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Abstract

This paper studies an inventory policy for a retailer who orders his products

from a supplier whose deliveries only partially satisfy the quality require-

ments. We model this situation by an infinite-horizon periodic-review model

with binomial random yield and positive lead time. We propose an order-

up-to policy based on approximating the inventory model with unreliable

supplier by a model with a reliable supplier and suitably modified demand

distribution. The performance of the order-up-to policy is verified by com-

paring it with both the optimal policy and the safety stock policy proposed

in Inderfurth & Vogelgesang (2013). Further, we extend our approximation

to a dual-sourcing model with two suppliers: the first slow and unreliable,

and the other fast and fully reliable. Compared to the dual-index order-

up-to policy for the model with full information on the yield, the proposed
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approximation gives promising results.
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1. Introduction

Rising with the prevalence of outsourcing activities, supply risk has re-

cently attracted a great deal of attention from the OR research community.

One important type of risk in outsourcing processes is the uncertainty regard-

ing the order quantities that turn out to be usable at the buyer companies.

This uncertainty is often referred to as yield uncertainty in the literature.

Many factors may lead to yield uncertainty. When goods are transported

from a global supplier or the transported goods are delicate parts, yield un-

certainty is often related to damage that occurs during transportation due

to humidity, collision and other reasons. Part of the goods received may also

fail the quality inspection of the buyers. For example, in the semiconduc-

tor industry, the yield rate may drop below 50% due to strict requirements

on quality (Grasman et al., 2007). Yield uncertainty is also encountered in

industries where production is influenced by exogenous factors, like weather

and diseases. Kazaz (2004) reports that in agriculture, the yield rate can be

as low as 30%.

Yield uncertainty significantly increases the difficulty of inventory man-

agement. Numerous papers have studied optimal or heuristic policies for

inventory systems with uncertain yield. However, few have taken into ac-

count the effect of lead time. Lead time refers to the timespan between the

moment an order is placed by the buyer and the moment when the ordered

goods are delivered. Consisting of the order processing time, production time

2



and transportation time, this period may sometimes be as long as several

months. In practice, lead times can hardly afford to be neglected, especially

in the case of global sourcing. This paper studies the inventory system of a re-

tailer with positive lead time and yield uncertainty. The retailer has a global

supplier whose deliveries only partially satisfy the quality requirements. We

study the case in which failure of different units in an order is uncorrelated

and each unit has the same probability of failing. This is often the situation

if the uncertain yield is caused by damage during transportation or failure

at quality inspection. The retailer checks his inventory level periodically and

decides on the quantity to order based on his inventory control policy. Un-

satisfied demand is fully backlogged. The number of usable units in an order

becomes known only when the order physically arrives at the retailer. The

total inventory costs of the retailer consist of the holding cost, penalty (back-

logging) cost and ordering cost. Inventory holding costs are incurred for the

items in inventory at the end of a period. On the other hand, penalty costs

are incurred when there is not enough inventory to satisfy customer demand.

For this model, we propose a simple order-up-to policy (OP) based on the

optimal policy in an approximate model with a modified demand distribu-

tion and a reliable supplier. We call this ’the OPMD heuristic’. We then

consider the case where the risk posed by the unreliable supplier is mitigated

by ordering a part of the units from a more expensive and reliable supplier.

To the best of our knowledge, this model has not been previously discussed

in the OR literature. For this model, we propose a dual-index order-up-to

policy (DOP) based on an approximate model with two reliable suppliers

and modified demand distribution (called ’the DOPMD heuristic’).

3



The remainder of the paper is organized as follows. Section 2 briefly re-

views the related literature. Section 3 formulates the single-sourcing model

with positive lead time and yield uncertainty. Subsequently, we propose a

simple order-up-to heuristic and derive the optimal order-up-to level based

on a reduction to a model with full returns. An extension of our heuristic

to a dual-sourcing model with general lead times and yield uncertainty is

presented in Section 4. Section 5 presents numerical results on the perfor-

mance of the proposed heuristics. For the single-sourcing model, we compare

our heuristic with the optimal policy and a recently proposed heuristic (In-

derfurth & Vogelgesang, 2013). In the case of dual-sourcing, we compare

the proposed heuristic and the optimal dual-index order-up-to policy for the

studied model.

