pipeline, including the entity 

recognition part. 

 

Related work 

To extract biomedical relations from unstructured text a number of approaches have been 

explored, of which we mention simple co-occurrence, rule-based, and machine-learning 

based techniques.  

The simplest approach is based on the co-occurrence of entities of interest. It assumes 

that if two entities are mentioned together in the same sentence or abstract, they are 

probably related. Typically, this approach achieves high recall, but low precision.[8] 

Since co-occurrence approaches are straightforward and do not involve linguistic 

analysis, their performance is often taken as a baseline to gauge other methods.[9, 10]  
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Rule-based techniques are also a popular method for relation extraction. The rules are 

defined manually using features from the context in which the relations of interest occur. 

Such features may be prefixes and suffixes of words, part-of-speech (POS) tags, 

chunking information, etc.[11–13] However, the large amount of name variations and 

ambiguous terms in the text may cause an accumulation of rules.[5] This approach can 

increase precision, but often at the cost of significantly lower recall.[14]  

Machine-learning approaches automatically build classifiers for relation extraction, 

using contextual features derived from natural language processing techniques such as 

shallow parsing, which divides the sentence into chunks,[15, 16] or full dependency 

parsing, which provides a complete syntactic analysis of sentence structures.[17] The 

performance of these methods is usually good,[18–20] but they require annotated 

training sets of sufficient size. Also, processing time may be high.[3] 

Hybrid approaches that combine manual and automatic approaches have also become 

more popular in recent years.[21, 22]  

An example of a relation extraction system is JReX, developed by the JULIE lab.[23] 

JReX uses a support vector machine (SVM) algorithm as its classifier. Originally 

developed for the extraction of protein-protein interactions, it was later adapted to the 

domain of pharmacogenomics. Using the PharmGKB database,[24] JReX obtained F-

scores in the 80% range for gene-disease, gene-drug, and drug-disease relations.[25] The 

Semantic Knowledge Representation (SKR) system [26], developed by the National 

Library of Medicine, provides semantic representations of biomedical text by building 

on resources currently available at the library. SKR applies two programs, MetaMap[27] 

and SemRep.[28], both of which utilize information available in the Unified Medical 

Language System (UMLS).[29] SKR has been used for concept-based query expansion, 

for identification of anatomical terminology and relations in clinical records, and for 

mining biomedical texts for drug-disease relations and molecular biology 

information.[30] Java Simple Relation Extraction (jSRE) is still an other relation 

extraction tool based on SVM. It has been used for the identification and extraction of 

drug-related adverse effects from Medline case reports,[31, 32] achieving an F-score of 

87% on the ADE corpus.[33] A framework that integrates nine event extraction systems 

is U-Compare.[34] The U-Compare event meta-service provides an ensemble approach 

to relation extraction, where the combination of systems may produce a significantly 

better result than the best individual system included in the ensemble.[34] Hybrid 

approaches that combine different techniques have also been shown to perform well. Bui 

et al. [35] proposed a novel, very fast system that combines natural language processing 

(NLP) techniques with automatically and manually generated rules, and obtained an F-

score of 53% on the Genia event corpus,[36] a result that is comparable to other state-of-
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the-art event extraction systems.  

Most of the existing relation extraction systems use machine-learning algorithms and 

require an annotated corpus for training. There are several publicly available biomedical 

text corpora with manually annotated relations, for instance the corpora generated as part 

of the Biocreative[37–39] and BioNLP[40, 41] challenges, the GENIA event corpus,[36] 

PharmGKB,[24] and the ADE corpus.[33] Most of these corpora focus on protein-

protein interactions or other bio-events, while only two address drug-disease relations 

(PharmGKB) or drug-adverse effect relations (ADE corpus). As some of the annotations 

in PharmGKB have been reported to be hypothetical,[42] we chose to use the ADE 

corpus as the gold standard corpus (GSC) for our experiments. 

 

METHODS 

Corpus 

The ADE corpus consists of 1644 Medline abstracts with 2972 case reports that were 

manually annotated and harmonized by three annotators. The selection of the case reports 

was based on a PubMed query with the MeSH (Medical Subject Headings) terms “drug 

therapy” and “adverse effect”. The corpus contains annotations of 5063 drugs, 5776 

conditions (diseases, signs, symptoms), and 6821 relations between drugs and conditions 

representing clear adverse effect occurrences.[33] Each relation consists of a Medline 

identifier, the sentence that contains this relation, the text and position of the drug, and 

the text and position of the adverse effect. Relations were only annotated if they occur in 

a single sentence. Drugs and conditions were not annotated if they were not part of an 

adverse event relation. We divided the ADE corpus into two sets: a small training set of 

50 randomly selected abstracts, and a test set with the remaining abstracts (Table 1). 

Contrary to previous studies,[32] we used all sentences in the abstracts, both “positive” 

sentences that contain at least one relation according to the gold standard, and “negative” 

sentences that do not contain a relation. 

