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General introduction
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The female reproductive system
The female reproductive system consists of the internal and external genitalia. The external genitalia 

are formed by the vulva, which includes the clitoris, labia majora and minora, urethral orifice and 

vestibule of the vagina (lower part of the vagina). The internal genital system is located within the 

pelvis and can be divided into the reproductive tract and the two ovaries (Fig. 1). The reproductive 

tract consists of the Müllerian duct-derived upper vagina, uterus and two fallopian tubes (oviducts) 

and functions to transport and guide semen to the oocyte in order to fertilize it (vagina, uterus, 

fallopian tubes), to hold and nurture the fertilized oocyte during its completion of development 

from embryonic to fetal stage (uterus) and to form the birth canal (uterus, vagina). The ovaries 

produce oocytes and secrete hormones necessary for secondary sexual development, regulation 

of the menstrual cycle, facilitation of implantation and maintenance of the early pregnancy.    

Figure 1: An overview of the internal reproductive organs.  
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Figure 1: An overview of the internal reproductive organs.Embryonic development of the reproductive system
Determination of gender starts at fertilization, when a paternal Y (male determination) or X (female 

determination) chromosome joins the maternal X chromosome in the oocyte. Even though gender 

is determined during these first moments of pregnancy, females and males are indistinguishable 

in the first six weeks of development: the indifferent stage. True phenotypic differentiation of 

gender does not start until the seventh week of pregnancy with differentiation of the gonads, 

followed by differentiation of the sexual duct system and finally differentiation of the external 

genitalia and secondary sexual characteristics (such as breast development, hair patterning and 

body configuration)1-3.
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Development of the ovaries

Gonadal development starts in the caudal part of the ventromedial border of the mesonephros 

when gonadal rigdes become prominent in the coelomic cavity during the fifth week of pregnancy. 

These early gonads develop from migrating somatic cells, derived from the mesonephros, the 

surrounding mesenchymal and coelomic epithelium, and primordial germ cells migrating from the 

endodermal layer on the posterior wall of the yolk sac along the mesentery of the hindgut into the 

gonad1, 2. As described earlier, until the seventh week of pregnancy the gonads are indifferent. The 

initial development of the gonads into either a male or female phenotype, however, is depended 

on the presence of the SRY gene, located on the male Y-chromosome3. Under the influence of SRY, 

SOX9 is expressed and DAX1 is inhibited, which leads to the formation and final differentiation of 

Sertoli cells and eventually gonadal development into testis. In absence of SRY, DAX1 is continuously 

expressed, causing suppression of testis formation and development of the gonads into ovaries4. 

The presence of viable primordial germ cells is crucial for ovarian differentiation and if primordial 

germ cells fail to reach the primitive gonads or if they are abnormal, the gonads regress resulting 

in streak (vestigal) ovaries2. Upon entry into the ovary, primordial germ cells nest in the secondary 

sex chord, concentrated in the cortical region of the ovary, and are now called oogonia. While 

most oogonia continue to proliferate by mitosis, some oogonia in the inner medulla enter the 

prophase of the first meitotic division upon which they are called oocytes. These oocytes become 

surrounded with granulosa cells and form primordial follicles. Meiosis of these oocytes proceeds 

until the diplotene stage of the prophase of the first meitotic division and at that point is arrested 

until the blockade is removed during reproductive life1, 2.

Development of the reproductive tract

The reproductive tract, consisting of the upper vagina, uterus and fallopian tubes, stems from the 

embryonic paramesonephic or Müllerian duct. During the sixth week of pregnancy, the Müllerian 

duct develops from a specific subset of cells in the anterior region of the coelomic epithelium 

adjacent to the mesonephros. Müllerian duct initiation is dependent on WNT signaling and 

under the influence of WNT4 secreted by the coelomic epithelium, LIM1 and PAX2 expressing 

mesoepithelial cells invaginate, thereby creating a coelomic opening5-7. Upon invagination, the 

primitive Müllerian duct extends and under the influence of WNT9B secreted by epithelial cells of 

the Wolffian duct, posterior elongation is initiated and the Müllerian duct extends further towards 

the cloaca8. Final outgrowth of the Müllerian duct is completed by widespread proliferation along 

the developing duct and at the growing tip and as a last step, both Müllerian ducts fuse to form 

the uterovaginal tube, which is completed at 16 weeks5, 9.

During the indifferent stage, both the Wolffian and the Müllerian ducts are present. If the gonads 

develop into testes, testosterone secreted by the testicular Leydig cells and anti-Müllerian hormone 

(AMH) secreted by testicular Sertoli cells, cause the Wolffian ducts to further differentiate in the 

male reproductive tract and causes the Müllerian ducts to regress. However, if the gonads develop 

into ovaries or if gonads are absent, testosterone and AMH are not secreted, and therefore the 

Wolffian ducts regress and the Müllerian ducts further differentiate2.
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Differentiation of the primitive Müllerian duct into the components of the reproductive tract, 

the upper two third of the vagina, uterus and fallopian tubes, is dependent on WNT7A expressed 

by oviductal and uterine epithelial cells and WNT5A expressed by uterine, cervical and vaginal 

mesenchymal cells10, 11. Next to WNT signaling, differentiation of the Müllerian duct is further 

mediated by spatially restricted members of the HOX family of homeobox genes. HOXA9 is 

expressed in the developing tubal epithelium, HOXA10 in the developing uterus, HOXA11 in the 

lower uterine segment and cervix and HOXA13 in the upper two third of the vagina12.  The lower 

one third of the vagina is formed by epithelial cells from the urogenital sinus under the influence 

of the Wolffian duct1. This process, however, is still poorly understood.

Development of the external genitalia

Similar to the gonads and reproductive tract, the external genitalia are indifferent during their 

first development. The indifferent external genitalia are derived from mesodermal tissue near 

the cloaca and in the fourth week of pregnancy the genital tubercle develops ventral from the 

cloaca, flanked by a pair of genital folds and genital swellings. In the center of the genital folds, 

the urogenital sinus opens into the abdomen. Under the influence of dihydrotestosterone, the 

genital tubercle elongates and forms the penis, the urogenital folds fuse and enclose the urethra 

and the genital swellings enlarge and fuse to form the scrotum. However, if testes are absent, 

dihydrotestosterone is not synthesized and the indifferent external genitalia differentiate into a 

female phenotype. Here, the genital tubercle inverts and becomes the clitoris, the genital folds 

develop into the labia minora, the genital swellings become the labia majora and the urogenital 

sinus forms the upper vagina and the vestibule in which the urethra and vagina open1, 2, 13.

The menstrual cycle:
The menstrual cycle involves cyclic changes in the ovary and the uterus. The ovarian cycle includes 

the follicular phase, ovulation and the luteal phase. The endometrial cycle includes the menses, 

proliferative phase and the secretory phase. The reproductive phase of life starts at the menarche, 

which marks the menses of the first menstrual cycle usually around 13 years of age, and continues 

until approximately 50 years of age. The menstrual cycle is the effect of the ovary secreting 

hormones during production of oocytes for fertilization. Under the control of estrogen and 

progesterone the reproductive system undergoes functional and structural changes to optimize 

uterine conditions for embryo implantation and subsequent placentation (Fig. 2a-b). 

The uterus can be divided in two functional layers: the outer myometrium and the inner 

endometrium. The endometrium facilitates implantation, development and outgrowth of 

the embryo and can be divided into two layers: the functionalis and basalis. Every month, the 

functionalis is shedded during menstruation, which marks the start of a new menstrual cycle (Fig. 

2a). During the first two weeks of the menstrual cycle, the proliferative phase, estrogens produced 

in the ovary induce proliferation of the endometrium and thereby generate a new functionalis. 

In the ovary, this first phase of the menstrual cycle is called the follicular phase, during which the 
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follicle matures and prepares to release its oocyt for fertilization. As stated, during this phase the 

ovary produces estrogens crucial for endometrial proliferation (Fig. 2a). However, the cells present 

in the ovary are not capable to synthesize estrogens in one step and therefore collaboration 

between theca and granulosa cells is vital for estrogen production. Under the influence of the 

pituitary secreted luteinizing hormone (LH), thecal cells convert cholesterol into androstenedione, 

using 17α-hydroxylase, which serves as a precursor for estrogen. Upon diffusion through the basal 

membrane into surrounding granulosa cells, androstenedione is then converted into estrogen 

(estradiol) by aromatase and 17β-HSD under the influence of the pituitary secreted follicle-

stimulating hormone (FSH). Pituitary secretion of LH and FHS, in its turn, is under control of GnRH 

secreted by the hypothalamus and inhibin, activin and estrogen secreted by the ovary. In addition 

to the estrogenic effect on the endometrium, estrogens also influence the cervix by stimulation of 

cervical mucus production, which allows the spermatozoa easy excess to the uterine cavity.

Figure 2: The endometrial cycle. 
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Figure 2: The endometrial cycle. (A + B) Functional and structural changes of 
the endometrium under the control of estrogen and progesterone during the 
normal menstrual cycle (A) and the window of implantation (B). Figure adapt-
ed from Vd Horst et al. (2012) Mol Cell Endocrinol. 358(2):176-184.

(A + B) Functional and structural changes of the endometrium under the control of estrogen and progesterone 
during the normal menstrual cycle (A) and the window of implantation (B). Figure adapted from Vd Horst et al. 
(2012) Mol Cell Endocrinol. 358(2):176-184.
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After ovulation, during which the oocyt is released from the ovarian follicle into the fallopian tube, 

the second half of the menstrual cycle or secretory phase starts (Fig. 2a). During this phase the 

endometrium prepares for implantation of the fertilized ovum. Here, progesterone, counterbalances 

the proliferative effects of estrogen and is responsible for the induction of differentiation of the 

endometrium necessary for optimal implantation. The corresponding ovarian phase is called the 

luteal phase, during which, progesterone is synthesized by LH stimulated ovarian conversion 

of cholesterol in the corpus luteum. In contrast to estrogen production, progesterone is not 

synthesized by both thecal and granulosa cells, but by luteinized granulosa cells of the follicle 

alone. 

Progesterone-induced endometrial differentiation is characterized by induction of secretory 

activity of the glands, attraction of natural killer cells and transformation of endometrial stromal cells 

into decidual cells, a process called decidualization. Furthermore, progesterone inhibits passage 

of spermatozoa through the cervix by induction of very thick and acidic mucus production. If 

fertilization is absent, progesterone production declines, the functional layer of the endometrium 

degenerates and the menstrual cycle restarts at menses. In case a zygote is formed (Fig. 2b), 

embryonic surface cells, called trophoblastic cells, will produce human chorionic gonadotropin 

(HCG), stimulating the corpus luteum to continue the secretion of progesterone which inhibits 

shedding of the functionalis layer of the endometrium (Fig. 2a)2, 13-17.

The role of WNT/β-catenin signaling during the menstrual cycle
The WNT signalling pathway has been shown to be a key regulator in development and disease 

since the discovery of Wnt1 in 198218, 19. In humans, 18 WNT proteins have been identified and 

upon binding of these WNT proteins to their Frizzled receptor the WNT/β-catenin signalling 

pathway can be activated19, 20. Central to canonical WNT/β-catenin signalling is the degradation 

complex, which consists of the scaffold proteins AXIN1 and AXIN2 (conductin), β-catenin, APC 

(adenomatosis polyposis coli), CK1 (casein kinase I) and GSK3β (glycogen synthase kinase 3 beta). 

In absence of WNT, β-catenin is phosphorylated by GSK3β and CK1, leading to its degradation. 

However, upon binding of WNT, the Frizzled receptor cooperates with a member of the LRP family 

and as a result, the degradation complex is dissociated and β-catenin becomes stably available in 

the cytoplasm21, 22. Stabilized β-catenin can now translocate to the nucleus where it displaces the 

transcription repressor Groucho (TLE), which leads to TCF/LEF transcription factor family regulated 

WNT target gene transcription23. 

WNT/β-catenin signaling is thought to be implicated in regulation of the regular menstrual cycle, 

a process extensively described in chapter 2 of this thesis. During the proliferative phase of the 

menstrual cycle increased estrogen levels stimulate WNT/β-catenin signaling in order to enhance 

proliferation, while in the secretory phase, progesterone levels inhibit WNT/β-catenin signaling 

thereby counterbalancing estradiol-induced proliferation and enhancing differentiation. This was 

confirmed by the fact that nuclear β-catenin staining is observed during the proliferative phase 

of the menstrual cycle, while nuclear β-catenin is absent during the second half of the menstrual 
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cycle24. Furthermore, exogenous administration of estrogen resulted in accumulation of nuclear 

β-catenin in endometrial cells and upon viral-induction of the WNT/β-catenin inhibitor SFRP2, 

estrogen induced proliferation was inhibited25. The relationship between the menstrual cycle was 

further confirmed using gene expression profiling, where WNT/β-catenin signaling activating 

factors, such as WNT4, WNT5A, WNT6 and WNT7A were found to be upregulated in the proliferative 

phase, in contrast to WNT/β-catenin signaling inhibitors, such as DKK1 and FOXO1, which were 

upregulated during the secretory phase26-28. In addition, using data obtained from hormone 

treated postmenopausal women it was shown that many targets and components of the WNT 

signaling pathway were regulated by estrogen and progesterone28-30. 

Endometrial cancer
Worldwide, more than 288.000 women are diagnosed with endometrial cancer each year, making 

it the most common gynecological malignancy and the fourth most common female malignancy 

in developed countries31. In the Netherlands, in 2008, more than 1800 women were diagnosed 

with endometrial cancer, accounting for an incidence of 22,4 per 100.000 women and a cumulative 

risk of endometrial cancer up to 75 years of age of 1,55%31. Unfortunately, due to the increase in life 

expectancy and a rising presence of endometrial cancer risk factors within the world population, a 

substantial increase in endometrial cancer incidence is expected in the near future32.

Risk factors
Age is the most important risk factor for endometrial cancer as approximately seventy-five percent 

of all cases occur in postmenopausal women33. Furthermore, obesity was found to be a major risk 

factor due to its associated high estrogen level caused by conversion of androgen into estrogens 

within the fat tissue34, 35. Next to age and obesity, other important risk factors for endometrial cancer 

related to prolonged exposure to high levels of estrogens include long-term exposure to estrogen 

therapy, polycystic ovary syndrome (PCOS), early menarche, late menopause and null parity33, 36-38. 

Additional risk factors are long-term use of Tamoxifen, endometrial cancer family history in the first 

degree, BRCA1 mutation and HNPCC family (Lynch) syndrome39-43. In contrast, factors decreasing 

long term unopposed estrogen levels such as smoking, oral-contraceptive use, grand multi parity 

and a diet with phytoestrogens, decrease the risk of endometrial cancer44-47.

Symptoms and diagnosis
The most prominent and early symptom of endometrial cancer is abnormal uterine bleeding or 

spotting. Even though uterine bleeding is associated with many other diseases, all postmenopausal 

women with uterine bleeding should be assessed for endometrial cancer. Additional symptoms 

include nonspecific symptoms such as lower abdominal pain or pelvic cramps. Transvaginal 

ultrasonography (TVU) is the first step in diagnosis and is used to assess the endometrial thickness 

and irregularity of the endometrial-myometrial border. Final diagnosis of endometrial cancer is 

done histologically using endometrial tissue obtained by Pipelle biopsy or hysteroscopy33, 48.
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Pathology
In case of endometrial cancer, using histological assessment of the endometrial biopsy, 

endometrioid adenocarcinoma is identified in 80% of cases33. Other subtypes of endometrial 

cancer are mucinous, serous, clear-cell, mixed Müllerian, squamous-cell, transitional cell, small-cell 

and undifferentiated carcinoma49. Like many other types of cancer, endometrial carcinoma can be 

further divided into two subgroups based on their differentiation. Most endometrial cancers are 

well to moderately differentiated and are known as type I endometrial cancer. Type I endometrial 

carcinomas are mainly found in postmenopausal women, generally have a good prognosis and 

arise from atypical endometrial hyperplasia, which is thought to be caused by long term unopposed 

estrogenic stimulation50. Type I carcinomas are frequently associated with mutations in the PTEN 

tumor suppressor gene, the KRAS oncogene and the WNT/β-catenin signaling pathway51-53. 

Next to type I, about 10% of all endometrial cancers are type II carcinomas. By definition, these 

tumors are either poorly differentiated endometrioid or non-endometrioid carcinomas, of which 

serous endometrial carcinoma is the most aggressive. Type II tumors are more common in 

premenopausal women and are not caused by unopposed estrogen exposure, but are associated 

with endometrial atrophy and, in case of serous carcinoma, associated with endometrial intra-

epithelial carcinoma (EIC)50, 54. Furthermore, in type II endometrial cancers, myometrial and vascular 

invasion are more commonly found and patients are at high risk of recurrence and metastatic 

disease33. Mutations associated with type II endometrial carcinoma are found in ERBB-2 (HER2/

NEU) and TP5355, 56. Interestingly, as in serous ovarian cancer, serous endometrial carcinomas show 

nuclear accumulation of mutant P5357.

Treatment and prognosis
Following initial diagnosis, surgery is the cornerstone of treatment and hysterectomy (either 

alone or in combination with bilateral salpingo-oophorectomy and/or lymphadenectomy) by 

laparoscopy or laparotomy is an adequate treatment in most cases with a 7-year survival rate of 

80%33. Where there is recurrent or high stage metastatic disease, however, the situation is very 

different and 5-year survival drops to 17%. Here, (neo)adjuvant radiation and/or systemic therapy 

in combination with surgery is indicated and in general, progressive disease has a poor prognosis 

accounting for 74.000 deaths worldwide each year (2,2 percent of all cancer related death in 

women)31, 33.  Important prognostic factors for recurrent and metastatic disease include FIGO 

stage, tumor grade, age at diagnosis, depth of myometrial invasion, lymphovascular invasion, 

immunological T-cell distribution and estrogen and progesterone receptor status58-68. In addition, 

even though type II endometrial cancer only accounts for 10% of all endometrial cancer patients, 

more than 50% of all endometrial cancer recurrences and deaths are related to type II disease69.

Because progesterone induced differentiation is thought to antagonize estrogen induced 

endometrial proliferation, progesterone (as medroxyprogesterone acetate, MPA) is used in 

palliative treatment of advanced and recurrent endometrial cancer with modest response-rates 

(15-25%)70. Furthermore, MPA is used as a primary treatment for atypical endometrial hyperplasia 
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and well differentiated endometrial carcinoma in premenopausal women determined to preserve 

fertility. Here, response-rates can be up to 60%, indicating that progesterone signaling is a potent 

inhibitor of carcinogenesis71, 72.

Tumor infiltrating T-lymphocytes and endometrial cancer
Infiltrating solid tumor growth is thought to cause an inflammatory response similar to an acute 

injury, which eventually results in infiltration of T-lymphocytes73. In several types of cancer, such 

as melanoma, colorectal cancer, ovarian cancer and cervical cancer, the presence of these tumor-

infiltrating T-lymphocytes (TILs) has been extensively investigated and is associated with improved 

prognosis and reduced cancer recurrence74-80. In endometrial cancer, infiltration of cytotoxic 

(CD8+) T-lymphocytes within the tumor was positively correlated with improved disease free and 

overall survival59, 64. Furthermore, as in ovarian cancer, a high cytotoxic/regulatory (CD8+/FOXP3+) 

T-lymphocyte ratio was found to be associated with improved survival in type 1 endometrial 

cancer59. In addition, low numbers of FOXP3+ T-lymphocytes were correlated with low vascular 

density and estrogen receptor negativity, which are associated with improved endometrial cancer 

prognosis81. However, the underling mechanisms by which TILs influence endometrial cancer 

survival and recurrence is not understood.

WNT/β-catenin signaling and endometrial cancer
As described earlier, the WNT/β-catenin signaling pathway plays a rate-limiting role in maintenance 

and control of the endometrium where it regulates the fine balance between proliferation (WNT-on) 

and differentiation (WNT-off ) under influence of estrogen and progesterone. Therefore, a causal role 

for WNT/β-catenin signaling in endometrial carcinogenesis was proposed. This role was confirmed 

by the frequent finding of gene mutations in endometrial cancer, that can lead to constitutive 

activation of canonical WNT/β-catenin signaling28, 82-86. In agreement to this, as measured by nuclear 

β-catenin accumulation, approximately 40% of well differentiated endometrioid adenocarcinomas 

actually show high levels of WNT/β-catenin signaling24, 87, 88. As indicated earlier, progesterone 

induced inhibition of the WNT/β-catenin signaling pathway, for example by upregulation of DKK1 

and FOXO1, was found to reduce endometrial cancer progression28, 89. Next to these more clinical 

findings a number of mice models, which are extensively described in chapter 2 of this thesis, 

also indicate a causal relationship between activated WNT/β-catenin signaling and endometrial 

carcinogenesis90-92.

Ovarian cancer
Every year, worldwide, approximately 225.000 women are diagnosed with ovarian cancer, 

accounting for 3,7% of all cancers found in women. Although this incidence is relatively low, 

ovarian cancer accounts for 140.000 deaths each year, making it the most lethal gynecological 

malignancy31. In the Netherlands, each year, approximately 1200 patients are diagnosed with 

ovarian cancer, accounting for an incidence of 14,3 per 100.000 women and a cumulative risk of 

endometrial cancer up to 75 years of age of 0,95%31.
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Risk factors
Because of the high mortality of ovarian cancer, the identification of risk factors is of vital 

importance. The most important risk factors are ovarian cancer specific genetic syndromes such 

as the hereditary breast-ovarian cancer syndrome (BRCA1 and BRCA2 gene mutations) and Lynch 

syndrome (MLH1, MSH2 and MSH6 gene mutations). The estimated lifetime risk for ovarian cancer is 

35-46 percent for BRCA1 mutation carriers and 13-23 percent for BRCA2 mutation carriers. Because 

of this high risk and since BRCA mutations are mainly associated with high grade serous ovarian 

cancer, risk-reducing or prophylactic bilateral salpingo-oophorectomy is offered as preventive 

treatment93, 94. Other risk factors include endometriosis and factors involved with a high number of 

ovulations, such as: null parity, delayed childbearing, estrogen replacement therapy for more than 

five years, late menopause, early menarche and a high fat diet95-99. In contrast, factors that reduce 

the number of ovulations, such as oral contraceptive use, pregnancy and lactation, decrease the 

risk of ovarian cancer99.

Symptoms and diagnosis
The high mortality is mainly caused by the fact that approximately 64% of women with ovarian 

cancer are diagnosed at a late stage of disease (stage III or IV), where the disease has already spread 

throughout the abdomen100. This delayed diagnosis is mainly caused by two factors: firstly, the 

precursor lesion causing epithelial ovarian cancer is still debated amongst scientists and clinicians, 

making development of tools for early detection and targeted therapy difficult. Secondly, ovarian 

cancer shows late and unspecific symptoms such as fatigue, nausea, abdominal (pelvic) pain, 

bloating and feeling full, symptoms commonly present in many women and in many types of 

disease101.

Diagnosis of ovarian cancer commonly includes measurement of the serum CA125 level and 

transvaginal ultrasonography, while internal gynecological examination is relatively sensitive for 

detecting ovarian masses102. CA125, encoded by MUC16, was discovered in the eighties and is the 

most frequently used biomarker for ovarian cancer. Elevated levels of serum CA125 are found in 

approximately 80% of patients with advanced ovarian cancer103. However, although a combination 

of CA125 level measurement and transvaginal ultrasonography is able to detect ovarian cancer 

at a relatively early stage, this does not improve clinical outcome and therefore routine ovarian 

cancer screening is not recommended104, 105. Furthermore, several other abdominal conditions, 

such as pelvic inflammatory disease, endometriosis, functional ovarian cysts, menstruation and 

pregnancy, can also result in increased CA125 levels106. Other biomarkers for ovarian carcinoma 

are serum measurement of HE4, either alone or in combination with CA125 (ROMA algorithm), 

and the biomarkerpanel OVA1 that includes serum measurement of CA125, β2-microglobulin, 

apolipoprotein, prealbumin and transferrin107-109. Even though ultrasound and biomarker tests are 

relatively good diagnostic tools, the final diagnosis of ovarian cancer is made during surgery.
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Pathology
Upon histological diagnosis, three major types of ovarian cancer can be distinguished: epithelial 

(85-95%), stromal (5-8%) and germ cell (3-5%)110. Epithelial ovarian cancer is most common in 

postmenopausal women and can be divided in four distinct subtypes: serous, endometrioid, 

mucinous and clear-cell ovarian cancer110. As in endometrial cancer, epithelial ovarian cancer 

can be further divided in two subgroups: type I and type II111. Type I tumors include 25% of all 

ovarian cancer cases, are slow growing, generally confined to the ovary, low grade and seem to 

develop from endometriosis or well-established borderline lesions. Mutations associated with type 

I tumors are found in PTEN, KRAS, BRAF and CTNNB1. Type II tumors account for 75% of all ovarian 

cancer cases, are characterized by fast growing, highly aggressive and rapidly spreading tumors 

and include high-grade serous carcinoma, carcinosarcomas and undifferentiated tumors. Genetic 

mutations associated with type II disease are generally found in TP53111. 

