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SCOPE OF THIS THESIS 

 

Breast cancer is the second most common cancer in women. Breast cancer patients 

have a reasonable chance of becoming cured, particularly when they are diagnosed in 

an early phase. Eliminating primary tumors by surgery, chemotherapy, or radiation is 

quite successful. However, for metastases there is no cure. Thirty percent of the breast 

cancer cases will progress into metastatic disease, but they cannot be removed by 

surgery or radiation, and usually become chemoresistant. However, preclinical and 

clinical studies have shown that cancer vaccination has an effect on metastases but that 

a real breakthrough is hampered by the strong immune suppression in the tumor 

microenvironment (TME). Therefore, in this thesis we focused on the treatment of 

metastatic breast cancer using an attenuated Listeria monocytogenes (Listeriaat)-based 

vaccine expressing tumor-associated antigen (TAA) Mage-b, combined with adjuvants 

such as Curcumin or alphagalactosylceramide (!GC), to reduce immune suppression in 

the TME in order to improve the vaccine efficacy of Listeriaat-Mage-b. 

 

Chapter 1 gives an overall introduction on breast cancer, current therapeutic treatment 

options, cancer immunoediting, innate and adaptive immune responses against cancer, 

an overview of various cancer vaccines, and an introduction to the experimental work of 

this thesis.  

 

Chapter 2 describes the improvement of Listeriaat-Mage-b vaccination by Curcumin in 

mice with metastatic breast cancer through the reduction of IL-6. 

 

Chapter 3 describes the improvement of Listeriaat-Mage-b vaccination in mice with 

metastatic breast cancer by the incorporation of !GC into the Listeriaat cell wall. 
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Chapter 4 is a general discussion about the promises and problems of cancer 

vaccination, final conclusions about the vaccine studies performed, and future prospects 

of cancer vaccination. 
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CHAPTER 1 

 

INTRODUCTION 

 

Cancer 

Cancer is the uncontrolled growth of abnormal cells in the body. Cancerous cells are 

also called malignant cells. They can develop in almost any organ or tissue, such as the 

lung, colon, breast, skin, bones, spleen, thymus, or in the central nervous system. 

Moreover, many of the cancers metastasize to other organs, depending on the type of 

tumors and the tumor microenvironment. Metastases are tumor cells that escape from 

the primary tumor, and travel via the blood stream to different organs where they can 

home and grow into new tumors. Breast-, lung-, kidney- and testical cancer have been 

described as those with the highest incidence of metastases, and 30% of the breast 

cancers progress into metastatic disease1. Numerous factors may contribute to the 

development of cancer including chemicals, environmental toxins, genetic problems, 

viruses, radiation, obesity, and excessive sunlight exposure, as well as drinking excess 

alcohol.  

 

The Breast 

Morphologically, the breast is a cone with the base at the chest wall, and the apex at the 

nipple, the center of the nipple-areola complex (NAC). The superficial tissue layer 

(superficial fascia) is separated from the skin by 0.5-2.5 cm of subcutaneous fat (adipose 

tissue). The suspensory Coopers’s ligaments are fibrous-tissue prolongations that 

radiate from the superficial fascia to the skin envelope. The adult breast contains 14-18 

irregular lactiferous lobes that converge to the nipple, to ducts 2.0-4.5 mm in diameter; 

the milk ducts (lactiferous ducts) are immediately surrounded with dense connective 
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tissue that functions as support frame work. The glandular tissue of the breast is 

biochemically supported with estrogen; thus, when a women reaches the menopause 

(cessation of menstruation) and her body estrogen levels decrease, the milk gland tissue 

then atrophies, withers, and disappears, resulting in a breast composed of adipose 

tissue, superficial fascia, suspensory ligaments, and the skin envelope. A schematic 

view of the breast tissue organization and mammary gland structure is shown in Figs 1 

and 2, respectively. 

 

Breast Cancer 

Breast cancer is the most frequently diagnosed cancer and the second leading cause of 

cancer death among females2. Most recent statistics estimated 230,480 new cases of 

the invasive breast cancer occurring among women during 2011 and about 2,140 new 

cases in men in the USA. For the year 2012, almost 39,970 deaths due to breast cancer 

are expected along with 226,870 new cases in the USA. 

 The most important risk factors that contribute to the development of breast 

cancer are family history (mutations in BRCA1/2 or p53 genes), prolonged exposures to 

endogenous or exogenous estrogens, alcohol, overweight, and physical inactivity 

(http://www.who.int/cancer/detection/breastcancer/en/index2.html). Other risk factors include 

dietary effects combined with late first childbirth, lower parity and shorter breastfeeding. 

Finally, the age factor is important, not only for breast but for most types of cancer. 

 

Various types of breast cancer 

Ninety five percent of all breast cancers are carcinomas, i.e. they arise from epithelial 

origin3. Breast cancer can be divided into two major types, i.e. non-invasive and invasive 

breast cancer.  
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Non-invasive breast cancer. The most prevalent type of non-invasive breast cancer is 

ductal carcinoma in situ (DCIS), and starts in the tubes (ducts) that move milk from the 

breast to the nipple. This type of cancer does not extend beyond the basement 

membrane and has a low potential for metastases. The second type of non-invasive 

carcinoma is lobular carcinoma in situ (LCIS) that arises and is confined to the milk 

producing glands or lobules3. The proportion of LCIS in benign breast disease is low, 

ranging between 0.5% and 4%4, but it may progress to invasive cancer if untreated. 

Lobular carcinoma in situ (LCIS) is a marker for an increased risk of invasive cancer in 

the same or both breasts. 

Invasive breast cancer. This is the type of cancer that spreads outside the basement 

membrane of the lobule or duct into the breast tissue. Invasive breast cancer will either 

remain localized to the breast or metastasize to other parts of the body, mostly lymph 

nodes, brain, bones, liver, or lungs and progresses into metastatic breast cancer. About 

80% of all breast cancers are invasive ductal carcinomas (IDC), while 10–14% of all 

breast carcinomas are invasive lobular carcinoma (ILC)5. Furthermore, inflammatory 

breast carcinoma (IBC) is a form of rapidly progressing primary skin changes such as 

erythema, skin thickening, orange peel skin, and nipple retraction6. The unique 

appearance of IBC is due to tumor emboli that readily metastasizes into and block 

lymphatic vessels of the skin overlying the breast7.  

 
Molecular classification of breast cancer 

Breast cancer has a heterogeneous phenotype. Tumors comprise of various distinct cell 

types with different biological features and clinical behavior. Therefore, breast cancer 

has been further classified based on different molecular techniques and genetic profiling 

into five major subtypes of breast cancers: basal-like, luminal A, luminal B, HER2+/ER–, 

and normal breast–like8-10. These five subtypes have distinct clinical outcomes. Luminal 
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A-type tumors have the best prognosis and are low-grade tumors9, while luminal B type 

tumors are usually more aggressive demonstrating more proliferation and considered as 

high-grade tumors. Basal-like tumors usually have the worst prognosis. Most of the 

basal-like tumors poorly respond to therapy because they are often triple-negative (TN) 

for Estrogen Receptor (ER), progesterone receptor (PR), and HER2/neu. HER2 (human 

epidermal growth factor receptor) is overexpressed in 20-30% of the breast cancer 

cases. However, during HER2-targeted treatment its expression disappears, and 

therefore these patients are no longer susceptible to HER2-targeted therapies. About 

20% of all breast cancers are TN, and TN breast cancer is particular increased in black 

women11. TN breast cancer is often associated with regional node metastases12. The 

molecular profiling of these subtypes of breast cancer helps to determine an optimal 

therapy regimen for the patients.  

 

Treatment Options 

Over the last decade, treatment of breast cancer has been dramatically improved. 

However, for metastatic breast cancer there is no cure. The treatment of choice depends 

on various factors such as the stage of cancer, the type of cancer, the genetic profile of 

the cancer (mutations in target genes), and whether the patient’s tumor expresses ER, 

PR, and/or HER2/neu. The treatment options can be divided in local or systemic 

treatment. Local treatments involve the area of the disease only. Radiation and surgery 

are forms of local treatment. Systemic treatments affect the entire body. Chemotherapy 

is a type of systemic treatment. Most women receive a combination of treatments. For 

women with Stage I, II, and III breast cancer, the main goal is to treat the cancer and 

prevent it from returning (curing). For women with stage IV breast cancer, the goal is to 

improve the symptoms and help them to live longer. In most cases stage IV breast 

cancer cannot be cured. The various stages of breast cancer are defined as follow. 
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Stage I: This is the earliest stage of invasive breast cancer. At this stage, the cancer 

cells have spread beyond the original location and into the surrounding breast tissue. 

Stage II: This stage is a slightly more advanced form of stage I breast cancer. The 

cancer cells have spread beyond the original location and into the surrounding breast 

tissues, and the tumor is larger than in stage I diseases. However, stage II means the 

cancer has not spread to a distant part in the body. Stage III: This is a more advanced 

form of invasive breast cancer than stage II. The breast cancer cells have usually not 

spread to distant sites of the body, but they are present in several axillary (underarm) 

lymph nodes. The tumor may also be quite large at this stage, possibly extending to the 

chest wall or the skin of the breast. Stage IV: Stage IV means that the cancer has 

spread elsewhere in the body. The affected areas may include the bones, brain, lungs or 

liver, and more than one part of the body may be involved. For more detailed information 

see http://www.cancercenter.com/breast-cancer/breast-cancer-staging/stage-0-breast-

cancer.cfm.  

 

Local Treatment 
 
Surgery. Surgery is advised for women with a localized breast tumor smaller than 4 cm. 

Surgery can be divided in lumpectomy, partial mastectomy, total mastectomy, or radical 

mastectomy and depends on the stage and type of breast cancer.  

 

Lumpectomy involves removal of the tumor in the breast along with the negligible 

amount of surrounding tissue. Another version, partial mastectomy is more extensive 

and removes a larger amount of normal tissue surrounding the tumor. These two 

surgical procedures constitute ‘breast conserving surgery’ as removal of the complete 

breast is avoided, and is advised for patients with stage I or II breast cancer. Patients 

with a more advanced stage of breast cancer may undergo a total mastectomy or 
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complete removal of the breast and a sentinel lymph node (first node in the chain that 

forms the regional lymphatic system) biopsy. Sentinel lymph node biopsy may predict 

axillary node metastasis in breast cancer. If more advanced, tumor radical mastectomy 

is advised that includes removal of both breasts along with removal of lymph nodes in 

the armpits and chest. Surgery is the preferred mode of treating breast cancer when 

accompanied with radiotherapy or chemotherapy. For a review see Apantaku, 200213. 

 

Radiation therapy. Surgical removal of a tumor is often followed by radiation therapy13. 

Clinical trials of breast conservation surgery alone or surgery plus radiation showed 

higher recurrence rate in women who did not receive radiation14. 

 

Systemic treatment 

When compounds are administered through the blood vessels or orally, it is considered 

as systemic therapy. These compounds include chemotherapy, hormones, or more 

targeted therapies with small molecules, specific enzymes, or antibodies. 

 

Chemotherapy. Chemotherapy is often advised for women with hormone receptor-

negative invasive breast cancer. Although usually given through the blood stream or 

orally, it can also administered regionally in the area where the cancer cells are such as 

in the abdomen, cerebrospinal fluid, or an organ. To completely eliminate the primary 

tumors, standard chemotherapy regimen involves a combination of various 

chemotherapeutica. Most widely used combination therapies are Adriamycin 

(Doxyrubicin) and cyclophosphamate/Taxol, Adriamycin, and cyclophosphamide 

(AC/TAC), or cyclophosphamide, methotrexate, and fluorouracil/cyclophosphamde, 
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adriamycin and fluorouracil (CMF/CAF), or epirubicin and 

cyclophosphamide/cyclophosphamide, epirubicin and fluorouracil (EC/CEF), or taxotere 

and cyclophosphamide/taxotere, cycophosphamide and herceptin (TC/TCH). Complete 

recovery is usually between 60-100% of the patients receiving this combination 

therapies15,16  

 

Hormone therapy. Hormones such as estrogens or receptors such as HER2/neu 

(epidermal growth factor receptor) are involved in the growth of breast cancer cells. 

Hormone therapy blocks the interaction between the hormone present in blood and their 

receptors on the tumor cells, thereby preventing the tumor cells from growing. For 

instance, tamoxifen is usually given to patients with early stage estrogen receptor-

positive breast cancer. Another form of hormone-targeting therapy is aromatase 

inhibitors, that blocks the production of estrogen, and is often given to post-menopausal 

women with estrogen-dependent breast cancer17. 

 

Targeted treatment. Targeted therapy is a newer type of cancer treatment. This therapy 

uses special anti-cancer drugs that target certain changes in a cell that can lead to 

cancer. These therapies are directed against pathways specifically involved in the 

development of cancer such as proliferative signaling, escaping immune destruction, 

promoting invasion and metastases, and resisting cell death. Although initial results of 

clinical trials with therapies targeting HER2 in metastatic breast cancer using 

Trastuzumab combined with chemotherapy, were highly promising, the majority of these 

patients become resistant18. Clinical trials with HER2/1 inhibitors such as Perutuzumab, 

and with HER2/3 or HER1/2/4 inhibitors such as Neratinib, in combination with 
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Trastuzumab and chemotherapy, are under way19,20. Lapanitib, a HER1/2 inhibitor, is 

more promising when combined with Trastuzumab, with less severe side effects than 

most conventional therapies21. While all these therapies are promising in patients that 

express the HER1/2/3/4, triple-negative patients with tumors and metastases lacking 

expression of receptors for estrogen, progesterone, and HER2, have the poorest 

prognosis because they will not responding to these therapies, and other types of 

therapies are under investigation but with moderate success. One such therapy is an 

anti-angiogenic therapy, which appeared to have less effect on overall survival than 

expected and data explaining this lower efficacy are not available yet. So far, the most 

successful anti-angiogenic therapy with tyrosine kinase inhibitor Sunitinib, targeting the 

vascular endothelial growth factor (VEGF) receptor, platelet-derived growth factor, c-kit, 

and Flt2, induce serious side effects22, while Bevacizumab, a human antibody to VGEF, 

prolonged progression-free survival, but not the overall survival time. Another type of 

therapy is Poly (ADP-ribose) polymerase-1 (PARP) inhibitors inducing DNA repair 

defects in tumors but not in normal cells. Such therapy has potential23 but is effective in 

BRCA1/2-mutants patients only, which makes up 0.1-0.8% of the general population24. 

The most promising targeted therapies are shown in Fig 3. In summary, little progress 

has been made over the last 25 years in the development of effective therapies against 

metastatic breast cancer. This underlines the urgent need for new alternative therapeutic 

approaches. One such alternative therapy could be cancer immunotherapy or 

vaccination.  

 

Immune surveillance 

In 1909, Paul Ehrlich predicted that the immune system repressed the growth of 

carcinomas that would otherwise occur with great frequency (Ehrlich P. Ned Tijdschr 
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Geneesk 5: 273-290, 1909). This statement initiated a contentious debate over 

immunologic control of neoplasia. Fifty years later, Burnet stated that tumor cell-specific 

neo-antigens could provoke an effective immunologic reaction that would eliminate 

developing cancers25-27, while Thomas stated that complex long-lived organisms must 

posses mechanisms to protect against neoplastic disease similar to those mediating 

homegraft rejection (Thomas L. Discussions in cellular and humoral aspects of the 

hypersensitivity states, 1959). With the functional demonstration of tumor-specific 

antigens in the mouse, supporting the ideas of Ehrlich, Thomas, and Burnet, the 

immunosurveillance theory developed, which stated that sentinel thymus-dependent 

cells of the body constantly surveyed host tissues for nascently transformed cells. 

However, there has been a growing recognition that immune surveillance represents 

only one dimension of the complex relationship between the immune system and 

cancer28. Recent work has shown that the immune system not only protects against the 

development of primary non-viral cancers but also sculpts tumor immunogenicity, which 

developed into a new hypothesis of “cancer immunoediting”.  Cancer immunoediting is a 

process that consists of three phases, i.e. elimination (cancer immunosurveillance), 

equilibrium, and escape29.  

 

Elimination of cancer cells (cancer immunosurveillance)  

Various studies have shown that deficiencies in key immunological molecules such as 

IFN! and perforin enhanced hosts susceptibility to both chemically induced and 

spontaneous tumors, demonstrating the cancer immunosurveillance hypothesis30-35. 

Compelling data suggest that the immunosurveillance is not restricted to mouse models 

but also exists in humans28,29. These studies raised the question as to how cancer 

immunosurveillance functions as an extrinsic tumor suppressor and protects the immune 
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competent host from developing neoplasia. For instance, which cells of the immune 

system are involved in the protection tumor of development, what are the key molecules 

of the immune system in cancer immunosurveillance, and how does the immune system 

distinguish between a transformed cells and its normal progenitor?  

 

Cancer immune surveillance by adaptive and innate immune cells. When tumor cells 

develop (by mutation of genes induced through environmental influences or hereditary), 

hormones as discussed at the beginning of this thesis), proteins on their membrane 

change which leads to their elimination by the innate and adaptive immune system 

during the phase of immunosurveillance. The innate immune system reacts in the early 

phase to danger signals and does not involve specific antigen recognition while the 

adaptive immune system reacts to specific antigens such tumor-associated antigens 

(TAA). NK cells, NKT cells, !"T cells, tumor-associated macrophages (TAM), and 

myeloid-derived cells such as immature granulocytes and monocytes, also called 

myeloid-derived suppressor cells (MDSC), belong to the innate immune system. MDSC 

are particularly important in cancer and will be discussed later in this thesis. CD4 and 

CD8 T cells, as well as B cells, belong to the adaptive immune system. Below the role of 

these different cell types in anti-tumor reactions has been discussed. For a review see 

Dunn et al, 200429. A schematic view of immune cells of the innate and adaptive immune 

system against cancer is shown Fig 4. 

 

T cells. Cytotoxic T lymphocytes (CTL) are considered to be the most important players 

of the adaptive immune system in anti-tumor reactions. CTL are CD3+CD8+ and express 

the #$ T cell receptor (TCR) that recognizes tumor-associated antigens (TAA) in 
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association with major histocompatibility complex (MHC) molecules on the tumor cells. 

As has become evident from in vitro studies, these CTL are activated when exposed 

simultaneously to both TAA/self-MHC complexes and co-stimulatory molecules, resulting 

in CTL-mediated tumor cell cytolysis. However, anti-tumor responses can also be 

inhibited by co-inhibitory molecules. An overview of co-stimulatory and inhibitory 

molecules is shown in Fig 5AB. Key components of CTL in killing tumor cells are IFN! 

and perforins30,35. CD4 T cells, also called “helper T cells”, recognize TAA through MHC 

class II molecules, and upon activation they produce large amounts of interleukin (IL)-2, 

which is a growth factor and activator of CD8 T cells. CD8 T cell responses to TAA will 

be central in this thesis and will be later discussed in more detail. In contrast to CD4 

helper T cells, also regulatory CD4 T cells (Treg) are involved in anti-tumor responses. 

However, instead of helping the CD8 T cells, they inhibit the responses of CD8 T cells36. 

Treg are characterized by the expression of CD4, CD25 and Foxp3. It has been reported 

that Tregs can act antigen-dependent and -independent 36,37  

 

NK cells. NK cells are TCR-CD3-CD4-CD8-CD11b+CD16+(CD56+) and they participate in 

cancer immunosurveillance. They express NKG2D-activating receptors that react with 

ligands often over expressed on tumors such as MICA/B, and Rae-1, H60, or MULT-138-

40, and become cytolytic in the presence of IFN!, IL-2, TNF#29. In contrast to CTL, their 

responses are TAA-independent and they can kill tumor cells with low or no MHC 

expression. NK cells can also kill tumor cells through antibody-dependent cellular 

cytotoxicity through their Fc receptors that can interact with antibodies that recognize 

antigens on tumor cells. Mice depleted for NK cells were three times more sensitive for 

methylcholantrene (MCA)-induced cancers than wild type mice41, demonstrating its role 
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in anti-tumor responses. Also in this thesis we will show that NK cells can be activated in 

mice with metastatic breast cancer. 

 

NKT cells. Natural killer T (NKT) cells also participate in cancer immunosurveillance, but 

react as first line of defense. The most widely studied group of NKT cells expresses the 

invariant type of the TCR (V#14J#18/V$2, 7, or 8 in the mouse and V#24J#18/V$11 in 

humans)42, CD3, CD56, NK1.1 and produce granzyme B43. NKT cells recognize 

glycolipids, presented by a MHC-like molecule CD1d44. They are particularly interesting 

because when activated they form the bridging link between the innate and adaptive 

immune system upon activation. This occurs through the production of a whole array of 

cytokines (proteins secreted by cells that regulate the immune system) including IFN!, 

IL-12, IL-4, and IL-13, that can activate other cells of the innate and adaptive immune 

system against cancer45. Like NK cell depletion, it has been shown that mice depleted of 

NKT cells were three times more susceptible to MCA-induced cancers than wild type 

mice46. In this thesis we will show that NKT cells stimulated with a synthetic glycolipid 

alphagalactosylceramice (#GC), produce cytokines in correlation with improved TAA-

specific T cell and NK cell responses in mice with metastatic breast cancer.  

