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Abstract

Background: Drug-related adverse events remain an important cause of morbidity and mortality and impose huge burden
on healthcare costs. Routinely collected electronic healthcare data give a good snapshot of how drugs are being used in
‘real-world’ settings.

Objective: To describe a strategy that identifies potentially drug-induced acute myocardial infarction (AMI) from a large
international healthcare data network.

Methods: Post-marketing safety surveillance was conducted in seven population-based healthcare databases in three
countries (Denmark, Italy, and the Netherlands) using anonymised demographic, clinical, and prescription/dispensing data
representing 21,171,291 individuals with 154,474,063 person-years of follow-up in the period 1996–2010. Primary care
physicians’ medical records and administrative claims containing reimbursements for filled prescriptions, laboratory tests,
and hospitalisations were evaluated using a three-tier triage system of detection, filtering, and substantiation that
generated a list of drugs potentially associated with AMI. Outcome of interest was statistically significant increased risk of
AMI during drug exposure that has not been previously described in current literature and is biologically plausible.

Results: Overall, 163 drugs were identified to be associated with increased risk of AMI during preliminary screening. Of
these, 124 drugs were eliminated after adjustment for possible bias and confounding. With subsequent application of
criteria for novelty and biological plausibility, association with AMI remained for nine drugs (‘prime suspects’): azithromycin;
erythromycin; roxithromycin; metoclopramide; cisapride; domperidone; betamethasone; fluconazole; and megestrol
acetate.

Limitations: Although global health status, co-morbidities, and time-invariant factors were adjusted for, residual
confounding cannot be ruled out.

Conclusion: A strategy to identify potentially drug-induced AMI from electronic healthcare data has been proposed that
takes into account not only statistical association, but also public health relevance, novelty, and biological plausibility.
Although this strategy needs to be further evaluated using other healthcare data sources, the list of ‘prime suspects’ makes
a good starting point for further clinical, laboratory, and epidemiologic investigation.
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Introduction

Drug-related adverse events remain an important cause of

morbidity and mortality and impose a burden on healthcare costs.

[1,2,3] There is continuous influx of new drugs into the worldwide

market, but pre-approval clinical trials are unable to detect rare

adverse events and to provide a complete picture of a drug’s safety

profile, which evolves over its lifetime on the market. [4,5,6] Once

a drug is made available outside the limited study population of

clinical trials, there are bound to be changes in the circumstances

of the drug’s actual clinical use (including exposure of broader

population than was included in the clinical trials, off-label

indications, concomitant use with other drugs, and dosing regimen

changes) which may give rise to previously unobserved adverse

effects. Post-marketing surveillance has traditionally been carried

out by systematic manual review of spontaneous reports of adverse

drug reactions (ADRs). Enormous improvements in computing

capabilities have provided opportunities to partially automate

detection of potentially drug-induced adverse events and various

international initiatives are exploring new approaches to do this,

primarily through data mining of electronic healthcare records.

[7,8,9].

Electronic healthcare data, collected in the course of actual

clinical practice by physicians or of healthcare utilisation by

insurers and health maintenance organisations, give a good

snapshot of how drugs are being used in ‘real-world’ settings.

Being routine by-products of the healthcare delivery system, the

use of such data offers the advantage of efficiency in terms of time,

manpower, and financial costs needed to investigate patient safety

issues. While the advantages of automated surveillance are

obvious, there are growing concerns that such data mining may

generate more signals than can be followed up effectively with

currently available resources. This concern is not entirely

unfounded, considering that the annual volume of reports received

in spontaneous reporting systems (SRS), database systems primar-

ily designed for signal detection, has become enormous and

unmanageable. [10,11] The problem is likely to be worse with the

use of EHR data which have been intended for other purposes and

which can be mined for associations without routine human

evaluation of potential alternative explanations.

Detection of safety signals is only the initial step in the long and

complex process of post-marketing safety surveillance. The

evaluation of a signal may take years, from the earliest suspicion

of a potential risk to an established mechanism of causation and

fully understood phenomenon. [12] While signals derived from

EHR data may give a good snapshot of how drugs are being used

in real-world settings, there remains the need to establish

guidelines as to when - and how - to consider a safety signal

likely to be substantial enough to warrant verification and follow-

up. Various strategies for signal prioritisation have been proposed

in many publications, although most of these refer to signals

derived from SRS. [12,13,14,15,16] These strategies focus

consistently on signals with serious adverse effect, strong support-

ing evidence, and greatest public health impact.

In this paper we describe findings from post-marketing

surveillance using healthcare data of over 20 million individuals

from three European countries within the EU-ADR network

(http:\www.euadr-project.org). We look at primary care physi-

cians’ medical records which comprise detailed clinical informa-

tion including patients’ symptoms, physical examination findings,

diagnostic test results, and prescribed medications or other

interventions. We also look at administrative claims that document

reimbursements for filled prescriptions, laboratory and ancillary

tests, as well as hospitalisations. Taking the adverse event acute

myocardial infarction (AMI) as an example, we describe a strategy

for combining evidence from different data sources to identify

associations that may represent genuine risk and, hence,

necessitate further investigation through formal hypothesis testing

studies or action from drug regulatory agencies.