2. Literature Review

Yield uncertainty has drawn extensive attention in inventory manage-

ment research in the past several decades. There are three types of random

yield that have been considered in the literature: binomial yield (Inderfurth

& Vogelgesang, 2013), stochastically proportional yield (Henig & Gerchak,

1990; Agrawal & Nahmias, 1997; Bollapragada & Morton, 1999; Inderfurth

& Transchel, 2007; Li et al., 2008; Huh & Nagarajan, 2010; Inderfurth &

Vogelgesang, 2013) and interrupted geometric yield (Inderfurth & Vogelge-

sang, 2013). Binomial yield is used when failures of different units in a batch

are uncorrelated and occur with the same probability. Stochastically propor-

tional yield, on the other hand, is used to characterize the situation in which

a random process affects whole batches, and the proportion of usable units
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in an order is a random variable. Models using interrupted geometric yield

assume that good items are generated independently with a fixed probability

until a failure occurs, and thereafter all items are defective.

Most papers consider the effect of random yield under the assumption of

zero lead time. Henig & Gerchak (1990) were among the first to study the

structure of optimal policies in single-sourcing periodic review systems with

random yield. They showed that, despite the existence of a reorder point, the

optimal order quantity is not linear in the inventory position. Bollapragada

& Morton (1999) and Inderfurth & Transchel (2007) revisited this problem

and proved that the infinite-horizon periodic-review model can be reduced

to a newsvendor problem. However, the distribution of the key variable in

the newsvendor problem depends on the order quantity in each period. They

therefore proposed several myopic heuristics. Li et al. (2008) found upper

and lower bounds for the optimal reorder point and order quantity in an

infinite-horizon model and provided valuable insights into the structure of

the optimal policies.

Among the well-performing heuristics proposed for the inventory opti-

mization problem with one unreliable supplier, many fall into the class of

’linear inflation rules’. ’Linear inflation rules’ restrict the order quantity

to a linear function of inventory position with two parameters, called the

’order-up-to level’ and the ’inflation factor’. Some of the myopic heuristics

proposed by Bollapragada & Morton (1999) fall into this class. Huh & Na-

garajan (2010) found the optimal policy within this class and proved that the

average total cost is convex in the order-up-to level for any given inflation

factor. The study of Inderfurth & Vogelgesang (2013) was one of the few to

5



consider the effect of positive lead time. The authors capture the two sources

of uncertainty (i.e. yield and demand uncertainty) by the safety stock vari-

able. Under the assumption that safety stock follows a normal distribution,

they found the optimal safety stock levels for three different types of random

yield. Inderfurth & Kiesmüller (2013) proposed two approaches to derive the

optimal and near-optimal values for the order-up-to level for a given infla-

tion factor. The first approach models the on-hand inventory by a Markov

chain and is exact for zero lead time. For general lead time, the approximate

approach is analyzed by assuming a standard or gamma distribution of the

on-hand inventory.

Dual sourcing is often used for balancing cost and service level. Whitte-

more & Saunders (1977) proved that for periodic review models and a differ-

ence in lead time between the two suppliers equal to one, the optimal policy

is a dual-index order-up-to policy. However, when the difference between

lead times is larger than one, the optimal policy is hard to derive. Several

heuristics have therefore been proposed in the literature. Veeraraghavan &

Scheller-Wolf (2008) showed that the DOP performs well in dual-sourcing

models with general lead times, and proved that for any given difference be-

tween the order-up-to levels, the optimal expedited order-up-to level can be

found by solving a specific newsvendor problem. However, for finding the

distribution of the demand in the newsvendor problem, they relied on sim-

ulation. Arts et al. (2011) proposed an approximation of this distribution,

which is exact when the difference between the order-up-to levels is one or

approaches infinity. Sheopuri et al. (2010) generalized the DOP and pro-

posed three new policies for the same model: namely, the vector base-stock
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policy, the weighted DOP and the demand allocation policy. The first two

