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General introduction

Acute Kidxney Injury

Acute kidney injury (AKI) represents an abrupt decrease in renal function that leads to
accumulation of nitrogenous waste products such as blood urea nitrogen and creatinine.
AKI refers to a complex disorder that comprises multiple causative factors (ischemic,
nephrotoxic and septic components with overlapping pathofysiological mechanisms)
and occurs in a variety of settings with numerous clinical manifestations that range from
minimal elevation in serum creatinine (SCr) to anuric renal failure. In the critical care
setting, AKI affects 5-25% of patients and accounts for an overall mortality rate of 50-
80% [1]. Once established the treatment of AKI is largely supportive, unsatisfactory and
associated with a poor prognosis [2]. Furthermore, AKI is independently associated with
an increased risk of death and with a prolonged length of stay [3]. Even small changes
in SCr can affect outcome in severely ill patients with multiple-organ dysfunction [4,
5]. Progressive insight in pathofysiological mechanisms of AKI has shown that tubule
cell necrosis is rarely encountered in human acute renal failure, indeed the disparity
between the severe impairment of renal function and the relatively subtle histological
changes in AKI have been bothersome.

Definition of AKI

Over 35 definitions have been used to define AKI in the nephrology literature [6].
This is a result from the well recognized uncertain relationship between “the gold
standard biomarkers” (serum creatinine and urine output) and the AKI disease process.
Creatinine is the product of the breakdown of creatine to phosphocreatine in skeletal
muscle and of the subsequent liver metabolism of creatine to form creatinine. It is
released into plasma and filtered by the glomerulus. A small amount is also secreted
into the urine through active transtubular transport. Creatinine is not reabsorbed in the
tubules or metabolized by the kidney. If filtering of creatinine is deficient, blood levels
rise with an inverse hyperbolic relationship with GFR (Figure 1). Thus, SCr is not an
injury marker but rather a reflection of functional glomerular filtration. It is an unreliable
indicator during acute changes in kidney function for several reasons. First, SCr levels
can vary widely with age, gender, lean muscle mass, muscle metabolism, and hydration
status. Second, SCr concentrations may not change until about 50% of kidney function
has already been lost (Figure 1). Third, tubular excretion, especially at lower rates of
glomerular filtration, results in an overestimation of renal function. Finally, during acute
changes in glomerular filtration SCr does not accurately depict kidney function until
steady state equilibrium has been reached which may require several days. Still, for
lack of a better alternative, the Acute Kidney Injury Network (AKIN) introduced the term
“AKI"” based upon relative changes of SCr during their first consensus meeting in 2005.
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Figure 1: The physiological relationship between serum creatinine concentration and estimated
glomerular filtration rate.

RIFLE and AKIN criteria

The acute Dialysis Quality Initiative (ADQI) formulated a consensus definition: the risk,
injury and failure, loss, end-stage renal disease (RIFLE) classification for AKI [7]. It is
based upon the relative changes in SCr compared to a steady state baseline value and
changes in urine output (UP) over time corrected for ideal body weight (Table 1A). Later
AKIN, an organisation dedicated to the improvement of outcomes for patients with AKI,
proposed small modifications to the RIFLE system [8]. These modifications are based
upon the particular inability of SCr to reliably define AKI in the milder forms of the
disease. The primary change was to include a 0.3 mg/dl (= 27 pmol/l) rise in SCr even
if it was less than 50% increase from baseline. And a 48 hour window was proposed in
order for the first criterion to be achieved (staging according would then be based on the
worst values during hospital stay) (Table 1B). Several limitations must be recognized
using this consensus definition: First, the introduction of urine output criteria may add
more confusion since oliguria can be masked by diuretics. Second, the conversion of a
continuous variable to a dichotomous outcome is a problem: AKI or no-AKI, a cut-off is
arbitrarily applied. Third, an inherent limitation is the need for a steady state baseline
SCr value which is often very difficult to establish in emergency medicine.