Methods

Data Sources
Identification of ‘prime suspects’ was performed in seven

databases of the EU-ADR network [8] for the period 1996–

2010: (1) Health Search/CSD LPD (HSD, Italy); (2) Interdisci-

plinary Processing of Clinical Information (IPCI, Netherlands); (3)

Pedianet (Italy); (4) PHARMO Network (PHARMO, Nether-

lands); (5) Aarhus University Hospital Database (Aarhus, Den-

mark); (6) Lombardy database (Lombardy, Italy); and (7) Tuscany

database (Tuscany, Italy). HSD, IPCI, and Pedianet are primary

care/general practitioner (GP) databases, where clinical informa-

tion and drug prescriptions are recorded. Aarhus, PHARMO,

Lombardy, and Tuscany are comprehensive record-linkage

systems where drug dispensing data are linked to registries

containing hospitalisation and other services. Table 1 provides

an overview of the characteristics of each database. All of the

databases in EU-ADR have been widely used for pharmacoepi-

demiologic research, have well-developed safeguard mechanisms

ensuring patient data protection, and have been validated for a

variety of drug exposures and clinical outcomes.

[17,18,19,20,21,22,23] Most healthcare services, including phar-

maceutical services, are provided for, or subsidised by, the state in

Italy and Denmark and covered by obligatory health insurance in

the Netherlands and turnover is low. In all of the countries with

GP databases, GPs function as ‘gatekeepers’ of the healthcare

system. A more detailed description of the database network can

be found in earlier publications. [8,24] Healthcare data used in

this study represent anonymised demographic and healthcare

information from 21,171,291 individuals with 154,474,063 per-

son-years of follow-up.

Drug-Induced Myocardial Infarction from EHR

PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e72148



T
a

b
le

1
.

C
h

ar
ac

te
ri

st
ic

s
o

f
th

e
d

at
ab

as
e

s
in

th
e

EU
-A

D
R

n
e

tw
o

rk
.

C
H

A
R

A
C

T
E

R
IS

T
IC

S
P

e
d

ia
n

e
t

(I
ta

ly
)

H
S

D
(I

ta
ly

)
L

o
m

b
a

rd
y

R
e

g
io

n
a

l
(I

ta
ly

)
T

u
sc

a
n

y
R

e
g

io
n

a
l

(I
ta

ly
)

IP
C

I
(N

e
th

e
rl

a
n

d
s)

P
H

A
R

M
O

(N
e

th
e

rl
a

n
d

s)
Q

R
E

S
E

A
R

C
H

*
(U

K
)

A
a

rh
u

s
(D

e
n

m
a

rk
)

C
u

rr
e

n
t

so
u

rc
e

p
o

p
u

la
ti

o
n

1
6

0
,0

0
0

ch
ild

re
n

1
,5

0
0

,0
0

0
9

,0
0

0
,0

0
0

3
,5

0
0

,0
0

0
1

,5
0

0
,0

0
0

3
,0

0
0

,0
0

0
4

,0
0

0
,0

0
0

1
,8

0
0

,0
0

0

Y
e

a
rs

co
v

e
re

d
fo

r
th

is
st

u
d

y
2

0
0

3
–

2
0

0
7

2
0

0
3

–
2

0
0

7
2

0
0

3
–

2
0

0
5

2
0

0
3

–
2

0
0

6
1

9
9

6
–

2
0

0
6

1
9

9
8

–
2

0
0

7
2

0
0

0
–

2
0

0
7

2
0

0
1

–
2

0
0

6

T
y

p
e

o
f

d
a

ta
b

a
se

G
e

n
e

ra
l

P
ra

ct
ic

e
p

e
d

ia
tr

ic
d

at
ab

as
e

G
e

n
e

ra
l

P
ra

ct
ic

e
d

at
ab

as
e

A
d

m
in

is
tr

at
iv

e
A

d
m

in
is

tr
at

iv
e

G
e

n
e

ra
l

P
ra

ct
ic

e
d

at
ab

as
e

H
yb

ri
d

(a
d

m
in

is
tr

at
iv

e
an

d
m

e
d

ic
al

re
co

rd
/

re
g

is
tr

ie
s)