 

!"T cells. !"T cells are CD3+TCR!+"+, CD8+ and react as a first line defense like NK and 

NKT cells. Upon activation they produce large amounts of IFN!29. 

 

MDSC. Myeloid-derived suppressor cells (MDSC) play an important role in cancer, and 

particularly in metastatic cancer. They are immature myeloid cells that differentiate into 
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mature granulocytes, macrophages, and DC. In cancer patients, MDSC migrate from the 

bone marrow via the blood stream to the primary tumor. These primary tumors block their 

differentiation and activate these immature cells to produce immune suppressive factors 

such as arginase I, inducible nitric oxide synthetase (iNOS), and reactive oxygen species 

(ROS). Cytokines such as IL-6, IL-10, and TGF$ are also produced by MDSC, which are 

able to down regulate antigen-specific and non-specific T cell responses in the TME47,48. 

In mice, MDSC express both the myeloid lineage differentiation antigen Gr1 (Ly6C and 

Ly6G) and the #M integrin CD11b. Two major groups of MDSC have been described: 

CD11b+Gr1high (CD11b+Ly6G+Ly6Clow) with a granulocytic phenotype (gMDSC), and 

CD11b+Gr1low (CD11b+Ly6G-Ly6Chigh) with a monocytic phenotype (mMDSC)49,50. Both 

mMDSC and gMDSC are immunosuppressive but may have different functions at the 

tumor site. 

 

TAM. Tumor-associated macrophages (TAM) play an important role in the TME. They 

express M2-associated pro-tumoral functions, such as angiogenesis, matrix remodeling 

and suppression of the adaptive immune system51. TAM produce chemokines (a family 

of small cytokines or proteins) such as CCL2, M-CSF, and VGEF involved in the 

recruitment of monocytes, and differentiation into TAM, as well as CSF, IL-4, IL-10, and 

TGF$52. These latter two cytokines are involved in the suppression of Th1 responses 

and naïve T cell responses through the recruitment of Tregs
52. TAM are also involved in 

the development of angiogenesis through the production of VGEF, PDGF, TGF$ and 

members of the FGF family53-55. 
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Key molecules of the immune system in cancer immunosurveillance. IFN! produced by T 

cells, NK cells, NKT cells, !"T cells, and macrophages are relevant effector molecules in 

cancer immunosurveillance. For instance, endogenous production of IFN! protected 

against transplanted, chemically induced and spontaneous tumors30-32,35. Also blocking 

the IFN! receptor IFNGR1 with Abs resulted in faster tumor growth or enhanced the 

sensitivity for developing MCA-induced tumors with 10-120 times56. As mentioned above 

!"T cells are physiologically a relevant source of IFN! in the cancer immunosurveillance 

process. IFN! activates the innate and adaptive anti-tumor immune responses56. For 

instance, IFN! promotes the generation of tumor-specific CD4+ Th1 T cells and CTL and 

activates cytocidal activity in macrophages. Moreover, IFN! inhances the 

immunogenicity of tumors through the upregulation of MHC class I molecules31.  

 

The other important key molecule in cancer immunosurveillance is perforin. Perforin is a 

lytic enzyme, produced by CD8 T cells and NK cells, which when it comes in contact 

with tumor cells perforates the cell membrane resulting in tumor cell death57. Granzyme, 

a family of structurally related serine proteases, is secreted by NKT cells through 

exocytosis, and induces apoptosis of target cells57. 

 

Also IL-12 is important in cancer immunosurveillance. IL-12 is a heterodimer cytokine 

composed of two subunits, #-chain and a $-chain, both covalently linked by a disulfide 

bridge, and coded as IL-12p35 and IL-12 p40, respectively58. IL-12 is primarily produced 

by activated macrophages, monocytes, neutrophils, and DC59, and strongly activates 

CTL and NK60. IL-12 activates naïve and mature T cells61,62. IL-12 has great anti-tumor 

activity, particularly against metastases63,64. IL-12 also possesses anti-angiogenic 
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activities65-67. Anti-tumor effects of IL-12 have been found in various mouse tumor 

models such as B16 melanoma, CT26 colon carcinoma, Renca renal-cell carcinoma, 

TSA mammary carcinoma, SCK mammary carcinoma, and many others65,68. While 

recombinant IL-12 is toxic65,69, IL-12 produced by the immune system itself through 

stimulation has no side effects, as we found in our breast cancer model (see chapters 2 

and 3).  

 

Equilibrium 

Originally, cancer immunosurveillance was considered to protect the host from cancer27, 

by eliminating tumor cells at least at the earliest stage of cancer. This is correct for 

immunogenic tumor cells at a stage that immune suppression has not been induced yet. 

However, there is an equilibrium phase between the tumor cells and the immune 

system. Tumor cells may become non-immunogenic by loosing TAA expression through 

genetic instability70, a well known problem in cancer, or by cytokine production such as 

TGF$ which reduces MHC class I expression levels on tumor cells71. The tumor cells 

that remain start producing cytokines or factors such as GM-CSF or S10072,73 or other 

factors that recruit MDSC, or cytokines such as IL-10 that induce differentiation of blood 

monocytes into tumor-associated macrophages (TAM), or M2 macrophages74,75.  These 

immune cells starts suppressing the adaptive and innate immune system, and at this 

point not only the non-immunogenic will enter the escape phase, but also immunogenic 

tumor cells since MDSC, TAM and M2 macrophages prevent the immune system from 

eliminating tumor cells.  
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Escape of tumor cells 

Once in the escape phase, there is a strong interaction between tumor cells and MDSC, 

TAM and M2 macrophages, resulting in the production of high levels of cytokines and 

factors that suppresses the immune system such as IL-6, IL-10, TGF$, iNos, 

arginase51,72,76,77, and finally leading to escape of the tumor cells from the immune 

system. All those cells that normally can eliminate the tumor cells directly or indirectly 

such as CD8 and CD4 T cells, as well as NK cells, NKT cells, !"T cells are now 

functionally inhibited. This is the moment that tumors develop, and in a later phase 

depending on the tumor microenvironment and the type of tumor, metastases will 

develop. For a schematic view of the elimination of tumor cells, equilibrium and escape 

of tumor cells see Fig 6. For a review about the immunoediting theory see Dunn et al, 

200429  

 

Cancer vaccination 

While immunosurveillance is able to eliminate tumor cells in an early phase, there is a 

moment as discussed above that the immune system fails. This is the moment were 

vaccines or immunotherapy can help the immune system to eliminate the tumor cells by 

reducing immune suppression, by the generation of cytokines that can stimulate the 

immune system, and by the delivery of TAA molecules at large numbers into antigen-

presenting cells in vivo, which is the central theme of this thesis. While standard 

therapies such as chemotherapy, radiation, surgery or targeted therapies fail to eliminate 

metastases, cancer vaccination may be the best and most benign option for preventing 

or curing metastatic cancer.  
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Various cancer vaccines 

Developing bacterial or viral vaccines is different from developing cancer vaccines. 

Bacteria or viruses express membrane antigens that are foreign to the human immune 

system, and are therefore able to activate the immune system against these antigens. 

Tumors do not express foreign membrane antigens in the same way as bacteria or 

viruses because tumors are derived from normal human cells, expressing primarily the 

same antigens as normal cells do. However, several decades of research into the 

presence of tumor-specific antigens have shown that many tumors express antigens that 

are not expressed in normal adult tissues except testis and placenta. Examples are 

MAGE, GAGE, BAGE, LAGE, NY-ESO-178-81; overexpress antigens that are present at 

low levels in normal tissues, such as CEA, HER/neu-2, MUC182-84; or show altered 

antigen expression by mutation in cellular genes, such as MUM1, cdk4, ß-catenin85-87. 

These TAA are able to activate specific T cells if optimally presented (see below), and 

are therefore suitable targets for the development of cancer vaccines. For a schematic 

overview of more various TAA see Table 1. 

 

The first attempts to develop cancer vaccines on the basis of irradiated tumor cells were 

unsuccessful88. Tumor cells are poor antigen-presenting cells (APCs) due to the low 

expression of MHC and co-stimulatory molecules and poor processing of antigens and 

presentation of TAA on the membrane. Over the last decade, new generations of TAA-

based cancer vaccines have become available that are much more powerful in activation 

of the immune system than irradiated tumor cells. This new generation of vaccines is 

able to activate different T cells depending on processing of exogenous or endogenous 

proteins produced by the vaccine, and subsequent presentation of the antigen (TAA 

peptides) by APC to the immune system. Endogenous proteins, for instance delivered 
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into the cytoplasm of an APC by a DNA vaccine, are processed by cytoplasmic enzymes 

resulting in small peptides, then transported to the endoplasmic reticulum, where 

peptides can associate with newly synthesized MHC class I molecules. These 

peptide/MHC class I complexes migrate to the membrane of the APC for presentation to 

the immune system and for subsequent activation of naive CTL. Exogenous proteins, for 

instance from purified protein or conjugate vaccines, are internalized by APC via 

endocytosis to an endosomal compartment, where they are digested into peptides and 

associated with MHC class II molecules. These peptide/MHC class II complexes migrate 

to the membrane of the APC for presentation to the immune system and for subsequent 

activation of naïve T helper cells. However, exogenously produced proteins can also be 

taken up by APC and then presented in the context of MHC class I molecules (epitope 

spreading)(for a review see Cohen et al., 1998)89. Below, several cancer vaccines will be 

discussed that are particularly powerful in the induction of CTL responses.  

 

Peptide-based vaccines 

Use of peptide-based vaccines is an approach to initiate TAA-specific CTL responses. 

Such vaccines obviate the need to digest proteins into peptides, a process that is often 

impaired in tumor cells. Peptide-based vaccines consist of dendritic cells (DC) (isolated 

from the cancer patients themselves) loaded with synthetic peptides derived from TAA 

that are expressed, but inadequately presented by the tumor. These peptides assemble 

with MHC molecules that are highly expressed at the cell membrane of DC. Injection of 

these peptide-loaded DC into cancer patients leads to presentation of TAA-peptide/self-

MHC complex to the immune system, activating TAA-specific CTL, resulting in the 

destruction of TAA-expressing tumor cells. Clinical trials in patients with melanomas, 

prostate cancer, B-lymphomas or multiple myelomas using DC/peptide vaccines have 

been promising90. However, a major disadvantage of their use is that the production 
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procedures are difficult, expensive and time-consuming. Indeed, the DC need to be 

isolated from the cancer patient, expanded in vitro, then loaded with peptide and then re-

injected into the patient, all under sterile conditions. It is difficult to obtain sufficient viable 

DC with this approach. To circumvent these difficulties, several clinical trials in patients 

with melanomas, AIDS, breast, ovarian, or colorectal carcinomas, have been performed 

with some success using TAA-peptides without DC but in the presence of cytokines 

such as IL-2 and GM-CSF (for a review see Gravekamp)91. It is difficult to load DC with 

peptides in vivo, because the injected peptides need to compete with existing peptides 

associated with the MHC molecules at the membrane of DC. 

 

Tumor cell-dendritic cell hybrid vaccines 

Generation of hybrids between autologous tumor cells and allogeneic (monocyte-

derived) DC, presenting antigens expressed by the tumor in concert with co-stimulating 

capacities of DC is another approach to activate TAA-specific CTL92. An advantage is 

that unknown tumor antigens are included in this type of vaccine. Caution must be taken 

to avoid activating autoimmunity against normal cells93,94. These hybrids demonstrated 

the induction of MHC class I-restricted CTL reactive with MUC1 TAA. A human clinical 

vaccine trial with this tumor cell-dendritic cell hybrid vaccine showed promising results in 

metastatic breast cancer (for a review see Gravekamp)91, but the procedures are as 

difficult as with peptide-based vaccines.  

 

Delivery through DNA vectors 

Use of DNA vaccines allows activation of TAA-specific CTL. Like the above described 

DC-based vaccines, DNA-based vaccines circumvent the poor APC function of the 

tumor cells since the antigens delivered by the DNA vaccines will be presented by 

professional APC that do express high levels of MHC and co-stimulatory molecules. A 
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conventional DNA vaccine is a bacterial plasmid (for instance pCDNA3.1) containing an 

eukaryotic promoter (required for transcription), a Kozak sequence (required for 

translation) and the gene of interest, followed by a polyadenylation signal (to prevent 

degradation of mRNA). The gene of interest can be any DNA sequence that may 

activate tumor-specific T cell responses.  

 

Intramuscular or epidermal immunization with a DNA vaccine leads to DNA uptake into 

APC such as bone marrow-derived DC, macrophages, or Langerhans cells95. CpG rich 

motifs (high frequency of unmethylated CG sequences) present in bacterial DNA, enable 

stimulation and maturation of APC96. APC express pattern recognition receptors (PRR) 

that bind CpG rich motifs97. It might be speculated that interaction between CpG motifs 

and PRR may lead to internalization of the DNA vaccine like internalization of proteins, 

but unlike proteins might escape degradation. Circular DNA is less prone to degradation 

than linear DNA. In addition, it has been shown that cell types other than APC are 

involved in DNA uptake as well89. For instance, intramuscular injection of a DNA vaccine 

leads to the uptake and expression of the DNA vaccine in myocytes. However, myocytes 

do not function as APC, because they lack the important co-stimulatory molecules 

required for priming of naïve T cells. Epidermal DNA immunization allows the uptake of 

the DNA vaccine in keratinocytes. Keratinocytes, like myocytes, do not function as APC. 

It has been suggested that myocytes and keratinocytes deliver soluble antigen 

(exogenous) to APC, resulting in antigen presentation in context with MHC Class I or II 

molecules, resulting in activation of naïve CTL, or T helper cells, respectively. 

Cutaneous bombardment with DNA, using the gene gun is different from epidermal or 

intramuscular immunization98. It results in direct delivery (physically) of the DNA into the 

cytoplasm of Langerhans cells. These DC migrate to regional lymph nodes in order to 

present antigens delivered by the DNA vaccine to naïve CTL.  
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mRNA-based vaccines 

mRNA-based vaccines can code for all types of proteins, are easy and cost efficient to 

produce, have a favorable safety profile and enables the induction of combined immune 

responses99. Over the last few years major developments have been made in the field. 

Clinical approaches use mRNA either for direct administration or for engineering of 

adoptive transferred dendritic cells. However, there are still challenges to overcome such 

as the short half-life of extracellular mRNA, and relatively weak target specific immune 

responses100,101. 

 

Delivery through live attenuated viruses or bacteria  

An efficient delivery of TAA in vivo is a key issue for developing strong immune 

responses against cancer. In this regard, live vaccination strategies including various 

attenuated live bacterial and viral vectors have attracted great attention. Several 

attenuated bacterial strains such as Salmonella, Lactococcus lactis, and Listeria 

monocytogenes have been tested for the delivery of antigens in vivo102-105. Also viruses 

as vaccine vectors have been used such as Vaccinia, Adenovirus, Herpes Simplex virus, 

Paramyxovirus, and Retroviruses102,106,107. Even non-pathogenic variants of parasites 

such as Leishmania tarentolae, Toxoplasma gondii, and Trypanosoma cruzi has been 

used for gene delivery in vivo108,109. These bacteria, viruses and parasites have great 

potential to deliver target genes in vivo. However, safety aspects are still an issue, 

particularly for viruses and much less for bacteria and parasites. An overview of the 

different cancer vaccines in human clinical trials is shown in Table 2. 

 

Listeria monocytogenes 

In our laboratory, we used a highly attenuated Listeria monocytogenes (Listeriaat), for the 

delivery of TAA into APC. This Listeriaat was originally developed in the laboratory of Dr. 
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Yvonne Paterson, University of Pennsylvania, PA. She attenuated the Listeria bacteria 

to reduce the pathogenicity as described below. Listeriaat consists of Listeria plasmid 

pGG34 and a Listeria background strain XFL-7. The Listeria plasmid pGG34, expresses 

the positive regulatory factor (prfA) and Listeriolysin O (LLO)110. prfA regulates the 

expression of other virulence genes, and is required for survival in vivo and in vitro110. 

The coding region for the C-terminal part of the LLO (cytolytic domain that binds 

cholesterol in the membranes) protein in the plasmid has been deleted, but Listeriaat is 

still able to escape the host vacuole111. Mutations have been introduced into the prfA 

gene and the remaining LLO (expressed by the pGG34 vector), which further reduced 

the pathogenicity of Listeriaat 111.  

 Initially, we used the Listeriaat because it naturally infects professional APC 

(monocytes), and targets antigen delivery to both the class I MHC pathway of 

endogenous antigen presentation and the class II MHC pathway of exogenous antigen 

presentation. This DNA delivery system (containing the same antigen as expressed by 

the tumors) successfully protected mice from renal or colorectal tumors112. Advantages 

of Listeriaat are the higher efficiency of DNA uptake into APC and subsequent 

processing and antigen presentation compared to the conventional DNA immunizations 

described above, and the possibility of oral administration. We found that preventive 

vaccinations with Listeriaat expressing TAA Mage-b protected mice from metastatic 

breast cancer113.  

 Later our lab discovered that Listeriaat also infects tumor cells in vitro and in vivo, 

and kills tumor cells through the generation of high levels of reactive oxygen species 

(ROS) without side effects114. This was possible because Listeriaat survives and 

multiplies in the tumor microenvironment because of the strong immune suppression114, 

but is efficiently cleared in normal tissues that lack immune suppressions by 
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macrophages, NK cells and T cells115,116. These various pathways of Listeriaat are highly 

attractive for the development of cancer therapies. 

Most dramatically were the semi-therapeutic immunizations (one before and two 

after tumor development) with Listeriaat expressing TAA Mage-b114. This resulted in the 

complete elimination of all metastases and the primary tumor was reduced by 95%. This 

high efficacy of Listeriaat-Mage-b was obtained by the generation of excellent T cell and 

NK cell responses, and the direct kill of tumor cells by Listeriaat-induced ROS. The 

strong T cell and NK cell responses, even after tumor development, could be induced 

because the first immunization was administered before tumor development in the 

absence of immune suppression. However, exclusive therapeutic immunizations with 

Listeriaat-Mage-b were much less effective due to the strong immune suppression in the 

tumor microenvironment114. Cancer vaccination is highly promising, particularly against 

metastases, but a real breakthrough is hampered by the strong immune suppression in 

the tumor microenvironment. Therefore, reduction of immune suppression is of great 

value for the development of effective vaccines against cancer. This thesis is about the 

improvement of vaccine efficacy by the development of combination therapies with 

Listeriaat-Mage-b and curcumin or alphagalactosylceramide (#GC) against metastatic 

breast cancer. Both compounds reduce immune suppression and/or convert immune 

suppression into immune stimulation in tumor-bearing mice.  

 

Curcumin 

Curcumin (diferulolylmethane), a polyphenol derived from the plant Curcunina longa, 

commonly called turmeric, has a broad anti-cancer effect through down regulating 

transcription factor NFkB thereby affecting down stream genes such as c-myc, Bcl-2, 

COX-2, NOS, Cyclin D1, TNF# and MMP9 40. Various studies have shown that curcumin 

kills breast tumor cells in vitro117-121. Also it has been shown that curcumin improves 
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therapeutic efficacy of doxorubicin or of B16-R lysate against B16-R melanoma in 

mice122, and that curcumin prevents tumor-induced T cell apoptosis in mice123. Many 

clinical trials with curcumin are ongoing or have been completed (Table 3). Curcumin is 

also known for reducing immune suppressive cytokines such as IL-6 through the NFkB 

pathway124. IL-6 is strongly produced in mice and human with metastatic breast cancer, 

particularly in TNBC125,126. IL-6 is a potent regulator of dendritic cell (DC) differentiation in 

vivo127, and is able to turn on the expression of signal transducer and activator of 

transcription (STAT)3 in DC. However, high levels of STAT3 can prevent DC from 

maturation127 and subsequent presentation of antigens128. This in turn may lead to T cell 

unresponsiveness. In a previous study we found evidence that IL-6 strongly inhibited T 

cell responses in the TME and that anti-IL-6 antibodies restored the T cell responses113. 

We have also shown that IL-6 strongly inhibited T cell responses to Mage-b and that 

elimination of IL-6 with anti-IL-6 antibodies restored T cell responses to Mage-b113. 

Based on these results, we hypothesized that curcumin could improve the vaccine 

efficacy of Listeriaat-Mage-b by improving T cell responses through the reduced IL-6 

production. This hypothesis has been tested in Chapter 2.  