 

 Training set Test set Total 

Abstracts 50 1594 1644 

Relations 201 6620 6821 

Sentences with at least one relation 130 4142 4272 

Sentences with no relation 233 7327 7560 

Table 1. Number of abstracts, relations, and sentences in the ADE corpus. 
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Relation extraction system 

The relation extraction system consists of two main modules: a concept identification 

module that identifies drugs and adverse effects, and a knowledge-base module that 

determines whether an adverse effect relation can be established between the entities that 

are found. All modules were integrated in the Unstructured Information Management 

Architecture framework.[43] 

We used the Peregrine system (https://trac.nbic.nl/data-mining/) as the basis of our 

concept identification system. Peregrine is a dictionary-based concept recognition and 

normalization tool, developed at the Erasmus University Medical Center.[44] It finds 

concepts by dictionary look-up, performs word-sense disambiguation if necessary, and 

assigns concept unique identifiers (CUIs). We used Peregrine with a dictionary based on 

version 2012AA of the UMLS Metathesaurus, only keeping concepts that belong to the 

semantic groups “Chemicals & Drugs” and “Disorders”.[45] Rewrite and suppress rules 

are applied to the terms in the dictionary to enhance precision and recall.[46] To further 

improve concept identification, we employed a rule-based NLP module that carries out 

coordination resolution, abbreviation expansion, term variation, boundary correction, 

and concept filtering.[47] We previously developed and tested this module for disease 

identification.[47] The NLP module was not modified for the current task except for the 

concept filtering, which was adjusted based on our training data. 

The knowledge base consists of a graph in which the vertices represent concepts and the 

edges represent relations between these concepts. The knowledge base is populated with 

concepts (CUIs) and relations extracted from the UMLS Metathesaurus and the UMLS 

Semantic Network version 2012AA. Each edge or relation in the knowledge base has a 

relation type, e.g., “is-a” or “causes”. The edges that connect two concepts form a path, 

with a length equal to the number of edges. The distance between two concepts is defined 

as the length of the shortest path. Note that there may be multiple shortest paths, but there 

is only one shortest path length. 

For each sentence in the corpus, we determined the distance in the knowledge base 

between the drugs and adverse effects that were found by the concept identification 

module. Only if the distance between a drug-adverse effect pair was less than or equal to 

a distance threshold, a relation was considered present. Based on our training set, a 

distance threshold of four gave best performance results. 

Further reduction of false-positive drug-adverse effect relations was attempted by taking 

into account the type of the relations in the shortest paths between drugs and adverse 

https://trac.nbic.nl/data-mining/
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events. In our training set, we counted the number of each relation type in the paths that 

resulted in false-positive and in true-positive drug-adverse effect relations. If for a 

relation type the ratio of the false-positive count plus one and the true-positive count plus 

one was greater than seven, we discarded any path containing that relation type. The 

value of seven was determined experimentally on the training set as yielding the best 

performance.  

 

Performance evaluation 

In the ADE corpus, drug-adverse effect relations are annotated at the sentence level by 

specifying the start and end positions of the drug and the adverse effect. We counted a 

relation found by our system as true positive if the boundaries of the drug and adverse 

effect exactly matched those of the gold standard. If a gold-standard relation was not 

found, i.e., if the concept boundaries were not rendered exactly by the system, it was 

counted as false negative. If a relation was only found by the system, i.e., the concept 

boundaries did not exactly match the gold standard, it was counted as false positive. 

Performance was evaluated in terms of precision, recall, and F-score. An error analysis 

was carried out on a sample of 100 randomly selected errors that were made by our 

relation extraction system. 

 

RESULTS 

Performance of the relation extraction system 

Table 2 shows the performance of the Peregrine baseline system on the test set of the 

ADE corpus, and the incremental contribution for each of the different modules. The 

baseline system had a high recall but low precision, yielding an F-score of 16.1%. Use 

of the NLP module more than doubled the F-score. Application of the knowledge base 

further improved the F-score by 12.6 percentage points. Relation-type filtering increased 

the F-score by another 4.3 percentage points. Overall, the knowledge-base module 

decreased recall by 8.1 percentage points, but increased precision by 17.0 percentage 

points. 
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System  Precision Recall F-score 

Baseline  8.9 78.4 16.1 

+ NLP module  21.1 82.9 33.6 

+ Knowledge base  32.8 78.1 46.2 

+ Relation-type filtering  38.1 74.8 50.5 

Table 2. Performance (in %) of the baseline relation extraction system and the 

incremental contribution of different system modules, on the test set of the ADE 

corpus. 

 

Effect of different distance thresholds in the knowledge base 

Table 3 shows the performance of the relation extraction system on the ADE test corpus 

for different distance thresholds (the maximum allowed length of the shortest path 

between a drug and an adverse effect) in the knowledge base. The highest F-score of 

50.5% is obtained with a distance of four. Lowering the distance threshold increases 

precision and decreases recall. The highest recall is 76.5% (precision 37.0%) at a 

threshold of five, the highest precision is 43.2% (recall 1.6%) at a threshold of one.  

 

Threshold Precision Recall F-score  

1 43.2 1.6 3.1  

2 41.8 15.2 22.3  

3 40.6 64.1 49.7  

4 38.1 74.8 50.5  

5 37.0 76.5 49.9  

Table 3. Performance (in %) of the relation extraction system on the test set of the ADE 

corpus for different distance thresholds in the knowledge base. 

 

Effect of different training set sizes 

To assess the effect of increasing amounts of training data on system performance, 

training sets of 100, 200, and 400 abstracts were selected from the ADE corpus. The 

abstracts in a training set were a subset of the abstracts in the next larger training set. For 

each training set, the corresponding test set consisted of the remaining abstracts in the 
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ADE corpus. Table 4 shows that the performance of the relation extraction system 

improves with larger amounts of training data, but is leveling off with increasing size. 

The system obtains an F-score of 54.3% when trained on 400 abstracts, which is an 

improvement of 3.8 percentage points as compared with the system trained on 50 

abstracts The NLP module contributed 1.7 percentage points to this improvement, and 

the relation-type filter module 2.1 percentage points. The baseline Peregrine module and 

the knowledge-base module do not require training and thus were not changed.  