The origin of ovarian cancer
For many decades the ovarian surface epithelium (OSE) was appointed as the only origin of 

epithelial ovarian cancer. Here, ovarian surface epithelial cells are thought to accumulated DNA 

mutations due to repeated ovulation-induced mechanical and chemotoxic damage, followed by 

entrapment of the OSE in a repaired ovulation site causing so called cortical inclusion cysts (CICs). 

Under the influence of the ovarian micro-environment and additional genetic disturbances, these 

CICs become metaplastic, obtain a Müllerian phenotype and eventually become malignant101.

Over the last decade, however, many researchers questioned this hypothesis for the following 

reasons. Firstly the three most important epithelial ovarian subtypes strongly represent Müllerian 

duct derived structures, while the OSE does not display these characteristics: serous ovarian cancer 

resembles the epithelium of the fallopian tube; endometrioid ovarian cancer shows similarity to 

endometrial glands; and mucinous ovarian cancer resembles the endocervical epithelium112. 

Secondly, pathways and genes involved in Müllerian duct development such as WNT/β-catenin 

signaling, HOX-genes and PAX-genes, are highly expressed in ovarian cancer but not in the OSE113-

121. Thirdly, upon review of fallopian tubes, early benign (P53 signatures), intermediate (serous 

tubal intra-epithelial lesions, STILs) and malignant (serous tubal intra-epithelial carcinomas, STICs) 

lesions were identified in patients at risk for or with a concurrent serous ovarian carcinoma122-130. 

Interestingly, these malignant STICs showed similar histological and genetical characteristics as 

concurrent serous ovarian cancer, which indicates a causal relationship125, 126. Fourthly, frequently 

used ovarian cancer biomarkers such as CA125, PAX2 and WT1 are expressed by Müllerian duct 

derived structures, but not in the OSE116, 119, 131, 132. Finally our group was able to show that a 

population of stem-like cells is located in the distal and fimbriae part of the fallopian tube (near 

the ovary) in mice, but not the OSE133. Upon isolation, these cells formed spheroids capable of self-

renewal and fetal calf serum (FCS) stimulation initiated differentiation of these cells into gland-like 

structures with a clear Müllerian phenotype. Hence, due to their Müllerian characteristics and close 

proximity to the ovary, it was hypothesized that these stem-like cells may seize ovulation induced 
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DNA damage causing them to transform into malignant STICs, and initiate ovarian cancer133.

Based on these and other findings more extensively discussed in chapter 4 of this thesis, a 

different origin of epithelial ovarian cancer was proposed: tissues derived from the Müllerian duct. 

Unfortunately, good animal models aiming to confirm this hypothesis are still lacking.

Treatment and prognosis
The treatment of ovarian cancer consists of two pillars: tumor debulking surgery and (neo)adjuvant 

chemotherapy. Surgical treatment involves total hysterectomy, bilateral salpingo-oophorectomy, 

pelvic and paraaortic lymfadenectomy and removal of the omentum. As described before, during 

surgery the final diagnosis is made and the tumor is staged. However, outcome of treatment is 

highly dependent on the type, stage at diagnosis and the histological grade, with high stage 

and poor cell differentiation (high grade) corresponding with poor prognosis100. Because in 

most patients microscopic disease is still present after surgery, chemotherapy is an important 

part of the treatment. Unfortunately, even though initially most tumors respond well, eventually 

chemoresistant disease will develop and as a result, in the Netherlands overall survival of ovarian 

cancer patients is only approximately 41% and in total almost 69% of patients die from the 

disease100. Even more devastating, five year survival of the most frequently diagnosed stage III and 

IV disease is only 28,6 and 14,1%, respectively100.

Cancer progression: epithelial to mesenchymal transition 
Epithelial cells are virtually incapable of migration, due to their strong cell-cell bindings, mediated 

for example by E-cadherin, and the presence of the basement membranes. Migration of epithelial 

cells, however, is vital during the most crucial steps of embryogenesis and to circumvent this 

problem, epithelial cells are capable of transition into a more mesenchymal phenotype134. 

Unfortunately, this transition of an epithelial phenotype towards a more mesenchymal phenotype 

also acts as a subsequent step in progression from a confined tumor to invasive and metastatic 

disease. 

Central to epithelial to mesenchymal transition (EMT) is the activation of important signaling 

pathways such as WNT/β-catenin, FGF, EGF and TGF-β134. Activation of these pathways results 

in induction of EMT transcription factors such as SNAIL1, SLUG, ZEB1/2, TWIST1/2, GOOSEGOID 

and KLF8. Upon expression, SNAIL1, SLUG, KLF8 and ZEB1/2 directly repress the activity of the 

E-cadherin promotor, while TWIST1/2 and GOOSEGOID repress E-cadherin indirectly134-136. In 

addition to the repression of epithelial E-cadherin, EMT transcription factors cause gain of 

mesenchymal markers such as vimentin and N-cadherin134. Next to downregulation of E-cadherin 

and upregulation of vimentin and N-cadherin, expression of SNAIL1 and ZEB1/2 also induces 

matrix metalloproteinases (MMP), causing degradation of the basement membrane, thereby 

facilitating invasion137-139. Furthermore, SNAIL1 and ZEB1 inhibit epithelial polarity by repression of 

PAR, CRUMBS3 and SCRIBBLE140, 141. 
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Eventually, EMT enables migration, invasion, intravasation, dissemination and extravasation of 

tumor cells resulting in widespread metastasis (Fig. 3)142. In addition to metastasis, EMT is also an 

important factor in resistance to cell death and senescence, chemo and immunotherapy and anti-

tumor immune response, and in induction of stem-like cell properties134.

Figure 3: Epithelial to mesenchymal transtion (EMT) in cancer progression. 
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Figure 3: Epithelial to mesenchymal transtion (EMT) in cancer progression. Upon activation, transition from an 
epithelial towards a more mesenchymal phenotype (EMT) enables migration, invasion, intravasation and extrava-
sation of tumor cells, which can result in widespread metastasis. Figure adapted from Thiery (2002) Nat Rev Can-
cer;2:442-54.

Upon activation, transition from an epithelial towards a more mesenchymal phenotype (EMT) enables 
migration, invasion, intravasation and extravasation of tumor cells, which can result in widespread metastasis. 
Figure adapted from Thiery (2002) Nat Rev Cancer;2:442-54.

Aims of the thesis
The main goal of the work presented in this thesis was to unravel the mechanisms involved in 

initiation and progression of Müllerian duct derived malignancies. For this purpose, three research 

questions were posed:

1.	 What is the effect of progesterone receptor signaling on the tumor specific immune response, 

epithelial-to-mesenchymal transition and recurrence in endometrial cancer?

2.	 What is the effect of activation of WNT/β-catenin signaling on Müllerian duct derived tissues?

3.	 Are Müllerian duct derived tissues the origin of epithelial ovarian cancer; can we initiate ovarian 

cancer from these tissues; and can we identify and characterize tubal precursor lesions of 

serous ovarian carcinoma in controls, patients susceptible for and patients with serous ovarian 

cancer?
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Outline of the thesis
The WNT/β-catenin signaling pathway plays a rate-limiting role in the development of many organs 

and is of great importance in tissue development and homeostasis during adult live. Chapter 2 

reviews the role of WNT/β-catenin signaling on the Müllerian-derived female reproductive tract, 

especially focusing on its interaction with sex hormones during uterine development, pregnancy, 

endometriosis and cancer. Since sex hormones were shown to interact with important pathways 

involved in cancer initiation and development, the role of progesterone receptor signaling on 

endometrial carcinoma was assessed in Chapter 3. In this study, using endometrial cancer cell 

lines and patient tissue specimens, the role of progesterone receptor signaling on endometrial 

cancer triggered immune response, cell migration, recurrence, and metastasis was investigated. 

Early detection of ovarian cancer is hampered by the fact that the origin of ovarian cancer is still 

debated. Over the last decades, researchers have proposed the hypothesis that epithelial ovarian 

cancer originates from Müllerian derived structures and current perspectives on this Müllerian 

origin of epithelial ovarian cancer are introduced and discussed in Chapter 4.  Knowing that in 

a high percentage of endometrioid ovarian cancers WNT/β-catenin signaling is activated, and in 

view of the hypothesis that ovarian cancer may originate from the distal oviduct, in Chapter 5 

we have documented an endometrioid ovarian cancer mouse model using conditional activation 

of WNT/β-catenin signaling in Müllerian duct derived tissues. The role of Müllerian duct derived 

tissues in epithelial ovarian cancer initiation and progression is further assessed for the human 

situation in Chapter 6. Here we have investigated the prevalence of tubal precursor lesions of 

serous ovarian cancer in different patient populations, studied the molecular and migratory 

characteristics of the observed lesions and compared them to concurrent serous ovarian tumor. 

Chapter 7 and 8 provide a summary of the results of the studies in this thesis and a general 

discussion. Furthermore, directions for future research and possible clinical implications are 

assessed.
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Abstract:
Wnt/β-catenin signalling plays a rate-limiting role in early development of many different organs 

in a broad spectrum of organisms. In the developing Müllerian duct, Wnt/β-catenin signalling is 

important for initiation, outgrowth, patterning and differentiation into vagina, cervix, uterus and 

oviducts. In adult life, sex hormones modulate Wnt/β-catenin signalling in the endometrium to 

maintain the monthly balance between estrogen-induced proliferation and progesterone-induced 

differentiation, and enhanced Wnt/β-catenin signalling seems to be involved in endometrial 

carcinogenesis. However, early in pregnancy enhanced Wnt/β-catenin signalling is prerequisite 

for proper implantation and invasion of trophoblast cells into endometrium and myometrium 

thus helping to form a placenta.  Overall, it seems that tight control of Wnt/β-catenin signalling 

in time and space is important for initiation, development and normal function of the female 

reproductive tract. However, if Wnt/β-catenin signalling is not kept in check, it easily seems to 

initiate or contribute to development of a number of uterine disorders. 
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General introduction:
Since the discovery of the proto-oncogene Wnt1 in 1982, the Wnt signalling pathway has been 

shown to be a key regulator in development and disease1, 2. Currently, 20 secreted Wnt proteins 

have been identified that can bind to cell surface receptors of the Frizzled family2. Upon binding, 

three different pathways can be activated: the canonical Wnt/β-catenin signalling pathway2, the 

non-canonical Wnt/Planar cell polarity pathway3 or the Wnt/Ca2+ pathway4. In this review, we will 

focus on canonical Wnt/β-catenin signalling in the female reproductive tract. 

Central in activated canonical Wnt/β-catenin signalling is nuclear accumulation of β-catenin. 

Upon binding its ligand Wnt, the Frizzled receptor cooperates with a member of the LRP family5.  

As a result of this, via an interaction with a protein called dishevelled, the degradation complex 

(consisting of the scaffold proteins AXIN1 and AXIN2 (conductin), β-catenin (CTNNB1), the tumour 

suppressor APC (adenomatosis polyposis coli) and the Ser-Thr kinases CK1 (casein kinase I) and 

GSK3β (glycogen synthase kinase 3 beta)) dissociates and β-catenin is no longer targeted for 

degradation6. Stabilized β-catenin can now translocate to the nucleus where it displaces the 

transcription repressor Groucho (TLE), allowing members of the TCF/LEF transcription factor family 

to regulate Wnt target gene transcription7. For a thorough review on Wnt/β-catenin signalling, 

please visit: “The Wnt Homepage” (http://www.stanford.edu/group/nusselab/cgi-bin/wnt/)8.

Wnt/β-catenin signalling in development of the Müllerian duct:
In early embryonic development in the anterior region of the coelomic cavity, Lim1 expressing 

epithelial cells are induced to invaginate by Wnt4, which is expressed from the mesonephros or 

coelomic epithelium9. Subsequently the primitive Müllerian duct anlage extends to and interacts 

with the Wolffian duct. This is followed by posterior elongation mediated by Wnt9b expressing 

epithelial cells from the Wolffian duct. In absence of the Wolffian duct or in case of absence of Wnt9b, 

the Müllerian duct does not develop further10. Outgrowth of the Müllerian duct is accomplished 

by proliferation of a group of coelomic epithelial cells resembling mesoepithelial cells at the distal 

tip11, 12. At the end of elongation both Müllerian ducts will fuse to form the uterovaginal tube, which 

joins the urogenital sinus. Once initiated, correct patterning of the Müllerian duct into vagina, 

cervix, uterus and oviducts partly depends on Wnt7a expressing epithelial cells of the oviduct and 

uterus and Wnt5a expressing mesenchymal cells of the uterus, cervix and vagina13, 14.

In mice the Müllerian duct is formed around embryonic day 11.5, by an initial in-folding of Wnt4 

expressing epithelial cells from the coelomic wall followed by posterior outgrowth to the cloacal 

region9, 10. Once the Müllerian duct is formed, Wnt4 is expressed at high levels by mesenchymal 

cells surrounding the duct. In Wnt4 knockout animals a reversal of sexual development takes 

effect, exemplified by a testis-like appearance of the ovaries, absence of Müllerian structures and 

presence of Wolffian ducts. The absence of Müllerian ducts in both male and female Wnt4 mutant 

mice during development indicates that Wnt4 is a prerequisite for the initial stages of Müllerian 

duct formation15, 16. Furthermore proper Wnt4 expression also seems necessary to suppress male 

differentiation in the female gonad. 
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Wnt9b is expressed in the Wolffian ducts during early embryonic stages when both Wolffian and 

Müllerian ducts are present (E9.5 – 14.5)10. In Wnt9b-/- embryos the Wolffian duct and the initial 

Müllerian anlage are present, but there is no extension of the Müllerian duct. This indicates that 

Wnt9b is necessary for posterior outgrowth during Müllerian duct formation10. 

Throughout the Müllerian duct epithelium Wnt7a is expressed before birth and in oviduct and 

uterine luminal epithelium after birth14. Targeted disruption of Wnt7a showed that oviducts were 

absent in most mice and, when present, remained uncoiled resembling uterus morphology. 

Furthermore, the uterus showed marked resemblance to the vagina with thickening of the 

surrounding musculature, a relatively thin stroma, pronounced loss of glands and a luminal 

epithelium with a clear squamous aspect. These data indicate that loss of Wnt7a seems to result in 

posteriorization of the female reproductive tract, indicating an important role for Wnt7a in correct 

patterning of the developing Müllerian duct14, 17.

In normal mice, Wnt5a is expressed in mesenchymal cells surrounding the Müllerian duct and later 

in mesenchymal cells of uterus, cervix and vagina18. Wnt5a knockout female mice display normal 

oviducts and anterior uterine horns, but lack the more posterior cervical and vaginal structures. The 

uterine horns are severely coiled and either fused at midline or remain separated as blind ending 

pouches. Because Wnt5a mutant mice die at birth due to severe kidney problems, uterine tissues 

were grafted under the kidney capsule of immunodeficient mice. It was observed that in mutant 

grafts, gland formation was markedly impaired. Further investigations revealed that in wild type 

animals Wnt5a was highly expressed in the stromal region of the endometrium, and that Wnt5a 

and Wnt7a seem to act side by side to control gland formation13. 

In summary, the Wnt/β-catenin signalling pathway is important for initiation, outgrowth, patterning 

and differentiation of the Müllerian duct into vagina, cervix, uterus and oviduct (Table 1). 

Wnt/β-catenin signalling in uterine physiology:
The human uterus can be divided in 2 functional layers: the outer myometrial layer (myometrium) 

and the inner endometrial layer (endometrium). The endometrium is a dynamic tissue, which 

facilitates implantation, development and outgrowth of the embryo. The endometrium can also 

be divided in two layers: a functional and a basal layer. The functional layer, which is divested 

every month during menses, is replenished by the basal layer during the proliferative phase of the 

menstrual cycle. After menses during the first two weeks of the menstrual cycle estrogens, being 

produced by ovarian thecal cells, induce proliferation of the endometrium thus generating a new 

functional layer. During the second half of the menstrual cycle, the secretory phase, this functional 

layer will differentiate to prepare for implantation of the fertilized ovum. During this phase 

progesterone, which is produced by the corpus luteum, counterbalances estrogens proliferative 

effects and is responsible for the induction of differentiation19 (Fig. 1).

In analogy to the situation in the gastrointestinal tract, where proliferating epithelial cells display 

activated Wnt/β-catenin signalling and differentiated cells show diminished Wnt/β-catenin 

signalling2, a central role for Wnt/β-catenin signalling was hypothesized for the endometrium. 
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In short, during the proliferative phase of the menstrual cycle estrogens induce Wnt/β-

catenin signalling. During the secretory phase of the menstrual cycle, however, progestagens 

counterbalance estrogen-induced proliferation by inhibition of Wnt/β-catenin signalling, thus 

inducing differentiation. Over time there have been multiple reports in literature which corroborate 

this hypothesis. 

Nei et al. in 1999 observed clear nuclear localization of β-catenin during the proliferative phase 

of the menstrual cycle when estrogen levels are high and unopposed by progestagens20. 

Furthermore, during the secretory phase of the menstrual cycle, when progesterone levels 

increase and estrogen levels decrease, nuclear β-catenin accumulation was found to decrease. In 

line with these observations Hou et al., 2004, showed that exogenous estrogen treatment of mice 

indeed results in nuclear localization of β-catenin in epithelial cells of the endometrium21. They also 

observed that the proliferative effect of estrogens could be inhibited by adenovirus mediated in 

vivo uterine delivery of Sfrp2 (a known Wnt antagonist)21. In agreement with these observations, 

Gunin et al., 2004 could mimic estrogens proliferative effects on the endometrium by feeding their 

mice LiCl, which is known to activate Wnt/β-catenin signalling by inhibiting Gsk3b activity22. 

More data suggesting involvement of Wnt/β-catenin signalling in regulation of the menstrual 

cycle came from gene expression profiling studies23-27. Wang et al., 200928 combined two large sets 

of endometrial gene expression data: gene expression profiles from normal human endometrial 

tissue acquired during different phases of the menstrual cycle27, and endometrial gene expression 

data from postmenopausal women that were either untreated or were treated with estrogen or 

estrogen+progestagen25. Combining these two data sets, large numbers of differentially expressed 

genes were recognized as either downstream targets or integral parts of the Wnt/β-catenin 

signalling pathway (n=228,28). For example, WNT4, WNT5a, WNT6 and WNT7a were up regulated 

by estrogen during the proliferative phase of the menstrual cycle, while a number of inhibitors of 

Wnt/β-catenin signalling were found up regulated by progesterone during the secretory phase of 

the menstrual cycle (the complete list of regulated genes can be accessed from Supplementary 

Table 1). 

DKK1 and FOXO1 are two progesterone regulated Wnt/β-catenin signalling inhibitors which have 

been investigated further28. Progesterone regulation of DKK1 was first observed by Kao et al., 2002,29 

and Tulac et al., 2003,30, 31 in stromal cells of the human endometrium and progesterone regulation 

of FOXO1 has been extensively studied by Takano et al., 2007, and Ward et al., 200832, 33. Using the 

human endometrial cancer cell line Ishikawa Wang et al., 2009,28 has investigated progesterone 

inhibition of Wnt/β-catenin signalling and the involvement of DKK1 and FOXO1 further. Here it was 

shown that progesterone was very effective in inhibiting the TOP-Flash Wnt/β-catenin signalling 

reporter in Ishikawa cells28.  Furthermore, when progesterone was added to the medium and DKK1 

or FOXO1 expression was inhibited by use of specific siRNAs, progesterone inhibition of Wnt/β-

catenin signalling was partly circumvented indicating that the Wnt/β-catenin signalling inhibitors 

DKK1 and FOXO1 acted downstream from progesterone. 

In summary, sexhormones regulate Wnt/β-catenin signalling in the endometrium to maintain 

the monthly balance between estrogen-induced proliferation and progesterone-induced 

differentiation (Table 1 and Fig. 1). 
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Figure 1: Activation of Wnt/β-catenin signalling during the normal menstrual cycle (A), the window of 
implantation (B) and endometrial carcinogenesis (C). 
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A: During the proliferative phase of the menstrual cycle, estrogens induce Wnt/β-catenin signalling, while 
during the secretory phase of the menstrual cycle progestagens counterbalance estrogen-induced proliferation 
by inhibition of Wnt/β-catenin signalling, thus inducing differentiation. B: During implantation, blastocyst 
signalling to the endometrium activates the Wnt/β-catenin pathway at the site of implantation. Furthermore 
activation of Wnt/β-catenin signalling is a prerequisite for proper decidualization and correct invasion of 
trophoblast into the maternal endometrium. C: Constitutive activation of Wnt/β-catenin signalling in the 
endometrium induces endometrial hyperplasia, which can develop further into invasive disease. Furthermore, 
once a tumour has been initiated, Wnt/β-catenin signalling seems to facilitate transition from an epithelial 
phenotype towards a mesenchymal phenotype thus aiding endometrial cancer progression. +: represents 
locations where Wnt/β-catenin signalling is activated. Figure modified from Wang et al., Oncotarget 2010.
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Wnt/β-catenin signalling during decidualization, implantation 
and placenta formation:
In humans, fertilization occurs within 24 to 48 hours after ovulation when the oocyte travels 

through the fallopian tube towards the uterine cavity. When the embryo reaches the uterus it has 

developed into a fluid filled mass of cells (blastocyst) displaying the first signs of differentiation. 

Within 72 hours of reaching the uterus, the blastocyst is released from the surrounding zona 

pellucida (hatching) thus exposing its surface cells (trophoblast) to the endometrial epithelium. 

The first step towards implantation involves adhesion of these trophoblasts to the uterine wall 

(apposition), which is followed by stabilization of binding (stable attachment). Subsequently, 

invasion begins by penetration of the syncytiotrophoblasts into uterine epithelium34, 35. Ten days 

after conception, the embryo has completely invaded into the endometrium and mononuclear 

cytotrophoblasts start to invade the endometrium and inner third of the myometrium. 

Receptivity of the endometrium for implantation depends highly on correct hormonal signalling 

towards the moment of implantation (between days 20 and 24 of the menstrual cycle). Estrogens, 

produced in increasing amounts during the first two weeks of the menstrual cycle, induce outgrowth 

of the functional layer of the endometrium. Progesterone, being produced from the moment of 

ovulation onwards, is very effective in inhibiting estrogenic effects and induces differentiation. 

Differentiation is characterized by induction of secretory activity of the glands, attraction of natural 

killer cells and initiation of transformation of endometrial stroma cells into decidual cells (start 

of decidualization)36. This endometrial priming in humans is, in contrast to the situation in mice 

where decidualization starts after implantation, a crucial step towards implantation, invasion of 

trophoblasts and full decidualization of the uterine stroma37. 

Based on the fact that Wnt/β-catenin signalling plays an important role in proliferation and 

differentiation during normal uterine physiology and that Wnt/β-catenin signalling has an essential 

function in embryonic development, a role for Wnt/β-catenin signalling in blastocyst implantation, 

endometrial decidualization and placenta formation was hypothesized (recently reviewed by 

Sonderegger et al., 201038). 

In wild-type mice, Hayashi et al., 2009, studied the expression of different Wnt receptors (Fzd2, 

Fzd3 and Fzd4) and ligands (Wnt4, Wnt5a, Wnt7a, Wnt7b, Wnt11, Wnt16) during peri-implantation 

of pregnancy and it was observed that, except for Fzd6, all receptors and ligands were specifically 

expressed at the site of implantation and around the moment of implantation39. Furthermore, 

expression of Wnt4, Wnt7a, Wnt7b, Wnt11, Wnt16, Fzd2, Fzd4 and Fzd6 was found to be regulated 

in ovariectomized mice treated with estradiol and/or progesterone39. Using Tcf/Lef-LacZ reporter 

mice, Mohamed et al., 2005, actually measured activation of the Wnt/β-catenin signalling pathway 

during the window of implantation40. It was observed that 4 days after fertilization, 5 – 7 bands 

of transient Wnt/β-catenin activity were present in the inner circular smooth muscle layer of 

the myometrium, probably marking future sites of implantation. Subsequently, at day 5 after 

fertilization, the Wnt/β-catenin signalling pathway was activated in specific endometrial regions 

in the vicinity of a blastocyst, indicating cross-talk between the blastocyst and the endometrium40. 
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Furthermore, instead of assessing pregnant mice, pseudopregnant mice were injected with Wnt7a 

and profound activation of Wnt/β-catenin signalling was observed throughout the exposed 

region. Next, the authors showed that when mice blastocysts were treated with the Wnt/β-catenin 

signalling inhibitor Sfrp2 or when high amounts of Sfrp2 were present during implantation, the 

implantation rate dropped by approximately 50%40. In addition, Xie et al., 2008, inhibited Wnt/β-

catenin signalling in mice blastocysts using adenoviral delivered Dkk1 and also observed profound 

inhibition of implantation in normal pseudopregnant recipients41. These investigations indicate 

that in mice, embryo-induced Wnt/β-catenin signalling at the site of blastocyst attachment is 

prerequisite for successful implantation40-42.