 

#-Galactosylceramide (#GC) 

#GC is a glycolipid and represents one potentially useful class of adjuvants that have 

shown promise in preclinical studies for immunotherapy of cancers129. These glycolipids 

mediate their effects on the immune system by binding to an MHC class I-like molecule 

called CD1d, creating a complex that is recognized by a population of conserved effector 

lymphocytes known as natural killer T cells (NKT cells)130. Several subsets of NKT cells 

have been defined, with the most abundant being the so-called type 1 or invariant NKT 

cell (iNKT) subset which is highly responsive to #GC and highly conserved between 
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primates and mice44,131. It has been shown that formation of complexes of CD1d with 

#GC intracellularly in antigen presenting cells initiates rapid NKT cell activation132. This 

cascade of immune reactions that is initiated by NKT cells in response to #GC has been 

shown in mouse models to generate innate and adaptive immunity against a wide range 

of cancers and infections132-136. Based on these observations we hypothesized that 

addition of #GC to the LM-Mb vaccine could improve the vaccine efficacy, in part 

through enhancement of specific T cell responses to Mage-b. This hypothesis has been 

tested in Chapter 3. 

 

Introduction to the experimental work 

Cancer vaccination is particularly promising to combat metastatic cancer. However, a 

real breakthrough is hampered by immune suppression in the TME. Therefore, the main 

goal of this thesis project is focused on the reduction or conversion of immune 

suppression in the TME. To reach this goal we have used two different approaches. The 

first approach involved reduction of immune suppressive cytokine IL-6. IL-6 strongly 

inhibits T cell responses in the TME, is a growth promoter for tumor cells, and 

contributes to the development of metastases. IL-6 is produced by at least 50% of all 

breast cancers (particularly stem-like breast cancer cells)137, and various immune cells in 

the TME (this thesis). We hypothesized that agents that reduce IL-6 will improve the 

efficacy of the vaccination through improved T cell responses. To test this hypothesis we 

developed a combination therapy of Listeriaat-Mage-b and Curcumin in a metastatic 

breast cancer model 4T1, in collaboration with Bharat Aggarwal, MD Anderson, 

Houston, Texas. This study has been described in Chapter 2.  

 The second approach involved the conversion of immune suppression into 

immune stimulation by generation of a cascade of immune-stimulating cytokines, 
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through the activation of NKT cells with #GC. We hypothesized that the generation of 

immune-stimulating cytokines by #GC, will improve the efficacy of Listeriaat-Mage-b 

vaccinations through improved T cell responses to Mage-b. This hypothesis was tested, 

in collaboration with Dr. Steven Porcelli of Microbiology and Immunology of Albert 

Einstein College of Medicine, in chapter 3. 

 In summary, the various approaches to eliminate or convert immune suppression 

are of crucial importance for successful cancer vaccination. Another important issue was 

to develop non-toxic combination therapies. We have shown earlier that Listeriaat-Mage-

b is non-pathogenic and is naturally cleared by the immune system within 3-5 days114, 

and curcumin and #GC are both non-toxic compounds. Our ultimate goal is to apply our 

combination therapies in human clinical trials, with higher efficacy but lower side effects 

compared to current treatment regimens of metastatic breast cancer. 
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Figure 1: Schematic view of breast tissue organization  

Source: http://www.who.int/cancer/detection/breastcancer/en/index2.html  
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Figure 2: Structure of the mammary gland. The mammary gland consists of a branching 

ductal system that ends in terminal ducts with their associated acinar structures, termed the 

terminal ductal-lobular units (TDLUs), together with interlobular fat and fibrous tissue. Terminal 
ductal–lobular unit (TDLU), composed of ductal cells, is the unit thought to be the origin of 

most breast cancers. The stroma is composed of fatty tissue (adipocytes) and fibroblasts. Also 

shown are the two primary types of cells in normal ducts: outer contractile myoepithelial and 

inner columnar luminal cells. A putative progenitor/stem cell is also indicated. 

Source: Dimri et al. Breast Cancer Research 2005 7:171   doi:10.1186/bcr1275 
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Figure 3: Venn diagram of breast cancer subtypes and their overlapping molecular 

targets. This figure shows some of the most promising targeted agents in development and 

discuss considerations for the optimal design of clinical trials of targeted therapies in breast 
cancer. The sub-classification nomenclature currently used in the clinic.  

Source: Higgins and Baselga, 2011, J Clin Inv 121: 3797-3803199 
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Figure 4: Immune recognition of tumours. The immune system can be broadly divided into innate and 
adaptive components, with extensive crosstalk between the two. The innate immune response functions as 

the first line of defense against infection. It consists of soluble factors, such as complement proteins, and 
diverse cellular components including granulocytes (basophils, eosinophils and neutrophils), mast cells, 

macrophages, dendritic cells and natural killer cells. The adaptive immune response is slower to develop, but 
manifests as increased antigenic specificity and memory. It consists of antibodies, B cells, and CD4+ and 
CD8+ T lymphocytes. Natural killer T cells and !"T cells are cytotoxic lymphocytes that straddle the interface of 

innate and adaptive immunity. 
Source: Dranoff. Cytokines in cancer pathogenesis and cancer therapy, Nature Reviews Cancer 4: 11-22, 

2004200 
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Figure 5A: Schematic of positive costimulatory pathways that could regulate specific stages in an anti-tumor 
immune response. Depicted are representations of the priming phase in secondary lymphoid organs, and the effector 

phase within the tumor microenvironment. Most costimulatory signals can be envisioned to improve aspects of the 
immune response in both compartments, to improve productive cross-priming by APCs, and to help maintain the 

desired functional properties of effector cell subsets. Specific receptor/ligand interactions are defined in the lower right 
section. APC, antigen-presenting cell; CTL, cytotoxic T lymphocyte. 
Source: Driessens et al. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunonol Rev, 229: 

126-144, 2009202 
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Figure 5B: Schematic of coinhibitory pathways that can be active within tumor-draining lymph nodes and 
the tumor microenvironment. Depicted are representations of the priming phase in secondary lymphoid organs, 

and the effector phase within the tumor microenvironment, along with key coinhibitory pathways that could dampen 
anti-tumor T-cell responses at each level. Several inhibitory signals, such as PD-L1/PD-1 interactions, can regulate 

both the effectiveness of tumor antigen cross-priming and the function of effector cells at tumor sites. Not all 
pathways are necessarily relevant to each subtype of cancer, nor do they necessarily coexist in all individual 
tumors. Specific receptor/ligand interactions are defined in the lower right section. PD, programmed cell death. 

Source: Driessens et al. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunonol Rev, 229: 
126-144, 2009202 
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Figure 6: The three Es of cancer immunoediting: elimination, equilibrium, and escape. (a) After 
transformation of cells in a normal layer (diamond-shaped cells) into cancerous cells (with irregular shapes), 

attack by various different cell types of the immune system (indicated by round cells) may lead to elimination of 
the cancerous cells. (b) If elimination is unsuccessful, the immune system and the cancer can reach an 

equilibrium in which immune cells keep the cancer in check but cannot remove it completely. During the 
elimination phase, there is selection on the cancer cells, whose genomes are also unstable. This can lead to 
escape (c), in which mutated cancer cells become able to inhibit the immune system. The cancer can then grow 

unchecked. Figure modified from [2]. CD4+, CD8+, CD4+CD25+ Treg, !" and NKT cells are all types of T cell; M# 
cells are macrophages and NK cells are natural killer cells. 

Strausberg. Tumor microenvironments, the immune system and cancer survival. Genome Biology 2005 6:211201 
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Table 1: List of most relevant TAAs recognized by T cells 

 

Shared Antigens    Type of Tumor   Normal tissue distribution  Ref 

 
Cancer Testis Antigens 

BAGE      melanoma, lymphoma,     spermatocytes, spermatogonia,  160-163 

GAGE       lung, bladder, colon,   testis, placenta, ovary cells 

MAGE-A/B      and breast carcinomas 

NY-ESO-1 

SSX 

 

Differentiation Antigens 

Gp100      melanoma, prostate cancer,  melanocytes, epithelial tissues,  164-166,  

Melan-A/Mart-1     colon and breast carcinomas  prostate, colon    167-171, 

Tyrosinase               185 

PSA 

CEA 

Mammaglobin-A 

 

Overexpressed Antigens 

P53      esophagus, liver, pancreas, colon ubiquitous (low level)    172-175 

HER2/neu     breast, ovary, bladder, and 

Livin      prostate carcinomas 

Survivin 

 

Unique Antigens 
Unique Antigens 

!-catenin-m     melanoma, non-small lung cancer, N/A      176-179 

!-actin/1/m     renal cancer 

Myosin/m 

HSP70-2/m 

HLA-A2-R170J 

 

Unique Shared Antigens 
Tumor-associated Carbohydrate Antigens 

GM2      melanoma, neuroblastoma,  epithelial tissues (e.g. renal, intestinal, 180-184 

GD2      colorectal, lung, breast, ovarian   colorectal) 

GD3      and prostate cancer 

MUC-1 

sTn 

globo-H 

 
Adapted from Buonaguro et al, 2011. Clin and Vacc Immunol 18: 23-24203 



 40 

Table 2: Overview of different vaccination strategies employed in clinical trials 

 
VACCINE   PHASE   TUMOR  NOTE       REF 

Vaccines with vectors 

PSA-TRICOM   II   Prostate   8.5 mos OS improvement vs Placebo   186 

PSA-TRICOM   II   Prostate   16.4 mos OS improvement in HPS>18 mos   187 

PANVAC-VF   III   Pancreatic  Failed>OS. Pts with life expectancy < 3mos   188 

 

Vaccines with peptides 

Provenge   III   Prostate   4.1 mos improvement vs placebo    189,200  

Oncophage   III   Melanoma  Prolonged OS in M1a or M1b    191 

Gp100: 209-217 (210M)  III   Renal   No difference in DFS and OS    192 

Stimuvax   IIb   Lung   Improvement versus BSC in locoregional stage IIIB  193 

 

Vaccines with tumor cells or tumor cell lysates 

OncoVAX   III   Colon   Significant improvement in DFS and OS in stage II  194-196 

Reniale    III   Renal   Significant improvement in DFS and OS   197, 186 

GVAX    III   Prostate   Failed to improve OS vs docetaxel    188  

GVAX    III   Prostate   Failed. Higher death rate in vacc+doc vs doc alone  188 

 

Vaccines with RNA 

mRNA from PCa cell lines I/II   Prostate   Immunological response     198 

 

Vaccines with attenuated live bacteria1 

Listeria-E7   I/II   Cervix (invasive)  Flu-like symptoms; Detection of E7-specific T cell responses 103 

      

 
OS=overall survial; PFS= Progression-free survival; HPS=Halabi-predicted survival; DFS=disease-free survival 

Adapted from: from Vergati et al. J of Biomed Biotechnol 2010, doi:10.1155/2010/596432 (2010)186 
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Table 3: A list of most important completed, ongoing, and suspended clinical trials with curcumin in patients with different types of 

cancer 

 

Type of Cancer  Trial condition  Trial        Identifier No./Ref* 

 
Colon Cancer   Completed   The effects of curcuminoids on aberrant crypt foci   NCT00176618 
Colon Cancer   Completed   Curcumin in colon cancer      NCT00027495 
Colon Cancer   Ongoing (Phase II)  Curcumin in lower GI tract in FAP     NCT00248053 
Colon Cancer    Ongoing (Phase II)  Curcumin for chemoprevention colon cancer    NCT00118989 
Colon Cancer   Ongoing (Phase II)  Curcumin in colon cancer in smokers with aberrabant crypt foci NCT00365209 
Colon Cancer   Suspended   Curcumin effect on biomarkers of colon cancer cell turnover  NCT00003365 
Colon Cancer   Not yet open (Phase III)  Curcumin, gemcitabine, and celebrex in metastatic colon cancer NCT00542711 
Colon cancer   Suspended   Curcumin for intestinal FAP     NCT00641147 
 
Pancreatic Cancer  Ongoing (Phase II)  Curcumin in advanced pancreatic cancer    NCT00094445 
Pancreatic Cancer  Ongoing (Phase III)  Curcumin, gemcitabine, and celebrex in pancreatic cancer  NCT00486460 
Pancreatic Cancer  Ongoing (Phase II)  Curcumin with gemcitabine 
 
Oral Cancer   Ongoing (Phase II/III)  Oral premalignant lesions      See$ 
Oral Cancer   Ongoing (Phase II/III)  Oral premalignant lesions      See$ 
 
Cervical Cancer  Ongoing (Phase II/III)  Cervical cancer (stage IIb, IIIb)     See$ 
 
Gall bladder Cancer  Ongoing (Phase II)  Gall bladder Cancer      See$  
                  
Osteosarcoma   Ongoing    Curcumin and ashwaganda root powder extract    NCT00689195 
 
www.clinical trials.gov; $www.charakinternational.com/pdfs/clinic_trial.pdf. FAP= familial adenomatous polyposis 
Source: Shehzad et al, 2010, Arch Pharm Chem Life SCi 2010, 9, 489-499204 
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Abstract 

Success of cancer vaccination is strongly hampered by immune suppression in the tumor 

microenvironment (TME). Interleukin (IL)-6 is particularly and highly produced by triple negative 

breast cancer (TNBC) cells, and has been considered as an important contributor to immune 

suppression in the TME. Therefore, we hypothesized that IL-6 reduction may improve efficacy 

of vaccination against TNBC cancer through improved T cell responses. To prove this 

hypothesis, we investigated the effect of curcumin, an inhibitor of IL-6 production, on 

vaccination of a highly attenuated Listeria monocytogenes (Listeriaat), encoding tumor-

associated antigens (TAA) Mage-b in a TNBC model 4T1. Two therapeutic vaccination 

strategies with Listeriaat-Mage-b and curcumin were tested. The first immunization strategy 

involved all Listeriaat-Mage-b vaccinations and curcumin after tumor development. Since 

curcumin has been consumed all over the world, the second immunization strategy involved 

curcumin before and all therapeutic vaccinations with Listeriaat-Mage-b after tumor 

development. Here we demonstrate that curcumin significantly improves therapeutic efficacy of 

Listeriaat-Mage-b with both immunization strategies particularly against metastases in a TNBC 

model (4T1). The combination therapy was slightly but significantly more effective against the 

metastases when curcumin was administered before compared to after tumor development. 

With curcumin before tumor development in the combination therapy, the production of IL-6 

was significantly decreased and IL-12 increased by myeloid-derived suppressor cells (MDSC), 

in correlation with improved CD4 and CD8 T cell responses in blood. Our study suggests that 

curcumin improves the efficacy of Listeriaat-Mage-b vaccine against metastases in TNBC 

model 4T1 through reversal of tumor-induced immune suppression. 

 

Introduction 

Triple negative breast cancer (TNBC), defined as tumors lacking estrogen receptor (ER), 

progesterone receptor (PR), and HER2/neu accounts for about 20% of all breast cancers, and 
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is particularly increased in black women1. Women with TNBC represent high-grade tumors 

that are large and commonly associated with regional node metastases, and recur at distant 

sites, especially within the first 5 years of diagnosis2 . The absence of any specific targeted 

therapy for TNBC or basal subtype limits the therapeutic options to cytotoxic therapy3,4, 

indicating the need for new therapeutic approaches. Immunotherapy may be our best and 

most benign option for preventing or curing TNBC. However, immune suppression in the 

tumor microenvironment (TME) remains as a potential limitation to immunotherapy. Myeloid-

derived suppressor cells (MDSC) are one of the most important players in mediating TME-

associated immune suppression, with tumor-associated macrophages (TAM), Tregs, and M2 

macrophages also playing a role5-8. Interleukin (IL)-6 is one of such immune suppressive 

cytokines that is frequently and highly produced by metastatic breast cancers in humans and 

mice, and particularly by TNBC9-11. TNBC are enriched for stem-like breast cancer cells 

(CD44+/CD24-/low), which are typically aggressive and highly resistant to current therapies12-

15.  These stem-like breast cancer cells produce high levels of IL-6, and have the capacity to 

metastasize16. Moreover, IL-6 is capable of converting dormant breast cancer cells into an 

actively growing tumor. 

 IL-6 is a potent regulator of dendritic cell (DC) differentiation in vivo, and is able to turn on 

the expression of signal transducer and activator of transcription (STAT)3 in DC17. However, 

high levels of STAT3 can prevent DC from maturation and subsequent presentation of 

antigens18. This in turn may lead to T cell unresponsiveness. In a previous study we found 

high levels of IL-6 produced by breast cancer cells and by immune cells in their TME in an 

aggressive TNBC mouse model 4T119. This IL-6 strongly reduced T cell responses to Mage-b, 

but elimination of IL-6 using anti-IL-6 antibodies restored T cell responses to Mage-b in vitro20. 

 Agents that are able to inhibit IL-6 are of great value for immunotherapies against TNBC 

and other IL-6-producing cancers. One such agent could be curcumin. Curcumin 

(diferulolylmethane), a polyphenol derived from the plant Curcunina longa, commonly called 
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turmeric, has a broad anti-cancer effect through down regulating transcription factor NFkB 

thereby affecting down stream genes such as c-myc, Bcl-2, COX-2, NOS, Cyclin D1, TNF! 

and MMP9 21. Curcumin is also known for reducing immune suppressive cytokines such as IL-

6 through the NFkB pathway22. It has been shown that curcumin improves therapeutic efficacy 

of doxorubicin or of B16-R lysate against B16-R melanoma in mice, and that curcumin 

prevents tumor-induced T cell apoptosis in mice23. In a previous study we developed a 

Listeriaat-based vaccine expressing tumor-associated antigen (TAA) Mage-b20. Mage-b is 

homologous to Mage-a24, and its human homologue MAGE-A is expressed in 26% of the 

TNBC25. Vaccination with Listeriaat-Mage-b showed to be highly effective against metastatic 

breast cancer in a TNBC model 4T1 in a preventive setting20. However, Listeriaat-Mage-b was 

less effective in a therapeutic setting because of immune suppression in the TME. Here, we 

demonstrate that curcumin improved therapeutic efficacy of Listeriaat-Mage-b by reducing the 

production of IL-6 and increasing the production of IL-12, in correlation with improved T cell 

responses in blood of the TNBC 4T1 model. Most important, we found a dramatic effect of the 

combination therapy on the metastases without having side effects. The results of this study 

may provide new opportunities to improve efficacy of other types of vaccines and/or against 

other IL-6-producing cancers. 

 
 

Materials and Methods 

Mice.  

Normal female BALB/c mice (3 months old) were obtained from Charles River and maintained 

in the animal husbandry facility Albert Einstein College of Medicine according to the 

Association and Accreditation of Laboratory Animal Care (AACAC) guidelines. All mice were 

kept under Bsl-2 condition as required for Listeria vaccinations. 
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Cells and cell culture 

The  TNBC 4T1 cell line, derived from a spontaneous mammary carcinoma in a BALB/c 

mouse26, was cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 

10% fetal bovine serum (FBS), 1 mM mixed nonessential amino acids, 2 mM L-glutamine, 

insulin (0.5 HSP units/ml) penicillin (100 units/ml) and streptomycin (100 µg/ml).  

 

Listeriaat-based vaccine 

In this study, a highly attenuated Listeria monocytogenes (Listeriaat) has been used for the 

delivery of TAA Mage-b in vivo, as described previously20. The Listeriaat plasmid pGG-34, 

expresses the positive regulatory factor A (prfA) and one of the virulence genes Listeriolysin O 

(LLO)27. The coding region for the C-terminal part of the LLO (cytolytic domain that binds 

cholesterol in the membranes) protein in the plasmid has been deleted, but Listeriaat is still 

able to escape the vacuole28. Mutations have been introduced into the prfA gene and in the 

LLO, which further reduced the pathogenicity of the Listeriaat 27. The background strain XFL-7 

lacks the prFA gene, and retains the plasmid in vitro and in vivo28. Listeriaat-Mage-b, 

expressing nucleotide fragment 311-660 of mouse Mage-b, was developed earlier in our 

laboratory20. 

 

Curcumin 

As indicated in the text below, a dose of curcumin (95% curcuminoid)(Alfa Aesar, Ward Hill, 

MA) of 0.8 or 2 gram/kg (20 or 50 mg/mouse), in olive oil was administered orally. Piperine 

(black pepper) of 20 mg/kg (0.48 mg/mouse) was added to the olive oil in all studies with 

curcumin. Piperine improves the bioavailability with 2000%, and has been successfully used 

in humans and animals29. Piperine is a known inhibitor of hepatic and intestinal 

glucuronidation, a process that breaks down curcumin in vivo30,31. 
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Immunization and tumor challenge 

In this study, two different immunization protocols were tested. The first immunization protocol 

consisted of three therapeutic immunizations with Listeriaat-Mage-b and curcumin. Briefly, 

mice received 0.5x105 4T1 tumor cells in the mammary fat pad on day 0, then 0.5x107 CFU of 

Listeriaat-Mage-b, or Listeriaat or saline intraperitoneally (ip) on days 2, 9, and 16, and finally 

curcumin orally (50 mg curcumin + 0.48 mg black pepper in olive oil/mouse) on days 4, 5, 6, 

11,12, and 13 (Immunization protocol A). All mice were euthanized on day 17, and analyzed 

for the number of metastases and tumor growth. All untreated 4T1 mice developed a primary 

tumor that extended to the chest cavity lining and metastasized predominantly to the 

mesenteric lymph nodes (MLN), and less frequently to the diaphragm, portal liver, spleen, and 

kidneys within 14 days (metastases were visible as nodules and counted by eye) as described 

previously20 

 The second immunization protocol consisted of three therapeutic immunizations with 

Listeriaat-Mage-b, but curcumin was administered before tumor development. Briefly, mice 

received curcumin orally (50 mg curcumin + 0.48 mg black pepper in olive oil/mouse) on days 

0, 1 and 2, then 0.5x105 4T1 tumor cells in the mammary fat pad on day 5, and finally three 

therapeutic immunizations (ip) with 1x104 CFU Listeriaat-Mage-b, Listeriaat or saline on days 8, 

11 and 14 (Immunization protocol B). All mice were euthanized on day 16 and analyzed for 

metastases and tumor growth as described above.  