 

Abstracts for training Precision Recall F-score  

50 38.1 74.8 50.5  

100 39.8 75.2 52.1  

200 41.1 75.7 53.3  

400 42.1 76.3 54.3  

Table 4. Performance (in %) of the relation extraction system on the test set of the ADE 

corpus for different sizes of the training set. 

 

Performance comparison of knowledge based and machine-learning based relation 

extraction 

The ADE corpus has previously been used to develop and evaluate a machine-learning 

based relation extraction system based on jSRE.[32] To compare the performances of 

our knowledge-based relation extraction system and a machine learning-based system, 

we set up the same training and test environment as described by Gurulingappa et al.[32]. 

Similar to Gurulingappa et al., we removed all relations with nested annotations in the 

gold standard (e.g., “acute lithium intoxicity”, where “lithium” is related to “acute 

intoxicity”), and only used the positive sentences in the ADE corpus. In [32], the true 

relations (taken from the gold standard) were supplemented by false relations (taken from 

co-occurring drugs and conditions that were found by ProMiner,[48] a dictionary-based 

entity recognition system), in a ratio of 1.26:1. To create a corpus with the same ratio to 

train and test our system, we took all true relations in which the concepts were found by 

Peregrine and the NLP module, and randomly added false co-occurrence relations 

generated by Peregrine and the NLP module, until the ratio of 1.26:1 was reached. 

Table 5 shows the performance of our knowledge-base system and the previously 

reported performance of jSRE.[32] Without any training corpus, i.e., only applying the 

knowledge base but not the relation-type filtering, which requires training, our system 

already got an F-score of 88.5%. Additional use of the relation-type filter trained on small 
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sets of 10 or 50 abstracts, resulted in slightly higher F-scores, which were substantially 

better than those obtained with jSRE. The best F-score reported for jSRE, when about 

90% of the abstracts in the corpus was utilized for training, was 87%.[32]  

 

Training set 

(abstracts) 

Machine learning  Knowledge base 

Precision Recall F-score Precision Recall F-score 

0 n/a n/a n/a  88.5 88.6 88.5 

10 58 6 55  89.1 88.2 88.6 

50 79 87 82  91.8 86.1 88.8 

Table 5. Performance (in %) of a machine-learning based (jSRE) relation extraction 

system [32] and the knowledge-based system on a subset of the ADE test corpus (see 

text). 

 

Error analysis 

We randomly selected 100 errors that the system made in our test set, and manually 

classified them into different error types (Table 6). False-positive errors were mostly due 

to drugs and adverse effects that were correctly found by the concept identification 

module, but were wrongly annotated by the knowledge-base module as having a relation. 

Of the 64 errors of this type, 46 occurred in negative sentences, i.e., sentences that do not 

contain any drug-adverse effect relation according to the gold standard. For instance, the 

gold standard did not annotate a relation in “Norethisterone and gestational diabetes”, 

but the system found “norethisterone” as a drug concept, “gestational diabetes” as an 

adverse effect, and generated a false-positive relation between these two concepts. 

Eighteen of the 64 errors occurred in positive sentences. For instance, in the sentence 

“Pneumocystis carinii pneumonia as a complication of methotrexate treatment of 

asthma”, the gold standard annotated a relation between the drug “methotrexate” and the 

adverse effect “pneumocystis carinii pneumonia”, concepts that were also found by the 

system. However, the system also annotated “asthma” as another adverse effect concept, 

which generated a false-positive relation between “methotrexate” and “asthma”. The 

second type of false-positive errors was caused by incorrectly found concepts, for which 

a relation was found in the knowledge base. For instance, in “Drug-induced pemphigus 

related to angiotensin-converting enzyme inhibitors”, the system incorrectly annotated 

“angiotensin-converting enzyme inhibitors” as a drug, and wrongly established a relation 
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with “drug-induced pemphigus.” Altogether, false-positive errors accounted for 79% of 

all errors. 

 

Error type Number 

False-positive relations  

   Entities correctly identified, with incorrect relation in the 

knowledge base 

64 

   Entities incorrectly identified, with a relation in the knowledge 

base  

15 

False-negative relations  

   Entities correctly identified, but relation filtered out 8 

   Entities not identified, no relation established 13 

Table 6. Error analysis of 100 randomly selected errors on the ADE test set. 

 

False-negative errors were generated because the system missed a concept, or did not 

find a relation in its knowledge base between two correctly found concepts. An example 

of the first type of error is the term “TMA” (thrombotic microangiopathy), which the 

system incorrectly recognized as a drug in the sentence “A case report of a patient with 

probable cisplatin and bleomycin-induced TMA is presented.” The system then missed 

the relations between the adverse effect “TMA” and the drugs “cisplatin” and 

“bleomycin”. The other type of false-negative error is illustrated by the sentence 

“Encephalopathy and seizures induced by intravesical alum irrigations”, which contains 

two relations, one between “alum” and “encephalopathy”, the other between “alum” and 

“seizures”. The concept-recognition module found all three concepts correctly, but the 

knowledge-base module could not find the relation between “alum” and “seizures”. 

False-negative errors contributed 21% to the total number of errors. 