Biomarkers

The imperfections of SCr urged the need to discover novel injury markers. Therefore, the
identification of AKI biomarkers has been designated as a top priority by the American
Society of Nephrology. Functional genomics and DNA micro array-based technologies
have provided expression profiles of thousands of upregulated genes in case of AKI. These
studies have identified novel genes with altered expression and new signal transduction

pathways. Their protein products appear in plasma and urine and have been proposed
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as promising new tools in the detection of (subtle) cellular injury. In general and ideally,
biomarkers should aid in early diagnosis and prediction but may serve several other
purposes in AKI. Such as: discerning AKI subtypes (prerenal, intrinsic renal, post renal);
identifying AKI etiologies (ischemia, toxins, sepsis or a combination); differentiating AKI
from other forms of kidney disease; predicting AKI severity; monitoring the course of
AKI; and monitoring the response to AKI interventions. The biomarkers described in this
thesis can be divided in three major categories: functional markers, upregulated low

molecular weight proteins and constitutive cytoplasmatic enzymes.

Functional biomarkers

Plasma Cystatin-C

Cystatin-C (CyC) is a 13 kDa cysteine protease inhibitor that is synthesized and released
into the blood at a relatively constant rate by all nucleated human cells. It is freely
filtered by the glomerulus and under normal conditions completely reabsorbed in the
proximal tubule. Furthermore there is no evident transtubular secretion. Although it
is generally considered less subject to the non-renal variables that impact creatinine,
some studies suggest that levels may be affected by various measures, as well as
inflammatory processes, use of corticosteroids and changes in thyroid function [9-11].
With a half-life of 2 hrs, plasma CyC reflects glomerular filtration better than SCr in
patients with chronic kidney disease [12].

Upregulated low molecular weight proteins

Neutrophil Gelatinase-associated Lipocalin

Neutrophil gelatinase-associated lipocalin (NGAL) is a small (35 kDa) iron trafficking
protein that is produced by epithelial cells throughout the human body (kidney,
lungs, stomach, and colon) and is furthermore present in specific granulae of human
neutrophils [13]. In healthy nephrons it can be detected in the distal tubular epithelial
cells and the collecting ducts in small amounts, where it is believed to play a role in
bacterial defense mechanisms. In case of AKI, NGAL mitigates iron-mediated toxicity by
providing a reservoir for excess iron and may provide a regulated source of intracellular
iron to promote regeneration and repair. Besides the transportation of iron, NGAL plays a
critical role in kidney development during conversion of kidney progenitors into epithelia
and tubules. Administration of NGAL in experimental models before, during or shortly
after ischemic injury provides protection at the functional and structural levels with an
induction of proliferation and inhibition of apoptosis of tubule epithelial cells [14-17]. In

15
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AKI, plasma NGAL is easily filtered and undergoes a megalin-cubulin mediated re-uptake
process in the proximal tubular cells where NGAL is degraded in specific lysosomes [18].
In distal tubular injury NGAL is generated in large amounts which can be detected in
the urine [19]. However, urinary NGAL excretion is proportional to albumin excretion
in mouse models of diabetic nephropathy and is thus augmented when the proximal
transport maximum is exceeded [15, 19, 20]. NGAL measurements may be influenced
by a number of coexisting variables such as preexisting renal disease and systemic or
urinary tract infections [21].

Kidney injury molecule -1

Kidney injury molecule-1 (KIM-1) is a type-1 transmembrane glycoprotein localized
to the apical membrane of exclusively surviving proximal tubular epithelial cells after
injury. In normal renal tissue and normal urine it is not detectable (<0.1 ng/ml)[22].
KIM-1 expressing epithelial cells phagocytose intra luminal apoptotic and necrotic cell
debris and the KIM-1 ectodomain is shed into the urine [23, 24]. Therefore it has been

proposed as a site specific marker in AKI.

Constitutive cytoplasmatic enzymes

Glutathione-S-transferase

Alpha-glutathione-S-transferase (a-GST) and pi-GST (n-GST) are constitutive
cytoplasmatic enzymes belonging to a large family of molecules participating in the
defense against oxidative stress. The GST enzymes are present in many tissues in the
human body and are involved in detoxification of foreign compounds by the addition of
glutathione to a wide variety of xenobiotics. In the kidney, a-GST is localized exclusively
in the proximal tubular cells, whereas n-GST is detectable in distal tubular cells and
glomerular podocytes in Bowman’s capsule. Although they are also present in human
plasma, glomerular disorders do not result in an increase in urinary concentrations
[29-31]. Therefore it is proposed that urinary excretion of GST might be a reflection of
the site of tubular injury when the tubular cell wall integrity is damaged.