During implantation stromal cells of the endometrium undergo further decidualization. Interestingly 

in humans and in pregnant mice, during the secretory phase of the menstrual cycle, progesterone 

induced Wnt4 expression was shown to be responsible for Bmp2 mediated decidualization43, 44. 

Wnt4 acts downstream from Bmp2 and Wnt4 conditional knockdown in mice was shown to affect 

stromal cell survival, differentiation and responsiveness to progestagens45. Furthermore, Cloke et 

al., 2008, indicated that next to progesterone signalling also androgen signalling was involved in 

decidualization although androgen action does not seem to be mediated by the Wnt/β-catenin 

signalling pathway24. 

During implantation, placental formation is initiated as trophoblast cells start to invade into the 

underlying decidualized maternal tissue. Subsequently, maternal blood vessels are broken down by 

these invading trophoblasts, thus forming blood sinuses. In mice, these blood sinuses are invaded 

by foetal vessels and capillaries (produced from the allantois) establishing the so called labyrinthine 

zone46. A number of genetic mouse models support the hypothesis that Wnt/β-catenin signalling 

activation is an important factor allowing trophoblast migration, placental vascularisation, chorion 

allantois fusion and labyrinth function thus initiating a functional placenta. In mice, Wnt2 has been 

shown to be expressed on the foetal side of the developing placenta and targeted disruption of 

Wnt2, interestingly, resulted in placental defects caused by improper and defective vascularisation 

of the placenta47. In addition, Wnt7b is expressed in the chorion and disruption of this gene in 

mice results in embryonic death at midgestation. More in detail, chorion development was found 

to be impaired as a consequence of absence of fusion (decreased cell adhesion through down 

regulation of Wnt/β-catenin signalling target gene α4-integrin) between the allantois and chorion, 

possibly causing a severe lack of nutrient supply from the mother48. Targeted disruption of Tcf1 or 

Lef1, interestingly, also resulted in defects in the formation of the placenta due to loss of allantois-

chorion fusion49. Furthermore Fzd5 was found to be important for placenta development, as Fzd5 

knock-out mice died in utero displaying poor placental vascularisation50. 

In humans, many Wnt ligands and FZD receptors are detectable in placental tissues51 and recent 

studies have indicated increased expression of TCF3/4 and nuclear β-catenin staining in invasive 

trophoblasts during the early phases of placentation52. Furthermore, recombinant Wnt-3A 

treatment of human trophoblasts induced the activity of the Wnt/β-catenin reporter TCF-luciferase, 

and was shown to induce secretion of MMP2, which could help promote trophoblast migration 

and invasion53. In agreement with this, treatment of primary human trophoblasts with the Wnt/β-
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catenin inhibitor DKK1 resulted in reduced migration and invasion52. Recently, gene expression 

was studied in human embryonic stem cells that were differentiated down the trophoblast lineage 

by culture with BMP4, and profound regulation of the Wnt/β-catenin pathway was observed54. 

The involvement of Wnt/β-catenin signalling in migration and invasion is not a new finding. A 

role for β-catenin-independent Wnt signalling in migration and invasion has also been described 

for gliomas55 and breast cancer metastasis in the brain56. For β-catenin-dependent Wnt signalling 

Schmalhofer et al., 2009, showed clear nuclear β-catenin staining at the invasive front of 

progressive colorectal cancer, further indicating a role for Wnt/β-catenin signalling in epithelial to 

mesenchymal transformation57. In addition, in endometrial cancer the Wnt/β-catenin signalling 

pathway target and adhesion molecule L1CAM was also shown to be present specifically at the 

leading edge of the tumour58.

In summary, blastocyst signalling to the endometrium activates the Wnt/β-catenin signalling 

pathway at the site of implantation and is prerequisite for proper implantation. Activation of the 

Wnt/β-catenin signalling pathway, furthermore, is a requirement for proper decidualization and 

correct invasion of trophoblasts into the maternal endometrium and myometrium thus forming 

the placenta (Table 1 and Fig. 1). 

Wnt/β-catenin signalling in endometriosis:
Endometriosis, a common and benign gynaecological disorder, is characterised by the presence 

of endometrial glandular and stromal tissue outside the uterine cavity (pelvic peritoneum, on the 

ovaries and in the rectovaginal septum) and is associated with pelvic pain and infertility. Because 

endometriosis is an estrogen-dependent disease displaying reduced progesterone receptor levels 

and resistance to progesterone therapy59-62, a role for Wnt/β-catenin signalling in development and 

maintenance of the disease has been proposed. 

Using gene expression profiling, indications were found that Wnt/β-catenin signalling was indeed 

differentially regulated between eutopic and ectopic endometrium60, 63, 64. Furthermore, Gaetje et 

al. in 2007, showed significantly higher expression of WNT7a in endometriotic tissues, most likely 

caused by reduced progesterone signalling65. This is an interesting finding because WNT7A has 

been described to induce HOXA10 expression which is strongly implicated in the development 

of endometriosis66.  

Besides endometrial tissues homing towards the abdominal cavity, there is a special form of 

endometriosis which invades into the myometrium called adenomyosis.  Interestingly, using a 

mouse model where Wnt/β-catenin signalling was activated in the myometrium, endometrial 

glands and stroma were observed to be present in the myometrium67, 68. Whether these 

observations point towards an active process of endometrial tissue invading into the myometrium 

or perhaps endometrial tissue is simply filling the gap generated by myometrial dystrophy, is not 

entirely clear at this point. 

In summary, enhanced estrogen signalling relative to inhibited progesterone signalling in ectopic 

endometrium activates the Wnt/β-catenin signalling pathway, and may be a mechanism stimulating 

survival, proliferation and invasion of endometrial tissue outside its normal environment (Table 1). 
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Wnt/β-catenin signalling during endometrial carcinogenesis:
Major risk factors for endometrial cancer are prolonged high levels of estrogens69. During the 

normal menstrual cycle, high estrogen levels are counterbalanced each month by progesterone 

during the secretory phase of the menstrual cycle. When these progesterone levels are too low, 

or when estrogen levels are too high, the proliferative effect of estrogen becomes dominant and 

will induce endometrial hyperplasia70. Endometrial hyperplasia can, over time, develop further into 

type I endometrial cancer which makes up 90% of endometrial cancer cases70.

As indicated earlier, estrogens seem to induce Wnt/β-catenin signalling during the proliferative 

phase of the menstrual cycle20 and artificial induction of Wnt/β-catenin signalling results in 

endometrial hyperplasia22, 71. Based on these investigations, it was hypothesized that enhanced 

Wnt/β-catenin signalling could be a causative factor in endometrial hyperplasia and in endometrial 

carcinogenesis. In agreement with this Wnt/β-catenin signalling, as measured by nuclear β-catenin 

staining, was found to be enhanced in about 40% of well differentiated endometrial cancers 

(31%:72; 85%:73). Upon investigating the mechanism behind enhanced nuclear β-catenin staining, 

activating β-catenin mutations were found in 15-40 % of endometrial tumours74, 75, truncating 

APC mutations in 10% of all endometrial cancers76 and APC A1 promoter hypermethylation in 

approximately 20% of endometrial cancers77. These findings seem to indicate that Wnt/β-catenin 

signalling plays a significant role during endometrial carcinogenesis. 

Using genetically modified mice the role of Wnt/β-catenin signalling during endometrial 

carcinogenesis was investigated further. Because homozygous β-catenin deletion results in embryo 

lethality, conditional knockdown was established using β-catenin gene targeting with the help of 

C-recombinase, Cre78. Using this technique the β-catenin gene (Ctnnb1) is knocked out in a specific 

tissue at a specific time. In Amhr2-Cre mice, Cre is expressed from E-12.5 onwards in mesenchymal 

cells surrounding the Müllerian duct79, 80. In adult animals Amhr2 driven Cre-expression was clearly 

observed in the myometrium but expression was much lower in endometrial stroma cells and Cre 

was not expressed in epithelial cells79, 81. At birth, in β-catenin conditional knockdown animals a 

smaller uterus was observed (due to decreased mesenchymal and epithelial cell proliferation) and 

coiling of the oviduct was sometimes impaired (resembling the Wnt7a mutant 14)81, 82. Interestingly 

in adult animals, over time myometrial cells were lost (dystrophy, resembling the Wnt7a mutant14) 

and vast areas of adiposites appeared. This phenotype seems, to some extent, to resemble a 

human condition called lipoleiomyoma82. 

Tanwar et al., 2009, used Amhr2-Cre to induce an activating mutation of β-catenin and 

macroscopically found large tumourous growths and multiple hemorrhagic sites on the uterine 

surface67. Microscopically the authors observed an increase in the myometrial area and TGFβ3 

positive dysplastic lesions of the myometrium (resembling human uterine leiomyomas). In addition, 

endometrial stromal sarcomas and epithelial hyperplasia were observed. Finally, endometrial 

glands were sometimes observed inside the myometrium, resembling a human situation called 

adenomyosis (as discussed before). Recently, Tanwar et al., 2011, used Amhr2-Cre to force Apc deletion 

to induce Wnt/β-catenin signalling. It was observed that besides myometrial defects these animals 

displayed endometrial hyperplasia and cancer combined with defective estrogen signalling83.  
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Table 1: Summary of WNT/β-catenin signalling in endometrial physiology and disease. 

Wnt/β-catenin signalling in Müllerian duct development:

Wnt4 - Wnt4 is expressed by epithelial cells from the mesonephros or coelomic wall [9-10]

- Wnt4 is a prerequisite for Müllerian duct initiation [9-10, 15-16]

Wnt5a - Wnt5a is expressed in mesenchymal cells of the Müllerian duct [18]

- Wnt5a knockout mice lack cervical and vaginal structures [13]

Wnt7a - Wnt7a is expressed throughout the Müllerian duct epithelium [14]

- Wnt7a loss results in posteriorization of the female reproductive tract [14,17]

Wnt9a - Wnt9b is expressed in epithelial cells from the Wolffian duct, when the Müllerian   
  duct is present

[10]

- Wnt9b is a prerequisite for posterior outgrowth of the early Müllerian duct [10]

Wnt/β-catenin signalling in uterine physiology:

DKK1 - DKK1 is progesterone induced and can inhibit Wnt/β-catenin signalling [28-31]

FOXO1 - FOXO1 is progesterone induced and can inhibit Wnt/β-catenin signalling [28, 32-33]

Gsk3b - Gsk3b inhibition leads to Wnt signaling activation and mimics estrogens 
  induced proliferation

[22]

Sfrp2 - Sfrp2, a known Wnt antagonist, opposes the proliferative effect of estrogen [20]

Wnt/β-catenin signalling during decidualization, implantation and placenta formation

Dkk1 - Dkk1 treatment inhibits implantation in normal pseudopregnant recipients [41]

DKK1 - DKK1 treatment results in reduced trophoblast migration and invasion [52]

Fzd5 - Fzd5 knockout results in embryonic death through poor placental 
  vascularisation

[50]

Lef1 - Lef1 targeted disruption results in defects in placental formation [49]

Sfrp2 - Sfrp2 treatment inhibits implantation in mice [40]

Tcf1 - Tcf1 targeted disruption results in defects in placental formation [49]

Wnt2 - Wnt2 targeted disruption results in defective placental vascularisation [47]

Wnt3a - Wnt3a treatment promotes trophoblast migration and invasion [53]

Wnt4 - Wnt4 is responsible for Bmp2 mediated decidualisation [43-44]

- Wnt4 knockout affects stromal cell survival, differentiation and progesterone 
  responsiveness

[45]

Wnt7a - Wnt7a activates Wnt/β-catenin signalling in pseudopregnant mice [40]

Wnt7b - Wnt7b disruption results in embryonic death due to placental failure [48]

Wnt/β-catenin signalling in endometriosis and endometrial carcinogenesis:

Apc - Apc conditional knockdown results in endometrial hyperplasia and cancer [82-83]

- Apc conditional knockdown results in myometrial loss and reduced gland 
  numbers

[68]

APC  - APC is mutated in 10% and its promoter hypermethylated in 20% of 
  endometrial cancers 

[75-76]

β-catenin  - Activating β-catenin mutations were found in 15-40 % of endometrial cancers [73-74]	

- Conditional activation of β-catenin in mice results in tumour-like growths and 
multiple hemorrhagic sites at the uterine surface; increased myometrial area 
and TGFβ3 positive dysplastic lesions of the myometrium; endometrial stromal 
sarcomas; enlarged glands causing epithelial hyperplasia and sometimes 
endometrial glands were observed inside the myometrium.

[67]

- Conditional knockdown of β-catenin results in myometrial loss and areas of 
  adipogenesis; less epithelial glands and squamous cell metaplasia. 

[81]

WNT7A - WNT7A is enhanced in endometriosis and induces HOXA10 [65-66]

Not included in this summary are studies using gene expression analysis (micro-array and RT-PCR) that show 
WNT/β-catenin signalling involvement [23-28, 39, 54, 60, 63-64].
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Our own data, using Amhr2-Cre to drive Apc deletion, also indicate severe myometrial defects 

and reduced endometrial gland formation as a result of induction of Wnt/β-catenin signalling in 

mesenchymal cells surrounding the Müllerian duct68. However, in these animals we never observed 

endometrial hyperplasia nor endometrial carcinogenesis. 

Jeong et al., 2009, used the progesterone receptor to drive Cre expression in order to induce an 

activating or inactivating mutation of β-catenin in all uterine cells (myometrium, stroma, glandular 

epithelium and luminal epithelium)84. Both β-catenin mutations led to severe subfertility or even 

infertility due to failure to undergo decidualization during embryo implantation. Furthermore, 

Pgr-Cre induced constitutive β-catenin activation resulted in enlarged glands causing endometrial 

hyperplasia. Conditional inactivation of β-catenin, however, resulted in less epithelial glands and 

squamous cell metaplasia (resembling the Wnt7a mutant17). Recently our group has also used Pgr-

Cre to drive deletion of Apc and we observed clear endometrial hyperplasia which was sporadically 

followed in time by endometrial carcinogenesis. 

Recently we have been investigating progressive endometrial cancer and observed that loss of 

progesterone signalling seems to release inhibition of epithelial to mesenchymal cell transition thus 

facilitating tumour progression and malignant transformation. Interestingly, loss of progesterone 

signalling also led to enhanced Wnt/β-catenin signalling in these progressive endometrial cancer 

specimens (Van der Horst et al., submitted). 

In summary, enhanced Wnt/β-catenin signalling in mesenchymal cells surrounding the Müllerian 

duct results in severe myometrial problems, while continuous Wnt/β-catenin signalling in the 

endometrium seems to be an important early step in endometrial carcinogenesis (Table 1 and Fig. 1). 

Summary:
The role of Wnt signalling in initiation, development and function of the female reproductive tract 

is significant. During development, Wnt4 is essential for initiation of the Müllerian duct, Wnt9b 

is essential for posterior outgrowth of the Müllerian duct and Wnt5a and Wnt7a are involved in 

proper differentiation of the Müllerian duct, into vagina, cervix, uterus and oviduct10, 13, 14, 16. During 

reproductive life, hormonal regulation of the menstrual cycle is mediated by estrogen induced 

activation and progesterone induced inhibition of Wnt/β-catenin signalling20, 21, 23, 25, 28, 30.  During 

pregnancy, when the embryo is nearing its site of implantation, Wnt/β-catenin signalling is 

profoundly induced and during early decidualization, Bmp2 induced Wnt4 signalling allows for 

stromal survival and differentiation. Next to this, genetic models showed that Wnt2 and Wnt7b are 

essential for invasion of trophoblasts that can form the interphase where exchange can take place 

between mother and foetus (the placenta)40, 44, 48. 

These normal functions of Wnt/β-catenin signalling, however, have a down site. Constitutively 

activated Wnt/β-catenin signalling in the myometrial layer of the uterus can cause muscular 

dystrophy, probably facilitating placental invasion during pregnancy. At the same time Wnt/β-

catenin signalling in the myometrium seems to induce a disorder called adenomyosis67, 68, 81, 82. 
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Furthermore, activated Wnt/β-catenin signalling is involved in estrogen induced proliferation 

of the endometrium during the first two weeks of the menstrual cycle. However, constitutive 

Wnt signalling in the endometrium induces endometrial hyperplasia which may proceed to 

endometrial cancer. Also, similar to Wnt/β-catenin activation during trophoblast invasion, once 

a tumour has been initiated constitutive Wnt/β-catenin signalling seems to facilitate transition 

from an epithelial phenotype towards a mesenchymal phenotype thus aiding endometrial cancer 

progression22, 71, 74-77.
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Abstract:
Background:
Every year approximately 74,000 women die of endometrial cancer, mainly due to recurrent or 

metastatic disease. The presence of tumor infiltrating lymphocytes (TILs) as well as progesterone 

receptor (PR) positivity has been correlated with improved prognosis. This study describes two 

mechanisms by which progesterone inhibits metastatic spread of endometrial cancer: by 

stimulating T-cell infiltration and by inhibiting epithelial-to-mesenchymal cell transition (EMT).

Methodology and principle findings:     
Paraffin sections from patients with (n=9) or without (n=9) progressive endometrial cancer 

(recurrent or metastatic disease) were assessed for the presence of CD4+ (helper), CD8+ (cytotoxic) 

and Foxp3+ (regulatory) T-lymphocytes and PR expression. Progressive disease was observed to 

be associated with significant loss of TILs and loss of PR expression. Frozen tumor samples, used 

for genome-wide expression analysis, showed significant regulation of pathways involved in 

immunesurveillance, EMT and metastasis. For a number of genes, such as CXCL14, DKK1, DKK4, PEG10 

and WIF1, quantitive RT-PCR was performed to verify up- or downregulation in progressive disease.  

To corroborate the role of progesterone in regulating invasion, Ishikawa(IK) endometrial cancer 

cell lines stably transfected with PRA (IKPRA), PRB(IKPRB) and PRA+PRB (IKPRAB) were cultured in 

presence/absence of progesterone (MPA) and used for genome-wide expression analysis, Boyden- 

and wound healing migration assays, and IHC for known EMT markers. IKPRB and IKPRAB cell lines 

showed MPA induced inhibition of migration and loss of the mesenchymal marker vimentin at 

the invasive front of the wound healing assay. Furthermore, pathway analysis of significantly MPA 

regulated genes showed significant down regulation of important pathways involved in EMT, 

immunesuppression and metastasis: such as IL6-, TGF-β and Wnt/β-catenin signaling.

Conclusion:
Intact progesterone signaling in non-progressive endometrial cancer seems to be an important 

factor stimulating immunosurveilance and inhibiting transition from an epithelial to a more 

mesenchymal, more invasive phenotype.
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Introduction:
Each year, worldwide, more than 287,000 women develop endometrial cancer making it the most 

common gynecological cancer in the world and the fourth most common female malignancy in 

developed countries1. Usually endometrial cancer is detected in an early stage and surgery is the 

cornerstone of treatment. Where there is recurrent or metastatic disease, however, the situation 

is different. (Neo-)Adjuvant radiation and/or systemic therapy in combination with surgery is 

usually indicated and in general, progressive disease has a poor prognosis accounting for 74,000 

deaths worldwide each year2, 3. Prognostic factors for recurrent and metastatic endometrial cancer 

include surgical FIGO stage, grade of differentiation, histopathological subtype and myometrial 

and lymphovascular invasion2, 4-7. 

In several types of cancer, the presence of tumor infiltrating lymphocytes (TILs) has been 

correlated with improved prognosis, and much research has been performed on this topic8-15. The 

rationale is that well differentiated cancer evokes an inflammatory response similar to an acute 

injury which, after sequential infiltration of different dendritic cell populations, eventually results 

in T-lymphocyte infiltration16. Infiltration of TILs as a positive prognostic factor was first described 

in cutaneous melanoma, where the presence of TILs was predictive for improved survival8. Galon 

et al. in 2006, showed that infiltration of lymphocytes of the adaptive immune system into the 

center and invasive margin of colorectal cancer was positively correlated with reduced recurrence 

and improved survival10. In 2009 Kilic et al., showed that high levels of TILs within non-small-cell 

lung cancer correlated with reduced recurrence and enhanced survival12. In ovarian cancer, the 

presence of intratumoral T-lymphocytes was also positively correlated with improved survival and 

delayed recurrence of the disease15. Furthermore, TILs in ovarian cancer were also associated with 

increased levels of INF-γ, IL2 and chemokines which indicates T-cell activation and attraction15. 

The presence of TILs has not been extensively investigated in endometrial cancer. In endometrial 

cancer, infiltration of cytotoxic (CD8+) T-lymphocytes in the area of the lesion has been described 

as an independent prognostic factor and is positively correlated to disease free- and overall 

survival17, 18. In addition, a high cytotoxic T-lymphocyte/regulatory T-lymphocyte (CD8/FOXP3) ratio 

has been described to be correlated to improved survival in type I endometrial cancer17. 

Next to the influx of T-lymphocytes into the tumor area, the presence of progesterone receptors 

(PR) is also described as an important asset in prognosis and treatment of endometrial cancer19-21. 

In well differentiated endometrial cancer PR expression is usually maintained and treatment with 

medroxyprogesterone acetate (MPA), of those patients with well differentiated disease who chose 

to preserve fertility, is usually successful22, 23. Loss of PR, however, is a negative prognostic factor and 

is associated with progressive disease in which MPA treatment is usually only temporally successful 

in 15-20% of cases24. 

Recently, our group has studied the mechanism through which progesterone can induce 

differentiation during the normal menstrual cycle and can inhibit well differentiated endometrial 

cancer growth. It was observed that progesterone treatment results in induction of expression of 

two important inhibitors of Wnt/β-catenin signaling: DKK1 and FOXO125, 26. In endometrial cancer, 
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activation of Wnt/β-catenin signaling is observed in 30-40% of well differentiated endometrioid 

carcinomas27 and progesterone induced inhibition of the Wnt signaling pathway is hypothesized 

to be an important mechanism to reduce cancer progression25. 

In this study we aimed to investigate the role of progesterone as a direct inhibitor of the migratory 

capacities of endometrial cancer cells and its role in T-lymphocyte associated inhibition of 

progressive disease. 

Materials and methods:
Patient materials:
Primary endometrial carcinoma tissue from women with (n=9) and without (n=9) a known 

episode of recurrence or metastasis, was obtained from patients treated between 1997 and 2006 

in the University Hospital Gasthuisberg, Catholic University Leuven, Belgium. From this point on, 

non-recurrent disease is referred as non-progressive disease and recurrent/metastatic disease as 

progressive disease. Histopathological grading, staging and typing were determined according to 

the guidelines of the WHO and FIGO28, 29 and all tumors were revised by a pathologist experienced 

in gynaecopathology (PCE). Patients with an endometrioid type and a FIGO stage I endometrial 

carcinoma were included. Patients treated with radio- or chemotherapy prior to surgery, using 

hormonal steroids or with a second malignancy were excluded. Complete clinical history was 

obtained from all patients and follow-up was revised to date. Specimens were snap-frozen in liquid 

nitrogen for RNA-isolation or fixed in formalin and embedded in paraffin for immunohistochemistry 

(IHC). For microarray analysis, from 4 non-progressive and 4 progressive patients, snap frozen 

tumor specimens were used. These were chosen because they contained > 80% tumor tissue and 

good quality RNA could be isolated from them. For RT-PCR, 6 non-progressive and 6 progressive 

snap frozen patient tissue samples were used. For IHC 9 non-progressive and 9 progressive 

paraffin embedded patient tissue samples were available. Tissue and clinical data collection for the 

current research study was approved by the Medical Ethical Committee of the University Hospital 

Gasthuisberg and patients gave written informed consent for tissue collection and clinical data 

collection for all research purposes. 