G
e

n
e

ra
l

P
ra

ct
ic

e
d

at
ab

as
e

A
d

m
in

is
tr

at
iv

e

A
g

e
ra

n
g

e
0

–
1

4
Fr

o
m

1
5

o
n

w
ar

d
s

A
ll

ag
e

s
A

ll
ag

e
s

A
ll

ag
e

s
A

ll
ag

e
s

A
ll

ag
e

s
A

ll
ag

e
s

%
M

a
le

s
5

2
.2

4
7

.2
4

8
.8

4
8

.1
4

9
.6

4
5

.8
4

9
.6

4
9

.9

D
e

m
o

g
ra

p
h

ic
in

fo
rm

a
ti

o
n

a
v

a
il

a
b

le

D
at

e
o

f
re

g
is

tr
at

io
n

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

D
at

e
o

f
tr

an
sf

e
rr

in
g

o
u

t
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s

D
at

e
o

f
b

ir
th

M
M

-Y
Y

M
M

-Y
Y

D
D

-M
M

-Y
Y

D
D

-M
M

-Y
Y

M
M

-Y
Y

D
D

-M
M

-Y
Y

Y
Y

M
M

-Y
Y

G
e

n
d

e
r

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Et
h

n
ic

it
y/

R
ac

e
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o

D
ru

g
in

fo
rm

a
ti

o
n

a
v

a
il

a
b

le

P
ro

d
u

ct
co

d
in

g
M

IN
SA

N
M

IN
SA

N
M

IN
SA

N
M

IN
SA

N
H

P
K

Z
in

d
e

x
EM

IS
V

A
e

re
ts

A
ct

iv
e

in
te

rn
at

io
n

al
p

ri
n

ci
p

le
co

d
in

g
sy

st
e

m
A

T
C

A
T

C
A

T
C

A
T

C
A

T
C

A
T

C
B

N
F

A
T

C

D
at

e
o

f
p

re
sc

ri
p

ti
o

n
/d

is
p

e
n

si
n

g
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s

D
o

si
n

g
re

g
im

e
n

Y
e

s
Y

e
s

N
o

N
o

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Q
u

an
ti

ty
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s

In
d

ic
at

io
n

o
f

u
se

Y
e

s
Y

e
s

N
o

N
o

Y
e

s
Y

e
s

fo
r

in
-h

o
sp

it
al

N
o

Y
e

s

O
u

tc
o

m
e

in
fo

rm
a

ti
o

n
a

v
a

il
a

b
le

Sy
m

p
to

m
s

(Y
e

s/
N

o
)

Y
e

s,
as

fr
e

e
te

xt
/

co
d

e
s

Y
e

s,
as

fr
e

e
te

xt
/c

o
d

e
s

N
o

N
o

Y
e

s,
as

fr
e

e
te

xt
/c

o
d

e
s

Y
e

s
fo

r
so

m
e

Y
e

s,
as

co
d

e
s

N
o

O
u

tp
at

ie
n

t
p

ri
m

ar
y

ca
re

d
ia

g
n

o
se

s
Y

e
s,

as
fr

e
e

te
xt

/
co

d
e

s
Y

e
s

Fr
e

e
te

xt
/c

o
d

e
s

N
o

N
o

Y
e

s,
as

fr
e

e
te

xt
/c

o
d

e
s

N
o

Y
e

s
N

o

O
u

tp
at

ie
n

t
sp

e
ci

al
is

t
ca

re
d

ia
g

n
o

se
s

Y
e

s,
as

fr
e

e
te

xt
/

co
d

e
s

Y
e

s
N

o
N

o
Y

e
s

N
o

Y
e

s
N

o

H
o

sp
it

al
d

is
ch

ar
g

e
d

ia
g

n
o

se
s

Y
e

s,
as

fr
e

e
te

xt
/

co
d

e
s

Y
e

s,
as

fr
e

e
te

xt
/c

o
d

e
s

Y
e

s
Y

e
s

Y
e

s,
as

fr
e

e
te

xt
/c

o
d

e
s

Y
e

s
Y

e
s

Y
e

s

D
ia

g
n

o
si

s
co

d
in

g
sc

h
e

m
e

IC
D

-9
C

M
IC

D
-9

C
M

IC
D

-9
C

M
IC

D
-9

C
M

IC
P

C
IC

D
-9

C
M

R
C

D
IC

D
-1

0

D
ia

g
n

o
st

ic
p

ro
ce

d
u

re
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

N
o

Y
e

s
fo

r
in

-h
o

sp
it

al
in

te
rv

e
n

ti
o

n
s

Y
e

s
Y

e
s,

in
-h

o
sp

it
al

o
n

ly

La
b

o
ra

to
ry

te
st

s
Y

e
s

Y
e

s
N

o
N

o
Y

e
s

Y
e

s
su

b
se

t
Y

e
s

Y
e

s,
in

-h
o

sp
it

al
o

n
ly

Drug-Induced Myocardial Infarction from EHR

PLOS ONE | www.plosone.org 3 August 2013 | Volume 8 | Issue 8 | e72148



Ethical Approval
The respective Scientific and Ethics committees of each

database approved the use of the data for this study. All of the

databases in the EU-ADR network adhere to local governance

rules regarding the storage of patient data and its use for research

and have well-developed safeguard mechanisms ensuring compli-

ance with the European directives and national regulations; no

individual written informed consent was required for this study.

Distributed Data Processing
A distributed database network approach was chosen in EU-

ADR, allowing database custodians to maintain local control of

their data, while reaching the goal of sharing data in a

standardised manner. Input data files are created locally and are

subsequently managed by purpose-built software called Jerboa�,

written entirely in JavaTM to ensure that it will run in a wide

variety of computational environments. The software queries

patient-level data in the different databases, which are later

aggregated, de-identified and sent in encrypted format to a central

repository for evaluation and further analysis. This repository is

managed by the Department of Medical Informatics at Erasmus

Medical Center in the Netherlands, the project’s coordinating

centre.

Identification and Validation of Cases of Acute
Myocardial Infarction

Each of the databases in the EU-ADR network has unique

characteristics depending on its primary objective and local

function (i.e. administrative claims or medical records) and

contains medical information coded according to different

(natural) languages and disease terminologies. Potential cases of

AMI were identified using search queries that utilised three disease

coding terminologies: (1) International Classification of Primary

Care (ICPC) for IPCI; (2) International Classification of Diseases

9th revision-Clinical Modification (ICD-9CM) for ARS, HSD,

Lombardy, and PHARMO; and (3) ICD-10th revision for Aarhus.

To extract the same event across databases, these different

terminologies were mapped using the Unified Medical Language

System, a biomedical terminology integration system handling

more than 150 terminologies. The mapping ensured that AMI was

described using a common language. We identified AMI from the

databases using an iterative process that included harmonising

definitions based on clinical criteria established from literature,

using diagnosis codes and free text as well as laboratory findings

when available. We inspected differences in event ascertainment

by comparing data queries and benchmarking age-specific and

standardised incidence rates of the events (direct standardisation

was carried out using the WHO World Standard Population). The

incidence rates we obtained in EU-ADR are consistent with what

has been cited in previous literature. The multi-step process of

terminology mapping, harmonisation and benchmarking for the

data extraction for AMI (and for four other events) has been

described in more detail in earlier publications. [25,26] We

reproduce in Figure S1 (available as supplementary file online)

the schematic diagram summarising the harmonisation process of

event identification across the databases in EU-ADR.