policies use an order-up-to rule for the expedited supplier and the state in-

formation for deciding the regular order quantities. The last policy uses an

order-up-to rule for the regular supplier and allocates demand between the

two suppliers based on myopic costs. The authors show numerically that the

three policies outperform on average the optimal DOP in either cost saving

or computational time. Besides the DOP, other types of heuristics have also

been proposed. Tagaras & Vlachos (2001) considered an order-up-to policy

which places regular orders periodically to restore the inventory position to

the target level and emergency orders only when the likelihood of a stock-

out is very high. Allon & Van Mieghem (2010) studied a continuous review

inventory model with two suppliers and proposed a tailored base-surge pol-

icy for this model. The cheap, offshore supplier is considered as the ’base’

from which the buyer replenishes at a constant rate, while the responsive,

nearshore supplier acts as the ’surge’ from which the buyer replenishes only

when on-hand inventory is below a certain level. They presented bounds on

the optimal cost and an asymptotically optimal policy for a high volume sys-

tem. A simple ’square-root’ formula is presented which gives valuable insight

into how to allocate orders between the two sources.

Statement of contribution: The contributions of this paper to the litera-

ture may be summarized as follows. First, we develop a simple order-up-to

heuristic (the OPMD heuristic) for a single-sourcing model with positive lead

time and binomial yield. The proposed order-up-to level is found based on

an approximating inventory model with modified demand distribution and

reliable supplier. We show that our heuristic performs well by comparing it
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with the optimal policy and the heuristic proposed in Inderfurth & Vogelge-

sang (2013). Second, we consider the model in which an expedited, reliable

supplier is used for mitigating the risk posed by the unreliable supplier. To

the best of our knowledge, this model has not been previously studied by

the OR community. To solve it, we propose a dual-index order-up-to policy

based on an approximate model with two reliable suppliers and modified de-

mand distribution (the DOPMD heuristic). When compared to the optimal

dual-index order-up-to policy, our heuristic gives promising results.

3. The Single-Sourcing Inventory Model with Unreliable Supplier

We consider an infinite-horizon periodic-review model with an unreliable

supplier. For each order X placed with the supplier, only a binomial random

portion B(X, p) is returned, where 0 < p < 1 is the long-run average fraction

of orders being returned. We assume that p is known in advance. Demand in

different periods, denoted as Dn, n = 1, 2, · · · , is assumed to be independent

and identically distributed, with E(D) < ∞. Revealed demand is fulfilled

from on-hand inventory I, and unsatisfied demand is fully backlogged. Or-

dered items are delivered after a positive lead time l. The exact number of

units returned remains unknown until delivery. The retailer pays a variable

ordering cost c for each ordered unit. We assume zero fixed ordering cost.

Backlogged demand is charged a penalty cost b per unit per period while

inventory carried at the end of a period is charged a holding cost h per unit

per period.

The sequence of events in each period is as follows. First, on-hand in-

ventory is observed. Second, an order is placed according to the inventory
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control policy that is applied. Third, a binomial random portion of the order

placed l periods in the past arrives. Fourth, demand of this period is revealed

and fulfilled or backlogged.

We are interested in finding an efficient inventory control policy that

minimizes the long-run average total cost given by limN 7→∞

∑N
n=1 TCn

N
, with

TCn = cXn + hI+
n + bI−n ,

where Xn and In are the order placed and the on-hand inventory in period

n respectively, a+ = max(a, 0) and a− = max(−a, 0).

Notations used in this paper are summarized in Table 1.