Cell culture: 
For all cell line experiments, Ishikawa endometrial cancer cell lines stably transfected with PRA 

(IKPRA-1), PRB (IKPRB-1) or PRA and PRB (IKPRAB-36) (previously described by Smit-Koopman et 

al.30) were cultured and maintained in regular culture medium (DMEM/F12 Glutamax, Invitrogen, 

Carlsbad, CA, USA) in the presence of 5% Fetal Calf Serum (Invitrogen) supplemented with penicillin 

and streptomycin (Invitrogen). Neomycin (ICN Biomedicals, Costa Mesa, CA, USA) and hygromycin 

(Invitrogen) 1:200 were used to maintain selection. For all assays, cells were cultured in DMEM/F12 

Glutamax culture medium supplemented with penicillin and streptomycin (Invitrogen), containing 

5% charcoal stripped FCS (Invitrogen) with addition of hygromycin and neomycin.
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Immunohistochemistry:
IHC studies for CD4 (Sanbio BV, Uden, The Netherlands), CD8 (Dako, Glostrup, Denmark), 

FOXP3 (Natutech, Frankfurt am Main, Germany) and PRA+PRB (Progesterone Receptor Ab-8, 

Neomarkers, Fremont, CA, USA) were performed on 4 μm paraffin sections on Starfrost-slides 

(Knittel, Braunschweig, Germany). Prior to incubation with the primary antibody, the slides were 

deparaffinized in xylene and rehydrated to 70% ethanol. For CD4+ and CD8+ T-lymphocyte staining, 

slides were microwaved at 850 Watt in Tris/EDTA pH 9.0 for 15 min. Endogenous peroxidase activity 

was blocked with 30% H
2
O

2
 in PBS for 5 min. Primary antibodies were applied at respectively 

1:160 (CD4) and 1:200 (CD8) in Tris/HCl pH8.0 and incubated at room temperature for 30 min. 

After washing with Tris/HCl pH8.0, sections were incubated for 30 min. at room temperature 

with biotinylated secondary antibody (Dako, 1:400). After washing with Tris/HCL, the substrate 

Diaminobenzidine (Dako) was used for visualization of antigen–antibody reactivity. 

For FOXP3, slides were blocked (peroxidase deactivation) for 20 min at room temperature (RT) in 

30% H
2
O

2
 in methanol and boiled (antigen retrieval) in a citrate-buffer pH6.0 for 15 min. Primary 

antibody was applied at 1:25 and incubated at 4°C overnight. After washing with PBS, slides were 

incubated for 30 min. with a secondary rabbit-anti-rat antibody (DAKO, 1:150) and incubated for 30 

min. with AB-complex (Dako). The substrate Diaminobenzidine (Dako) was used for visualization 

of antigen–antibody reactivity. 

For PRA+PRB staining, endogenous peroxidase activity was blocked for 5 min at RT in a 10% H
2
O

2
 in 

methanol solution and the slides were microwaved (antigen retrieval) in a microwave-oven at 850 

Watt in 10nM citric acid buffer pH6.0 (DAKO) for 15 min. After cooling to room temperature slides 

were washed with PBS and blocked for 30 min with 0.3% BSA/PBS. Primary antibody was applied at 

1:50 and incubated at 4°C overnight. After washing with PBS, slides were incubated for 30 minutes 

with a biotinylated secondary goat-anti-mouse antibody (Dako, 1:400). After the second wash the 

slides were incubated for 30 min with AB-complex (Dako, 1:1:50). The substrate Diaminobenzidine 

(Dako) was used for visualization of reactivity. All slides were counterstained with hematoxylin for 

30s, then dehydrated and mounted. 

For Vimentin staining, a wound-healing assay was performed in 2-well chamber slides (Lab-Tek, 

Thermo Fisher Scientific, Waltham, MA, USA), in the presence and absence of 1 nM medroxy-

progesterone acetate (MPA), and terminated after 48 hr. The cells were washed three times with 

PBS, fixed with 4% formaldehyde/PBS for 15 minutes and permeabilized with 0,3% Triton100/

PBS for 5 minutes. After washing, endogenous peroxidase activity was blocked with 10% H2
O

2
 

in methanol for 5 minutes. Slides were washed and then blocked for 30 minutes with 0.3% BSA/

PBS. The anti-vimentin antibody (Invitrogen) was applied at 1:50 and the slides were incubated 

for 30 minutes at room temperature. After washing with PBS, slides were incubated with a GFP-

fluorescent goat-anti-mouse secondary antibody (Invitrogen) at 1:500. After washing, the slides 

were incubated for 5 minutes with DAPI Nucleic Acid Staining Solution (Invitrogen) for nuclear 

staining. After termination of the reaction with dH
2
O, the slides were mounted and fluorescent 

images were taken with the Axioplan 2 Imaging Fluorescent Microscope (Carl Zeiss AG, Jena, 

Germany).  
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Counting TILs:
After staining, the slides were scanned with the NDP slide scanner (Hamamatsu, Hamamatsu City, 

Japan) and CD4, CD8 and FOXP3 positive tumor infiltrating lymphocytes (TILs)  were counted 

using Image J software (National Institutes of Health, Bethesda, MD, USA). The number of TILs 

was determined inside the tumor (Intratumoral), at the tumor edge (Tumor Edge) and at the 

endometrial/myometrial border (EM). The complete tumor edge and endometrial/myometrial 

border were evaluated for the presence of TILs. The intratumoral count was performed by counting 

the TILs in 10 different randomly picked areas (1170μm x 932μm) chosen by an independent 

investigator, thereby eradicating observer bias. 

WST1 assay:
For the WST1 proliferation assay, IKPRA-1, IKPRB-1 and IKPRAB-36 cell lines were cultured in the 

absence or presence of MPA in a 96 well plate (Corning Costar, Cambridge, MA, USA). At time 0, the 

cells were incubated with cell proliferation reagent WST1 (Roche, Basel, Switzerland) for 3 hours at 

37 °C and absorbance was measured with the Microplate Reader (BIORAD, model 550, Hercules, 

CA, USA). After baseline measurement the cell lines were cultured in the presence and absence of 

1 nM MPA for 96 hours and at  96 hours, the WST1 assay was repeated. 

Migration assays:
For the wound-healing assay, IKPRA-1, IKPRB-1 and IKPRAB-36 cell lines were cultured in a 6-well 

plate (Corning Costar). After inducing the wound, cells were incubated with 1 nM MPA for 96 hours. 

Wound healing was verified every 24 hr by photography, and analyzed by measuring closure of 

the wound.  

For the modified Boydon assay, cells were seeded in the upper well of a modified Boydon chamber 

(Transwell, 8 μm pores, 24 mm inserts, 6 well plate, Corning Costar) at 2.5 x 105 cells per well in 

the presence or absence of 1nM MPA. Furthermore as a control, cells were cultured in a Boyden 

chamber in the presence or absence of 1nM MPA in combination with 100 nM of the anti-

progestagin Org31489 (Organon, Oss, The Netherlands). After 96 hours, cells that had migrated 

through the filter into the lower well or to the bottom of the insert were trypsinized and counted 

under the microscope.

Western blotting:
IKPRA-1, IKPRB-1, IKPRAB-36 and IKLV-8 cell lines were cultured in the absence or presence of 1 nM 

MPA for 96 hrs and subsequently lysed at 0°C in Cell Lysis Buffer (Cell Signaling Technology, Danvers, 

MA, USA) for 5 minutes. Then the cells were scraped, centrifuged at 14.000 rpm for 10 minutes and 

the supernatant was removed. The protein concentration was calculated using the Protein Assay Kit 

(Pierce, Thermo Scientific, Rockford, IL, USA) and of each sample 4.5 μg protein in 30 μL lysisbuffer 

+ BSA was loaded on a 10% SDS-PAGE gel. Western blotting was performed according to standard 

procedures. The blotting paper was blocked for 30 minutes at RT with Blocking Buffer (LI-COR 
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Biotechnology, Lincoln, NE, USA) and then incubated overnight at 4°C using rabbit polyclonal anti-

hFOXO1 antibody (1:5000, Bethyl Laboratories, Montgomery, TX, USA) in Blocking Buffer (LI-COR 

Biotechnology). Next, the blotting membrane was incubated with the secondary goat-anti-rabbit 

IgG (IRDye 800CW, 1:5000, LI-COR Biotechnology) for 30 minutes at RT and washed. As a loading 

control, the membrane was incubated for 30 minutes with the monoclonal anti-β-actin (1:1000, 

Sigma-Aldrich, Saint Louis, MO, USA), washed with PBS and incubated for 30 minutes with the 

secondary goat-anti-mouse IgG (IRDye 680CW, 1:5000, LI-COR Biotechnology). The specific protein 

bands were detected using the Odyssey Scanning System (LI-COR Biotechnology). 

RNA-isolation, gene expression analyses and quantitative real-time RT-PCR:
Patient tissue samples were sectioned (5 μm, cryostat) and every 10th section was HE stained and 

revised by the pathologist (PCE) to assess tumor load. Only sections containing >80% tumor were 

lysed in Trizol (Invitrogen) and sonified for 1 min. The PRA and PRB expressing Ishikawa cell line 

(IKPRAB-36) was cultured for 48h in the absence or presence of 1nM MPA (n = 3), placed on ice and 

lysed in Trizol (Invitrogen). 

Phase separation was accomplished with 0.2 ml chloroform and centrifugation for 15 min. The 

supernatant was transferred and isopropanol was added for RNA precipitation. The precipitated 

RNA was washed with 75% ethanol. All RNA was cleaned with the Rneasy Minelute cleanup kit 

(Qiagen, Venlo, The Netherlands). Amount and quality of the RNA was assessed by using the 

Nanodrop (Nanodrop, Wilmington, DE, USA) and Bio-analyzer (Aligent, Santa Clara, CA, USA).

RNA isolated from patient and cell line material was labeled according to Affymetrix labeling 

protocols and labeled RNA was applied to genome-wide expression arrays (Affymetrix U133plus2 

GeneChips containing 54,614 probe sets, representing approximately 47.000 transcripts (Affymetrix, 

Santa Clara, CA, USA)). Using RMA (Robust Multi-array Analysis31), normalization of raw data was 

performed to be able to produce gene lists and eventually calculate significantly regulated genes 

using SAM (Stanford University, Stanford, CA, USA32). Lists of SAM regulated genes (1.25 fold or 

more; delta-values resembling p<0.05) were loaded in the Ingenuity pathway assist software to 

assess the involvement of different biological pathways (Ingenuity, Redwood City, CA, USA). For the 

patient materials raw lists of regulated genes (1.25 fold or more) were loaded in Ingenuity.

All micro-array data is MIAME compliant and raw data has been deposited in the MIAME compliant 

GEO database under series: GSE29437 (consisting of GSE29435: cell line data; and GSE29436: 

patient data).

Genes for quantitative real-time RT-PCR were identified by micro-array analysis and pathway 

analysis. RNA was transcribed into cDNA with the use of the Affymetrix one-cycle cDNA synthesis 

kit (Affymetrix). For identified genes, primers were ordered and tested (a list of primers is included 

in Table S1). The housekeeping gene β-actin was used as a reference gene. RT-PCR was performed 

and analyzed using the CFX RT-PCR system (Bio-Rad, Veenendaal, The Netherlands).
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Statistics:
For the statistical analyses of the CD4+, CD8+ and FOXP3+ cell counts, modified Boyden chamber 

assay data, WST1 assay data and RT-PCR data, SPSS 15.0 was used (IBM, Armonk, NY, USA). For 

normal distributed data a t-test and for skewed data a Mann-Whitney U-test was performed to 

assess P-values. A P-value < 0.05 was considered statistically significant. To calculate the p-value of 

regulated pathways, Ingenuity pathway assist software uses a Fisher’s exact test.

Results:
Table 1: Clinical characteristics of the included patients.

  Non-progressive (n=9) Progressive  (n=9) P-value

  Patients 1-9 Patients 10-18  

Age - year Mean 68,5 68,6 p = 0,606

  Range 54-85 59-73  

BMI Mean 28,3 32 p = 0,284 

  Sd 6,1 4,7  

Histological 
type 

no. (%) Endometrioid
Mixed

9 (100)
0 (  --  )

8 (88,9)
1 (11,1)

 

FIGO stage no. (%) Ia 4 (44,4) 7 (77,8)  

  Ib 5 (55,6) 2 (22,2)  

Tumor grade no. (%) 1 2 (22,2) 5 (55,6)  

  2 3 (33,3) 1 (11,1)  

  3 4 (44,5) 3 (33,3)  

Current status no. (%) NED 8 (88,9) 3 (33,3)  

  DOD 1 (11,1) 6 (66,7)  

Recurrence no. (% No 9 (100) 0 (  --  )  

  Yes 0 (  --  ) 9 (100)  

Metastasis no. (%) No 9 (100) 5 (55,6)  

  Yes 0 (  --  ) 4 (44,4)  

Chemotherapy no. 0 0  

Radiotherapy no.   0 1  

Table 1 shows the characteristics of the patients included in the study. A p-value of < 0.05 was considered as 
statistically significant. BMI= body mass index; NED= no evidence of disease; DOD=death of disease.
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Patient characteristics (Table 1): 
Patients with (n=9) and without (n=9) progressive endometrial cancer were included. All included 

patients underwent primary total abdominal- or laparoscopically assisted vaginal hysterectomy 

and a bilateral salpingo-oophorectomy combined with lymph node removal. None of the 

women received chemotherapy and only one woman in the progressive disease group was 

given radiotherapy after surgery. Histopathological subtypes were endometrioid (n=17) and 

mixed endometrioid/mucinoid (n=1). Tumor grades were 1 (n=7), 2 (n=4) and 3 (n=7) and FIGO 

stages were Ia (n=11) and Ib (n=7). In the progressive disease group all 9 patients had one or 

more episodes of local recurrence and 4 patients developed one or multiple distant metastases. 

Recurrences were vaginal, pelvic or (retro)peritoneal, and metastatic sites were the lungs (n=3), 

liver (n=1), spleen (n=1) and brain (n=1). Clinical follow-up to date was available for all patients. 

In the non-progressive group 8 patients are currently free of disease and 1 patient died in follow-

up. In the progressive disease group 3 patients are free of disease and 6 patients died from their 

endometrial cancer related disease. Patient characteristics are detailed in Table 1.

Progesterone receptor status and detection of CD4+ T-helper, CD8+ cytotoxic 
T-cells and FOXP3+ regulatory T-cells in non- progressive and progressive disease
The presence of tumor infiltrating lymphocytes has been correlated to prolonged survival in 

endometrial cancer17, 18. Furthermore, loss of progesterone receptor (PR) expression in endometrial 

cancer has been found to be a risk factor for progressive disease33. In order to substantiate 

the relationship between intact PR signaling and the presence of infiltrating lymphocytes in 

non-progressive disease, immunohistochemical staining and, when appropriate, quantitative 

measurements were performed. 

As exemplified in Fig. 1A, in progressive disease immunohistochemical staining for CD4+, CD8+ 

and FOXP3+ T-lymphocytes seems reduced as compared to staining in non-progressive disease. 

Quantification of the number of CD4+, CD8+ and FOXP3+ T-lymphocytes in progressive disease 

indeed confirmed a lower number of positive cells located on the endometrial-myometrial 

border (Fig 1B, EM), at the edge of the tumor (Fig 1B, Tumor Edge) and within the tumor (Fig. 

1B, Intratumoral). Whether the reduced cell counts were significantly different between the non-

progressive and progressive endometrial cancer tissues is indicated in the Figure (Fig. 1B).

Furthermore, reviewing consecutive sections in non-progressive disease for expression of 

progesterone receptors (PR) revealed that the presence of CD4+ and CD8+ T-lymphocytes was 

positively correlated with the presence of PR staining (Fig. 1C and 1D). 

Genome-wide expression analyses of primary endometrial carcinoma tissue
To investigate whether the correlation between PR signaling and the presence of tumor infiltrating 

lymphocytes could indicate a causative relationship, a genome-wide mRNA expression analysis 

on snap-frozen primary endometrial carcinoma specimens from 4 patients without and 4 patients 

with progressive disease was performed. 
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Figure 1: Expression and histological distribution of PRA+PRB and CD4+, CD8+ and Foxp3+ 
T-lymphocytes in primary endometrial carcinoma specimens.
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A: Overview of immunohistochemical staining for CD4, CD8 and FOXP3 in primary endometrial cancer 
specimens in non-progressive disease (n=9) compared to progressive disease (n=9) (magnification 0,4x, inlay 
10x). Non-progressive disease shows pronounced staining, whereas progressive disease shows reduced 
staining. The scale-bar represents 10 mm. B: Quantification of CD4, CD8 and FOXP3 cell counts on the tumor 
edge (Tumor Edge), in the tumor (Intratumoral) and on the endometrial-myometrial border (EM border). 
*indicates a p-value <0.05 (Mann-Whitney U-test). C and D: Representative non-progressive (C) and progressive 
(D) patient tissues were stained for CD4, CD8 and PRA+PRB and show a positive correlation between the 
presence of TILs and the expression of PR. Magnification is 5x and the scale-bar represents 1 mm. Patients 6 and 
11 were both included in the micro-array analyses. Furthermore patient 11 had only recurrent disease, while 
patient 12 had recurrent and metastatic disease.
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At the individual gene level it was observed that a marked number of chemokines and cytokines 

were differentially regulated between non-progressive and progressive disease (Table S2). For 

example, the chemokines CCL21 (-1.5x), CXCL9 (-2.9x), CXCL10 (-2.1x) and CXCL14 (three data sets 

present: -33.0x; -20.5x; -6.4x, respectively) were all down regulated in progressive disease while the 

cytokines IL8 (2.0x; 5.7x; 9.5x) and IL32 (1.9x) were up-regulated in progressive disease (Table S2). 

Furthermore, earlier work from our group has indicated activation of Wnt/β catenin signaling in 

progressive disease25 and in agreement with this a number of Wnt/β-catenin inhibitory- and target 

genes were lost from progressive disease (DKK1, DKK4 and WIF1) (Table S2). 

Interestingly, a number of the above mentioned genes which were down-regulated in progressive 

disease, have been described in literature to be up-regulated by progesterone (CXCL1434 , DKK125, 

MMP735  and SFRP436). This is in agreement with the finding that PR expression (at protein and 

mRNA expression level (Fig. 1C and 1D and Table S2) is down regulated in progressive disease. 

Upon reviewing pathways regulated between non-progressive and progressive disease, 

regulation of a number of pathways involved in carcinogenesis and invasive disease and involved 

in immunosurveillance was found to be significantly regulated: Integrin Signaling, Molecular 

Mechanisms of Cancer, Antigen Presentation Pathway, Non-Small Cell Lung Cancer Signaling, IGF-

1 Signaling, Role of Tissue Factor in Cancer, Leukocyte Extravasation Signaling, ERK/MAPK Signaling, 

Colorectal Cancer Metastasis Signaling (which includes Wnt/β catenin signaling), FGF Signaling, 

FAK Signaling, etc (the complete list of regulated pathways and their consecutive p-values can be 

accessed from Table S3).

For a number of genes (CXCL14, DKK1, DKK4, PEG10 and WIF1) a quantitative real-time RT-PCR was 

performed in order to verify regulation (Fig. 2). 

Figure 2: RT-PCR results of genes of interest in the patient samples. 

p= 0.05 p= 0.065 p= 0.065

p= 0.004 p= 0.05

ProgressiveNon-progressive ProgressiveNon-progressive ProgressiveNon-progressive

ProgressiveNon-progressive ProgressiveNon-progressive

CXCL14 DKK1 DKK4

WIF1 PEG10

CXCL14, DKK1, DKK4, WIF1 and PEG10 were selected from the micro-array results and verified with real time 
RT-PCR. Significance was calculated using a Mann-Whitney U-test. A p-value of 0.05 was considered to be 
statistically significant.
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Figure 3: Progesterone induced inhibition of migration in a wound-healing assay. 
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IKPRA-1 (A), IKPRB-1 (B) and IKPRAB-36 (C) cells were cultured in the absence (white bullets) or presence (black 
bullets) of 1 nM MPA and used for a wound-healing assay (n = 3) and closure of the wound was measured as 
a percentage of total closure (100% means the wound is open, 0% means the wound has closed). D shows 
representative images of the process of wound-healing with in red the wound. E shows IF for nuclei (DAPI) and 
vimentin expression on the invasive front of the manually inflicted wound. In this figure, the wound was always 
situated on the right side.
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Effect of progesterone on migration of the Ishikawa endometrial cancer cell lines
In order to further corroborate the possible role for progesterone in regulating invasion, Ishikawa 

endometrial carcinoma cell lines stably transfected with PRA, PRB, or PRA and PRB30 were cultured in 

the presence or absence of MPA for varying periods of time and used in two different experiments 

measuring cell migration. To verify cell proliferation during the different experiments a WST1 

proliferation test was performed which showed that within the indicated timeframe no significant 

differences in proliferation could be detected between cells incubated with or without MPA.

In Figure 3, different Ishikawa cell lines were subjected to a wound-healing assay in the presence or 

absence of MPA (1nM) for up to 96h. It was observed that, in the stably PRB expressing (IKPRB-1) and 

PRA+PRB expressing (IKPRAB-36) Ishikawa cell lines, MPA inhibited closure of the manually inflicted 

wound (Fig. 3A-D). Furthermore, when we stained the edge of the wound for the mesenchymal 

marker vimentin, it was observed that in the presence of MPA vimentin expression was clearly 

reduced (Fig. 3E). Next to this detail on expression of vimentin, the overall vimentin levels were 

decreased in IKPRB-1 and IKPRAB-36 cell lines incubated with 1 nM MPA. It was also observed 

that in the stably PRA expressing (IKPRA-1) Ishikawa cell line, neither wound healing nor vimentin 

expression was affected by MPA (Fig. 3A and 3E).  

In Figure 4, another approach was used to study the migratory capacity of different Ishikawa 

cell lines in the presence or absence of progesterone. It was observed that for IKPRB-1 as well 

as IKPRAB-36 cells, migration in a modified Boyden chamber was inhibited in the presence of 

progesterone. Furthermore, for the IKPRA-1 cell line such a differential regulation of migration 

under the influence of MPA was not observed. 

Figure 4: Invasion of PR positive Ishikawa EC cell lines. 
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Genome-wide expression analysis of Ishikawa endometrial cancer cell line
To further document progesterone-induced inhibition of cellular migration and to investigate the 

involvement of progesterone signaling in T-lymphocyte infiltration, IKPRAB-36 cells were cultured 

for 48h in the presence or absence of 1nM MPA and used for genome-wide expression analysis. It 

was observed that 1616 genes were significantly regulated by progesterone in the IKPRAB-36 cell 

line (1029 up-regulated, 587 down-regulated, Table S4). 

Using Ingenuity pathway analysis of significantly regulated genes, the following pathways were 

observed to be regulated by progesterone (the complete list of regulated pathways and their 

consecutive p-values can be accessed from Table S5): IGF-1 signaling, Neuregulin signaling, TNFR1 

signaling, P13K signaling in B-lymphocytes, VDR/RXR signaling, Acute Phase Response signaling, 

Hepatic Fibrosis / Hepatic Stellate Cell activation, Molecular Mechanisms of Cancer (which includes 

Wnt/β-catenin and TGF-β signaling), TGF-β signaling, Axonal Guidance Signaling etc. Interestingly, 

it was noted that 41/67 pathways observed to be significantly regulated by progesterone in the 

cell line were also found to be significantly regulated between non-progressive and progressive 

disease (see Table S6). Furthermore, it was also noted that a number of pathways specifically 

involved in transition from a epithelial state to a mesenchymal state (EMT) was significantly 

regulated by progesterone and in the endometrial cancer samples: EGF signaling (p=0.029), IGF-1 

signaling (p=0.0000006), IL-6 signaling (0.013), ILK signaling (p=0.018), PDGF signaling (p=0.03), 

TGF-β (p=0.003), VEGF signaling (p=0.022) and Wnt/β-catenin signaling (p=0.036). In Figure 5A 

and B, MPA-induced gene regulation in Wnt/β-catenin and TGF-β signaling is shown. Next to this, 

a heat map confirmed a major overlap between gene regulation by MPA and differential gene 

expression between non-progressive and progressive disease (Table S7).

Regulation of the Wnt signaling pathway was further confirmed by showing progesterone 

induction of the Wnt inhibitor FOXO1 at the protein level (Fig. 5C).  

Discussion:
In general, patients with endometrial cancer have a good prognosis since early diagnosis is 

frequent and the disease has usually not spread beyond the uterus. However, the prognosis for 

recurrent or metastatic endometrial cancer remains poor and in order to improve therapy it is vital 

to understand the processes which inhibit and stimulate cancer progression. 