Case validation by manual review of hospitalisation records and

GP records was done in a random subset of the cases. The overall

positive predictive value (PPV) for identifying AMI was good,

ranging from 75% (ICPC) to 95% (ICD9-CM) to 100% (ICD-10).

These findings are consistent with PPV estimates for ICD9-CM

and ICD-10 cited in the literature (To date there is no studyL
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describing the PPV of ICPC codes or free text search for

identifying AMI). [27].

Only the first occurrence of AMI (i.e. incident case) was

considered in the analyses; patient time after an AMI was

censored.

Drug Exposure
Drug prescription/dispensing data were used to estimate event

rates during drug exposure and were assessed according to the

Anatomical Therapeutic Chemical (ATC) classification system of

the World Health Organization (WHO) (http://www.whocc.no/

atc/structure_and_principles/). The duration covered by each

prescription or dispensing was estimated according to legend

duration (if dosing regimen is available), or otherwise based on the

defined daily dose (http://www.whocc.no/ddd/definition_and_

general_considera/). Overlapping treatment episodes with the

same drug were combined into a single episode of drug use that

starts when the first prescription begins and stops when the last

prescription ends. When a patient uses more than one drug at a

time, the corresponding person-time is labelled accordingly.

Events are assigned to the episodes (drug use/non-use) in which

they occurred.

Screening for ‘Prime Suspects’
We developed a three-tier triage system (detection, filtering, and

substantiation) that generated a list of drugs potentially associated

with AMI (Figure 1).

Strength of statistical association. In the EU-ADR Project

we have applied a wide range of statistical methods, including

case-based methods (e.g., case control and self-controlled case

series), cohort methods, as well as methods developed initially for

use in spontaneous ADR reporting systems. We have previously

evaluated the relative performance of these methods for detecting

known ADRs from EHR data and our findings showed that

combinations of methods demonstrate good performance in

distinguishing known ADRs from negative controls. [28] Among

these methods, the Longitudinal Gamma Poisson Shrinker (LGPS,

an adaptation of the GPS, a data mining technique widely used in

spontaneous reporting systems to detect potential ADRs) [29] was

the best-performing among the methods. We calculated the

relative risk, RRLGPS and used this to rank the initial list of ‘prime

suspects.’ The results from the different databases were combined

to generate a single risk estimate per drug as if the databases

together form one large database. We did not perform any meta-

analyses. A value of RRLGPS$2.0 and a lower 95% CI of

RRLGPS.1 were used as threshold values for further processing. A

more detailed description of LGPS and how the RRLGPS is

calculated is given in Appendix S1 (available as supplementary

file online).

Alternative explanations for the identified associations:

protopathic bias and confounding. Another method, LEOP-

ARD (Longitudinal Evaluation of Observational Profiles of

Adverse events Related to Drugs), developed in EU-ADR,

attempts to single out associations that may be detected because

the drug is used to treat the event, or a prodrome of the event,

rather than cause it (protopathic bias). [29] For every suspect drug,

LEOPARD compares the rates of prescription starts within a fixed

window (625 days) before and after the event. An increase in the

number of prescriptions after an event relative to number of

prescriptions before the event is taken to be an indication of

protopathic bias. All drug-related AMI flagged by LEOPARD as

possibly due to protopathic bias were eliminated from the list. To

account for possible confounding, we further sorted out the list and

considered only associations that had significant increased risk

estimates based on the matched case-control method (lower 95%

CI of exposure odds ratio (OR).1) or the self-controlled case

series (SCCS) (lower 95% CI of incidence rate ratio

(IRRSCCS).1). In the case control method, each case was

matched to two controls of same age, sex, and index date (i.e.

date of AMI). To adjust for co-morbidity and global patient health

status, we used as proxy the number of different drugs an

individual was exposed to within the period one year and one

month prior to index date. We also employed the SCCS method

which controls for time-fixed confounders such as genetic factors,

Figure 1. Three-tier triage system (detection, filtering, and substantiation) for detecting ‘prime suspects’.
doi:10.1371/journal.pone.0072148.g001
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socio-economic status, individual frailty, and severity of underlying

disease.

Public health importance. To quantify the public health

impact of potentially drug-induced AMI, we used as surrogate the

number of excess cases of patients exposed to the drug relative to

the background unexposed population (observed – expected).

Automated Filtering and Substantiation of Signals
We have developed in the EU-ADR Project a web-based

platform that allows systematic analysis of potential safety signals

through several distributed software, streamlined into a single

computational workflow (https://bioinformatics.ua.pt/euadr).

The entry point of the system is a potential drug safety signal,

which is composed of a drug and its associated adverse event (in

this case AMI). Both signal filtering and substantiation are carried

out using dedicated bioinformatics methods integrated into

processing pipelines by means of Taverna, an open source

workflow management system used to design and execute scientific

workflows and aid in silico experimentation. We provide in Figure
S2 (available as supplementary file online) a schematic represen-

tation of the web platform set up. A more comprehensive

description of the EU-ADR web platform can be found in other

publications. [30,31].