Renal replacement therapy

Approximately 5% of general ICU patients are treated with renal replacement therapy
(RRT) which represents a substantial escalation in the complexity and cost of care for
critically ill patients with AKI. Despite the extensive use in critical care practice there is
uncertainty about the optimal time and indications for initiation of RRT in the ICU. Studies
have shown marked variation of practice between clinicians and across institutions and
countries mainly driven by logistic reasons [34, 35]. Currently there exists no broad



consensus to guide clinicians on this issue. With the emerging biomarkers and their
predictive properties for AKI and its severity, they might be able to provide some

guidance in determining more specific timing.

Aim and outline of this thesis

The aim of this thesis was to asses the predictive value of several biomarkers of
different origin for acute kidney injury in adult critically ill patients and to study their
biological behaviour. Furthermore, we tried to answer why such experimentally proven
highly sensitive markers have less predictive power in general critically ill patients. The
basis of this thesis was founded by a prospective cohort study performed at the ICU
of the Erasmus University medical center including 700 consecutively admitted adult
critically ill patients, recruited from September 2007 till April 2008 for plasma and urine
measurements. A sample and databank were created and several research questions
were intended to be answered by the information generated form this dataset. In Part
A we discern a describing part of the biological and pathofysiological background of
biomarkers for AKI and an observational part where we describe the predictive ability of
plasma and urine NGAL, plasma and urine Cystatin-C, urine KIM-1, urine Pi- and Alpha
GST. Furthermore, we studied several confounding factors that affect the interpretation
of biomarker values such as a systemic inflammatory response syndrome in severe
sepsis and septic shock, the role of sampling time relative to the injurious renal hit and
the site of renal injury. Part B describes a possible role of plasma NGAL in the decision
to initiate renal replacement therapy and a clinical nomogram is proposed as a tool for
clinicians to aid their decision to start early on (right after ICU admission) with renal

replacement therapy.

17
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Research questions

1. What is the available evidence on different biomarkers predicting and diagnosing
AKI in adult critically ill patients?

2. What is the predictive value of plasma and urine NGAL measured at ICU admission
for AKI in general adult critically ill patients? Is there any additional value of both
markers above serum creatinine and other clinical parameters? Is there additional
value of serial measurements in this prediction?

3. Are plasma NGAL, urine NGAL, plasma CyC and urine CyC capable of differentiating
between developing sustained AKI, developing transient AKI or no-AKI in adult
patients at ICU entry? Does the prediction for sustained AKI improve when urine
NGAL is combined with the other markers?

4. What is the effect of severe sepsis and septic shock on plasma NGAL's diagnostic
ability for AKI?

5. How does sampling time relative to the time of the injurious event affect the
predictive ability of the urinary biomarkers NGAL, KIM-1, Pi- and Alpha GST?

6. What is the clinical evidence for biomarkers aiding the prediction of need for renal
replacement therapy and can we propose an algorithm in which biomarkers may aid
in the timing of initiation of RRT?

7. Can we create a clinical scoring system for risk assessment of initiation of RRT that
can aid a clinician in his decision to start RRT?

8. What is the effect on plasma NGAL clearance during RRT applying a high cut-off
hemofilter during continuous veno-venous hemofiltration?
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Abstract

Acute kidney injury (AKI) is strongly associated with increased morbidity and mortality
in critically ill patients. Efforts to change its clinical course have failed because clinically
available therapeutic measures are currently lacking, and early detection is impossible
with serum creatinine (SCr). The demand for earlier markers has prompted the
discovery of several candidates to serve this purpose. In this paper we review available
biomarker studies on the early predictive performance in developing AKI in adult
critically ill patients. We make an effort to present the results from the perspective of
possible clinical utility.



Introduction

Acute kidney injury (AKI) represents an acute decline in renal function, which leads
to structural changes. AKI is associated with increased mortality, length of hospital
stay and costs [1]. This unfavorable outcome might be tied to the late detection of
AKI when the elevation of serum creatinine (SCr) is used. Many genes are upregulated
in the damaged kidney with the corresponding protein products appearing in plasma
and urine. Some of these are candidate markers for more timely diagnosis of AKI. The
purpose of this paper is to review the current state of epidemiological data concerning
AKI, to evaluate available biomarkers for the prediction of AKI and to describe several
potential therapeutic options.

