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Cleft lip with or without palate 
Definition and Epidemiology 
Orofacial clefting (OFC) is a group of congenital malformations characterized by 
closure defects of the lip, jaw and/or palate. In general, three subgroups of OFC 
are distinguished, e.g., isolated clefts of the lip or the palate and clefts of the lip 
and the palate. Based on embryology, the isolated cleft of the lip and cleft lip 
together with cleft palate are considered a continuum of the same malformation, 
which will be referred to as cleft lip with or without palate (CL/P). This is in contrast 
to the isolated cleft palate (CP) which is regarded to be etiologically different. With 
a live birth prevalence rate of 11.8 per 10,000, CL/P is the third most frequent 
congenital malformation in The Netherlands [1]. This is more than twice as high as 
the birth prevalence rate of CP of 2.4 per 10,000 live births. Figure 1.1 shows the 
birth prevalence rates of CL/P and CP in the period from 1999 to 2008. Around 
25% of the CL/P and 40% of the CP cases occur in combination with other 
malformations or as part of a syndrome and are considered syndromic clefts. In the 
studies presented in this thesis we focused on non-syndromic CL/P and CP that 
were not associated with other major congenital malformations. 
 

Figure 1 Prevalence of 
orofacial clefting 
 
A,B Birth prevalence 
rates (per 10,000 live 
births) of CL/P and CP, 
respectively, from 1999-
2008 in the Dutch 
provinces Groningen, 
Friesland and Drenthe.  
Source: EUROCAT 
Northern Netherlands 
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Figure 2 Schematic overview of palatal development 
 

  
Adapted from: Klinische anatomie en embryologie (1997), Bunge publishers 
 

Embryology – primary and secondary palate 
From the fifth week of embryonic development onwards the primitive oral cavity is 
formed (figure 2a). The cavity is surrounded by five prominences, from which the 
nose, lip and palate arise. Firstly, two outcurvings are formed from the frontonasal 
prominence, which connect at their lateral side with the lateral nasal prominence 
and the maxillary prominence (figure 2b). These three prominences form the 
primary nasal cavity. This is followed by the merging of two medial nasal 
prominences, which define the middle sections of the lip and the jaw from which 
the upper four teeth will grow out and the first part of the palate, together referred 
to as primary palate (figure 2c,d). The partial or total absence of the fusion of these 
tissues causes clefting of the lip with possible additional clefting of the jaw and 
palate.  
 
From the seventh week after conception two palatal processes develop from the 
maxillary prominences and grow into the oral cavity in the medial direction (figure 
2d,e). When these processes reach each other in the middle they merge, starting 
from the primary palate to the back of the oral cavity, and form the secondary 
palate (figure 2f). Failure of the merging of the secondary palate can be caused by 
an already present cleft in the primary palate or can occur separately, with a 
normal developed primary palate. 
 
Etiology 
The etiology of OFC is heterogeneous, in which interaction between subtle genetic 
mutations and environmental exposures are implicated. Table 1 shows an overview 
of genes and loci that are reported to play a role in the development of the lip and 
palate and have been associated with OFC.  
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Table 1 Genes and loci associated with non-syndromic orofacial clefting. 
Loci Gene Reference 
1p22.1 ABCA4 [2] 
1p21-31  [3] 
1q32.3-q41 IRF6 [4-13] 
2p13 TGFα [13-32] 
2q32-33 SATB2 [33] 
2q33 SUMO1 [34-37] 
3q27-28 TP73L [13, 38-47] 
4p16  [48] 
4q21-q31  [3, 49-52] 
4q16 MSX1 [53-63] 
5p13-p12 FGF10 [64-65] 
6p24-p23  [66-78] 
8p11.2-p11.1 FGFR1 [64-65, 79] 
8q24.21  [2, 11, 80-83] 
9q21-33 FOXE1 [13, 84] 
10q26 FGFR2 [64-65, 85] 
10q25.3 KIAA1598, VAX1 [11, 86-87] 
11q23.3 PVRL1 [88-93] 
12q13.11 COL2A1 [94] 
13q33.1-q34  [95-96] 
14q24 TGFβ [33, 54, 97-103]  
14q21-q23 BMP4 [13, 104-106] 
17q21.1 RARα [17, 30, 77, 100, 107-111] 
17q22 NOG [86] 
19q13 PRR2 [30, 112-116] 
20q12 MAFB [2] 
22q12.3 MYH9 [117] 
Adapted from Carinci et al. [118] 
  
From the early eighties it became more clear that the development of the embryo is 
not only determined by genes, but is also subject to environmental influences, such 
as periconception exposure to medication, tobacco smoke, alcohol  and folic acid. 
Such lifestyle determinants most likely coincide with factors, such as maternal age, 
parental education  and socio-economic status, which also affect CL/P risk in the 
offspring (see also table 2). Periconceptional intake of folic acid tablets, but also 
sufficient intake of natural food folates have been found to reduce the CL/P risk up 
to 50% [125-127, 129-130, 151], though the results are sometimes ambiguous 
[152-153]. Folic acid supplement use also shows a risk reduction for other 
congenital malformations, such as neural tube defects and congenital heart defects 
[125, 154-156].  
The mechanisms by which folic acid supplement use protects against CL/P is still 
not clarified. Despite the lack of this knowledge and the impact of folate on gene 
and protein interactions this has resulted in mandatory folic acid food fortification in 
several countries [157] with possible detrimental side effects such as increased 
colon cancer [158].  
 
Folate 
The function of folate (figure 3) comprises of the synthesis of one-carbon groups, 
which are necessary for the synthesis of amino acids, such as choline, serine, 
cysteine and glycine, the purines adenine and guanine, the pyrimidine thymine and  
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Table 2 Environmental determinants associated with the risk of orofacial clefting in the offspring 
Maternal characteristic or 
environmental determinant 

Interacting  
gene 

Author, Year Reference 

Maternal age  Kallen 1996, DeRoo 2006, Bille 2005 [119-121] 
Educational level  Krapels 2006 [122] 
Socio-economic status  Clark 2003, Carmichael 2003 [123-124] 
Folic acid  
supplement use 

 Tolarova 1982, Czeizel 1999,  
Itikala 2001, Shaw 2002,  
Botto 2004, Wilcox 2007 

[125-130] 

 MTHFR 
 

Shaw 1998, Van Rooij 2003,  
Mills 2008, Chevrier 2007 
 

[131-134] 

 TGFα  Shaw 1998 [135] 
 IRF6 Wu 2010 [136] 
Medication  Carmichael 1999,  

Hernandez-Diaz 2000 
[137-138] 

 NAT-2 van Rooij 2002 [139] 
 MDR-1 Bliek 2006 [140] 
Smoking  Little 2004, Honein 2007 [141-142] 
 NAT-2 Van Rooij 2002, Shi 2007 [139, 143] 
 MSX1 Van den Boogaard 2008 [144] 
 GST  Lammer 2005, Shi 2007 [143, 145] 
Alcohol  Romitti 2007 [146] 
 ADH1C Shaw 1999, Chevrier 2005,  

Boyles 2010 
[147-149] 

Myo-inositol, glucose  
and zinc  

 Krapels 2004 [150] 

 
the remethylation of homocysteine into methionine. The methionine derivative S-
adenosylmethionine is the main methyl group donor for the methylation of DNA, 
RNA, proteins and lipids [159]. 
Antioxidant properties of folate have also been reported [160]. Several in vitro 
studies with human cell lines have shown that folate deficiency increases apoptosis 
[161], uracil misincorporation [162], causes DNA and protein hypomethylation [163-
165], DNA strand breakage [162, 166] and chromosome aneuploidy [167-168]. 
However, these results cannot explain the strong protective effects of folic acid 
supplement use during pregnancy.  
The interaction of folate on a molecular level might be best understood and 
targeted with the methylation hypothesis, indicating a role for folate in epigenetic 
regulation and post-transcriptional modification [169]. Because methyl-groups are 
derived from the diet, in particular of folate as precursor of S-adenosylmethionine, 
folate is considered a modifier of gene expression [170]. Reports on the influence 
of folate on DNA methylation [164-165, 171], gene-expression [172] and DNA 
hypomethylation resulting from hyperhomocysteinemia in DNA of lymphocytes 
[173] support this hypothesis. This is in line with evidence that the maternal 
nutritional state alters the epigenetics of the fetal genome [174-175]. From this 
point of view, folate and/or its derivatives might play a role in the programming and 
expression of (developmental) genes, implicated in embryonic growth and 
development. A folate deficiency may then cause abnormal tissue specific gene 
expression patterns resulting in congenital malformations such as OFC. A previous 
study by Spiegelstein et al [176] using a murine Folbp1 knockout model showed 
folate responsiveness of several genes including transcription factors, G-proteins, 
growth factors, methyltransferases and cell proliferation related genes. A second 



14  
 

study by Courtemanche et al [166] showed expression of genes involved in DNA 
repair, mitochondrial  and folate metabolism. These limited results, however, need 
further exploration in human using genome wide scans to further understand the 
role of folate in CL/P development. 
 
 
Figure 3 Folate metabolism  
 

 
THF= tetrahydrofolate, DHF= dihydrofolate, Meth= methionine, Hcy= homocysteine, AdoMet= S-
adenosylmethionine, AdoHcy= S-adenosylhomocysteine, (F)GAR= (formyl) glycinamide ribonucleotide, 
(F)AICAR= (formyl) aminoimidazole carboxamide ribonucleotide, Ser= serine, Gly= glycine, 1= 5, 10-
methylenetetrahydrofolate reductase (MTHFR), 2= methioninesynthase (MS), 3= methionine 
adenosyltransferase (MAT), 4= cystathionine β-synthase (CBS), 5= γ-cystathionase (GC), 6= serine 
hydroxymethyltransferase (SHMT), 7= 5, 10-methylenetetrahydrofolate dehydrogenase (MTHFD), 8= 
equilibrium (non-enzymatic), 9= 5-formyltetrahydrofolate cyclodehydrase (FTHFD), 10= thymidylate 
synthase (TS), 11= dihydrofolate reductase (DHFR), 12= aminoimidazole carboxamide ribonucleotide 
formyltransferase (AICRFT), 13= betaine-homocysteine methyltransferase (BHMT), 14= methionine 
synthase reductase (MTRR) 
 
Objectives of the Thesis 
From this background it has become clear that folic acid supplement use plays an 
important role in the development of non-syndromic OFC though the underlying 
mechanisms are not yet clarified. In order to gain more insights in the role of 
environmental exposures and underlying mechanisms, the aims of this thesis are 
to identify:  
Part 1 Epidemiological Studies: new risk factors for CL/P and the relationship with 
folic acid supplement use 
Part 2 Biological Studies: the effects of natural folate supplement use on a cellular, 
proteomic and genetic level  
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Outline of the Thesis 
In part 1 some new risk factors for CL/P are identified and their relation with folic 
acid supplement use is determined. Chapter 2 presents a meta-analysis reviewing 
hyperhomocysteinemia and two functional polymorphisms of MTHFR, an important 
enzyme in folate metabolism, and the risk of CL/P. Chapter 3 presents a case-
control study concerning the effects of periconception medication and folic acid use 
and carriership of a polymorphism in the detoxification gene ABCB1 on the risk for 
CL/P. Chapter 4 evaluates the association of the presence of folate receptor 
blocking antiserum in the maternal blood and the risk for CL/P offspring. 
In the second part of this thesis cellular, proteomic and genomic effects have been 
investigated after natural folate depletion and addition in B-lymphoblasts from 
children with and without CL/P. Chapter 5 investigates folate responsive gene 
expression profiles in CL/P affected children using genome-wide expression 
arrays. In chapter 6, a pilot study is presented in which mass spectrometry peptide 
fingerprinting of B-lymphoblasts from CL/P and healthy children is used to identify 
folate responsive proteins. Chapter 7 is an extension of the study described in 
chapter 6 with larger study groups and more accurate mass spectrometry and 
software analysis. In Chapter 8 the effects of folate deficiency on chromosome 17 
and 21 aneusomy are investigated in CL/P and healthy children. 
Finally, in chapter 9 we elaborate on the results and implications of the findings of 
this thesis. 
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Abstract 
Several studies have reported an association between hyperhomocysteinemia, 
5,10-methylenetetrahydrofolate reductase (MTHFR) polymorphisms and cleft lip 
with or without cleft palate (CLP), and congenital heart defects (CHDs). However, 
findings have been inconsistent. A metaanalysis was performed of published 
studies until September 2006 investigating these associations in both mothers and 
children. Homocysteine data were provided in two CLP and three CHD studies, 
and MTHFR polymorphisms were reported in ten CLP and eight CHD studies. Data 
were analyzed using the random effects model in the Cochrane Review Manager. 
The pooled odds ratio (OR) of maternal hyperhomocysteinemia was 2.3 (95% CI 
0.4–11.9) for CLP, and 4.4 (2.6–7.3) for CHDs. The MTHFR C677T polymorphism 
and CLP showed pooled ORs of 1.2 (0.9–1.5) in mothers and 1.0 (0.9–1.2) in 
children, whereas these estimates for the A1298C polymorphism were 1.0 (0.7–
1.2) in mothers and 0.9 (0.6–1.2) in children. The MTHFR C677T polymorphism in 
CHD studies demonstrated a pooled OR of 1.0 (0.8–1.3) for mothers and 1.1 (0.9–
1.5) for children. Two studies investigating the maternal A1298C polymorphism in 
CHDs demonstrated a pooled OR of 1.2 (0.8–1.8). Only one CHD study reported 
an OR of 1.3 (0.8–2.1) for this polymorphism in children. In conclusion, this meta-
analysis demonstrates that maternal hyperhomocysteinemia is a risk factor for 
CHDs. The MTHFR polymorphisms C677T and A1298C in both mothers and 
children are not independently associated with CLP or CHDs. Future studies 
should be performed to investigate the interactions between maternal 
hyperhomocysteinemia, B-vitamin intake, related polymorphisms and the risk of 
CLP and CHDs. 
 
Introduction 
Orofacial clefting (OFC) and congenital heart defects (CHDs) develop during the 
first weeks after conception. These defects are common congenital anomalies of 
multifactorial origin influenced by both genetic and environmental factors [1-2]. 
Various epidemiologic studies have shown the protective effect of maternal use of 
multivitamins in the periconceptional period on the risk of having a child with OFC 
[3], and a child with a CHD [4-6]. However, it is unknown which ingredient(s) in 
multivitamins are responsible for this risk reduction. Indirect evidence that folic acid 
is a key factor in orofacial and cardiovascular development has been suggested by 
a study of Hernandez-Diaz et al. (2000), in which folic acid antagonists were shown 
to increase the risk of a child with OFC or a CHD. Mothers who used multivitamins 
containing folic acid in addition to dihydrofolate reductase inhibitors, showed a 
fivefold lower risk of having a child with OFC or a CHD compared with mothers who 
did not concomitantly use multivitamins [7]. Folate contributes to the transfer of 
one-carbon groups as part of nucleotide synthesis, the remethylation of 
homocysteine to methionine, and the subsequent methylation of DNA, proteins, 
and phospholipids. Hyperhomocysteinemia and DNA hypomethylation contribute to 
the development of complex congenital disorders [8]. Therefore, an optimal 
maternal and embryonic folate status is important for normal embryogenesis. The 
enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) is an important 
enzyme in the homocysteine metabolism and catalyzes the conversion of 5,10- 
methylenetetrahydrofolate into 5-methyltetrahydrofolate, the predominant 
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circulating form of folate. The MTHFR gene has at least two functional 
polymorphisms, C677T and A1298C. The MTHFR 677T allele is associated with 
reduced enzyme activity, decreased concentrations of folate in serum, plasma, and 
red blood cells, and mildly increased plasma total homocysteine (tHcy) 
concentrations [9-10]. The second polymorphism, MTHFR A1298C, also affects 
MTHFR activity but without biochemical changes [11]. Normal MTHFR activity is 
crucial to maintain the pool of circulating folate and methionine and to prevent the 
accumulation of homocysteine [9]. Homocysteine can be considered as a useful 
and important metabolic marker of the overall folate status. Several studies have 
reported inconsistent findings on associations between hyperhomocysteinemia, 
MTHFR polymorphisms, and both OFC and CHD risk. Therefore, we performed a 
meta-analysis of all published studies until September 2006 investigating, in 
mothers and children, the associations between hyperhomocysteinemia, MTHFR 
C677T and A1298C polymorphisms, and the risk of both OFC and CHDs.  
 
Materials and Methods 
Studies 
Potential relevant studies were identified by using MESH terms and text words in a 
search of PubMed at the National Library of Medicine, Web of Science, Cochrane 
library, Scopus and the Genetic Association Database through September 1, 2006. 
The main search terms were ‘cleft lip,’ ‘cleft palate,’ ‘heart defects, congenital,’ 
‘homocysteine,’ ‘methylenetetrahydrofolate reductase (nadph2)’ and ‘MTHFR.’  
We also conducted searches on congenital anomalies and malformations in 
general, because OFC and CHDs may not be specified when a study is related to 
several congenital malformations. Furthermore, we performed manual searches of 
reference lists in articles found during the electronic searches. If studies presented 
overlapping data, only the study with the largest number was included. All studies 
were published in German or English language. Authors were contacted by email 
asking them to provide data if the content of the paper was insufficient. This meta-
analysis is limited to casecontrol and cohort studies that include data of 
homocysteine concentrations and/or the MTHFR polymorphisms. It does not 
include animal studies and studies of case series. Genetics and embryology 
suggest that clefts of the primary palate that involve the lip and/or palate are 
different in etiology from clefts that affect the secondary palate and are, therefore, 
developmentally distinct entities [12-13]. Moreover, patients with cleft lip with or 
without cleft palate (CLP) represent the largest and most homogeneous group of 
oral clefts. Therefore, we included only those studies that investigated CLP and 
excluded the studies concerning isolated cleft palate. In total, we identified two 
CLP and five CHD studies investigating tHcy concentrations, and 23 CLP and 11 
CHD studies that reported on MTHFR polymorphisms. We excluded two CHD 
studies on tHcy concentrations, because one study population [14] was part of a 
larger included study [15] and the other study used a different cutoff level for the 
tHcy concentrations and included older participants as well [16]. Twelve studies on 
CLP and MTHFR polymorphisms were excluded, because seven studies used a 
family-based design [17-23], two studies were part of a larger included study [24-
25], and three studies only reported allele frequencies [26-27] or incomplete 
genotype frequencies [28]. In respect of MTHFR polymorphisms in CHD studies, 
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we excluded three studies that included only cases [29-31]. Therefore, the meta-
analysis was performed on tHcy data provided in two CLP [32-33] and three CHD 
studies [15, 34-35] and on MTHFR polymorphisms reported in ten CLP [36-45] and 
eight CHD studies [43, 46-52]. 
 
Statistical Analysis 
Hardy–Weinberg equilibrium (HWE) was examined in all studies that included 
MTHFR genotype frequencies. The available tHcy and polymorphism data for the 
meta-analysis were entered in Review Manager (RevMan [Computer Program], 
version 4.2 for Windows. Copenhagen: The Nordic Cochrane Centre, The 
Cochrane Collaboration, 2003) and analyzed with RevMan Analyses (version 1.0 
for Windows). This program uses the method of moments to calculate the odds 
ratio (OR) and 95% confidence interval (CI) for the pooled data. The genetic 
dominant model was used for comparisons of the polymorphism data. 
Heterogeneity was assessed using the Q test [53]. Nevertheless, we used the 
random effects model in all analyses. Funnel plots were used to investigate 
publication bias. 
 
 
Figure 1 Association between maternal hyperhomocysteinemia and the risk of cleft lip with or 
without cleft palate and congenital heart defects. 

 
 
 



 

Table 1 MTHFR Genotype Frequencies in CLP Studies 
References    Frequency in mothers, n (%)  Frequency in children, n (%) 
C377T polymorphism  Subjects  CC CT TT  CC CT TT 
Shaw et al. [1998]  Case  NA NA NA  143 (46.1) 127 (41.0) 40 (12.9) 
California, USA  Control  NA NA NA  156 (40.7) 178 (46.5) 49 (12.8) 
Tolarova et al. [1998]  Case  39 (41.9) 37 (39.8) 17 (18.3)  43 (38.8)  49 (44.1) 19 (17.1) 
Argentina  Control  39 (46.4) 33 (39.3) 12 (14.3)  46 (43.4)  52 (49.1) 8 (7.5) 
Martinelli et al. [2001]  Case  14 (22.2)  36 (57.2) 13 (20.6)  22 (34.4) 30 (46.9) 12 (18.7) 
Italy  Control  46 (43.4)  43 (40.6) 17 (16.0)  46 (43.4) 43 (40.6) 17 (16.0) 
Grunert et al. [2002]  Case  NA NA NA  34 (51.5)  26 (39.4) 6 (9.1) 
Germany  Control  NA NA NA  90 (48.9)  69 (37.5) 25 (13.6) 
Shotelersuk et al. [2003]   Case  46 (68.7) 19 (28.3) 2 (3.0)  84 (77.1) 25 (22.9) 0 (0.0) 
Thailand  Control  154 (76.2)  46 (22.8) 2 (1.0)  154 (76.2) 46 (22.8) 2 (1.0) 
van Rooij et al. [2003b]   Case  78 (52.7) 55 (37.2) 15 (10.1)  54 (51.4) 45 (42.9) 6 (5.7) 
The Netherlands  Control  84 (49.4) 74 (43.5) 12 (7.1)  70 (54.7) 54 (42.2) 4 (3.1) 
Gaspar et al. [2004]   Case  174 (51.8) 131 (39.0) 31 (9.2)  327 (50.8) 269 (41.8) 48 (7.4) 
Brazil   Control  213 (50.2) 172 (40.6) 39 (9.2)  213 (50.2) 172 (40.6) 39 (9.2) 
Nurk et al. [2004]   Case  12 (54.5) 8 (36.4) 2 (9.1)  NA NA NA 
Norway Control   Control  7,153 (49.5) 6,029 (41.7) 1,280 (8.8)  NA NA NA 
Pezzetti et al. [2004]   Case  27 (26.0) 47 (45.2) 30 (28.8)  28 (25.5) 58 (52.7) 24 (21.8) 
Italy   Control  95 (32.9) 151 (52.2) 43 (14.9)  95 (32.9) 151 (52.2) 43 (14.9) 
Mostowska et al. [2006]   Case  60 (49.6) 46 (38.0) 15 (12.4)  NA NA NA 
Poland   Control  42 (51.9) 33 (40.7) 6 (7.4)  NA NA NA 
A1298C polymorphism    AA AC CC  AA AC CC 
Tolarova et al. [1998]   Case  56 (65.1) 27 (31.4) 3 (3.5)  67 (62.0) 39 (36.1) 2 (1.9) 
Argentina   Control  50 (64.1) 25 (32.0) 3 (3.9)  63 (61.2) 33 (32.0) 7 (6.8) 
Grunert et al. [2002]   Case  NA NA NA  28 (43.1) 30 (46.1) 7 (10.8) 
Germany   Control  NA NA NA  77 (41.9) 80 (43.5) 27 (14.6) 
Shotelersuk et al. [2003]   Case  30 (44.8) 33 (49.2) 4 (6.0)  55 (50.5) 48 (44.0) 6 (5.5) 
Thailand   Control  108 (53.5) 80 (39.6) 14 (6.9)  108 (53.5) 80 (39.6) 14 (6.9) 
van Rooij et al. [2003b]   Case  57 (45.6) 52 (41.6) 16 (12.8)  48 (51.0) 34 (36.2) 12 (12.8) 
The Netherlands   Control  76 (47.8) 67 (42.1) 16 (10.1)  61 (53.0) 43 (37.4) 11 (9.6) 
Nurk et al. [2004]   Case  9 (40.9) 10 (45.5) 3 (13.6)  NA NA NA 
Norway   Control  6,598 (45.7) 6,332 (43.8) 1,522 (10.5)  NA NA NA 
Pezzetti et al. [2004]   Case  57 (54.8) 36 (34.6) 11 (10.6)  56 (50.9) 46 (41.8) 8 (7.3) 
Italy   Control  121 (41.9) 130 (45.0) 38 (13.1)  95 (32.9) 151 (52.2) 43 (14.9) 
CLP: cleft lip with or without claft palate; NA: not available 



 

Table 2 MTHFR Genotype Frequencies in CHD Studies 
References    Frequency in mothers, n (%)  Frequency in children, n (%) 
C377T polymorphism  Subjects  CC CT TT  CC CT TT 
Junker et al. [2001]  Case  NA NA NA  51 (44.7)  42 (36.9) 21 (18.4) 
Germany  Control  NA NA NA  129 (56.6)  78 (34.2) 21 (9.2) 
Wenstrom et al. [2001]  Case  NA NA NA  17 (65.4)  8 (30.8) 1 (3.8) 
Alabama, USA  Control  NA NA NA  104 (89.6)  9 (7.8) 3 (2.6) 
Storti et al. [2003]  Case  27 (26.2)  53 (51.5) 23 (22.3)  28 (27.2) 55 (53.4) 20 (19.4) 
Italy  Control  52 (26.0)  108 (54.0) 40 (20.0)  52 (26.0) 108 (54.0) 40 (20.0) 
Nurk et al. [2004]  Case  12 (48.0)  12 (48.0) 1 (4.0)  NA NA NA 
Norway  Control  7,153 (49.5)  6,025 (41.7) 1,281 (8.8)  NA NA NA 
Lee et al. [2005]  Case  NA NA NA  110 (51.6)  89 (41.8) 14 (6.6) 
Taiwan  Control  NA NA NA  114 (58.4)  68 (34.9) 13 (6.7) 
Shaw et al. [2005]  Case  NA NA NA  69 (45.1)  68 (44.4) 16 (10.5) 
California, USA  Control  NA NA NA  180 (41.5)  202 (46.5) 52 (12.0) 
Hobbs et al. [2006a]  Case  127 (46.2)  118 (42.9) 30 (10.9)  NA NA NA 
Arkansas, USA  Control  48 (40.7)  56 (47.4) 14 (11.9)  NA NA NA 
van Beynum et al. [2006]  Case  72 (45.6)  68 (43.0) 18 (11.4)  79 (47.9) 66 (40.0) 20 (12.1) 
The Netherlands  Control  131 (50.2)  107 (41.0) 23 (8.8)  98 (44.5) 104 (47.3) 18 (8.2) 
A1298C polymorphism    AA AC CC  AA AC CC 
Storti et al. [2003]  Case  49 (47.6)  46 (44.6) 8 (7.8)  45 (43.7) 47 (45.6) 11 (10.7) 
Italy  Control  101 (50.5)  86 (43.0) 13 (6.5)  101 (50.5) 86 (43.0) 13 (6.5) 
Nurk et al. [2004]  Case  9 (36.0)  13 (52.0) 3 (12.0)  NA NA NA 
Norway  Control  6,598 (45.7)  6,329 (43.8) 1,522 (10.5)  NA NA NA 
CHD: congenital heart defects; NA: not available 
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Results 
The included studies were all case-control studies, except for the cohort study of 
Nurk et al. (2004). In the CLP meta-analysis we included 263 mothers for tHcy 
data, 16,772 mothers and 3,341 children for the C677T polymorphism, and 15,584 
mothers and 1,379 children for the A1298C polymorphism (Table I). For the CHD 
meta-analysis those numbers were 771, 15,599, 2,167, 14,777 and 303, 
respectively (Table II). The OR and 95% CI for the individual studies and the 
pooled analyses are presented in Figures 1–3. In all tHcy studies blood samples 
were drawn after an overnight fast with the exception of the study of Hobbs et al. 
(2005b). The pooled OR (95% CI) for maternal hyperhomocysteinemia and CLP 
was 2.3 (0.4–11.9), and 4.4 (2.6–7.3) for CHDs (Fig. 1). Based on the data 
provided in the study of Kapusta et al. (1999), an OR of 4.8 was computed instead 
of the OR of 5.1 that is mentioned in their article. Only two studies have 
investigated hyperhomocysteinemia in children with respect to CLP [32] and CHDs 
[35]. Therefore, we could not estimate a pooled OR for hyperhomocysteinemia in 
children with CLP or a CHD. The MTHFR genotype frequencies were consistent 
with HWE in all studies except for the group of casechildren in the study of Junker 
et al. (2001) and the control-children in the study of Wenstrom et al. (2001). The 
MTHFR 677CT/TT genotype and CLP revealed pooled ORs of 1.2 (0.9–1.5) in 
mothers and 1.0 (0.9–1.2) in children. For the MTHFR 1298AC/CC genotype these 
estimates were 1.0 (0.7–1.2) in mothers and 0.9 (0.6–1.2) in children, respectively 
(Fig. 2). In CHD-studies, the MTHFR C677T polymorphism showed a pooled OR of 
1.0 (0.8–1.3) for the CT/TT genotype in mothers and 1.1 (0.9–1.5) in children. We 
considered excluding the studies of Junker et al. (2001) and Wenstrom et al. 
(2001), because the case and the control-group, respectively, were out of HWE. 
The CT/TT genotype in children then demonstrated a pooled OR of 1.0 (0.8–1.2). 
Two studies investigated the maternal MTHFR A1298C polymorphism in 
association with CHDs and the pooled OR was 1.2 (0.8–1.8) for the AC/CC carriers 
(Fig. 3). Only one CHD study reported of this polymorphism in children and showed 
an OR of 1.3 (0.8–2.1) [49]. The funnel plots were asymmetrical for tHcy 
concentrations in both CLP and CHD studies, the C677T polymorphism in CHD 
studies, and the A1298C polymorphism in CLP and CHD studies (data not shown). 
 