Novel associations. The interest in drug safety surveillance

is discovery of phenomenon describing a ‘new potentially causal

association, or a new aspect of a known association.’ [32] To

discriminate among potentially relevant new and already known

associations, we used the abovementioned web platform to assess

previous reporting of such drugs with AMI in the biomedical

literature and eliminated from the list of ‘prime suspects’ drugs

previously reported to be associated with AMI in more than one of

three biomedical databases: MEDLINE (http://www.ncbi.nlm.

nih.gov/pubmed); DrugBank (http://www.drugbank.ca/); or

DailyMed (http://dailymed.nlm.nih.gov/dailymed/about.cfm).

The Medline ADR signal filtering workflow automates literature

analysis by assessing a list of publications regarding AMI. The

algorithm adopts a semantics-based approach that processes

Medline annotations looking for particular MeSH terms. This

workflow’s output is a direct relationship between AMI and its

descriptions in Medline, if present. In addition, there is a signal

filtering that identifies co-occurrence of the drug and the event (in

this case AMI) in Medline literature (Medline Co-occurrence) or

drug databases such as DailyMed (http://dailymed.nlm.nih.gov/)

or DrugBank (http://www.drugbank.ca/). The workflows use

statistical and text-mining techniques to evaluate drug names,

ATC codes and AMI co-occurrences in the indexed resources.

Substantiation for biological plausibility. As a final

assessment procedure, we retained in the ‘prime suspects’ list only

those associations for which a possible biologic mechanism could

be found. Automatic linkage of biomedical entities (drugs, proteins

and their genetic variants, biological pathways and clinical events)

via customised bioinformatics methods was done to find support-

Figure 2. Schematic representation of the process of substantiation of suspected drug-induced adverse events via proteins (A) and
via pathways (B). (From Bauer-Mehren A, van Mulligen EM, Avillach P, Carrascosa Mdel C, Garcia-Serna R, et al. (2012) Automatic filtering and
substantiation of drug safety signals. PLoS Comput Biol 8: e1002457. Reproduced with permission from the authors).
doi:10.1371/journal.pone.0072148.g002
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ing evidence for the ‘prime suspects’ (see Figure 2). The

associations that passed the screening described above were

processed by a computational framework that identifies pair-wise

relationships between the drug and AMI based on in silico

prediction of drug targets, analysis of drug metabolites and gene-

disease associations. [30].

Using the above substantiation requirement may preclude

finding drugs that induce AMI with mechanisms that cannot be

predicted from the drug’s pharmacological action. To account for

this type of ADRs, we determined which drugs would remain if we

keep those for which the substantiation workflow did not find

anything, but passed the novelty requirement. A manual literature

search was further performed to determine a logical explanation

for these associations.

Table 2. Drugs potentially associated with acute myocardial infarction{.

Therapeutic class Drug
RRLGPS

(95% CI)
OR
(95% CI)

IRRSCCS

(95% CI)
No. of
excess cases

Oral hypoglycemic agent Metformin and sulfonamides 2.5 (2.4, 2.6) 1.9 (1.8, 2.0) 1.5 (1.4, 1.6) 2,445

Antihypertensive Nifedipine 2.1 (2.0, 2.2) 1.6 (1.6, 1.7) 1.8 (1.7, 2.0) 2,097

Systemic corticosteroid Prednisone 2.5 (2.4, 2.6) 1.5 (1.4, 1.6) 2.2 (1.9, 2.6) 1,261

b-adrenergic agonist Salbutamol (systemic) 2.1 (2.0, 2.2) 1.2 (1.2, 1.3) 1.9 (1.6, 2.2) 1,017

Systemic corticosteroid Methylprednisolone 2.3 (2.2, 2.4) 1.5 (1.3, 1.6) 2.0 (1.7, 2.3) 832

Opioid analgesic Tramadol 2.1 (2.0, 2.2) 1.3 (1.2, 1.4) 2.2 (1.7, 2.8) 736

Oral hypoglycemic agent Glibenclamide 2.2 (2.1, 2.4) 1.6 (1.6, 1.8) 1.3 (1.1, 1.6) 686

Antihypertensive Clonidine 2.9 (2.7, 3.1) 1.8 (1.6, 1.9) 2.5 (1.9, 3.2) 650

Systemic antibiotic Clarithromycin 3.5 (3.2, 3.7) 2.4 (2.2, 2.6) 3.3 (2.8, 3.8) 645

b-adrenergic agonist Fenoterol (inhaled) 2.5 (2.3, 2.6) 1.4 (1.3, 1.5) 1.6 (1.1, 2.3) 588

b-adrenergic agonist Salbutamol (inhaled) 2.4 (2.2, 2.6) 1.3 (1.2, 1.4) 1.7 (1.4, 2.2) 510

Systemic antibiotic Amoxicillin 2.2 (2.0, 2.3) 1.6 (1.5, 1.8) 2.0 (1.8, 2.4) 497

Systemic corticosteroid Betamethasone 2.9 (2.7, 3.2) 1.7 (1.5, 2.0) 3.3 (2.6, 4.3) 365

Antacid Magaldrate 2.8 (2.5, 3.0) 1.9 (1.7, 2.2) 4.8 (3.9, 5.9) 365

Systemic antibiotic Phenoxymethylpenicillin 3.6 (3.3, 4.0) 2.6 (2.3, 2.9) 3.8 (3.0, 4.9) 335

Systemic corticosteroid Dexamethasone 3.2 (2.9, 3.5) 1.9 (1.7, 2.2) 5.4 (4.1, 7.2) 285