Epidemiology of AKI in critically ill patients

The Beginning and Ending supportive therapy for the Kidney investigators study (BEST
Kidney study) has provided recent global insight as to the prevalence of patients with
AKI. The reported mortality rate is 60.3%, with sepsis and premorbid renal dysfunction
being dominant causes. In this observation, 13.8% of the patients with ARF surviving
until hospital discharge required chronic renal replacement therapy (RRT) [2]. AKI and
AKI requiring RRT display increasing incidence due to the rising degree of co-morbid
conditions, increasing age and severity of illness in critically ill patients [3]. However,
there seems to be a steady-state decline in annual in-hospital mortality (from 41.3% in
1988 to 28.1% in 2002). Despite the observed reduction in mortality rates, the rising
incidence of AKI comes at a price. Patients tend to survive the ICU but will be discharged
with various degrees of chronic kidney disease (CKD), which will increasingly strain the
health care system [4]. These data are supported by observations from Australia, where
the 10-year trend in the incidence of AKI and the crude hospital mortality rates adjusted
for illness severity were likewise investigated. In this study 5.2% of the patients
have AKI with an increased incidence over the past decade; however the multivariate
adjusted odds of death associated with AKI shows a declining trend. The increased
risk of death associated with AKI persisted with the adjustment for several relevant
covariates. ARF exerts an independent, profound and specific effect on morbidity and
mortality in critically ill patients [5]. Furthermore, outcomes are directly related to the
severity of AKI: even small changes in SCr have a detrimental impact on patient long-
term survival [1, 6].
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Biomarkers for the prediction of AKI

The ability of biomarkers to predict AKI has been studied intensely in several different
clinical settings. For a sound interpretation of the reported results, it is important to
realize that the studies present a mixture of "AKI diagnosis confirmation” in patients with
established AKI and “AKI early prediction” in patients with developing AKI. Obviously,
these are two different entities with different clinical impacts. For the clinical application
of a new biomarker it should prove to be more accurate with earlier detectability than
the current gold standard SCr, which implies “early prediction” only. Therefore, this
review focuses on the prediction of developing AKI in adult critically ill patients. There
are four major categories of biomarkers (Table 1).

Functional markers

Serum creatinine (SCr)

Serum creatinine (SCr) is a degradation product of muscle cells and represents a
surrogate for the efficiency of glomerular filtration. It has poor predictive accuracy for
renal injury ,particularly, in the early stages of AKI [7]. In the case of critical illness,
SCr concentrations are subject to large fluctuations due to a patient’s induced dilutional
volume status, the catabolic effects of critical illness, the likelihood of concentration
decreases in septic conditions and the increased tubular excretion with diminishing
renal function. Furthermore, after an injurious event, the rise in SCr is slow. Therefore,
detection of the earliest evidence of AKI necessitates the use of other plasma or urinary
biomarkers.

Plasma/serum Cystatin-C (CyC)

Cystatin C (CyC) is a 13-kDa nonglycosylated cysteine protease inhibitor produced
by all nucleated cells at a constant rate. In healthy subjects, plasma CyC (pCyC) is
excreted through glomerular filtration and metabolized completely by the proximal
tubules. Furthermore, there is no evident tubular secretion. Several studies claim the
superiority of pCyC against SCr to detect minor reductions in GFR [8]. However, the
interpretation of pCyC levels is biased by older age, gender, weight, height, cigarette
smoking and high levels of CRP [9, 10]. In addition, CyC levels are supposedly
influenced by abnormal thyroid function [11, 12] the use of immunosuppressive therapy
[13] and malignancies [14, 15]. In 318 patients included at ICU admission, pCyC
predicted developing sustained AKI (n=19) very modestly (AUC= 0.65 [ CI 0.58-0.71]
in univariate analysis [16]. Herget-Rosenthal described a cohort in whom sCyC was
measured at admission in 85 patients with normal GFR. The reported AUC was 0.82 [CI
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0.71-0.92] for acute renal failure two days prior to the event [17]. A recent multicenter
study in 151 subjects in a comparative setting found a poorer performance (AUC= 0.72
no CI provided) [18]. Metzger et al. compared the classification performance of a set of
urinary proteome analyses with sCyC in 20 general ICU patients, retrospectively, and
found low classification accuracy (AUC = 0.67 CI not provided) [19].