 

Flow cytometry analysis 

Cells were isolated from spleen and blood as described previously32. Briefly, red blood or 

spleen cells were lysed according standard protocols, and the remaining leukocyte population 

was used for analysis. Single cell suspensions were also obtained from primary tumors using 

GentleMacs combined with a mild treatment of the cells using Collagenase, Dispase, and 

DNAse I, according to the manufacturer’s instructions (Miltenyi, Biotec Inc, Auburn, CA).  
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 Cells were first incubated with an Fc blocker (anti-CD16), and subsequently with the 

antibodies for the identification of different cell types. For MDSC, anti CD11b and Gr1 

antibodies were used. CD11b+Gr1low represents monocytic MDSC (mMDSC), and 

CD11b+Gr1high granulocytic MDSC (gMDSC). Anti-CD8 antibodies were used to identify CD8 T 

cells and anti-CD4 to identify CD4 T cells. Anti-CD45 antibodies were used to identify the 

leukocyte population in the primary tumors. To detect the production of intracellular 

lymphokines the cytofix/cytoperm kit from Pharmingen according to the manufacturer’s 

instructions, and antibodies to IL-6, IL-12, and IFN", were used. Appropriate isotype controls 

were used for each sample. Depending on the sample size, 10,000-500,000 cells were 

acquired by scanning using a Fluorescence Activated Cell sorter (flow cytometry)(Beckton and 

Disckinson; Excalibur), and analyzed using Flojo software as described previously32. Cell 

debris and dead cells were excluded from the analysis based on scatter signals and use of 

Fixable Blue or Green Live/Dead Cell Stain Kit (Invitrogen). In blood and spleens, MDSC were 

analyzed in the total live gated leukocyte population, and T cells in the total live gated 

lymphocyte population. In the tumor cell suspension, MDSC and T cells were analyzed in the 

total live gated CD45+ (leukocyte) population. All antibodies were purchased from BD 

Biosciences Pharmingen. 

 

Cell proliferation, Mitotic Index, and Apoptosis 

Cell proliferation: 4T1 cells (2000 cells in 0.1 ml) were cultured with different doses of 

curcumin in dimethyl sulfoxide (DMSO) for 72 h, then cell viability was analyzed by 3-(4, 5-

dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) method using a microtiter plate 

reader at a wave length of 570 nm. Mitotic Index: Sections of 1 mm thick of primary tumors of 

mice treated with Listeriaat-Mage-b and curcumin or with saline were stained with Hematoxylin 

and Eosin (H and E) and subsequently analyzed for the number of cells in mitosis by light 

microscopy. Apoptosis: Early and late apoptosis was analyzed by Annexin-V and TUNEL 
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assay, respectively. For the Annexin-V assay, 4T1 tumor cells were cultured with or without 

100 µM of curcumin for 24h, and subsequently incubated with Annexin-V antibodies (BD 

Biosciences), for the detection of apoptosis. For the TUNEL Assay, the ApoTag® In Situ 

Apoptosis detection (Millipore) was used. Briefly, slides were deparaffinized through graded 

alcohols to PBS. TUNEL staining was performed using ApopTag® In Situ Apoptosis Detection 

Kit (Millipore). Briefly, samples were Proteinase K digested (20 !g/mL) for 15 minutes at room 

temperature. Endogenous peroxidases were blocked using 3% H2O2 for 5 minutes at RT. 

Samples were washed and placed in Equilibration Buffer for 10 seconds followed by TdT 

enzyme incubation in reaction buffer for 1 hr at 37°C. Samples were incubated in the Anti-

Digoxigenin, washed and developed using DAB (3,3' diaminobenzidine). Slides were briefly 

counterstained in hematoxylin and mounted using Permount (Fisher Scientific). From each 

tissue, two sections were analyzed, and from each section the number of apoptotic cells in 10 

fields were counted by light microscopy. The TUNEL assay and Mitotic Index analyses were 

performed in the Laboratory of Dr. Rani Sellers, Director of Histology and Comparative 

Pathology Core Facility, Albert Einstein College of Medicine. 

 

Pathological examination 

All pathological analyses were performed by Dr. Rani Sellers, Director of Histology and 

Comparative Pathology Core Facility, Albert Einstein College of Medicine. Briefly, normal 

tissues such as kidneys, heart, lungs, liver and spleen were fixed in 10% formaldehyde for 48 

hrs, and then kept in 70% ethanol until use. Sections of 1 mm thick were stained with H and E, 

and analyzed for pathological damage by light microscopy. 

 

Results 

Curcumin administered after tumor development significantly improved therapeutic 

effect of Listeriaat-Mage-b in the 4T1 model 
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Here we tested whether curcumin could improve the efficacy of Listeriaat-Mage-b vaccination 

in the model 4T1. Listeriaat-Mage-b and curcumin were alternately administered after tumor 

development (Immunization protocol A). As shown in Fig 1A, the number of metastases in the 

mice that received Listeriaat-Mage-b and curcumin was significantly lower compared to all 

control groups. Also the tumor weight in the mice that received Listeriaat-Mage-b and curcumin 

was significantly lower than in the mice that received Listeriaat or curcumin alone, but not 

compared to the mice that received Listeriaat-Mage-b alone (Fig 1B). Curcumin alone had no 

significant effect on the tumor weight compared to the saline group. 

 

Curcumin administered before tumor development also significantly improved 

therapeutic effect of Listeriaat-Mage-b in the 4T1 model 

Since curcumin is frequently used in food all over the world we tested whether curcumin could 

improve therapeutic vaccine efficacy of Listeriaat-Mage-b when consumed before tumor 

development (Immunization protocol B). Here we used a low dose of Listeriaat-Mage-b (104 

CFU) at a high frequency (every 3 days; 4 times totally) in order to obtain a continuous 

delivery of Listeriaat-Mage-b in vivo without having side effects. Using this immunization 

protocol, the number of metastases in the mice that received Listeriaat-Mage-b and curcumin 

was significantly decreased compared to all control groups (Fig 2A). Also the tumor weight in 

the mice that received Listeriaat-Mage-b and curcumin was significantly lower compared to all 

control groups (Fig 2B). Curcumin alone had also a significant effect on the metastases and 

primary tumors compared to the saline group (Fig 2B). The growth kinetics of the primary 

tumors was analyzed as well in mice that received Listeriaat-Mage-b and curcumin, and 

confirmed the results shown in Fig 2B, i.e. on day 14 the tumor size in mice that received 

Listeriaat-Mage-b and curcumin was significantly lower compared to all other control groups 

(Supplementary Information Fig S1). 
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 The combination therapy with curcumin before and Listeriaat-Mage-b after tumor 

development was slightly but significantly more effective against the metastases than 

curcumin and Listeriaat-Mage-b both after tumor development (Figs 2AB and 3AB), i.e. the 

number of metastases in the combination therapy with curcumin before tumor development 

was 4±1, and after tumor development 31±12 (Mann-Whitney p=0.0017).  

 

The effects of Listeriaat-Mage-b and curcumin on MDSC in vivo 

Since MDSC strongly contributes to immune suppression in the TME, we analyzed the effect 

of the combination therapy on MDSC in blood and primary tumors of mice immunized 

according to immunization protocol B. In total blood, the percentage of MDSC was extremely 

high (#80%)(Fig 3A). This percentage was strongly reduced to #20% by the combination of 

Listeriaat-Mage-b and curcumin compared to the saline group, but was also significantly lower 

compared to all other control groups (Fig 3A). More detailed analysis showed that 

granulocytic (g)MDSC was predominantly responsible for the strong decrease in percentage 

of MDSC (Fig 3BC). In the primary tumors, the percentage of MDSC (in CD45+ population) 

was much lower than in blood (#12%), and the effect of Listeriaat-Mage-b and curcumin on 

MDSC was much less robust than in blood. The combination therapy slightly but significantly 

reduced the percentage of MDSC and gMDSC (but not of monocytic (m)MDSC) compared to 

the saline or curcumin groups only (Fig 3DEF).  

 

Curcumin reduced the production of IL-6 in primary tumors and in MDSC 

Here, we analyzed the effect of curcumin on the production of IL-6 in total tumor cell lysates, 

in MDSC of primary tumors and blood, and in serum of the 4T1 model. In the tumor cell 

lysates (Fig 4A) and in mMDSC and gMDSC of the primary tumors (Fig 4BC) we found that 

curcumin significantly reduced IL-6 levels compared to the control groups. In blood, IL-6 was 

significantly reduced by curcumin in mMDSC compared to the Listeriaat-Mage-b group (Fig 
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4E), but IL-6 was not produced by gMDSC. In serum, IL-6 was undetectable and therefore not 

shown 

 Also Listeriaat-Mage-b reduced IL-6 levels in the primary tumors (tumor cell lysates) (Fig 

4A), but not in MDSC in blood and primary tumors (Fig 4B-C). Moreover, Listeriaat-Mage-b 

significantly increased the production of IL-6 in sub populations of the MDSC (with an 

exception of gMDSC in tumors), probably to protect them selves from immune clearance, but 

as mentioned above curcumin strongly reduced the IL-6 production in both types of MDSC in 

blood (Fig 4DE).  

 

Curcumin administered before and Listeriaat-Mage-b after tumor development improved 

the IL-12 production by MDSC and T cell responses to Mage-b 

Here we analyzed the IL-12 production in subpopulations of gMDSC and mMDSC in blood of 

mice that received the combination of curcumin before and Listeriaat-Mage-b after tumor 

development. A significant increase was found in the percentage of IL-12-producing gMDSC 

and mMDSC in the combination group compared to all other groups (Fig 5AB), but not in the 

primary tumor (data not shown). These results raised the question whether the lower number 

of MDSC (Fig 3), the decreased IL-6 levels (Fig 4) and increased IL-12 production (Fig 5AB) 

induced by Listeriaat-Mage-b and curcumin, could improve T cell responses in vivo. For this 

purpose, we analyzed the production of IFN" by CD4 and CD8 T cells in blood and primary 

tumors in vaccinated and control mice by flow cytometry. IFN" is a marker for T cell activation. 

The cells were analyzed in all groups without re-stimulation in order to determine whether the 

T cells were activated in vivo by the combination therapy compared to the control groups. It 

appeared that the combination of Listeriaat-Mage-b and curcumin significantly improved the 

percentage of CD4 and CD8 T cells producing intracellular IFN" compared to all control 

groups in blood (Fig 5CD), but not in tumors (data not shown). We also analyzed T cells 

responses in the spleen upon re-stimulation with Mage-b in vitro. As shown in Fig 5E, 
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Listeriaat-Mage-b and curcumin strongly improved the number of CD8 T cells to Mage-b, 

secreting extracellular IFN".  

 

Curcumin inhibited proliferation of tumor cells and killed tumor cells through apoptosis 

Several reports describe that curcumin inhibits proliferation and kills tumor cells through 

apoptosis, including breast tumor cells33-35. We found that curcumin inhibited the growth of 

4T1 tumor cells in vitro (Fig 6A), and mitosis of the tumor cells in vivo (Fig 6B). In addition, we 

found that curcumin killed tumor cells through apoptosis in vitro as shown by Annexin-V (early 

apoptosis) (Fig 6C), and in the primary tumors in vivo as shown by the TUNEL assay (late 

apoptosis) (Fig 6D). A representative example of apoptotic cells by the TUNEL assay is 

shown by light microscopy in Fig 6E.  

 

Listeriaat-Mage-b is non-pathogenic and curcumin is non-toxic 

In a previous study we have shown that Listeriaat-Mage-b is non-pathogenic20, while curcumin, 

consumed through food all over the world, is non-toxic31. However, the combination of 

Listeriaat-Mage-b and curcumin has never been tested. Here, we demonstrate by pathological 

examination of various normal tissues (as kidney, heart, lungs, liver, and spleen) in tumor-

bearing mice that the combination of Listeriaat-Mage-b and curcumin is non-pathogenic and 

non-toxic, but primarily activated the innate immune system. Most obvious was the increased 

extramedullary myeloid hematopoiesis in the spleen and liver of mice that received Listeriaat-

Mage-b and curcumin compared to the saline group. An example of extramedullary myeloid 

hematopoiesis in the liver is shown in the Supplementary Information Fig S2. An overview 

of pathological analysis of normal tissues of tumor-bearing mice that received Listeriaat-Mage-

b and curcumin is shown in Table S1 of the Supplementary Information.  
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Discussion 

Patients with TNBC have the poorest prognosis. One of the main problems of current 

therapies against TNBC is their inability to target metastases and their high toxicity. They do 

not respond to therapies that target ER, PR, and HER2/neu because their tumors lack the 

expression of these receptors/molecules, and other types of therapies such as tyrosine kinase 

inhibitor Sunitinib, targeting vascular endothelial growth factor (VEGF), or therapies targeting 

c-kit or Flt2, or Bevacizumab, a human antibody to VGEF36-40, are under investigation but with 

moderate success. In the study presented here, we developed two non-toxic vaccination 

strategies in a preclinical TNBC mouse model 4T1. We demonstrated that three therapeutic 

vaccinations with a highly attenuated non-pathogenic Listeriaat-based vaccine, expressing 

TAA Mage-b, and non-toxic curcumin significantly reduced the number of metastases 

compared to Listeriaat-Mage-b or curcumin alone. However, curcumin alone had no significant 

effect on the primary tumors and metastases. Others described that curcumin killed tumor 

cells41-45. These studies were all performed in vitro, while we analyzed the effect of curcumin 

on the primary tumor and metastases in vivo, which may be an explanation for the different 

results. Different types of tumor cells, concentrations and time points of curcumin 

administration may lead to different results as well46. 

 We also tested three administrations of curcumin before tumor development followed by 

three immunizations with Listeriaat-Mage-b after tumor development. This immunization 

protocol was slightly but significantly more effective against the metastases compared to 

Listeriaat-Mage-b and curcumin both after tumor development. Most interestingly, curcumin 

alone significantly reduced the number of metastases and tumor growth, in contrast to 

administering curcumin after tumor development. These results suggest that consuming 

curcumin before cancer develops may provide an advantage over consuming curcumin after 

cancer develops in the battle against metastatic breast cancer. 
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 Curcumin is known for reducing the production of IL-647,48. Here we demonstrate that 

curcumin significantly reduced the production of IL-6 in vivo in the primary tumors (tumor cell 

lysates), and in MDSC of blood and primary tumors. Also Listeriaat-Mage-b reduced the 

production of IL-6 significantly, but this reduction was stronger by the combination of Listeriaat-

Mage-b and curcumin. 

 MDSC are important regulators of the immune system in the TME5,6, and therefore 

became one of our most important targets in this study. As mentioned above, curcumin 

reduced the production of IL-6 significantly in MDSC in blood and primary tumors. To our 

surprise, the combination of Listeriaat-Mage-b and curcumin significantly increased the 

production of IL-12 in gMDSC and mMDSC in blood (but not in tumors). It has been reported 

that IL-12 activates naïve and mature CD4 and CD8 T cells49,50, which may have happened in 

this study as well. An interesting observation was that the combination of Listeriaat-Mage-b 

and curcumin significantly reduced the number of MDSC (predominantly gMDSC) in blood of 

the TNBC model 4T1. It is possible that MDCS infected with Listeriaat-Mage-b became a target 

for Listeriaat- and Mage-b-specific T cell and perhaps NK cell responses because the 

combination therapy improved these immune responses to Listeriaat and Mage-b by reducing 

IL-6, and increasing IL-12 production. Since Listeriaat51 and curcumin kill 4T1 tumor cells 

directly (this study), it is also possible that the combination therapy prevented the tumor cells 

from growing in the early phase of treatment, and consequently prevented migration of the 

MDSC to the TME. We found that curcumin alone decreased the percentage of MDSC in 

blood (although this effect was much stronger when Listeriaat-Mage-b was combined with 

curcumin). Reduction in the percentage of MDSC by curcumin was also found by others in a 

xenograft model of colon cancer52. They concluded that reduction in IL-6 production by 

curcumin reduced the mobilization of MDSC to the primary tumors. Others found that 

activated T cells might express Fas ligand and induce apoptosis of Fas+ MDSC53. In 
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conclusion, various pathways may lead to the reduction in MDSC and more analysis is 

required. 

  The decrease in IL-6 and increase in IL-12 production, the improved CD4 and CD8 T 

cell responses in blood and spleen, and the dramatic reduction in the number of metastases 

by the combination therapy strongly suggest that T cell responses contributed to the effect on 

the metastases. However, this strong reduction by the combination therapy is not only an 

effect of Mage-b-specific immune responses. As shown previously, Listeriaat exhibits several 

pathways to kill tumor cells, i.e. Listeriaat infects tumor cells in vivo and in vitro, and kills tumor 

cells directly through high levels of reactive oxygen species (ROS)51. Moreover, we have 

shown that Listeriaat-activated CD8 T cells eliminated Listeriaat-infected tumor cells in vivo51. In 

addition, we have shown that curcumin kills 4T1 tumor cells through apoptosis (this study). 

Therefore, it is most likely that the synergistic effects of the multiple pathways of Listeriaat-

Mage-b and curcumin as described above, are responsible for the overall strong therapeutic 

effect on the metastases in this TNBC model 4T1.  

 The therapeutic effect of the combination therapy was strong but less pronounced on the 

primary tumors compared to the metastases. It is possible that the production of IL-6 was not 

sufficiently reduced in the primary tumors (IL-6 was reduced in the tumor cell lysates by #65% 

by Listeriaat-Mage-b and curcumin treatment), and another inhibitory cytokine such as TGF$, 

which is highly produced by 4T1 tumor cells54, may play a role as well. However, most primary 

tumors can be removed by surgery, radiation or chemotherapy, while metastases are 

unresectable, and usually chemoresistant despite aggressive and toxic follow-up55.  

 The highly attenuated Listeriaat of this study is non-pathogenic, and naturally cleared by 

the immune system within 3-5 days51, which is different from wild type Listeriaat that multiplies 

in hepatocytes in the liver or epithelial cells of the gastrointestinal tract56,57. Moreover, the side 

effects of the combination therapy of Listeriaat-Mage-b and curcumin in the 4T1 model were 

minimal, i.e. primarily induction of inflammatory responses in the liver and spleen and no 
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significant findings were observed in other normal tissues such as heart, lungs and kidneys. 

Therefore, Listeriaat-Mage-b and curcumin may be of value as a non-toxic adjuvant therapy, to 

prevent the development of metastases in TNBC patients that produce IL-6 and express 

MAGE. This study may be a platform for improvement of other cancer vaccines by curcumin 

and against other IL-6-producing cancers. 
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Legends 

Figure 1: Significant reduction in the number of metastases by therapeutic 

immunizations with Listeriaat-Mage-b and curcumin in 4T1 tumor-bearing mice. BALB/c 

mice were immunized with Listeriaat-Mage-b and treated with curcumin after tumor 

development (Immunization protocol A), and analyzed for the frequency of metastases (A) 

and tumor weight (B). This experiment was performed two times with 5 mice per group. 

Average of two experiments. Mann-Whitney p<0.05 is significant. * p<0.05, **<0.01, 

***<0.001, ****<0.0001. ns=not significant. All groups were compared to LM-Mb+Curc. In 

addition, curcumin alone was compared to the saline group.  

 

Figure 2: Significant reduction in the number of metastases by preventive 

administration of curcumin followed by therapeutic immunization with Listeriaat-Mage-b 
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in 4T1 tumor-bearing mice. BALB/c mice were treated with curcumin before tumor 

development and immunized with Listeriaat-Mage-b after tumor development (Immunization 

protocol B), and analyzed for the frequency of metastases (A), tumor weight (B). This 

experiment was performed three times with 5 mice per group. Average of three experiments. 

Mann-Whitney p<0.05 is significant. * p<0.05, **<0.01, ***<0.001, ****<0.0001. ns=not 

significant. All groups were compared to LM-Mb+Curc. In addition, curcumin alone was 

compared to the saline group.  

 

Figure 3: The effect of Listeriaat-Mage-b and curcumin on MDSC in 4T1 tumor-bearing 

mice. BALB/c mice were treated with curcumin before tumor development and immunized 

with Listeriaat-Mage-b after tumor development (Immunization protocol B), and analyzed for 

MDSC (CD11b+Gr1+)(A), gMDSC (CD11b+Gr1high)(B), and mMDSC (CD11b+Gr1low) (C) in 

blood and for MDSC (D), gMDSC (E), and mMDSC (F) in primary tumors using flow 

cytometry. All groups were compared to Lm-Mb+Curc. Flow cytometry profiles of MDSC of 

each group (saline, Listeriaat, Listeriaat-Mage-b, Listeriaat-Mage-b and curcumin, curcumin) are 

presented in the Supplementary Information Fig S3. This experiment was performed three 

times with 5 mice per group. Average of 3 experiments. Mann-Whitney p<0.05 is significant. 