 

DISCUSSION 

We have investigated the use of NLP and a knowledge base to improve the performance 

of a system to extract adverse drug events. By applying a set of post-processing rules 

that utilize POS and chunking information, and exploiting the information contained in 

the UMLS Metathesaurus and the UMLS Semantic Network, the F-score on the ADE 

corpus improved by 34.4 percentage points as compared to a simple co-occurrence 

baseline system. To our knowledge, this is the first study that uses a knowledge base to 

improve biomedical relation extraction. 
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The main advantage of our approach as compared to machine-learning approaches is the 

relatively small set of annotated data required for training. For the ADE corpus, we only 

used 50 abstracts (3% of the total corpus) to train our system. When we compared our 

system with a machine-learning system trained on a document set of the same size, our 

system performed substantially better. Although a machine-learning approach usually 

performs very well if trained on a sufficiently large training set, the creation of a gold 

standard corpus (GSC) is tedious and expensive: annotation guidelines have to be 

established, domain experts must be trained, the annotation process is time-consuming, 

and annotation disagreements have to be resolved.[49] As a consequence, GSCs in the 

biomedical domain are generally small and focus on specific subdomains. It should also 

be noted that even when most of the ADE corpus was used to train the machine-learning 

system, it did not perform better than our knowledge-based system. 

It is difficult to compare the performance of our system with those of the many other 

relation extraction systems reported in the literature because of the wide variety of 

relation extraction tasks and evaluation sets. We also evaluated the performance of the 

whole relation extraction pipeline, whereas other studies often focused on the relation 

extraction performance under the assumption that the entities involved were correctly 

recognized.[12, 32, 50–52] Moreover, previous systems were sometimes evaluated on a 

selected set of abstract sentences. As mentioned earlier, Gurulingappa et al.[32] mainly 

used positive sentences with at least one relation from the abstracts in the ADE corpus, 

and did not consider relations with nested entities. Similarly, Buyko et al. only used 

sentences with at least one gene-disease, gene-drug, or drug-disease relation in the 

PharmGKB database. Both systems obtained F-scores larger than 80%. In a comparable 

test setting, our system obtained at least as good results (F-score 89%), but in a more 

realistic test environment, which included the whole relation extraction pipeline and all 

sentences of the abstracts, performance dropped considerably (F-score 51%). This can 

largely be attributed to the additional false-positive relations in the negative sentences of 

the abstracts, decreasing precision considerably. 

Our error analysis indicated that for the majority of errors the entities are correctly 

identified (72/100), the error being made in the knowledge-base module. To reduce the 

number of false-negative errors, we plan to extend the knowledge base by including 

relations mined from other drug-adverse effect databases, such as DailyMed,[53] 

DBpedia,[54] and DrugBank.[55] False-positive errors generated by the knowledge base 

may be decreased by including more strict filtering rules on the relation types. We also 

noted several general concepts, e.g., “patient”, “drug”, and “disease”, that are highly 

connected. Their removal may improve performance. Finally, we currently took all 

relation types as equally important and did not consider the plausibility of a path that 
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connects two concepts. Development of a weighting scheme of different relation types 

and rules that check the plausibility of the possible paths may be able to better distinguish 

false from true drug-adverse effect relations. 

Our system has some limitations. To establish a potential relation, the knowledge-base 

module requires concept identifiers as its input. Concept identification is generally 

considered more difficult than the recognition of named entities, which can serve as the 

input for machine-learning based relation extraction. Another, related limitation of the 

current system is that the UMLS Metathesaurus does not provide extensive coverage of 

genes and proteins. The incorporation of relations from other sources of knowledge, such 

as UniProt or the databases that are made available through the LODD (Linking Open 

Drug Data) project, may remedy this drawback. 

We have shown that a knowledge-based approach can be used to extract adverse drug 

events from biomedical text without need for a large training set. Whether use of a 

knowledge base is equally advantageous for other biomedical relation extraction tasks 

remains to be investigated. 
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Using natural language processing (NLP) to improve biomedical concept normalization 

and relation mining is an important way to improve the performance of biomedical text 

mining, and it plays a crucial role in automatically gathering facts and evidence necessary 

for life science [1]. Although many NLP methods have been developed and implemented, 

this task remains challenging because of the inherent complexity of natural language, the 

difference between biomedical text mining tasks, and the lack of training data and 

suitable techniques.  

To improve the usage of NLP for biomedical text mining, many aspects need to be 

studied further, such as the lexical analysis of biomedical text, the disambiguation of 

concepts, the abbreviation of different concepts, and the availability of training data [2]. 

Understanding these aspects may bring about better results in NLP methods. As an 

attempt to contribute to this research field, we have investigated new alternative 

approaches to a number of relevant NLP facets such as chunking, ensemble system, and 

a silver standard corpus (SSC) that is automatically generated by combining the output 

of multiple text mining systems. 

Although improving linguistic technologies could still enhance text-mining, the 

improvements in recent years have been marginal. The question is whether the 

combination of linguistic technologies with semantic approaches such as a domain 

knowledge base can improve text-mining. However, this integration of linguistic and 

semantic methods still faces some challenges, such as how to efficiently and effectively 

represent human knowledge in a formal computational model, and how to take advantage 

of semantic techniques and apply them to traditional linguistic text-mining.  

 

SUMMARY OF THE MAIN FINDINGS 

This thesis describes the research results of several aspects of using NLP to improve 

biomedical concept normalization and relation mining. We discuss approaches for 

several theoretical and practical challenges we encountered during the investigation. We 

started with a comparison and combination of biomedical chunkers [3], and subsequently 

investigated the possibility of replacing a gold standard corpus (GSC) with an SSC [4]. 

After that, we explored the use of an NLP ensemble approach to combine several text 

mining systems for improving concept extraction from clinical records [5]. Finally, we 

investigated how NLP can be used to solve the common problems occurred in biomedical 

concept normalization and relation mining. A summary of the main findings discussed 

in this thesis can be found below. 