In cardio pulmonary bypass (CPB) cohorts, several studies explored the use of CyC for
AKI prediction. Haase-Fielitz et al. described 100 cardiac surgical patients among whom
23 subjects were classified as patients without preoperative renal impairment. Their
samples were measured at ICU arrival, and the reported AUC= 0.78 [CI 0.58-0.99]
did not improve after 24 hours [20]. Koyner et al. reported on 72 patients who were
admitted following CPB with 34 subjects developing AKI, which was defined as a 25%
increase in pCr or the need for RRT (n=7) within 3 days after surgery. PCyC measured
at time of ICU arrival was not a useful early predictor for the composite outcome AUC=
0.62 [0.49-0.75] [21]. A likely explanation is the applied unusual definition of AKI,
which indicates less severe grades of AKI among the event group.

Upregulated proteins

Neutrophil Gelatinase-Associated Lipocalin (NGAL)

NGAL is a small protein linked to neutrophil gelatinase in specific leukocyte granules
[22]. It is also expressed in a variety of epithelial tissues associated with antimicrobial
defense [23-26]. In the normal kidney, only the distal tubules and collecting ducts
stain for NGAL expression. NGAL's composite molecule binds ferric siderophores, and
furthermore, it is a potent epithelial growth inducer, has protective effects in ischemia
[27] [28] and is upregulated by systemic bacterial infections [24, 29-32]. In case of AKI,
proximal tubule cells also stain for NGAL proteins, which is explained by megalin-cubulin
mediated re-uptake of NGAL present in the glomerular filtrate [33] [34]. Urinary NGAL
originates from local production in the distal tubules and collecting ducts. However,
uNGAL excretion is proportional to albumin excretion in mouse models of diabetic
nephropathy and is thus augmented when the proximal transport maximum is exceeded
[33, 35, 36]. Siew et al. enrolled their patients within 24 hours after admission and
reported a ROC AUC=0.77 [CI 0.64-0.90] for developing AKI in a subgroup of patients
with eGFR at admission > 75 ml/min/1.73m?for urine NGAL (n=18 vs. 257)[37]. Cruz et
al. reported on the development of AKI within 48 hours after first sampling an AUC=0.78
[CI 0.65-0.90]. However, the reported PPV was low (24%), and within 5 days, the AUC
was reduced to 0.67 [CI 0.55-0.79] [38]. The first sampling was performed within
24 hours after ICU admission. De Geus et al. came to roughly similar reports with
samples at ICU admission in patients with eGFR > 60ml/min/1.73m? for both plasma



and uNGAL (AUC=0.75%(SE) 0.103) AUC NGAL=0.79+(SE) 0.085 [39]. It is debatable
whether the exclusion of patients with eGFR’s below 75 or 60 ml/min/1.73m?applied by
Siew and de Geus et al. is useful in clinical practice, because a biomarker should also
be effective in patients with CKD. In patients with sepsis, the predictive performance
for AKI seemed not to be affected, as reported by Martensson for both plasma and
urine NGAL (respectively, AUC’s= 0.85 [CI 0.67-1.0] and 0.86 [CI 0.68-1.0]) [40].
However, Bagshaw et al report a distinct influence on test characteristics in patients with
sepsis [41]. Several studies report results in CPB cohorts: Koyner et al. measured both
pNGAL AUC 0.526 [0.388-0.664] and uNGAL AUC= 0.705 [CI 0.581-0.829] [21] at ICU
admission. An additional analysis by the same authors stratified their patients according
to attained RIFLE stage and reported increased performances when using the harder
endpoint of Failure AUC=0.69 [0.57-0.80] and AKIN stage 3 AUC= 0.79 [0.65-0.94]
[42]. A large study (n= 426) in CPB patients demonstrated test performance association
with the pre-surgery baseline eGFR. Interestingly, only in patients with an eGFR above
60 ml/min was NGAL predictive: AUC=0.68 [CI 0.54-0.81] [43]. A much smaller
study (n=9 events) reported values for both pNGAL and uNGAL, corrected for urinary
creatinine: AUC= 0.85[CI 0.73-0.97] and AUC= 0.96 [CI .90-1.0], respectively [44].
Haase-Fielitz compared the performance of conventional and novel markers for pNGAL
in adult CPB patients, excluding patients with preoperative renal impairment NGAL: the
results yielded AUC=0.80 [CI 0.58-0.99] [20]. In another large study (n=8790) for
pNGAL measured immediately after CPB with 75 events, the AUC reported was 0.641
[0.58-0.71] [45]. Wagener et al. performed a study in adult CPB patients: for urine
NGAL, the predictive performance was AUC=0.573 [CI 0.506-0.640] directly after the
operation: the performance increased until 18 hours after ICU admission to a maximum
of 0.611 [46]. In a study performed by Liangos et al. these results were similar in 103
CPB patients 2 hours after surgery: AUC= 0.50[CI 0.33-0.68] [47]. Among general
adult ICU patients, 82 subjects developed AKI within 48 hours of admission, and the
predictive performance for NGAL corrected for urinary creatinine concentration yielded
AUC=0.55 [CI 0.48-0.63] [48]. Metzger et al. compared the classification performance
of urinary proteome analysis with classical markers. For urine NGAL, the ROC analysis
revealed low classification accuracy: AUC = 0.54 CI (not provided) [19]. The only meta-
analysis published to date assessed pNGAL's ability to predict across different settings;
when weighted for study sample size, this value yielded an overall AUC of 0.782 [CI
0.689-0.872]. [49].