Infiltration of T-lymphocytes into the region of the lesion, for example, is an anticancer signal 

which helps to confine a tumor until cancer-induced T-cell death establishes tumor immune 

tolerance opening the road to progression. The transition of an epithelial phenotype towards a 

more mesenchymal phenotype is a subsequent step which leads to further progression to invasive 

disease. Central to this epithelial to mesenchymal transition (EMT) is the activation of important 

signaling pathways such as Wnt/β-catenin and TGF-β37. Activation of these pathways results in 

induction of Snail1/2 induced transcription, eventually causing degradation of the basement 

membrane by induction of matrix metalloproteinases, loss of epithelial markers such as E-cadherin 

and gain of mesenchymal markers such as vimentin37. 
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Figure 5: MPA induced regulation of TGF-β and Wnt/β-catenin signaling in the IKPRAB-36 cell line. 
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In the current investigations non-progressive and progressive primary endometrial cancer tissues 

were compared and it was observed that progression of disease was characterized by 1. Loss of 

progesterone signaling, 2. Loss of CD4, CD8 and FOXP3 T-lymphocytes driven immunosuppression 

and 3. Modulation of genes and pathways reminiscent of EMT. The aim of the present investigations 

was to assess the role of decreased progesterone signaling in progressive disease, and more 

particularly in relation to loss of immunosuppression and transition from an epithelial phenotype 

to a more invasive mesenchymal phenotype. 

	

Loss of PR expression correlates with loss of immunosupression and increased 
EMT in progressive disease
Measuring tumor infiltrating lymphocytes (TILs) in primary endometrial cancer tissues from non-

progressive and progressive disease indicated that in patients with non-progressive endometrial 

cancer, TILs were abundantly present. This is in agreement with studies by Kondratiev et al. in 

2004 18 and De Jong et al. in 200917, which showed that high levels of CD8+ T-lymphocytes were 

associated with improved disease free survival. Furthermore, the presence of several chemokines 

(CCL21, CXCL9, CXCL10, CXCL14, IL8 and IL32) indicated that there is an active process which 

directs TILs to the site of the lesion38. Interestingly, a number of these chemokines are up-regulated 

during the secretory phase of the menstrual cycle when progesterone levels are increased (CCL21: 

1.5-fold up, CXCL10: 1.3-fold up and CXCL14: 90-fold up;39). Furthermore, CXCL14 has also been 

described by other groups to be a progesterone induced gene in the endometrium involved in 
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chemo-attraction of uterine natural killer cells to the epithelial glands34. In summary, this indicates 

a putative role for progesterone signaling in attracting TILs in non-progressive endometrial cancer. 

In the patient tissues which were used in the current investigations, progesterone receptor 

expression was lost from progressive disease. The fact that hormonal control of a tissue is lost 

upon progressive malignant transformation is not a new finding and besides loss of PR expression 

in endometrial cancer20 this has also been described for other cancer types like breast cancer (loss 

of estrogen signaling40) and prostate cancer (loss of androgen signaling41) as well. 

According to previous work from our group, besides stimulating TILs, progesterone can inhibit 

Wnt/β-catenin signaling and loss of progesterone signaling may be involved in tumor onset 

and progression towards a more invasive disease21, 25, 42, 43. Interestingly, upon reviewing gene 

expression profiles obtained from progressive and non-progressive endometrial cancer, a number 

of inhibitors of Wnt/β-catenin signaling were indeed found to be down-regulated in progressive 

disease (DKK1, DKK4 and WIF1). These findings are in accordance with the hypothesis that 

Wnt/β-catenin signaling becomes activated through loss of PR signaling, thus accommodating 

progressive disease25. Down-regulation of the Wnt/β-catenin signaling inhibitor WIF1, in this 

respect, is of interest because down regulation of WIF-1 in prostate cancer cells was observed to 

be associated with an increased capacity for cell migration and invasion44. In keeping with this, in 

colorectal cancer, overexpression of activated nuclear β-catenin (the hallmark of activated Wnt/β-

catenin signaling) is located at the invasive front of the tumor45 and in colorectal cancer cell lines, 

activation of β-catenin directly induces EMT46.  

PEG10 was found to be significantly up regulated in progressive disease. Interestingly, PEG10 is 

a biomarker for progressive development and invasion of hepatocellular carcinoma, gallbladder 

adenocarcinoma and acute lymphoid leukemia and is found to be regulated by androgens47-50. 

Next to this, PEG10 and IL10 expression is activated by ligation of CCL10-CCR7 and CXCL13-CXCR5 

in B-cell acute lymphatic leukemia, and PEG10 contributes to the up-regulation of IL10, which 

can lead to impairment of the cytotoxicity of CD8+ T-lymphocytes51. It was observed that CXCL13 

(3,17x) and PEG10 (9,38x and 4,38x, p=0,05) were both up-regulated in progressive disease and 

possibly this up-regulation can contribute to impairment of the T-lymphocyte mediated anti-

tumor response in progressive disease. 

Upon reviewing other pathways which were differentially expressed between non-progressive 

and progressive endometrial cancer, significant up-regulation of a number of pathways involved 

in progression towards a more mesenchymal phenotype was noted (Table S3). IL8 signaling is one 

of those regulated pathways and IL8 itself was found to be up regulated 9.5-fold in progressive 

disease. These data are in line with literature showing that IL8 is a progesterone down-regulated 

gene52 and that high levels of IL8 correlate with endometrial metastatic disease53. 

MPA inhibits EMT in the Ishikawa endometrial cancer cell line.
In order to further substantiate the above finding that loss of progesterone signaling in progressive 

disease may play a role in diminished T-cell infiltration and induction of EMT, progesterone signaling 

in the well differentiated Ishikawa endometrial cancer cell line was investigated. 
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Although both PRA and PRB can activate transcription of target genes in response to progesterone, 

PRA and PRB have different transcriptional activities54. It has been documented that PRB is a 

stronger activator of transcription than PRA and PRA is thought to be a dominant repressor of 

PRB55. Next to this, the difference in transcriptional activity is further explained by the recruitment 

of different cofactors by PRA and PRB56, 57. 

In the present study, it was observed that culture of the IKPRB-1 and IKPRAB-36 endometrial cancer 

cell line, but not IKPRA-1, in the presence of MPA resulted in inhibition of migration and down 

regulation of the mesenchymal marker vimentin at the edge of a manually inflicted wound. 

These findings suggest that progesterone, in vitro, can inhibit cancer cell migration due to 

inhibition of EMT. Assessment of pathways involved in EMT showed progesterone modulated 

down regulation of EGF, IGF-1, IL-6, Integrin/ILK, PDGF, TGF-β, VEGF and Wnt/β-catenin signaling. 

Interestingly, all of these pathways were also observed to be modulated in progressive disease 

(Table S6). As shown, many of the observed altered signaling pathways in the patient samples 

(Table S3) were also significantly altered in the Ishikawa cell line, when incubated with or without 

progesterone (Table S5). In the Ishikawa culture obviously no tumor infiltrating lymphocytes 

are present and it is only progesterone signaling that contributes to these changes in signaling. 

Therefore we conclude that regulation of signaling pathways in patient samples can not only be 

attributed to the presence or absence of tumor infiltrating lymphocytes, but also to changes in 

progesterone receptor signaling. 

Progesterone inhibition of TGF-β signaling and induction of TGF-β signaling in progesterone 

insensitive progressive disease is an interesting finding because enhanced TGF-β signaling has been 

shown to be a very potent immunosuppressant signal used in transplantation medicine. Several 

agents inhibiting TGF-β signaling (anti-TGF-beta antibodies, small molecule inhibitors of TGF-beta, 

Smad inhibitors) are in the early stages of development aiming to alleviate immunosuppression 

during carcinogenesis58. Furthermore, neutralizing TGF-β resulted in a CD8+ T-lymphocyte anti-

tumor immune response in mouse models59. 

Enhanced TGF-β signaling is also of interest because it has been described as an important major 

driving force of EMT. Reviewing the pathway in more detail revealed for example up regulation of 

cell adhesion molecule L1CAM. For L1CAM, regulation of transcription by TGF-β signaling has been 

described60, but, interestingly, in colorectal cancer L1CAM has also been shown to be a target gene 

of Wnt/β-catenin signaling and expression of L1CAM was found to co-localize with β-catenin in 

the invasive front of the tumor61. Recently, for endometrial cancer similar observations have been 

described confirming promoter-binding sites for the Wnt/β-catenin inducing transcription factor 

LEF-1 and, interestingly, also for the EMT inducing transcription factors SNAI1 and SNAI260. 

In summary, intact progesterone signaling in non-progressive endometrial cancer seems to be an 

important factor stimulating immunosuppression and inhibiting transition from an epithelial to a 

more mesenchymal, more invasive phenotype. 
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Each year, approximately 225,000 women worldwide are diagnosed with epithelial ovarian cancer, 

accounting for 3,7% of all women-related cancers. Although this incidence may seem relatively 

low, with more than 140.000 deaths each year, it is considered the most lethal gynecological 

malignancy1. High mortality is caused by the fact that by the time a patient experiences symptoms, 

the disease is usually spread-out in the abdomen. Furthermore, since in most patients microscopic 

disease is present after debulking surgery, chemotherapy is a crucial part of the treatment and 

even though initially most patients respond well, eventually chemoresistant disease will develop2. 

As a result, in the Netherlands overall 5-year-survival of ovarian cancer patients is approximately 

41%, and in total almost 69% of patients die from the disease. Even more devastating, five-year 

survival from the most frequently diagnosed stage III or IV disease, is only a disappointing 28,6% 

and 14,1% respectively3. 

Delayed diagnosis is mainly caused by two important factors. Firstly, ovarian cancer shows late and 

unspecific symptoms such as fatigue, nausea, abdominal (pelvic) pain, bloating and feeling full, 

symptoms commonly present in many women and in many types of disease. Secondly, the origin 

of epithelial ovarian cancer is still debated amongst scientists and clinicians, making development 

of tools for early detection very difficult. 

For many decades the ovarian surface epithelium (OSE) was appointed as the origin of epithelial 

ovarian cancer2. In the OSE model, ovarian carcinogenesis is thought to be triggered by reactive 

oxygen species and cytokine induced genotoxic damage of the OSE with each ovulation. Damaged 

OSE cells would invaginate into the ovarian stroma, thus forming so called cortical inclusion cysts 

(CICs). Through a process called metaplasia these cysts eventually obtain a Müllerian phenotype 

and under influence of locally produced high hormone levels, these cells eventually become 

malignant. However, this model needs revision because inclusion cysts were found to be similarly 

represented in both high risk patients and controls and equally important, precursor lesions of 

ovarian cancer in the OSE were never found2, 4. This hypothesis also suggests that ovarian cancer 

is better differentiated then its tissue of origin which goes against our current opinion on the 

development of cancer. Furthermore, although sometimes found as a cystic mass within the 

ovarian cortex, an important subset of serous ovarian carcinomas is found at the ovarian surface, 

frequently associated with serous tubal and peritoneal carcinoma. Knowing this, in 1999, Dubeau 

suggested that, because of the resemblance of ovarian cancer to Müllerian duct derived tissues, 

the role of components of the Müllerian system should be considered in ovarian carcinogenesis5. 

This hypothesis initiated a shift in paradigm about ovarian cancer and triggered many researchers 

and clinicians to search for an alternative origin for ovarian cancer. In this review we will describe 

clinical and more basic research that has been performed to reveal the origin of ovarian cancer and 

unravel the process of early carcinogenesis.
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1. Paradigm shift: Identification of precursor lesions for serous 
ovarian cancer in the distal fallopian tube.
Triggered by reports on occult serous tumors in the fallopian tubes (oviducts) of women at risk 

for hereditary ovarian cancer (BRCA1 and 2 mutation carriers)6-8, Piek et al., 2001, investigated the 

fallopian tubes of woman undergoing prophylactic bilateral salpingo-oophorectomy (pBSO) for 

a BRCA gene mutation9. Here, it was found that 50% of patients harbored regions of epithelial 

dysplasia in the distal fallopian tube epithelium, characterized by a shift towards the secretory 

phenotype with complete loss of ciliated cells and an increase of proliferative capacity, while 

no aberrations were found within the OSE9. Based on this and on the limitations of the existing 

hypothesis on serous ovarian carcinogenesis, a new hypothesis appointed the distal fallopian tube 

epithelium as the origin of serous ovarian cancer. 

As more researchers investigated the fallopian tube epithelium as the site of origin for serous ovarian 

carcinoma, next to dysplasia, serous tubal intraepithelial carcinomas (STICs) were identified. Using 

a well thought-out protocol for examination of the fallopian tube, the SEE-FIM protocol, Meideros 

et al found STICs in 30,8% of women undergoing pBSO because of a BRCA gene mutation10. The 

presence of STICs was confirmed by many other research groups, although the high prevalence 

found by Medeiros et al. appears to be an exception and prevalence of STICs in pBSO patients 

usually varies between 1,0% and 12,0%11-17. STICs are characterized by intra-epithelial carcinoma in 

continuity with the normal mucosal epithelium, epithelial stratification, high nuclear to cytoplasmic 

ratio, nuclear atypia, loss of ciliated cells, high numbers of proliferating cells and mutations in the 

P53 tumor suppressor gene, characteristics also present in serous ovarian carcinoma10. STICs were 

also found to be present in the fallopian tube epithelium in as much as 45-60% of serous ovarian 

carcinoma patients17-19. These data suggest STICs to be a potential precursor lesion for serous 

ovarian cancer.

Next to malignant STICs, the presence of P53 signatures was described10. P53 signatures are regions 

that show strong p53-immunostaining but are non-proliferative and appear histopathologically 

benign10. The regions are composed of secretory cells that exhibit a serous phenotype and stain for 

γ-H2AX, a DNA-damage marker. P53 signatures occur both in BRCA gene mutation carriers and in 

controls, suggesting that the presence of these signatures is a normal phenomenon10, 17. However, 

P53 signatures were observed to be more frequently present in fallopian tubes containing STICs 

and were found in continuity with STICs17, 20 (Fig. 1). Furthermore, the presence of yH2AX staining 

and abnormal P53 expression indicates that the tubal epithelium has experienced genotoxic 

damage, which can potentially trigger malignant transformation. Therefore, P53 signatures can be 

assessed as “benign” precursors of STICs, and subsequent serous ovarian cancer.

In confirmation of the relation between P53 signatures and STICs, morphological intermediates 

between p53 signatures and STICs were shown and identified as ‘serous tubal intraepithelial 

lesions’ (STILs)20, 21. 
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Figure 1: Continuous tubal precursor lesions in a patient with concurrent serous ovarian carcinoma. 
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Figure 1: Continuous tubal precursor lesions in a patient with concurrent 
serous ovarian carcinoma. (A) In the �mbrial end of the fallopian tube 
of a serous ovarian carcinoma patient, P53 signatures (B), serous tubal 
intra-epithelial lesions (STILs)(C), serous tubal intra-epithelial 
carcinoma (STIC)(D) and tubal serous adenocarcinoma (E) are 
identi�ed in continuum.       

(A) In the fimbrial end of the fallopian tube of a serous ovarian carcinoma patient, P53 signatures (B), serous 
tubal intra-epithelial lesions (STILs)(C), serous tubal intra-epithelial carcinoma (STIC)(D) and tubal serous 
adenocarcinoma (E) are identified in continuum.
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Additionally, identical P53 mutations were found in P53 signatures, STICs and concurrent 

serous carcinomas, making the hypothesis that STICs develop from ‘precursor’ p53 signatures 

and eventually spread to the ovaries a feasible one20. The suggestion that STICs may eventually 

disseminate to the ovaries was further strengthened by the finding of signs of possible epithelial-

to-mesenchymal transition and the observation of P53 positive cells in abdominal washings 

of women with only a STIC at the fimbrial end of the distal oviduct11, 17. Furthermore, next to a 

shared P53 gene mutation, important molecular characteristics of serous ovarian cancer, such as 

expression of CA125, WT1, ER, PR, Vimentin, PAX2, PAX8 and HMGA2 were also found to be similar 

between STIC and concurrent ovarian cancer17, 22-24..

In summary, malignant tubal precursor lesions for serous ovarian cancer (STICs) were identified in 

patients with a hierarchy in prevalence from patients susceptible for serous ovarian cancer, to patients 

with a concurrent serous ovarian cancer.

2. Similarities between embryonic development of the 
Müllerian duct and the different ovarian cancer subtypes.
In the first paragraph we have indicated the fallopian tube as a possible site of origin of ovarian 

cancer, however, cells initiating the early malignant precursors of ovarian cancer in the fallopian 

tube are still unknown. In order to shed light on this issue, embryonic development will be 

discussed next. 

The female reproductive tract stems from the intermediate mesoderm, and phenotypic 

development of the reproductive tract starts in the seventh week of development. Gonadal 

development is initiated a few weeks earlier, in the fifth week of pregnancy, in the caudal part 

of the ventromedial surface of the mesonephros and becomes prominent as the gonadal ridge 

protruding into the coelomic cavity. The gonads develop from migrating somatic cells, derived 

from the mesonephros, the surrounding mesenchymal and coelomic epithelium, and primordial 

germ cells migrating from the endodermal layer on the posterior wall of the yolk sac. During early 

development, the gonads are indifferent and development into male or female phenotype is 

depended on the presence of the SRY-gene on the Y-chromosome25. Under the influence of this 

gene, testes are formed, but in the absence of SRY, a gene called DAX1 is continuously expressed, 

causing suppression of testis formation and allowing the gonads to develop into ovaries26. 

Development of the gonads into either the testes or ovaries, influences the development of the 

reproductive tract. The indifferent phase (bipotential stage) consists of the mesonephic (Wolffian) 

and the paramesonephic (Müllerian) ducts. If testes are present, Sertoli cells secrete testosterone 

and anti-Müllerian hormone (AMH), which causes the Wolffian duct to further develop and the 

Müllerian ducts to regress, respectively. If ovaries are present or if gonads are absent, testosterone 

and AMH are not secreted and the system differentiates into a female phenotype27.  
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Even though the Müllerian duct and ovarian surface epithelium are both derived from the 

embryonic coelomic epithelium, the Müllerian duct stems from a specific subset of cells in 

the anterior region of the coelomic epithelium adjacent to the mesonephros. Müllerian duct 

development is initiated under the influence of WNT4 secreted by the coelomic epithelium, by 

invagination of LIM1 and PAX2 expressing mesoepithelial cells creating a coelomic opening28-31. 

After invagination, the primitive Müllerian duct extends to and interacts with the still preexisting 

Wolffian duct. Under the influence of WNT9B expressing epithelial cells of the Wolffian duct, 

posterior elongation of the LIM1 expressing epithelial cells is initiated and the Müllerian duct 

extends towards the cloaca32. Final outgrowth of the Müllerian duct epithelium is completed 

by widespread proliferation along the developing duct and at its growing tip and both of the 

Müllerian ducts fuse to form the uterovaginal tube31, 33.

After initiation and posterior elongation of the Müllerian duct, posterior differentiation of the 

primitive Müllerian duct into vagina, cervix, uterus and oviducts depends on WNT7A expressed 

by oviductal and uterine epithelial cells and WNT5A expressed by uterine, cervical and vaginal 

mesenchymal cells34, 35. In addition to Wnt signaling, posterior differentiation of the Müllerian 

duct is also mediated by the actions of members of the Hox family of homeobox genes: HOXA9 is 

expressed in the developing tubal epithelium, HOXA10 in the developing uterus, HOXA11 in the 

lower uterine segment and cervix and HOXA13 in the upper part of the vagina36. Interestingly, 

maintenance of HOXA10 and HOXA11 expression is under the influence of WNT5A and WNT7A34, 35. 

Due to their involvement in Müllerian duct initiation and development, the role of WNT signaling, 

HOX genes and PAX2 in ovarian carcinogenesis was studied. Although mainly investigated in 

endometrioid ovarian cancer, WNT signaling is an important factor in progression, survival and 

chemoresistance of serous ovarian cancer. High levels of WNT5A expression in serous ovarian 

cancer predict poor overall and progression-free survival37. Furthermore, WNT5A overexpression, 

induced in the human ovarian cancer cell line SKOV3, causes decreased chemosensitivity, which 

is in agreement with the earlier observed increased WNT5A expression in ovarian cancer cells 

with acquired oxaliplatin resistance37, 38. In contrast, WNT5A was also found to suppress growth of 

ovarian cancer cell lines by triggering cellular senescence39. Overexpression of WNT7A was found 

in invasive serous ovarian carcinoma and overexpression of WNT7A in OVCAR-3 and SKOV3 ovarian 

cancer cells promotes proliferation, migration and invasion40. Interestingly, WNT7A expression in 

adult life becomes restricted to epithelial cells of the oviduct and uterine luminal epithelium, but 

not in the ovary and the OSE35, 40, 41. Furthermore, WNT9B is highly expressed in ovarian cancer, but 

not the OSE42.

Next to their function in Müllerian duct differentiation, the special restricted expression of HOX 

genes continues to be present throughout adult life and is thought to be crucial for maintaining 

the epithelial plasticity necessary for functional changes which occur during menstruation and 

ovulation43. This finding is of interest, because the major subtypes of epithelial ovarian cancer are 
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distinguished by their morphological resemblance to the specialized epithelia of the reproductive 

tract that have been derived from the Müllerian duct. Serous ovarian cancer is typically papillary or 

cystic and resembles the epithelium of the fallopian tube. In contrast, endometrioid and mucinous 

ovarian cancer resemble the endometrial-like glands and endocervical epithelium, respectively2. 

Because of this resemblance and because the expression of HOX genes is confined to specific 

parts of the Müllerian derived epithelium, the expression of HOX genes in epithelial ovarian cancer 

was investigated.  Interestingly, overexpression of specifically HOXA9, HOXA10, HOXA11 was shown 

in serous, endometrioid and mucinous ovarian carcinoma, respectively44. These findings are of 

interest because this expression pattern coincides with the physiological expression pattern of 

these HOX genes: HOXA9 is expressed in the fallopian tube, HOXA10 in the endometrium and 

HOXA11 in the endocervix. Importantly, HOXA9, HOXA10 and HOXA11 are not expressed in the 

ovarian surface epithelium44. 

Finally, PAX2 is coexpressed with LIM1 by cells in the earliest anlage of the Müllerian duct (Kobayashi 

2003). Interestingly, PAX2 was found to be expressed in ovarian papillary serous carcinomas, the 

epithelium of the fallopian tube, endometrium and endocervix, but not in the OSE, ovarian surface 

epithelium derived inclusion cysts and the ovary itself23. In contrast, Ozcan et al., 2001, did show 

focal PAX2 expression in the OSE, next to high expression within the fallopian tube and epithelial 

ovarian cancer45. However, since PAX2 expressing cells initiate Müllerian duct invagination from the 

coelomic epithelium and number of rudimentary Müllerian cells in proximity of this area might 

cause focal OSE expression. 

In summary, many similarities and shared characteristics have been identified between early 

development of the various Müllerian duct derived organs and the different epithelial ovarian cancer 

subtypes. 

 

3. The identification of stem cells that could be involved in 
initiation of ovarian cancer.
There is tentative evidence to postulate that at least in a number of cases a genetically changed 

stem cell is the initiating event in malignant transformation46, 47. Therefore, investigations into the 

identification of stem cells that could be involved in ovarian carcinogenesis are important. 

In 2008, using doxycycline inducible histone2B-GFP and BrdU pulse-chase experiments, Szotek 

et al., identified a population of long term label-retaining cells (3 months of chase) in the ovarian 

surface epithelium of adult mice as potential stem or progenitor cells48. Label-retaining cells 

were slow cycling and showed asymmetric division. Furthermore, label-retaining cells showed a 

functional proliferative response to estrogen exposure in vivo and enhanced colony formation in 

vitro. However, no evidence of self-renewal, a main characteristic of stem cells, was found 46. Next 

to this, the capacity of identified label retaining cells upon mutation to induce ovarian cancer was 
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not addressed and other regions surrounding the ovaries, such as the fallopian tube, as a putative 

source of stem or progenitor cells were not assessed. 

In a subsequent effort to investigate the origin of ovarian cancer in mice, a localized pool of stem-

like cells was found to be clustered in the ovarian hilum region, the transitional area which forms the 

junction between the OSE, mesothelial peritoneum and tubal epithelium49. Cells were identified 

using BrdU pulse chase experiments and immunohistochemical analysis for Aldh1. Microdisected 

ovarian hilum cells were slow cycling, formed larger colonies, developed more spheroids and 

could be propagated longer as compared to normal OSE cells. Furthermore, using FACsorting, 

Aldh1 expressing OSE cells were isolated and were shown to express stem cell markers Aldh1, 

CD133, Ck6b, Lgr5 and Lef1. In order assess the malignant potential of ovarian hilum cells, adenoviral 

delivery of C-recombinase in the ovarian bursa of Trp53loxp/loxp; Rb1loxp/loxp animals was accomplished, 

resulting in early neoplastic lesions in the hilum. Additionally, Trp53 and Rb1-deficient primary 

cultured hilum and OSE cells were transplanted intraperitoneally. Upon transplantation, 7/8 mice 

injected with hilum cells developed high grade serous adenocarcinomas with metastasis to the 

lung, while only 1/12 mice injected with OSE cells developed a non-metastatic carcinoma. The 

results of this study led to the postulation that the transitional zone between OSE, mesothelial 

peritoneum and tubal epithelium, harbors a stem cell niche, which, when it becomes mutated, has 

the potential to give rise to serous ovarian cancer. 