In chapter 2, we investigated six frequently used chunkers. With respect to performance 



Chapter 7 

128 

and usability, OpenNLP [6] performed best. When combining the results of the chunkers 

by means of a simple voting scheme, the F-score of the combined system improved by 

3.1 percentage points for noun phrases and 0.6 percentage points for verb phrases as 

compared to the best single chunker. Changing the voting threshold offers a simple way 

to modify the system's precision and recall, making it suitable for a number of scenarios 

that require high precision or high recall. 

After comparing and combining the chunkers, we investigated the use of an SSC that has 

been automatically generated by combining the output of different chunking systems in 

chapter 3. We explored two scenarios: one in which chunkers are trained on an SSC in a 

new domain for which a GSC is not available, and one in which chunkers are trained on 

an available, although small GSC but supplemented with an SSC. From the results of 

these two scenarios, we conclude that an SSC can be a viable alternative for or a 

supplement to a GSC when training chunkers in a biomedical domain.  

The approach of combining different text-mining systems was explored again in chapter 

4, where we selected two dictionary-based systems and five statistical-based systems that 

were trained to annotate medical problems, tests, and treatments in clinical records. The 

ensemble system has better precision and recall than any of the individual systems, 

yielding an F-score that is 4.6 percentage point higher than the best single system. 

Changing the voting threshold offered a simple way to obtain a system with high 

precision or high recall. This result shows that the ensemble-based approach is 

straightforward and allows the balancing of precision versus recall of the combined 

system. 

After investigating the usefulness of NLP as an adjunct to dictionary-based concept 

normalization, we describe in chapter 5 how with the aid of an NLP module, the F-scores 

of MetaMap [7] and Peregrine [8] improved by more than 10% for boundary matching, 

and more than 15% for concept identifier matching. We showed the added value of NLP 

for the recognition and normalization of diseases with MetaMap and Peregrine. The NLP 

module is general and might be applied in combination with other biomedical concept 

normalization systems in a similar domain. 

Chapter 6 provides results on the usefulness of a knowledge base and NLP techniques in 

improving biomedical relation mining. We have shown that the knowledge base could 

be used to detect the negative sentences and improve the performance of biomedical 

relation extraction. The performance in a real-life test environment is much lower than 

in an optimized test environment. The knowledge base module is general and might be 

applied in combination with any biomedical relation extraction system in a similar 

domain. 
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Based on the findings reported in this thesis, we conclude that NLP, the ensemble 

approach, and the knowledge base could be used to improve the performance of concept 

normalization and relation mining. 

 

INTERPRETATION OF FINDINGS 

In this section we present an overview, discuss the findings as described in chapter 2-6, 

and provide a detailed answer to the questions in chapter 1. Some important issues in 

previous chapters are also discussed in this section. 

 

Improve text-mining  

Concept or named-entity recognition aims at finding text strings that refer to entities, and 

marking each entity with a semantic type, such as “gene”, “drug”, or “disease”. Concept 

normalization goes beyond entity recognition. It assigns a unique identifier to the 

recognized concept, which links it to a resource that contains further information about 

the concept, such as its definition, its preferred name, synonyms, and its relationships 

with other concepts. Most studies described in this thesis used text chunking and concept 

identification as essential pre-processing steps in relation mining systems. Because of 

this, high precision chunking and concept identification are required for the high 

precision relation mining we need.  

In chapter 2, we evaluated several chunking systems, compared these systems based on 

performance, and selected the best chunking system, OpenNLP [6], as our default 

chunking system for the following studies. OpenNLP obtained an F-score of 89.7% [3], 

but the combination of different chunking systems obtained an even better result (3.1 

percentage point for noun phrases and 0.6 percentage point for verb phrases) than 

OpenNLP. However, whether this is good enough to be applied in practical NLP tasks is 

still an open question. There could be room for improvement, in particular for noun-

phrase detection.  

Whether the current chunking results are good enough for practical use is also determined 

by the impact of different chunking errors on the performance of the whole information 

extraction pipeline. For example, it may well be true that splitting or joining a verb phrase 

is less important than missing or inserting a noun or verb phrase when it comes to 

information extraction. It would be interesting to investigate the impact of chunking 

errors on real NLP tasks.  

Furthermore, reports [9] showed that the performance of a chunker depends on the 
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different test corpora for the different domains. For instance, Buyko et al. [6] compared 

the performance of the NLP components from OpenNLP, including the chunker, when 

trained on the Wall Street Journal corpus with chunkers trained on two biomedical 

corpora (GENIA and PennBioIE). They concluded that the performance figures from the 

newspaper domain are comparable with those from the biology domain. This suggests 

that our results can be generalized to other domains provided that systems are properly 

retrained on domain-specific corpora.  

In chapter 5 we showed that several NLP modules and rules can be applied to improve 

disease concept normalization. These rules use syntactic information to solve the 

common problems that occur in concept normalization tasks [10–12], including 

coordination, abbreviation, term variation, boundary correction, and filtering.  

Many of the rules discussed in chapter 5 have not been used before in their specific form, 

but similar rules have previously been proposed in many different studies [13–15]. 

Combining different types of rules into a single system and showing the contribution of 

each sub-module to the overall performance for disease concept normalization, a task 

which has not been addressed before, is novel. The sub-modules are general and may be 

combined, as a whole or separately, with other concept normalization systems in a similar 

domain. These approaches might also be applied to other text mining tasks, such as 

knowledge discovery and information retrieval.  