Kidney Injury Molecule-1 (KIM-1)

Kidney Injury Molecule-1 (KIM-1) is a type I transmembrane glycoprotein with a cleavable
ectodomain (90 kDa) which is localized in the apical membrane of dilated tubules in acute
and chronic injury [50, 51]. Kim-1 is believed to play a role in regeneration processes
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after epithelial injury and in the removal of dead cells in the tubular lumen through
phagocytosis [50, 52]. A reduction in proteinuria with RAAS blockade is accompanied by
a reduction in urinary KIM-1 excretion [53, 54]. Among general adult ICU patients, 82
subjects developed AKI within 48 hours of admission, and the predictive performance
for KIM-1 corrected for urinary creatinine concentration yielded AUC=0.55 [CI
0.47-0.62] in the study of Endre et al [48]. Metzger et al. compared the classification
performance of urinary proteome analysis with classical markers. For urine KIM-1, the
ROC analysis revealed low classification accuracy (AUC = 0.71 CI, not provided) [19].
Several studies report its diagnostic properties in adult CPB patients [42, 47, 55-57] .
Liang et al. reported an AUC for progressive AKI of 0.69 [CI 0.61-0.78] after 6 hours of
inclusion. Notably, adding KIM-1 to IL-18 (AUC for IL-18 for progressive AKI 6 hrs after
inclusion was 0.87 [CI 0.80-0.93]) in a predictive model improved the model’s accuracy
only minimally (AUC 0.88 [CI 0.82-0.93]). Liangos et al. reported an AUC 2 hours
post-CPB surgery of 0.78 [CI 0.64-0.91]: however, in multivariate regression analysis,
the association of KIM-1 was attenuated after adjustment. Koyner et al. found an AUC
0.56 [CI 0.45-0.67] as admission value for the entire cohort with an improvement when
predicting AKIN stage 3 only (AUC=0.69 [CI 0.44-0.93]) [42].

Liver Fatty Acid Binding Protein (L-FABP)

Fatty Acid Binding Proteins are small (15 kDa) cytoplasmatic proteins abundantly
expressed in tissues with active fatty acid metabolism. Their primary function is the
facilitation of long-chain fatty acid transport, the regulation of gene expression and the
reduction of oxidative stress. Urinary L-FABP is undetectable in healthy control urine,
which is explained by efficient proximal tubular internalization via megalin-mediated
endocytosis [58] [59]. Under ischemic conditions, tubular L-FABP gene expression is
induced; in renal disease, the proximal tubular re-absorption of L-FABP is reduced [59,
60]. To date, there is one small study reporting on the early diagnostic performance of
L-FABP in adult ICU patients. The reported ROC AUC value was 0.95, no CI provided.
However, several uncertainties remain after disclosure of the study’s methodology. First,
patient selection (n=25 with 14 AKI and 11 non-AKI) seems to have been a result of
convenient sampling. Second, the “true early diagnosis” remains very doubtful as peak
SCr and L-FABP values are reported as having the same median value; no further clear
information concerning timing is provided [61].