Table 1: Notations and Descriptions

Notations Descriptions Notations Descriptions

n Period index c Per unit ordering cost

In On-hand inventory in period

n

h Inventory holding cost per

unit per period

IPn Inventory position in period n b Penalty cost per unit per pe-

riod

Xn Order placed in period n l lead time

Dn Demand in period n p Success rate of the Binomial

yield distribution

fU Probability density function

of random variable U

FU Cumulative distribution

function of random variable

U

An order-up-to policy with modified demand (the OPMD heuris-

tic)
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The optimal policy for the single-sourcing model with yield uncertainty

can in principle be found by using a Markov decision process. Due to state

space explosion of the underlying Markov chain, this approach is computa-

tionally intractable for large lead times. We therefore propose an order-up-to

heuristic with optimal order-up-to levels determined on the basis of an ap-

proximate inventory model with full returns.

Without loss of generality, we assume that the system starts with zero

items in transit; in other words, X0 = 0.

To motivate our approximation, consider the single-sourcing inventory

model described above with the order Xn+1 in period n+ 1 defined by

Xn+1 = B(Xn−l, 1− p) +Dn. (1)

Lemma 1 The sequence of orders Xn, n = 1, 2, 3, ... has a limiting distri-

bution.

Proof By using iteratively (1), we obtain

Xn+1 = Dn +B(Dn−l−1, 1− p) +B(Dn−2l−2, (1− p)2) + · · ·

=

b n
l+1c∑
k=0

Rn,k,

with Rn,k = B(Dn−k(l+1), (1 − p)k). Note that since demand in different

periods is i.i.d., the distribution of Rn,k does not depend on n. For simplicity,

we will hereafter omit the index n and refer to Rn,k as Rk. We will show that

Sm =
∑m

k=0Rk converges almost surely, which implies that Xn converges

almost surely.

The probability-generating function R̂k of Rk is given by R̂k(z) = D̂(qkz+

(1 − qk)), where qk = (1 − p)k and D̂ is the probability-generating function
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of D. Since

P (Rn+1 ≥
1

n2
) = 1− P (Rn+1 = 0)

= 1− D̂(1− (1− p)n+1)

= (1− p)n+1E(D) + o((1− p)n+1),

E(D) <∞ and 0 < p < 1, based on Borel Cantelli lemma (Proposition 2.8,

Çinlar (2011)), we can conclude that Sn converges almost surely. �

Let F∞ be the limiting distribution of Xn. Consider a sequence of in-

dependent variables Yn, n = 1, 2, ..., distributed according to F∞. We ap-

proximate the model with uncertain yield with a model with full returns and

demand in period n given by

D′n = B(Yn, 1− p) +Dn.

We call D′n the virtual demand in the model with full returns. Observe that

although the variables B(Xn, 1− p) +Dn, n = 1, 2, ... are dependent, by our

choice of Yn, the variables D′n, n = 1, 2, ... are independent.

Remark In the model with full returns, the next recursion holds

In+1 = In +D′n−l−1 −D′n,

whereas in the model with binomial return, we have

In+1 = In +B(Xn−l, p)−Dn

= In +Xn−l − [B(Xn−l, 1− p) +Dn].

When n 7→ ∞, Xn−l has the same limiting distribution as D′n−l−1 and

B(Xn−l, 1− p) +Dn the same limiting distribution as D′n.
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It is well known that in the classic model with full returns, the order-up-

to policy is optimal and that in each period, the order placed is equal to the

demand in the previous period. Therefore the next equation holds:

In = z − (D′n−l−1 +D′n−l + · · ·+D′n−1),

where z is the order-up-to level. So the optimal order-up-to level in the

approximate system can be found by solving a newsvendor problem; i.e.

z∗ = F−1

D
′(l+1)(

b

b+ h
),

where FD
′(l+1) is the cumulative distribution function of

∑l
k=0D

′
n−k for all n.

The performance of the proposed heuristic (the OPMD heuristic) in the

original problem will be tested in Section 5 by comparing it with the optimal

policy derived by dynamic programming and the safety stock policy proposed

by Inderfurth & Vogelgesang (2013).