We have shown the added value of the NLP module for the recognition and normalization 

of disease concepts with dictionary-based systems, such as MetaMap [7] and Peregrine 

[8]. The module is general and might be applied in combination with other concept 

normalization systems in a similar domain. However, it is still a topic of research to 

investigate whether these rules will have similar performance improvements when used 

for the normalization of different concept classes, such as genes or drugs. 

 

Deal with sparse training data 

To train a machine learning-based text mining system, a GSC is needed. Although we 

have shown that an automatically created SSC could be a viable alternative for or a 

supplement to a GSC when training chunkers in a biomedical domain, it is still not clear 

if this approach is applicable to other components in an NLP pipeline. 

Obviously, the closer a silver standard approaches a gold standard for the domain of 

interest, the better the performance of systems trained on an SSC will be. It should be 

noted that the performance of the silver standard compared with the gold standard in our 

study is far from perfect: the PennBioIE SSC has an F-score of 84.5% for noun phrases 
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and 93.9% for verb phrases [4]. However, despite the differences between an SSC and a 

GSC, chunking systems trained on these corpora show remarkably similar performances. 

It is still an open question as to how an SSC of a lower (or higher) quality affects the 

performance of a system trained on the SSC. 

We have shown that chunkers can obtain almost similar performances whether trained 

on an SSC or a GSC, but this does not mean that we can dispose of GSCs. Obviously, to 

create the SSC we need trained chunkers, and thus a GSC for their initial training. 

However, we can reduce the size of the required GSC. Our experiments indicated that a 

GSC consisting of only 10 or 25 abstracts but expanded with an SSC yields similar 

performances to a GSC of 100 or 250 abstracts. Practically, these results suggest that the 

time and effort spent in creating a sufficiently sized GSC may be much reduced.  

In most situations, we have to use a GSC as a standard to evaluate the performance of a 

text mining system. Due to the fact that the creation of an GSC involves human experts, 

most GSCs only contain a small homogenous set, and there could be errors introduced 

by human experts [1, 16, 17]. By using an SSC, we could reduce such errors introduced 

by humans. Since the creation of an SSC is automatic, it could contain a large 

heterogeneous set. For different text-processing applications, increasing the amount of 

data for training a classifier has shown to improve the classifier’s performance [18–20]. 

The use of an SSC may be beneficial in mitigating the “paucity-of-data” problem. 

We have tested two scenarios in which an SSC is used in the field of text chunking, but 

the proposed approach is general and could be used in any field in which GSCs are 

needed to train classifiers. How the quality of an SSC affects classifier performance is 

still a topic of research. It is also unclear whether the use of SSCs for other application 

fields is equally advantageous as their use for text chunking. 

 

The contribution of each sub-module in an ensemble system 

The ensemble approach has been shown to be an efficient method of improving the 

performance of text-mining systems in chapter 2 and chapter 3. For recognizing concepts 

in clinical records, we also used an ensemble approach. The ensemble system had higher 

precision, recall, and F-score values than any of the individual systems considered in the 

study of chapter 4.  

Although each sub-module showed a large difference in performance, almost all of them 

contributed to the performance of the ensemble system. The removal of the worst 

performing system, MetaMap [7], from the ensemble system slightly increased its 

performance. The subsequent removal of any of the other individual systems resulted in 
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a performance degradation of the ensemble system. This suggests that each system, even 

a low-performing system such as Peregrine [8], contributes to the high performance of 

the combined annotation system. 

Many studies [5, 21–23] have shown that combining different classifiers with different 

misclassified instances could generate better performance than any individual classifier, 

which makes up the ensemble system, having the best performance. The reason is that 

different classifiers yield errors on different instances, and the combination of these 

classifiers can reduce the overall error to improve the performance of the ensemble 

system [22]. 

Our results suggest that classifier accuracy correlates better with the performance of the 

ensemble system than classifier diversity. When varying the number of systems in the 

ensemble, the worst performing systems gave the smallest contribution to the ensemble 

performance, this is similar to what has been reported in [24]. We have tried to achieve 

diversity by combining different types of classifiers. However, as mentioned in chapter 

4, it is difficult to quantify diversity, and the relationship between classifier diversity and 

the performance of the combined system is not clear [21]. 

Although each sub-module generated different errors, almost half of the errors were due 

to a mismatch in one of the annotation boundaries. Many of these errors resulted from 

the incorrect handling of coordination or punctuation, which are also common error types 

for the recognition of noun phrases in biomedical texts [3, 9]. The impact of these errors 

on the performance of a whole information extraction pipeline is still a topic of research. 

 

Integrating biomedical knowledge 

In chapter 6 we describe an approach to overcome the performance barrier in linguistic 

text analysis by using a knowledge base to enhance the linguistic analysis with domain 

semantics. We show in this chapter that the knowledge base (a network that connects 

biomedical concepts with relations) could be used to improve the performance of 

biomedical relation extraction. By combining a set of post-processing rules that utilize 

POS and chunking information with a graph representation of the information contained 

in the UMLS Metathesaurus and the UMLS Semantic Network, the F-score on the 

Arizona Disease Corpus improved by 17.5 and 16.9 percentage points. This result shows 

that prior information contained in a graph database can help relation mining. For relation 

extraction, the NLP module is mainly used for concept identification, whereas the 

knowledge base uses the output from the NLP module.  