Interleukin -18

In animal models, Interleukin-18 (IL-18) has proven to be an important mediator in the
process of AKI. Therefore, its urinary release has been anticipated as a possible early
marker: several studies have explored the clinical application of this hypothesis.



Among general adult ICU patients, 82 subjects developed AKI within 48 hours of
admission, and the predictive performance for IL-18 corrected for urinary creatinine
concentration was AUC=0.55 [CI 0.47-0.62] [48]. Metzger et al. compared the
classification performance of urinary proteome analysis with classical markers. For
urine II-18, the ROC analysis revealed low classification accuracy (AUC = 0.57 CI not
provided) [19]. Nevertheless, in a large cohort of mixed patients (n=451) Siew et al.
enrolled patients within 24 hours after ICU admission: 86 developed AKI. The overall
predictive performance reported was AUC=0.62 [CI 0.54-0.69]; this value increased
slightly in patients with an eGFR above 75 ml/min/1.73m? (AUC= 0.67 [CI 0.53-0.81]).
There seemed to be a strong association with sepsis [62]. In patients with acute lung
injury (ALI), uIL-18 predicted progression to AKI within 24 hours with an accuracy of
AUC=0.731 (CI not provided) with substantial overlap between cases and controls in
urine concentrations [63]. In CPB patients, 2 hr after CPB time, the optimal performance
was reported to yield an AUC= 0.66 [CI 0.49-0.83][47].

Low molecular weight proteins

Urine Cystatin C

The urinary excretion of CyC (uCyC) specifically reflects tubular damage because
systemically produced Cystatin C is normally not found in urine [64]. However, recent
insights show that urinary CyC excretion is augmented by albuminuria [65] In patients
without AKI on ICU entry, uCyC was not predictive of AKI occurring within 48 hours
with AUC= 0.54 [CI 0.46-0.62] [66]. Liangos et al. used uCyC for this prediction, which
resulted in very moderate performances 2 hours post-CPB surgery with ROC AUC=
0.50 [CI 0.27-0.72] in a cohort of 103 patients with 13 events of AKI [47]. In a study
in patients undergoing CPB, Koyner et al. demonstrated that uCyC measured at ICU
admission reached a maximum performance with an AUC of 0.693 [CI 0.567-0.818].
[21][48] Among general adult ICU patients, 82 subjects developed AKI within 48
hours of admission and the predictive performance for urine CyC corrected for urinary
creatinine concentration yielded AUC=0.55 [CI 0.48-0.63]. Another study performed by
Koyner et al. demonstrated the predictive value of uCyC at ICU admission for any stage
of AKI with AUC=0.72 [CI 0.61-0.83]. For the prediction of AKIN stage 3 vs. the rest
of the cohort, the predictive performance increased to AUC=0.84 [CI 0.68-0.99] [42].
Royakkers et al. regarded uCyC as a predictor for AKI 2 days prior to the first day of AKI
and found no diagnostic value (AUC=0.49 no CI provided) [18].

w

w
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Tubular Enzymes

Alpha-Glutathione s-transferase (a-GST) and Pi-Glutathione s-transferase
(n-GST)

Alpha-Glutathione s-transferase (a-GST) and Pi-Glutathione s-transferase (n-GST)
are both members of a multigene family of detoxification enzymes present in many
organs including the kidney. Distribution across the entire nephron of structurally and
functionally distinct isoforms has been demonstrated. In urine, these enzymes are
normally not present. After injury, a-GST is primarily detected in the proximal cells,
whereas n-GST is observed in the distal parts [67]. Westhuyzen et al. studied the
predictive performance of tubular enzymes and their combination in adult critically ill
patients. Four patients developed AKI defined as a 50% SCr increase or more. At the
time of ICU admission, a-GST and n-GST measured and indexed to urine creatinine
provided AUC’s of 0.893 [ CI 0.688-0.975] and 0.929 [ 0.740-0.990] respectively.
[68]. However, the patients with AKI seemed to have established AKI at study inclusion
with a median creatinine clearance of 38.1 ml/min. Walshe et al. reported that in
patients with developing AKI and sepsis admitted to the general ICU, both enzymes
were bad predictors. They suggested that sepsis might be the confounder triggering
the production of these enzymes [69]. Finally, a study by Koyner et al. in 123 adult
CPB patients reported AUC=0.59 [CI 0.47-0.71] and 0.54 [0.42-0.66] for the prediction
of AKI stage 1 for a-GST and n-GST measured at ICU unadjusted for urine creatinine
arrival, respectively, with similar test performances when using the harder endpoint of
AKIN stage 3 AUC= 0.58 [0.31-0.85] and AUC= 0.70 [0.50-0.90] [42] .