*p<0.05, **<0.01, ***<0.001, ****<0.0001. ns=not significant.  

 

Figure 4: Effects of Listeriaat-Mage-b and curcumin on IL-6 in 4T1 tumor-bearing mice. 

Curcumin treatment before tumor development followed by immunizations with Listeriaat-

Mage-b after tumor development (Immunization protocol B), significantly reduced IL-6 levels in 

primary tumors as shown here by ELISA (A), and the intracellular production of IL-6 by 

gMDSC and mMDSC in primary tumors (BC) and by mMDSC in blood (DE) as shown here by 

flow cytometry. In A, the curcumin-containing groups were compare to the saline group, while 

in BC and ED, the curcumin-containing groups were compared to Lm-Mb. These experiments 
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were repeated three times with 5 mice per group, and the results were averaged. Mann-

Withney p<0.05 is significant. Mann-Whitney p<0.05 is significant  *p<0.05, **<0.01, 

***<0.001, ****<0.0001. ns=not significant.  

 

Figure 5: The combination of Listeriaat-Mage-b and curcumin increased IL-12 

production by MDSC and improved T cell responses in 4T1 tumor-bearing mice. 

Curcumin treatment before tumor development followed by immunizations with Listeriaat-

Mage-b after tumor development (Immunization protocol B) significantly increased the 

percentage of gMDSC (A) and mMDSC (B) producing intracellular IL-12 in blood of 4T1 

tumor-bearing mice. This correlated with a significant increase in the percentage of CD4 (C) 

and CD8 T (D) cells producing intracellular IFN" (activation marker for T cells) in blood of 4T1-

tumor-bearing mice as shown here by flow cytometry. CD8 T cell responses (extracellular 

production of IFN") were also analyzed in the spleen in vitro upon re-stimulation with Mage-b 

by ELISPOT, and a significant higher number of CD8 T cells was found in the spleen that 

received Listeriaat-Mage-b and curcumin compared to all other groups (E). These experiments 

were repeated three times with 5 mice per group, and the results were averaged. Mann-

Whitney p<0.05 is significant. * p<0.05, **<0.01, ***<0.001, ****<0.0001.  

 

Figure 6: Curcumin inhibited proliferation and killed 4T1 tumor cells through apoptosis. 

4T1 tumor cells were cultured with different doses of curcumin for 72 h, and cell viability was 

analyzed by MTT (A). We also analyzed the Mitotic Index in tumors of mice that received 

curcumin or saline (B). 4T1 tumor cells were cultured with 100 µM of curcumin in vitro for 24h, 

and subsequently incubated with anti-Annexin-V antibodies for the detection of early 

apoptosis (C). Primary tumors of mice that received curcumin or saline (according 

Immunization protocol B) were analyzed for the detection of late apoptosis in vivo by the 

TUNEL assay (D). Apoptotic cells in the primary tumor by the TUNEL assay and light 
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microscopy are shown in (E). Representative of two experiments in A, C, D. Average of two 

experiments in B and D. n= 5 mice per group. Unpaired t test p<0.05 is significant. 

Magnification light microscopy in C and E is 400x. In A, curcumin was dissolved in DMSO and 

then diluted to the final concentrations of 1-50 uM. The 0 µM represents DMSO without 

curcumin. 
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Legends  

Figure S1: Significant reduction in the tumor size by preventive administration of 

curcumin followed by therapeutic immunization with Listeriaat-Mage-b in 4T1 

tumor-bearing mice. BALB/c mice were treated with curcumin before tumor 

development and immunized with Listeriaat-Mage-b after tumor development 

(Immunization protocol B), and analyzed for tumor weight during the treatments. This 

experiment was performed two times with 5 mice per group, and the results were 

averaged.  

 

Figure S2: The combination therapy of Listeriaat-Mage-b and Curcumin is non-

pathogenic and non-toxic. BALB/c mice were treated with Curcumin before tumor 

development and immunized with Listeriaat-Mage-b after tumor development 

(Immunization protocol B). Two days after the last immunization, mice were euthanized 

and liver sections were stained by H&E, followed by pathological examination. 

Extramedullary hematopoiesis (black arrow) was mild and multifocal in the liver (possibly 

tumor related) of both groups, i.e. Saline (negative control) and Listeriaat-Mage-b and 

Curcumin. There were also scattered infiltrates of immune cells (incidental background 

finding) found in the liver of both groups of mice. The boxed areas in the top 

(magnification 200x) are shown in a larger magnification at the bottom (Light microscopy 

Magnification: 600x). Representative of two experiments. 

 

Figure S3: The effect of Listeriaat-Mage-b and Curcumin on MDSC in 4T1 tumor-

bearing mice (Flow cytometry profile). BALB/c mice were treated with Curcumin 

before tumor development and immunized with Listeriaat-Mage-b after tumor 

development (Immunization protocol B), and analyzed for MDSC (CD11b+Gr1+)(A), 
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gMDSC (CD11b+Gr1high)(B), and mMDSC (CD11b+Gr1low) (C) in blood and for MDSC 

(D), gMDSC (E), and mMDSC (F) in primary tumors using flow cytometry. 
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Table S1: Histological examination of tissues after therapeutic treatment with  
Listeria-Mage-b and curcumin 
 
      Mouse number                 Mouse number 
 
Organ  S1 S2 S3 S4 S5  MC1 MC2 MC3 MC4 MC5 
 
Kidney  nsf nsf nsf nsf nsf  nsf nsf nsf nsf nsf 
 
Heart  nsf nsf nsf nsf nsf  nsf nsf nsf nsf nsf 
 
Lung  icn3 icn1 icn2 icn3 icn1  icn3 icn3 icn1 icn3 icn3 
 
Liver  cn0 cn0 cn0 cn0 cn0  cn1 cn0 cn0 cn0 cn0 
 
Liver  emh3 emh0 emh2 emh3 emh1  emh4 emh4 emh1 emh2 emh3 
 
Liver  ipp1 ipp0 ipp1 ipp1 ipp0  ipp2 ipp2 ipp0 ipp1 ipp2 
 
Liver  gmi1 gmi0 gmi1 gmi1 gmi1  gmi2 gmi3 gmi0 gmi1 gmi0 
 
Spleen  imh2 imh1 imh2 imh3 imh1  imh3-4 imh3-4 imh0 imh4 imh3-4 
 
Nsf=no-significant finding, icn=increased circulating neutrophils, cn=coagulation necrosis,  
emh=extramedullary hematopoiesis, ipp=infiltrate, portal, mixed polymorphonuclear cells,  
gmi=granulomas, mixed inflammation, imh=increased myeloid extramedullary hematopoiesis 
The numbers after the abbreviations represents the grade. 0=no finding, 1=minimal finding, 2= mild  
finding, 3=moderate finding, 4=marked finding, 5=severe finding. S=saline, MC=Listeria

at
-Mage-b and  

curcumin. 
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Abstract 
  
Introduction: Immune suppression in the tumor microenvironment (TME) remains a 

major limitation to successful immunotherapy of cancer, and a major focus of cancer 

research is the discovery of new adjuvants and vaccine regimens that overcome this 

suppression.  In the current study, we developed a combination immunotherapy using an 

attenuated Listeria monocytogenes-based vaccine expressing the tumor-associated 

antigen (TAA) melanoma-associated antigen (Mage)-b (LM-Mb) and the natural killer T 

(NKT) cell-activating glycolipid !-galactosylceramide (!GC).  This glycolipid has been 

previously identified as a potent immunological adjuvant because its ability to stimulate 

CD1d-restricted NKT cells, which drives a cascade of immune reactions that include 

potent stimulation of natural killer (NK) cell effector functions and cross-priming of 

antigen specific CD8+ T cells.  

Methods: Mice with metastatic breast cancer (4T1 model) were therapeutically treated 

with LM-Mb and !GC (3 immunizations) as separate agents or as a complex of !GC 

stably incorporated into Lm-Mb (5 immunizations).  Two days after the last treatment, the 

mice were analyzed for the number of metastases, tumor weight, toxicity, and immune 

responses. 

Results: We found that sequential treatments of mice with established 4T1 breast 

carcinomas using LM-Mb followed by !GC was highly effective at reducing metastases, 

but was accompanied by severe liver toxicity. In contrast, the simultaneous 

administration of these two agents, using a method to stably incorporate !GC into the 

live LM-Mb organisms, resulted in a therapeutic vaccine that reduced the metastases by 

more than 99% without evidence of toxicity.  The anti-metastatic response in mice 

immunized with LM-Mb incorporated with !GC was associated with a significant 

increase in IL-12 production, increased NK cell activity and an increase in T cell 
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responses to Mage-b.  This combination therapy did not result in depletion or anergy of 

NKT cells, which has been repeatedly identified as a problem resulting from treatment of 

mice with !GC alone.   

Conclusions: These results define a highly promising new approach for combining two 

immunotherapeutic agents in one complex of Lm-Mb and !GC to create an efficacious 

and non-toxic vaccine regimen for prevention of metastatic breast cancer. 

 

 

Introduction 

Breast cancer is the most common cancer among women world-wide [1], and 30% of 

women diagnosed with breast cancer will progress to metastatic disease which is difficult 

or impossible to treat effectively [2].  Current treatment options for metastatic cancer 

include surgery followed by chemotherapy or radiation, or other adjuvant therapy [3]. 

Despite aggressive treatment, for most patients the elimination of metastases or residual 

tumor cells after initial treatment is incomplete, and removal of residual disease by 

chemotherapy is prevented by chemoresistance [4].  Thus, metastases and not the 

primary tumor is the most important contributor to breast cancer morbidity and mortality. 

It has been shown in mice and humans that vaccines can have a favorable effect 

on metastases [5],[6],[7],[8],[9],[10],[11], but that vaccine efficacy is strongly reduced by 

immune suppression in the tumor microenvironment (TME) [12].  In a previous study, we 

developed a vaccine based on a non-pathogenic strain of Listeria monocytogenes (LM) 

for the delivery of the tumor-associated antigen (TAA) Mage-b (LM-Mb) in vivo, (11).  LM 

is an intracellular bacterium which has the capacity to deliver antigens through infection 

into antigen-presenting cells (APC) such as dendritic cells (DC), monocytes and 

macrophages with high efficiency [13].  We have also demonstrated that LM infects 

tumor cells, which can lead to cytolytic effects through a mechanism involving induction 
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of high levels of reactive oxygen species (ROS), and sensitizes the infected tumor cells 

for recognition by LM-specific CD8+ T cells [14].  When administered prior to tumor 

establishment in an aggressive mouse model of metastatic breast cancer (4T1), LM-Mb 

treatment resulted in strong CD8+ T cell responses to both Mage-b and LM and an 

almost complete elimination of metastatic disease [11].  However, when administered in 

a therapeutic immunization regimen (i.e., after establishment of primary 4T1 tumors), 

LM-Mb treatment was only moderately effective against metastatic breast cancer, and 

induced relatively weak CD8+ T cell responses to Mage-b [14].  This failure to stimulate 

adequate CD8+ T cell responses in tumor-bearing hosts is indicative of the chronic 

immunosuppression associated with the TME, and represents a major problem in cancer 

vaccination. 

To overcome the immune suppression that is characteristic of tumor-bearing 

hosts, there is an urgent need for development of immunologic adjuvants that can 

promote robust immune responses in this setting and augment the effects of therapeutic 

vaccines.  Glycolipids of the !-galactosylceramide family (!GC) represent one 

potentially useful class of adjuvants that have shown promise in preclinical studies for 

immunotherapy of cancers [15].  These glycolipids mediate their effects on the immune 

system by binding to an MHC class I-like molecule called CD1d, creating a complex that 

is recognized by a population of conserved effector lymphocytes known as natural killer 

T cells (NKT cells) [16],[17].  Several subsets of NKT cells have been defined, with the 

most abundant being the so-called type 1 or invariant NKT cell (iNKT) subset which is 

highly responsive to !GC and highly conserved between primates and mice [18],[19].  It 

has been shown that formation of intracellular complexes of CD1d with !GC in antigen 

presenting cells initiates rapid NKT cell activation [20], resulting in the production of Th1-

associated cytokines such as IFN" and IL-12p70, maturation of the CD8!+ DCs in the 
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lymph nodes and subsequent activation of NK and conventional T cells [17].  This 

cascade of immune reactions that is initiated by NKT cells in response to !GC has been 

shown in mouse models to generate innate and adaptive immunity against a wide range 

of cancers and infections [21],[22],[23],[20],[24].  Based on these observations we 

hypothesized that addition of !GC to the LM-Mb vaccine could improve the vaccine 

efficacy, in part through enhancement of specific T cell responses to Mage-b.  

 Here, we developed a therapeutic immunization protocol for the combination of 

LM-Mb and !GC, and developed a safe and effective method for delivering this 

immunotherapy to tumor bearing mice.  When these two agents were used as 

combination therapy in the 4T1 model, !GC significantly improved the therapeutic 

vaccine efficacy of LM-Mb as demonstrated by the almost complete elimination of the 

metastases. However, the administration of these two agents sequentially, using a 

series of LM-Mb injections followed by a series of systemic !GC injections, caused 

severe and in some cases fatal toxicity to the liver. Therefore, we explored other novel 

strategies to improve the vaccine efficacy of Lm-Mb but at lower dose of !GC. Drawing 

on previous experience using direct incorporation of relatively low doses of !GC into live 

Mycobacterium bovis BCG to improve vaccine efficacy [25], we developed a similar 

approach for direct incorporation of the glycolipid into live LM organisms.  Therapeutic 

immunizations with !GC directly incorporated into live LM-Mb was equally effective 

against the metastatic breast cancer compared to sequential administration of LM-Mb 

and !GC as separate agents, but without any apparent toxicity.  The powerful anti-

metastatic effect of vaccination with LM-Mb modified by direct incorporation of !GC 

correlated with increased IL-12 production and improved Mage-b-specific CD8+ T cell 

and NK responses. This novel approach using incorporation of !GC into live LM may 
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provide a basis for new strategies to improve vaccine efficacy against metastatic cancer 

through augmentation of multiple innate and adaptive immune mechanisms. 

 

Materials and Methods 

Mice 

Normal 3 month old female BALB/c mice were obtained from Charles River Laboratories 

and maintained in the animal husbandry facility at Albert Einstein College of Medicine 

according to the Association and Accreditation of Laboratory Animal Care (AALAC) 

guidelines. All mice were kept under biosafety level 2 conditions as required for LM 

vaccinations. 

 

Cells and cell culture 

The TNBC 4T1 cell line, derived from a spontaneous mammary carcinoma in a BALB/c 

mouse [26], was cultured in Dulbecco's Modified Eagle's Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS), 1 mM mixed nonessential amino 

acids, 2 mM L-glutamine, insulin (0.5 USP units/ml), penicillin (100 units/ml) and 

streptomycin (100 µg/ml). 

 

LM based vaccine 

The Lm-Mb was developed in an earlier study [11]. This was constructed in the prfA 

negative XFL-7 strain, which lacks the positive regulatory factor A that is a central 

mediator of virulence [27]. The vaccine strain was transformed with LM plasmid pGG-34, 

which encodes prfA and amino acids 311-660 of murine Mage-b fused to a non-cytolytic 

form of Listeriolysin O (LLO) [28]. Complementation of prfA expression by the plasmid 

does not fully restore virulence, but enforces retention of the plasmid during infection 

[27] [28]. 
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Incorporation of !-galactosylceramide into live LM-Mb  

The !GC used in this study was [(2S, 3S, 4R)-1-O-(!-D-galactopyranosyl)-N-

hexacosanoyl-2-amino-1,3,4-octadecanetriol], also known in previous studies as 

KRN7000 or !GalCer-C26:0.  This was synthesized as previously described [29], and 

was stored as solvent-free aliquots in glass vials at -20°C.  The glycolipid was 

reconstituted either in 100% DMSO at 100!M for in vitro studies, or in aqueous vehicle 

consisting of PBS with 0.05% Tween 20 and 0.1% DMSO at 500 !M for in vivo studies.  

The incorporation of !GC into live LM was done using a method similar to that described 

previously for Mycobacterium bovis BCG [25]. Briefly, !GC was solubilized at a 

concentration of 2.3 µM in glass vials by addition of warm (37°C) BHI medium containing 

5% tyloxapol, followed by sonication for 5 min, heating at 80°C for 2 min, and vortexing 

for 1 min.  450 µl of the 2.3 µM solubilized glycolipid was immediately diluted into 50 ml 

of warm BHI to give the required final concentrations of 20 nM glycolipid and 0.05% 

tyloxapol. 500 µl of a LM-Mb mid-log phase culture (OD600 0.5– 0.8) was inoculated into 

this, and grown to mid-log phase (OD600 0.5–1.0), which generally required 4–6 hours. 

The bacterial culture was aliquoted in 1 ml vials and frozen at -80°C.  For subsequent 

use, the bacteria were thawed, harvested by centrifugation, washed three times with 

saline and resuspended in saline for injection. In order to determine the incorporation of 

!GC into LM, we determined the activation of iNKT cell hybridomas by LM or !GC-

incorporated LM infected BMDCs in vitro as described below. As shown in Figure S1, 

BMDCs infected with !GC-incorporated LM elicit a strong iNKT cell response, confirming 

the efficiency of the !GC incorporation. 
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Immunization and tumor challenge 

Mice were challenged with 4T1 tumor cells as described previously [11], and then 

treated using therapeutic vaccination regimens to compare the effects of combined LM-

Mb and !GC treatment either as separate agents or as glycolipid-modified bacteria. 

Briefly, two different immunization protocols were tested. The first immunization protocol 

consisted of three therapeutic immunizations with LM-Mb and !GC.  Mice received 1 x 

104 4T1 tumor cells in the mammary fat pad on day 0, 1 x 104 CFU of LM-Mb or LM or 

saline i.p. on days 3, 6, and 9, and !GC i.p. at the indicated dosage on days 14,15 and 

16.  The second immunization protocol consisted of five therapeutic immunizations with 

LM-Mb modified by direct incorporation of !GC (I-!GC-LM-Mb).  Mice received 1 x 104 

4T1 tumor cells in the mammary fat pad on day 0, and, five therapeutic immunizations 

with 1 x 104 CFU I-!GC-LM-Mb injected i.p. on days 3, 6, 9, 12 and 15.  In studies 

carried out for analysis of the extent of metastatic disease, all mice were euthanized on 

day 18, which was prior to death in saline treated animals, and analyzed for metastases 

and tumor growth. Primary tumors extended to the chest cavity lining, and predominantly 

metastasized to the mesenteric lymph nodes (MLN) (81%), and less frequently to the 

diaphragm (7%) and portal liver (4%), as well as to the surface of spleen (4%) and 

kidneys (4%). Metastases were visible to the naked eye as nodules. The total number of 

metastases per mouse (MLN, diaphragm, liver, kidney and spleen) was determined as 

previously described [11].  For studies carried out to determine effects on survival, mice 

were maintained until they succumbed spontaneously, or were terminated upon 

appearance of severe pre-morbid symptoms requiring euthanasia as specified by our 

approved animal use protocol.  
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Activation of iNKT cells in vivo 

BALB/c mice were immunized i.p with the inert vehicle (PBS plus 0.05% tyloxapol), 1 x 

104 CFU LM, 1 x 104 CFU I-!GC-LM, or 4 nmoles of free !GC (dissolved in PBS plus 

0.01% Tween 20 plus 0.1% DMSO). Sera were assayed at the indicated times for IL-4, 

IL-12p70, and IFN-" by capture ELISA as previously described [30]. Alternatively, 

BALB/c mice receiving 4T1 tumor cells and therapeutic immunizations with LM-Mb or I-

!GC-LM-Mb (see above), were immunized i.p with 4 nmoles of free !GC 15 days after 

the injection of tumor cells. After the indicated times, splenocyte single cell suspensions 

were obtained and stained with anti mouse TCR-FITC (clone H57-597, BD Biosciences) 

and !GC-loaded mouse CD1d tetramers-APC, prepared as previously described[30] 

Samples were acquired using a LSR II Flow Cytometer (BD Biosciences) and analyzed 

using FlowJo software.   

 

Flow cytometry analyses 

Cells were isolated from spleen and blood as described previously[31] [32]. Briefly, red 

blood cells were lysed according standard protocols, and the remaining leukocyte 

population was used for analysis. Cells were first incubated with an Fc blocker (anti-

CD16), and subsequently with specific fluorochrome-conjugated antibodies for the 

identification of different cell types. Anti-CD49b-PerCP5.5 and anti-CD8-PE antibodies 

were used to identify NK cells and CD8 T cells, respectively, and anti-Gr1-PerCP5.5, 

CD11b-Alexa 488 antibodies were used to identify MDSC. Anti-CD45-APC antibody was 

used to identify the leucocyte population in tumor cell suspensions. To detect the 

production of intracellular cytokines, the cytofix/cytoperm kit from Pharmingen was used 

according to the manufacturer’s instructions, and antibodies to IL-12p70 and IFN", were 

used. Appropriate isotype controls were used for each sample. Depending on the 

sample size, data from between 1 x 104 and 2 x 105 cells were acquired using a FACS 
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Calibur flow cytometer (BD Biosciences), and analyzed using Flowjo software as 

described previously [32]. Cell debris and dead cells were excluded from the analyses 

based on forward and side scatter signals and use of Fixable Blue or Green Live/Dead 

Cell Stain Kit (Invitrogen). All antibodies were purchase from BD Biosciences. 