Discussion 
In this meta-analysis we used the results from studies published until September 
2006 to calculate a pooled estimate of the reported associations between 
hyperhomocysteinemia, MTHFR polymorphisms and the risk of CLP and CHDs. 
Maternal hyperhomocysteinemia was significantly associated with a 4.4-fold 
increased risk of having a child with a CHD. This finding substantiates the 
hypothesis that maternal hyperhomocysteinemia is a risk factor for CHDs. The 
association was not significant for CLP, but no firm conclusion can be made based 
on the results of only two published studies. The point estimates for the MTHFR 
polymorphisms in mothers and children had small CIs and were not significant for 
both CLP and CHDs. These results suggest that the mutant MTHFR alleles do not 
independently contribute to the risk of a child with either CLP or a CHD. 
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Figure 2 Association between the MTHFR C677T (A) and A1298C (B) polymorphism in mothers 
and children and cleft lip with or without cleft palate 
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Figure 3 Association between the MTHFR C677T (A) and A1298C (B) polymorphism in mothers 
and children and congenital heart defects. 

 
It is widely recognized that the origin of these congenital malformations is complex 
and multifactorial in nature, with genetic and  environmental factors affecting 
various developmental pathways. Of interest, therefore, is that factors like diet and 
lifestyle can modify the effects of certain genetic polymorphisms. Heterozygosity for 
both MTHFR polymorphisms can result in a lower MTHFR activity than 
heterozygosity for either of the MTHFR mutations separately [11]. Two studies 
showed that tHcy concentrations were significantly higher in individuals with a 
combined heterozygosity for the MTHFR polymorphisms than those who were 
heterozygous for either the C677T or the A1298C genotype [11, 54]. Shotelersuk 
et al. (2003) demonstrated a significant increased risk of having a child with CLP if 
the mother was heterozygous for both MTHFR polymorphisms. The risk of a child 
with CLP [41] or a CHD [52] was only significantly increased if mothers, carrying 
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the MTHFR 677TT or MTHFR 1298CC genotype, also had a low periconceptional 
intake of dietary folate and/or folic acid supplements. These examples of gene–
gene and gene– nutrient interactions explain why neither of the two MTHFR 
polymorphisms is an independent risk factor for CLP and CHDs. Moreover, these 
previously published articles give insight in the protective effect of maternal use of 
multivitamins containing folic acid in the periconceptional period on the risk of 
having a child with CLP [3] or a CHD [4-5, 55]. Dietary intake and use of B-vitamin 
supplements can compensate for the reduced activity of the MTHFR enzyme and 
lower tHcy concentrations, thereby decreasing the risk of these congenital defects. 
We have to consider some strengths and limitations of this meta-analysis. The use 
of a meta-analysis can overcome the low power of small sample size studies, and, 
therefore, reconcile previously conducted studies with inconsistent results. 
Although, the number of included tHcy studies in this metaanalysis is quite low for 
both congenital defects, all tHcy concentration measurements were performed by 
the high performance liquid chromatography method. The risk estimates for 
maternal hyperhomocysteinemia in CLP and CHDs are consistent and, therefore, 
laboratory errors are not likely. In the pooled analysis of hyperhomocysteinemia in 
mothers and CLP risk only two studies were included with evidence of 
heterogeneity. This heterogeneity might be caused by the pilot study of Wong et al. 
[1999]. In this study the cutoff value of the 97.5th percentile was used instead of 
the 90th percentile that was used by the other tHcy studies, resulting in a low 
number of hyperhomocysteinemic mothers. Moreover, they included both 
methionine afterload and fasting tHcy concentrations. With concern to the 
genotyping of MTHFR polymorphisms, laboratory errors are not likely because the 
genotyping has been done using standard protocols with polymerase chain 
reactions and restriction enzyme digestion in all studies. Moreover, all studies 
showed genotype frequencies that were consistent with HWE for both cases and 
controls with an exception of the cases in the study of Junker et al. [2001] and the 
controls in the study of Wenstrom et al. [2001]. The study of Wenstrom et al. in 
particular was the source of heterogeneity in the analysis of CHDs and the MTHFR 
C677T genotype in children, possibly because their control-group was out of HWE. 
We considered exclusion of both studies, but the point estimates did not 
substantially change. The analysis of CHDs and MTHFR C677T polymorphisms in 
children, and the analysis of CLP and A1298C polymorphisms in children 
demonstrated P values less than 0.10 for the Q test for heterogeneity (Figs. 2 and 
3). We used the random effects model in all analyses, thereby accounting for the 
heterogeneity. In addition, the point estimates of the fixed and the random effects 
model are nearly identical, which suggests that heterogeneity is not a big issue. 
Differences in risk estimates for MTHFR polymorphisms can also be caused by 
etiologic heterogeneity between populations, geographical variations of the studied 
populations, different selection of controls or even by the folate intake of the 
population [56]. The 677TT and 1298CC genotype frequencies of the included 
studies demonstrate the known geographical variations [55, 57-59]. Regarding the 
selection of controls, most studies included unrelated and unaffected controls. We 
considered the influence of the studies that used another selection of controls, but 
these studies did not significantly alter the point estimates. Publication bias has to 
be addressed in metaanalyses because it can be a substantial cause of bias. The 
funnel plots are asymmetrical for the A1298C polymorphism and tHcy 
concentration in both CLP and CHDs, and the C677T polymorphism in CHDs 
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suggesting publication bias towards overestimation of the results. Asymmetry might 
be due to the low number of published studies. Furthermore, asymmetric funnel 
plots can also be caused by language and citation bias, if studies with non-
significant results are published in non-English languages, and are thereby less 
likely to be cited. However, the studies with non-significant findings have also been 
included in the analyses, thereby reducing the chance of publication bias. In 
conclusion, we demonstrated in this metaanalysis that maternal 
hyperhomocysteinemia is a risk factor for CHDs. The MTHFR polymorphisms 
C677T and A1298C did not show to be significantly associated with CLP or CHDs. 
Further research should be performed to investigate the interactions between 
maternal hyperhomocysteinemia, B-vitamin intake, related polymorphisms and the 
risk of CLP and CHDs. 
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Abstract 
Gene–environment interactions in the periconceptional period play an increasing 
role in the pathogenesis of birth defects, including cleft lip and/or cleft palate 
(CL/P). The P-glycoprotein, encoded by the ABCB1 gene, is suggested to protect 
the developing embryo from medication and other xenobiotic exposures. 
Furthermore, maternal medication use during early pregnancy is a significant risk 
factor for CL/P offspring. Therefore, the aim of this study is to investigate the 
association between the maternal and child’s functional ABCB1 3435C>T 
polymorphism, periconceptional medication exposure, and the risk of a child with 
CL/P. A case–control study was performed among 175 mothers and 98 of their 
children with CL/P and 83 control mothers and their 65 children. Information on 
medication and folic acid use was collected. Mothers carrying the 3435TT 
genotype and using medication showed a 6.2-fold (95%CI 1.6–24.2) increased risk 
of having a child with CL/P compared to mothers carrying the 3435CC genotype 
and not using medication. Periconceptional folic acid use reduced this risk by 
approximately 30% (OR 3.9, 95%CI 0.9–18.0). Mothers carrying the 3435TT 
genotype, using medication and not taking folic acid showed the highest risk 
estimate (OR 19.2, 95%CI 1.0–369.2). These data suggest that mothers who carry 
the ABCB1 3435C>T polymorphism are at significantly increased risk for having 
offspring with CL/P, especially mothers using medication in the periconceptional 
period. 
 
Introduction 
A nonsyndromic cleft lip with or without cleft palate (CL/P) is a complex congenital 
malformation, in which gene–environment interactions play an increasing role [1]. 
Because during pregnancy the mother is the environment of the child, maternal 
exposures together with genetic vulnerabilities of the mother and/or child are of 
interest. The best examples in this regard are the combined exposures of maternal 
folic acid use, the 677C>T polymorphism in the MTHFR gene in association with 
CL/P [2-5]. In addition, interesting associations are shown between the MSX1, 
GSTT1, and CYP1A1 genes and smoking [6-7]. Medication use during the period 
of embryogenesis is also associated with a higher CL/P risk, in particular for 
corticosteroids [8] and antifolates [9]. Several medications are substrates for P-
glycoprotein (P-gp), an efflux pump encoded by the ABCB1 gene (old 
nomenclature: MDR-1, PGY1, CD243). P-gp protects the cell from harmful 
exposures by actively exporting various substrates across the cell membrane. The 
3435C>T synonymous single nucleotide polymorphism of ABCB1 is associated 
with an increased degradation of the ABCB1 mRNA and consequently a decreased 
P-gp expression [10-11]. This suggests that this polymorphism may modify cellular 
exposures to medication [12]. Based on this background information, we 
hypothesized that the ABCB1 3435C>T polymorphism and periconceptional 
exposure to medications increases the risk of CL/P. We investigated this 
hypothesis in Dutch Caucasian mothers and their childrenwith CL/ P and in control 
mothers and their children, taking folic acid intake into consideration, a factor 
believed to reduce the risk of CL/P and a potential modifier of the teratogenicity of 
certain medications [9].  
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Materials and methods 
Study Population 
The study population and design were described previously [13]. Briefly, between 
1998 and 2003, a case–control study was conducted by nine of the largest cleft 
palate teams in the Netherlands. We recruited mothers and their child with a 
nonsyndromic CL/P and healthy control mother child pairs. In each hospital team, 
the CL/P of the child was diagnosed by a clinician according to a standard 
registration form developed by the Dutch Association for Cleft Palate and 
Craniofacial Anomalies. The standardized registration was performed when the 
child was approximately 15 months of age. Most associated malformations and 
developmental delays are identified in the first year of life, which is important in 
selecting case and control children. The unrelated control children did not have 
major congenital malformations and were approximately 15 months of age. They 
were enrolled from the same population as the case group by approaching the 
mothers with posters and leaflets in child healthcare centers, which are part of the 
Dutch Healthcare system. All participants were Dutch Caucasians and none of the 
children was adopted. The study was approved by the Central Committee for 
Human Research in The Hague, The Netherlands and by the Medical Ethical 
Committees of all participating hospitals. Written informed consent was obtained 
from every participant and on behalf of their child before entering the study. At 15 
months after delivery, detailed information on maternal periconceptional medication 
and folic acid use, including brand, type, amount, frequency, and precise duration 
of exposure, was obtained using validated questionnaires, which were filled out at 
home. All questionnaires were checked by the researcher for completeness and 
inconsistencies. Mothers were considered medication and folic acid users when 
taking any medication or any tablet containing 0.4–0.5 mg folic acid in a single or 
multivitamin preparation daily in the periconceptional period, that is, between 4 
weeks before until 8 weeks after conception. This is the recommended period for 
folic acid use by the Dutch government for all women who are planning pregnancy. 
On average, folic acid was used from 9.7 weeks before until 12.6 weeks after 
conception. At the same time blood samples were obtained for DNA isolation. From 
this database we randomly selected the DNA samples of 175 mothers and their 
children with CL/P for whom DNA was available (98 children) and of 83 control 
mothers and their children for whomDNAwas available (65 children) and genotyped 
them for the ABCB1 3435C>T polymorphism (RS1045642). The method employed 
was restriction fragment length polymorphism analysis [14].  
 
Analysis  
General characteristics were compared by using the Chi-squared test or Student’s 
t-test. Univariate and multivariate binary logistic regression analyses were used to 
estimate odds ratios (ORs) with 95% confidence intervals (95%CI). Modification of 
the CL/P risk by medication and folic acid use and the ABCB1 genotype was 
determined by ordinal logistic regression, in which adjustments were made for 
educational level, family history of clefts, and periconceptional alcohol use. 
Statistical analysis was done using SPSS software version 12 (SPSS, Inc., 
Chicago, IL). P values of 0.05 or less were considered statistically significant.  
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Results 
Characteristics 
In Table I, the demographics of the mothers and children are given. The case 
mothers were approximately 2 years younger (P<0.05) and had a lower 
educational level (P<0.01) than controls. Periconceptional medication use was 
significantly higher among mothers of children with CL/P (36.6%) compared to 
control mothers (20.5%, P<0.01). In Table II, the medication used by case and 
control mothers is presented. It included corticosteroids, antibiotics, anti-epileptics, 
analgesics, anxiolytics, antipsychotics, antidepressants, antihistamines, and 
fungicides. Mothers of a child with CL/P used periconceptional folic acid less often 
(57.7%) compared to controls (75.9%, P<0.005). Maternal smoking was 
comparable between the groups, but alcohol use was significantly lower in case 
mothers (P=0.003). In addition, case mothers had more relatives with a cleft 
(P<0.001) and more boys were affected with CL/P (P<0.05).  
 
Table 1 General characteristics of the case and control mother-child pairs 

Characteristics CL/Pa Control 
Mothers, N 175 83 

 Age at delivery of index pregnancy,  
 years mean (range) 

30.4 (16.5 – 42.1)* 32.4 (21.9 – 41.9) 

 Duration index pregnancy,  
 weeks mean (range) 

40.0 (28.0 – 42.7) 40.0 (34.1 – 41.9) 

 Educational level   
  Low, N (%) 41 (23.4)*** 4 (4.8) 
  Intermediate, N (%) 76 (43.4) 23 (27.7) 
  High, N (%) 58 (33.1) 56 (67.5) 
 Spontaneous abortion, N (%) 53 (30.3) 18 (21.7) 
 Previous stillborn, N (%) 3 (1.7) 0 (0.0) 
 Congenital malformations   
  Mothers with congenital  
  malformation, N (%) 

18 (10.3)** 2 (2.4) 

 Family (1st and 2nd degree)  
 history of clefts, N (%)  

40 (22.9)*** 4 (4.8) 

 Periconceptional exposure   
  Medication, N (%)  64 (36.6)*** 17 (20.5) 
  Folic acid, N (%) 101 (57.7)*** 63 (75.9) 
  Multivitamins, N (%) 34 (19.4)  15 (18.1) 
  Smoking, N (%) 45 (25.7) 16 (19.3) 
  Alcohol, N (%) 63 (36.0)*** 47 (56.6) 
Children, N  98 65 
 Gender, boy, N (%)  61 (62.2)*** 27 (42.2) 
 Birth weight, grams mean (range)  3,370 (1,361–4,765) 3,340 (2,500–4,570) 

aCL/P, cleft lip with or without cleft palate. 
* t-test, P<0.05. 
**Χ2 test, P<0.05. 
*** Χ2 test, P<0.01. 
 
ABCB1 C3435T  
The distribution of the maternal ABCB1 genotype for 3435CC/CT/TT genotypes in 
case mothers was 20.0%, 49.1%, and 30.9% in case mothers, with a T-allele 
frequency of 55%, and 25.3%, 53.0%, and 21.7% in control mothers, with a T-allele 
frequency of 48% (Table III). Among children with CL/P, the distributionwas 25.5%, 
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49.0%, and 25.5%, with a T-allele frequency of 50%, and among control children 
the distribution was 29.2%, 44.6%, and 26.2%, with a T-allele frequency of 48% 
(Table III). Both case and control genotypes were in Hardy–Weinberg equilibrium.  
 
Table 2 Periconceptional medication use of case and control mothers with the number of 
mothers who used the medication in parentheses 

Medication  Case mothers (n=64) Control mothers (N=17) 
Analgesics acetaminophen (12), diclofenac (1) acetaminophen (1) 
Antacids aluminium hydroxide  

magnesium carbonate (1), ranitidine (1) 
- 

Antibiotics nitrofurantoin (5), amoxicillin (4),  
sulfonamides (4), ciprofloxacin (2),  
tetracycline (1), erythromycin (1),  
norfloxacin (1) 

amoxicillin (2),  
nitrofurantoin (2) 

Antidiarrhoica/ 
obstipation 

loperamide-oxide (2), domperidon (2),  
buscopan (1) 

- 

Anti-epileptics carbamazepine (1) - 
Antihistamines meclizine (1), cetirizine (1) cyclizine (1) 
Antipsychotics perphenazine (2) - 
Anxiolytics/ 
antidepressants 

diazepam (2), fluoxetine (1),  
fluvoxamine (1), venlafaxine (1) 

paroxetine (2) 

Corticosteroids hydrocortisone (2), prednisone (1),  
budesonide (2), beclomethasone (1) 

fluticasone (1) 

Fungicides metronidazole (4), ketoconazole (3),  
clotrimazole (2), itraconazole (1) 

clotrimazole (2),  
miconazole (1) 

Hormones clomiphene (3), GnRH analog (2),  
progesterone (2), levothyroxine (2),  
insulin (2), FSH/LH (1), norethindrone (1) 

GnRH analog (2),  
FSH/LH (1),clomiphene (1),  
GnRH antagonist (1) 

Hypertension methyldopa (2), losartan (1) - 
Pulmonary function salbutamol (7), ipratropium (1),  

formoterol (1) 
salbutamol (1) 

Thrombocyte aggr.  
inhibitor 

acetylsalicylic acid (2) acetylsalicylic acid (1),  
heparin (1) 

Others xylometazoline (3), bromhexine (1),  
gamma globulins (1), ergotamine (1),  
prochlorperazine (1), naratriptan (1),  
betahistine (1) 

hypromellose (1),  
xylometazoline (1) 

 

Periconceptional Medication Exposure and ABCB1 C3435T  
Any maternal medication use resulted in an adjusted OR of 2.2 (95%CI 1.2–4.1) for 
CL/P risk after correction for educational level, family history for CL/P and alcohol 
use. The maternal ABCB1 3435TT genotype together with periconceptional 
medication use showed a 6.2-fold (95%CI 1.6–24.2) increased risk of CL/P with a 
significant P for trend of 0.01 (Table III). Increased CL/P risks were observed in 
children (although these results were not statistically significant) who were carriers 
of the 3435CT and the 3435TT genotype in combination with maternal 
periconceptional medication use, that is, 3.9 (95%CI 0.9–16.1) and 2.5 (95%CI 
0.7–9.5), respectively, with a significant trend, P=0.02 (Table III).  
 
Folic Acid Use  
Maternal periconceptional folic acid use decreased the risk for CL/P after 
adjustment for educational level, family history of CL/P, and alcohol use (OR 0.5, 
95%CI 0.3–0.9). A 19.2-fol d increased risk (95%CI 1.0–369.2) for having a 
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child with CL/P was demonstrated for mothers with the 3435TT genotype who had 
been using medication and did not use folic acid. For mothers who used folic acid, 
the increased risk for having a child with CL/P associated with medication use in 
combination with the 3435TT genotype decreased by approximately 30% (OR 3.9, 
95%CI 0.9–18.0). These results suggest that folic acid use modified the association 
between the maternal ABCB1 polymorphism and medication use and the risk of 
CL/P offspring.  
 
Table 3 Distributions and risk estimates of the ABCB1 3435C>T polymorphism for mothers and 
children 

ABCB1  
3435 C>T 

Pts, 
n(%)a 

Ctrls, 
n(%)b 

OR 
(95%CI)c 

Medication 
use 

Pts a Ctrls b OR  
(95%CI) c 

P for 
trend 

Mother    Mother     
TT 54 

(30.9) 
18 
(21.7) 

1.8 
(0.8–3.8) 

Yes 23 3 6.2 (1.6–24.2)*  
 No 31 15 1.7 (0.7–4.1)  
CT 86 

(49.1) 
44 
(53.0) 

1.2 
(0.6–2.3) 

Yes 27 10 2.2 (0.8–5.7)  
 No 59 34 1.4 (0.7–3.0)  
CC 35 

(20.0) 
21 
(25.3) 

1.0 
(ref.) 

Yes 14 4 2.8 (0.8–10.2)  
 No 21 17 1.0 (ref.) 0.01 
Children    Mother     
TT 25 

(25.5) 
17 
(26.2) 

1.1 
(0.5–2.6) 

Yes 13 4 2.5 (0.7–9.5)  
 No 12 13 0.7 (0.3–2.1)  
CT 48 

(49.0) 
29 
(44.6) 

1.3 
(0.6–2.7) 

Yes 15 3 3.9 (0.9–16.1)  
 No 32 25 1.0 (0.4–2.4)  
CC 25 

(25.5) 
19 
(29.2) 

1.0 
(ref.) 

Yes 7 5 1.1 (0.3–4.2)  
 No 18 14 1.0 (ref.) 0.01 

The risk estimates are stratified for maternal periconceptional medication use. 
*P<0.05. a Patients, b Controls, c Odds ratio (95% confidence interval). 
 
Discussion 
This is the first study showing that the ABCB1 3435TT genotype results in a sixfold 
increase in the risk of having a child with CL/P in mothers using medication 
periconceptionally. P-gp plays a role in the regulation of the exposure of the 
embryonic tissues to medicines. The ABCB1 3435TT genotype lowers P-gp 
activity, and as such increases the exposure to medication, which could 
detrimentally affect embryogenesis. The observed tendency of the higher CL/P risk 
(P=0.02) among carriers in children in combination with periconceptional 
medication exposure may suggest that the child’s P-gp expression is also involved 
in its protection against toxic exposures.  
We considered mothers as medication users if they had used any medication 
during the periconceptional period. The effect of the ABCB1 3435TT genotype 
might therefore even be stronger when only known P-gp dependent medicines are 
taken into consideration. However, for many drugs it is yet unknown whether they 
are a substrate for P-gp and this would require a very large study population.  
Of interest is that periconceptional folic acid use appears to mitigate the increased 
risk for CL/P by the maternal ABCB1 3435TT-medication interaction. This is in line 
with the results of Hernandez-Diaz et al. (2000), who reported that the increased 
risk of having offspring with CL/P associated with the use of dihydrofolate 
reductase inhibitors was reduced in mothers who also used folic acid.  
It cannot be excluded that there are also direct effects of folic acid on the ABCB1 
expression or efflux pump capacity, comparable to the earlier reported increase of 
the functional capacity of the related transporter ABCC1 by folic acid [15].  
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Of interest is that the combined effect of both infant and mother possess the at-risk 
genotype with and without exposure. However, the numbers were too small for 
further analysis and therefore, future studies should help to determine the relative 
contributions of maternal and infant detoxification with respect to medication use 
during pregnancy.  
To assess the validity of the study, some methodological issues need to be 
considered. To minimize recall bias of the periconceptional exposure data derived 
from mothers and to increase the comparability of the case and control children, we 
used a standardized time of 15 months after delivery for questionnaire completion 
for cases and controls. Cases and controls were largely derived from the same 
population and were homogeneous with regard to ethnic background and 
geographic region. To minimize misclassification, CL/P was diagnosed at 
specialized cleft centers and according to the standards of the Dutch Association 
for Cleft Palate and Craniofacial Anomalies. The educational level of the mothers of 
the control group was higher than that of the case mothers. Because a higher 
educational level is in general associated with a healthier lifestyle and more folic 
acid and less medication use, it may have confounded the associations. For that 
reason we adjusted for education, which did not significantly affected the risk 
estimates. Therefore, selection bias and confounding by educational level seems 
unlikely. The retrospective character of the case–control design makes the 
exposures of medication and folic acid use sensitive to recall bias. Mothers with 
adverse pregnancy outcome may be more prone to recall bias, which may have 
influenced risk estimates. Several of the reported medications, such as 
corticosteroids, are teratogenic in experimental and human studies; however, 
confounding by indication cannot be excluded. Therefore, large scale databases on 
the use of prescribed medication and obstetrical databases should be used to 
determine whether the observed associations are due to maternal medication use, 
the underlying maternal disease, or both.  
Because the association of theABCB1 3435TT genotype with CL/ P was only 
observed in mothers using medication, we are not recommending preconceptional 
screening of the general population for this genotype to prevent CL/P. However, 
after confirmation of these results in much larger populations, selective genotyping 
of mothers using medication preconceptionally might contribute to improved 
outcomes.  
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Abstract 
For a long time it is known that maternal periconceptional folic acid 
supplementation reduces the incidence of congenital anomalies such as neural 
tube defects and non-syndromic cleft lip and or cleft palate (CL/P). Recently it has 
been shown that autoantibodies against the folate receptor are present in mothers 
who gave birth to a child with neural tube defects. Therefore we hypothesize that 
this antiserum also occurs in women with a child with CL/P. Standardized blood 
samples from 11 mothers with an CL/P affected child and 10 control mothers were 
taken at 15 months after the index pregnancy and autoantibodies against the folate 
receptor, serum folate, erythrocyte folate, serum homocysteine and vitamin B12 
were measured. Questionnaires about lifestyle, food- and vitamin supplement 
intake were filled in by all mothers. Antiserum was found in 9 of the 11 case 
mothers, and in 3 of the 10 control mothers (p=0.03). Furthermore, from the 
women with antiserum, all except one had give birth before, in contrast to the 
women without antiserum, from which 3 of 9 had had children before (p=0.02). We 
conclude that serum from mothers with a CL/P child contains autoantibodies 
against the folate receptor. Whether the presence of this antiserum is a causal 
factor for CL/P is subject for further research. 
 
Introduction 
Cleft lip and/or palate (CL/P) is a frequent birth defect in the Netherlands with a 
birth prevalence rate of 1 to 2 per 1,000 life births from which the multifactorial 
etiology is not fully understood. Various association studies reported increased 
CL/P risks with health- and life style factors, such as medication and alcohol use, 
smoking4, low socio-economic status1 en low educational level of the mother. 
However, evidence is accumulating that, alike the risk on having a child with a 
neural tube defects, low intake of food folates or folic acid supplements in early 
pregnancy is related to increased CL/P risk (5,9,11 recente artikelen search voor 
uitvoeren(10, Shaw et al., Itikala et al. 2001, etc idem) ). Still, a large part of the 
women pregnant of a child with CL/P do not show a severe folate deficiency. This 
is partly explained by maternal mutations of folate metabolism genes, such as the  
TT variant of the methylene tetrahydrofolate reductase-gene resulting in reduced 
folate availability and hyperhomocysteinemia, and associated with increased CL/P 
risk [1].  
The availability of folate is regulated by folate receptors [2] and carriers [3], present 
on cell membranes. Knock-out animal studies showed that folate receptors and 
carries are vital for embryonic development and viability [4-5] and it is thus likely 
that the folate transporters are equally important in human embryogenesis. Several 
studies reported mutations of the folate receptors in association with the risk of 
neural tube defects [6-7], though up to date this could not be confirmed in larger 
populations, nor be associated with CL/P risk. Therefore, of great interest is the 
recently found antiserum against the homologue of the human folate receptor α 
gene that induces embryo lethality and congenital malformations, such as neural-
tube and heart defects and cleft palate [8] . This antiserum, is capable of blocking 
the folate receptor [9] and may contribute to a low intracellular folate status.  
From this background we hypothesize that a compromised maternal folate status 
may be due to presence of folate receptor autoantibodies in mothers to be and 
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thus might be related to increased CL/P risk. 
 