Also using the doxycycline inducible histone2B-GFP model, Wang et al (2012) identified a 

population of long term label-retaining cells (12 weeks of chase) in the distal and fimbrial part 

of the fallopian tube50. These cells could, after FACsorting, form spheroids capable of self-renewal 

and upon serum stimulation (differentiation) these spheroids formed glandular structures, which 

expressed markers of mature Müllerian epithelial cells (ERα, PRab, Paep and Cd44). In addition, in 

this study, no label-retaining cells were found to be present within the OSE, while label-retaining 

cells were present in the distal oviduct up to 47 weeks of chase. The presence of these stem-like cells 

in the distal and fimbrial part of the fallopian tube is of interest, because their location coincides 

with the earliest anlage of the Müllerian duct during embryonic development. Interestingly, the 

distal fallopian tube contains a segment that is in continuity with the ovarian hilum and pelvic 

mesothelium, forming a Müllerian-mesothelial (mesoepihtelial) junction. Therefore the stem-like 

cells identified in the ovarian hilum might be interrelated with stem-like cells identified in the distal 

oviduct (Flesken-Nikitin, Wang). In addition to this, 80-93% of tubal precursors of ovarian cancer are 

identified within the distal oviduct17, 19. 

Because endometrial intra-epithelial carcinoma (EIC) is also hypothesized to be a precursor lesion 

of serous ovarian cancer, a potential role for endometrial stem cells in ovarian carcinogenesis was 

proposed51. The first evidence of an endometrial stem cell was obtained by plating out purified 

single cell suspensions of endometrial epithelial and stromal cells, which showed 0,22% of 

epithelial and 1,25% of stromal cells to be able to form large colonies, which could be replated 

several times52. This clonal capacity was confirmed by a number of research groups53-55 and when 
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grown in Matrigel, Gargett et al. (2009) demonstrated that a single colony forming epithelial 

cell was able to form large cytokeratin expressing gland-like structures56. Furthermore, putative 

endometrial stromal stem cells were shown to be able to differentiate in multiple mesenchymal 

lineages and even into functional epithelium56-59. However, in all studies, a single and specific 

stem cell was not identified nor isolated. Using BrdU labeling, Chan et al., (2006) showed label 

retaining cells (LRCs) to be present in the luminal epithelium at 8 weeks of chase60 and in the 

stromal endometrial-myometrial junction at 12 weeks of chase. The presence of BrdU-LRCs in both 

the endometrial epithelium and stroma, was confirmed by Cervelló et al. (2007) and here, LRCs 

were found to co-localize with stem cell markers c-KIT and POU5F1/OCT-461. Unfortunately, in 

both studies, stem cell characteristics of the LRCs, such as self-renewal, spheroid forming capacity 

and growth in recipient animals were not addressed. Wang et al. (2012) confirmed the presence 

of LRCs in the endometrium, using doxycycline H2B-GPF pulse-chase labeling, and found LRCs 

to be present up until 4 and 12 weeks in epithelial and stromal endometrial cells respectively50. 

Interestingly, as described earlier, LRCs were identified in the distal fallopian tube up to 1 year after 

pulse and showed stem-like characteristics.  Other investigations on the presence of endometrial 

stem cells showed that, donor-derived bone marrow cells were identified in the endometrium 

of patients receiving bone marrow transplantation62. Lethally irradiated female mice, in which 

LacZ-expressing bone marrow cells of a male donor were identified in the epithelium of the 

endometrium and peritoneal endometriosis, further confirmed the potential of bone marrow cells 

as stem cells of the endometrium63. 

Summarizing, progenitor or stem-like cells were identified in the OSE, ovarian hilum, fallopian tube and 

endometrium. However, their true potential in ovarian cancer initiation is still to be determined.

4. Ovarian cancer initiation in mouse models.
Ovarian cancer cell lines and xenografts have been used extensively over the last decades and 

proved effective to investigate chemoresistance, molecular mechanisms of action and biological 

behavior of epithelial ovarian cancer64. However, cell lines and xenograft models have their 

limitation and animal models mimicking initiation, early development and metastatic spread of 

epithelial ovarian cancer are rare. Therefore, models in which genes are conditionally knocked in or 

out have been developed for epithelial ovarian cancer. Below we will discuss the most important 

models and review what data are presented that add to the discussion on the origin of ovarian 

cancer. 

Adenoviral delivery of C-recombinase (Ad-Cre) has been extensively used as a tool to induce 

recombination in tissues inside the bursal pouch surrounding the ovary and distal oviduct in 

mice. In order to assess genes frequently involved in ovarian carcinogenesis, bursal injection of 

adenoviral-Cre (AdCMV-Cre) in P53lox/lox;Rb1lox/lox animals was used65. Recombination of P53 and Rb1 

resulted in ovarian epithelial cancer in 97% of animals, with ascites (24%) and metastasis spread 

to the contralateral ovary (15%), lung (18%) and liver (6%). Control experiments indicated that Ad-
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Cre administration resulted in recombinase activity in the OSE cells. Furthermore, OSE cells with 

conditional deletions of P53 and Rb1 displayed an increased proliferative activity65. Importantly, 

injection of Ad-Cre into the bursal cavity also delivers Ad-Cre to the fimbrial and distal part of the 

oviduct. However, possible recombination and involvement of Müllerian duct derived tissues as an 

origin of epithelial ovarian cancer in this study was not discussed. 

Simultaneously, Dinulescu et al. (2005) used bursal delivered Ad-Cre to induce recombination 

in Ptenlox/lox;lsl-KrasG12D/+ animals and found rapidly developing, widely metastatic, endometrioid 

ovarian adenocarcinomas in 100% of animals, only 7 weeks after delivery66. Interestingly, animals 

which were recombined for KrasG12D alone, only showed ovarian endometriosis, which is associated 

with endometrioid ovarian carcinogenesis66-68. Importantly, Cre-activity in these animals was 

confirmed in OSE cells, but was also documented in the bursa and the distal oviduct. 

Wu et al (2007) reviewed 72 ovarian endometrioid adenocarcinoma tissues and observed defects 

in the PI3K/Pten and Wnt/β-catenin signaling pathways in a subset of these tumors69. Based 

on this,  Ad-Cre injection into the bursa was used to recombine Apclox/lox and Ptenlox/lox. Here, 

adenocarcinomas developed which were morphologically similar to human ovarian endometrioid 

adenocarcinoma in 100% of animals. Furthermore, 76% of mice developed hemorrhagic ascites 

and 21% developed overt peritoneal dissemination69. Even though whole organ staining for 

Adenoviral-Cre revealed recombinase activity in OSE cells, the authors were inconclusive for Cre 

activity in the distal oviduct. 

Using Adenoviral-GFP and Adenoviral-LacZ as controls, Clark-Knowles et al. (2007) showed infection 

to be seemingly confined to the OSE cells (no expression in ovarian fatpad, oviduct and uterus)70. 

Ad-Cre delivery to Brca1lox/lox animals resulted in increased accumulation of premalignant changes 

(hyperplasia, a 4-fold increase in epithelial invaginations and inclusion cysts), while Ad-Cre delivery 

to P53lox/lox animals resulted in tumors in 100% of animals and tumor progression was accelerated 

in P53lox/lox;Brca1lox/lox mice70. Interestingly, the induced tumors were classified as leiomyosarcomas, 

which the authors themselves suggested to have arisen from the ovarian bursa and not from OSE 

cells or distal oviduct. Kim at al., 2010 performed similar experiments using Adenoviral-Cre, and 

was able to show increased proliferation of OSE from Brca1lox/lox and Brca2lox/lox;P53lox/lox recombined 

mice71. However and surprisingly, no evidence of involvement of recombined Brca1lox/lox, Brca2lox/lox 

or P53lox/lox in ovarian carcinogenesis was shown.  

Finally, Laviolett et al. (2010) induced recombination of tgCAG-LS-Tag (resulting in a functional 

SV40 Tag) by bursal injection of Ad-Cre and these mice developed poorly differentiated ovarian 

tumors, with metastasis in the pancreas and spleen72. However, the distal oviduct and fimbriae 

were not assessed in these investigations.

Even though in many models epithelial ovarian cancer growth was established, adenoviral-Cre 

injections into the ovarian bursa will not only recombine the affected (loxed) genes in the OSE 

cells, but will also cause Cre-meditated recombination in cells of the fimbriae and distal oviduct. 

Therefore, using this technique it is not possible to discriminate between OSE cells and cells 

located in the fimbrial region of the distal oviduct as the origin of ovarian carcinogenesis. 
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In order to use a more targeted approach, Connolly et al., 2003, used the AmhR2 (MISIIR) promoter 

to drive SV40 TAg73. Here, poorly differentiated serous ovarian cancer was observed in 50% of 

all animals. Next to these ovarian tumors, intraperitoneal ascites and peritoneal implants were 

observed. Immunohistological staining to detect SV40-TAg revealed expression in OSE cells, but 

also in patches of epithelial cells in the oviduct and uterus. Furthermore, using PCR, AmhR2 was 

shown to be expressed in the ovary as well at low levels in the oviduct and uterus. In contrast, 

transgenic mice in which the AmhR2 promoter was used to drive PIK3CA expression and activity (a 

much weaker oncogenic signal), only showed hyperplasia of the OSE74.

In mice in which AmhR2-Cre was used to drive recombination of Ptenlox/lox;lsl-KrasG12D, low-grade 

ovarian serous papillary adenocarcinomas were formed in 100% of mice75, 76. Interestingly, isolated 

recombined OSE cells displayed a temporal change in expression of Müllerian epithelial markers, 

grew in soft agar and developed ectopic invasive tumors in recipient mice76. The Müllerian duct as 

a possible site of origin of ovarian cancer, however, was neither reviewed, nor discussed in relation 

to these experiments75, 76.  

Using AmhR2-Cre, Dicer, an essential gene for micro RNA synthesis, and Pten, a key tumor suppressor 

inhibiting the PI3K pathway were conditionally deleted77. As a result, high-grade serous carcinomas 

arising from the fallopian tube with spread to the ovary and metastasis throughout the abdominal 

cavity were identified in 100% of mice and closely resembled human serous cancer. Interestingly, 

removal of the oviducts at an early age prevented cancer formation. However, it is important to 

note that so far there has not been a role for Dicer in ovarian carcinogenesis and, furthermore, 

using this model, cancer initiation seems to start from stromal cells of the oviduct while in humans 

tubal precursors of serous ovarian cancer are epithelial. 

Tanwar et al., 2012 combined AmhR2-Cre with Apclox/lox and observed development of epithelial 

inclusion cysts and, in much older animals, high grade ovarian endometrioid adenocarcinoma78. 

The finding of endometrioid ovarian cancer is in agreement with observations that in this subtype, 

Wnt/β-catenin signaling is often activated79. 

In an effort to prove the Müllerian origin of endometrioid ovarian cancer, Pgr-Cre induced 

conditional recombination of Apclox/lox in the oviduct was used80. Interestingly, in this model the 

OSE cells are not affected. As described before, Wnt signaling is an important oncologic factor 

in human endometrioid ovarian cancer and APC mutations are frequently found79. Interestingly, 

in this model, tubal intra-epithelial carcinomas developed, starting from 10 weeks of age, which 

show high resemblance to human tubal intra-epithelial carcinomas. With age, these TICs were 

shown to evolve and developed into endometrioid tubal and ovarian tumors resembling human 

endometrioid tubal and ovarian cancer growth. Next to these tubal and ovarian tumors, loco-

regional spread to the utero-ovarian ligament was shown80.

Additionally models, in which not the OSE cells or Müllerian duct but the granulosa cells were 

targeted, also need to be discussed81-83. Chen et al., described early alterations in OSE cells in 

FshR-knockout animals, eventually resulting in serous papillary adenoma of the ovaries81. Another 
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model used FshR-Cre to target Brca1lox/lox in granulosa cells of the ovary. In these animals, grossly 

visible serous cystadenomas were attached to the ovary, within the wall of the uterus, or on the 

external surface of the uterine horns. Interestingly, in these cystadenomas the Brca1 gene was 

not recombined indicating that factors secreted by the granulosa cells must have influenced 

tumorigenesis indirectly82. The finding that the uterine horns are also involved next to the ovaries 

is in line with the finding of tubal intraepithelial lesions in asymptomatic carriers of BRCA1 

mutations10, 15, 16 and seems to point to an extraovarian origin of ovarian cancer. 

In summary, some mouse models point towards the OSE cells and others to Müllerian duct derived 

tissues as the origin of epithelial ovarian cancer, but in essence none of these models are specific enough 

to provide a definitive answer to the question whether it are mutated or modified OSE cells, or cells from 

Müllerian origin that develop into the earliest malignant precursors of ovarian cancer. 

5. The secondary Müllerian system as a source of ovarian 
carcinogenesis.
In 1999, Dubeau suggested the secondary Müllerian system as a possible origin of epithelial ovarian 

cancer. The secondary Müllerian system consists of microscopic structures lined with Müllerian 

epithelium, commonly present in the paratubal and paraovarian areas, the ovarian medulla near 

the hilum and the deeper portions of the ovarian cortex84. These structures might be rudimentary 

remnants from the developing Müllerian duct but also include endosalphyngiosis (cysts lined with 

tubal epthelium), endocervicosis (cysts lined with endocervical epithelium) and endometriosis 

(functional endometrial-like tissue outside the uterus)5, 84. Interestingly, these structures can 

develop into large extra- or intra-ovarian cysts which share morphological characteristics with 

serous, mucinous or endometrioid ovarian cancer.  

Endometriosis affects 5- 10% of woman of reproductive age and is therefore considered as a major 

gynecological health problem85. As in ovarian cancer, the origin of endometriosis is not clear but 

the most prevalent hypothesis is that endometrial stem cells appear in the abdominal cavity where 

they attach and migrate into surrounding tissues and organs86. Interestingly, endometrioid ovarian 

cancer also resembles the endometrium and recent investigations have indicated an association 

between endometriosis and endometrioid ovarian cancer67, 68. A strong increased risk for ovarian 

malignancies in women with endometriosis was identified in a large pooled case-control study 

where a significant association was found between history of self-reported endometriosis and 

clear-cell, low-grade serous and endometrioid ovarian cancer67. Furthermore, similar gene 

mutations in ARID1a in endometrioid ovarian cancer and neighboring atypical endometriosis 

were found, indicating a genetical association between the two diseases68. The epidemiological 

relationship between endometriosis and ovarian cancer was further confirmed by Buis et al., 

2013, who found an increased ovarian cancer risk in subfertile women with surgically diagnosed 

endometrioisis (REF).  In addition to endometriosis, serous borderline tumors also were found in 

foci of endosalpingiosis in pelvic and para-aortic lymph nodes87. 



Chapter 480 

Furthermore, it was suggested that the rete ovarii, which consist of coiled microscopic ducts near 

the ovarian hilum, are part of the secondary Müllerian system. Interestingly, in some rodents, 

although rarely diagnosed, epithelial ovarian cancer seems to naturally arise from a dilatation of 

these rete ovarii88, 89. 

These findings are of interest because stem-like cells were identified in the ovarian hilum 

and therefore an association with lesions located in the ovarian hilum, such as rete ovarri, 

endosalpingiosis and endometriosis may be hypothesized49. 

Even though most research is focused on either the fallopian tube or OSE as the origin of ovarian cancer, 

important findings appoint a role for other Müllerian duct derived structures such as the secondary 

Müllerian system in epithelial ovarian carcinogenesis. 

6. Not the OSE but tissues derived from the Müllerian duct are 
the origin of epithelial ovarian cancer: conclusions and future 
perspectives
Cortical inclusion cysts (CICs), derived from either the Müllerian duct or OSE, have been appointed 

as the origin of epithelial ovarian cancer5, 90-92. Even though some CICs appear mesothelial (OSE), 

most CICs resemble a Müllerian morphology4, 93-95. The OSE hypothesis corrects for this Müllerian 

appearance, by stating that stem or progenitor cells from the OSE acquire genetic modifications 

and regain Müllerian characteristics through metaplasia90. Ovarian cancer is induced by additional 

genetic disturbances and stimuli from the surrounding microenvironment, leading to dysplasia 

of the metaplastic CIC and culminating as full-scale epithelial ovarian cancer. If we, however, 

summarize all supporting and opposing arguments for either the OSE or the Müllerian duct as the 

origin of ovarian cancer the balance tips towards a Müllerian origin of ovarian cancer.

Scientific evidence supporting an OSE origin of ovarian cancer:

-	 OSE lined CICs have been described4, 90, 93, 95, 

-	 OSE cells and the Müllerian duct are both derived from a shared embryonic precursor, 

indicating that metaplasia to Müllerian duct like cells may be possible, 

-	 From all cells present in the ovary, OSE cells are the only cell type for which metaplasia is 

feasible,

-	 Stem-like cell characteristics have been described for OSE cells48, 96, 97,

-	 Atypical OSE cells were found directly adjacent serous ovarian cancer98,

-	 Isolated mutated OSE cells, when transplanted in recipient mice, can show serous ovarian 

cancer growth49. 

Scientific evidence supporting a Müllerian duct origin of ovarian cancer:

-	 The three most important epithelial ovarian cancer subtypes represent Müllerian duct derived 

tissues92,

-	 Genes important for Müllerian duct development and maintenance are highly expressed in 

ovarian cancer, but are not expressed in the OSE23, 37-42, 44, 45, 79,
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-	 Stem-like cells forming spheroids and capable of self-renewal were identified in the distal 

oviduct50, 60, 61,

-	 Müllerian duct derived structures are found in the ovarian hilum and are possibly associated 

with stem or progenitor cells found in the ovarian hilum49, 84,  

-	 Mouse models in which the Müllerian duct is mutated, but not the OSE, show serous and 

endometrioid ovarian cancer77, 80,

-	 Components of the secondary Müllerian system, such as endometriosis, endosalpingiosis, 

endocervicosis and rete ovarii, are found in the ovary and are associated with epithelial ovarian 

cancer5, 67, 68, 84, 87-89,

-	 Most CICs are lined with Müllerian epithelium, and P53 expressing, dysplastic cells are found 

within CICs lined with Müllerian epithelium94,

-	 Early benign (P53 signatures), intermediate (STILs) and clearly malignant (STICs) precursors 

of high grade serous ovarian cancer (all lesions of the distal oviduct) were identified with a 

hierarchy in prevalence from control, to patients at risk, to patients with a concurrent serous 

ovarian cancer9-21.

-	 STICs are only identified in patients at risk or with a concurrent serous ovarian cancer9-21,

-	 P53 signatures, STILs and STICs share identical P53 mutations with the concurrent serous 

ovarian cancer20,

-	 In patients with pelvic serous carcinoma, which is indistinguishable from serous ovarian 

carcinoma, STICs are found but no ovarian lesions19. Furthermore, STICs and concurrent pelvic 

serous carcinoma display similar P53 mutations. 

 

Upon reviewing these data, we appoint two possible mechanisms in which epithelial ovarian 

cancer is initiated based on the histopathological model of Kurman and Shih(2008)99. 

First, since type I ovarian tumors are typically ovarian confined and develop from borderline 

precursors, we hypothesize that these are derived from the oviduct or components of the 

secondary Müllerian system, such as ovarian endosalpingiosis or endometriosis, which over time 

have acquired further genetical disturbances due to ovulation-induced distress or stimuli from the 

ovarian stroma.

Second, type II high grade serous ovarian carcinomas are mainly confined to the ovary and are 

characterized by mutation of TP53. Therefore we hypothesize that ovulation-induced damage to 

the distal fallopian tube epithelium results in areas mutated for TP53 (P53 signatures). Upon further 

genetic damage and increased proliferation, P53 signatures develop into STILs, which, progress 

to become STICs. When transformed, malignant STIC cells can exfoliate and, in addition to other 

peritoneal sites, implant on or in the ovary. As a result, type II high grade serous ovarian cancer 

develops. 

In conclusion, there is abundant evidence that not the OSE but the Müllerian duct should be 

appointed as the origin of epithelial ovarian cancer and research aiming to unravel the earliest 

carcinogenic changes in Müllerian derived tissues is key to facilitate early detection and targeted 

therapy for ovarian cancer. 
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In this thesis, we describe our investigation on the mechanisms involved in the initiation and 

progression of Müllerian duct derived malignancies. The research was focused on the role of 

progesterone signaling in the progression of endometrial cancer (chapter 2, 3) and on the origin of 

epithelial ovarian cancer (chapter 4, 5 and 6). For this, 3 aims were described: 

1.	 What is the effect of progesterone receptor signaling on the tumor specific immune response, 

Epithelial-Mesenchymal Transition (EMT) and recurrence in endometrial cancer?

2.	 What is the effect of activation of WNT/β-catenin signaling on Müllerian duct derived tissues?

3.	 Are Müllerian duct derived tissues the origin of epithelial ovarian cancer, can we initiate ovarian 

cancer from these tissues and can we identify and characterize tubal precursor lesions of 

serous ovarian carcinoma in controls, patients susceptible for and patients with serous ovarian 

cancer? 

Progesterone signaling stimulates infiltration of T-lymphocytes 
and inhibits epithelial-to-mesenchymal transition in 
endometrial cancer.
In general, patients with endometrial cancer have a good prognosis due to the fact that the 

disease is usually diagnosed at an early stage, in which it has not spread beyond the uterus1. 

However, if there is recurrent or metastatic disease, the situation is very different and progressive 

disease has a very poor prognosis accounting for 74.000 deaths worldwide each year2. Therefore, 

in order to improve therapy it is vital to understand the processes that inhibit and stimulate 

endometrial cancer progression. The research performed in chapter 3 aimed to investigate two 

mechanisms involved in metastatic spread of endometrial cancer: tumor infiltrating lymphocytes 

and progesterone induced inhibition of EMT. For this, primary endometrial cancer specimens from 

progressive and non-progressive endometrial cancer patients were assessed for the presence of 

CD4+ (helper), CD8+ (cytotoxic) and FOXP3+ (regulatory) T-lymphocytes and PR expression. As 

expected3-5, patients with progressive (recurrent and/or metastatic) disease, showed a significant 

decrease in tumor infiltrating lymphocytes coinciding with loss of PR expression. Conformingly, 

gene expression analysis of frozen tumor samples of these patients, showed significant regulation 

of pathways involved in immunesurveillance, in addition to pathways involved in EMT and 

metastasis. Interestingly, inhibitors of WNT/β-catenin signaling, DKK1, DKK4 and WIF1, were down 

regulated in progressive disease, which was confirmed by quantitative RT-PCR analysis. These 

results were in line with our previous investigations, which showed that WNT/β-catenin signaling 

becomes activated at the same time as the progesterone receptor is lost6. 

In order to substantiate the finding that loss of progesterone signaling in progressive disease 

plays a role in diminished T-cell infiltration and induction of EMT, well differentiated Ishikawa 

endometrial cell lines stably transfected with PRA (IKPRA-1), PRB (IKPRB-1) and PRA+PRB 

(IKPRAB-36) were cultured in the presence or absence of progesterone (MPA) and subsequently 

used for immunohistochemistry, wound healing and modified Boyden chamber migration assay, 

and genome wide gene expression analysis. Culture of IKPRB-1 and IKPRAB-36, but not IKPRA-1, in 



Chapter 7126 

the presence of MPA resulted in inhibition of migration and down regulation of the mesenchymal 

marker vimentin at the invasive front of the wound. Furthermore, as in progressive disease, 

progesterone stimulated immunosuppression, but inhibited pathways and genes involved in EMT 

and metastasis: such as Integrin/ILK, EGF, PDGF, TGF-β and WNT/β-catenin-signaling. Interestingly, 

many of the differentially expressed signaling pathways in the Ishikawa cell lines, were also 

significantly altered in the patient samples. 

In summary, we conclude that loss of progesterone signaling in progressive endometrial cancer 

causes a decrease in tumor infiltrating lymphocytes numbers and induces a transition from an 

epithelial to a more mesenchymal, more invasive phenotype in vivo, as well as in vitro.

Activation of WNT/β-catenin signaling in Müllerian duct 
derived tissues causes endometrioid ovarian cancer.
As described in chapter 2, tight control of WNT/β-catenin signaling is crucial for the 

embryonic initiation and development of the Müllerian duct, cycle-depended proliferation 

and differentiation of the endometrium during reproductive life, and proper implantation 

and placenta formation during pregnancy. However, unbalanced WNT/β-catenin signaling 

is associated with endometriosis, endometrial hyperplasia and endometrial cancer.  