Antacid Combinations of aluminum,
magnesium, or calcium salts

3.1 (2.8, 3.5) 1.9 (1.6, 2.2) 4.4 (3.3, 5.7) 265

Opioid analgesic Fentanyl 2.5 (2.3, 2.8) 1.2 (1.1, 1.4) 2.1 (1.2, 3.9) 249

Antiemetic/gastric prokinetic Metoclopramide 5.7 (5.1, 6.4) 2.6 (2.2, 3.1) 8.9 (5.1, 15.6) 236

Antiemetic/gastric prokinetic Domperidone 2.8 (2.5,3.1) 1.6 (1.4, 1.8) 3.1 (2.4, 4.0) 229

Systemic antibiotic Azithromycin 2.8 (2.5, 3.2) 1.7 (1.5, 2.1) 2.5 (1.8, 3.5) 159

Systemic antibiotic Pivampicillin 4.5 (3.9, 5.2) 3.1 (2.6, 3.7) 3.6 (2.1, 6.1) 156

Systemic antibiotic Ceftriaxone 8.2 (7.0, 9.4) 5.2 (2.1, 13.1) 5.6 (2.8, 11.0) 154

Nonsteroidal
anti-inflammatory drug

Ketorolac 4.6 (3.9, 5.3) 2.7 (2.1, 3.4) 2.8 (1.7, 4.7) 135

Other anti-anemic Darbepoetin alfa 3.3 (2.8, 3.8) 1.7 (1.4, 2.1) 3.2 (1.8, 5.6) 126

Systemic antibiotic Cefixime 3.1 (2.6, 3.6) 2.4 (1.9, 3.1) 4.4 (3.1, 6.2) 104

Systemic antibiotic Roxithromycin 3.3 (2.8, 3.9) 2.4 (1.9, 3.0) 2.9 (1.8, 4.9) 89

Opioid analgesic Ketobemidone and antispasmodics 2.2 (1.9, 2.6) 1.2 (1.0, 1.5) 2.6 (1.2, 5.7) 78

Systemic antibiotic Dicloxacillin 2.6 (2.2, 3.1) 1.8 (1.5, 2.2) 2.5 (1.2, 5.2) 73

Antiemetic/gastric prokinetic Cisapride 2.1 (1.8, 2.5) 1.2 (1.0, 1.5) 2.4 (1.6, 3.6) 69

Antineoplastic/immunomodulator Azathioprine 2.1 (1.7, 2.4) 1.2 (1.1, 1.5) 3.4 (1.9, 6.1) 69

Oral hypoglycemic agent Gliquidone 2.7 (2.2, 3.2) 2.1 (1.6, 2.7) 2.2 (1.2, 4.0) 66

Systemic antibiotic Erythromycin 3.7 (3.0, 4.6) 2.6 (1.9, 3.4) 2.4 (1.1, 5.1) 63

Systemic antifungal Fluconazole 2.7 (2.2, 3.3) 1.5 (1.2, 2.0) 2.2 (1.2, 4.4) 53

Phosphate binder Polystyrene sulfonate 4.8 (3.6, 6.4) 2.2 (1.5, 3.1) 3.3 (1.1, 10.3) 48

Antiemetic/gastric prokinetic Butylscopolamine 5.8 (4.2, 7.7) 2.1 (1.4, 3.4) 11.3 (5.0, 25.8) 45

Antineoplastic/immunomodulator Megestrol 3.2 (2.5, 4.0) 2.5 (1.8, 3.4) 4.0 (1.8, 9.3) 44

Systemic antibiotic Ceftibuten 2.3 (1.8, 3.0) 1.9 (1.3, 2.7) 3.0 (1.7, 5.2) 31

Systemic antibiotic Rokitamycin 2.6 (1.8, 3.7) 1.8 (1.1, 3.0) 4.3 (2.3, 8.0) 18

doi:10.1371/journal.pone.0072148.t002
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Results

Identifying ‘Prime Suspects’
Overall, we found 235,283 cases of AMI (both drug-related and

non drug-related) during the period 1996–2010, with a back-

ground incidence rate of 153.7 per 100,000 person-years. We

initially identified 163 drugs possibly associated with AMI. We

subsequently flagged, and discarded from the list, 72 drugs as likely

being used to treat prodromal symptoms of AMI rather than cause

it (i.e. due to protopathic bias). Systemic antibiotics comprised

about one-fourth of the suspect drugs (22 drugs out of 91), with the

rest involving 14 other therapeutic classes. Adjustment for

confounding reduced the number of suspect drugs to 39. The

number of excess cases attributable to drug exposure ranged from

18 (for the antibiotic rokitamycin) to 2,445 (for metformin fixed-

dose combinations). Table 2 shows the list of suspect drugs that

passed preliminary screening, ranked according to a surrogate of

public health importance: the number of excess cases.

Filtering and Substantiation to Determine Novelty and
Plausibility of Associations

Out of the 39 drugs that passed initial screening, only 11 are

previously known from literature to be associated with AMI. After

applying criteria for both novelty and plausibility, we arrived at

nine ‘prime suspects’: the systemic macrolide antibiotics erythro-

mycin roxythromycin, and azithromycin; the gastric prokinetic

agents metoclopramide, cisapride, and domperidone; the antifun-

gal fluconazole; and the steroidal drugs betamethasone and

megestrol acetate (see Table 3).