 

ELISPOT 

Spleen cells were isolated from vaccinated and control mice with 4T1 tumors and 

analyzed for T cell responses by ELISPOT as described previously [11]. To detect LM-

induced immune responses, 2 x 105 spleen cells were infected with 2 x 105 CFU of LM 

for 1 hour, and subsequently treated with gentamicin (50 µg/ml) until the end of re-

stimulation (72 hrs). To detect TAA-specific immune responses, 4 x 105 spleen cells of 

vaccinated or control mice were transfected with pcDNA3.1-Mage-b and pCMV-GM-CSF 

using Lipofectamine 2000, as described previously [11]. 72 hrs later, the frequency of 

IFN"-producing cells was determined by ELISPOT according to standard protocols (BD 

Biosciences, San Diego, CA), using an ELISPOT reader (CTL Immunospot S4 analyzer, 

Cellular Technology Ltd, Cleveland, OH). To determine the CD8+ T cell component of 

the responses, spleen cells were depleted of CD8+ T cells using magnetic bead 

depletion techniques according to the manufacturer’s instructions (Miltenyi).  

 

Assessment of toxicity 

Several parameters were used to analyze the toxicity of therapy. Survival was followed 

for up to 18 days, and survival curves plotted for the various treatment groups.  Liver 

toxicity was assessed by visual inspection following sacrifice, and a numerical grade was 

assigned corresponding to the size and number of visible necrotic plaques. The toxicity 

was graded as follows: 0 = no lesions (normal appearance), 1 = uniform light 

discoloration and firmness, 2 = white plaques visible covering ~5% of the liver surface, 3 
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= white plaques covering ~10% of liver surface, 4 = white plaques covering ~20% of liver 

surface, 5 = white plaques covering ~30% of liver surface.  Hematoxylin and Eosin 

(H&E) staining of thin sections of livers was also done to confirm the presence and 

extent of hepatic inflammation and necrosis.  Briefly, liver tissues were fixed in 10% 

formaldehyde for 48 hrs, and then kept in 70% ethanol until use.  Sections of 1 mm thick 

were stained with H&E, and analyzed for pathological damage by light microscopy.  All 

pathological analyses were performed by a trained veterinary pathologist in the Histology 

and Comparative Pathology Core Facility, Albert Einstein College of Medicine.  

 

Statistical analysis 

To statistically analyze the effects of Listeriaat and !GC on the growth of metastases and 

tumors and immune responses in the 4T1 model, the Mann-Whitney test and for the 

survival studies the Mantel-Cox test were used. Values p<0.05 were considered 

statistically significant. *p<0.05, **<0.01, ***<0.001, ****<0.0001 is significant. 

 

 

Results  

Efficacy of combination therapy with LM-Mb and !GC in metastatic breast cancer 

The therapeutic effect of combining the Lm-Mb vaccine with #GC treatment on 

metastatic breast cancer was assessed in the 4T1 transplantable mouse tumor model. 

This combination was tested with !GC administered as a free glycolipid, and also using 

a protocol to physically incorporate the glycolipid into the live bacterial vaccine.  This 

latter approach has been shown by us in previous work on the mycobacterial vaccine 

strain BCG, in which !GC incorporation was successfully achieved, to elicit more robust 

CD8+ T cell responses [25]. Mice treated with unmodified LM-Mb showed marked 
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reduction in metastases when sacrificed at day 18 after initial tumor implantation (Figure 

1A), consistent with previous studies showing that this treatment induces a variety of 

tumoricidal mechanisms.  An improved anti-metastatic effect was observed with LM-Mb 

compared to LM, suggesting an effect of Mage-b specific immunity, and also with !GC 

administered as a single agent.  Strikingly, the combination of !GC with LM-Mb, either 

as a separately administered agent (LM-Mb + !GC) or by direct incorporation of the 

glycolipid into the live bacteria (I-!GC-LM-Mb), gave a significantly better anti-metastatic 

effect compared to LM-Mb alone or !GC alone.  Both of the regimens using combined 

LM-Mb and !GC treatment reduced the number of macroscopically visible metastases 

nearly to zero, with only a rare nodule being detected in these mice. Significant 

reductions in the weights of primary tumors were also observed in all treatment groups, 

although combination treatment did not show significant improvement over single agent 

treatment in this parameter (Figure 1B). 

 

Direct incorporation of !GC into LM-Mb avoids severe toxicity 

Although !GC appeared to be equally efficacious when administered as a free glycolipid 

following LM-Mb treatment or simultaneously using the direct incorporation approach, 

analysis of survival of treated mice revealed a striking difference between these two 

approaches.  Whereas all untreated 4T1 bearing mice (i.e., saline injections only) 

survived at least 18 days from the time of tumor initiation, we observed a significant 

fatality rate starting around day 11 in animals treated with the sequential administration 

of LM-Mb and !GC as separate agents.  In contrast, no deaths were observed over this 

time period in any of the other treatment groups, including those which received LM-Mb 

directly incorporated with !GC (I-!GC-LM-Mb) (Figure 2A).  Visual inspection revealed 

obvious white plaques on the surface of the livers only in animals receiving the 
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separately injected LM-Mb and !GC, suggesting focal areas of hepatic necrosis.  This 

was verified by histologic studies of thin sections of the liver, which revealed foci of 

necrosis in mice that received the two agents as separate series of injections (Figure 

2B).  Such foci were also observed with lower frequency and smaller size in mice that 

received !GC alone, but not at all in animals that were treated with I-!GC-LM-Mb or LM-

Mb alone (Figure 2C).  We then carried out a more extended survival study to compare 

time to death in 4T1 tumor bearing mice receiving therapeutic vaccination with I-!GC-

LM-Mb versus mice receiving only saline injections. As shown in Figure 2D, while mice 

that received only sham immunizations with saline all succumbed by day 20, mice that 

received I-!GC-LM-Mb all survived past day 20 and showed a significant extension 

(30%) of overall survival.  This extension of survival was consistent with the marked anti-

metastatic effect and low toxicity of the I-!GC-LM-Mb treatment.  

 

Activation of NKT cells in spleens of 4T1 tumor-bearing mice that received I-!GC-

LM-Mb 

To determine whether Listeriaat bacteria modified by direct incorporation of !GC could 

activate NKT cells in vivo, we assessed the rapid production of IFN" and IL-4, two 

cytokines that are charactistically produced by NKT cells. For this purpose we injected 

naïve mice once with LM, !GC or I-!GC-LM and obtained serum samples at various 

time points after injection to determine cytokine levels. Previous studies have shown that 

!GC administered as a free glycolipid induces the production of IFN" and IL-4 which 

peak in the serum at approximately 12 hours and 2 hours, respectively [25].  Infection 

with LM also induces the production of IFN" by NKT cells and macrophages [33]. We 

found that I-!GC-LM stimulated a serum IFN" response that was apparent at 12 hours, 

and peaked at 24 hours.  In contrast, LM infection generated a large transient serum 
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IFN" response which was first detected at 24 hours (Figure 3A).  The accelerated IFN" 

production seen with I-!GC-LM was consistent with direct NKT cell activation by the 

!GC incorporated into the bacteria.  Also supporting the conclusion that NKT cells were 

directly activated, we observed a significant IL-4 response at 2 hours after injection of I-

!GC-LM, whereas LM alone did not stimulate detectable IL-4 (Figure 3B).   To confirm 

that NKT cells were rapidly activated by treatment with I-!GC-LM-Mb in tumor-bearing 

mice in vivo, we analyzed the percentages of NKT cells in the spleens of 4T1 tumor-

bearing mice that were therapeutically immunized with I-!GC-LM-Mb using CD1d 

tetramers loaded with !GC.  The percentage of NKT cells stained with the tetramer 

reagent detected in the spleens of tumor-bearing mice that had received 5 therapeutic 

treatments with I-!GC-LM-Mb was either unchanged or slightly increased compared to 

saline or LM treated controls (Figure 4AB).  This indicated that administering !GC in 

this form did not cause systemic depletion of NKT cells, which is a potential problem that 

has been associated with treatments using systemic repeated administrations of !GC as 

a free glycolipid. Furthermore, when similarly treated mice were injected with free !GC, 

their tetramer binding NKT cells showed a transient decrease in the spleen at 12 hours, 

followed by a rebound to greater than baseline levels at 72 hours (Figure 4AB).  This 

pattern was consistent with the normal activation pattern observed for intact NKT cell 

populations in healthy naïve mice, which is characterized by TCR down modulation 

leading to loss of tetramer staining at earlier time points followed by TCR re-expression 

and expansion of the tetramer staining population due to proliferation by 72 hours. In 

fact, both LM-Mb and I-!GC-LM-Mb showed significant increases in the expansion of 

NKT cells at 72 hours, with I-!GC-LM-Mb showing the greater effect (Figure 4AB).  

  In summary, these results indicated that NKT cell activation by repeated I-

!GC-LM-Mb treatments did not lead to either depletion or anergy of NKT cells in vivo, 
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and may actually have primed NKT cells to respond more vigorously to subsequent 

stimulation. 

 

The effect of I-!GC-LM-Mb treatment on circulating MDSC 

In mice, MDSC express both the myeloid lineage differentiation antigen Gr1 (Ly6C and 

Ly6G) and the !M integrin CD11b. Two major groups of MDSC have been described: 

CD11b+Gr1high (CD11b+Ly6G+Ly6Clow) with a granulocytic phenotype (gMDSC), and 

CD11b+Gr1low (CD11b+Ly6G-Ly6Chigh) with a monocytic phenotype (mMDSC) [34, 35]. 

MDSCs are present in large numbers in blood of mice and humans with cancer [36, 37]. 

We found that the percentage of MDSC was extremely high in blood of the 4T1 model 

(#80%), while in non-tumor-bearing mice MDSC hardly detectable (#3%)(Figure S2AB).  

Since LM has been shown to infect MDSC[38], we analyzed the effect of I-#GC-

LM-Mb on the levels of these circulating MDSC.  Although our regimen of five therapeutic 

injections with #GC alone reduced the percentage of total and gMDSC in the blood of 

tumor-bearing mice by 39% compared to the saline group, all other treatment groups 

including I-#GC-LM-Mb had little effect on the levels of these cells (Figure 5A). 

MDSC strongly suppress T cell and NK cell responses in the TME [39],[40].  

Moreover, they are associated with the production of immunosuppressive cytokines such 

as IL-10 [41] and suppression of pro-inflammatory IL-12p70, [17],[42]. Therefore, we 

analyzed the production of IL-12p70 by gMSDC and mMDSC populations in the blood of 

4T1 tumor bearing mice treated with our various regimens.  All treatments showed a 

trend toward increased IL-12p70 production by both circulating myeloid cell subsets, but 

this rose to a statistically significant level only in mice treated with I-!GC-LM-Mb, and 

only in mMDSC  (Figure 5B). We also assessed IL-12p70 production by MDSC isolated 

from primary tumors of these mice, but significant levels of IL-12 were not observed (data 
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not shown). Overall, these results indicated a significant effect of I-!GC-LM-Mb treatment 

on mMDSC, and a shift to more pro-inflammatory and less suppressive function was 

observed in MDSC outside of the TME. 

 

Improved T cell and NK cell responses in mice vaccinated with I-!GC-LM-Mb 

The activation of NKT cells has been frequently shown to lead secondarily to increased 

CD8+ T cell cross-priming and to NK cell activation, and both of these processes are 

assisted by IL-12p70 [17].  Given that NKT cell activation and IL-12p70 production by 

mMDSC were both augmented by treatment of tumor bearing mice with I-!GC-LM-Mb, 

we analyzed whether this treatment could also enhance CD8+ T cell and NK cell 

responses using the production of IFN" as an activation marker. First, we analyzed CD8+ 

T cell responses to Mage-b in the spleens of I-!GC-LM-Mb treated and control mice 

upon re-stimulation with Mage-b in vitro by measuring extracellular IFN" using ELISPOT.  

This showed a significantly higher number of Mage-b-specific CD8+ T cells producing 

IFN" in the spleens of mice treated with I-!GC-LM-Mb than in mice treated with either 

LM-Mb or !GC alone (Figure 6A). Similarly, by enumerating CD8 T cells producing 

intracellular IFN" (as a results of the in vivo treatments) in peripheral blood samples by 

flow cytometry (without in vitro re-stimulation), a higher response was evident in mice 

treated with I-!GC-LM-Mb compared to mice treated with Lm-Mb or !GC alone (Figure 

6B).  These results indicated a superior effect of I-!GC-LM-Mb on stimulating the cross-

priming of CD8+ T cells specific for tumor associated antigens. 

 We also analyzed NK cell responses by measuring extracellular IFN" using 

ELISPOT in I-!GC-LM-Mb treated and control mice following in vitro infection of 

splenocytes with LM.  This showed significant increase in the number of IFN"-producing 

NK cells in I-!GC-LM-Mb treated mice compared to mice treated with saline, or with LM-
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Mb or !GC alone (Figure 6C).  In addition, analysis of the intracellular IFN" production 

by NK cells in blood (as a result of in vivo treatments) by flow cytometry (without any re-

stimulation in vitro), showed that the percentage of activated circulating NK cells was 

significantly higher in mice that received I-!GC-LM-Mb than LM-Mb or !GC alone, or 

saline (Figure 6D).  

 

 

Discussion 

While treatment with !GC as a free glycolipid injection has shown remarkable anti-tumor 

activity in a variety of mouse models of cancer, phase I clinical trials of this approach in 

human cancer patients have not shown clear evidence of therapeutic benefit[43] 

Improvements in this approach by using immunizations with !GC pulsed autologous 

DCs, or by infusing ex vivo expanded NKT cells, are currently being studied.  While 

these approaches may increase the ability to harness anti-tumor properties of NKT cells 

for cancer immunotherapy, they are complicated and difficult to administer.  In the study 

presented here, we have developed a simple approach for combining !GC with a 

Listeria monocytogenes-based tumor vaccine to achieve strong synergistic effects, 

particularly in the suppression of metastatic disease.  We showed that !GC significantly 

improved therapeutic efficacy of a LM-based vaccine expressing the TAA Mage-b in a 

highly metastatic mouse breast tumor model using the transplantable 4T1 cell line. The 

combination of LM-Mb with !GC, with the glycolipid administered either as a separate 

series of injections or directly incorporated into the LM-Mb bacteria, was highly effective 

at reducing the number of metastases, and almost completely eliminated grossly visible 

metastatic nodules.  Most significantly, while the administration of LM-Mb and !GC as 

separate injections in sequential fashion was associated with marked toxicity due to 
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hepatic necrosis, we found that the direct incorporation of the glycolipid into LM-Mb 

completely eliminated the toxicity while still preserving the marked clinical benefit. 

  The potential for !GC to induce foci of necrosis in the liver of mice is well 

documented, and is believed to be related to the very high frequency of NKT cells that 

are resident in the liver in this species [44].  Humans have a much lower frequency of 

NKT cells in liver tissue [45, 46], and hepatic toxicity following administration for !GC to 

humans has not been observed [47, 48].  Nevertheless, the combination of LM-Mb and 

!GC has never been tested in humans, and the possibility that infection with LM could 

prime the liver to become sensitive to toxic effects of !GC is an important consideration. 

Therefore, our alternative method using live LM-Mb with !GC directly incorporated into 

the bacteria (I-!GC-LM-Mb) represents an extremely practical and potentially safer 

approach to administering this combination immunotherapy.  To produce I-!GC-LM-Mb, 

we used an approach that was similar to that used previously to successfully incorporate 

!GC into live M. bovis BCG organisms [25].  This method involves simply growing the 

bacteria in suitable protein-free medium in the presence of low concentrations of a 

detergent (tyloxapol) and the synthetic glycolipid.  In studies with BCG, we found that 

approximately 25-35% of the glycolipid became stably associated with the bacteria, most 

likely through direct intercalation into the bacterial cell wall and membrane.  Although the 

extent and mechanism of association of !GC with LM bacteria modified in this way have 

not been studied, the glycolipid incorporation resisted extensive washing of the modified 

bacteria suggesting possible intercalation into the bacterial membrane.  The LM 

organisms modified in this way maintained full viability, and acquired the ability to rapidly 

activate NKT cells in culture (data not shown) and in vivo (Figure 3). 

 Although the incorporation of !GC into LM-Mb was similar to the M. bovis BCG, 

their mechanisms in activating T cells may be different. Since LM infects CD8!+DC [49], 
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we expect that I-!GC-LM-Mb also infects and matures these DC. Moreover, it is likely 

that the high efficiency of infection of CD8!+DC with LM, resulted in a much higher 

intracellular concentration of !GC compared to the uptake of free !GC. In addition to 

monocytes, macrophages and CD8!+ DC, LM also infects MDSC [38], which is 

particularly important in cancer because they are present in large numbers in blood of 

tumor bearing humans and mice [36], including the 4T1 model as we have shown in this 

study.  These cells are known for their strong suppression of T cells and NK cells in the 

TME through the production of cytokines such IL-6, IL-10, and TGF$, or factors such as 

arginase and iNOS [39], [12].  Our analyses of circulating MDSC populations in mice 

immunized with I-!GC-LM-Mb suggested a conversion of mMDSC, and less pronounced 

of gMDSC, to an immune-stimulating phenotype producing IL-12p70. This correlated 

with improved CD8+ T cell responses to Mage-b and increased NK cell activation in vitro 

and in vivo. Others have shown that !GC or LM increases the production of IL-12p70 in 

naïve mice, resulting in improved T cell responses [42]. Our results suggest that the IL-

12p70 induced by I-!GC-LM-Mb in the 4T1 model may have improved the T cell 

responses to Mage-b and NK cell responses to LM. The metastases and primary tumor 

highly express Mage-b and are therefore a target for Mage-b-specific CD8 T cells. In a 

previous study we have shown that LM also infects tumor cells and activates CD8 T cells 

and NK cells[14]. Therefore, LM-infected tumor cells are a sensitive target for LM-

activated T cells [14], which may also have contributed to tumor cell destruction in vivo. 

 While I-!GC-LM-Mb was extremely effective against the metastases, it was less 

effective against the primary tumors.  In humans and mice the number of MDSC in the 

blood is much higher than in the primary tumor [36]. We observed increased levels of IL-

12p70 in mMDSC by I-!GC-LM-Mb in the blood, but not in the primary tumors. Similarly, 

improved T cell activation by I-!GC-LM-Mb was detected in the blood but not in the 
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primary tumors.  These may be the reasons why our I-!GC-LM-Mb treatment were more 

effective against the metastases, that usually spreads via the blood stream, than against 

the primary tumors. 

 

Conclusions 

 In summary, we demonstrated that a novel combination of a recombinant LM 

expressing Mage-b and directly incorporated with !GC almost completely eliminated 

metastases in the 4T1 model without toxicity. Our results suggest that activation of NKT 

cells, NK cells and CD8 T cells, as well as the interaction between I-!GC-LM-Mb and 

mMDSC have contributed to this success. The almost complete elimination of the 

metastases is of crucial importance because patients usually die of metastases and not 

of their primary tumor.  Moreover, standard therapies such as surgery, chemotherapy 

and radiotherapy are quite successful against primary tumors, but not against 

metastases.  Therefore, standard therapy to eliminate the primary tumor combined with 

a treatment of I-!GC-LM expressing and appropriate TAA to eliminate metastases could 

be a promising new approach to treat metastatic breast and perhaps other metastatic 

cancers.  
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Figure Legends 

Fig 1: Therapeutic immunizations with Lm-Mb+!GC or I-!GC-LM-Mb are equally 

effective against metastatic breast cancer (4T1 model). BALB/c mice were 

challenged with 4T1 tumor cells in the mammary fat pad and immunized therapeutically 

(ip) three times with Listeriaat-Mage-b (LM-Mb) and #-galactosylceramide (#GC) as 

combination (LM-Mb+#GC) or five times with LM-Mb incorporated with #GC (I-#GC-LM-

Mb).  Mice were euthanized one day after the last immunization and analyzed for the 

frequency of metastases (A) and tumor weight (B). This experiment was performed 

three times with 5 mice per group, and the results were averaged. Mann-Whitney p<0.05 

is significant. *<0.05, **<0.01, ***<0.001, ****<0.0001. The combination of LM-Mb+#GC 

or I-#GC-LM-Mb was compared to the LM-Mb or #GC alone, and I-#GC-LM-Mb was 

compared to LM-Mb+#GC. All groups were significantly different from the saline group. 

The error bars represent the standard error of the mean (SEM).  