Due to its contribution in Müllerian duct development7, 8, many investigators studied the role of WNT/

β-catenin signaling in ovarian carcinogenesis. As in endometrial cancer, WNT/β-catenin signaling 

was found to be an important factor in progression, metastasis, survival and chemoresistance 

of epithelial ovarian cancer9-14. Furthermore, several WNT-associated genes, WNT5A, WNT7A and 

WNT9B, were highly expressed in epithelial ovarian cancer11-15 and endometrioid ovarian cancers 

frequently show gene mutations in CTNNB1 and APC16-21. 

Knowing that WNT/β-catenin signaling plays an important role in endometrioid ovarian cancer 

and in view of the hypothesis that ovarian cancer may originate from Müllerian derived tissues, we 

studied mice in which WNT/β-catenin signaling was activated in Müllerian derived tissues (chapter 

5). Here, Pgr-Cre induced mutation of APC resulted in the activation of WNT/β-catenin signaling in 

tissues derived from the Müllerian duct and granulosa cells, but not the OSE or ovarian stroma. In 

the oviducts of these mice, but not the uterus or OSE, precursor lesions were found that resembled 

human tubal intra-epithelial carcinoma (TIC). Over time and through a process of glandular 

transition, these precursor lesions developed into endometrial tubal tumors, which resembled 

human endometrioid tubal cancer. Interestingly, while no abnormalities were found in the OSE, 

starting from 10 weeks of age, simple endometrioid ovarian cysts were present. Over time, these 

cysts developed into large endometrioid ovarian tumors that resembled human endometrioid 

ovarian cancer. In addition, in 9,4% of mice, loco-regional spread to the uterine-ovarian ligament 

was observed. 

These findings are in clear contrast with ovarian cancer models that appoint the OSE as a credible 

source of ovarian carcinoma. Interestingly, mouse models aiming to induce ovarian cancer from 

the OSE, either do not show epithelial ovarian cancer22-25, recombine cells in both the oviduct 
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and OSE making discrimination between origins very difficult26-28, or do not addresses possible 

Müllerian involvement29-32. Therefore, together with our recent finding of stem-like cells located in 

the distal oviduct33, these findings strengthen the hypothesis that the Müllerian duct is the origin 

of ovarian cancer and the current mouse model can be a valuable tool for further research on 

ovarian cancer initiation, behavior and therapy.

Malignant transition of tubal precursors into serous ovarian 
cancer.
To further substantiate the Müllerian origin of ovarian cancer, we studied the prevalence and 

characteristics of tubal precursor lesions of serous ovarian cancer (chapter 6). In this study, early 

benign (P53 signatures), intermediate (serous tubal intra-epithelial lesions, STILs) and clearly 

malignant (serous tubal intra-epithelial carcinomas, STICs) precursors of high grade serous ovarian 

cancer were identified with a hierarchy in prevalence from control, to patients at risk, to patients 

with a concurrent serous ovarian cancer. In the control group, P53 signatures were present in 6,7% 

of cases and in patients with a BRCA mutation this incidence increased to 26,7% for BRCA1 and 

46,7% for BRCA2. However, in none of these patients, lesions of malignant potential, STILs and STICs, 

were identified.  Although P53 signature prevalence in BRCA gene mutation carriers is comparable 

with other studies, the absence of malignant lesions in this group was inconsistent34-36. Medeiros et 

al., 2006, identified STICs in 30% of tubal specimens collected during pBSO of BRCA gene mutation 

carriers. However, this high prevalence appears to be an exception as the prevalence of STICs in 

pBSO patients in many other studies usually varies between 1% and 6%36-41. 

Finally, serous ovarian carcinoma patients with or without a BRCA gene mutation were screened 

for tubal lesions. As expected, these patients showed a considerable increase in P53 signature 

prevalence and only here STILs, STICs and tubal adenocarcinomas were detected. P53 signatures 

were identified in 47% of cases and in addition to P53 signatures, STILs, STICs and tubal carcinomas 

were detected with a prevalence of 15,8%, 52,6% and 31,6% respectively. Furthermore, as indicated 

by several other studies36, 42, tubal precursors were most commonly located in the fimbrial end of 

the fallopian tubes. Interestingly, in patients with a STIC, P53 signature prevalence was notably 

higher than in patients without a STIC. Further affirming the relationship between P53 signatures 

and STIC was the presence of P53 signatures and STILs aside STIC in a patient with concurrent 

serous ovarian carcinoma.  

Upon further characterization of the identified STICs, a high resemblance of STIC to serous ovarian 

carcinoma was found on a morphological and molecular level. Using immunohistochemical 

analyses, STICs as well as concurrent ovarian cancer, showed enhanced WT1 and CA125 expression, 

decreased ERα and PRab expression and strong reduction of the mesenchymal marker vimentin. 

Furthermore, in STILs and STICs, membranous E-cadherin and β-catenin function was somewhat 

reduced, which indicates evidence of epithelial-to-mesenchymal transition. 

In conclusion, our results support the hypothesis that serous ovarian cancer originates from 

lesions in the fallopian tube. Using a well-defined protocol (SEE-FIM) for total embedding of the 
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oviduct, benign, intermediate and malignant precursor tubal lesions of serous ovarian cancer 

were identified. Upon identification, immunohistochemical analysis confirmed the malignant and 

metastatic potential of STICs and further indicated its contributory relation as the origin of serous 

ovarian cancer. 

The Müllerian duct as origin of epithelial ovarian cancer.
Upon reviewing current literature and research described in this thesis, we appoint two possible 

mechanisms in which epithelial ovarian cancer arises based on the two pathway model of Kurman 

and Shih(2008)43. 

First, since type I ovarian tumors are typically ovarian confined and develop from borderline 

precursors, we hypothesize that these are derived from the oviduct or components of the 

secondary Müllerian system, such as ovarian endosalpingiosis or endometriosis, which over time 

acquire further genetical disturbances due to ovulation-induced distress or stimuli from the 

ovarian stroma. 

Second, type II high grade serous ovarian carcinomas are mainly confined to the ovary and are 

characterized by mutation of TP53. Therefore we hypothesize that ovulation-induced mechanical, 

inflammatory and biochemical damage to the nearby distal fallopian tube epithelium results in 

areas mutated for TP53 (P53 signatures). Upon further genetic damage and increased proliferation, 

P53 signatures develop into STILs, which, progress to become STICs. When transformed, malignant 

STIC cells can exfoliate and, in addition to other peritoneal sites, implant on or in the ovary. As a 

result, type II high grade serous ovarian cancer can develop. 

In conclusion, not the OSE but the Müllerian duct should be appointed as the origin of epithelial 

ovarian cancer and research aiming to unravel the earliest carcinogenic changes in Müllerian 

derived tissues is key to facilitate early detection and targeted therapy for ovarian cancer. 

Future research into the Müllerian origin of ovarian cancer:
In order to further investigate the origin of ovarian cancer and to be able to detect and treat early 

lesions of epithelial ovarian cancer, a number of important research questions have to be answered.

1.	 Are the stem-like cells observed in the distal oviduct in mice truly stem cells and if so, for which 

tissues do they serve as stem cells? 

2.	 Can these ductal stem cells, when mutated, serve as progenitor cells for epithelial ovarian 

cancer?

3.	 How can we translate our mice findings to facilitate improved management of ovarian carci-

nogenesis? 

In order to proof stemness of the oviductal stem-like cells, lineage tracing needs to be developed. 

Lineage tracing however, is not as straightforward as one would hope. What is needed is a stem-like 

cell specific gene from which the promoter can be used to drive C-recombinase (Cre) expression. 

Stem-like cell specific Cre expression can then be used to drive reconstitution of a defective 
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reporter gene (YFP for example) essentially marking the stem-like cells and all cells derived from 

them44-46.

Once a mouse model is available which specifically targets stem cells in the distal oviduct this model 

can now also be combined with conditionally mutated mice models. For example, combining 

oviductal stem cells specific Cre with Apclox will most likely result in endometrioid ovarian cancer 

while combining it with Brca1/2lox and/or P53lox may induce serous ovarian cancer.

A significant challenge lies in translating animal data into human applications. For this the 

oviductal stem cells and early malignant precursors of ovarian cancer need to be analyzed 

in order to identify specific maker genes using genome wide expression analysis.  From these 

ovarian cancer precursor specific genes, those which are upregulated and which encode proteins 

expressed at the cell surface will be selected. For these cell surface expressed proteins antibodies 

will be obtained and these antibodies will be labeled with a fluorophore. These labeled antibodies 

can be used for three applications. First these antibodies can be used to identify ovarian cancer 

precursors in vivo, second these antibodies can be used to isolate precursor cells (which can be 

used in transplantation experiments to proof carcinogenic properties of these cells) and, thirdly, 

these in vivo labeled cells can be removed using a sophisticated laser device. Furthermore, it is also 

possible that among these marker genes there will be biomarkers, which can be used to detect the 

presence of precursors using serum or other body fluids such as urine or menstrual blood.

Finally, upon review of the results from these future investigations, a large multicenter trial 

could be undertaken to assess the safety of salpingectomy without oophorectomy in patients 

predisposed for ovarian cancer (BRCA1 and BRCA2 carriers). If serous ovarian cancer only originates 

from the fallopian tube, salpingectomy should be sufficient to reduce the life-time ovarian 

cancer risk. Therefore, mastectomized patients should be randomly divided into two groups: 1: 

complete salpingo-oophorectomy at 40 years of age (standard protocol in the Erasmus MC) and 

with standard care; 2: salpingectomy alone at 30 years of age or after fulfilled child wish followed 

by oophorectomy after natural menopause. As a protective measure, in between salpingectomy 

and oophorectomy, patients should undergo intensive follow-up every 6 months by means of 

transvaginal sonogram, measurement of serum CA125 and possibly measurement of markers 

identified in the research described before. For patients predisposed for ovarian cancer, it is 

anticipated that, after a careful review of the success of the here suggested research program, 

prophylactic removal of the ovaries may no longer be necessary. This will immediately improve 

quality of life, since prophylactic removal of the ovary induces surgical menopause at young age, 

which is associated with increased cardiovascular risk, osteoporosis and declined psychological 

and sexual wellbeing47-51. 
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Summary
The main goal of the work presented in this thesis is to unravel the mechanisms involved in the 

initiation and progression of Müllerian duct derived malignancies. 

Chapter 1 provides a general introduction of the female reproductive tract, endometrial  and 

ovarian carcinoma and the aims of the study.

Chapter 2 reviews the role of WNT/β-catenin signaling in the female reproductive tract, especially 

focusing on its interaction with sex hormones during embryonic development, pregnancy, 

endometriosis and endometrial cancer. It was concluded that tight control of WNT/β-catenin 

signaling is crucial for the embryonic initiation and development of the Müllerian duct, cycle-

depended proliferation and differentiation of the endometrium during reproductive life, and 

proper implantation and placenta formation during pregnancy. However, if WNT/β-catenin 

signaling is not maintained  in control, it may initiate endometriosis, endometrial hyperplasia and 

endometrial carcinoma.

The role of progesterone receptor signaling involved in important pathways in endometrial cancer 

progression was assessed in Chapter 3. In this study, it was observed that progression  (recurrence 

and/or metastasis) of disease in endometrial cancer patients is characterized by loss of progesterone 

signaling, loss of tumor infiltrating T-lymphocytes and significant inhibition of pathways 

involved in immune surveillance and stimulation of pathways and genes involved in epithelial-

to-mesenchymal transition and metastasis. In order to substantiate the role of progesterone 

signaling, Ishikawa endometrial cancer cell lines stably transfected with PRA(IKPRA-1), PRB(IKPRB-1) 

or PRA and PRB(IKPRAB-36) were subsequently cultured in presence/absence of progesterone 

(medroxyprogesterone acetate, MPA). Here, culture of IKPRB and IKPRAB in the presence of MPA 

resulted in inhibition of migration and downregulation of the mesenchymal marker vimentin. 

Furthermore, progesterone stimulated immunosuppression, but inhibited pathways and genes 

involved in EMT and metastasis. Based on these results it was concluded that loss of progesterone 

signaling in progressive endometrial cancer causes a decrease in tumor infiltrating lymphocyte 

numbers and induces a transition from an epithelial to a more mesenchymal, more invasive 

phenotype.

Epithelial ovarian cancer is the deadliest gynecological malignancy in Western countries, which 

is mainly caused by the fact that the origin of ovarian cancer and consequently its therapeutic 

approach, is still under debate. Therefore, Chapter 4 extensively reviews the clinical and more 

basic research that has been performed to reveal the origin of ovarian cancer and unravel the 

process of early carcinogenesis. Here it was concluded, that not the ovarian surface epithelium 

(OSE), but the Müllerian duct should be appointed as the origin of epithelial ovarian cancer.

Knowing that in a high percentage of endometrioid ovarian cancers WNT/β-catenin signaling is 

activated, and in view of the hypothesis that ovarian cancer originates from the Müllerian duct, 

in Chapter 5 we studied mice in which WNT/β-catenin signaling was conditionally activated 

in Müllerian duct derived tissues. These Pgrcre/+;Apcex15lox/lox mice developed tubal intraepithelial 

carcinomas (TICs), which, through a process of glandular transition, developed into endometrioid 
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tubal tumors. In the ovaries, mainly at young age, simple epithelial cysts were noted that 

developed further into endometrioid ovarian tumors, resembling human endometrioid ovarian 

cancer. Furthermore, loco-regional spread to the utero-ovarian ligament was shown. Since the OSE 

was not affected in these mice, it was concluded that endometrioid ovarian cancer develops from 

precursor lesions in the oviduct.

In order to further investigate the Müllerian origin of epithelial ovarian cancer, in chapter 6 we 

determined the prevalence and characteristics of tubal precursor lesions in patients with serous 

ovarian cancer, with susceptibility for serous ovarian cancer as well as healthy controls. In this study 

a hierarchy in prevalence of lesions from controls, to patients with an increased risk, to patients 

with serous ovarian cancer was identified. However, while “benign” P53 signatures were found in all 

groups, precursors considered of malignant potential, STILs and STICs, were only found in patients 

with serous ovarian cancer. Furthermore, STICs showed similar characteristics as concurrent ovarian 

carcinoma and some evidence of epithelial-to-mesenchymal transition in STICs was found, making 

metastatic spread of malignant tubal cells to the ovary plausible. Therefore, it was concluded that 

serous ovarian cancer originates from precursor lesions in the oviduct. 

Chapter 7 and 8 provide a summary of the results of the studies in this thesis and a general 

discussion. Furthermore, directions for future research and possible clinical implications are 

assessed.
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Samenvatting
Het doel van het onderzoek beschreven in dit proefschrift is het ontrafelen van mechanismen die 

betrokken zijn bij het ontstaan en bij de progressie van maligniteiten van Müllerse gang afgeleide 

weefsels.

In hoofdstuk 1 wordt een algemene inleiding over het vrouwelijke voortplantingssysteem, 

endometrium- en ovariumcarcinoom gegeven. Daarnaast beschrijft dit hoofdstuk de doelstellingen 

behorende bij dit proefschrift.

Hoofdstuk 2 beschrijft de rol van WNT/β-catenine signalering in het vrouwelijke 

voortplantingssysteem en richt zich in het bijzonder op de interactie tussen WNT/β-catenine 

signalering en de werking van de vrouwelijke geslachtshormonen oestradiol en progesteron 

tijdens embryonale ontwikkeling, normale fysiologie, zwangerschap, endometriose en 

endometriumkanker. Geconcludeerd werd dat nauwkeurige regulatie van WNT/β-catenine 

signalering cruciaal is voor de initiatie en ontwikkeling van de Müllerse gang tijdens de 

embryogenese, de menstruele cyclus, de innesteling van het embryo en de vorming van de 

placenta tijdens de zwangerschap. Wanneer WNT/β-catenine signalering niet goed wordt 

gereguleerd kunnen endometriose, endometriumhyperplasie en endometriumkanker ontstaan.

In hoofdstuk 3 wordt de rol van progesteron en de progesteronreceptoren (PR) in relatie tot 

de progressie van endometriumcarcinoom onderzocht. In deze studie werd waargenomen dat 

progressie (recidivering en/of metastasering) van endometriumcarcinoom wordt gekenmerkt 

door het verlies van progesteron werking, verlies van tumor-infiltrerende T-lymfocyten, 

een significante remming van signaleringssystemen betrokken bij de immuunrespons en 

stimulering van signaleringssystemen en genen betrokken bij epitheliale naar mesenchymale 

transitie (EMT) en metastase. Om de rol van progesteron verder te onderzoeken werden 

Ishikawa endometriumcarcinoom cellijnen stabiel getransfecteerd met de A-vorm van de 

progesteronreceptor (IKPRA-1), de B-vorm van de progesteronreceptor (IKPRB-1) of de A- en 

B-vorm van de progesteronreceptor (IKPRAB-36), en vervolgens gekweekt in aan- of afwezigheid 

van progesteron (medroxyprogesteronacetaat, MPA). Het kweken van IKPRB en IKPRAB in 

aanwezigheid van MPA resulteerde in remming van celmigratie en verminderde expressie van 

de mesenchymale marker vimentine. Bovendien stimuleerde progesteron de immuunrespons 

en remde signaleringssystemen en genen betrokken bij EMT en metastase. Aan de hand 

van deze resultaten werd geconcludeerd dat verlies van progesteron werking in progressief 

endometriumcarcinoom een verlaging van de lokale immuunrespons en een overgang van een 

epitheliaal naar een mesenchymaal, meer invasief fenotype, initieert.

Epitheliaal ovariumcarcinoom is de dodelijkste gynaecologische maligniteit in westerse landen. 

Deze hoge mortaliteit wordt voornamelijk veroorzaakt door het feit dat de oorsprong van 

ovariumcarcinoom nog ter discussie staat, waardoor vroege diagnose en gerichte therapeutische 

benadering zeer moeilijk zijn. In hoofdstuk 4 beschrijven we uitvoerig het klinisch en fundamenteel 

onderzoek dat is uitgevoerd naar het ontstaan ​​van ovariumcarcinoom. Geconcludeerd werd dat 
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niet het ovariële oppervlakte-epitheel maar weefsels afkomstig vanuit de Müllerse gang moeten 

worden aangewezen als de oorsprong van epitheliaal ovariumcarcinoom.

Omdat in een hoog percentage van de endometrioide ovariumcarcinomen het WNT/β-catenine 

signaleringssysteem is geactiveerd en gezien de hypothese dat ovariumcarcinoom afkomstig zou 

kunnen zijn vanuit weefsels van de Müllerse gang, hebben we in hoofdstuk 5 muizen bestudeerd 

waarin WNT/β-catenine signalering is geactiveerd in weefsels afkomstig van de Müllerse gang. 

Deze PgrCre/+;Apcex15lox/lox muizen ontwikkelden tubaire intra-epitheliale carcinomen (TIC) welke, 

door middel van een proces van glandulaire transitie, zich ontwikkelden tot endometrioïde tubaire 

tumoren. Daarnaast vonden wij in de ovaria van deze muizen, eenvoudige endometrioïde cysten 

die zich verder ontwikkelden tot endometrioïde ovariële tumoren die grote gelijkenis vertonen 

met humaan endometrioïd ovariumcarcinoom. Bovendien, werd locoregionale verspreiding van 

de endometrioïde tumoren in het utero-ovariële ligament aangetoond. Aangezien het ovariële 

oppervlakte-epitheel in deze muizen niet gemuteerd wordt, concluderen wij aan de hand van 

deze resultaten dat endometrioïd ovarium carcinoom ontwikkelt vanuit precursor laesies in de 

tuba.

Om verder te onderzoeken of weefsels van de Müllerse gang de oorsprong zijn van epitheliaal 

ovarium carcinoom, hebben we in hoofdstuk 6 de prevalentie en kenmerken van tubaire 

precursor laesies onderzocht in patiënten met sereus ovariumcarcinoom, patiënten met een 

verhoogd erfelijk risico op sereus ovariumcarcinoom en gezonde controles. In deze studie werd 

een oplopende prevalentie van laesies gevonden van controles, naar patiënten met een verhoogd 

erfelijk risico, naar patiënten met sereus ovariumcarcinoom. Verder bleek dat (pre)maligne STILs 

en STICs alleen werden gevonden bij patiënten met een sereus ovariumcarcinoom, terwijl de 

“goedaardige” P53 signatures aanwezig waren in alle groepen. Bovendien vertoonde de gevonden 

TICs dezelfde moleculaire kenmerken als het bijbehorende ovariumcarcinoom. Daarnaast vonden 

we aanwijzingen van epitheliale-naar-mesenchymale transitie in de TICS, wat de metastatische 

verspreiding van kwaadaardige cellen van de tuba naar het ovarium plausibel maakt. Derhalve 

werd geconcludeerd dat sereus ovariumcarcinoom afkomstig is van precursor laesies in de tuba.

Hoofdstuk 7 en 8 vormen de samenvatting van de resultaten van de studies beschreven in dit 

proefschrift en een algemene discussie. Verder worden aanwijzingen voor toekomstig onderzoek 

en mogelijke klinische implicaties gegeven.
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List of abbreviations
Ad-Cre		  Adenoviral C-recombinase

ALDH1		  Aldehyde dehydrogenase

AMH		  Anti-Müllerian hormone

APC		  Adenomatosis polyposis coli

ARID1a		  AT rich interactive domain 1A

BMP2 (4,…)	 Bone morphogenetic protein 2

BRCA1		  Breast cancer 1, early onset

BRCA2		  Breast cancer 2, early onset

BSA		  Bovine serum albumin

CA125	 Cancer antigen 125

CCL21		  Chemokine (C-C motif ) ligand 21

CCR		  C-C motif receptor

CD4 (8,…)	 Cluster of differentiation 4

CICs		  Cortical inclusion cysts

CK1		  Casein kinase 1

Ck6b		  Cytokeratin-6B (mouse)

CRE		  C-recombinase

CRUMBS3		 Crumbs protein homolog 3

CTNNB1	 Catenin (cadherin-associated protein), beta 1

CXCL9 (10,…)	 Chemokine (C-X-C motif ) ligand 9

CXCR		  C-X-C motif receptor

DAX1	 Dosage-sensitive sex reversal, adrenal hypoplasia critical region, 		

on chromosome X, gene

DKK1	 Dickkopf WNT signaling pathway inhibitor 1

E12.5		  Embyonic day 12,5

EGF		  Epidermal growth factor	

EIC	 Endometrial intra-epithelial carcinoma

EMT		  Epithelial-to-mesenchymal transition

ER		  Estrogen receptor

ERBB-2 	 V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2

FACsorting	 Fluorescence-activated cell sorting	

FCS		  Fetal calf serum

FGF		  Fibroblast growth factor

FOXL2		  Forkhead box L2

FOXO1		  Forkhead box O1

FOXP3		  Forkhead box P3

FSH		  Follicle-stimulating hormone

FSHR	 follicle-stimulating hormone receptor
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FZD		  Frizzled receptor

GFP		  Green fluorescent protein		

GnRH		  Gonadotropin-releasing hormone

GSK3β		  Glycogen synthase kinase 3 beta

HCG		  Human chorionic gonadotropin

HE4		  Human epididymis protein 4

HMGA2		  High mobility group AT-hook 2

HNPCC	 Hereditary nonpolyposis colorectal cancer

HOXA9 (10,…)	 Homeobox A9

H-Y		  H-Y antigen

IGF		  Insulin-like growth factor

IHC		  Immunohistochemistry

IL2 (8,…)		  Interleukin 2

ILK		  Integrin-linked kinase

INF-γ		  Interferon-gamma

KLF8		  Kruppel-like factor 8

KRAS	 Kirsten rat sarcoma viral oncogene homolog

L1CAM		  L1 cell adhesion molecule

LEF		  Lymphoid enhancer-binding factor

LGR5	 Leucine-rich repeat containing G protein-coupled receptor 5

LH		  Luteinizing hormone

LIM1		  LIM homeobox 1

LRCs		  Label-retaining cells

MAPK		  Mitogen-activated protein kinase

MLH1		  MutL homolog 1

MMP2 (7,..)	 Matrix metallopeptidase 2

MPA		  Medroxyprogesterone acetate

MSH2 (6,…)	 MutS homolog 2

MUC16		  Mucin 16

OCT4	 Octamer-binding transcription factor 4

OSE		  Ovarian surface epithelium

(T)P53 (63,..)	 Tumor protein p53

PAEP	 Progestagen-associated endometrial protein

PAX2 (8,…)	 Paired box gene 2

pBSO	 Prophylactic bilateral salpingo-oophorectomy

PCOS		  Polycystic ovary syndrome

PDGF		  Platelet-derived growth factor

PEG10		  Paternally expressed 10

PIK3CA	 phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
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POU5F1	 POU domain, class 5, transcription factor 1