Second Look at ‘Prime Suspects’: Idiosyncratic Reactions
Consideration of associations not substantiated by a known

biologic mechanism increased the number of ‘prime suspects’ to

27 (Table 3). Butylscopolamine is another prokinetic drug;

methylprednisolone is another corticosteroid; while pivampicillin,

phenoxymethylpenicillin, dicloxacillin, ceftriaxone, cefixime, cefti-

buten, and rokitamycin are all b-lactam antibiotics except for the

last one, which is a macrolide. Other drugs include the

bronchodilators fenoterol and salbutamol, antacids, the opioid

ketobemidone, and the phosphate binder polysterene sulfonate.

Discussion

We have described a strategy that identifies and prioritises

potentially drug-induced acute myocardial infarction from rou-

tinely collected healthcare data. We attempted to simulate how a

physician or drug regulator would go about evaluating suspected

drug-induced events. This is the first triage strategy for safety

surveillance developed for use – and tested – in data from

electronic healthcare records. In this strategy, we take into account

public health relevance, novelty, and biological plausibility in

addition to statistical association. Stepwise exclusion of alternative

causes is part of an etiology-based approach for the assessment of

ADRs. [33,34] While usually inherent in physician-reported

ADRs, such is not the case with associations obtained from

secondary healthcare data (particularly with insurance/adminis-

trative claims), which are inferred outside the actual physician-

patient encounter. We tried to offset this limitation by adjusting for

bias and confounding. The mechanisms behind most ADRs are

still not completely understood, but accumulating evidence over

the years indicate the interplay of various factors and increasing

role of inter-individual genetic variants in genes encoding drug-

metabolising enzymes and drug target genes. [35] The triage

strategy we developed takes into account various pathways that

can lead to a plausible explanation of the identified associations.

Because drugs belonging to the same class often have a similar

pharmacological mechanism of therapeutic action and adverse

effects, [36,37] we assumed that associations involving drugs of the

Table 3. ‘Prime suspects’: drugs potentially associated with increased risk of acute myocardial infarction which passed the filtering
(i.e. novelty) and substantiation (i.e. biological plausibility) criteria.

Drugs that satisfied both novelty and plausibility criteria Drugs that satisfied only novelty criterion

Metoclopramide Combinations of aluminum, magnesium, and calcium salts

Cisapride Magaldrate

Domperidone Butylscopolamine

Betamethasone Gliquidone

Erythromycin Metformin combinations with sulfonamides

Roxithromycin Methylprednisolone

Azithromycin Pivampicillin

Fluconazole Phenoxymethylpenicillin

Megestrol acetate Dicloxacillin

Ceftriaxone

Cefixime

Ceftibuten

Rokitamycin

Azathioprine

Ketobemidone and antispasmodics

Fenoterol (inhaled)

Salbutamol (inhaled)

Polystyrene sulfonate

doi:10.1371/journal.pone.0072148.t003
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same class may require more thorough investigation: systemic

antibiotics comprised about 25% of the initial list of suspect drugs.

The proposed mechanism underlying this association is via allergic

angina progressing to AMI. The occurrence of chest pain and

allergic-anaphylactic reaction, accompanied by clinical and

laboratory findings of classical angina pectoris, is caused by

inflammatory mediators released during an allergic insult and

constitutes the so-called Kounis syndrome. [38,39] Several studies

have shown that b-lactam antibiotics may cause allergic reactions

and initiate acute coronary syndrome in hypersensitive individuals.

Clinical manifestations of Kounis syndrome, including electrocar-

diographic findings, are similar to AMI. Kounis syndrome is

largely attributed to the action of cardiac mast cells found in the

coronary artery intimal layer and atherosclerotic plaques; it has

been demonstrated that the density of mast cells in the culprit

atheroma of patients who died from AMI was 200 times higher

than the density in normal coronary vessels from the same

patients. [40] These mast cells become activated during the

allergic reaction and release endogenous mediators, including

histamine, leukotrienes, thromboxane, platelet activation factor,

tryptase, chymase, and rennin - all of which affect different

receptors on the coronary vessel wall that may result in AMI. [41]

Histamine, the main amine released during allergic reactions,

plays a central role in the development of allergic AMI (see
Figure 3). The effects of histamine on cardiac function, including

increased cardiac contractility and heart rate as well as coronary

vasospasm, are mediated via H1- and H2- receptors situated on

the cardiac chambers and coronary arteries. In addition to direct

coronary vasoconstriction and thrombus generating effects,

histamine also potentiates the platelet aggregating response to

adrenaline. Kounis syndrome has previously been described with

use of penicillin, ampicillin, amoxicillin, cefuroxime, cefoperazone,

and cefoxitin. [41] To date, there have been no reports in the

literature associating macrolide antibiotics with the Kounis

syndrome. It is, possible, however, that macrolides induce

coronary vasopasm via the same mechanism as that of the b-

lactams. [42,43] Immediate-type hypersensitivity (i.e. anaphylaxis),

non-immediate reactions like fixed drug eruptions, toxic epidermal

necrolysis and leukocytoclastic vasculitis have been reported with

the use of macrolides. [42,44] Oral contraceptive use in women

and recreational drug use with cocaine are the main culprits

usually implicated when AMI occurs in a young patient with no

clinically evident coronary artery disease (CAD) or other known

cardiovascular risk factors. [45] With recent literature implicating

Kounis syndrome in drug-eluting stent thrombosis, [46] there is

good reason to believe that antibiotic-associated Kounis syndrome

is a condition that clinicians need to be more aware of. Although

the possibility of channeling bias in the association between

macrolides and AMI cannot be discounted (i.e. preferential use of

macrolide antibiotics in those patients who may be at higher risk

for developing hypersensitivity to b-lactams and, consequently, at

risk for developing Kounis syndrome), this association deserves

further investigation.