Materials and Methods 
As part of a nationwide case-control triad study on nonsyndromic CL/P conducted 
between 1998-2000 in the Netherlands [1], we randomly selected 11 mothers with 
nonsyndromic CL/P offspring and 10 mothers with healthy offspring without 
structural congenital malformations. This study has been performed with informed 
consent from every participant and has been approved by the Medical Ethical 
Boards of the participating hospitals. Around fourteen months after the index-
pregnancy questionnaires were filled out by the mothers and verified by the 
researcher during the hospital visit. The questionnaires comprised information on 
maternal demographics, exposures, vitamin supplement intake, medication and 
illnesses. At the same visit standardized maternal venous blood samples were 
taken. After pre-treatment the biochemical determinations were carried out and the 
remnant sera were stored at -80C until further process.  
 
Laboratory determinations 
The remnant sera were encoded to ensure blinded measurement and 
autoantibodies against the folate receptor were determined by incubation with 
human placental folate receptors radiolabeled with [3H]folic acid as described 
before [9]. The intra-and interassay coefficients of variations (CV) were 3% and  
5%, respectively.  
Red blood cell and serum folate were determined by a microbiological assay of 
which the intra- and interassay CV were 6.1% and 10.2% respectively [10]. Plasma 
total homocysteine was determined with an automated HPLC method with reverse 
phase separation and fluorescence detection and intra- and interassay CV were  
6.5% [11].  
 
Statistical analysis  
Presence of folate receptor autoantibodies in the selected mothers was compared 
with chi-square statistics and  demographic and biochemical variables were 
compared with the nonparametric Wilcoxon two sample test using SPSS software. 
P values of 0.05 or less were considered significant.  
 
Results 
The demographic data from case and control mothers and their children are 
presented in table 1. The case group showed a higher frequency of 
periconceptional medication use (p=0.04) at the moment of investigation. Case 
mothers demonstrated significantly higher median tHcy concentrations compared 
with controls, i.e. 12.0 (10.0-69.0) and 10.4 (8.9-13.4) μmol/L (p<0.01, table 1). No 
significant difference was found in the serum and RBC folate concentrations.  
Unexpectedly, serum from 9 out of 11 (82%) case-mothers with CL/P offspring and 
3 out of 10 (30%) controls contained autoantibodies against folate receptors (p 
=0.03). The median (range) of the autoantibody concentrations was 0.55 (0-0.75) 
and 0 (0-0.64) in case and control mothers respectively.  



52  
 

Comparison of mothers with and without folate receptor autoantibodies showed a 
higher rate for earlier life borns (p=0.005) in antibody positive mothers. 
Biochemically, the median serum folate concentrations were significantly lower 
(p=0.05) and tHcy concentrations were significantly higher (p=0.05) in antibody 
positive mothers (table 1). The RBC folate concentrations were not significantly 
different.   
 
Table 1.  Maternal characteristics and biochemistry in medians (ranges) and numbers 
(percentages) 

Mothers Cases 
(n=11) 

Controls, 
(n=10) 

Antibodies 
present (n=12) 

Antibodies 
absent (n=9) 

Age at delivery,  
y (median) 

33.8 
(27.9-38.7) 

32.9 
(22.4-35.7) 

33.8 
(27.9-38.7) 

32.2 
(22.4-36.2) 

Educational level § 
 Low, n (%)  
 High, n (%) 

 
6 (54.5) 
5 (45.5) 

 
5 (50.0) 
5 (50.0) 

 
7 (58.3) 
5 (41.7) 

 
4 (44.4) 
5 (55.6) 

Parity, n (%) 9 (81.8) 5 (50.0) 11 (91.7) 3 (33.3)* 
Miscarriages, n (%) 4 (36.4) 3 (30.0) 4 (33.3) 3 (33.3) 
CLP family history, n (%) 1 (9.1) 0 (0) 1 (8.3) 0 (0) 
Periconceptional use of: 
 Folic acid, n (%) 
 Medication, n (%) 

 
2 (18.2) 
7 (63.6) 

 
3 (30.0) 
2 (20.0)* 

 
3 (25.0) 
7 (58.3) 

 
2 (22.2) 
2 (22.2) 

Antiserum concentration# 

(dpm x 104/mL serum) 
0.60 

(0.49-0.75) 
0.56 

(0.46-0.64) 
0.58 

(0.46-0.75) 
NA 

Serum folate (nmol/L) 14.0 (5.0-22.0) 17.2(7.9-54.6) 13.0 (5.0-17.0) 22.0 (7.9-54.6)* 
RBC folate (nmol/L) 832 (227-1183) 614(454-1398) 541(227-1174) 793(454-1398) 
Plasma tHcy (μmol/L) 12.0 (10.0-69.0) 10.4(8.9-3.4)* 12.0(10.0-69.0) 10.4 (9.0-16.0)* 

Reference values for serum folate, RBC (red blood cell) folate and plasma (tHcy) total homocysteine are 
7.1—40.0nmol/l, 295—800nmol/l and 8—19µmol/l, respectively. 
a Low: Primary/lower vocational/intermediate secondary/intermediate vocational education. High: High 
vocational and academic education. 
b Concentration in antiserum positive mothers. 
* p<0.05. 
 
Discussion 
These data indicate that autoantibodies against folate receptors are frequently 
present in mothers of a child with CL/P. These antibodies show a non-differential 
inhibition of folate transport in placenta tissue, indicating they may cause reduced 
intracellular availability of folate. Low intake of food folates and folic acid 
supplements around conception is associated with an increased CL/P risk. It is 
therefore likely that maternal folate receptor autoantibodies contribute to the CL/P 
risk, comparable to the neural tube defects risk [9]. This is substantiated by the 
biochemical findings of low serum folate and high homocysteine concentrations in 
the presence of autoantibodies. In addition, the biochemical results fit with the in 
vitro findings of a reduced cellular folate uptake.  
Mechanistically these findings raise the question if there is a common pathway in 
the pathogenesis of neural tube defects and CL/P. If folate receptor autoantibodies 
increase the risk of both congenital malformations, than theoretically they should 
be seen together often, which actually is not the case. It is also not likely that the 
antibodies are tissue specific, not only because both tissues express the same 
folate receptors, but also because in principle the placenta is impermeable for 
maternal autoantibodies. A temporal exposure to the antibodies is evenly unlikely 
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since in general autoantibodies do not disappear quickly and palatal development 
rapidly follows neural tube closure. These contradictions require further pathway 
and malformation specific exploration.  
The folate receptor autoantibodies do not affect the reduced folate carrier. This 
transporter has high affinity for synthetic folic acid, reduced and methylated in vivo. 
From this we may hypothesize that the autoantibody-mediated blocking of cellular 
folate uptake by folate receptors could be circumvented by intake of additional 
synthetic folic acid [2]. Another mechanism that is in line with our findings is that 
the folate receptor has a higher affinity for folic acid which may displace an 
autoantibody with lower affinity for the receptor. These hypotheses are subject for 
future research.   
The mechanism by which folate receptors might become self antigens is not 
known. In this set of data the antibody positive mothers showed a significantly 
higher rate of earlier life borns compared to antibody negative mothers. 
Autoimmunity may be induced by epitopes of the folate receptors exposed as a 
result of injury and proteolysis of the reproductive tissues, which together with 
maternal genetic factors may trigger the generation of autoantibodies. Our data 
however, do not suggest that mothers carrying antibodies more often suffer from 
autoimmune disease. 
This study was designed as a pilot study, therefore the sample size is small and 
the data should be interpreted cautiously. On the other hand, the strengths of our 
study is the homogeneity of the groups, the accurateness of the CL/P diagnosis, 
the equal distribution of the demographic and clinical characteristics of both 
groups, the systematic recruitment and random selection of case and control 
mothers, the standardized blood sampling and storage at a fixed moment 15 
months after delivery, and the blinding of the samples before determination of the 
antibodies in the sera. Therefore, it is very unlikely that our data are confounded by 
selection bias.  
 In conclusion, we have identified an autoantibody against the folate-receptor 
membrane protein in mothers of CL/P offspring. Whether the association between 
maternal autoantibodies against folate receptors and nonsyndromic CL/P offspring 
reflects a causal relation has to be further investigated. 
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Abstract  
BACKGROUND: A cleft of the lip with or without the palate (CL/P) is a frequent 
congenital malformation with a heterogeneous etiology, for which folic acid 
supplementation has a protective effect. To gain more insight into the molecular 
pathways affected by natural folate, we examined gene expression profiles of 
cultured B-lymphoblasts from CL/P patients before and after the addition of 5-
methyltetrahydrofolate (5-mTHF) to the cultures. METHODS: Immortalized B-
lymphoblasts from five children with CL/P were cultured in folate-deficient medium 
for 5 days. 5-mTHF was added to a concentration of 30 nM. Gene expression 
patterns were then evaluated before and after supplementation using Human 
Genome U133 Plus 2.0 arrays. Data analysis was performed with Omniviz and the 
GEPAS analysis suite. Differential genes were categorized into biological pathways 
with Ingenuity Pathway systems. Differential expression was validated by 
quantitative RT-PCR. RESULTS: Using supervised clustering, with a false 
discovery rate <1%, we identified 144 and 409 significantly up-regulated and down-
regulated probesets, respectively, after 5-mTHF addition. The regulated genes 
were involved in a variety of biological pathways, including one carbon pool and 
cell cycle regulation, biosynthesis of amino acids and DNA/RNA nucleotides, 
protein processing, apoptosis, and DNA repair. CONCLUSIONS: The large variety 
of the identified folate responsive pathways fits with the modifying role of folate via 
the methylation pathway. From the present data we may conclude that folate 
deficiency deranges normal cell development, which might contribute to the 
development of CL/P. The role of these folate responsive genes in CL/P 
development is intriguing and needs further investigation.  
 
Introduction 
Clefting of the lip with or without the palate (CL/P) is a common congenital 
malformation that occurs in approximately 14.2 per 10,000 live births in the 
Netherlands [1]. The etiology of CL/P is largely unknown, but is considered 
multifactorial in origin. As recently reviewed by Krapels et al. [2] associations 
between CL/P and developmental genes, such as TGFa and MSX1, and linkage 
disequilibrium of various chromosomal regions, such as 3p21.2, 10p13, and 
16p13.3 and CL/P emphasize the involvement of genetic components. Of great 
interest are the findings of the last two decades that environmental factors play a 
role in CL/P etiology as well. Maternal periconception use of folic acid supplements 
and folate-rich food [3-4], medication [5], and smoking [6-7] are known to modulate 
the risk of having a CL/P child. We have shown that periconception 
supplementation with folic acid reduces the CL/P birth prevalence rate by 
approximately 50% [4], thereby supporting the recommendation of folic acid 
supplementation in the periconception period, not only to prevent neural tube 
defects (NTDs) but CL/P as well. Other countries have started folic acid fortification 
programs with beneficial effects on the reduction of NTDs [8-9]. Such programs 
imply long-term exposure of the total population to folate supplements. It is 
therefore remarkable that studies investigating the effects of synthetic folic acid and 
natural folate on biological processes are very scarce [8]. After reduction of folic 
acid to natural folates, folate derivatives serve intracellularly as a one-carbon group 
donor for the synthesis of purines, pyrimidines, and proteins and the remethylation 
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of homocysteine into methionine. The methionine metabolite, S-
adenosylmethionine, is the main methyl donor of the cell and methylates DNA, 
RNA, proteins, and lipids [10]. Folate deficiency induces elevated homocysteine 
concentrations, uracil accumulation and misincorporation, DNA strand breaks, 
abnormal DNA and protein methylation patterns, and increased apoptosis [11-15]. 
However, these biological mechanisms cannot explain the protective effects of 
additional intake of folic acid and food folate on CL/P development. Despite the 
limited knowledge of the effects of folate on molecular and biological pathways, 
mothers-to-be and the intrauterine-developing embryo and fetus are supplemented 
with synthetic folic acid. It is therefore of great interest to elucidate these pathways. 
In order to explore the possible options for advanced research of specific pathways 
we performed a pilot study to identify proteomic and genomic changes in response 
to folate addition. Our previous (unpublished) study on protein changes in 
response to folate revealed the involvement of glucose metabolism, energy 
production, nucleocytoplasmic transport, cell cycle regulation, cytoskeleton, protein 
processing, and DNA transcription and translation. Regarding these findings and 
the essential role of folate in DNA stability, methylation, and cell death, a clear 
genomic response is to be expected. To get a first impression of this response, 
Epstein Barr virus immortalized (EBV) Blymphoblast cultures were induced with 5-
methyltetrahydrofolate. The orientating nature of this approach, and the use of EBV 
B-lymphoblasts, clearly limits the possible observation of specific developmental 
functions of folate in facial primordia. However, we expect that there will be mutual 
consequences of folate supplementation. Therefore the goals of the present study 
are: (1) to identify folate responsive pathways using gene expression profiling; (2) 
to identify possible relationships of these differential genes with embryonic 
pathways involved in palate formation; (3) to compare the folate responsive genes 
with the earlier identified proteins.  
 
Materials and Methods 
Sample selection and culture scheme 
Five Epstein Barr immortalized B-lymphoblast cultures were established from 
venous blood samples derived from five Dutch Caucasian children (two male, three 
female) with a nonsyndromic, complete, unilateral cleft lip, jaw, and palate following 
a standard protocol [16]. Blood samples were collected 15 months after birth, 
during a nationwide case control study on orofacial clefting in the Netherlands, and 
frozen until use [17]. For this study, early passages (<10) of the EBV immortalized 
B-cell cultures were used. To achieve folate depletion, B-lymphoblasts were 
cultured in folate-free RPMI (Gibco-BRL, Gaithersburg, MD) with 10% (v/v) 
dialyzed fetal calf serum (Perbio; Pierce Biotechnology, Rockford, IL) and 1% (v/v) 
L-glutamate, sodium-pyruvate, and penicillin/streptomycin (Gibco-BRL) for 5 days. 
On day 5 the natural folate metabolite, 5-methyltetrahydrofolate (5-mTHF; Sigma- 
Aldrich, St. Louis, MO) was added to reach the target concentration of 30 nM. 
Folate concentrations were measured in the medium using the Modular E170 
electrochemiluminescence assay (Roche Diagnostics GmBH, Mannheim, 
Germany). B-lymphoblasts were harvested before (day 5) and after 5-mTHF 
addition on day 6. The B-lymphoblasts were pelleted and washed once with 10 mL 
phosphate buffered saline. Pellets were snap-frozen in liquid nitrogen and stored at 
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-80°C until further analysis. 
 
RNA isolation and labelling 
After thawing, total RNA was isolated using the RNeasy Midi kit (Qiagen, Valencia, 
CA) following the manufacturer’s instructions. RNA concentrations and quality were 
measured with the Nanodrop ND-1000 UV-VIS spectrophotometer (NanoDrop 
Technologies, Wilmington, DE) and the Agilent 2100 BioAnalyzer (Agilent, Palo 
Alto, CA). RNA integrity was guaranteed by only using samples with an RNA 
integrity number of 9.2 or higher. RNA was stored at 2808C until further use. RNA 
was purified and labeled for hybridization using the One Cycle Target Labeling kit 
(Affymetrix, Santa Clara, CA) with a starting amount of 5 lg RNA. Labeled cRNA 
was hybridized to Human Genome U133 Plus 2.0 gene Arrays (Affymetrix) and 
scanned on an Affymetrix Scanner 3000 (Affymetrix). 
 
Quantitative Real-Time RT-PCR 
Validation of microarray expression data was accomplished by quantitative real-
time PCR of a selection of 10 genes, that is, ANKRD11, RBBP6, pTEN, BATF3, 
HSP90AA1, BCCIP, HNRPD, DPP3, TSC22D3, and MTCH1. First strand cDNA 
synthesis was performed using 2 lg total RNA and Superscript 2 enzyme (Gibco, 
Carlsbad, CA), according to a standardized protocol supplied by the vendor 
(protocol is available on request). Real-time PCR was performed using the SYBR 
Green PCR Kit (Applied Biosystems, Foster City, CA) in the Opticon 2 apparatus 
(MJ Research, Bio-Rad Laboratories Inc., Waltham, MA). For the PCR reaction, 5 
ng cDNA of each sample was used. A melting curve analysis was performed for 
each reaction following each experiment to ensure the presence of a single 
amplified product. All PCRs were performed in duplicate. The expression level of 
each gene was normalized to the expression level of a reference gene, β-actin. 
 
Data analysis 
Raw expression data were normalized using the Robust Multichip Average 
expression summary consisting of background adjustment, quantile normalization, 
and summarization [18]. Unsupervised hierarchical clustering and significance 
analysis of microarrays (SAM) were performed with Omniviz software version 3.8 
(Maynard, MA) using all probe sets. For the clustering analysis the log transformed 
(base 2 scale) ratio of the expression values relative to the geometrical mean of the 
probe set was determined. To reveal differentially expressed genes, a SAM 
analysis was performed using a false discovery rate of less than 1 per 100 probe 
sets. Additional identification of classifying probe sets was performed with the 
GEPAS analysis suite, http://www.gepas.org [19]. Differential genes were 
visualized in biological pathways with the mapping software of Ingenuity Pathway 
systems (Ingenuity Systems, www.ingenuity.com) and in canonical pathways with 
the KEGG PATHWAY database (www.genome.jp/kegg/pathway.html). For the 
quantitative real-time RT-PCR, Wilcoxon Signed Ranked Test was used to 
calculate significant differences. A p value <.05 was considered statistically 
significant. 
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Results 
Folate concentrations in the medium were on average 4.4 nM (standard deviation 
0.4) and 25.9 nM (standard deviation 4.0), respectively, before and after the 
addition of 5-mTHF. The distribution of intensities of the raw microarray data 
showed increased average intensities for one cell line before folate addition 
because of high background signal. After normalization, gene expression profiles 
from samples of the same cell line were highly consistent and therefore grouped 
together prior to clustering by folate status (Fig. 1).  
 

 
Figure 1 Unsupervised clusterplot of gene expression data including all probe sets of 5 B-lymphoblast 
cell lines (A–E), determined before and after 5- methyltetrahydrofolate addition. The values represent 
the log transformed (base 2 scale) ratio of the expression values relative to the geometrical mean of the 
probe sets. Though the data sets (all probe sets) were primarily clustered on originating cell line, there 
were also gene sets from which the expressional level seemed to alternate in correspondence with the 
folate status. 
 
However, the cluster plot also showed sets of genes from which the expressional 
level seemed to alternate corresponding to the folate status. These potential folate-
responsive genes were identified with a SAM analysis. From Figure 1 it is also 
clear that after normalization the ‘‘E before’’ sample, that is, the sample with the 
high background signals, showed very low expression levels for almost all genes. 
For this reason, this sample was left out of further analysis, because it did not 
contain any usable information. The SAM analysis was performed with the 
standard false discovery rate of less than 1 per 100 probe sets, corresponding to a 
delta-value of 4.226.  
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Figure 2 Hundred most differential genes grouped by function in B-lymphoblast cell lines before and 
after 5-methyltetrahydrofolate addition. The scale is presented in sigma units. 
 
This resulted in the identification of 144 significant up-regulated and 409 down- 
regulated probe sets after addition of 5-mTHF. The median expression ratio was 
1.63 (range: 1.2–3.8) for the significant down-regulated genes and 1.58 (range: 
1.2–4.2) for the up-regulated genes. These potential folate-regulated genes are 
listed in Table 1 by the pathway or disease in which they are involved. These 
include cancer development, cell cycle checkpoint regulation, DNA replication, 
recombination and repair, biosynthesis of amino acids and DNA/RNA nucleotides, 
protein processing, and cell death. Furthermore, genes that best discriminated 
between pre- and postfolate-supplemented cell lines were evaluated. Figure 2 
shows the 100 best classifying genes arranged by biological function. Of these 
classifiers, 64% were found to be significantly differentially expressed with the SAM 
analysis and had functions in similar pathways.  
 

Table 1 Significant (p < 0.0001) folate regulated genes categorized on pathway or diseases. Certain 
genes were represented by multiple probe sets, which are given separately. 

Gene symbol  Desciption Mean ratio (95% CI) 

Cell Cycle / Cancer 

BRCA1 breast cancer 1, early onset  0.615 (0.537 - 0.693) 

CCNE2 cyclin E2 0.266 (0.216 - 0.317) 

CDC7 cell division cycle 7 homolog (S. cerevisiae)  0.611 (0.529 - 0.693) 

FH fumarate hydratase  0.707 (0.667 - 0.747)  

  0.669 (0.638 - 0.701) 

FUS fusion (involved in t(12;16) in malignant liposarcoma)  0.469 (0.426 - 0.512) 

GART phosphoribosylglycinamide formyltransferase 0.546 (0.471 - 0.621) 

HDAC2 histone deacetylase 2  0.781 (0.728 - 0.833) 

MSH2 mutS homolog 2, colon cancer, nonpolyposis type 1 0.528 (0.448 - 0.608) 

MSH3 mutS homolog 3 (E. coli)  0.785 (0.744 - 0.826) 

MSH6 mutS homolog 6 (E. coli) 0.57 (0.512 - 0.628) 

PHB prohibitin 0.554 (0.485 - 0.623) 

RAD51C RAD51 homolog C (S. cerevisiae) 0.471 (0.405 - 0.536) 

SVH armadillo repeat containing 10  0.671 (0.603 - 0.738) 

TUBG1 tubulin, gamma 1 0.572 (0.505 - 0.639) 

ZWINT ZW10 interactor 0.702 (0.649 - 0.755) 

AURKA aurora kinase A 1.55 (1.441 - 1.659) 

CCDC28A coiled-coil domain containing 28A 1.409 (1.307 - 1.511) 

CCNB1 cyclin B1  1.564 (1.433 - 1.695) 

CCNB2 cyclin B2 1.57 (1.375 - 1.765) 

CCNG1 cyclin G1 1.582 (1.418 - 1.745) 

CDC25C cell division cycle 25 homolog C (S. pombe)  1.573 (1.437 - 1.709) 

CDCA8 cell division cycle associated 8 1.637 (1.506 - 1.768) 



64  
 

CDKN3 cyclin-dependent kinase inhibitor 3   1.541 (1.256 - 1.826) 

 (CDK2-associated dual specificity phosphatase)  

CSE1L CSE1 chromosome segregation 1-like (yeast)  0.489 (0.433 - 0.546) 

FHIT fragile histidine triad gene  2.18 (1.942 - 2.418) 

MDM2 Mdm2 p53 binding protein homolog (mouse) 2.218 (1.370 - 3.066) 

NEK2 NIMA (never in mitosis gene a)-related kinase 2 2.135 (1.880 - 2.390) 

PRDM2 PR domain containing 2, with ZNF domain  1.841 (1.600 - 2.083) 

PTEN phosphatase and tensin homolog  2.144 (1.848 - 2.441)  

 (mutated in multiple advanced cancers 1) 2.101 (1.761 - 2.442) 

PTTG1 pituitary tumor-transforming 1 1.592 (1.494 - 1.69) 

TPX2 TPX2, microtubule-associated, homolog (Xenopus laevis) 1.609 (1.452 - 1.766) 

TTC3 tetratricopeptide repeat domain 3 1.354 (1.276 - 1.432) 

Cell Death 

MSH2 mutS homolog 2, colon cancer, nonpolyposis type 1 0.528 (0.448 - 0.608) 

PDCD8 apoptosis-inducing factor, mitochondrion-associated, 1 0.656 (0.609 - 0.702) 

SOD1 superoxide dismutase 1, soluble  0.679 (0.610 - 0.749) 

 (amyotrophic lateral sclerosis 1 (adult))  

BCL2 B-cell CLL/lymphoma 2 1.671 (1.548 - 1.795) 

PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A  2.194 (1.612 - 2.777) 

PTEN phosphatase and tensin homolog  2.144 (1.848 - 2.441)  

  (mutated in multiple advanced cancers 1) 2.101 (1.761 - 2.442) 

VEGF vascular endothelial growth factor A 2.129 (1.783 - 2.474) 

Cellular Assembly, Organization and Proliferation 

TTL tubulin tyrosine ligase  0.38 (0.326 - 0.433)  

  0.423 (0.366 - 0.480) 

TOP2A topoisomerase (DNA) II alpha 170kDa 1.561 (1.428 - 1.695) 

PAFAH1B1 platelet-activating factor acetylhydrolase, 0.51 (0.428 - 0.592) 
 isoform Ib, alpha subunit 45kDa  

VEGF vascular endothelial growth factor A 2.129 (1.783 - 2.474) 

DNA Replication, Recombination 

BCAS2 breast carcinoma amplified sequence 2 0.686 (0.62 - 0.752) 

BRCA1 breast cancer 1, early onset  0.615 (0.537 - 0.693) 

CDC45L CDC45 cell division cycle 45-like (S. cerevisiae)  0.491 (0.447 - 0.535) 

CDC7 cell division cycle 7 homolog (S. cerevisiae)  0.611 (0.529 - 0.693) 

DFFA DNA fragmentation factor, 45kDa, alpha polypeptide  0.646 (0.572 - 0.720) 

DHX9 DEAH (Asp-Glu-Ala-His) box polypeptide 9 0.539 (0.479 - 0.599) 

EBNA1BP2 EBNA1 binding protein 2 0.422 (0.354 - 0.49) 

EXO1 exonuclease 1 0.606 (0.538 - 0.673) 

FEN1 flap structure-specific endonuclease 1  0.46 (0.391 - 0.529) 

HELLS helicase, lymphoid-specific 0.471 (0.403 - 0.539) 
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HNRPAB heterogeneous nuclear ribonucleoprotein A/B 0.56 (0.483 - 0.636) 

MCM3 minichromosome maintenance complex component 3 0.598 (0.528 - 0.669) 

MCM4 minichromosome maintenance complex component 4 0.474 (0.399 - 0.549) 

MCM5 minichromosome maintenance complex component 5 0.598 (0.535 - 0.661) 

MCM6 minichromosome maintenance complex component 6 0.554 (0.472 - 0.636) 

NAP1L1 nucleosome assembly protein 1-like 1 0.468 (0.409 - 0.527) 

ORC5L origin recognition complex, subunit 5-like (yeast) 0.482 (0.416 - 0.547) 

PAXIP1 PAX interacting  0.585 (0.527 - 0.643) 

 (with  transcription-activation domain) protein 1  

POLA polymerase (DNA directed), alpha 1 0.586 (0.553 - 0.618) 

POLD2  polymerase (DNA directed), delta 2,  0.665 (0.600 - 0.731) 

 regulatory subunit 50kDa  

POLD3 polymerase (DNA-directed), delta 3, accessory subunit  0.67 (0.600 - 0.740) 

POLE2 polymerase (DNA directed), epsilon 2 (p59 subunit) 0.507 (0.449 - 0.565) 

PRPF19 PRP19/PSO4 pre-mRNA processing factor 19 homolog 0.595 (0.531 - 0.658) 

PSMC3IP PSMC3 interacting protein  0.643 (0.578 - 0.708)  

  0.489 (0.385 - 0.593) 

RAD51C RAD51 homolog C (S. cerevisiae) 0.471 (0.405 - 0.536) 

RFC4 replication factor C (activator 1) 4, 37kDa  0.652 (0.583 - 0.721) 

RPA2 replication protein A2, 32kDa  0.692 (0.629 - 0.755) 

RUVBL2 RuvB-like 2 0.751 (0.704 - 0.798)  

  0.763 (0.707 - 0.818) 

SRPK1 SFRS protein kinase 1 0.582 (0.518 - 0.645) 

CD48 CD48 molecule  1.575 (1.520 - 1.630) 

CENPA centromere protein A 1.644 (1.423 - 1.866) 

HNRPA1 heterogeneous nuclear ribonucleoprotein A1 1.492 (1.342 - 1.642) 

KIF2C kinesin family member 2C  1.592 (1.493 - 1.690) 

MBD1 methyl-CpG binding domain protein 1 1.517 (1.354 - 1.679) 

PTTG1 pituitary tumor-transforming 1 1.592 (1.494 - 1.690) 

TOP2A topoisomerase (DNA) II alpha 170kDa 1.561 (1.428 - 1.695) 

Energy Production 

NDUFB2 NADH dehydrogenase 1 beta subcomplex, 2, 8kDa 0.682 (0.623 - 0.741) 

NDUFB6 NADH dehydrogenase 1 beta subcomplex, 6, 17kDa 0.709 (0.643 - 0.776) 