PR		  Progesterone receptor

PTEN		  Phosphatase and tensin homolog

Rb1		  Retinoblastoma 1 (mouse)

RT		  Room temperature

RT-PCR		  Real-time polymerase chain reaction

SAM		  Statistical analysis of microarray

SFRP4		  secreted frizzled-related protein 4

SLUG		  SLUG zinc-finger protein

SNAIL1		  Snail family zinc finger 1

SRY		  Sex-determining region Y

STICs	 Serous tubal intra-epithelial carcinomas

STILs		  Serous tubal intra-epithelial lesions

SV40		  Simian virus 40

TCF		  T-cell factor

TDF		  Testis determining factor

TGF-β		  transforming growth factor beta

TICs		  Tubal intra-epithelial carcinoma

TILs		  Tumor-infiltrating T-lymphocytes

TVU		  Transvaginal ultrasonography

TWIST1 (2,…)	 Twist basic helix-loop-helix transcription factor 1

VEGF		  Vascular endothelial growth factor

WIF1		  Wnt inhibitory factor 1

WNT1 (1A,…)	 Wingless-type MMTV integration site family, member 1

WT1		  Wilms tumor 1

γH2AX	 gamma-H2A histone family, member X

ZEB1 (2,…)	 Zinc finger E-box-binding homeobox 1 

ZFY		  Zinc finger Y-chromosomal protein
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PhD Portfolio

Summary
Summary of PhD training and teaching activities

Name PhD student:            P.H. van der Horst

Erasmus MC Department:  Obstetrics and Gynaecology 

Research School:               Molecular medicine

PhD period:  2009-2013

Promotor:     Prof. dr. C.W. Burger

Copromotor: Dr. ir. L.J. Blok

1. PhD training

Year Workload

(ECTS)
General academic skills 

-	 Laboratory animal science (Art. 9 course) (6-9-2010 – 24-9-

2010) Rotterdam

-	 Course on presentation skills (5-4, 26-4, 10-5-12) Rotterdam

2010 (second)

2012 (third)

4.50

1.00
Research skills

-	 Statistics  (Basic Introduction Course on SPSS 10 & 11-06-2010

-	 Molecular Diagnostics IV  (28-5-2009 - 29-5-2009) Rotterdam

-	 Biomedical Research Techniques (12-10-09  - 16-10-09) 

Rotterdam

-	 Basic Data Analysis on Gene Expression Arrays (26-10-09 - 27-

10-09) Rotterdam

-	 Radiation safety course 5A and 5B (2012) Rotterdam

-	 Basic course on using ‘R’ for data manipulation and statistical 

analyses

2010  (first)

2009  (first)

2009  (first)

2009  (first)

2012 (third)

2012 (fourth)

0.60

1.00

1.60

1.20

3.00

1.40

In-depth courses (e.g. Research school, Medical Training)

-	 Basic and Translational Oncology (09-11-2009 - 13-11-2009) 

Rotterdam

-	 Research Management (15-06-2010 & 29-06-2010) Rotterdam

-	 Photoshop and Illustrator CS5 course (29-3-11 - 30-3-11) 

Rotterdam

-	 InDesign CS5 course (13-04-11) Rotterdam

-	 Finance for non-financials (01-08-2011 – 05-08-2011),

Nyenrode Business University Breukelen

2009  (first)

2010  (first)

2011 (second)

2011 (second)

2011 (second)

1.80

1.00

0.30

0.20

2.00
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Presentations

-	 Presentation at the Leuven University Hospital (08-07-2009)

-	 Presentation at the SGGO meeting Rotterdam (29-07-2009)

-	 Presentation at the SGGO meeting Rotterdam (25-01-2010)

-	 Presentation at the Juriy Wladimiroff Symposium (12-03-2010)

-	 Presentation at the JNI scientific meeting (14-06-2010)

-	 Presentation at the Wetenschapslunch Cluster 12 (28-10-2010)

-	 Presentation at the Leuven University Hospital (29-10-2010)

-	 Presentation at the Gynaecongres (11-11-2010)

-	 Presentation at the JNI scientific meeting (06-06-2011)

-	 Presentation at the SEOHS Amsterdam (18-11-2011)

-	 Presentation at the JNI scientific meeting (12-12-2011)

-	 Presentation at the JNI scientific meeting (24-09-2012)

-	 Presentation at the Gynaecongres (15-11-2012)

-	 Presentation at the Science meeting cluster 15 (06-02-2013)

-	 Presentation at the MolMed Day (13-02-2013)

-	 Presentation at the Juriy Wladimiroff Symposium (15-03-2013)

-	 Presidents Elect Young Investigator Session, SGI, USA, 20-03-

2013

2009  (first)

2009  (first)

2010  (first)

2010  (first)

2010  (first)

2010 (second)

2010 (second)

2010 (second)

2011 (second)

2011 (third)

2011 (third)

2012 (fourth)

2012 (fourth)

2013 (fourth)

2013 (fourth)

2013 (fourth)

2013 (fourth)

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

International conferences

-	 Ovarian Cancer Screening, London (UK) (29-11 – 30-11-2011)

-	 2nd ESGO/ENTRIGO Translational Research Workshop, London 

(UK), (16-11-2012)

-	 SGI Annual Scientific Meeting, Orlando, Florida (USA) (20 – 23-

03-2013)

2011 (third)

2012 (fourth)

2013 (fourth)

0.50

0.25

0.75

Seminars and workshops

-	 14th Molecular Medicine Day Rotterdam (04-03-2010)

-	 PhD day 2010 (20-05-2010)

-	 PhD day 2011 (27-05-2011)

-	 16th Molecular Medicine Day Rotterdam (29-02-2012)

2010  (first)

2010  (first)

2011 (second)

2012 (third)

0.25 

0.25

0.25

0.25
Other

-      Organisation of the SEOHS symposium 2010 (19-11-2010) 2010 (1st & 

2nd)

2.00
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2. Teaching activities

Year Workload 

(Hours/

ECTS)
Supervising practicals and excursions

-	 Designing and supervising the Junior Science Program for 

Gynaecological Oncology, 2 high school students (16-11-09 - 

20-11-09) Rotterdam

-	 Designing and supervising the Junior Science Program for 

Gynaecological Oncology, 2 high school students (21-06-10 - 

25-06-10) Rotterdam

-	 Designing and supervising the Junior Science Program for 

Gynaecological Oncology  /  Pathology, 2 high school students

(10-10-11 - 14-10-10) Rotterdam

2009  (first)

2010 (first)

2011 (third)

1.00

1.00

1.00

Supervising Master’s theses

-	 Substitute supervisor for a fourth year medical student elective 

research program (4 weeks, Matthijs van Dijk)

-	 Designing and supervising a master’s thesis medical student 

elective research program (21 weeks, Nov - Jun, Ms. Sadé Daal)

-	 Designing and supervising a master’s thesis medical student 

elective research program (21 weeks, Jul - Dec, Ms. Renske 

Wijnhoven)

-	 Designing and supervising a master’s thesis medical student 

elective research program (21 weeks, Oct - Mar, Ms. Marthe 

Mouthaan)

-	 Designing and supervising a master’s thesis medical student 

elective research program (17 weeks, Mar - Jul, Ms. Margot 

Cloostermans)

2009 (first)

2011 (third)

2012 (fourth)

2012 (fourth)

2013 (fourth)

0.50

3.00

3.00

3.00

3.00
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Publications and awards:
Publications:
Interaction between sexhormones and Wnt/β-catenin signal transduction in endometrial physiology 

and disease.

Paul H. van der Horst, Yongyi Wang, Marten van der Zee, Curt W. Burger and Leen J. Blok 

Mol Cell Endocrinol 2012;358:176-84.

Progesterone inhibits epithelial-to-mesenchymal transition in endometrial cancer.

Paul H. van der Horst, Yongyi Wang, Ingrid Vandenput, Liesbeth C. Kuhne, Patricia C. Ewing, 

Wilfred F.J. Van IJcken, Marten van der Zee, Frederic Amant, Curt W. Burger and Leen J. Blok 

PLoS One 2012;7(1): e30840

Identification of quiescent stem- like  cells in the distal  female reproductive tract.

Yongyi Wang, Andrea Sacchetti, Matthijs R. van Dijk, Marten van der Zee, Paul H. van der 

Horst, Rosalie Joosten, Curt W. Burger, J. Anton Grootegoed, Leen J. Blok and Ricardo Fodde 

PLoS One 2012;7:e40691.

Endometrioid ovarian cancer arising from the distal oviduct. 

Paul H. van der Horst, Marten van der Zee, Claudia Heijmans-Antonissen, Yundan Jia, Francesco J. 

DeMayo, John P. Lydon, Carlolien H.M. van Deurzen, Patricia C. Ewing, Curt W. Burger and Leen J. Blok.    

Submitted for publication

Malignant transition of tubal precursors into serous ovarian cancer.

Paul H. van der Horst, Renske K.E. Wijnhoven, Sadé Daal, Marthe H. Mouthaan, 

Claudia Heijmans-Antonissen, Ronald van der Knaap, Ramon G.V. Smolders, 

Diederick de Jong, Jurgen M. Piek, Patricia C. Ewing, Curt W. Burger and Leen J. Blok. 

Submitted for publication

Müllerian origin of ovarian cancer.

Paul H. van der Horst, Curt W. Burger and Leen J. Blok.

In preparation

A rat model of anastomotic leakage created by insufficient sutures after colectomy.

Zhouqiao Wu, G. Simone A. Boersma, King Lam, Paul H. van der Horst, Gert-Jan J. Kleinrensink, 

Johannes Jeekel, Johan F. Lange.

Submitted for publication
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Reinforcement of anastomosis by tissue adhesive in a contaminated environment.

Zhouqiao Wu, Konstantinos A. Vakalopoulos, G. Simone A. Boersma, F. Daams, King Lam, 

Leen J. Blok, Paul H. van der Horst, Gert-Jan J. Kleinrensink, Johannes Jeekel, Johan F. Lange. 

Submitted for publication

An in vivo overview of the adhesive strength and healing effects of commercially available tissue 

adhesives. 

K.A. Vakalopoulos, Z. Wu, L. Kroese, P.H. van der Horst, L.J Blok, J. Jeekel, J.F. Lange.

In preparation

Quality and quantity of memories in patients undergoing awake brain tumour resection.

M. Klimek, P.H van der Horst, C. Müller, R.J. Stolker.

In preparation

Awards:
Beste Jonge Onderzoeker tijdens het Gynaecongres van de Nederlandse Vereniging voor Obstetrie 

en Gynaecologie (NVOG) op 15 november 2012, Congrescentrum Papendal, Arnhem.

Giorgio Pardi Foundation Plenary Award for outstanding research by a junior investigator 2013,

Giorgio Pardi Foundation, Milaan, Italië (uitgereikt tijdens de 2013 Annual World Meeting, Society 

of Gynecological Investigation (SGI), Orlando, Florida, USA).

Prof.dr. Juriy Wladimiroff Onderzoeksprijs 2013, Rotterdamse Gynaecologen Opleidingscluster 

(RGOC), Erasmus Universitair Medisch Centrum Rotterdam.
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Dankwoord
Nu het proefschrift af is, rest mij als laatste het dankwoord. Misschien is dit nog wel het moeilijkste 

onderdeel van het boekje, want hoe bedank je iedereen die de afgelopen jaren heeft bijgedragen 

aan het tot stand komen van dit proefschrift en alles er omheen? Ik ga het toch proberen en als ik 

iemand vergeten ben, ook jij bedankt! 

Allereerst wil ik mijn promotor bedanken. Geachte Prof. Burger, beste Curt, tijdens een 

casusbespreking in mijn derde jaar van geneeskunde kwam ik u voor het eerst tegen. Het klikte 

(ondanks uw sterke affectie voor die club in 020) en ik heb direct een afspraak gemaakt om te 

bespreken of ik in het onderzoek binnen uw afdeling kon participeren. Mijn eerste stappen waren 

bij Peggy Vencken en Carolien Seynaeve, maar al snel kwam ik via u in contact met Leen Blok wat 

uiteindelijk heeft geleidt tot mijn aanstelling en dit prachtige proefschrift. Ik wil u graag bedanken 

voor uw frisse en soms kritische blik tijdens al onze voortgangsgesprekken en de grote steun de 

afgelopen jaren. Deze steun was niet alleen op onderzoeksgebied, maar vooral ook in mijn eigen 

ontwikkeling en carrière. Ik waardeer uw commentaar en mening zeer sterk en nogmaals mijn 

excuses dat ik ondanks uw herhaaldelijke stimulering geen gynaecoloog-oncoloog wordt.

Natuurlijk komt hierna direct mijn copromotor. Geachte Dr.ir. Blok, allerbeste Leen. Het is af! Dit 

betekend dat je eindelijk wat rust krijgt en geen last meer hebt van je bellende (ja inderdaad, 

zelfs in je vakantie), e-mailende, smsende en in je kamer stormende promovendus. Ik maakte je 

het niet altijd makkelijk, maar het is echt gelukt en ik ben er trots op! Je bent niet alleen een super 

onderzoeksbegeleider geweest, maar je hebt me ook een hoop over mijzelf geleerd. Ik bewonder 

de manier waarop jij mensen motiveert en stimuleert. Ik heb het gevoel dat ik door jou tijdens mijn 

promotie niet alleen een goede academicus ben geworden, maar vooral ook een completer mens. 

Ondanks het feit dat de zaken niet gaan zoals we dat hadden verwacht wil ik je ontzettend veel 

succes wensen in het vervolg. Ps. onze Oviscope® die komt er echt nog een keer!

Daarna wil ik graag de leden van de leescommissie, dr. P.M.J.J. Berns, prof.dr. L.H.J Looijenga en prof.

dr. R.F.P.M. Kruitwagen bedanken. Beste Prof. Looijenga en Kruitwagen, ik wil u hartelijk danken 

voor uw waardevolle commentaar op het proefschrift, het is er absoluut beter van geworden. Een 

speciaal woord heb ik nog voor Dr. Berns. Beste Els, we hebben elkaar leren kennen tijdens mijn 

tweede jaar van mij studie. Ik was mentor en jij de tutor van een groepje eerstejaars studenten 

en wat is het ontzettend leuk dat we elkaar later weer tegenkwamen. Ik wil je bedanken voor je 

interesse, steun en commentaar de afgelopen jaren en het is dan ook niet meer dan terecht dat 

jij binnenkort als hoogleraar je carrière nog glansrijker gaat maken. Daarnaast wil ik natuurlijk de 

overige leden van de grote commissie bedanken voor hun aanwezigheid en discussie, prof.dr. A. 

Grootegoed, prof.dr. L. Massuger en dr. C. van Deurzen. 
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Dan kom ik bij het lab. Als eerste mag Claudia natuurlijk niet ontbreken. Claudia, jij was mijn 

absolute steun en toeverlaat. Ik wil je bedanken voor al je harde werk. Het is bijna niet te bevatten 

hoeveel jij voor mijn onderzoek in de laatste 2 jaar hebt gedaan. Ik wens je ontzettend veel geluk 

toe met Pieter, Dennis en Merel en ik weet zeker dat je binnenkort je carrière weer een nieuwe 

boost gaat geven! Daarna komt Liesbeth. Waar Claudia mijn steun en toeverlaat was in de laatste 

2 jaar, was jij dat in de eerste twee. Ik heb alles van je geleerd. Ik vond het ontzettend leuk met je 

samen te werken en bij de faillissementsveilingen meubels uit te zoeken voor jullie zeer succesvolle 

restaurant!

Natuurlijk wil ik ook mijn studenten, Sadé, Renske, Marthe en Margot, bedanken. Jullie hebben 

enorm veel werk verricht en ik ben er trots op dat ik jullie heb mogen begeleiden tijdens jullie 

master scriptie. Jullie waren samen de ideale student en ik weet zeker dat jullie er allemaal gaan 

komen. 

Dear Yongyi, as a PhD student you were the supervisor of my medical thesis. I enjoyed working 

with you and I was proud to be a paranifm during your PhD defence. I wish you great happiness 

with Yanan and Amelie and all the best in your further career. Beste Marten, ondanks het feit dat 

we soms lijnrecht tegen over elkaar stonden heb ik toch veel van je geleerd. Heel veel succes 

bij Sanquin en natuurlijk veel geluk met Jolanda en de toekomstige kleine. Beste Liza, heel veel 

succes, je komt er zeker!

Daarnaast wil ik de clinici in onze groep bedanken. Beste Lindy en Annelinde, mijn voorgangsters. 

Dank voor alle discussies en gezelligheid in de groep. Succes met jullie specialisaties! Beste Ramon, 

dank voor je interesse, inclusies en commentaar. Beste Diederick, dank voor het initiëren van de 

STIC studie en ik wens je heel veel succes in Azerbeidzjan. Beste Jurgen, jij bent de peetvader van 

het STIC onderzoek. Het was een eer samen met je te mogen werken en ik wil je danken voor je 

commentaar, frisse blik en de vele patiënten die je voor ons hebt geïncludeerd. Daarnaast wil ik 

alle stafleden van de afdeling verloskunde en gynaecologie, in het bijzonder de stafleden van de 

sectie gynaecologie en gynaecologische oncologie,  bedanken voor de inclusie van alle patiënten, 

de belletjes vanaf de OK als er weefsel beschikbaar was, het commentaar en de interesse in de 

afgelopen jaren. Een speciaal woord is voor Bea. Beste Bea, volgens mij ben je de beste assistent 

die Prof. Burger zich maar kan wensen. Ik heb je zo vaak gestoord, maar altijd was je vriendelijk.

Een andere afdeling die ik zeer veel dank verschuldigd ben is de Pathologie. Allereerst natuurlijk 

Patricia Ewing en Carolien van Deurzen. Ik wil jullie beiden bedanken voor alle urenlange sessies 

waarin ik duizenden coupes door jullie heb laten beoordelen. Daarnaast wil ik jullie bedanken 

voor jullie oprechte belangstelling, kritiek, discussie en steun. Carolien, het is een absolute eer 

dat jij aan mijn grote commissie wil deelnemen. Daarnaast kan ik natuurlijk niet Lisette de Vogel 

vergeten. Ontzettend bedankt voor alle weefsels die we via jou hebben kunnen gebruiken. Jij 

maakte ons leven zoveel gemakkelijker. Verder wil ik de dames van het immunolab bedanken 
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voor alle antwoorden over antilichamen, het kleuren en het gebruik van de antilichamen (meestal 

buiten de standaardtijden om). Daarnaast wil ik natuurlijk Prof.dr. Riccardo Fodde bedanken voor 

de goede samenwerking en de bruikbare commentaren. Ook wil ik alle medewerkers van het 

Fodde lab bedanken voor de gezelligheid en hulp op het lab: Patrick, Joel, Rosalie, Andrea (of 

course for all the FACS experiments), Medine, Matthias, Yaser en Marieke.

Een andere speciale dank gaat uit naar de collega’s in Leuven. Geachte prof. Amant, beste Frederic, 

het was een eer om met u samen te mogen werken. Ik wil u danken voor alle materialen en ideeën 

waarvan u ons samen met Ingrid Vandenput heeft voorzien.

Daarnaast wil ik de leden van de REPAIR groep, Prof. Jeekel, Prof. Lange, Prof. Kleinrensink, 

Zhouqiao, Simone, Ruth, Leonard, Diman en Konstantinos, danken voor de stimulerende en goede 

samenwerking. We hebben een aantal prachtige studies samen kunnen doen. 

Geachte dr. Klimek, allerbeste Markus. Jij hebt mij de eerste stappen laten zetten op het 

onderzoekspad. In mijn 2e week van geneeskunde kwam ik je tegen en klikte het goed. Na 

een dagje meelopen op OK ben ik bij jou gestart met mijn allereerste eerste onderzoek, de 

ervaringen van patiënten tijdens de Awake Craniotomie. Dit heeft geleid tot een presentatie op 

de anesthesiologendagen en binnenkort een prachtige publicatie. Ik kijk enorm tegen je op. Voor 

mij ben jij het ultieme voorbeeld van een topclinicus, topwetenschapper en ook nog eens een 

topmanager. Daarnaast heb ik er een vriendschap voor het leven bij gekregen. Ik wil je heel veel 

geluk wensen samen met Thomas, en Ilse en ik hopen dat we nog vaak samen kunnen afspreken. 

Dan de mannen van Stichting Steun de Wetenschap. Al gaan de dingen niet zo snel als we hadden 

gehoopt, wij gaan de wereld van de wetenschapsfinanciering opschudden! Kasper, als neef van 

Ilse heb ik je leren kennen en jij bent het voorbeeld dat briljant zijn toch samen kan gaan met 

ontzettend goede sociale omgang. Ik vind het super bijzonder dat we nu samen in dit bestuur 

zitten en ik weet zeker dat die Ferrari van je er komt. Nanne, samen in het bestuur en samen in 

dezelfde week promoveren. Het was een eer alle zorgen en frustraties met je te kunnen delen. 

Lieve vrienden, naast werk is ontspanning een essentieel onderdeel van succes. Daarom hebben 

jullie allemaal deel uitgemaakt van dit proefschrift.  Heeren van Fermentum, dank voor alle steun en 

vriendschap die ik van jullie krijg, ondanks het feit dat ik mij de afgelopen jaren veel te weinig heb 

laten zien. Ik hoop dat ik dat nu weer een beetje goed kan gaan maken. “Op de Ferm poes!” Kevin 

& Anouschka, Kim & Niels, Mark en alle anderen, dank voor alles. Kevin, wanneer ga jij Anouschka 

nu eindelijk eens vragen?

Dan mijn paranimfen, mijn beste vrienden. Hidde, vriend van het eerste uur. We hebben alles 

samen meegemaakt, van absolute hoogtepunten tot de allergrootste dieptepunten. Ik weet zeker 

dat jij er komt en ik hoop dat onze vriendschap nog zeer lang mag duren. Konstantinos, we leerden 

elkaar kennen tijdens de Art. 9 cursus en het klikte meteen. Dank voor al je hulp, je vriendschap 
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en je wijze raad. We hebben binnenkort zelfs een aantal publicaties samen en die promotie van 

je moet er ook even snel komen hoor! Ik weet zeker dat je een ontzettend goede chirurg gaat 

worden en we moeten snel die poker/sigaren/whisky avonden gaan organiseren!

Beste Sjef en Trees, dank voor jullie steun en wijze raad. Beste Sjef, als oudste vriend van mijn vader 

heb jij je over mij ontfermt. Ondanks dat we soms te weinig contact hebben wil ik je danken voor 

al je steun en het feit dat jij mij al sinds dat ik klein ben kennis laat maken met alle goede dingen in 

het leven: eten, de wijnkelder en de humidor.

Lieve schoonfamilie. Dank voor jullie warme en lieve ontvangst. Door jullie voel ik mij een compleet 

en volwaardig onderdeel van de familie! Beste Patrick, onwijs veel succes op de universiteit, je 

wordt een top ingenieur! Beste Laurens, jij bent mijn favoriete neefje!

Lieve familie. Ondanks het feit dat het voor jullie niet altijd even duidelijk is waar ik nu precies mee 

bezig ben, wil ik jullie bedanken voor alle steun en gezelligheid. Onze grote gemeenschappelijke 

tegenslagen, maar ook alle hoogtepunten en nieuwe leden van de familie, hebben ons closer 

gemaakt dan ooit te voren! 

Lieve schoonouders, jullie hebben mij echt opgenomen als jullie zoon. Ik voel mij onwijs prettig 

bij jullie en ik kan echt mezelf zijn. Dank voor al jullie steun en wijze raad. Beste schoonpap, jij bent 

toch een beetje de vader die ik niet meer heb.

Lieve mam, het zijn een aantal hele rare jaren geweest. Alles is veranderd. Ik ben trots om te 

zien hoe je er doorheen hebt geslagen en je eigen leven weer hebt opgebouwd. Dank voor je 

toegewijde steun, je wijze raad, het vertrouwen en de fijne omgeving waarin ik ben opgegroeid. 

Lieve pap, helaas kun jij er niet meer bij zijn, maar wat zou je trots op me zijn geweest.

Dan als laatste mijn allerliefste Ilse, mijn aanstaande vrouw. Wat is het een jaar: allebei een nieuwe 

baan, mijn promotie, misschien wel verhuizen en ons huwelijk. Jij geeft het leven kleur en ik ben 

ontzettend trots op je! Jij staat altijd voor me klaar, je steunt me in alles wat ik doe en je sleept me 

er doorheen als ik het niet meer zie zitten. Wij zijn een echt team en ik ben nog steeds iedere dag 

dankbaar dat jij bij mij wilt zijn. Ik hou van je!
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