Although in several studies [25, 26] F-scores have been reported up to 90%, the 
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evaluation setting in many of these studies is typically restricted  only to the process of 

relation mining and therefore does not resemble a real life text mining situation. In a real 

life relation mining situation there are many essential preceding NLP steps required: 

sentence splitting, part-of-speech, chunking, named entity recognition, and concept 

identification. All these preceding steps have an impact on the performance of the 

relation mining task. When including these preceding NLP steps an F-score of only 50% 

can be achieved. A second issue was the bias in the evaluation set: only having sentences 

where a relation is contained and not a general abstract/text from PubMed, which also 

makes the test environment much easier than the real life situation. 

A combination of the knowledge base and the NLP processing can in principle be applied 

to all different domains that the knowledge base covers. This is an advantage compared 

with traditional machine learning-based systems, which are often domain dependent 

because they need domain-specific corpora for training. However, whether our solutions 

can achieve a similar performance in other domains needs to be investigated. 

 

LIMITATIONS AND FUTURE WORK 

In previous chapters, chunking (shallow parsing) information has been used as an 

important resource for improving concept normalization and relation mining., The 

highest performance that could be obtained for noun phrase annotation is 89.7% for a 

single chunker, and 92.8% for a combined chunker [3]. As the performance of a chunker 

directly impacts the performance of concept normalization and relation mining, it is 

crucial to improve the chunkers, as was outlined in this thesis by using an ensemble of 

chunkers. In addition to this ensemble approach, this thesis demonstrated that this 

approach is beneficial for concept recognition in clinical records [5].  

Gold standard corpora are essential for training machine learning-based chunkers and 

other components in text mining systems. We have shown in this thesis that an 

automatically created SSC can be a viable alternative for, or supplement to, a GSC when 

training chunkers in a biomedical domain. However, we did not test this approach in 

other text mining domains such as named entity recognition, concept normalization, and 

relation mining. Further investigations will have to reveal how the quality of an SSC 

affects classifier performances and whether the use of SSCs in other application areas is 

as equally advantageous as their use in chunking. 

For the study of using rule-based NLP to improve disease normalization in biomedical 

text, some error analysis has been done. The analysis revealed that about half of the errors 

that remain after applying the NLP module can be denoted as term variation and filtering 



Chapter 7 

134 

errors. While further improvement of the sub-modules dealing with these errors may be 

possible, it is more likely that improved dictionaries and disambiguation methods will 

help to reduce these types of errors. In this respect approaches for generating more term 

variants could be useful. We also noticed that chunking sometimes provides insufficient 

information to resolve errors in complex sentences. Such information may possibly be 

derived from deep parsing, but exploring the usefulness of these techniques for our 

purposes will be left for further research. 

Although the knowledge base improves the performance for relation extraction tasks and 

has several advantages compared with machine learning-based systems, there are still 

opportunities to further improve the performance. Currently the knowledge base only 

includes the UMLS Metathesaurus, and no other databases are included. The 

performance could be improved if the coverage of the knowledge base is expanded. For 

the UMLS Metathesaurus, it could also be optimized for different tasks, for instance, by 

trying to remove relations between concepts that do not belong to a clear defined 

semantic type, or remove relations related to very generic concepts. For the filter module, 

a simple keyword list has been used to extract the common error relations. Its 

performance might be improved if the keyword list is extracted using statistical methods. 
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SUMMARY OF THE MAIN FINDINGS 

 

This thesis describes the research results of several aspects of using NLP to improve 

biomedical concept normalization and relation mining. We discuss approaches for 

several theoretical and practical challenges we encountered during the investigation. We 

started with a comparison and combination of biomedical chunkers, and subsequently 

investigated the possibility of replacing a gold standard corpus (GSC) with an SSC. After 

that, we explored the use of an NLP ensemble approach to combine several text mining 

systems for improving concept extraction from clinical records. Finally, we investigated 

how NLP can be used to solve the common problems occurred in biomedical concept 

normalization and relation mining. A summary of the main findings discussed in this 

thesis is found below. 

In chapter 2, we investigated six frequently used chunkers. With respect to performance 

and usability, OpenNLP performed best. When combining the results of the chunkers by 

means of a simple voting scheme, the F-score of the combined system improved by 3.1 

percentage points for noun phrases and 0.6 percentage points for verb phrases as 

compared to the best single chunker. Changing the voting threshold offers a simple way 

to modify the system's precision and recall making it suited for a number of scenarios 

that require high precision or high recall. 

After comparing and combining the chunkers, we investigated the use of a silver standard 

corpus (SSC) that has been automatically generated by combining the output of different 

chunking systems in chapter 3. We explored two use scenarios: one in which chunkers 

are trained on an SSC in a new domain for which a GSC is not available, and one in 

which chunkers are trained on an available, although small GSC but supplemented with 

an SSC. From the results of these two scenarios, we conclude that an SSC can be a viable 

alternative for or a supplement to a GSC when training chunkers in a biomedical domain.  

The approach to combine different text-mining systems was explored again in chapter 

4, where we selected two dictionary-based systems and five statistical-based systems that 

were trained to annotate medical problems, tests, and treatments in clinical records. The 

ensemble system has a better precision and recall than any of the individual systems, 

yielding an F-score that is 4.6 percentage point higher than the best single system. 

Changing the voting threshold offered a simple way to obtain a system with high 

precision or high recall. This result shows that the ensemble-based approach is 

straightforward and allows the balancing of precision versus recall of the combined 

system. 
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After investigating the usefulness of natural language processing (NLP) as an adjunct to 

dictionary-based concept normalization, we describe in chapter 5 that with the aid of the 

NLP module, the F-scores of MetaMap and Peregrine improved more than 10% for 

boundary matching, and more than 15% for concept identifier matching. We showed the 

added value of NLP for the recognition and normalization of diseases with MetaMap and 

Peregrine. The NLP module is general and can be applied in combination with any 

concept normalization system. 