NDUFB9 NADH dehydrogenase 1 beta subcomplex, 9, 22kDa  0.728 (0.667 - 0.789) 

NDUFS3 NADH dehydrogenase Fe-S protein 3, 30kDa 0.746 (0.695 - 0.797) 

 (NADH-coenzyme Q reductase)  

NDUFS6 NADH dehydrogenase Fe-S protein 6, 13kDa 0.525 (0.487 - 0.562) 

 (NADH-coenzyme Q reductase)  

Gene Expression 

BRCA1 breast cancer 1, early onset  0.615 (0.537 - 0.693) 
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POLA polymerase (DNA directed), alpha 1 0.586 (0.553 - 0.618) 

POLD3 polymerase (DNA-directed), delta 3, accessory subunit  0.67 (0.600 - 0.740) 

MDM2 Mdm2 p53 binding protein homolog (mouse) 2.218 (1.370 - 3.066) 

RBBP6 retinoblastoma binding protein 6 1.31 (1.225 - 1.396) 

ZNF42 myeloid zinc finger 1 1.304 (1.227 - 1.382) 

Molecular Transport 

IPO11 importin 11  0.739 (0.68 - 0.798) 

KPNB1 karyopherin (importin) beta 1 0.653 (0.614 - 0.692) 

NUP205 nucleoporin 205kDa 0.812 (0.775 - 0.850) 

NUP214 nucleoporin 214kDa  0.468 (0.407 - 0.529) 

SLC36A1 solute carrier family 36  0.693 (0.629 - 0.757) 

  (proton/amino acid symporter), member 1  

Nucleic Acid Metabolism 

AK2 adenylate kinase 2 0.61 (0.545 - 0.675) 

NME1 protein (NM23A) expressed in non-metastatic cells 0.498 (0.435 - 0.561) 

Post-Translational Modification / Protein Folding 

BAG2 BCL2-associated athanogene 2 0.642 (0.565 - 0.718) 

CCT3 chaperonin containing TCP1, subunit 3 (gamma)  0.573 (0.495 - 0.65) 

CCT6A chaperonin containing TCP1, subunit 6A (zeta 1)  0.466 (0.389 - 0.544)  

  0.475 (0.402 - 0.548) 

CCT7 chaperonin containing TCP1, subunit 7 (eta) 0.621 (0.544 - 0.699) 

DNAJA1 DnaJ (Hsp40) homolog, subfamily A, member 1 0.531 (0.430 – 0.632) 

HSP90AA1 heat shock protein 90kDa alpha 1 0.579 (0.528 - 0.630)  

 (cytosolic), class A member 0.49 (0.401 - 0.578)  

  0.511 (0.430 - 0.593)  

  0.624 (0.600 - 0.648) 

HSPA8 heat shock 70kDa protein 8 0.738 (0.692 - 0.784) 

HSPD1 heat shock 60kDa protein 1 (chaperonin)  0.772 (0.725 - 0.818) 

HSPE1 heat shock 10kDa protein 1 (chaperonin 10)  0.417 (0.340 - 0.493) 

RUVBL2 RuvB-like 2 (E. coli) 0.751 (0.704 - 0.798)  

  0.763 (0.707 - 0.818) 

TCP1 t-complex 1 0.531 (0.467 - 0.594)  

  0.487 (0.370 - 0.604) 

RNA Post-Translational Modification 

DDX52 DEAD (Asp-Glu-Ala-Asp) box polypeptide 52 0.569 (0.475 - 0.664) 

DDX56 DEAD (Asp-Glu-Ala-Asp) box polypeptide 56  0.64 (0.568 - 0.712) 

NOL5A nucleolar protein 5A (56kDa with KKE/D repeat) 0.488 (0.426 - 0.550) 

SSB Sjogren syndrome antigen B (autoantigen La) 0.633 (0.566 - 0.699) 

Small Molecule Biochemistry 

ADH5 alcohol dehydrogenase 5 (class III), chi polypeptide  0.826 (0.784 - 0.868) 
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CYCS cytochrome c, somatic  0.587 (0.535 - 0.639) 

DHFR dihydrofolate reductase  0.53 (0.454 - 0.606)  

  0.493 (0.445 - 0.542) 

FABP5 fatty acid binding protein 5 (psoriasis-associated)  0.427 (0.347 - 0.506) 

RARS arginyl-tRNA synthetase  0.737 (0.687 - 0.788) 

TSTA3 tissue specific transplantation antigen P35B 0.786 (0.739 - 0.833)  

  0.708 (0.667 - 0.749) 

UMPS uridine monophosphate synthetase 0.578 (0.501 - 0.655) 

UNG uracil-DNA glycosylase  0.531 (0.468 - 0.594) 

ABCB7 ATP-binding cassette, sub-family B (MDR/TAP), member 7 1.578 (1.401 - 1.754) 

CD79A CD79a molecule, immunoglobulin-associated alpha  1.426 (1.312 - 1.541)  

  1.469 (1.395 - 1.542) 

DHPS deoxyhypusine synthase  1.551 (1.411 - 1.691) 

DPM3 dolichyl-phosphate mannosyltransferase polypeptide 3 1.665 (1.496 - 1.834) 

RHOQ ras homolog gene family, member Q 1.769 (1.568 - 1.97)  

  1.929 (1.697 - 2.161) 

 
Projection of the data on known canonical pathways reveals involvement of various 
pathways in cell cycle regulation and phases of the cycle. DNA replication control is 
represented by regulation of various DNA polymerases and genes from the MCM 
family and CDC7 involved in the initiation of genome replication. The G2/ M DNA 
damage checkpoint was represented by the CDC25/CDC2/Cyclin B pathway, 
associated with DNA damage processing via the P53 tumor suppressor. The 
regulation of mitosis was represented with, for example, NEK2, a centriole division 
gene, and AURKA, which formats and stabilizes microtubules at the mitotic spindle 
pole during chromosome segregation. Furthermore, the CENPA gene, a 
methylated variant of histone H3 involved in centrosome formation, was found to 
be significantly up-regulated. Other pathways linked to cell cycle regulation, such 
as the nucleotide excision repair pathway, showed diminished activity after folate 
addition. This was demonstrated with decreased expression of DNA binding 
proteins ERCC4 and DDB1 and increased expression of single stranded DNA 
binding protein and various DNA polymerases. The apoptosis pathway was 
represented by BCL-2, FHIT, DFFA, and PDCD8. Interestingly, FHIT encompasses 
the FRA3B fragile site, which is expressed in a folate- deficient environment. 
Besides cell cycle regulation, protein processing pathways were represented by 
various genes of the chaperonin- containing TCP1 complex family, which were 
downregulated after folate addition. This complex folds various polypeptides in an 
ATP-dependent manner into active proteins, including actin and tubulin. Other 
known functions of folate, such as the one-carbon group cycle and nucleotide 
synthesis, were mainly unregulated, although several genes of the purine synthesis 
pathway were found to be down-regulated.  
The results of quantitative real-time RT-PCR on 10 genes belonging to the 100 
best classifying probe sets are shown in Table 2. The reference gene b-actin 
showed no differential expression (ratio after/before folate addition is 1.01). For 8 
out of 10 tested genes the direction of regulation found with the RT-PCR 
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experiments was identical to the direction found with the microarrays. Moreover, 
from the eight directionally correct genes, five reached statistical significance, that 
is, RBBP6, pTEN, ANKRD11, BATF3, and HSP90AA1. The directions of the 
HNRPD and the TSC22D3 genes were opposite to the microarray data. 
 
 

Gene Forward primer  
sequence 

Reverse primer  
sequence 

Ratio after /  
before folate  
addition 

P-value 

Internal control 
ACTB  gcgggaaatcgtgcgtgacatt gatggagttgaaggtagtttcgtg 1.018 0.401 
Up regulated genes 
RBBP6 acagcctagaccctcagcaa ctcctggagcgttttcactc 2.037 0.005 
PTEN accaggaccagaggaaacct gctagcctctggatttgacg 2.591 0.005 
ANKRD11 gacaaggagcccagagacag cactgaggctctgtccttcc 1.614 0.039 
MTCH1 gaccactgaggctcttttcg cttggcgtaggtgaagaagc 1.015 0.818 
TSC22D3 accagaccatgctctccatc cagggtcttcaacagggtgt 0.914 0.589 
Down regulated genes 
BATF3 agccctgaggatgatgacag ttcagtgcctctgtcaggtg 0.511 0.005 
HSP90AA1 atgaaactgcgctcctgtct ttcttccatgcgtgatgtgt 0.515 0.005 
BCCIP atgaggagcagggaaaacct ccagccttcagagaaaccag 0.818 0.347 
DPP3 acgaggggtatgcaacagtc gcctcgtattccagaagctg 0.914 0.347 
HNRPD gatcctaaaagggccaaagc gttgtccatggggagctcta 1.117 0.818 

Table 2 Results of the quantitative real-time RT-PCR, including primers and fold change 
 
 
Discussion 
In the present study we show the results of a genomewide expression analysis in 
B-lymphoblasts derived from CL/P patients to identify folate-responsive genes and 
associated pathways and their relevance in lip and palate development. The forced 
clustering of the data revealed significant up-regulation of 144 and down-regulation 
of 409 genes in response to folate. Differential expression was confirmed with 
quantitative RT-PCR, which showed comparable regulation in 8 out of 10 tested 
genes, from which five genes reached statistical significance. The regulated genes 
were not concentrated in specific functions or pathways, but covered several 
functions at a low level. This indicates a general modifying role of folate in 
physiological processes, which might be connected with the extensive role of folate 
as a one-carbon group donor. One-carbon groups are used for the synthesis of 
purines and pyrimidines, proteins, and the remethylation of homocysteine into 
methionine, the main methyl group donor of the cell. Interruption of these basal 
functions leads to various types of cellular and chromosomal damage, such as 
uracil accumulation and incorporation, abnormal protein and CpG methylation, 
incorrect imprinting patterns, DNA strand breaks, aneusomy, and cell death [10, 
12-14, 20]. As a result, altered folate status might influence cell cycle progression. 
This is supported by our data showing modified expression of a relatively high 
number of genes involved in cell cycle regulation, especially G2/M checkpoint 
regulation, S-phase initiation, and regulation of mitosis. The modest number of 
genes regulated by folate was confirmed by the unsupervised clustering, which 
demonstrated that the primary clustering of samples was to the original cell line 
instead of folate status. The similarities between the samples from the same 
culture were thus larger than the similarities in folate response. One explanation 
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may be the low number of folate-responsive genes or the low number of samples 
or even different responses to the folate intervention of the separate cell lines. In 
our unpublished study we identified folate-responsive proteins in 30 B-lymphoblast 
cell lines from CL/P and control children using a new proteomic method based on 
peptide fingerprinting. These proteins involved glucose metabolism, energy 
production, nucleocytoplasmic transport, cell cycle regulation, cytoskeleton, protein 
processing, and DNA transcription and translation. The present results confirm the 
responsiveness of these pathways to folate supplementation. This was especially 
true with respect to various heat shock proteins and heterogeneous nuclear 
ribonucleoprotein. Spiegelstein et al. [21] studied gene expression in the anterior 
neural tube of Theiler stage 13/14 FOLBP1 knock-out mice after feeding them a 
folate-deficient diet and using a 5700 gene array. Biological functions identified as 
being regulated by folate were comparable with those identified in our study and 
comprised processes such as proliferation, apoptosis, transcription, and 
translation. Courtemanche et al. [11] performed a study using a 695 gene targeted 
microarray focusing on pathways involved in cellular aging and stress. 
Interestingly, they also identified cell cycle and DNA damage-related expression as 
a consequence of folate deficiency. However, their limited array size made it 
impossible to explore various other pathways. Developmental genes such as TGFb 
and MSX1 and their receptors, which are known to contribute to CL/P development 
[22] and thus might be target genes for folate, were not identified as folate-
responsive genes. In the case of TGFß it was reported earlier that this gene is an 
important regulator of apoptosis in B-cell precursors [23] and thus it seems likely 
that the used B-lymphoblasts were expressing TGFß. The lack of differential 
expression of TGFß in response to folate might therefore indicate that there is no 
interaction. However, in theory, the possibility remains that interaction is selectively 
and/or temporarily present in the developing facial structures. Additional testing is 
needed to clarify these possible gene-specific effects of folate. An interesting 
observation is that the expression of genes that code for oncogenes and tumor-
suppressors was altered in the present study. Although recent reports on the 
association of folate and the development of certain cancers are still inconclusive, 
there are increasing concerns that folate deficiency as well as folate excess might 
contribute to cancer development [8, 24-25]. The deregulating effects of folate on 
normal cell development as shown by our data corroborate with this hypothesis 
and these results might add new starting points to unravel this apparent gene-
nutrient interaction. This is one of the first studies using human cell lines for 
genome-wide profiling of the gene expression in response to folate. We observed 
>500 significant changes in expression of genes involved in a variety of biological 
pathways. The selection of a homogeneous group of patients all with an identical 
nonsyndromic cleft contributed to the validity of the results. The measurements of 
the folate concentration in the medium of the cultures confirmed the actual folate 
states and thus folate deficiency and the target folate concentration. The B-
lymphoblast culture model is a frequently used model for folate studies and was 
found to be appropriate for the assessment of folate-responsive gene expression 
and, as such, informative for folate-sensitive congenital malformations such as 
CL/P. However, we realize that other time- and tissue-specific pathways may be 
active during palatal development and may contribute to CL/P development. 
Secondly, only five cell lines derived from CL/P patients could be profiled for this 
explorative study. Evidently, higher numbers of cell lines will increase the reliability 
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of the data and prevent false-positive identifications. Inclusion of samples derived 
from healthy control children would also allow case or control specific gene 
expression relevant for increasing the understanding of CL/P development. Future 
studies are needed to explore the possible role of the present set of genes in the 
development of CL/P and other folate-sensitive congenital malformations. This may 
eventually lead to the further understanding of gene-environment interactions in the 
development of congenital malformations such as CL/P. 
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Abstract 
The role of natural folate intake and synthetic folic acid supplementation in the 
prevention of some congenital malformations is known, but on a molecular 
biological level poorly understood. In a first approach to identify folate-regulated 
pathways in human embryogenesis, tryptic digests of Epstein Barr Virus-
immortalized B-lymphoblasts proteins from 6 cleft lip and/or palate patients and 2 
controls were compared using matrix assisted laser desorption ionisation – time of 
flight (MALDI-TOF) mass spectrometry. After immortalisation, the lymphoblasts 
were cultured for 22 days in folate-rich, i.e. 5-methyltetrahydrofolate (5- mTHF), or 
folate-free medium. On day 22, 5-mTHF was added to the folate-free cultures and 
the profiles on day 22 and 23 were compared. After background correction for the 
peptide profiles of the folate-rich cultures, we found in the folate-free media several 
differentially expressed peptide peaks upon addition of 5-mTHF. These peptide 
peaks were mass annotated and matched with the MSDB human database. The 
results suggest some folate-regulated protein candidates as Frizzled and the Rho 
GTP-ases WRCH and Chp that are known in human embryogenesis. Differential 
folate expressed proteins in patients and controls, however, have to be further 
investigated. 
 
Introduction 
Sofar, the B-vitamin folate is the most promising nutrient that contributes to the 
prevention of congenital malformations, such as neural tube defects, cleft lip and/or 
palate (CLP), limb and heart malformations [1-3]. Recently, it has been 
demonstrated that the periconceptional use of more than 200 μg natural folate per 
day from food also significantly contributes to the prevention of CLP [4]. 
Intracellular folate serves as a source for the synthesis of the DNA bases 
thymidine, adenine and guanine. Another important function of the 5- 
methyltetrahydrofolate (5-mTHF) form of folate is the remethylation of 
homocysteine into methionine. The amino acid methionine is via its metabolite S-
adenosylmethionine the main methyl donor in the cell. These methyl groups are 
also used for DNA methylation, thereby regulating the transcription and silencing of 
genes. A shortage of 5-mTHF is accompanied by a mild hyperhomocysteinemia, 
which can be treated in most cases by folic acid. Hyperhomocysteinemia has been 
associated with increased risks of neural tube defects, CLP, heart malformations 
as well as cardiovascular diseases in later life [5-8]. Increasing evidence suggests 
that interactions between folate, homocysteine and specific genes in early 
pregnancy link vascular-related congenital malformations and other reproductive 
failures with cardiovascular diseases in adulthood [9]. On a cellular level, folate 
deficiency enhances apoptosis of cultured human trophoblasts [10]. In vitro studies 
have demonstrated that high homocysteine concentrations increase neural crest 
cell motility, migration distance, increase the neural crest cell outgrowth area and 
decrease neural crest cell differentiation into smooth muscle cells and nerve cells 
[11-12]. This is in line with the in vivo study by Rosenquist et al. [13], in which very 
high concentrations of homocysteine administered on top of avian embryos 
resulted in neural tube defects, CLP, heart malformations, and ventral midline 
defects in a time- and concentration-dependent manner. They also observed that 
folic acid supplementation was only effective in preventing spina bifida and related 
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central nervous system malformations when it resulted in a reduction of 
homocysteine levels. Interestingly, Boot et al. [14] observed a decreased 
expression of the extracellular matrix proteins fibrillin-2 and fibronectin after 
homocysteine administration. Despite these findings, knowledge on molecular 
biological pathways involved in embryogenesis and the remodelling of the vascular 
system in postnatal life by folate is limited. Nowadays, the general recommendation 
is to use 0.4 to 0.5 mg folic acid per day during the periconceptional period. 
However, the most effective and safest dose of this synthetic form of folic acid may 
be between 0.2 and 0.3 mg [15]. Because of folic acid fortification in some 
countries and folic acid supplementation programmes in most continents, there is a 
need to investigate these issues as well as folate-gene interactions underlying the 
molecular biological pathways in embryogenesis. From this background, we 
investigated the expression of proteins in the presence or absence of 5-mTHF in 
Epstein Barr virus (EBV) immortalised lymphoblasts derived from CLP patients and 
controls. 
 
Materials and Methods 
Sample selection and culture scheme  
To investigate molecular biological pathways modulated by 5-mTHF, peripheral 
blood B-lymphoblasts from 8 children with CLP and 3 healthy control children 
without congenital malformations were selected from a total panel of 96 samples of 
CLP and 83 samples of control children. The samples were selected on the TT 
genotype of the MTHFR polymorphism to control for confounding due to variations 
in the MTHFR genotype. These samples were collected in the Dutch nationwide 
non-syndromic CLP case-control triad study conducted between 1998 and 2000. 
The design of this study has been described in detail [16]. After blood collection, 
lymphoblasts were isolated using Ficoll-gradient and stored in liquid nitrogen. For 
the current study stable cell lines were set up. The B-lymphoblasts were 
immortalised with EBV as described earlier [17] and were grown at 37°C and 5% 
CO2 in normal RPMI medium (Gibco, Carlsbad, CA) containing 10% (v/v) fetal calf 
serum (Perbio, Logan, Utah) and 2000 nM folic acid. At T = 0, aliquots of these cell 
lines were cultured in either folate-free RPMI medium (Gibco) with 10% folate free 
dialyzed fetal calf serum (Perbio), or in the same folate-free medium with the daily 
addition of one dose of 20 nM 5-mTHF (Fig. 1). This form of folate, i.e. 5-mTHF, is 
unstable, UV sensitive and has a half-life of approximately one day. Therefore, the 
cultures with 5-mTHF were supplemented daily to maintain the target concentration 
of 20 nM in the medium. After 16 days of culturing, the target concentrations of 0 
nM and 20 nM folate were reached. These concentrations were maintained for 
another 6 days until day 22. On T = 22 days 1 x 106 million cells per cell line in 
triplicate were harvested from both cultures and a single dose of 5-mTHF (20 nM) 
was added to the folate-free cultures (intervention). After 1 day, on T = 23 days, 
again 1 x 106 cells per cell line in triplicate were harvested. The cell pellets were 
washed 4 times with PBS (Gibco) to loose the proteins from medium and fetal calf 
serum. The cell pellets were stored at –20°C until measurement by MALDI-TOF 
mass spectrometry. For validation purposes, folate concentrations were routinely 
measured during culturing by an electrochemiluminescence assay (Roche, Basel, 
Switzerland) at the Clinical Chemical Laboratory of the Erasmus MC University 
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Medical Center in Rotterdam. 
 
Proteomics  
After thawing, the cell pellets were lyzed by ultrasound (Ultrasonic Disruptor 
Sonifier II Model W-250/W-450, Bransons Utrasonics, Meppel, The Netherlands) 
for 1 min at 60% amplitude. After boiling of the cell pellets for 5 min and cooling to 
room temperature, trypsin (Promega, Cat No.: V5280, Leiden, The Netherlands) 
was added for digestion. After one hour the digestion was stopped by the addition 
of 1 μl 500 mM HCl. We used C18 ZipTips to remove interfering substances from 
the samples as recommended by the manufacturer (Millipore, Bedford USA). To 
measure peptides by MALDI-TOF mass spectrometry, 0.5 μl of the sample is 
dissolved into 2.5 μl matrix (α-cyano-4-hydroxy-transcinnamic acid, Bruker 
Daltonics, Billerica, MA). Of this sample-matrix solution 0.5 μl was pipetted onto a 
400 μm 384-well anchor chip MALDI-TOF plate (Bruker Daltonics, USA) and dried 
for 5 min. MALDI-TOF mass spectrometry analysis (BiflexIII, Ultraflex, Bruker) was 
performed immediately after spotting. When MALDI-TOF/TOF mass spectrometry 
became available, we analyzed our samples again for better resolution. 
Furthermore, MALDI TOF-TOF has the possibility to determine the exact amino 
acid sequence of a peptide peak. Thus, the protein origin can be determined more 
significantly.  
 
MALDI-TOF mass spectrometry  
Peptide peak profiles from the folate-free cell pellets, derived from the mass 
spectrometer (Fig. 2) before (T = 22 days) and after (T = 23 days) the addition of 5-
mTHF, were compared and differences in peaks were annotated. The criteria for 
annotating a peptide peak are as follows: a) a peak is present in all triplicate 
samples of one cell line before intervention and not in any of the triplicate samples 
of that cell line after intervention or vv; b) this difference must be found in at least 2 
of the 8 different cell lines. The annotated peaks in the complex peptide mixtures 
were normalized with the peptide profiles found in the cell pellets cultured in the 
folaterich medium using FlexAnalysis v2.0 software (Bruker Daltonics). Peptide 
peaks that were present in the cell pellets cultured in both the folate-free and 
folate-rich media were left out for further analyses. Differential expressed peaks in 
the folate-free cultured cell pellets compared to the background spectra of the 
folate-rich cell pellets were mass annotated. The mass list was put in the Mascot 
search engine (Matrix Science, www.matrixscience.com) and matched with the 
MSDB human database (August 2004) at a tolerance of 200 parts per million. 
 
Results 
The immortalization and establishment of stable Blymphoblast cell lines was 
succesfull in 6 of 8 lymphoblast samples of CLP patients and 2 of 3 lymphoblast 
samples of healthy persons. Fig. 1 shows the folate concentrations determined in 
the medium of each cell line. At T = 0 the folate concentrations did not drop 
immediately. It took 16 days to reach the target folate concentrations of 0 and 20 
nM folate. Low concentrations of folate are known to cause cell death in vitro. In 
none of the cultures growth inhibition or increased apoptosis was observed by  
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Figure 1 
A Folate concentrations determined in folate-rich culture media (n = 8). Cells are harvested at days 22 
and 23. B Folate concentrations determined in folate-free culture media (n = 8). At day 22, a single dose 
of 20 nM 5-mTHF is added to the media. Therefore, on day 23 the concentration in this group raised to 
20 nM. Cells were harvested at day 22 and 23 (before and after 5-mTHF addition).  
 
 
routine observation (data not shown). 
 
The concentrations of folate in the cultures were for practical reasons maintained at 
0 and 20 nM folate from T= 16 days till T= 22 days after which the cell pellets were 
obtained at T = 22 and T = 23 days. On day 22 the masses that correlated with the 
peptide peaks determined in triplicate in the folate-free cultured cell pellets before 
5-mTHF administration were not significantly different from the peaks determined in 
triplicate in the folate-rich cultured cells (20 nM 5-mTHF).  
 
In the comparison between day 22 and 23 within the folatefree and within the 
folate-rich cell pellets, fourteen peaks were present in at least two different cell 
lines (Fig. 2). The patient and the control group, however, were too small to identify 
differentially expressed peptide profiles between these two groups. Therefore, we 
further evaluated the peptide profiles independent of the patient or control state. By 
entering the 14 annotated masses in the MSDB database of Mascot 
(www.matrixscience.com) we found 6 known proteins and 14 hypothetical proteins 
in the first 20 hits of the report of identified proteins. Table 1 shows the list of these 
proteins. According to their ranking on the list the 6 known proteins were: Frizzled, 
GAP associated tyrosine phosphoprotein p62 (Sam68ΔKH), Rho family GTP-ase 
Chp, WRCH related GTP-ase and 3’-5’ exonuclease ERI (Eri-1 homologue). 
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Figure 2 
Figure 2 Enlargement of the peak profiles in triplicate from 1 cell line before (A1,2,3) and after (B1,2,3) 
administration of 5-mTHF to the folate-free cultures. The peaks with masses 788 (Frizzled, Rho-Gtp-
ases WRCH and Chp) and 800 (Frizzled) were upregulated after the addition of 5-mTHF folate and 
maintained after correction for the peptide peaks in the folate-rich media in this cell line.  
 

Accession Protein  
mass 

Score Description 

Q9BSC7 16243 40 Hypoth. protein (Fragment). (Human). 
CAF14391 7933 40 AX969283 NID: - (Human). 
Q9ULI4 190203 36 Hypoth. protein KIAA1236 (Fragment). (Human) 
JE0338 63512 36 Frizzled-2 protein - (Human). 
Q99760 44000 36 Sam68deltaKH.- (Human). 
Q86UZ8 71441 35 FZD2 protein (Fragment).- (Human). 
Q7Z7L8 24098 34 Hypoth. protein (Fragment).- (Human). 
BAC87075 27473 34 AK127657 NID: - (Human). 
AAD12740 99313 34 HSU78168 NID: - (Human). 
Q8TDW6 26229 34 WRCH1-related GTPase.- (Human). 
Q96L33 26201 34 Rho family GTPase Chp.- (Human). 
CAE89777 25997 33 AX877551 NID: - (Human). 
AAQ15128 59843 33 AF354755 NID: - (Human). 
ERI1_HUMAN 39907 33 3'-5' exonuclease ERI1 homolog (Human). 
CAD19332 40022 33 Sequence 1 from Patent WO0189281.- (Human). 
AAQ21219 40038 33 AY310909 NID: - (Human). 
Q96DP8 17781  33 Hypothetical protein FLJ30901.- (Human). 
A38219 48197 32 GAP-ass. Tyr. phosphoprotein p62 – (Human). 
Q9BQZ8 24076 32 DJ423B22.2 (Novel prot. similar to CE08529) 
Q9GZU3 56237 32 Hypothetical protein FLJ13269.- (Human). 