 

Fig 2: !GC is toxic in combination with LM-Mb but not when incorporated into LM-

Mb in 4T1 tumor bearing mice. 

BALB/c mice were challenged with 4T1 tumor cells and immunized with LM-Mb+#GC or 

I-#GC-LM-Mb and controls as described in Fig. 1. The percentage of live animals was 

determined in all groups 18 days after tumor cell injection. Mice treated with LM-
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Mb+#GC only died between 12 and 18 days (A). This experiment was repeated three 

times with 5 mice per group and the results were averaged. Mantel-Cox p<0.05 is 

significant. Sections of the liver of mice that received LM-Mb+#GC or I-#GC-LM-Mb 

were stained with H&E and analyzed by light microscopy. Foci of necrosis were found in 

mice immunized with LM-Mb+#GC (see black arrow) but not in mice that received with I-

#GC-LM-Mb (B). The boxed areas on the left side of the figure are shown in larger 

magnification on the right side. Graph is a representative of 2 experiments. The toxicity 

grade in the liver was determined by the naked eye (C). The toxicity graded was 

quantified as follow: 0=no toxicity, 1=uniformly light tanned and firm, 2=5% of the liver is 

covered by white plaques, 3=10% of the liver is covered by white plaques, 4=20% of the 

liver is covered by white plaques, 5=30% of the liver is covered by white plaques. This 

experiment was repeated three times with 5 mice per group and the results were 

averaged. In addition, the survival time of mice that received I-#GC-LM-Mb or saline 

were compared. For this purpose, BALB/c mice were challenged with 4T1 tumor cells 

and immunized with I-#GC-LM-Mb and saline as described in Fig. 1, but in this 

experiment mice received 7 instead of 5 immunizations. I-#GC-LM-Mb-treated 4T1 

tumor-bearing mice lived significantly longer than the saline control group (D). This 

experiment was performed once with 8 mice per group. Mantel-Cox p<0.05 is significant.  

 

Fig. 3: Immunizations with I-!GC-LM in naïve mice induce a rapid production of 

IFN"  and IL-4. Naïve BALB/c mice were injected once with LM, !GC or I-!GC-LM and 

serum samples were obtained at various time points after injection to determine the IFN" 

levels (A) or at 2 hours after injection to determine the IL-4 levels (B) by ELISA. Graphs 

is representative of three experiments.  
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Fig. 4: Repeated therapeutic immunizations with I-!GC-LM do not anergize NKT 

responses in the spleen of 4T1-tumor-bearing mice. BALB/c mice were challenged 

with 4T1 tumor cells and immunized with I-#GC-LM-Mb as described for Fig. 1. After 15 

days of the first immunization, splenocytes were obtained and stained for iNKT cells 

using !GC-loaded CD1d tetramers (0 hrs time point). In parallel, a group of mice 

receiving the same treatment was injected i.p. with free !GC and splenocytes were 

stained for iNKT cells after 12 and 72 hours. Representative dot plots showing TCR and 

!GC-loaded CD1d tetramers staining are shown in (A), and the summarized data with 

three mice per group is shown in (B). Mann-Whitney * and ** represent p<0.05 and p 

0.01, respectively. 

 

Fig 5: Therapeutic immunizations with I-!GC-LM-Mb reduce the percentage of 

MDSC and improve IL-12 production by MDSC in blood of 4T1 tumor-bearing mice. 

BALB/c mice were challenged with 4T1 tumor cells and immunized with I-#GC-LM-Mb 

as described in Fig. 1. The total MDSC population (CD11b+Gr1+), the gMDSC population 

(CD11b+Gr1high) and mMDSC population (CD11b+Gr1low) were gated within total live 

leukocyte population in blood and analyzed by flow cytometry. This experiment was 

repeated 3 times with n=3-5 mice per group and the results were averaged (A). Mann-

Whitney p<0.05 is significant. *<0.05, **<0.01, ***<0.001, ****<0.0001. The production of 

IL-12 by mMDSC and gMDSC was analyzed in blood by flow cytometry. A 

representative example of gating MDSC populations by flow cytometry is provided in the 

Supplementary Information (Figure S3A). The mMDSC and gMDSC producing IL-12 

were gated in the live MDSC population. This experiment was repeated 3 times with 

n=3-5 mice per group and the results were averaged (B). Mann-Whitney p<0.05 is 

significant. *<0.05, **<0.01, ***<0.001, ****<0.0001. In both figures I-#GC-LM-Mb was 

compared to LM-Mb or #GC alone. The error bars represent the SEM. A representative 
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flow cytometry profile of MDSC producing IL-12 is provided in the Supplementary 

Information (Figure S3B). 

 

Fig 6: Therapeutic immunizations with I-!GC-LM-Mb improve CD8 T cells and NK 

cells responses in blood and spleen of 4T1 tumor-bearing mice. BALB/c mice were 

challenged with 4T1 tumor cells and immunized with I-#GC-LM-Mb as described in Fig. 

1, and analyzed for Mage-b-specific T cell responses and NK cell responses to LM in 

vitro and in vivo. For Mage-b-specific CD8 T cell responses in vitro, the number of CD8 

T cells producing extracellular IFN" per 400,000 spleen cells of I-#GC-LM-Mb and 

control mice was determined by ELISPOT after re-stimulation with Mage-b (A). CD8 T 

cells were depleted by magnetic beads technique. Spleens of 5 mice per group were 

pooled. This experiment was repeated 2-3 times and the results were averaged. I-#GC-

LM-Mb was compared to LM-Mb or #GC alone. Mann-Whitney p<0.05 is significant. 

*<0.05, **<0.01, ***<0.001, ****<0.0001. The error bars represent the SEM. For in CD8 T 

cell responses in vivo, the percentage of CD8 T cells producing intracellular IFN" was 

determined by flow cytometry in blood of I-#GC-LM-Mb and control mice without any re-

stimulation (B). The CD8 T cells were gated within total live lymphocyte population in 

blood. Mice were analyzed individually. n=5 mice per group. This experiment was 

repeated 3 times and the results were averaged. I-#GC-LM-Mb was compared to LM-Mb 

or #GC alone. Mann-Whitney p<0.05 is significant. *<0.05, **<0.01, ***<0.001, 

****<0.0001. The error bars represent the SEM. For NK cell responses to LM in vitro, the 

number of NK cells producing extracellular IFN" per 200,000 spleen cells of I-#GC-LM-

Mb and control mice was determined by ELISPOT after infection with LM (C). NK cells 

were depleted by magnetic beads technique. Spleens of 5 mice per group were pooled. 

This experiment was repeated 2-3 times and the results were averaged. I-#GC-LM-Mb 

was compared to LM-Mb or #GC alone. Mann-Whitney p<0.05 is significant. *<0.05, 
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**<0.01, ***<0.001, ****<0.0001. The error bars represent the SEM. For NK cell 

responses in vivo, the percentage of NK cells producing intracellular IFN" was 

determined by flow cytometry in blood of I-#GC-LM-Mb and control mice without any re-

stimulation (D). The NK cells were gated in the total live lymphocyte population. I-#GC-

LM-Mb was compared to LM-Mb or #GC alone. This experiment was performed 3 times 

n=3-5 mice per group and the results were averaged. Mann-Whitney p<0.05 is 

significant. *<0.05, **<0.01, ***<0.001, ****<0.0001. The error bars represent the SEM.  
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Figure S1: Bone marrow dendritic cells infected with I-!GC-LM induced efficient 

iNKT cell activation in vitro. BALB/c derived BMDCs were infected with LM or I-!GC-

LM at different multiplicity of infection, for 3 hours and then co-cultured with an iNKT cell 

hybridoma for 24 hours. As a control, BMDCs were pulsed with 100 nM of free !GC and 

then co-cultured with the iNKT cell hybridoma for 24 hours. After the co-culture, IL-2 

levels were determined in the supernatants by ELISA. For more detailed information see 

M and M below. 

 

Figure S2: MDSC were present in large numbers in tumor-bearing mice but not in 

naïve mice. MDSC populations were analyzed in blood of tumor-bearing and naive 

BALB/c mice. MDSC (CD11b+Gr1+)(top and bottom box), gMDSC (CD11b+Gr1high)(top 

box) and mMDSC (CD11b+Gr1low)(bottom box) were gated within total live leukocyte 

population in blood and analyzed by flow cytometry (A). n=3 mice per group. This 

experiment was performed 2-3 times, and the results were averaged and summarized 

(B). 

 

Figure S3: A representative flow cytometry profile of MDSC populations and 

MDSC producing IL-12. BALB/c mice were challenged with 4T1 tumor cells and 

immunized with I-!GC-LM-Mb as described in Fig. 1 of the manuscript. MDSC 

(CD11b+Gr1+)(top and bottom box), gMDSC (CD11b+Gr1high)(top box) and mMDSC 

(CD11b+Gr1low)(bottom box) were gated within total live leukocyte population in blood 

and analyzed by flow cytometry (A). The mMDSC and gMDSC producing IL-12 were 

gated in the live MDSC population (B). This experiment was repeated 3 times with n=3-5 

mice per group.  
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Materials and Methods 
 
Activation of iNKT cell hybridoma in vitro 

Day 9 BMDCs were infected with different MOIs (0.1, 0.5 and 1) of LM or I-!GC-LM 

during 3 hours at 37°C, treated with gentamicin (100 ug/ml) for 1 hour to remove 

extracellular bacteria and cultured overnight. Then, BMDCs were co-cultured with 

DN3A4-1.2 mouse iNKT cell hybridomas (5 x 104 BMDCs and 5 x 104 iNKTs/well in 96 

well plates). BMDCs treated with 100 ng/ml of !GC were included as positive control. 

After 24 hours of co-culture, IL-2 secretion in the supernatants was determined by 

capture ELISA as described previously1 

 

 

1 Castro, F. et al. Vaccination with Mage-b DNA induces CD8 T-cell responses at 

young but not old age in mice with metastatic breast cancer. Br J Cancer 101, 

1329-1337, doi:10.1038/sj.bjc.6605329 (2009). 
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CHAPTER 4 

 

GENERAL DISCUSSION 

 

Problems and promises of cancer vaccination 

Immune suppression is a major problem in cancer vaccination or cancer 

immunotherapy. Various approaches have been used in mice and humans to reduce 

immune suppression in cancer. This includes elimination of immune cells that induce 

immune suppression such as Treg (using anti-CD25 antibodies) and MDSC (using anti-

Gr1 antibodies), or by agents such fish oil and selenium (eliminates Tregs and MDSC), or 

a streptococcal extract OK432 (eliminates Tregs), a glycan-binding protein Galectin-1 

(eliminates Tregs), or antibodies that can block co-inhibitory molecules such anti-CTLA-4 

or anti-PD-1138-143. Since immune suppression involves a combination of inhibitory 

cytokines, factors, receptor-ligand interactions, various approaches will be necessary to 

sufficiently reduce the immune suppression until a level that allows T cells to react to the 

tumor cells. Also different tumors may induce different types of immune suppression. 

Therefore, depending on the type of immune suppression a suitable combination therapy 

could be designed to improve cancer vaccination through reduction of immune 

suppression.  

 In the thesis presented here we focused on the immune suppression in metastatic 

breast cancer. The production of IL-6 is one of the main cytokines that play an important 

role in immune suppression in breast cancer, and particularly in TNBC125,144. TNBC are 

enriched for stem-like breast cancer cells (CD44+/CD24-/low), which are typically 

aggressive and highly resistant to current therapies145-147. These stem-like breast cancer 

cells produce high levels of IL-6, and have the capacity to metastasize137. Moreover, IL-6 

is capable of converting dormant breast cancer cells into an actively growing tumor. 
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While most breast cancers in an early stage are curable, TNBC is incurable. It lacks the 

expression of ER, PR, and HER2, which leaves highly toxic therapies as only option, 

and ultimately does not cure the cancer. Therefore, in this thesis project we selected a 

metastatic mouse tumor model 4T1 with TNBC, which is highly aggressive and 

metastatic, and their tumors and metastases produce high levels of IL-6148.  

  

Increasing the success rate of cancer vaccination or immunotherapy by reducing 

IL-6 

As mentioned above, one of the main problems with treatments against TNBC is the 

high toxicity. Therefore, we focused in this thesis on non-toxic vaccine therapies against 

metastatic breast cancer using a TNBC model 4T1. As shown here in this thesis, the 

combination therapy of Listeriaat-Mage-b and curcumin is non-toxic, but induced 

primarily inflammatory responses in the spleen and liver. Curcumin was selected 

because it is known for reducing IL-6, and IL-6 is one of the main contributors to immune 

suppression in the TME, particularly in TBNC. In this thesis (see Chapter 2), we tested 

whether curcumin could improve the efficacy (effect on metastases and tumor) of 

Listeriaat-Mage-b vaccine, through reduction of IL-6, and improved T cell responses to 

Mage-b. Various immunization protocols have been tested. In the first immunization 

protocol with Listeriaat-Mage-b and curcumin both therapeutically administered, we found 

that curcumin significantly improved the efficacy of Listeriaat-Mage-b vaccination 

resulting in a strong reduction in the number of metastases compared to all control 

groups. Also Listeriaat-Mage-b alone reduced the number of metastases and tumor 

growth significantly but less robust than the combination, while curcumin alone did not 

have much effect on the metastases or tumors. Others found an anti-tumor effect of 

curcumin on tumor cells in vitro117-121. However, tumor cells may react differently in vitro 

to curcumin than in vivo because in vitro bioavailability and the immune system does not 
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play a role and higher concentrations can be obtained in vitro compared to the in vivo 

situation. Also, the time point of administering curcumin, the concentration of curcumin, 

and the type of cancer may determine the anti-tumor effect of curcumin. For instance, 

others reported that the time point of administration of curcumin is important149. We 

found that administering curcumin before tumor development was more effective than 

after tumor development. Since curcumin has been consumed in food all over the world 

we tested administration of curcumin before and Listeriaat-Mage-b after tumor 

development. This combination therapy was significantly more effective against the 

metastases compared to the administration of curcumin and Listeriaat-Mage-b after 

tumor development. Moreover, administration of curcumin before tumor development 

was more effective against metastases and tumor weight than curcumin administered 

after tumor development.  

 The almost complete elimination of the metastases and strong reduction in tumor 

weight by curcumin before and Listeriaat-Mage-b after tumor development correlated 

with reduction in IL-6 levels in the primary tumors and in MDSC in blood, and 

significantly improved T cell responses to Mage-b in vivo and in vitro. However, the 

effect on primary tumor was less compared to metastases, in correlation with lower T 

cell responses. Not only curcumin reduced the IL-6 levels in the tumor cell lysates, but 

also Listeriaat-Mage-b, and the strongest reduction was observed with the combination of 

Listeriaat-Mage-b and curcumin. In addition, we found that the combination therapy 

significantly reduced the number of MDSC and converted a remaining sub population of 

MDSC into an immune stimulating phenotype in blood but not in primary tumors, 

producing IL-12. IL-12 is known for activating naïve and mature T cells62,150. The 

combination therapy significantly increased CD8 T cell responses to Mage-b in vitro and 

in vivo. Most interesting was that the combination therapy significantly reduced the 
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percentage of MDSC in blood but not in primary tumors, and may have contributed to 

the more significant effect on metastases than on primary tumors. 

In summary, the results accumulated in this study, i.e. (1) reduction of IL-6 in the 

primary tumor and MDSC, (2) increase in IL-12 production by MSDC, (3) reduction in the 

percentage of MDSC, and (4) improved CD8 T cell responses to Mage-b in vitro and in 

vivo, strongly suggest that our combination therapy of Listeriaat-Mage-b and curcumin 

improved the therapeutic effect of Listeriaat-Mage-b through improvement of T cell 

responses to Mage-b in a TNBC model 4T1. The potential pathways of Listeriaat-Mage-b 

and curcumin involved in anti-tumor responses analyzed in this study are summarized in 

Fig 1. While curcumin alone may have less therapeutic value, as adjuvant with vaccines 

it is a powerful tool to reduce immune suppression in the TME, and show great promise 

for clinical application in other IL-6-producing cancers.  

 

Creating an immune-stimulating environment with !GC to help adaptive and 

innate immune responses against metastatic breast cancer 

One way to improve T cell responses is by reducing immune suppression in the TME. 

Here we used another approach. !GC is a glyclipid that is a strong activator of NKT 

cells, resulting in a cascade of Th1 cytokines such as IFN" and IL-12 among others (IL-

4, IL-13), and basically converts an immune suppressing into an immune-stimulating 

environment. Initially we started testing the combination of free !GC and Listeriaat-Mage-

b in the TNBC model 4T1. While the effect on metastases was very impressive, i.e. we 

observed an almost complete elimination of the metastases, it appeared that the 

combination was highly toxic in the liver. Therefore, we used a novel approach by 

incorporating the !GC into the cell wall of live Listeriaat-Mage-b (I-!GC-LM-Mb). This 

approach was successfully used earlier for Mycobacteria showing improved CD8 T cell 
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stimulation151. While the administration of LM-Mb and !GC as separate injections in 

sequential fashion was associated with marked toxicity due to hepatic necrosis, we 

found that the direct incorporation of the glycolipid into LM-Mb completely eliminated the 

toxicity while still preserving the marked clinical benefit. Repeated immunizations with 

low dose of I-!GC-LM-Mb almost completely eliminated all metastases without any liver 

toxicity. This correlated with the activation of NKT cells, the production of IL-12p70 by 

MDSC, and the subsequent activation of NK cells and Mage-b-specific CD8 T cells in 

blood in vivo. 

Obvious was that the I-!GC-LM-Mb was less effective on CD8 T cells and NK 

cells in the primary tumor. In humans and mice the number of MDSC in the blood is 

much higher than in the primary tumor152. We observed the increased levels of IL-12p70 

in myeloid cells in the blood, but not in the primary tumors. Similarly, improved T cell and 

NK cell activation was detected in the blood but not in the primary tumors. These may be 

the reasons why our I-!GC-LM-Mb treatment were more effective against the 

metastases, that usually spreads via the blood stream, than against the primary tumors. 

 In summary, we demonstrated that a novel combination of a recombinant LM 

expressing Mage-b and directly incorporated !GC almost completely eliminated 

metastases in the 4T1 model without toxicity. This is of crucial importance because 

patients usually die of metastases and not of their primary tumor.  Moreover, standard 

therapies such as surgery, chemotherapy and radiotherapy are quite successful against 

primary tumors, but not metastases.  Therefore, standard therapy to eliminate the 

primary tumor combined with a treatment of I-!GC-LM-Mb expressing and appropriate 

TAA to eliminate metastases, could be a promising new approach to treat metastatic 

breast and perhaps other metastatic cancers. The potential pathways of I-!GC-LM-Mb 

involved in anti-tumor responses, analyzed in this study are summarized in Fig 2. 
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Our previous and current results strongly suggest that not only Mage-b-specific T 

cells cause tumor cell destruction. We have shown that Listeriaat infected tumor cells and 

killed tumor cells through high levels of ROS, and that infected tumor cells were 

sensitive targets for LM-activated T cells114. The multiple pathways of Listeriaat, i.e. 

delivering TAA and !GC with extreme high efficiency into APC, infecting and converting 

MDSC when combined with curcumin or incorporated with !GC into an immune-

stimulating phenotype producing IL-12, and infecting and killing tumor cells through 

ROS, with practically no side effects, makes Listeriaat highly attractive for cancer 

immunotherapy.  

  

Future prospects of cancer vaccination 

As we have shown here in mice with metastatic breast cancer (4T1 model), vaccines 

can be effective against metastases, but only if the immune suppression is reduced or 

converted into immune stimulation. Also important is that both combination therapies are 

non-pathogenic and non-toxic. This opens up the possibility to use these combination 

therapies as second line therapy after removal of the primary tumor by surgery, 

chemotherapy or radiation. Often, the second line therapy is administered after 

metastases have been detected, because of its high toxicity. Our non-toxic combination 

therapies could be administered in an early phase after first line therapy (without 

knowing if metastases will develop), to prevent recurrence or the development of 

metastases.  

One question that arose in both studies, i.e. with Listeriaat-Mage-b and curcumin 

or with I-!GC-LM-Mb, what the value was of the in vitro re-stimulation assays with 

Mage-b versus the in vivo analysis of CD8 T cells by flow cytometry without any re-

stimulation. As described above, it was obvious that in both studies the in vivo analysis 

by flow cytometry showed CD8 T cell activation in blood but not in the primary tumors, 
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and that this correlated with an almost complete eradication of the metastases but a 

moderate to minor effect on the primary tumors. In contrast, the in vitro re-stimulation 

assay showed strong CD8 T cell responses to Mage-b and did not correlate with the 

effect of the combination therapy on the primary tumors at all. It is interesting that in 

many vaccine studies the in vitro re-stimulation assay is often used as measurement for 

effective vaccines, i.e. that they are able to induce CD8 T cell activation. However, this is 

only true in a non-tumor environment but as soon as these T cells reach the tumor, their 

function will be shut down by the immune suppression in the TME. Therefore, it is 

important to analyze the vaccine-induced immune responses in vivo in mice or humans 

with tumors. 