Chapter 6 provides results on the usefulness of knowledge base and NLP techniques to 

improve biomedical relation mining. We have shown that the knowledge base could be 

used to detect the negative sentences and improve the performance of biomedical relation 

extraction. The performance in a real life test environment is much lower than an 

optimized test environment. The knowledge base module is general and can be applied 

in combination with any biomedical relation extraction system. 

Based on the findings reported in this thesis, we conclude that NLP, ensemble approach, 

and knowledge base could be used to improve the performance of concept normalization 

and relation mining. 
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SAMENVATTING VAN DE BELANGRIJKSTE BEVINDINGEN 

 

Dit proefschrift beschrijft de onderzoeksresultaten van verschillende NLP benaderingen 

van  normaliseren van biomedische concepten en het vinden van relaties. We 

beschrijven de aanpak van verschillende theoretische en praktische uitdagingen die we 

tegen kwamen tijdens het onderzoek. We begonnen met een vergelijk en een combinatie 

van biomedische chunkers en onderzochten vervolgens de mogelijkheid om een gouden 

standaard corpus (GSC) te vervangen door een zilver standard corpus (SSC). Daarna 

hebben we uitgezocht of een NLP ensemble benadering om verschillende text mining 

systemen te combineren om het extraheren van concepten uit klinische dossiers te 

verbeteren. Ten slotte hebben we onderzocht hoe NLP gebruikt kan worden om de 

standaard problemen die onstaan bij het normaliseren van biomedische concepten en het 

vinden van relaties op te lossen. Een samenvatting van de belangrijkste bevindingen die 

besproken worden in dit proefschrift vindt u hieronder. 

In hoofdstuk 2 onderzochten we zes vaak gebruikte chunkers. Wanneer gelet wordt op 

prestatie en bruikbaarheid scoort OpenNLP het best. Wanner de resultaten van de 

chunkers door middel van een eenvoudig stem schema gecombineerd worden gaat de F-

score van de combinatie met 3.1 percentage punten omhoog voor naamwoordelijke 

zinsdelen en 0.6 percentage punten voor werkwoordelijke zinsdelen vergeleken met de 

beste chunker. Door het aanpassen van de stem drempel wordt op eenvoudige manier de 

precision en de recall van het systeem aangepast waardoor het geschikt is voor taken 

waarin een hoge precisie of een hoge recall is vereist. 

Na het vergelijken en combineren van chunkers hebben we het gebruik van een zilver 

standaard corpus (SSC) dat automatisch gegenereerd werd door het combineren van de 

resultaten van verschillende chunkers onderzocht in hoofdstuk 3. We hebben twee 

gebruik scneario's onderzocht: één waarin chunkers getrained worden op een SSC in een 

nieuw toepassingsgebied waar geen GSC beschikbaar is en één waarin chunkers 

getrained worden op een beschikbaar maar klein GSC dat aangevuld is met een SSC.  

Uit de resultaten van deze twee scenario's kunnen we concluderen dat een SSC een goed 

alternatief is om een aanvulling voor een GSC te maken wanneer het gaat om het trainen 

van chunkers in het biomedische domein. 

De bandering om verschillende text mining systemen te combineren is in hoofdstuk 4 

weer onderzocht. Hier selecteerden we twee woordenlijst-gebaseerde systemen en vijf 

statistische systemen die getrained werden om medische problemen, testen en 

behandelingen in klinische dossiers te annoteren. Het ensemble systeem heeft een betere 

precision en recall dan elk van de afzonderlijke systemen, resulterend in een F-score die 
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4.6 percentage punten hoger is dan het beste systeem. Het veranderen van de stem 

drempel biedt een eenvoudige manier om hogere precision dan wel hogere recall te 

krijgen. Het resultaat laat zien dat de ensemble benadering rechttoe is en het mogelijk 

maakt precision tegen de recall van het gecombineerde systeem uit te wisselen.  

 

Na het onderzoek naar de bruikbaarheid van natuurlijke taal analyse (NLP) als een 

aanvulling voor het normaliseren van concepten op basis van een woordenlijst 

beschrijven we in hoofdstuk 5 dat met behulp van de NLP module the F-scores van 

MetaMap en Peregrine met meer dan 10% verbeterd werden voor de vaststelling van de 

woord grenzen en meer dan 15% voor het vinden van de juiste concept identificatie. We 

toonden de toegevoegde waarde van NLP voor het herkennen en normaliseren van 

ziekten met MetaMap en Peregrine aan.  De NLP module is algemeen en kan in 

combinatie met elk willekeurig concept normalisatie systeem worden toegepast. 

Hoofdstuk 6 laat resultaten zien over de bruikbaarheid van een kennisbank met NLP 

technieken voor het herkennen van biomedische relaties. We hebben laten zien dat de 

kennisbank gebruikt kon worden om ontkennende zinnen te herkennen en de prestatie 

van het extraheren van biomedische relaties te verbeteren. De prestatie in a een test 

omgeving die de werkelijkheid weerspiegelt is veel lager dan in een geoptimaliseerde 

test omgeving. De kennisbank is algemeen en kan gebruikt worden in combinatie met 

elk systeem om biomedische relaties te extraheren. 

Op basis van de bevindingen in dit proefschrift concluderen we dat NLP, een ensemble 

beandering en de kennisbank gebruikt kunnen worden om de prestatie van normalisatie 

van concepten en het vinden van relaties te verbeteren. 
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