 
Table 1 The 20 proteins (MSDB database) are presented that matched with the 14 peaks after the 
administration of a single dose of 20 nM 5-mTHF to the folate-free lymphoblast cultures  
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Discussion 
The EBV-immortalisation of lymphoblasts into cell lines followed by standardized 
culturing in folate-free RPMI medium containing 10% (v/v) dialysed fetal calf serum 
and 5-mTHF could be achieved in a rather uncomplicated way and is an easy 
model for studying the expression of proteins by folate. However, it has to be taken 
into account that these cells are immortalized and could therefore behave 
differently from the in vivo situation.  
Three lymphoblast samples were not successfully immortalised, which is probably 
due to impaired freezing and thawing. It took a relatively long period of 16 days to 
reach folate depletion in the culture medium. This may be explained by the 
accumulation of high folate concentrations in the cells during EBV-immortalisation. 
During immortalisation the cells are cultured for 4-5 weeks in normal RPMI 1640 
medium containing approximately 2000 nM folic acid. We assume that after 
switching to the folate-free medium, the relatively high number of cells (2 x 106/ml) 
slowly loose their stored folate to the culture medium resulting in initial high folate 
concentrations.  
Although apoptosis is increased in human trophoblasts cultured in folate-free 
medium [10], the EBV-lymphoblasts cultured in folate-free media did not 
demonstrate elevated apoptosis rates. This finding can be explained by the 
relatively short time of folate-free culturing at a concentration of 0 nM 5-mTHF from 
day 16 to 22. Another explanation may be that immortalized lymphoblasts are 
relatively less sensitive to culturing in a folate-free environment.  
Furthermore, proteins that are produced by the cells into the medium are not taken 
into account by this method, because they are washed out together with the 
proteins from the medium and serum.  
Mass spectrometry is used for identifying single proteins from for example 2 
dimensional electrophoresis gels. However, in this study, whole cell protein tryptic 
digests were measured. This method is very attractive because large numbers of 
samples can easily be measured and analyzed. Potentially the peptides that differ 
can be sequenced directly or after pre-fractionation. Still, standardized analysis 
software needs to be improved further to handle the complicated patterns that are 
produced by the MALDI-TOF mass spectrometer.  
Some methodological issues have to be addressed. A limitation of this study is that 
for practical reasons it was not feasible to objectively determine cell growth and 
apoptosis rates by FACS and TUNEL techniques. Moreover, in this study 
comparisons of the peptide peaks were made after manual annotation. This is 
accurate but very time consuming. Therefore, we reanalyzed the data by MALDI-
TOF/TOF (Ultraflex, Bruker), in which the masses are automatically identified. This 
data supported the peptide profiles identified by MALDI-TOF (BiflexIII, Bruker). 
With the application of both methods, we found 3 of 6 upregulated known proteins 
on day 23 after administration of 5-mTHF to the folate-free cultures that are 
involved in fusion processes during human embryogenesis. The Wnt signaling 
pathway, from which Frizzled is a cell membrane receptor, is associated with 
closure of the tissues that form the palate, neural tube and heart [18-21]. 
Interactions between this Wnt signaling pathway and transforming growth factor 
beta 3 (TGFβ3), involved in the closure of the palate, have also been described 
before [20, 22]. The GTP-ases WRCH and Chp might also be relevant in folate-
related embryogenesis, because GTP-ases are important in the polarization of 
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cells [23] and are described as effectors of the TGFβ3 pathway [24]. Furthermore, 
WRCH is reported as a possible downstream target of the Wnt signaling pathway 
[25]. Although these data are very interesting, they are preliminary and therefore 
should be considered with caution. To further validate the findings, MALDITOF/ 
TOF mass spectrometry should be combined with MS/MS to sequence the 
peptides and to confirm the initial results. Moreover, experiments with antibodies 
against the suggested proteins and RNA expression studies using micro-arrays 
and RT-PCR will substantiate the results considerably. Finally, to identify 
differential folatesensitivity of protein expressions between CLP patients and 
controls, the number of cultures should be enlarged.  
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Abstract  
Background Maternal periconceptional use of folic acid contributes to the 
prevention of neural crest related congenital malformations including orofacial 
clefts. The underlying biological pathways affected by folic acid, however, are still 
not clarified. In an explorative study, we identify folate responsive genes and 
pathways by advanced proteomic techniques and their possible role in orofacial 
development in very young children. 
Materials and Methods At 15 months of age we obtained B lymphoblasts from 10 
children with and 10 children without an orofacial cleft (OFC). Folate responsive 
protein expression was determined in folate free B-lymphoblast cultures, 
supplemented with 5-methyltetrahydrofolate to reach the target concentration 
30nM. Folate associated differences of peptide and protein expressions were 
assessed by analysing samples before and folate addition. Samples were trypsin-
digested and measured by nano-liquid-chromatography coupled online to a LTQ-
Orbitrap mass spectrometer. Significantly differentiating peptides were searched 
for using a McNemar’s test and correlations with proteins and existing pathways 
were visualized using Ingenuity Pathway Analysis.  
Results We found 39 folate responsive peptides which were assigned to 30 
proteins. Those proteins consisted of histones, ribosomal and heat shock proteins 
and proteins involved in antioxidant reactions, cytoskeleton, glycolysis and energy 
production, protein processing, signal transduction and translation.  
Conclusions Histones, ribosomal and heat shock proteins were mainly found in the 
case group and here we confirm that almost 60% of these proteins were also found 
in a subset of the same samples in our previous study using microarray on folate 
responsive gene expression. The proteins were compared to known biological 
pathways and matched with recent relevant literature. We discuss the found 
proteins and pathways as a function of folate administration in a in vitro cell model. 
 
Introduction  
For more than two decades it is known that periconception intake of synthetic folic 
acid or natural folate reduces the birth prevalence rate of several congenital 
malformations, such as neural tube defects [1, 2], orofacial clefts (OFC) [3, 4] and 
congenital heart defects [4]. Despite the lack of knowledge on folate-gene and 
folate-protein interactions, this has resulted in mandatory folic acid food fortification 
in several countries [5] with potential side effects such as increased risk of colon 
cancer and asthma [6]. As one-carbon-group donor folate is essential for synthesis 
of the amino acids serine, cysteine and glycine, the purines adenine and guanine, 
the pyrimidine thymine and the remethylation of homocysteine into methionine. The 
methionine derivative S-adenosylmethionine is the main methyl donor for the 
modification of DNA, RNA, proteins and phospholipids and essential for 
transcriptional and (post-) translational regulation [7].  
The interaction of folate on a molecular genetic level might be best understood and 
targeted with the methylation hypothesis, indicating a role for folate in epigenetic 
regulation and post-transcriptional modification [8]. Because methyl-groups are 
derived from the diet, in particular of folate as precursor of S-adenosylmethionine, 
folate is considered a modifier of gene expression [9]. Reports on the influence of 
folate on DNA methylation [10, 11], gene-expression [12] and DNA 
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hypomethylation resulting from hyperhomocysteinemia in DNA of lymphocytes [13] 
support this hypothesis. This is in line with evidence that the maternal nutritional 
state alters the epigenetic profile of the fetal genome [9, 14] and that lymphocytes 
can be used as a in vitro model to investigate folate uptake and response, in a 
general way. 
In order to identify folate responsive biological pathways as a step to unravel the 
methylation hypothesis and its implications for orofacial clefting in human, we 
analysed peptide fingerprints of human B-lymphoblasts cultures before and after 
natural folate exposure, in children with and without OFC. The identified folate 
responsive protein profiles are compared to the previous microarray gene 
expression profiles on folate responsive gene expression in the same cell lines [15] 
and to relevant literature.  
 
Materials and Methods 
Sample selection 
From 161 children with non-syndromic OFC and 111 control children without 
congenital malformations, who participated in the nationwide case-control triad 
study on OFC in the Netherlands between 1998 and 2003 [16], we selected 10 
children with non-syndromic, complete, unilateral cleft lip, jaw and palate and 10 
control children with a comparable distribution of the MTHFR 677 C>T 
polymorphism. The study was approved by the Central Committee for Human 
Research, The Hague, The Netherlands (CMO 9803-0067, 1998) and by the 
Medical Ethical Committees of all participating hospitals. Written informed consent 
was obtained from every participant and on behalf of their child before entering the 
study.The patient and control group consisted of 3 and 5 female samples, 
respectively, and 7 and 5 male samples, respectively. From the children 
standardized blood samples were obtained approximately 15 months after birth 
from which nucleated cells were isolated over a Ficoll gradient and stored in 
standard RPMI-medium with 10% dimethylsulfoxide in liquid nitrogen until use.  
 
Cell culture protocol and experimental design  
B-lymphoblasts were isolated and immortalised with Epstein Barr virus following a 
standardized protocol [17]. The 10 patient and 10 control cell lines were 
established and cultured until the total number of cells was around 200 million per 
culture (<10 passages). Whole cultures were resuspended in folate deficient 
medium, containing folate free RPMI 1640 (Gibco, USA), 10 % (v/v) dialyzed fetal 
calf serum (Perbio, USA) and 1% (v/v) 100 mM sodium-pyruvate, 200 mM L-
glutamate, 10.000 units/ml penicillin and 10.000 μg/ml streptomycin (Gibco, USA) 
and cultured for 5 days. On day 5 the cultures were supplemented with 5-
methyltetrahydrofolate (5-mTHF, Sigma-Aldrich, St. Louis, MO) to reach a target 
concentration of 30 nM. Before and after addition 4 million cells per culture were 
harvested. Folate concentrations in the medium were measured during the 
culturing period after appropriate dilution with standard diluent using the Modular 
E170 electrochemiluminescence assay (Roche Diagnostics GmBH, Germany).  
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Sample preparation and mass spectrometry 
From each sample collection, 4 million cells per culture were harvested, pelleted 
and washed four times with 5 mL phosphate buffered saline. Pellets were snap-
frozen in liquid nitrogen and stored at -80˚C. After thawing, cells were diluted in 
RapiGestTM SF (Waters Corporation, Massachusetts, USA) and trypsin digested 
according to manufacturer’s specification. From the final peptide solution 1 μL was 
profiled using an Ultimate 3000 nano liquid chromatography system (Dionex, 
Amsterdam, the Netherlands) that was coupled to a LTQ-Orbitrap (Thermo Fisher 
Scientific, Bremen, Germany). Settings, gradients and analysis were as described 
elsewhere [18]. Only peptides assigned to a protein were admitted to further 
analysis. Protein results were visualized with Ingenuity Pathway Analysis version 
8.6 (Ingenuity Systems, Inc., Redwood City, CA).  
  
Statistical analysis 
For identification of significantly differentiating peptides the results of the 10 case 
and 10 control cultures were analysed as matched pairs (before versus after folate 
addition) using a McNemar’s test, a non-parametric chi-squared statistic test with 1 
degree of freedom for nominal data. For each peptide the ratio of upregulated 
versus downregulated pairs was statistically tested. The case and control samples 
were evaluated separately and grouped. A p-value smaller than 0.05 was 
considered significant.  
 
RNA expression data 
In our previous study we made an inventory of folate responsive genes in a subset 
of samples of 5 cases used in the present study [15]. RNA expression was 
assessed in 5 pre and 5 post folate intervention samples with Human Genome 
U133 Plus 2.0 gene arrays (Affymetrix). Log transformed (base 2 scale) ratios of 
the expression values relative to the geometrical means were calculated and 
submitted to a significance analysis of microarray (SAM) to obtain significantly 
folate regulated genes. 
 
Results 
Twenty B-lymphoblast cultures were cultured on folate free medium during 5 days 
to reach a folate deficient state with an average folate concentration of 4.4nM 
(standard deviation [SD] 0.4). Addition of the folate metabolite 5-mTHF resulted in 
an average concentration of 25.9nM (SD 4.0) on day 6. Subsequently, whole cell 
samples were trypsin digested and the peptide solutions were profiled and 
sequenced. This resulted in identification of on average 198 peptides per sample 
(SD 77) and a total of 889 unique folate responsive peptides with a peptide score 
of at least 25. These peptides related to 302 unique proteins.  
For each of the 889 peptides presence or absence was listed per sample. For each 
culture the   samples before and after folate addition were paired and tested with 
the McNemar test to compare the up regulated versus down regulated pairs. From 
the 889 peptides 39 peptides reached statistical significance in the case and / or 
control group presented in table 1 and 2. These peptides were assigned to 30 
unique proteins, with a peptide distribution of 22 proteins with 1 peptide, 7 proteins 
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with 2 peptides and 1 protein with 3 peptides. These proteins also contained 
additional peptides that were not found to be significantly regulated.  
The identified proteins comprised histones, ribosomal and heat shock proteins and 
proteins involved in antioxidant reactions, the cytoskeleton, glycolysis and energy 
production, protein processing, signal transduction and translation. Interestingly, 
this largely corresponds to the pathways found in our previous study on folate 
responsive RNA expression. The combined list of 30 folate regulated proteins was 
uploaded to Ingenuity Pathway Analysis and a theoretical network was created 
which was compared to known biological pathways. From the 30 identified 
proteins, 13 could be fitted into  theoretical network related to ‘cell death, cellular 
compromise and gene expression’ (figure 1a). This network also shows an 
upstream relation to TGFbeta1. Projection of known canonical pathways on our set 
of proteins resulted in significant identification of 5 pathways for the CL/P group 
(figure 1b) and 12 pathways for the control group (figure 1c).  
The mutual analysis of case and control groups revealed some interesting results. 
Especially, the 5 sequences of the heat shock proteins were all significantly 
regulated in the case group though not in the control group. Also the histones and 
ribosomal proteins were mainly found to be regulated in the case group, though not 
in the control group. 
Our RNA expression study on folate addition only comprised CL/P samples. 
Therefore in the present study we compared the corresponding probe sets to the 
results of the CL/P group only (table 1). From the 22 case specific folate regulated 
proteins we found that for 11 proteins (59.1%) at least one corresponding probe set 
with the same direction was found significantly regulated, while the other 
corresponding probe sets were not significantly regulated. Two proteins showed 
both concordant and discordant probe sets. One protein only showed discordant 
probe sets.  For the remaining 8 proteins there were no associated significantly 
regulated probe sets. 
 
Discussion 
In the last decades, the interest for underlying mechanisms of the interactions 
between periconceptional environmental and genetic factors in association with 
adverse reproductive outcome is rising. This is especially true for the B vitamin 
folate, which reduces the risk for congenital malformations, such as CL/P or spina 
bifida, when taken as supplement or via the food by mothers-to-be [4]. The 
underlying biological mechanisms which lead to this protective effect are thought to 
be the result of the role of folate as one-carbon-group (methyl) donor for regulation 
and programming of genes, i.e., epigenetics, and protein modifications [8]. This 
preliminary theory warrants exploratory studies for further support. In the present in 
vitro study, we made an inventory of protein pathways by means of LTQ-Orbitrap 
peptide fingerprinting and peptide/protein identification before and after folate 
addition of B-lymphoblast cell cultures from children with and without OFC. This 
revealed 39 significant differentiating peptides which were assigned to 30 putative 
folate responsive proteins consisting of histones, ribosomal and heat shock 
proteins and proteins involved in antioxidant reactions, the cytoskeleton, glycolysis 
and energy production, protein processing, signal transduction and translation.  



 

Table 1 Significant folate responsive peptides with corresponding proteins in 10 B-lymphoblast cell cultures of CL/P patients categorized on biological function. 
For identification of significantly differentiating peptides the ratio of up regulated versus down regulated pairs (before and after folate addition) was statistically 
tested using McNemar´s test. In the penultimate two columns the corresponding probe sets from our data on folate responsive genes are shown as ratio 
(after/before folate addition) with 95% confidence interval. Probe sets in bold are significant in the same direction as the protein. Probe sets in italic are 
significant, but in the opposite direction of the protein. The last column shows references to relevant literature. 
 

Function / Primary  
Amino Acid Sequence 

Protein 
Abbreviation 

Protein Description McNemar ratio  
upregulated /  
downregulated  
pairs (p-value) 

Corresponding 
probe set(s) 

Probe set ratio  
(95%CI) 

Ref.a 

Antioxidant       

TAFQEALDAAGDK TXN Thioredoxin 4/0 (0.046) 208864_s_at 
216609_at 

0.633 (0.533-0.734) 
0.682 (0.564-0.801) 

[19] 

Cytoskeleton       

VYALPEDLVEVNPK LCP1 Plastin-2 4/0 (0.046) 208885_at 0.886 (0.732-1.041)  
YALYDATYETK CFL1 Cofilin-1 5/0 (0.025) 200021_at 

1555730_a_at 
0.885 (0.816-0.953) 
0.851 (0.704-0.997) 

[19] 

DFSALESQLQDTQELLQEENR MYH9 Myosin-9 4/0 (0.046) 211926_s_at 0.837 (0.698-0.977) [20-24] 

Glycolysis / Energy production       

GLYGIKDDVFLSV 
PCILGQNGISDLVK 

LDHA L-lactate dehydrogenase  
A chain 

4/0 (0.046) 200650_s_at 0.935 (0.882-0.988) [25] 

SLADELALVDVLEDK LDHB L-lactate dehydrogenase  
B chain 

4/0 (0.046) 201030_x_at 
213564_x_at 

0.911 (0.867-0.954) 
0.921 (0.883-0.958) 

 

SGETEDTFIADLVVGLCTGQIK ENO1 Alpha-enolase 5/0 (0.025) 201231_s_at 
217294_s_at 
240258_at 

1.008 (0.918-1.099) 
1.121 (0.929-1.313) 
1.26 (0.958-1.561) 

 

DPVQEAWAEDVDLR PKM2 Pyruvate kinase  
isozymes M1/M2 

4/0 (0.046) 201251_at 0.999 (0.885-1.113)  
GVNLPGAAVDLPAVSEK 4/0 (0.046)  

Histones       

KASGPPVSELITK HIST1H1C Histone H1.2 4/0 (0.046) 209398_at 1.335 (0.616-2.054) [26-32] 



 

KGNYAER HIST1H2AA,  
HIST1H2AC,  
HIST2H2AA3 

Histone H2A, type 1-A,  
Histone H2A, type 1-C,  
Histone H2A, type 2-A 

4/0 (0.046) 215071_s_at 
214290_s_at 
218279_s_at 
218280_x_at 

1.393 (0.555-2.232) 
1.408 (0.786-2.030) 
0.968 (0.883-1.053) 
1.24 (0.642-1.838) 

 

EIQTAVR HIST1H2BB,  
HIST1H2BC 

Histone H2B, type 1-B,  
Histone H2B,  
type 1-C/E/F/G/I 

4/0 (0.046) 214540_at 
208547_at 
208490_x_at 
208523_x_at 
208527_x_at 
214455_at 
215779_s_at 
236193_at 

1.234 (1.035-1.434) 
1.118 (0.626-1.610) 
1.125 (0.725-1.525) 
1.145 (0.627-1.662) 
1.047 (0.588-1.506) 
1.058 (0.686-1.430) 
0.746 (0.252-1.240) 
1.020 (0.648-1.392) 

Heat shock proteins       

VFIMDNCEELIPEYLNFIR HSP90AA1 Heat shock protein  
HSP 90-alpha 

4/0 (0.046) 210211_s_at 
211968_s_at 
211969_at 
214328_s_at 

0.579 (0.528-0.63) 
0.49 (0.401-0.578) 
0.511 (0.43-0.593) 
0.624 (0.6-0.648) 

[19,  
33-36] 

DAGTIAGLNVLR HSPA8 Heat shock cognate  
71 kDa protein 

5/0 (0.025) 208687_x_at 
210338_s_at 
221891_x_at 
224187_x_at 

0.711 (0.638-0.785) 
0.742 (0.663-0.822) 
0.703 (0.612-0.794) 
0.738 (0.692-0.784) 

AAVEEGIVLGGGCALLR HSPD1 60 kDa heat shock protein 6/0 (0.014) 200806_s_at 
200807_s_at 
243372_at 
241716_at 
243845_at 

0.717 (0.602-0.832) 
0.772 (0.725-0.818) 
0.816 (0.695-0.938) 
0.952 (0.739-1.165) 
0.934 (0.756-1.112) 

TALLDAAGVASLL 
TTAEVVVTEIPK 

5/0 (0.025) 

TALLDAAGVAS 
LLTTAEVVVTEIPKEEK 

5/0 (0.025) 

Protein production and processing      

VNPTVFFDIAVDGEPLGR PPIA Peptidyl-prolyl cis-trans  
isomerase A 

4/0 (0.046) 201293_x_at 
217602_at 
211378_x_at 
211765_x_at 
211978_x_at 
212661_x_at 
217346_at 
226336_at 
235741_at 

0.961 (0.937-0.985) 
1.319 (1.126-1.512) 
0.971 (0.93-1.011) 
0.967 (0.929-1.006) 
0.967 (0.934-1.001) 
0.971 (0.928-1.013) 
0.957 (0.733-1.181) 
1.022 (0.903-1.141) 
0.992 (0.848-1.137) 

 



 

Ribosomal proteins       

AQAAAPASVPAQAPK RPL29 60S ribosomal protein L29 4/0 (0.046) 200823_x_at 
213969_x_at 
216570_x_at 

1.099 (0.96-1.238) 
1.07 (0.958-1.182) 
1.082 (0.931-1.233) 

[37-38] 

LASVPAGGAVAVSAAPG 
SAAPAAGSAPAAAEEK 

RPLP2 60S acidic ribosomal  
protein P2 

4/0 (0.046) 217670_at 
200908_s_at 
200909_s_at 

0.773 (0.618-0.928) 
0.884 (0.695-1.072) 
0.98 (0.873-1.087) NIEDVIAQGIGK 4/0 (0.046) 

TITLEVEPSDTIENVK RPS27A Ubiquitin 4/0 (0.046) 242214_at 
244624_at 
208980_s_at 
211296_x_at 
200017_at 
200633_at 
217144_at 

0.539 (0.414-0.665) 
0.79 (0.648-0.932) 
1.1 (1.018-1.182) 
1.078 (1.045-1.111) 
0.988 (0.961-1.016) 
0.939 (0.869-1.008) 
0.888 (0.744-1.032) 

Signal transduction       

LICCDILDVLDK YWHAE 14-3-3 protein epsilon 4/0 (0.046) 208743_s_at 
217717_s_at 
217718_s_at 
210996_s_at 
222985_at 
212426_s_at 
213699_s_at 
200638_s_at 
200639_s_at 
200640_at 
200641_s_at 
210317_s_at 
200693_at 

0.592 (0.489-0.696) 
0.634 (0.549-0.719) 
0.668 (0.61-0.727) 
0.78 (0.651-0.909) 
0.853 (0.797-0.909) 
0.75 (0.651-0.848) 
0.869 (0.82-0.918) 
1.244 (0.885-1.604) 
1.12 (0.978-1.262) 
1.151 (0.969-1.333) 
1.364 (0.847-1.881) 
1.067 (0.66-1.475) 
0.965 (0.882-1.048) 

 

Translation       

NMITGTSQADCAVLI 
VAAGVGEFEAGISK 

EEF1A1 Elongation factor 1-alpha 1 4/0 (0.046) 1557120_at 
204892_x_at 
206559_x_at 
213477_x_at 
213583_x_at 
213614_x_at 

1.102 (0.969-1.234) 
0.987 (0.952-1.022) 
0.982 (0.94-1.024) 
0.944 (0.886-1.003) 
0.961 (0.91-1.012) 
0.973 (0.919-1.027) 

[37, 39] 



 

    227708_at 0.862 (0.616-1.108)  

Others       

TYFPHFDLSHGSAQVK HBA1 Hemoglobin subunit alpha 4/0 (0.046) 204018_x_at 
209458_x_at 
211699_x_at 
211745_x_at 
214414_x_at 
217414_x_at 

1.038 (0.908-1.168) 
1.094 (0.937-1.251) 
1.083 (0.875-1.29) 
1.053 (0.898-1.207) 
1.056 (0.885-1.227) 
1.007 (0.846-1.168) 

 

IIYLNQLLQEDSLNVADLTSLR PSME2 Proteasome activator  
complex subunit 2 

4/0 (0.046) 201762_s_at 0.53 (0.478-0.583)  

A References 
 
 
 
Table 2 Significant folate responsive peptides with corresponding proteins in 10 B-lymphoblast cell cultures of healthy subjects categorized on biological 
function. For identification of significantly differentiating peptides the ratio of upregulated versus downregulated pairs (before and after folate addition) was 
statistically tested using McNemar´s test.The last column shows references to relevant literature. 
 

Function / Primary Amino Acid 
Sequence 

Protein 
Abbreviation 

Protein Description McNemar ratio  
upregulated /  
downregulated  
pairs (p-value) 

References 

Cytoskeleton     

TENLNDDEKLNNAK LCP1 Plastin-2 0/4 (0.046)  

SSFYVNGLTLGGQK PFN1 Profilin-1 0/5 (0.025)  

IQLVEEELDR TPM1,  
TPM3 

Tropomyosin  alpha-1 chain,  
Tropomyosin  alpha-3 chain 

4/0 (0.046)  

Glycolysis / Energy production     

QVVESAYEVIK LDHA L-lactate dehydrogenase  A chain 0/4 (0.046) [25] 

AAQEEYVK ALDOA Fructose-bisphosphate aldolase A 4/0 (0.046)  

FGANAILGVSLAVCK ENO1 Alpha-enolase 4/0 (0.046)  



 

SNVSDAVAQSTR TPI1 Triosephosphate  isomerase 0/4 (0.046)  

Histones     

LAHYNKR HIST1H2BB,  
HIST1H2BC 

Histone H2B, type 1-B,  
Histone H2B, type 1-C/E/F/G/I 

0/4 (0.046)  

Protein production and processing     

VNPTVFFDIAVDGEPLGR PPIA Peptidyl-prolyl cis-trans isomerase A 4/0 (0.046)  

NAPAIIFIDELDAIAPK VCP Transitional endoplasmic reticulum ATPase 0/4 (0.046)  

Ribosomal proteins     

LVILANNCPALR RPL30 60S ribosomal protein L30 0/4 (0.046)  

TLSDYNIQK RPS27A Ubiquitin 0/4 (0.046)  

Signal transduction     

DSTLIMQLLR YWHAB,  
YWHAE,  
YWHAG,  
YWHAQ,  
YWHAZ 

14-3-3 protein beta, alpha,  
epsilon, gamma, theta, zeta/delta 

5/0 (0.025)  

Translation     

EGIPALDNFLDKL EEF2 Elongation factor 2 5/0 (0.025) [40] 

Others     

EEDDVVSEDLVQQDVQDLYEAGELK ANXA6 Annexin A6 4/0 (0.046) [24, 37] 
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Figure 1 Pathway analysis of folate responsive proteins 
A With 13 of the 30 folate responsive proteins in B-lymphoblast cell lines of CL/P patients and controls a 
theoretical network could be made using Ingenuity Pathway Analysis.  The proteins in red were found in 
case cell lines only, proteins in green were found in control cell lines only and the proteins in yellow 
were found in both groups. The uncolored proteins were not identified in the present study but are part 
of the theoretical network. B, C Projection of the 20 highest rated known canonical pathways on the 30 
folate responsive proteins in CL/P patients (B) and controls (C). The red and blue bars represent the 
ratio of found proteins for a specific pathway over the total proteins in that pathway. The green and 
yellow dots represent the associated p-value, given as –log(p-value). 
 