4. The Dual-Sourcing Inventory Model with Unreliable Supplier

This section considers the inventory system of a retailer who sources from

two suppliers, a regular (r) and an expedited (e) supplier. The lead time lr of

the regular supplier is longer than the lead time le of the expedited supplier,

while the the ordering cost cr of the regular supplier is lower than the cost

ce of the expedited one. Moreover, the regular supplier has binomial random

yield, which means that, out of an order Xr
n placed with him in period n,

only a random portion B(Xr
n, p) turns out to be usable when the order is

delivered in period n + lr. On the other hand, if an order Xe
n is placed

with the expedited supplier in period n, the whole order will be delivered in
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period n + le. To the best of our knowledge, this model seems not to have

been studied before in the literature.

For the case with two reliable suppliers, Veeraraghavan & Scheller-Wolf

(2008) showed that the performance of the dual-index order-up-to policy(DOP)

is close to that of the optimal policy. This section therefore focuses on finding

the optimal DOP for the model with two suppliers (one of which is unreli-

able).

Each DOP is characterised by two order-up-to levels: one for the ex-

pedited supplier, ze, and one for the regular supplier, zr. In each period

n ≥ lr, there are lr regular and le expedited orders in the pipeline, denoted

by < Xr
n−lr , ..., X

r
n−1 >, and < Xe

n−le , ..., X
e
n−1 >, respectively. The expe-

dited inventory position in period n, IP e
n, is comprised of on-hand inventory

and all of the orders due to arrive in the next le periods, while the regular

inventory position IP r
n is comprised of on-hand inventory and all the orders

that will arrive in the next lr periods. More precisely,

IP e
n = In + (Xe

n−le + ...+Xe
n−1) + (Xr

n−lr + ....+Xr
n−l−1)

IP r
n = In + (Xe

n−le + ...+Xe
n−1) + (Xr

n−lr + ....+Xr
n−1),

where l = lr − le.

In each period n, the following sequence of events takes place. First,

an expedited order Xe
n is placed, to restore the inventory position IP e

n to

the value ze. Observe that when the size of Xe
n is decided, Xr

n−l enters the

information horizon. Thus, one first checks if there is a surplus (i.e., whether

IP e
n +Xr

n−l > ze). If this is the case, no expedited order is placed. Otherwise,

an expedited order equal to the deficit Xe
n = ze − (IP e

n + Xr
n−l) is placed.

Then the expedited order Xe
n is added to the inventory position of the regular
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supplier, IP r
n and a regular order Xr

n = zr−(IP r
n +Xe

n) is placed. Finally, the

orders due to arrive in this period, Xr
n−lr and Xe

n−le arrive. Note that since

the regular supplier is unreliable, only B(Xr
n, p) units are usable. Finally,

demand Dn is revealed and satisfied from the on-hand inventory, if available.

Unsatisfied demand is back-ordered. The inventory level is then updated and

holding or penalty costs are incurred.

In the literature, the quantity On = (IP e
n + Xr

n−l − ze)
+ is known as

the overshoot. The overshoot and the inventory positions of the regular and

expedited supplier satisfy the following equations:

IP e
n +Xr

n−l +Xe
n = ze +On (2)

IP r
n +Xe

n +Xr
n = zr. (3)

Subtracting (2) from (3), we obtain

l−1∑
k=0

Xr
n−k = zr − ze −On

and
l−1∑
k=0

E(Xr
n−k) = zr − ze − E(On).

The optimal DOP can be found by formulating the problem as a Markov

decision process. However, since a state contains all of the pipeline infor-

mation, the optimization problem becomes intractable for large lr. The next

section therefore proposes a dual-index order-up-to heuristic that can be used

for large values of lr.

A dual-index order-up-to policy with modified demand (the

DOPMD heuristic)

14



As in the single-sourcing case, we propose approximating the dual-sourcing

model with uncertain yield with a model with full returns, but with modified

demand distribution.

Note that in the dual-sourcing model with uncertain returns, the following

recursion holds:

In+1 = In +Xe
n−le +B(Xr

n−lr , p)−Dn

= In +Xe
n−le +Xr

n−lr − (Dn +B(Xr
n−lr , 1− p)).