Gammaglutanyl transpeptidase (GGT) and Alkaline Phosphatase (AP)
Gammaglutanyl transpeptidase and alkaline phosphatase both are tubular brush border
enzymes that are released into urine when there has been significant damage to the
brush border membrane with loss of the microvillus structures. Few clinical studies are
available, but Westhuyzen et al. report data on 4 cases with developing AKI respectively
of AUC= 0.950 [CI 0.789-0.999] and AUC= 0.863 [CI 0.676-0.973] [68]. However,
these results should be interpreted with caution, because the cases must be considered
as established AKI at study inclusion according to their reported creatinine clearance. In
general adult ICU patients, 82 subjects developed AKI within 48 hours of admission and
the predictive performance for urine GGT and urine AP corrected for urinary creatinine
concentration AUC=0.57 [CI 0.50-0.64] and AUC 0.56 [CI 0.49-0.63], respectively
[48].
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N-acetyl-pB-D-glucosaminidase (NAG)

N-acetyl-B-D-glucosaminidase (NAG) is a lysosomal enzyme (> 130 kDa) that is localized
in the renal tubules. Due to its large molecular weight, it precludes glomerular filtration,
implying that urinary elevations have a tubular origin. Increased activity suggests injury
to its cells but may also reflect increased lysosomal activity without cell disruption.
NAG catalyzes the hydrolysis of terminal glucose residues in glycoproteins. Westhuyzen
reported on the ability to predict developing AKI in 4 cases in general ICU patients
with AUC=0.845 [CI 0.639-0.955]: however, these patients seem to have established
AKI with reduced creatinine clearance at the time of study inclusion [68]. In adult
CPB patients, 13 cases of developing AKI were reported: and the 2-hr postoperative
prediction for NAG was very moderate: AUC=0.62 [CI 0.41-0.83] [47].

Treatment of AKI

The pathogenesis of AKI is very complex with multiple mechanisms underlying its course.
Furthermore, critically ill patients do not generally die from AKI as such but more from
the multiple organ dysfunction syndrome (MODS) associated with it. Given the multiple
interactive pathways underlying AKI, it might be a mistake to concentrate therapeutic
effects on one single part of the interrelated cascades. Therapies may need to target
multiple sites in the pathophysiological pathways of AKI and MODS in order to be of
any benefit for patients. Such combination therapies must involve agents with potential
beneficial effects on vascular tone, tubular obstruction, and inflammation. Furthermore,
it is unlikely that targeting events that occur late in AKI will be effective. Pharmacological
therapy in the prevention and treatment of AKI has been largely unsuccessful despite
proven benefits as seen in preclinical studies. A number of drugs and investigational
compounds seem promising in preclinical studies. There are six major categories of
treatment strategies: anti-inflammatory agents, anti-apoptotic agents, iron scavengers,
anti-oxidants, vasodilators and growth factors (Table 2).

Conclusions

In the quest for earlier markers for the recognition of AKI several biomarkers have been
investigated. The reported AUC’s are disappointing ranging from 0.50-0.84, with one
or two exceptions which can be explained by statistical or methodological differences
in study design. The discriminatory function in heterogeneous populations is poor and
influenced by pre-existing renal function and time of sample collection with respect to
the renal insult [48]. Clinical appraisal of a patient and using standard parameters such
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as SCr and diuresis remains the cornerstone for now [70]. Therefore it seems reasonable

to perhaps shift our views and using biomarkers together with other parameters such

as traditional clinical characteristics to optimize the accuracy of prediction of developing

AKI might be an interesting option. Ultimately, the potential of new therapeutic agents

can be tested and their use evaluated.
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