 
From this set a few proteins, i.e., histones, heat shock proteins and ribosomal 
proteins were found to be regulated only in the case and not in the control group. 
Literature search on these proteins revealed several direct and indirect links to 
folate or CL/P, but also to epigenetic mechanisms. The set of identified histones is 
hypothesized to be an important target for modification by methylation [19]. When 
assembled to nucleosomes, the histone tails are dynamically modified by acetyl, 
phosphor- and methyl groups which strongly influence stability and accessibility of 
the chromatin. Since these modifications take place after the production of the 
histones, this would also explain why we did not find the regulation of the histones 
on the RNA expression level. Association of folate with histone modification has 
already been demonstrated in murine prostate cell lines cultured on folate depleted 
and supplemented medium [20] and in liver and prostate of mice who were fed a 
methyl deficient diet [21, 22]. Also mutations in certain histone modifying enzymes, 
such as methyl transferases, are linked to a CL/P phenotype, in for example 
Siderius X-linked mental retardation (XLMR) syndrome (OMIM 300263) [23, 24]. 
These findings suggest that folate might influence gene and protein expression via 
chromatin modifications. 
The three identified heat shock proteins (HSP), are expressed after cellular stress, 
which may include folate deficiency. Interestingly, down-regulation of the same 
HSP after folate addition was confirmed in our RNA expression study. Also other 
groups reported protein regulation of HSP after changing folate concentrations in 
liver and serum [25, 26]. Another in vitro study showed that via HSP folate protects 
against cellular damage of homocysteine induced stress [27]. Furthermore, 
interaction of HSP with the folate metabolizing enzyme dihydrofolate reductase to 
protect against oxidative stress is reported [28]. This is supported by a case report 
of elevated HSP in a woman pregnant of a CL/P child [29].  
The found different ribosomal proteins which are part of the pathway of protein 
production and processing and comprise transport of mRNA from the nucleus to 
the ribosomes are indirectly involved in the transfer of methyl groups. This is 
concordant with our previous RNA expression data showing increased activity of 
translation associated genes, such as heterogeneous nuclear ribonucleoproteins, 
nucleopore proteins and chaperonins after folate addition. In this group, we may 
also regard the elongation factor 1 and 2 proteins, found in both CL/P and control 
group, which are necessary for translation and for which homocysteine and folate 
responsiveness is reported earlier [30, 31]. In this context Opitz syndrome, in which 
cleft palate is part of the phenotype, is of interest since mutations in the MID1 gene 
causing the syndrome lead to decreased association with elongation factor 1, 
ribonucleoproteins, nucleophosmin and annexin [32]. Also patients with Diamond-
Blackfan anemia, a congenital bone-marrow-failure syndrome which is caused by 
mutation of ribosomal proteins, are prone to have a CL/P [33].  This data supports 
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the modifiable capacity of folate. Hypothetically, folate responsiveness of 
transcriptional and ribosomal proteins may be explained by the recent recognition 
of eukaryotic ribo-switches, untranslated regions of the mRNA which can bind 
certain metabolites, such as thiamine pyrophosphate or S-adenosylmethionine[34]. 
After binding, mRNA undergoes a structural change thereby inhibiting further 
translation. The ribo switch has been shown a downstream effector of various gene 
– environment interactions and some first evidence is reported that such a 
mechanism is present for folate[35].  
A fourth set of proteins which were identified in both case and control group 
comprise of proteins involved in the cytoskeleton. These proteins are of interest 
because of their role in palatal closure, in which folate responsiveness of cofilin and 
myosin was reported earlier [26, 36]. Tubulin expression was decreased in an in 
vitro study after addition of antifolate medication[37]. But also a strong association 
was found for polymorphisms in the myosin-9 gene and the risk of CL/P in case-
control triad studies [38-41]. 
Interestingly, thirteen of the folate responsive proteins could be fitted into a network 
and projection of known canonical pathways revealed involvement of several 
fundamental signaling pathways, but also in cell metabolism associated pathways. 
The network showed involvement of TGFbeta upstream of the folate responsive 
proteins. This is of special interest since TGFbeta is repeatedly associated with 
orofacial clefting [42] and is likely to play a role in palatal closure.  
Our group previously showed that the IGF1 pathway shows association of dietary 
folate intake and IGF2 methylation [9]. Also the PI3/AKT is reported to be inhibited 
by folate [43].  Thirdly there are indication that the 14-3-3 mediated pathway which 
function in cell cycle checkpoint and DNA damage control is activated by 
homocysteine related stress in murine embryonic stem cells, an effect that is 
counteracted by folate [27]. 
Though these results are still preliminary, the fact that these folate associated 
proteins are found with both RNA expression and proteomic techniques and have 
been replicated by other groups, may lead to the conclusion that these groups of 
proteins / pathways are of special interest for further investigation in exploring the 
link between folic acid supplement use and the prevention of congenital 
malformation, such as CL/P.  
Several methodological issues need to be addressed. To assess folate responsive 
proteins we used a B-lymphoblast culture model, which is a commonly used model 
in folate related biological studies [44-47]. We hypothesize that the proteomic folate 
response will be largely universal and therefore this model is very appropriate for a 
first explorative study. However, it is clear that for eventual extrapolation to 
embryonic processes other animal models are necessary to assess pathways that 
have a developmental dimension.  
The patients and controls were randomly selected from our database to prevent 
selection bias though the phenotype of the clefts was identical (unilateral 
cheilognathopalatoschisis) and the 677C>T mutation of the MTHFR gene was 
equally distributed in cases and controls because of its proven effect on folate 
levels. The actual folate concentrations in the medium were comparable with the 
target concentrations and thereby further increase the validity of our results.  
Though several of the identified proteins may play a role in pathways related to the 
folate pathway or the embryogenesis of the orofacial region, it is evident that only 
part of the folate responsive proteins is identified in this study. On average 198 
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peptides per sample (SD 77) were identified with a total of 889 unique peptides 
that could be measured and sequenced, indicating the complexity of the digested 
samples. This includes a large part of the most abundant peptides and proteins, 
including house-hold proteins, such as actin and glycolysis,  that were found in a 
comparative amount in all samples. However, low abundant peptides that could not 
be sequenced will be left out the analysis. To improve the amount of sequenced 
peptides additional prefractionation (for example gel separation), prolonged 
chromatography, larger sample size or duplicate sample measurement can be 
considered. However, as a first exploration the present peptide list and identified 
proteins are representative and can act as a starting point for further experiments 
to increase the understanding of underlying biological mechanisms and protective 
properties of folate and folic acid supplement use. 
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Abstract 
Background: Periconception folic acid use contributes to the protection against 
congenital malformations, such as neural tube defects and cleft lip with or without 
cleft palate (CL/P). We hypothesize that low folate levels cause DNA damage, 
leading to chromosomal instability and aneusomy. This study investigates whether 
folate deficiency affects the aneusomy frequency of chromosome 17 and 21 and 
whether the sensitivity for aneusomy differs between CL/P patients and controls. 
Methods: Epstein-Barr virus immortalized B-lymphoblasts, derived from 15 CL/P 
children and 15 controls, were cultured in a high and low concentration of 
approximately 40 nM and 5 nM 5-methyltetrahydrofolate, respectively. Fluorescent 
in situ hybridization was used to detect chromosomes 17 and 21 fluorescent 
signals.  
Results: A significant increase in aneusomy of chromosomes 17, 2.3% versus 
7.6% (p≤0.001), and 21, 2.5% versus 7.0% (p≤0.001) was observed after 10 days 
of low folate culturing. These results were comparable in patient and control cell 
lines. Interestingly, for chromosome 17 folate deficiency mainly resulted in an 
increase of monosomy (6%, p≤0.001) while for chromosome 21 an increase of 
trisomy was observed (4.9%, p≤0.001) was larger.  
Conclusions: These data suggest that folate deficiency is an significant risk factor 
in the development of aneusomy and may affect the distribution of chromosomes 
during cell division. The comparable aneusomy frequencies in CL/P and controls 
suggest that other folate-related processes are involved in the pathogenesis of 
CL/P, and additional investigations are needed to identify the causative 
mechanisms. 
 
Introduction 
Clefting of the lip with or without cleft palate (CL/P) is a common malformation 
among newborns with a birth prevalence rate of around 15.1 per 10,000 newborns 
per year in the Netherlands [1]. The heterogeneous etiology of this malformation, 
involving both genetic and environmental factors, is still largely unknown. In the last 
decades extensive research has revealed that environmental influences 
significantly modulate CL/P risk. [2-4].This is important because this offers 
opportunities to develop preventive measures. In this respect, maternal pre- and 
periconceptional use of folic acid in tablets or in the natural form as food folate is 
very interesting, since additional folic acid and folate decrease CL/P risk up to 50% 
while a deficiency leads to an increased risk [5-8]. Because the mother is the 
environment of the developing child in utero, its folate supply is provided by 
maternal intake and metabolism. Aberrations in the metabolism of folate by the 
presence of maternal antiserum against the folate receptor [9] or maternal 
carriership of the polymorphisms MTHFR C677T [10-11] and MTHFD1 G1958A 
[12] partially explain why a low maternal folate status is associated with CL/P risk.  
Folate is an important substrate for de novo synthesis of nucleotides and proteins 
and for the remethylation of homocysteine into methionine. In vitro studies have 
shown that folate deficiency increases uracil misincorporation, single and double 
stranded DNA breaks and hypomethylation [13-17]. Those features of 
chromosomal instability led to our hypothesis that cellular folate deficiency may 
affect normal chromosome distribution and that the association with CL/P may be 



 101 
 

due to a higher sensitivity for chromosomal instability in these patients than in 
controls. To test this hypothesis the frequency of aneusomy, as a measure for 
chromosomal instability, is studied in B-lymphoblast cell lines derived from very 
young children with and without CL/P cultured in folate deficient and folate 
supplemented medium.  
 
Methods 
Sample selection 
In the nationwide case-control family study on orofacial clefts performed in the 
Netherlands between 1998 and 2003, blood samples were collected approximately 
at the age of 15 months from 161 children with nonsyndromic orofacial clefts and 
111 control children without major congenital malformations [11]. The study was 
approved by the Central Committee for Human Research in The Hague, The 
Netherlands (CMO 9803-0067, 1998) and by the Medical Ethical Committees of all 
participating hospitals. Written informed consent was obtained from every parent 
on behalf of their child before entering the study. From this panel we selected 15 
children with nonsyndromic, complete, unilateral cleft lip, jaw and palate (CL/P) and 
15 control children. The patient and control group consisted of samples of eight 
girls and seven boys and samples of seven girls and eight boys, respectively. 
Nucleated cells were isolated from the blood samples over a Ficoll gradient and 
stored in standard RPMI-medium with 10% dimethylsulfoxide in liquid nitrogen until 
use. 
 
Immortalization and Culturing 
The B-lymphoblast cell lines were set up by Epstein Barr virus immortalization 
following a standardized protocol [18]. From each culture baseline samples were 
harvested (see below). The cell lines were divided into two batches of 30 cultures. 
One batch was depleted from folate by resuspension in a folate free medium, 
consisting of folate free RPMI (Gibco-BRL, USA), 10 % (v/v) dialyzed fetal calf 
serum (Perbio, Pierce Biotechnology, USA) and 1% (v/v) 100 mM sodium-
pyruvate, 200 mM L-glutamate, 10,000 units/ml penicillin and 10,000 μg/ml 
streptomycin (Gibco-BRL, USA). The other batch was cultured in the same medium 
with a supplementation of 5-methyltetrahydrofolate (5-mTHF), the natural folate 
form, to reach the target concentration of 40nM. The 5-mTHF was added daily, 
because of its half-life of around 24 hours. The two batches were cultured under 
these conditions for 10 days. Folate concentrations were measured in the medium 
using the Modular E170 electrochemilluminescence assay (Roche Diagnostics 
GmBH, Germany).  
Baseline (day 0) and day 10 samples were harvested from each culture and 100μl 
fixative (acetic acid : methanol, 1:3) was added. The cell suspensions were washed 
twice with fixative and stored in fixative at -20° Celsius. The lymphoblast 
suspensions were spotted on microscope slides, air-dried, heated for one hour at 
80ºC and stored pending further analysis. 
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Probe Preparation 
Chromosome 17 centromere clone D17Z1 [19] and the BAC clone RP11-15H6 on 
chromosome 21q21.3 (Bac-Pac resources, USA) were used as probe. DNA from 
the clones was isolated, amplified and labeled directly with Bio-16-dUTP (BioPrime 
kit, Invitrogen, USA).  
 
Fluorescent in Situ Hybridization (FISH) 
FISH was performed on interphase nuclei of the acetic acid/methanol fixed B-
lymphoblast from day 0 and 10 according to the standard protocol [20]. The slides 
were washed with 2x sodium chloride/citrate (SSC) buffer and dehydrated with 70-
100% ethanol washes. After addition of 5μl probe mix and denaturation at 75ºC for 
two minutes, the slides were hybridized by overnight incubation at 37ºC. Next day 
the slides were washed with 2x SSC-buffer, a 0.1x SSC, 0.1% Tween buffer and 
phosphate buffered saline and 4,6-diamidino-2-phenylindole (DAPI) was added to 
counterstain the DNA. For each hybridization, 200 nuclei were scored blindly 
without knowing the culture condition and patient or control status with an Axioplan 
2 Imaging microscope (Zeiss, Germany) and images were captured with the ISIS 
(Metasystems, Germany). A second investigator randomly checked the scoring in 
the same way. The number of observed fluorescent signals in each interphase 
nuclei is given in a mean frequency of the total counted nuclei with a standard 
deviation (SD). These data were calculated for the pooled and separate patient 
and control cell lines. Statistical analysis was done using SPSS software (SPSS 
inc), and p-values less than or equal to 0.05 were considered statistically 
significant. 
 
Results 
Nuclear probe signals were counted on day 0 and 10 and the results for 
chromosome 17 and 21 are depicted in figure 1. The nuclear probe signals were 
measured for patient and control cell lines separately, but are given as a pooled 
average for clarity. Significant differences between patient and control 
measurements are mentioned separately. 
One control cell line presented a total absence of chromosome 17 signals and one 
patient cell line displayed up to 40% of tetrasomic nuclei of chromosome 17 and 
21. Both cell lines were left out the analysis. On day 10, the average folate 
concentrations in the medium measured 4.6nM (standard deviation [SD] 0.8nM) for 
the depleted cultures and 39.3nM (SD 12.1nM) for the supplemented cultures.  
 
Chromosome 17 
On day 0, before folate supplementation or depletion, disomy of chromosome 17 
was found in 97.8% (SD 0.6%) of the nuclei. Monosomy was observed in 1.0% (SD 
0.4%) and trisomy was seen in 0.8% (SD 0.4%) of the nuclei.  
After 10 days of folate depletion the cell lines showed a significant increase in 
monosomy to 6.0% (SD 1.7%, p ≤ 0.000). This was also significantly higher than 
the supplemented cultures (3.2% [SD 1.2%], p ≤ 0.000).  
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Figure 1 Percentages of mono-, di, tri- and tetrasomy of chromosome 17 and 21 at day 0 (A and C, 
respectively) and day 10 (B and D, respectively), subdivided into folate supplemented (40nM) and 
depleted (0nM) cell lines, are presented. A percentage is given for pooled patient and control cell lines 
(black bars), patient cell lines (grey bars) and control cell lines (white bars). Significant differences are 
indicated with an asterisk. 
 
The trisomy and tetrasomy 17 frequency did not significantly differ from day 0 (p = 
0.06 and 0.11 respectively). The frequency of trisomy 17 in folate supplemented 
cultures differed significantly between the patient and control group and are given 
separately. For the folate supplemented patient cultures the frequency of trisomy 
17 was significantly lower (0.8% [SD 0.6%], p = 0.006) than in folate depleted 
patient cultures. This difference was not significant for the supplemented control 
cultures (0.4% [SD 0.5%], p = 0.25). 
 
Chromosome 21 
At day 0, before folate supplementation or depletion, disomy of chromosome 21 
was found in 97.5% (SD 0.7%) of the nuclei. Monosomy 21 was observed in 0.7% 
(SD 0.5%) and trisomy 21 in 0.9% (SD 0.5%) of the nuclei. 
After 10 days of folate depletion, monosomy 21 was increased significantly to 1.6% 
(SD 1.1%) compared to day 0 (p = 0.0003) and compared to folate supplemented 
cultures (0.4% [SD 0.6%], p ≤ 0.000). The trisomy 21 frequency increased to 4.9% 
(SD 1.8%), which is significantly higher compared to day 0 (p ≤ 0.000) and 
compared to folate supplemented cultures (1.4% [SD 1.1%], p ≤ 0.000).  
 
Discussion 
The present study shows a significant increase of approximately 5% aneusomy of 
chromosomes 17 and 21 in lymphoblast cellines after 10 days culturing in a folate 
deficient medium, i.e., average 4.6 nM, in comparison with a folate rich culture, i.e., 
average 39.3 nM. This finding strongly suggests that folate deficiency can be 
considered a risk factor for aneusomy of chromosome 17 and 21. The increase in 
aneusomy together with earlier reported increases in DNA strand breaks, uracil 
incorporation, hypomethylation, cell growth inhibition and programmed death 
induced by folate deficiency, confirms the disruption of normal cell functioning by 
folate deficiency. Since, we did not observe differences between patient and 
control cultures apart from the higher frequency of trisomy 17 in depleted patient 
cultures, it is not very likely that these adverse effects of folate contribute to the 
pathogenesis of folate sensitive CL/P.  
Our results confirm the increase in aneusomy in folate deficient cultured 
lymphoblasts reported by recent studies [21-22]. They also demonstrate that 
additional parameters of chromosomal instability such as micronuclei, 
nucleoplasmic bridges and nuclear buds can be induced in a folate deficient 
environment. An interesting point is that our results show a specific increase in 
monosomy of chromosome 17 while chromosome 21 displays more trisomy. For 
chromosome 17 this is in agreement with the results of the study of Wang et al. 
showing an approximately twofold higher frequency of monosomy 17 than trisomy 
17. For chromosome 21 they found a stronger increase in monosomy instead of 
trisomy, though their separate measurement of cytokinesis blocked mono- and 
binucleated cells may have masked this difference.  
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We used aneusomy as an outcome measure to test for differential sensitivity for 
folate deficiency in CL/P patients and controls. The only significant difference was 
a relatively higher increase in trisomy 17 frequency of the CL/P cell lines compared 
to the control cell lines after 10 days of folate deficiency. Since this difference was 
only 0.75%, further study with prolonged culturing in a deficient medium is needed 
to determinate the relevance of this observation. Besides this difference the 
frequency of aneusomy was comparable between CL/P and control cell lines and a 
differential sensitivity for folate deficient aneusomy of chromosome 17 and 21 
seems therefore unlikely. This data therefore suggests that the differential effects 
of folate in the development of the lip and palate are not reflected in pathways 
involved in aneusomy.  
An interesting finding was the specific increment in monosomy for chromosome 17, 
while for chromosome 21 the increase in trisomy was the dominant effect of folate 
deficiency. This is possibly explained by an increased lethality of trisomy 17 and 
monosomy 21, but might also reflect a more chromosome specific mechanism. The 
increase in trisomy 21 is very exciting with regard to the recent findings and 
discussion on the associations of mutations in maternal folate metabolism genes 
and the risk of Down’s syndrome in the offspring [23-28].  
The reported associations between polymorphisms in folate genes such as 
MTHFR, MTRR, MTR and CBS and the risk of Down’s syndrome are not confirmed 
in all study populations [29]. This can be explained by the fact that these genes are 
considered to be modifiers of folate availability. Together with our results we may 
conclude that the association with the risk of Down’s syndrome may be dependent 
on the folate concentration of the mother, and the child as well. An exciting 
question to be answered is whether maternal periconception folate intake affects 
the risk for trisomy 21 of the child. 
The evidence is clear that folate plays a role in the distribution of chromosomes 
[21-22]. Because of the diverse functions of folate, multiple mechanisms may 
however explain the results. The folate driven methylation of for example 
centromeric DNA and associated proteins, such as histones is thought to 
distinguish the centromeric region from other chromosomal regions [30]. 
Hypomethylation could lead to flaws during mitosis and unequal distribution of 
chromosomes. This hypothesis is supported by our previous studies, in which we 
identified the NEK2 and AURKA, which functions in centriole division and 
stabilization of the mitotic spindle pole, but also the CENPA histone, present in 
centromeric regions, as folate responsive genes [31]. This hypothesis implies that 
all centromeric regions would be affected by folate deficiency and would lead to 
aneusomic defects of every chromosome. This is in agreement with our results 
showing aneusomy of both chromosomes 17 and 21, though other chromosomes 
should be tested as well.  
The presence of folate sensitive regions in the genome might also contribute to 
aneusomy. These fragile sites have been identified in sex and autosomal 
chromosomes and are expressed under folate deficient conditions [32]. Expansion 
of the fragile sites may lead to gaps and breaks and an unequal distribution of the 
chromosomes.  
The strengths and weaknesses of our study need to be addressed. The present 
study in which we used 30 cell lines revealed the adverse effects of folate 
deficiency on chromosomal distribution. These results could be confirmed by 
comparison with pre-deficient samples and a simultaneously cultured folic acid 
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supplemented group. Furthermore, the folate concentrations in the medium were 
measured, and were found to be comparable to the target concentrations, which 
further validated our experiment. However, we have to consider that these 
lymphoblasts were EBV immortalized, which may have had a non-differential effect 
on the results. 
In conclusion, we have demonstrated a higher frequency of monosomy 17 and 
trisomy 21 in a lymphoblast cell lines culture in a folate deficient environment, 
which was comparable in CL/P patient and control cell lines. The causative 
mechanisms and possible implications for the development of CL/P or other folate 
sensitive birth defects are a subject for further investigation. 
 
Acknowledgements 
We would like to thank Mr. B. Nuiten and Mr. M. Verbiest, from the department of 
Clinical Genetics at the Erasmus University Medical Centre, Rotterdam for 
technical assistance and recounting the slides.  
 
References 
1 EUROCAT-Northern-Netherlands. Prevalence of Congenital Malformations in the Northern 

Netherlands, 1981-2007. Updated 2007.; 2007. 
2 Krapels IP, van Rooij IA, Ocke MC, West CE, van der Horst CM and Steegers-Theunissen 

RP. Maternal nutritional status and the risk for orofacial cleft offspring in humans. J Nutr 
2004;134:3106-13. 

3 Shaw GM, Iovannisci DM, Yang W, Finnell RH, Carmichael SL, Cheng S et al. Endothelial 
nitric oxide synthase (NOS3) genetic variants, maternal smoking, vitamin use, and risk of 
human orofacial clefts. Am J Epidemiol 2005;162:1207-14. 

4 van Rooij IA, Wegerif MJ, Roelofs HM, Peters WH, Kuijpers-Jagtman AM, Zielhuis GA et al. 
Smoking, genetic polymorphisms in biotransformation enzymes, and nonsyndromic oral 
clefting: a gene-environment interaction. Epidemiology 2001;12:502-7. 

5 van Rooij IA, Ocke MC, Straatman H, Zielhuis GA, Merkus HM and Steegers-Theunissen RP. 
Periconceptional folate intake by supplement and food reduces the risk of nonsyndromic cleft 
lip with or without cleft palate. Prev Med 2004;39:689-94. 

6 Czeizel AE and Dudas I. Prevention of the first occurrence of neural-tube defects by 
periconceptional vitamin supplementation. N Engl J Med 1992;327:1832-5. 

7 Bille C, Olsen J, Vach W, Knudsen VK, Olsen SF, Rasmussen K et al. Oral clefts and life 
style factors--a case-cohort study based on prospective Danish data. Eur J Epidemiol 
2007;22:173-81. 

8 Wilcox AJ, Lie RT, Solvoll K, Taylor J, McConnaughey DR, Abyholm F et al. Folic acid 
supplements and risk of facial clefts: national population based case-control study. Bmj 
2007;334:464. 

9 Bliek JB, Rothenberg SP and Steegers-Theunissen RP. Maternal folate receptor 
autoantibodies and cleft lip and/or palate. Int J Gynaecol Obstet 2006;93:142-3. 

10 Prescott NJ, Winter RM and Malcolm S. Maternal MTHFR genotype contributes to the risk of 
non-syndromic cleft lip and palate. J Med Genet 2002;39:368-9. 

11 van Rooij IA, Vermeij-Keers C, Kluijtmans LA, Ocke MC, Zielhuis GA, Goorhuis-Brouwer SM 
et al. Does the interaction between maternal folate intake and the methylenetetrahydrofolate 
reductase polymorphisms affect the risk of cleft lip with or without cleft palate? Am J 
Epidemiol 2003;157:583-91. 

12 Mills JL, Molloy AM, Parle-McDermott A, Troendle JF, Brody LC, Conley MR et al. Folate-
related gene polymorphisms as risk factors for cleft lip and cleft palate. Birth Defects Res A 
Clin Mol Teratol 2008;82:636-43. 

13 Duthie SJ and Hawdon A. DNA instability (strand breakage, uracil misincorporation, and 
defective repair) is increased by folic acid depletion in human lymphocytes in vitro. Faseb J 
1998;12:1491-7. 

14 Kim YI. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon 
cancer susceptibility. J Nutr 2005;135:2703-9. 



 107 
 

15 Courtemanche C, Huang AC, Elson-Schwab I, Kerry N, Ng BY and Ames BN. Folate 
deficiency and ionizing radiation cause DNA breaks in primary human lymphocytes: a 
comparison. Faseb J 2004;18:209-11. 

16 Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G et al. Folate deficiency 
causes uracil misincorporation into human DNA and chromosome breakage: implications for 
cancer and neuronal damage. Proc Natl Acad Sci U S A 1997;94:3290-5. 

17 Linhart HG, Troen A, Bell GW, Cantu E, Chao WH, Moran E et al. Folate deficiency induces 
genomic uracil misincorporation and hypomethylation but does not increase DNA point 
mutations. Gastroenterology 2009;136:227-35 e3. 

18 Neitzel H. A routine method for the establishment of permanent growing lymphoblastoid cell 
lines. Hum Genet 1986;73:320-6. 

19 Waye JS and Willard HF. Molecular analysis of a deletion polymorphism in alpha satellite of 
human chromosome 17: evidence for homologous unequal crossing-over and subsequent 
fixation. Nucleic Acids Res 1986;14:6915-27. 

20 Eussen BH, Bartalini G, Bakker L, Balestri P, Di Lucca C, Van Hemel JO et al. An unbalanced 
submicroscopic translocation t(8;16)(q24.3;p13.3)pat associated with tuberous sclerosis 
complex, adult polycystic kidney disease, and hypomelanosis of Ito. J Med Genet 
2000;37:287-91. 

21 Beetstra S, Thomas P, Salisbury C, Turner J and Fenech M. Folic acid deficiency increases 
chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced 
micronuclei. Mutat Res 2005;578:317-26. 

22 Wang X, Thomas P, Xue J and Fenech M. Folate deficiency induces aneuploidy in human 
lymphocytes in vitro-evidence using cytokinesis-blocked cells and probes specific for 
chromosomes 17 and 21. Mutat Res 2004;551:167-80. 

23 Boduroglu K, Alanay Y, Koldan B and Tuncbilek E. Methylenetetrahydrofolate reductase 
enzyme polymorphisms as maternal risk for Down syndrome among Turkish women. Am J 
Med Genet A 2004;127:5-10. 

24 James SJ, Pogribna M, Pogribny IP, Melnyk S, Hine RJ, Gibson JB et al. Abnormal folate 
metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal 
risk factors for Down syndrome. Am J Clin Nutr 1999;70:495-501. 

25 O'Leary VB, Parle-McDermott A, Molloy AM, Kirke PN, Johnson Z, Conley M et al. MTRR and 
MTHFR polymorphism: link to Down syndrome? Am J Med Genet 2002;107:151-5. 

26 Stuppia L, Gatta V, Gaspari AR, Antonucci I, Morizio E, Calabrese G et al. C677T mutation in 
the 5,10-MTHFR gene and risk of Down syndrome in Italy. Eur J Hum Genet 2002;10:388-90. 

27 da Silva LR, Vergani N, Galdieri Lde C, Ribeiro Porto MP, Longhitano SB, Brunoni D et al. 
Relationship between polymorphisms in genes involved in homocysteine metabolism and 
maternal risk for Down syndrome in Brazil. Am J Med Genet A 2005;135:263-7. 

28 Coppede F. The complex relationship between folate/homocysteine metabolism and risk of 
Down syndrome. Mutat Res 2009. 

29 Patterson D. Folate metabolism and the risk of Down syndrome. Downs Syndr Res Pract 
2008;12:93-7. 

30 Sullivan BA and Karpen GH. Centromeric chromatin exhibits a histone modification pattern 
that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 2004;11:1076-
83. 

31 Bliek BJ, Steegers-Theunissen RP, Blok LJ, Santegoets LA, Lindemans J, Oostra BA et al. 
Genome-wide pathway analysis of folate-responsive genes to unravel the pathogenesis of 
orofacial clefting in man. Birth Defects Res A Clin Mol Teratol 2008;82:627-35. 

32 Fenech M. The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat 
Res 2001;475:57-67. 



108  
 



 109 
 

PART FOUR    

  
 
 
 

GENERAL DISCUSSION 
 
 
 
 
 
 
 
 
 
 



110  
 



 111 
 

CHAPTER 9    

  
 
 
 
GENERAL DISCUSSION 

 
 
 
 
 
 
 
 
 
 



112  
 

The studies described in this thesis were performed with the aim to gain new 
insights into gene-environment interactions, underlying pathways and mechanisms 
to explain the preventive effects of folic acid supplement use against in particular 
non-syndromic CL/P in human. This was accomplished by the execution of both 
epidemiological studies to investigate associations between new risk factors 
influenced by maternal folic acid supplement use and the occurrence of CL/P 
offspring (Part 1), and biological studies, in which the effects of natural folate on a 
chromosomal, genetic and protein level of cultured B-lymphoblasts are investigated 
in CL/P patients and controls (Part 2). These complementary approaches 
demonstrate that multidisciplinary approaches are interesting and essential to 
identify new folate related factors. Moreover, the understanding of molecular 
biological pathways in which folate is involved will lead to further development of 
measures to prevent non-syndromic CL/P in the future. 
 