Another obvious result was that both combination therapies were more effective 

against the metastases than primary tumors. One of the reasons may be that the blood 

(#80%) contains many more MDSC than the primary tumors (#10%). However, primary 

tumors can be removed by surgery for most tumors, or by chemotherapy or radiation. In 

addition, our laboratory is investigating other non-toxic approaches such as killing 

primary tumor through cryoablation (freezing and thawing of tumor cells). We were able 

to completely eradicate primary tumor by this technique, and it appeared to be equally 

effective in humans (unpublished results). 

It is clear that one type of therapy will not be sufficient to eliminate metastatic 

cancer, and that multiple combination therapies, selected for the various types of cancer, 

and/or patient will be the future to combat metastatic cancer. The multiple pathways of 

Listeriaat, i.e. delivering TAA and !GC with extreme high efficiency into APC, infecting 

and converting MDSC when combined with curcumin or incorporated with !GC into an 

immune-stimulating phenotype producing IL-12, and infecting and killing tumor cells 

through ROS, with practically no side effects, makes Listeriaat highly attractive for cancer 

immunotherapy. Since Listeriaat infects tumor cells, also other approaches are possible 
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such as delivery of anti-tumor compounds in the tumor cells by Listeriaat. Indeed, our 

laboratory in collaboration with the laboratory of Dr. Dadachova (Microbiology and 

Immunology, Albert Einstein College of Medicine) has recently developed a radioactive 

Listeriaat, and we showed that Listeriaat efficiently delivered the radioactivity to the 

metastases, resulting in an almost complete elimination of the metastases in pancreatic 

cancer without noticeable side effects (Quispe-Tintaya et al, A non-toxic radioactive 

Listeriaat is a highly effective therapy against metastatic pancreatic cancer, PNAS, 

accepted). 

Last but not least, the age factor is an important issue because most cancer 

patients are old and elderly react les efficient to vaccines than young adults, due to T cell 

unresponsiveness91. This is mainly caused by lack of naïve T cells and to an increase in 

the number of MDSC in the TME at older age153-159. Paradoxically, the age factor is 

totally ignored in clinical trials and may partly be responsible for the absence of a real 

breakthrough in cancer vaccination. Since both combination therapies tested in this 

thesis targets MDSC and both are non-toxic, these combination therapies may be 

especially effective at older age. However, it is also clear that we still have a long way to 

go for the complete elimination of metastatic cancer at all ages. 
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Figure 1 Potential pathways of Listeria-

Mage-b and curcumin involved in anti-

tumor responses in mice with metastatic 

breast cancer (4T1 model). Mice will be 

treated with curcumin before and immunized 

with Listeria-Mage-b after tumor development. 

Curcumin will kill tumor cells and reduce IL-6 

production by tumor cells and MDSC. 

Reduction in IL-6 production will reduce 

immune suppression and restore T cell 

responses. Listeria-Mage-b will infect MDSC, 

tumor cells and APC (DC, macrophages, 

monocytes). Mage-b antigen will be delivered 

by Listeria inside the APC, then secreted at 

high levels in the cytoplasm and processed for 

assembling with MHC class I molecules for 

presentation on the membrane to CD8 T cells. 

Simultaneously, the combination of Listeria-

Mage-b and curcumin will reduce the number 

of MDSC, and induce IL-12 production in a sub 

population of MDSC in blood. Reduction in the 

number of MDSC will result in less immune 

suppression. IL-12 will induce T cell activation, 

resulting in the production of IFN!. Activated T 

cells will kill the tumor cells. In addition to this 

cascade of immune reactions the Listeria 

bacteria will infect and kill tumor cells through 

high levels of ROS, and infected tumor cells 

will be killed by Listeria-activated CD8 T cells 

(not shown). 
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NK cells 

CD1d !GC V!14J!18 TCR 

Listeria-Mage-b Mage-b TCR!" 
MHC class I/
Mage-b peptide! CD28 B7 

Figure 2: Potential pathways of I-!GC-LM-Mb in 

anti-tumor responses in mice with metastatic 

breast cancer (4T1 model). Tumor-bearing mice will 

be immunized with Listeria-Mage-b incorporated with 

!GC (I-!GC-LM-Mb). I-!GC-LM-Mb will infect DC!+8 

DC (and other APC such as monocytes and 

mcrophages), and Listeria will produce Mage-b 

protein at very high levels in the DC. The Mage-b 

protein will be process and assembled with MHC 

class I molecules in the DC and presented on the 

membrane to CD8 T cells. Simultaneously, infection 

of CD8!+DC with I-!GC-LM-Mb will also lead to 

intracellular processing of the !GC and assembling 

with MHC-like molecule CD1d, and then presented 

on the membrane to NKT cells. This will result in the 

activation of NKT cells. The activated NKT cells will 

produce various cytokines that can stimulate NK cells 

and CD8 T cells. Most important cytokine is IFN#. The 

activated NK cells will produce IFN#, and further 

activation of CD8 T cells will occur. Finally, I-!GC-

LM-Mb will infect MDSC resulting in the production of 

IL-12. IL-12 activates CD8 T cells and NK cells. The 

activated CD8 T cells and NK cells will kill the tumor 

cells. In addition to this cascade of immune reactions 

the Listeria bacteria will infect and kill tumor cells 

through high levels of ROS, and infected tumor cells 

will be killed by Listeria-activated CD8 T cells (not 

shown). 
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SUMMARY 

 

The diagnosis of breast cancer has a reasonable prognosis, particularly when it is 

diagnosed in an early phase. Eliminating primary tumors by surgery, chemotherapy, or 

radiation is quite successful. However, for metastases there is no cure. Thirty percent of 

the breast cancer cases will progress into metastatic disease, but they cannot be 

removed by surgery or radiation, and usually become chemoresistant. However, 

preclinical and clinical studies have shown that cancer vaccination has an effect on 

metastases but that a real breakthrough is hampered by the strong immune suppression 

in the tumor microenvironment (TME). Therefore, in this thesis we focused on the 

treatment of metastatic breast cancer using an attenuated Listeria monocytogenes 

(Listeriaat)-based vaccine expressing tumor-associated antigen (TAA) Mage-b 

(developed earlier in our laboratory), combined with adjuvants to reduce immune 

suppression in the TME in order to improve the vaccine efficacy of Listeriaat-Mage-b. 

Listeriaat is a non-pathogenic bacterium, and was selected because of its great capability 

to deliver TAA into APC in vivo with high efficiency, its minimal side effects, and its ability 

to activate innate and adaptive immune responses. Listeriaat also kills tumor cells directly 

without harming normal cells. Moreover, the Listeriaat is naturally cleared by the immune 

system in normal tissues within 3-5 days. Mage-b was selected because Mage is 

homologous with its human homologue MAGE, which is expressed in 90% of all breast 

cancers. Here we have tested two different combination therapies in mice with 

metastatic breast cancer (4T1 model), and results demonstrated great promise of our 

approaches for the battle against metastases. 

 

The first combination therapy consisted of Listeriaat-Mage-b and curcumin. Curcumin is 

an Indian spice and able to reduce the production of interleukin (IL)-6. IL-6 is abundantly 
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produced by breast tumor cells and immune cells, and particularly in patients with 

metastatic breast cancer. IL-6 is one of the most important contributors to suppression of 

T cell responses in the TME. Curcumin also kills tumor cells directly. The second 

combination therapy consisted of Listeriaat-Mage-b and alphagalctosylceramide (!GC). 

!GC is a glycolipid that stimulates natural killer T (NKT) cells through its interaction with 

CD1d on CD8!+ dendritic cells (DC), which in turn generates a cascade of cytokine 

production that activates the innate and adaptive immune system, including the Mage-b-

specific T cells.  

 

In Chapter 2, we tested the combination of Listeriaat-Mage-b and curcumin 

therapeutically in mice with metastatic breast cancer, and found a dramatic reduction in 

the number of metastases by 85%, and reduced tumor growth by 60%, compared to 

non-treated mice. Since curcumin is consumed through food all over the world, we also 

tested whether administration of curcumin preventively (before tumor development) 

could have an advantage over curcumin therapeutically (after tumor development). It 

appeared that administration of curcumin before tumor development and Listeriaat-Mage-

b after tumor development resulted not only in a stronger decrease in the number of 

metastases (99%), but also significantly reduced tumor growth (75%), compared 

Listeriaat-Mage-b and curcumin after tumor development. Also curcumin alone 

preventively administered significantly reduced the number of metastases and tumor 

growth, although the combination was more effective. This suggests that consuming 

curcumin before tumor development may have an advantage over consuming curcumin 

after tumor development in the battle against metastatic breast cancer. This correlated 

with a significant reduction in the production of IL-6 by the primary tumors and immune 

cells in blood. Moreover, a sub population of myeloid-derived suppressor cells (MDSC), 

one of the most important contributors to immune suppression in the TME, was 
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converted by the combination therapy into an immune-stimulating phenotype producing 

IL-12, in correlation with significant improvement in T cell responses to Mage-b in the 

tumor-bearing mice. This combination therapy was not only highly effective against the 

metastases but also non-toxic as confirmed by pathological examination of spleen, 

kidney, liver, heart and lungs. 

 

In Chapter 3, Listeriaat-Mage-b and !GC was therapeutically tested in mice with 

metastatic breast cancer, and we found a dramatic reduction in the number of 

metastases (99%) compared to non-treated mice. However, this was accompanied with 

strong toxicity in the liver, which was not observed with Listeriaat-Mage-b or !GC alone. 

To address this problem we incorporated !GC into the cell wall of live Listeriaat bacteria 

expressing Mage-b (I-!GC-LM-Mb). Here, we demonstrate that repeated low dose 

administrations with I-!GC-LM-Mb in mice with metastatic breast cancer was equally 

effective against the metastases compared to vaccination with LM-Mb and !GC as a 

mixture, but without any visible toxicity as confirmed by pathology and survival studies. 

This was correlated with the activation of NKT cells, the generation of IL-12 production in 

MDSC, and significantly improved CD8 T cell responses to Mage-b and NK cell 

responses. Also tumor growth was significantly reduced but the combination was not 

better than the Listeriaat-Mage-b or !GC alone. Here we demonstrate for the first time 

that therapeutic treatment with live attenuated Listeriaat incorporated with !GC is highly 

effective against breast cancer metastases without toxicity.  

 

In conclusion, we have demonstrated that therapeutic vaccination with Listeriaat-Mage-b, 

when combined with adjuvants such as curcumin or !GC inhibits or converts immune 

suppression into immune stimulation, strongly reduced the number of metastases in 
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mice with metastatic breast cancer, in correlation with improved T cell responses to 

Mage-b and NK cell responses, without any visible toxicity. While the effect of both 

combination therapies was less effective against primary tumors, they could be of great 

values for second line therapy (after surgery, chemotherapy or radiation to remove the 

primary tumor), to prevent recurrence and the development of metastases. Because of 

the low toxicity, starting second line treatment in an early phase may further improve the 

clinical outcome.  
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SAMENVATTING 

 

De diagnose van borstkanker heeft een redelijke prognose, met name wanneer het is 

gediagnostiseerd in een vroege fase. Het elimineren van primaire tumoren door 

chirurgie, chemotherapie of bestraling is redelijk succesvol. Voor metastasen is er echter 

geen remedie. Dertig procent van de gevallen van borstkanker wordt uiteindelijk 

metastatisch. Metastasen kunnen niet worden verwijderd door chirurgie of bestraling, en 

worden meestal chemoresistant. Preklinische en klinische studies hebben echter 

aangetoond dat kanker vaccinatie een effect heeft op metastasen maar dat een echte 

doorbraak wordt belemmerd door de sterke immuun suppressie in de directe omgeving 

van de tumor. Dus, in deze thesis hebben we ons gericht op de behandeling van 

uitgezaaide borstkanker door gebruik te maken van een verzwakt Listeria 

monocytogenes (Listeriaat)-gebaseerd vaccin dat codeert voor de tumor-geassocieerde 

antigeen (TAA) Mage-b (dit vaccin was al eerder gemaakt in ons laboratorium), en we 

hebben het Listeriaat-Mage-b vaccine gecombineerd met specifieke stoffen om de 

immuun suppressie te kunnen onderdrukken ter verbetering van de werkzaamheid van 

het vaccin. Listeriaat is een verzwakte niet-pathogene bacterie, en wij hebben Listeriaat 

geselecteerd vanwege zijn grote capaciteit om TAA in antigen-presenterende cellen 

(APC) te leveren met hoge efficiëntie in vivo, zijn minimale bijwerkingen, en het 

vermogen om adaptieve en innate immuun responsen te activeren. Listeriaat doodt ook 

tumor cellen rechtstreeks zonder nadelige gevolgen voor normale cellen. Bovendien 

wordt de verzwakte Listeriaat geelimineerd door het immuun systeem in normale 

weefsels binnen 3-5 dagen, maar niet in the tumoren en metastases, omdat daar de 

Listeriaat beschermd worden door de sterke immune suppressie. Mage-b is geselecteerd 

in ons muizen model met metastatische borst kanker (4T1) omdat muizen Mage 

homoloog is met de menselijke MAGE, en omdat MAGE in 90% van alle borst kankers 
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voorkomt. Wij hebben hier twee verschillende combinatie therapieën in muizen met 

uitgezaaide borstkanker (4T1 model) getest en de resultaten suggeren dat onze aanpak 

veelbelovend is voor het bestrijden van metastasen. De eerste combinatietherapie 

bestaat uit Listeriaat-Mage-b en curcumin. Curcumin is een Indische specerij en is 

bekend vanwege het vermogen om de productie van het cytokine interleukine (IL)-6 te 

verminderen. IL-6 wordt overvloedig geproduceerd door borst tumor cellen en immuun 

cellen, en met name in patiënten met metastatische borst kanker. IL-6 is een van de 

belangrijkste cytokines die bijdragen aan de onderdrukking van T cell aktivatie in de 

directe omgeving van primary tumoren en metastases. Curcumin doodt ook tumor cellen 

rechtstreeks. De tweede combinatie therapie bestaat uit Listeriaat-Mage-b en 

alphagalctosylceramide (!GC). !GC is een glycolipid die natuurlijke killer T (NKT) cellen 

stimuleert door de interactie of !GC met CD1d in CD8!+ dendritische cellen (DC). 

Geaktiveerde NKT cellen kunnen een cascade van cytokine productie genereren, die op 

hun beurt innate and adaptive responsen activeert, inclusief the Mage-b-specific T 

cellen.  

 

In hoofdstuk 2, hebben we de combinatie van Listeriaat-Mage-b en curcumin 

therapeutisch (na de tumor ontwikkeling) getest in muizen met uitgezaaide borst kanker 

(4T1 model), en een drastische vermindering van het aantal metastasen (85%) en 

verminderde tumor groei (60%) gevonden in vergelijking met de onbehandelde muizen. 

Echter had curcumin zonder Listeriaat-Mage-b maar weinig therapeutisch effect. 

Aangezien curcumin over de hele wereld wordt geconsumeerd via voedsel, hebben wij 

ook getest of het preventief consumeren van curcumin een voordeel zou kunnen hebben 

in vergelijking met het therapeutisch consumeren van curcumin. Het bleek dat preventief 

consumeren van curcumin in combinatie met het toedienen van Listeriaat-Mage-b in een 

therapeutisch setting niet alleen resulteerde in een sterke daling van het aantal 



 150 

metastasen (99%), maar ook aanzienlijk tumor groei verminderde (75%), in vergelijking 

met curcumin and Listeriaat-Mage-b beiden therapeutisch toegediend. Ook had curcumin 

zonder Listeriaat-Mage-b een significant preventief effect op de metastases and tumoren. 

Dit suggereert dat het preventief consumeren van curcumine een voordeel zou kunnen 

hebben ten opzichte van het therapeutisch consumeren van curcumine in de strijd tegen 

uitgezaaide borst kanker. Dit resultaat correleerde met een aanzienlijke vermindering in 

de productie van de IL-6 in de primaire tumoren en immune cellen in het bloed. 

Bovendien werd een sub-populatie van myeloide-afgeleide suppressor cellen (MDSC), 

een van de belangrijkste immuun cellen die bijdragen aan immuun suppressie in the 

direct omgeving van de tumor, veranderd door onze combinatie therapie in immuun-

stimulerende cellen door het produceren van IL-12 (activeert T cellen), in correlatie met 

een significante verbetering in T cel responsen tegen het Mage-b antigen in de tumor 

cellen of primaire tumoren en metastases. Deze combinatie therapie was niet alleen een 

zeer effectief middel tegen de metastasen maar was ook niet-toxisch, zoals bevestigd 

door pathologisch onderzoek van de milt, de nieren, lever, hart en longen. 

 

In hoofdstuk 3, hebben we Listeriaat-Mage-b en !GC therapeutisch getest in muizen 

met uitgezaaide borst kanker en ook hier vonden we een drastische vermindering in het 

aantal metastasen. Dit ging echter gepaard met een sterke toxiciteit in de lever, wat niet 

werd waargenomen wanneer Listeriaat-Mage-b of !GC gescheiden werd toegediend. 

Om dit probleem aan te pakken hebben we !GC geincorporeerd in de cel wand van de 

verzwakte Listeriaat bacteriën die Mage-b expresseren (I-!GC-LM-Mb). Hier laten we 

zien dat herhaalde toedieningen van lage dosis I-!GC-LM-Mb in muizen met uitgezaaide 

borst kanker net zo effectief was tegen de metastasen als het mengsel van LM-Mb en 

!GC, maar nu zonder enige zichtbare toxiciteit. Dit was gecorreleerd met het aktiveren 

van de NKT cellen, het genereren van de IL-12 productie in MDSC, en een aanzienlijk 
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verbetering in de CD8 T cel en NK cel responses in bloed. Ook de tumor groei was 

aanzienlijk verminderd, maar I-!GC-LM-Mb was niet significant beter dan de Listeriaat-

Mage-b of !GC alleen. Hier tonen we voor de eerste keer aan dat de therapeutische 

behandeling met levende maar verzwakte Listeriaat geincorporeerd met !GC een zeer 

effectief middel is tegen de borst kanker metastasen zonder toxiciteit.  

 

Samengevat, wij hebben aangetoond dat therapeutische vaccinatie met Listeriaat-Mage-

b, wanneer gecombineerd met curcumin of geincorporeerd met !GC, de immuun 

suppressie kunnen remmen of veranderen in immuun stimulatie, en het aantal 

metastasen in muizen met uitgezaaide borst kanker sterk vermindert, in correlatie met 

significant verbeterde T cel responses tegen Mage-b en NK cel responses, zonder enige 

zichtbare toxiciteit. Terwijl het effect van beide combinatie therapieën minder effectief is 

tegen primaire tumoren, kunnen ze van grote waarden zijn voor “tweede lijn” therapie 

(na door chirurgie, chemotherapie of straling verwijderen van de primaire tumor), ter 

voorkoming van de ontwikkeling van metastasen. Vanwege de lage toxiciteit, kan het 

starten van de tweede lijn behandeling in een vroege fase beginnen om daardoor de 

klinische resultaten verder te verbeteren. 
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APC       Antigen-presenting cell  
!GC       Alphagalactosylceramide  
CCL   Chemokine (C-C) motif ligand 
COX   Cyclooxygenase 
CTL   Cytotoxic T lymphocytes 
DC        Dendritic cell  
DCIS    Ductal carcinoma in situ 
DMEM      Dulbecco's Modified Eagle's Medium  
ER          Estrogen Receptor  
FBS       Fetal bovine serum  
FGF   Fibroblast growth factor 
gMDSC      Granulocytic myeloid-derived suppressor cells 
GM-CSF    Granulocyte-macrophage colony-stimulating factor  
iNOS      Inducible nitric oxide synthetase  
IL        Interleukin  
I-!GC-LM-Mb    LM-Mb incorporated with !GC 
IDC    Invasive ductal carcinomas  
ILC   Invasive lobular carcinoma  
IBC    Inflammatory breast carcinoma  
IFN           Interferon  
LLO        Listeriolysin O  
LM           Listeria monocytogenes 
LM-Mb      Listeria-Mage-b  
LCIS   Lobular carcinoma in situ  
MAGE       Melanoma-associated antigen 
MDSC       Myeloid-derived suppressor cells 
mMDSC     Monocytic myeloid-derived suppressor cells  
MCA         Methylcholantrene  
MHC      Major histocompatibility complex 
MLN       Mesenteric lymph nodes 
MMP   Matrix metalloproteinase 
NK        Natural killer   
NKT       Natural killer T  
NFkB        Nuclear factor kappa-light-chain-enhancer of activated B cells 
PDGF   Plateled-derived growth factor 
PR         Progesterone receptor  
PRR         Pattern recognition receptors  
prfA           Positive regulatory factor  
ROS       Reactive oxygen species 
STAT3       Signal transducer and activator of transcription 3 
TME       Tumor microenvironment 
TAA        Tumor-associated antigen  
TAM       Tumor-associated macrophages  
TN          Triple-negative   
TNBC      Triple negative breast cancer  
TGF-"        Transforming growth factor beta 
VGEF        Vascular endothelial growth factor  
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