Among the gastric prokinetic drugs, cisapride has the most well

characterised cardiac adverse effect profile, which includes

ventricular arrhythmia, QT prolongation and torsades de pointes.

[47,48,49] Both metoclopramide and domperidone have also been

reported to have arrythmogenic potential. [50] The effects of these

drugs on the cardiovascular system are related to their action on

dopaminergic and 5-HT receptors; this could be the same

mechanism that predisposes to myocardial ischemia or infarction,

although how this may happen is yet unclear. [51].

Figure 3. Central role of histamine in drug-induced acute myocardial infarction via Kounis syndrome. Aside from its direct
vasoconstricting and thrombus-generating effects, histamine also potentiates the platelet aggregating response to adrenaline (dotted outline).
doi:10.1371/journal.pone.0072148.g003
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Long-term use of some drugs may increase risk for AMI by

accelerating development of atherosclerosis and CAD. Any drug

that alters the modifiable risk factors for CAD (e.g., cigarette

smoking, elevated plasma low-density lipoprotein cholesterol,

reduced plasma high-density lipoprotein cholesterol, hypertension,

obesity, and diabetes) [52] has the potential to increase the risk of

AMI. Lipodystrophy, weight gain, and hypertension are known

corticosteroid-induced adverse effects. [53] Hyperlipidemia is

usually associated with long-term corticosteroid use and cases of

AMI with use of systemic corticosteroids have also been

documented. [54] In a Danish study of patients with out-of-

hospital cardiac arrest, use of corticosteroids, bronchodilators, and

antipsychotics were found to have the strongest association up to

30 days before the event. [55] Moreover, corticosteroids are used

in patients with systemic lupus erythematosus (SLE), psoriasis, and

other rheumatologic diseases - accelerated atherosclerosis and

premature CAD are recognised complications of these disorders,

although the exact etiology remains unclear and is likely to be

multifactorial. [56,57] Megestrol acetate, a progesterone derivative

used for hot flushes and for palliative treatment of hormone-

dependent malignant neoplasms, may predispose to AMI via its

effects on known cardiovascular risk factors: weight gain,

hypertension, and hyperglycemia or diabetes mellitus occur with

use of megestrol via glucocorticoid action-mediated increased

peripheral insulin resistance, especially with long-term use.

[58,59,60] Fluconazole has been associated with cardiac adverse

effects including QT prolongation and torsades de pointes, [61,62]

but not with myocardial ischemia or infarction. Another drug

belonging to the same class, itraconazole, has been described as

causing a negative inotropic effect resulting in hypertension,

hypokalemia, and edema (congestive heart failure). [63,64] The

product label of itraconazole has been changed to include a

warning to avoid administration to patients with evidence, or

history, of heart failure (http://dailymed.nlm.nih.gov/dailymed/

lookup.cfm?setid = a4d555fa-787c-40fb-bb7d-b0d4f7318fd0).

Azole antifungals may trigger AMI in those already at risk by

modifying lipid profile, an important determinant of cardiovascu-

lar risk. The product label of fluconazole indicates that there have

been post-marketing reports of both hypercholesterolemia and

hypertriglyceridemia with fluconazole use (http://dailymed.nlm.

nih.gov/dailymed/lookup.cfm?setid = f694c617-3383-416c-91b6-

b94fda371204). Drug-drug interactions may also play a role in the

development of AMI, especially in high-risk patients who are

taking multiple cardiac drugs: all the azole antifungals inhibit

CYP450 enzymes to some degree and may predispose to adverse

cardiac complications, including rhythm problems and ischemia

or infarction. [65,66].

There are many recognised ADRs which cannot be predicted

from a drug’s pharmacological action and whose mechanisms

remain unclear and have yet to be elucidated. [67,68] We looked

at novel associations which were not obviously explained by the

drug’s pharmacology. Doing away with the substantiation

requirement, however, yielded drugs that are similar to those

already described.

Strengths and Limitations
We took into account global health status and co-morbidities,

but residual confounding cannot be ruled out. Dose-response

relationships, carryover effects, and effect of concomitant use of

other drugs (including drug-drug interactions) were not considered

in this triage strategy. Many new molecular entities are introduced

into the market every year and databases that catalog the

pharmacology and toxicology of these drugs (including informa-

tion on molecular targets and gene associations) need to be

continually updated. Furthermore, many of these bioinformatics

databases may not be publicly available and hence not easily

verifiable. Automated filtering and substantiation streamlined the

triage and greatly reduced manual work, but full automation is still

not possible at this time. Manual verification of the output

produced by these workflows, in terms of both accuracy and

completeness, remains a crucial step. Finally, safety surveillance

for ‘prime suspects’ in electronic healthcare data is, by definition, a

hypothesis-generating exercise. Formal clinical and epidemiologic

studies to investigate the associations identified by the triage

system as necessitating follow-up are obvious and necessary next

steps.

Conclusions

We have proposed a strategy to identify potentially drug-

induced acute myocardial infarction using electronic healthcare

records that takes into account not only statistical association, but

also public health relevance, novelty, and biological plausibility.

Although this strategy needs to be further evaluated using other

healthcare data sources, the list of ‘prime suspects’ makes a good

starting point for further clinical, laboratory, and epidemiologic

investigation.
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