Part 1 Epidemiological studies 
In the first part of this thesis we performed a meta-analysis to investigate 
associations between CL/P risk, maternal hyperhomocysteinemia, and the C677T 
and A1298C polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) 
gene. Maternal hyperhomocysteinemia, a biochemical marker for a low folate 
status did not affect CL/P risk. Although both polymorphisms are associated with 
decreased expression, reduced MTHFR activity, decreased concentrations of 
folate and mildly elevated homocysteine concentrations [1-2], no increased CL/P 
risk was found for the carriers (mothers and children) of the 677T and 1298C 
alleles.  
In the case-control study we showed that CL/P risk is increased in mothers with 
antiserum against the folate receptors. These results are substantiated by the 
lower folate and elevated homocysteine concentrations in mothers with antiserum 
against folate receptors. This finding is in line with studies showing the presence of 
this antiserum in mothers with neural tube defects in the offspring [3]. Moreover, an 
experimental study showed that administration of the antiserum to mice causes 
neural tube, cardiac and palatal malformations and embryo lethality [4]. 
The P-glycoprotein, encoded by the ABCB1 gene (old name MDR-1), is an efflux 
pump, transporting exogenous and endogenous substrates from the inside to the 
outside of cells. The ABCB1 3435TT genotype results in a decreased P-
glycoprotein expression [5-7]. We found that the risk of CL/P offspring is increased 
in mothers using medication periconceptionally and carrying the ABCB1 3435TT 
genotype. This effect was not observed in mothers carrying the 3435CC genotype 
who did not use medication. A significant trend in CL/P risk was also found when 
the child carried the ABCB1 polymorphism and has been periconceptionally 
exposed to medication use of the mother. Of special interest is the first indication 
that periconception folic acid use may have a risk reducing effect on the interaction 
between medication use and  the ABCB1 polymorphism of the mother. 
However, before we can infer on these findings some methodological issues are 
addressed. 
 
Ascertainment of CL/P 
We enrolled case and control families between 1998 and 2003 at the standardized 
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study moment of 14 months after the birth of the index child. At the moment of 
inclusion the diagnosis and specification of the CL/P was carried out by specialized 
cleft palate teams following standardized criteria for the diagnosis of CL/P, which 
largely prevented misclassification of children with syndromic CL/P. Though, it 
always remains possible that some CL/P patients are diagnosed with a syndrome 
much later. However, this number will be negligible since only 5% of the cases had 
additional major malformations besides the CL/P which may suggest a so far 
undiagnosed syndrome.  
 
Comparability of Information 
Initially, control families were recruited among unrelated friends, neighbors and 
acquaintances of the case families and from the same population from which cases 
originated. However, due to the travel distance to the hospital and refusal of the 
ethical committees of some hospitals to recruit via case families, we had to enroll 
additional control families from nurseries and infant welfare centers in the 
surroundings of Nijmegen. This resulted in a higher educational level of the control 
group in comparison with the cases, which might have lead to confounding. It is 
suggested that a lower educational level is associated with less folic acid use and 
more medication use periconceptionally. However, the adjustment for education did 
not significantly affect the risk estimates for the investigated associations. 
Therefore, educational level was considered an independent risk factor for CL/P 
and selection bias and confounding by educational level might be very unlikely. 
A strength of our study is that the homogeneity of the study groups was increased 
by inclusion of only Dutch Caucasian families. This prevented confounding by race, 
ethnicity, related lifestyle and genetic factors on the association with CL/P risk 
estimates and differences in distribution of the ABCB1 C3435T genotype [8]. In 
addition, both nonsyndromic CL/P and CP have a multifactorial origin. The risk for 
the CL/P phenotype, however, is presumed to be more affected by environmental 
influences than the CP phenotype. Therefore, we calculated the risk estimates 
separately for CL/P and CP, which further increased the homogeneity of the case 
groups.  
 
Information bias and measurement error 
The data collection by questionnaire and measurement of the folate and tHcy 
concentrations was collected at a fixed study moment of approximately 24 months 
after conception of the index-pregnancy (15 months postpartum). This study 
moment was chosen to limit recall bias of exposures, i.e., medication and folic acid 
use, in the periconception period in which also seasonal and nutritional variation 
are taken into account. It was shown in several studies that the nutritional intake 
before and after pregnancy is highly comparable [9-11]. Mothers of a child with 
CL/P may be more prone to admit adverse exposure to explain the CL/P in their 
child. On the other hand it is possible that these parents may give social desirable 
answers due to guilt feelings. Thus, both types of information bias lead to an under- 
and overestimation with a balanced effect on the risk estimates. This is confirmed 
in literature suggesting that recall bias might not be a big issue or has non-
differential effects in case-control studies focussed on congenital malformations 
[12-13]. The only possibility to exclude recall bias of medication use is to check the 
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prescribed medication via the pharmacy records. In case of the use of over the 
counter medication this is not possible. A prospective cohort study or data 
collection after delivery would have prevented this type of confounding. 
In addition, parents were considered ‘medication users’ if they used any type of 
medication during the periconception period. The used medication included 
corticosteroids, antibiotics, anti-epileptics, analgesics, anxiolytics, anti-psychotics, 
anti-depressants, antihistamines and antifungal drugs. This definition might have 
overestimated CL/P risk for the association between ABCB1 and medication use. 
Nevertheless, increased periconception exposure to medication has been 
accepted as a risk factor for CL/P [14] and for many drugs interactions with P-gp 
are unknown and have to be investigated. Future discrimination of P-gp (non)-
substrates and enlarging the study populations will allow further specification of this 
risk. 
Furthermore, at the chosen study moment the maternal metabolic and hormonal 
status is returned to the physiological non-pregnant situation. This resulted in the 
best estimates of the preconception biochemical markers. 
The determination of the ABCB1 C3435T polymorphism was performed in blinded 
samples to prevent bias of the investigator using a standard PCR-RFLP method 
[15]. The genotype distributions were comparable to other Caucasian populations 
[5], which further strengthens the validity of this data. The auto-antibodies against 
the folate receptors were also determined in blinded samples with a new developed 
and validated method using incubation of the serum with human placental folate 
receptors radiolabeled with [3H]folic acid [3].  
 
Accuracy and Power 
For the power calculations we used a population CL/P risk of 14.2 per 10,000 live 
birth and a type I error of 0.05. Maternal periconception medication use was 
identified as risk factor for CL/P child with a power of 73.9% (control medication 
use prevalence 20.5%, cases n = 175, OR = 2.2). The power of the interaction 
between the ABCB1 polymorphism and maternal periconception medication use 
was 46.0% (control medication use prevalence 20.5%, risk allele frequency 0.5, 
case n = 175, ORgene = 1.7, ORenvironment = 2.8, ORG-E = 6.2). To obtain a power of ≥ 
80% the sample size of both the case and control group should have been at least 
130 to find medication use as risk factor for CL/P and 249 to find the gene-
medication interaction. Thus, the sample size was adequate to find medication use 
as a the CL/P risk factor. The number of DNA samples of the case and control 
groups, however, were approximately half of the required sample size. This was 
due to the low DNA quality obtained from buccal swabs, especially in the child 
group, which made genotyping not possible. Furthermore, stratification of CL/P and 
CP phenotypes increased the homogeneity of the case groups but decreased the 
sample sizes. Nevertheless, despite these limitations for the first time a significant 
association between maternal ABCB1, periconception medication use and CL/P 
risk was determined. These preliminary data need confirmation in larger cohorts. 
The power for the identification of maternal antiserum against folate receptors as 
risk factor for CL/P was 69% (control prevalence of 30%, case n = 11, OR = 10.5). 
If we assume that the risk estimate is between 2 and 3, which is common for other 
environmental factors, the sample size should have been 50 to 120 to reach a 
power of at least 70%. 
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A strength of the ABCB1 study is also the fact that a functional polymorphism was 
studied, e.g., ABCB1 C3435T [5, 16]. Besides the clear functional effects of the 
3435TT genotype also other polymorphisms are present in the ABCB1 gene. 
Several studies showed that the haplotype is a better indicator for the functional 
consequences of this polymorphism [17]. Thus, additional genotyping of other 
polymorphisms should be performed to further specify the CL/P risk from the 
interaction between ABCB1 and medication use. Because of large racial 
differences in the distribution of the ABCB1 C3435T allele, investigation of other 
ethnic groups is needed to extrapolate these findings.  
Results on the pilot study on folate receptor antiserum were validated by the 
concordant biochemical results thereby increasing the validity of the findings. 
 
Part 2 Experimental studies 
In the second part of this thesis a series of biological studies is presented to 
identify the effects of 5-methyltetrahydrofolate, the most abundant metabolite of 
folate, on protein and RNA levels and genomic stability. Moreover, we aimed to 
identify differences in these determinants and the underlying pathways between 
CL/P and healthy children. 
The studies were performed using Epstein Barr virus immortalized B-lymphoblasts 
derived from CL/P and healthy children. With the rather new methodology using 
LTQ-Orbitrap (Thermo Fisher Scientific, Bremen, Germany) mass spectrometry 
connected to a liquid chromatography system, trypsin digested B-lymphoblast 
protein samples were profiled before and after folate addition, which resulted in the 
identification of 30 folate regulated proteins. These consisted of histones, 
ribosomal and heat shock proteins and proteins involved in antioxidant reactions, 
cytoskeleton, glycolysis and energy production, protein processing, signal 
transduction and translation.  
This study was extended with RNA expression data on pre- and postintervention 
samples of 5 CL/P B-lymphoblast cultures to identify differential gene expression in 
response to 5-mTHF. In correspondence to the proteomic studies a large variety of 
folate responsive genes were found, which included one carbon pool and cell cycle 
regulation, biosynthesis of amino acids and DNA/RNA nucleotides, protein 
processing, apoptosis, and DNA repair. Interestingly, almost 60% of the identified 
proteins the corresponding gene was also found to be significantly regulated by 
RNA expression on folate addition.  
In the third experimental study we demonstrated an increase in chromosome 17 
and 21 aneusomy in CL/P and control B-lymphoblast cultures after 9 days of folate 
deficiency. However, the observed aneusomy was comparable for CL/P and 
control cell lines, indicating that genetic instability as result of low folate 
concentrations is not associated to failures in palate development in our B-
lymphobast culture model. 
  
Materials 
For the experimental studies Epstein Barr virus immortalized B-lymphoblast 
cultures were used which were derived from blood samples from CL/P and healthy 
control children, selected from the case-control triad study that is described in the 
first part of the general discussion. The blood samples were obtained from the 
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children at an age of around 15 months. To decrease interindividual variance and 
to increase homogeneity among cases we selected a large group of 15 CL/P 
children, with a unilateral cleft of the lip, jaw and palate and 15 healthy control 
children who were matched on age. The MTHFR C677T genotype of the samples 
was chosen to resemble the general population, i.e. 55% 677CC, 45% 677CT and 
5% TT, which prevented confounding by carriership of this polymorphism. For the 
gene-expression study the number of samples was limited to a selection of 5 
cases, because of the explorative nature of the study and financial reasons.  
The use of the B-lymphoblast cultures has been shown a useful model for folate 
related in vitro studies [18-21] because of its convenient culture properties. With 
Epstein Barr virus immortalization, stable cell lines were established for prolonged 
culturing. However, the virus might have had effects on protein or gene expression, 
though the chance that this has led to differential effects is probably negligible, 
since both case and control and pre- and post interventional samples were 
immortalized equally and similar passages of the cell cultures were used.  
For the experimental studies, except for the gene-expression study, the data of 
CL/P cases and healthy controls were compared to obtain differential expressions. 
We assume that the differential response might also be present during 
embryogenesis and might therefore play a role in developmental processes. We 
are aware that this assumption has several limitations. We may question whether 
the B-lymphoblast model is appropriate for studying palatal development. It would 
have been ideal to use tissue samples from the developing palate in folate 
depleted and supplemented conditions. However, obtaining (normal) human 
embryonic palatal tissue samples is impossible for legal reasons and an alternative 
might be the use of an animal model.  
It is known that certain developmental pathways are only active during 
embryogenesis and are not operational in postnatal life. If folate protects against 
CL/P via such genes those effects could not have been picked up in the present 
studies. It is, however, not clear whether the protecting effect of folate is mediated 
via these pathways or acts via general pathways that are also active in other 
tissues, such as in B-lymphoblasts. Our hypothesis supported by several other 
groups is that (dietary) folate and folic acid intake may affect the cellular 
methylating capacity [22-23], needed for posttranslational modification, resulting in 
changes in gene expression via epigenetic coding by alteration of DNA methylation 
patterns [24-28]. Since B-lymphoblasts effectively respond to these modifications, 
the B-lymphoblast culture model has been widely accepted for addressing these 
hypotheses. Therefore, the choice for the B-lymphoblasts model is an appropriate 
model to explore folate responsive expression. 
The in vitro studies were performed using the 5-methyltetrahydrofolate metabolite 
of folate as substrate. This is a logical choice since this is the main metabolite in 
the blood and thus resembles the physiological situation best. Furthermore, 
synthetic folic acid is reduced and metabolised after uptake and eventually enters 
the folate cycle as the reduced 5-methyl form.  
 
Methodology 
To asses folate responsive proteins a new method was developed using mass 
spectrometry of trypsin digests of whole cells, also known as peptide profiling. This 
method has been proven successful in less complex peptide solutions, such as 
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digests of cerebro-spinal fluid [29-30] or serum [31]. The results of our pilot study 
(chapter 4) encouraged further development of the peptide profiling method. This 
was accomplished by the use of the newly available mass spectrometer, which is 
more accurate in mass determination (1-2 ppm) and by the use of additional liquid 
chromatography-mass spectrometry (LS-MS/MS) individual peptides can be 
sequenced and their protein-of-origin is accurately identified. This also excludes 
the potential bias in the manual analysis of the peptide profiles. The use of LS-
MS/MS has several advantages. First, fractionation of the samples before mass 
measurement results in a much larger availability of peptides for measurement and 
thereby avoids the large drawback of suppression of small and low abundant 
peptides by large and high abundant peptides, also known as ion-suppression, in 
profiling unfractionated samples [31]. Secondly, LS-MS/MS is less time consuming 
and labour-intensive than comparable methods, such as 2D blotting. This allowed 
us to compare peptide profiles of 10 patient and 10 control cell lines at various 
time-points and in conditions of deficiency and excess of folate. Thirdly, 
sequencing of peptides leads to actual identification of proteins, often with multiple 
peptides per protein hit. Compared to the in-silico comparison of peptide masses 
used in the pilot study, this largely prevented false positive identification and led to 
a more thorough and reliable protein list.  
However, despite these advantages, the list of 302 unique proteins should not be 
considered complete and still improvements can be made for the assessment of 
the total proteome. For example, longer and more extensive fractionation of the 
samples will lead to more protein hits.  
To assess gene expression by RNA measurement the reliable platform of 
Affymetrix gene array chips was chosen and the results were analysed with 
validated software, resulting in a reliable list of folate responsive genes.  
Differential expression was confirmed with quantitative RT-PCR, which showed 
comparable regulation in 8 out of 10 tested genes, from which five genes reached 
statistical significance. Obviously, the folate responsiveness of the other listed 
genes needs to be confirmed with additional experiments, such as RT-PCR or 
immunostaining, in which the effect of different folate concentrations and time 
points has to be evaluated.  
In the final study we assessed the development of aneusomy in response to folate 
depletion in human CL/P and healthy control B-lymphoblasts using fluorescent in 
situ hybridization. For this study the time of folate depleted culturing was longer 
than the previous two studies, i.e. 10 instead of 6 days. This was based on earlier 
reports of Courtemanche et al. and Beetstra et al. [18-19] who demonstrated 
biological effects of folate deficiency after 9 days. For the protein- and gene-
expression studies this prolonged culturing was not obligatory since the aim was to 
identify expression in response to a folate intervention.  
To prevent intra- and inter observer bias the counting of the slides was performed 
blindly and was checked by a second investigator. The control counting at the start 
of the experiment and the simultaneous culturing of the folate supplemented and 
depleted cell lines largely prevented confounding by other factors and thus the 
increase in aneusomy is very likely to be due to the folate deficiency. A second 
strength is the confirmation of aneusomy in metaphase. This proves that the 
interphase results are not due to artefacts and actual loss or duplication of the 
chromosomes is present. 
The outcome measures of the four experimental studies were based on differences 
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in folate concentration in the culture medium. Therefore the actual concentrations 
in the medium were measured and further validated our results. 
 
Inferences of the experimental findings 
Our aim was to identify folate responsive pathways to explain underlying 
mechanisms of the role of folate in CL/P development. This was reached with both 
a proteomic and genomic approach. The resemblance between these three studies 
is depicted with a Venn diagram in figure 1. Between both proteomic studies the 
resulting folate responsive protein lists showed similarity in cytoskeleton and signal 
transduction pathways, though the proteins itself did not show resemblance. Also 
the signal transduction pathway concerned two different signal pathways.  
This may be due to the functions of folate in protein synthesis. Folate is essential 
for the synthesis of the amino acids choline, serine, cysteine and glycine and for 
post-translational attachment of methyl-groups, indirectly derived from the folate 
pool via S-adenosylmethionine. We hypothesize that folate deficiency may result in 
a reduction of protein synthesis by substrate shortage or in abnormal protein 
function, transport, activity and stability, with possible increased degradation of 
proteins. This hypothesis is supported by several studies that reported methyl 
modification of proteins identified as folate responsive in our studies, such as 
SAM68, heterogeneous nuclear ribonucleoproteins and histones [32-34]. This is in 
line with our data, though further study should be performed to identify the 
functional consequences of these modifications. Taken together, the aspecificity of 
these mechanisms implicate a large diversity of affected proteins which 
understandably may vary between the two experiments.  
Besides these biological effects, also methodological differences, as described 
above might have contributed to the disconcordant results. In particular, when we 
take into account the increase in analysable mass-range for the LTQ-Orbitrap 
mass spectrometer, it is likely that other more abundant peptides were found 
additionally. Their ion-suppressive character might have masked the peptides that 
were found in the first study. Secondly, the large complexity of the peptide mixtures 
profiled with the relatively less mass accurate BiflexIII mass spectrometry used in 
the first study, limited differentiation of peptides with very small mass differences. 
Additional fractionation, the higher accuracy and sequencing of peptides of the 
LTQ-Orbitrap, the distinctive capacity and thus the number of peptides was 
increased likewise which might have resulted in mutual differences. Therefore, 
independent control experiments to confirm folate responsiveness of the identified 
proteins should be performed, thereby validating the profiling method. In 
anticipation to the control experiments folate responsive gene profiling was 
performed. For future research using for trypsin cell digests in mass spectrometry 
the use of increasingly accurate mass spectrometers which are less sensitive to 
ion-suppression, such as the newly available Q-TOF, is crucial. Alternatively, 
extensive and more laborious prefractionation of all samples may prevent these 
drawbacks. 
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Figure 1 Venn diagram of the mutual concordance between canonical pathways from which the 
significant folate regulated proteins and RNA/genes of the three experimental studies originated. 
 
Interestingly, between the second proteomic and genomic study a large agreement 
in folate regulated pathways was found, including histones, heat shock proteins, 
energy production and transcription and translation and post-translational 
modification. Furthermore, almost 60% of the regulated protein were also regulated 
on a RNA level. The first proteomic study showed no resemblance with the 
genomic study. 
The interpretation of these results can best be targeted by the methylation 
pathway. Folate serves as one carbon group donor for the transition of 
homocysteine to methionine which in turn is the main methyldonor after activation 
to S-adenosylmethionine (see also Introduction). Methyl groups are used for 
methylation of DNA (CpG islands) and DNA associated proteins, which regulates 
DNA silencing and expression with various protein specific effects. 
For example, the set of identified histones is an important target for modification by 
methylation [35]. When assembled to nucleosomes, the histone tails are 
dynamically modified by acetyl, phosphor- and methylgroups which strongly 
influence stability and accessibility of the chromatin. Earlier studies already showed 
that alterations in folate availability directly affect the methyl group pool and thus 
also the methylation state of histones [35], which may affect expressional 
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programming. Association of folate with histone modification has also been 
demonstrated in murine prostate cell lines cultured on folate depleted and 
supplemented medium [36] and in liver and prostate of mice who were fed a methyl 
deficient diet [37-38]. Also mutations in certain histone modifying enzymes, such as 
methyl transferases, are linked to a CL/P fenotype, in for example Siderius X-linked 
mental retardation (XLMR) syndrome (OMIM 300263) [39-40]. These findings 
indicate that folate might influence gene and protein expression via chromatin 
modifications. 
A second interesting group are the heat shock proteins (HSP), of which three were 
found to be down-regulated on both protein and RNA level. The proteins are 
expressed after cellular stress, which may include folate deficiency. Also other 
groups reported protein regulation of HSP in changing folate concentrations in liver 
and serum [41-42]. Another in vitro study showed that via HSP folate protects 
against cellular damage of homocysteine induced stress [43]. Furthermore, 
interaction of HSP with the folate metabolizing enzyme dihydrofolate reductase to 
protect the latter against oxidative stress has been reported [44]. There is also a 
case report of elevated HSP in women pregnant of a CL/P child [45].  
The third large group of interest comprise proteins involved in protein synthesis and 
processing. These proteins include ribosomal proteins and assistant proteins 
during translation. This is concordant with the RNA expression data showing 
increased activity of translation associated genes such as heterogeneous nuclear 
ribonucleoproteins, nucleopore proteins and chaperonins on folate 
supplementation. In this group we may also regard the elongation factor 1 and 2 
proteins, found in both CL/P and control group, which are necessary for translation 
and for which homocysteine and folate responsiveness is reported earlier [46-47]. 
In the context of this group the Opitz syndrome, in which cleft palate is part of the 
phenotype, is of interest since mutations in the MID1 gene, causing the syndrome, 
lead to decreased association with elongation factor 1, ribonucleoproteins, 
nucleophosmin and annexin[48]. Also patients with Diamond-Blackfan anemia, a 
congenital bone-marrow-failure syndrome which is caused by mutation of 
ribosomal proteins, are prone to have a CL/P [49].  From this data it is clear that 
the translational activity and / or machinery is modified in response to folate. 
Hypothetically, folate responsiveness of these transcriptional and ribosomal 
proteins may be explained by the recent recognition of eukaryotic riboswitches, 
untranslated regions of the mRNA which can bind certain metabolites, such as 
thiamine pyrophosphate or S-adenosylmethionine [50]. On binding the mRNA 
undergoes a structural change and thereby inhibits further translation. The 
riboswitch has been shown a downstream effector of various gene – environment 
interactions and some first evidence is reported that such a mechanism is present 
for folate[51].  
The transcriptome is probably mostly affected by epigenetic regulation via 
methylation of DNA and associated proteins such as histones, as is recently 
demonstrated for the IGF2 gene [52]. 
Indirectly, essential pathways needed for survival of the cell may be affected by 
folate deficiency, partly via earlier mentioned pathways, and may lead to cellular 
damage and eventually cell death. This may explain the presence of cell cycle, 
heat shock and glycolysis and energy production associated genes and proteins. 
In contrast, the proteome might be more affected by deficient amino-acid supply 
and post-translational modification, leading to disturbance in protein synthesis and 
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increased degradation. From this point of view the aberrant translation of the folate 
responsive transcriptome leads to a distinctive gene and protein pattern, consistent 
with our results. In contrast to other vitamins such as retinoic acid, which act via 
specific retinoic acid receptors, we might consider folate as an indirect modifier of 
molecular biological mechanisms. The importance of these modifying effects in 
early development is an increasingly appreciated topic of research demonstrated 
by its role in DNA methylation and development of the lip and palate [53-54], the 
neural tube [55], gastro-intestinal tissues [56] and cell fate in the blastomere [57].  
The abnormalities in molecular biological pathways might be a result of the 
increase in aneusomy frequency, as found in the final experimental study. To 
obtain enough time to repair the cellular and chromosomal damage the B-
lymphoblast might inhibit normal cellular progression resulting in a expression of 
cell cycle inhibiting and repair stimulating genes and proteins. Clearly, development 
and cell progression is stimulated by increasing folate levels. Interestingly, recent 
literature described that methylation of centromeric DNA and associated histones is 
thought to distinct the centromeric region from other chromosomal regions [33]. 
Hypomethylation as a result of folate deficiency could lead to flaws during mitosis 
and unequal distribution of chromosomes. These interesting findings leave us with 
the question whether folate as indirect methyl donor influences this mechanism and 
ultimately causes aneuploiy. From this point of view it might even be possible that a 
periconception folate deficiency plays a role in increasing the risk for a trisomy 21 
child causing Down syndrome. Recent studies already report on associations 
between mutations in maternal genes relate to folate metabolism such as MTHFR, 
MTRR, MTR and CBS and an increased risk for Down syndrome [58-62], though 
the increased risk was not confirmed in all study populations. Clearly, this subject 
deserves further exploration in in vitro and epidemiologic studies.  
We were not able to find differences in aneusomy between CL/P and control B-
lymphoblasts. The aneusomy frequency was chosen as measure for the sensitivity 
of damage related to folate deficiency. Apparently this approach did not 
differentiate between CL/P and healthy control cells. It cannot be excluded that a 
differential effect of folate presents during embryogenesis while the postnatal B-
lymphoblasts exert a equally sensitive pattern. 
 
Implications and conclusions 
This thesis demonstrates new evidence for an increased CL/P risk by two new risk 
factors, being the maternal ABCB1 C3435T polymorphism combined with 
periconception medication use and the presence of folate receptor antiserum in the 
maternal blood. Identification of women with these risk factors is of importance to 
properly inform parents-to-be and to prevent congenital malformations if possible. 
Despite the evidence there is enough doubt to implement screening on the ABCB1 
C3435T polymorphism and the presence of folate receptor antiserum to prevent 
CL/P. We can argue that the target group of medication using women is relatively 
small and the frequency of the homogenous mutant genotype is too low in order to 
screen all women. Though, the most important argument is the marginal effect on 
CL/P risk reduction compared to periconception folic acid use. Women are already 
advised to limit the use of medication and to supplement their daily folate intake 
with 0.4 mg of folic acid. As shown, these measures will suffice to significantly 
decrease CL/P risk, including mothers carrying the mutant ABCB1 C3435T 
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genotype. However, in future medicine when large scale genetic screening will be 
more common in daily practice, the determination of the ABCB1 C3435T 
polymorphism may be included in order to achieve a more personal risk 
assessments in mothers-to-be.  
Thus, the current recommendation of general folic acid supplementation in the 
periconception period is supported by our findings. This could circumvent the 
adverse effects of the ABCB1 – medication interaction, but also from other 
polymorphisms such as the MTHFR C677T polymorphism [63]. Furthermore it 
could reduce the CL/P risk from folate receptor antiserum since high serum folate 
concentration stimulate folate transport via the reduced folate carrier [4], which 
remains unaffected by the antiserum.  
The protective effects of folate against neural tube defects, resulted to the 
recommendation of periconception folic acid supplementation in a dose of 0.4-
0.5mg per day in The Netherlands while other countries started folic acid 
enrichment of grains. Sofar, there are no clear indications that increasing folic acid 
intake will prevent more CL/P. Only one study of Tolarova and Harris addressed 
this question in a non-randomized study on the recurrence risk of CL/P using 10mg 
of folic acid showing comparable risk reduction as in low dose folic acid 
supplementation [64]. Furthermore, we should consider the possibility that high 
doses of synthetic folic acid may have adverse effects on other biological 
processes. In analogy to vitamin A, which is teratogenic in both a deficiency and 
excess, folic acid may be harmful in a high dose as well as in a deficient state. This 
is illustrated by a study of Mason et al [65] who observed an increase in the 
incidence of colorectal cancer after the initiation of folate enrichment of cereals. 
Since a causative association seems likely we should be reserved towards intake 
of high amounts of folic acid until we have more knowledge on the effects of folate 
supplementation and high serum folic acid and folate levels. As a first step in the 
identification of the effects of folic acid supplementation on biological processes, it 
revealed from the experimental studies with natural folate that a deficiency leads to 
a derangement of normal cell development and to aneuploidy. These effects were 
not observed in folate supplemented cultures indicating a beneficial and 
indispensable role for folate in cellular processes. Thus, also the in vitro data 
support an adequate intake of by mothers-to-be, and actually by all humans. 
However, the identified folate responsive pathways including, cell cycle, protein 
processing, transcription and translation, indicate that we should also be careful in 
increasing the recommended folate or folic acid supplementation in a total 
population. Also indirectly via DNA programming (methylation) we may expect that 
folate affects growth and development. Speculation about the harmful effects of 
over-stimulation via excess of folate in these basal pathways might include 
excessive growth and accelerated development which might even stimulate cancer 
[22, 66]. 
The present results generated new ideas for studies to clarify the interaction 
between folate or folic acid and several genes and proteins and the risk for CL/P 
with the ultimate goal of optimizing the prevention of CL/P and its tormenting 
impact on affected families.  
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Summary 
Orofacial clefting (OFC) is a group of congenital malformations characterized by 
closure defects of the lip, jaw and/or palate. Isolated cleft of the lip and cleft lip 
together with cleft palate (CL/P) are considered a continuum of the same 
malformation and with a birth prevalence of 11.8 per 10,000, CL/P is the third most 
frequent congenital malformation in The Netherlands. Around 75% of CL/P occur 
incidentally and are not related to known syndromes. Risk factors for CL/P include 
both genetic mutations as well as socio-economic factors, such maternal age and 
educational level and life style factors such as periconceptional smoking, alcohol, 
medication use. Furthermore, maternal periconceptional intake of adequate 
amounts of folate / folic acid are related to a decreased CL/P risk comparable to 
the folate associated risk reduction for neural tube defects and cardial 
malformations. In the Netherlands these observations have led to the advise to use 
folic acid supplements pre- and periconceptionally, but also to mandatory folic acid 
food fortification in several countries. However, the underlying mechanism by which 
folate protects against CL/P and potential side effects of long term folic acid 
exposure are not clarified yet.  
In this thesis we aimed to gain more insights in the role of folate and other 
environmental exposures and underlying mechanisms by which folate protects 
against CL/P. In this thesis we investigate new risk factors for CL/P by 
epidemiological association studies and study the in vitro effect of folate 
supplementation on a cellular, proteomic and genetic level. 
 
In the first, epidemiological part we showed in a meta-analysis that two proposed 
risk factors for CL/P, namely maternal hyperhomocysteinemia and the C677T and 
A1298C polymorphism of the 5,10-methylenetetrahydrofolate reductase gene 
(MTHFR) in mothers and child are not independently associated with an increased 
CL/P risk. However, since MTHFR is important in folate metabolism, the 
polymorphisms may be associated with increased CL/P risk when the maternal 
folate status is taken into account. Such an gene-environment interaction is 
described in chapter 3 where we investigated the effect of maternal medication and 
folic acid use on the CL/P risk and the association with the C3435T polymorphism 
of the ABCB1 gene. This gene codes for the p-glycoprotein, a membrane protein 
that exports harmful substances, such as medication, out of the cell. We showed 
that the 2 fold increased CL/P risk associated with maternal periconceptional 
medication use was further increased to 6.2 when mothers have the ABCB1 
3435TT genotype. This risk increased to 19.2 when mothers also did not use folic 
acid supplements in the periconceptional period. However, the CL/P risk 
associated with medication use and the ABCB1 3435TT genotype was 30% 
reduced when mother did use folic acid.  
The cellular availability of folate does not only require adequate intake of the 
mother, but also adequate metabolism and transport of folates to the cell. Recent 
studies by da Costa et al. and Rothenberg et al. showed that autoantibodies 
against the folate receptor lead to a deficient folate status and cause congenital 
malformations such as CL/P in mice. In chapter 4 we investigated the hypothesize 
that mothers with these autoantibodies have an increased risk for a child with CL/P. 
Therefore we performed a pilot case control study in which we showed that folate 
receptor autoantibodies are a risk factor for CL/P since mothers with a CL/P child 
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significantly more often have these autoantibodies compared to mothers with a 
healthy child. Presence of these autoantibodies was also associated with lower 
serum folate and higher homocysteine levels in the mothers.  
The risk factors described in this first part may be implemented in future 
preconceptional counselling to acquire a more personal risk profile. However, the 
main message of these studies is that when mothers-to-be take a sufficient amount 
of folate either by food or via folic acid supplements, the associated increase in 
CL/P risk is adequately counteracted. 
 
In the second part of this thesis we investigated the effects of folate 
supplementation on RNA/gene and protein expression in B-lymphoblast cell 
cultures of CL/P children and healthy control children. In chapter 5 we show that 
folate supplementation induces significant regulation of genes involved in a variety 
of biological pathways, including one carbon pool and cell cycle regulation, 
biosynthesis of amino acids and DNA/RNA nucleotides, protein processing, 
apoptosis, and DNA repair. Part of these pathways were also found to be regulated 
on a protein level which we studied using mass spectrometry in a pilot study 
(chapter 6) and an extended study (chapter 7). Peptide fingerprinting was 
performed on trypsin digests of folate supplemented B-lymphoblasts cultures. The 
folate induced proteins consisted of histones, ribosomal and heat shock proteins 
and proteins involved in antioxidant reactions, cytoskeleton, glycolysis and energy 
production, translation, protein processing and signal transduction. For several of 
these pathways, genes and proteins, literature search showed confirmation for 
possible interaction with folate, as is the case for histones, heat shock proteins and 
proteins involved in protein synthesis and processing. The mechanism by which 
folate regulates these genes and proteins is hypothesized to be the methylation 
pathway. Folate is important as one carbon group donor for the transition of 
homocysteine to methionine which in turn is the main methyldonor after activation 
to S-adenosylmethionine (see also Introduction). Methyl groups are used for 
methylation of DNA (CpG islands) and DNA associated proteins, which regulates 
DNA silencing and expression with various protein specific effects. 
In the last study (chapter 8) we show that in B-lymphoblast cultures folate 
deficiency is an significant risk factor for aneusomy of chromosome 17 and 21 and 
may affect the distribution of chromosomes during cell division. This effect is found 
to be equal between cultures of CL/P children and healthy children which suggests 
that other folate-related processes are involved in the pathogenesis of CL/P.  
Taken together, folate is important in several fundamental biological pathways 
which may be affected in a deficient but also in (long term) supplemented state. 
These results indicate that we should be careful in increasing the recommended 
folate or folic acid supplementation in a total population. Also indirectly via DNA 
programming (methylation) we may expect that folate affects growth and 
development. Speculation about the harmful effects of over-stimulation via excess 
of folate in these basal pathways might include excessive growth and accelerated 
development which might even stimulate cancer. 
With the present results new studies can be initiated to further unravel the 
interaction between folate or folic acid and several genes and proteins and the risk 
for CL/P with the ultimate goal of optimizing the prevention of CL/P and reducing its 
tormenting impact on affected families.
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Samenvatting 
Mond- en aangezichtsspleten zijn een groep aangeboren afwijkingen die 
gekarakteriseerd worden door sluitingsdefecten van de lip, kaak en/of het 
gehemelte. Een geïsoleerde lipspleet en een lipspleet in combinatie met een 
gehemeltespleet (CL/P) worden beschouwd als een continuüm van dezelfde 
afwijking en met een geboorteprevalentie van 11.8 per 10000 zijn deze de op twee 
na meest voorkomende aangeboren afwijking in Nederland. Ongeveer 75% van de 
CL/P komt solitair voor en is niet gerelateerd aan een bekend syndroom. 
Risicofactoren voor het krijgen van een kind met CL/P bestaan uit genetische 
afwijkingen als ook socio-economische factoren zoals de leeftijd en het 
opleidingsniveau van moeder, maar ook lifestyle factoren zoals roken en alcohol- 
en medicatiegebruik tijdens de conceptieperiode. Verder is ook beschreven dat 
voldoende inname van foliumzuur door de moeder via de voeding of via 
supplementen leidt tot een afname van het risico op een kind met CL/P, 
vergelijkbaar met de risicovermindering voor neuraalbuisdefecten (open ruggetje) 
en aangeboren hartafwijkingen. In Nederland hebben deze observaties geleid tot 
het advies voor vrouwen met kinderwens om foliumzuursupplementen te gebruiken 
vóór en rondom het zwanger worden, terwijl in andere landen dit zelfs geleid heeft 
tot verrijking van granen met foliumzuur. Toch is nog niet bekend wat de 
onderliggende mechanismen van het beschermende effect van foliumzuur zijn, 
evenals mogelijke bijwerkingen van foliumzuurblootstelling op de lange termijn.  
Dit proefschrift heeft tot doel het verkrijgen van meer inzicht in de rol van 
foliumzuur en andere omgevingsfactoren en onderliggende mechanismen van het 
beschermende effect van foliumzuur. In dit proefschrift onderzoeken we nieuwe 
risicofactoren voor CL/P met epidemiologische associatiestudies en bestuderen we 
met behulp van celkweken de effecten van foliumzuur op cel-, eiwit en genetisch 
niveau. 
 
In het eerste, epidemiologische deel tonen we met een meta-analyse aan dat een 
tweetal potentiële risicofactoren voor CL/P, namelijk maternale 
hyperhomocysteïnemie en de C677T en A1298C polymorfismes van het 5,10-
methylenetetrahydrofolate reductase gen (MTHFR) in moeders en kinderen geen 
onafhankelijke risicofactoren zijn voor CL/P. Echter, aangezien MTHFR belangrijk 
is in het metabolisme van foliumzuur, is het mogelijk dat deze polymorfismes wel 
een effect op het CL/P-risico hebben als de foliumzuurstatus van moeder 
betrokken wordt in de berekening. Een vergelijkbare gen-omgevingsinteractie 
wordt beschreven in hoofdstuk 3, waar we het effect van medicatie- en 
foliumzuurgebruik door de moeder en de associatie met het C3435T polymorfisme 
van het ABCB1 gen op het CL/P-risico onderzoeken. Dit gen codeert voor het p-
glycoproteine, een membraaneiwit dat zorgt voor de export van verschillende 
schadelijke stoffen, zoals medicatie, uit de cel. We laten zien dat het risico op 
CL/P, dat 2 maal verhoogd is door medicatiegebruik van de moeder, verder stijgt 
naar 6.2 wanneer de moeder het ABCB1 3435TT genotype heeft. Wanneer de 
moeder ook geen foliumzuur gebruikt, stijgt dit risico verder naar 19.2. Echter, 
wanneer de moeder wel foliumzuur gebruikt, dan daalt het risico met 30%.  
De beschikbaarheid van foliumzuur voor de cel wordt niet alleen bepaald door 
adequate inname door moeder, maar ook door een toereikende verwerking en 
transport van foliumzuur naar de cel. Recente studies van da Costa en anderen en 
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Rothenberg en anderen toonden aan dat autoantilichamen tegen de 
foliumzuurreceptor leiden tot een deficiënte foliumzuurstatus en bij muizen 
aangeboren afwijkingen zoals CL/P veroorzaken. In hoofdstuk 4 onderzoeken we 
de hypothese dat moeders met deze antilichamen een verhoogd risico op een kind 
met CL/P hebben. Daarom voerden we een verkennende case control studie uit, 
waarin we aantoonden dat autoantilichamen tegen de foliumzuurreceptor vaker 
voorkomen bij moeders met een kind met CL/P dan bij moeders met een gezond 
kind. De aanwezigheid van deze antilichamen was ook gerelateerd aan een lagere 
foliumzuurconcentratie en een hogere homocysteïneconcentratie in het bloed. 
De risicofactoren die beschreven worden in het eerste deel van dit proefschrift 
kunnen in de toekomst geïmplementeerd worden in de advisering van vrouwen die 
zwanger willen worden, waarbij een meer persoonlijk risicoprofiel bepaald kan 
worden. De belangrijkste boodschap is echter dat wanneer een aanstaande 
zwangere een adequate hoeveelheid foliumzuur via voeding of supplementen 
inneemt, de beschreven risico’s op CL/P afdoende afgedekt worden.  
 
In het tweede gedeelte van dit proefschrift onderzoeken we de effecten van 
foliumzuur op RNA/gen- en eiwitniveau in B-lymfoblast celkweken van kinderen 
met CL/P en gezonde kinderen. In hoofdstuk 5 tonen we aan dat 
foliumzuurtoevoeging een significant effect heeft op genexpressie. De 
geïnduceerde genen omvatten verschillende biologische pathways, waaronder one 
carbon pool and cel cyclus regulatie, biosynthese van aminozuren en DNA/RNA-
nucleotiden, eiwitprocessing, apoptose en DNA-herstel. Een deel van deze 
pathways bleek ook gereguleerd te worden op eiwitniveau, hetgeen we 
bestudeerden met massaspectrometrie in een oriënterende studie (hoofdstuk 6) en 
in een uitbreiding daarvan (hoofdstuk 7). Peptide-fingerprinting werd verricht op 
trypsinedigesten van foliumzuur gesupplementeerde B-lymfoblastcelkweken. De 
door foliumzuur gereguleerde eiwitten bestonden uit histonen, ribosomale en heat 
shock eiwitten en eiwitten betrokken in antioxidantreacties, het cytoskelet, 
glycolyse en energieproductie, translatie, eiwitprocessing en signaaltransductie. 
Literatuuronderzoek naar sommige van deze pathways bevestigde een mogelijke 
interactie tussen foliumzuur en eiwitten zoals het geval was bij de histonen, heat 
shock eiwitten en eiwitten betrokken in eiwitsynthese en -processing. Het 
mechanisme waarmee foliumzuur deze genen en eiwitten reguleert is mogelijk de 
methylatiepathway. Foliumzuur is belangrijk als one carbon group donor in de 
omzetting van homocysteine in methionine, dat weer na omzetting in S-
adenosylmethionine de belangrijkste methyldonor van de cel is (zie ook 
introductie). Methylgroepen worden gebruikt voor methylatie van DNA (CpG 
eilanden) en DNA geassocieerde eiwitten, welke DNA-expressie reguleren met 
verscheidene eiwitspecifieke effecten. 
In de laatste studie (hoofdstuk 8) tonen we aan dat foliumzuurtekort leidt tot een 
toename in aneusomie van chromosoom 17 en 21 in B-lymfoblastcelkweken en 
mogelijk de chromosoomdistributie tijdens de celdeling beïnvloedt. Deze toename 
werd in gelijke mate gezien in kweken van kinderen met CL/P als in gezonde 
kinderen, hetgeen suggereert dat andere foliumzuur gerelateerde processen 
betrokken zijn in de pathogenese van CL/P. 
Concluderend is foliumzuur belangrijk voor verschillende basale biologische 
pathways, die zowel bij foliumzuurdeficiëntie als bij gesupplementeerde status op 
lange termijn mogelijk beïnvloed worden. Deze resultaten tonen aan dat we 
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terughoudend moeten zijn met het verhogen van de aanbevolen dagelijkse 
hoeveelheid foliumzuur voor een totale populatie. Ook indirect, via programmering 
van DNA door methylatie, mogen we verwachten dat foliumzuur groei en 
ontwikkeling beïnvloedt. Speculerend zouden eventuele schadelijke effecten door 
overstimulatie van de beschreven pathways door overmatige foliumzuurinname 
ook kunnen leiden tot ongeremde groei en versnelde ontwikkeling en mogelijk zelfs 
tot ontwikkeling van kanker.  
Met de huidige resultaten kunnen nieuwe studies gestart worden teneinde de 
interactie tussen foliumzuur, de beschreven genen en eiwitten en het risico op 
CL/P verder te onderzoeken met als uiteindelijk doel het optimaliseren van 
preventie van CL/P en het beperken van de enorme impact bij aangedane families. 



 133 
 

PhD Portfolio 
 
Name PhD candidate: Bart J.B. Bliek 
ErasmusMC Department: Obstetrics and Gynaecology 
Promotors: Prof.dr. R.P.M. Steegers-Theunissen, Prof.dr. E.A.P. Steegers 
 
 
Courses  

- Course biomedical research techniques, ErasmusMC, 
Rotterdam 

2004 

- Master in Molecular Medicine, ErasmusMC, Rotterdam 2004, 2005 
- BOP courses Pathology 2009, 2010 
- Interstitial lung disease course, Davos 2011 
  
Conferences  

- Molecular Medicine day  2005, 2006 
- Society for Gynecologic Investication – Annual 
Meeting, Los Angelos 

2005 

- 2nd Annual CMSB Members Symposium  2005 
- Society for Gynecologic Investication – Annual 
Meeting, Toronto 

2006 

- RGOC onderzoeksdag / Wladimiroff symposium, 
ErasmusMC, Rotterdam 

2006 

- Pathologendagen, Zeist 2008, 2009, 2010 
  
Presentations  

- 2nd Annual CMSB Members Symposium,  
VU Medical Centre, Amsterdam (oral)  

2005 

- RGOC onderzoeksdag / Wladimiroff symposium, 
ErasmusMC, Rotterdam (oral) 

2006 

- Society for Gynecologic Investication – Annual 
Meeting, Los Angelos (1 poster) 

2005 

- Society for Gynecologic Investication – Annual 
Meeting, Toronto (3 posters) 

2006 

  
Teaching activities  

- Pathology VO, ErasmusMC Rotterdam 2009, 2010 



134  
 

Curriculum Vitae 
Bart Bliek was born in Rotterdam on November 7th, 1981. He passed secondary 
school at Comenius College in Capelle aan den IJssel where he graduated in 
2000. In this year he attended Medical School at the Erasmus University 
Rotterdam and graduated in 2004 for his ‘doctoraal’ exam. From 2004 to 2006 he 
interrupted Medical School to work as a researcher at the Department of Obstetrics 
and Gynaecology, Division of Obstetrics and Prenatal Medicine of ErasmusMC in 
Rotterdam where the studies described in this thesis were performed. From 
September 2004 he attended the Master in Molecular Medicine and graduated in 
September 2005. From October 2006 to September 2008 he finished Medical 
School and obtained his MD degree. In April 2009 he started his residency in 
Pathology at the Department of Pathology of ErasmusMC, Rotterdam. 
Bart is married to Anneke Monsma and father of Marieke.  
 
Bart Bliek werd geboren in Rotterdam op 7 november 1981. Hij volgde zijn 
middelbare school op het Comenius College te Capelle aan den IJssel, waar hij 
slaagde in 2000. In datzelfde jaar startte hij met de studie Geneeskunde aan de 
Erasmus Universiteit Rotterdam en hij behaalde zijn doctoraal examen in 2004. 
Van 2004 tot 2006 onderbrak hij deze studie om als onderzoeker te werken op de 
afdeling Obstetrie en Gynaecologie, Divisie Obstetrie en Prenatale Geneeskunde 
van het ErasmusMC te Rotterdam, waar de studies beschreven in dit proefschrift 
werden uitgevoerd. Vanaf september 2004 volgde hij tevens de Master in 
Molecular Medicine waarvoor hij in september 2005 slaagde. Van oktober 2006 tot 
september 2008 liep hij co-schappen en voltooide daarmee de opleiding 
Geneeskunde. Vanaf april 2009 werkt hij als patholoog in opleiding op de afdeling 
Pathologie van het ErasmusMC te Rotterdam.  
Bart is getrouwd met Anneke Monsma en vader van Marieke.



 135 
 

List of Publications 
 
Bart JB Bliek, Annelies de Klein, Theo M Luider, Jan Lindemans, Lorette 
Hulsman, Coşkun Güzel, Christianne JM de Groot, Régine PM Steegers-
Theunissen. New approach for the identification of folate related pathways in 
human embryogenesis. Cellular and Molecular Biology (2004), 50, 939-944 
 
Bart JB Bliek, Sheldon P Rothenberg, Régine PM Steegers-Theunissen. Maternal 
folate receptor autoantibodies and cleft lip and/or palate. International Journal of 
Gynecology and Obstetrics (2006), 93, 142—143 
 
Anneke Verkleij-Hagoort, Bart JB Bliek, Fakhredin Sayed-Tabatabaei, Nicolette 
Ursem, Eric AP Steegers, Régine PM Steegers-Theunissen.  
Hyperhomocysteinemia and MTHFR polymorphisms in association with orofacial 
clefts and congenital heart defects. A meta-analysis. American Journal Medical 
Genetics part A (2007), 143, 952-960  
 
Bart JB Bliek, Régine PM Steegers-Theunissen, Leen Blok, Lindy Santegoets, 
Jan Lindemans, Ben Oostra, Eric AP Steegers, Annelies de Klein. Genome-wide 
pathway analysis of folate-responsive genes to unravel the pathogenesis of 
orofacial clefting in man. Birth Defects Research (Part A) 2008, 82, 627–635  
 
Bart JB Bliek, Ron HN van Schaik, Ilse P van der Heiden, Fakhredin A Sayed 
Tabatabaei, Cock M van Duijn, Eric AP Steegers, Régine PM Steegers-Theunissen  
and the Eurocran Gene-Environment Interaction Group. The risk of having a child 
with a cleft lip with or without palate and the maternal ABCB1 C3435T 
polymorphism and medication use. Journal of Medical Genetics part A (2009), 
149A, 2088-2092 
 
Bart JB Bliek, Coşkun Güzel, Annelies de Klein, Christoph Stingl, Theo M Luider, 
Jan Lindemans, Eric AP Steegers, Régine PM Steegers-Theunissen. Peptide 
fingerprinting of folate responsive proteins in human B-lymphoblasts and orofacial 
clefting. Submitted for publication 
 
Bart JB Bliek, Régine PM Steegers-Theunissen, Hannie Douben, Jan Lindemans, 
Eric AP Steegers, Annelies de Klein. In vitro folate deficiency induces aneusomy of 
chromosome 17 and 21 without a relation to orofacial clefting in man. Submitted for 
publication. 



136  
 

Dankwoord 
Graag wil ik iedereen bedanken die aan de totstandkoming van dit proefschrift 
heeft bijgedragen. 
 
Professor Steegers-Theunissen, beste Régine, graag wil ik je danken voor de 
mogelijkheid die je me geboden hebt om dit promotietraject te volgen. Eerst als co-
promotor, later als mede promotor heb je de dagelijkse begeleiding van dit 
onderzoek voor je rekening genomen. Ik dank je voor je grondige en zorgvuldige 
werkwijze die dit onderzoek tot een succes heeft gemaakt.  
 
Professor Steegers, beste Eric, tweede promotor, ik dank je voor de geboden kans 
om te promoveren, voor de begeleiding van het onderzoek als geheel en de 
motiverende gesprekken.  
 
Dr. De Klein, beste Annelies, als co-promotor en dagelijks begeleider op het lab 
heb ik veel van je mogen leren, voornamelijk tussen de regels door. Veel dank voor 
al je inspanningen. 
 
Professor Oostra, professor Tibboel en dr. Mathijssen wil ik danken voor het 
beoordelen van het manuscript. Fijn dat u deel wilde uitmaken van de 
leescommissie.  
 
Professor Wijnen, professor De Krijger, professor Lindemans, dr. Luider, dank voor 
het plaatsnemen in de grote commissie.  
 
Mijn paranimfen, Michael Aletrino en Sander Bodmer, fijn dat jullie me wilden 
bijstaan tijdens de promotie. Onze vriendschap, waarbij het bij beiden opvallend 
vaak om eten gaat, waardeer ik zeer. 
 
Verder wil ik alle onderzoekers en co-auteurs bedanken voor hun (vaak grote) 
inspanning: Theo Luider, Coşkun Güzel, Lorette Dubbel-Hulsman, Hannie Douben, 
Jan Lindemans, Ron van Schaik, Ilse van der Heiden, Sheldon Rothenberg, 
Fakhredin Sayed-Tabatabaei, Leen Blok, Lindy Santegoets, Christoph Stingl, 
Michael Verbiest, Walter van Gils, Nicolette Ursem, Anneke Verkleij-Hagoort, 
Christianne de Groot, Cock van Duijn en alle anderen. 
 
Lieve Mieke, Jan, Egbert en Hilde, dank voor jullie lieve aandacht en interesse. 
Lieve ma, je hebt er alles voor gedaan om me de mogelijkheden te geven om te 
worden wie ik nu ben. Dank voor je onvoorwaardelijke liefde en steun.  
Lieve Anneke en Marieke, wat jullie voor me betekenen kan en hoef ik niet in 
woorden uit te drukken. Ik houd van jullie.  


	FOLATE RELATED RISK FACTORS AND OROFACIAL CLEFTING IN HUMAN : EPIDEMIOLOGICAL AND BIOLOGICAL STUDIES = FOLIUMZUUR GERELATEERDE RISICOFACTOREN EN OROFACIALE SCHISIS IN DE MENS : EPIDEMIOLOGISCHE EN BIOLOGISCHE STUDIES
	Table of contents
	PART ONE - GENERAL INTRODUCTION
	CHAPTER 1 - GENERAL INTRODUCTION

	PART TWO - EPIDEMIOLOGICAL STUDIES
	CHAPTER 2 - Hyperhomocysteinemia and MTHFR polymorphisms in association with orofacial clefts and congenital heart defects: a meta-analysis.Verkleij-Hagoort A, Bliek J, Sayed-Tabatabaei F, Ursem N, Steegers E, Steegers-Theunissen R.Am J Med Genet A. 2007 May 1;143A(9):952-60.PMID:17431894[PubMed - indexed for MEDLINE] 
	CHAPTER 3 - THE RISK OF HAVING A CHILD WITH A CLEFT LIP WITH OR WITHOUT PALATE AND THE MATERNAL ABCB1 C3435T POLYMORPHISM AND MEDICATION USE. - Published as: Maternal medication use, carriership of the ABCB1 3435C > T polymorphism and the risk of a child with cleft lip with or without cleft palate.Bliek BJ, van Schaik RH, van der Heiden IP, Sayed-Tabatabaei FA, van Duijn CM, Steegers EA, Steegers-Theunissen RP; Eurocran Gene-Environment Interaction Group.Am J Med Genet A. 2009 Oct;149A(10):2088-92.PMID:19760622[PubMed - indexed for MEDLINE] 
	CHAPTER 4 - Maternal folate receptor autoantibodies and cleft lip and/or palate.Bliek JB, Rothenberg SP, Steegers-Theunissen RP.Int J Gynaecol Obstet. 2006 May;93(2):142-3. Epub 2006 Mar 20. No abstract available. PMID:16546188[PubMed - indexed for MEDLINE] 

	PART THREE - BIOLOGICAL STUDIES
	CHAPTER 5 - Genome-wide pathway analysis of folate-responsive genes to unravel the pathogenesis of orofacial clefting in man.Bliek BJ, Steegers-Theunissen RP, Blok LJ, Santegoets LA, Lindemans J, Oostra BA, Steegers EA, de Klein A.Birth Defects Res A Clin Mol Teratol. 2008 Sep;82(9):627-35.PMID:18655124[PubMed - indexed for MEDLINE] 
	CHAPTER 6 - New approach for the identification of folate-related pathways in human embryogenesis.Bliek JB, de Klein A, Luider TM, Lindemans J, Hulsman L, Guzel C, de Groot CJ, Steegers-Theunissen RP.Cell Mol Biol (Noisy-le-grand). 2004 Dec;50(8):939-44.PMID:15709245[PubMed - indexed for MEDLINE] 
	CHAPTER 7 - PEPTIDE FINGERPRINTING OF FOLATE RESPONSIVE PROTEINS IN HUMAN B-LYMPHOBLASTS AND OROFACIAL CLEFTING. - Bart JB Bliek, Coşkun Güzel, Annelies de Klein, Christoph Stingl, Theo M Luider, Jan Lindemans, Eric AP Steegers, Régine PM Steegers-TheunissenSubmitted for publication
	CHAPTER 8 - IN VITRO FOLATE DEFICIENCY INDUCES ANEUSOMY OF CHROMOSOME 17 AND 21 WITHOUT A RELATION TO OROFACIAL CLEFTING IN MAN. - Bart JB Bliek, Régine PM Steegers-Theunissen, Hannie Douben, Jan Lindemans, Eric AP Steegers, Annelies de KleinSubmitted for publication

	PART FOUR - GENERAL DISCUSSION
	CHAPTER 9 - GENERAL DISCUSSION

	PART FIVE - ADDENDUM
	Summary
	Samenvatting
	PhD Portfolio
	Curriculum Vitae
	List of Publications
	Dankwoord