If the variables Dn +B(Xr
n−lr , 1−p) were independent and their distribu-

tion easy to calculate, we could reduce the model with uncertain returns to

a model with full returns and demand defined as D′n = Dn +B(Xr
n−lr , 1−p).

However, a regular order depends on the orders placed in the previous lr

periods, thus making the distribution of Xr
n difficult to find. We therefore

propose using the following approximation.

Let Yn be a random variable distributed according to F∞, the limiting

distribution of the orders in a system where the only supplier is the regular

supplier. Observe that in the dual-sourcing model, Xr
n is usually smaller

than Yn, since part of the orders is delivered by the expedited supplier. We

assume that Xr
n = B(Yn, α), with α ∈ [0, 1]. Thus, each unit that would be

ordered from the regular supplier if he were the only supplier is now ordered

with probability 1 − α from the expedited supplier. To find an appropriate

α, recall that
∑l−1

k=0 E(Xr
n−k) = zr − ze − E(On). Since E(On) ≥ 0 and

E(Xr
n) = αE(Yn), it holds that αlE(Yn) ≤ zr − ze. We therefore propose

choosing α = min{ ∆
lE(Yn)

, 1}, where ∆ = zr − ze. Since the cumulative

distribution function of Yn is F∞(·), E(Yn) = E(Dn)
p

and α = min{ ∆p
lE(Dn)

, 1}.
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We are now able to describe the approximate dual-sourcing model with

full returns. In the approximate model, both retailers are assumed to be

reliable. Their costs and lead times are as in the initial model. We define

the demand in period n as

D′n = Dn +B(Yn, α(1− p))., (4)

where α = min{ ∆p
lE(Dn)

, 1}. Since the variables Yn are independent and iden-

tically distributed, so are the variables D′n, n = 1, 2, · · · .

It has been proven that for any fixed ∆, the optimal expedited order-up-

to level in the dual-sourcing model with full returns can be found by solving

a newsvendor problem (Veeraraghavan & Scheller-Wolf, 2008); i.e.

z∗e = F−1

D
′(le+1)−O(

b

b+ h
),

where FD
′(l+1)−O is the cumulative distribution function of

∑l
k=0 D

′
n−k−On−l

for all n. As in Veeraraghavan & Scheller-Wolf (2008), for each ∆, we de-

rive the distribution of On by simulation and then determine the optimal

expedited order-up-to level and the optimal total cost. Subsequently, we use

one-dimensional search to find the optimal value for ∆. Note that, in order

to reduce computation times, the distribution of On could also be approxi-

mated as described in Arts et al. (2011). This is, however, not the focus of

this paper.

Section 5 testifies to the performance of DOPMD by comparing it with

optimal DOP for the given model.
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5. Numerical Results

This section presents numerical results on the performance of the pro-

posed heuristics for the single- and dual-sourcing models.

5.1. Performance of the Heuristic for the Single-Sourcing Model(the OPMD

Heuristic)

To study the influence of the parameters on the performance of the OPMD

heuristic, we construct 74 different scenarios. We start with a base case in

which the parameters take the values h = 5, c = 150, l = 2, p = 0.8, b = 495

and D ∼ U{0, 1, · · · , 4}1. Subsequently, we vary the values of one or two

parameters and keep the others as in the base case. The optimal order-up-to

level for the OPMD heuristic is found by solving the newsvendor problem

in the approximate model with full returns. The average total cost for the

given optimal order-up-to level is calculated as the long-run average cost of

the underlying Markov chain. For small instances, we compare the OPMD

heuristic with both the optimal policy and the safety stock policy proposed

in Inderfurth & Vogelgesang (2013). The optimal policy is derived by using

dynamic programming. For large instances, we only compare the OPMD

heuristic with the safety stock policy.

Sections 5.1.1 to 5.1.4 study respectively the impact of lead time, yield

rate, penalty cost and demand distribution on the performance of the OPMD

heuristic. To keep the dynamic program tractable, we focus on discrete de-

mand distributions with bounded support. As b, h > 0, we restrict the

backlogs and on-hand inventory to [0, d (l+1)Dmax

p
e], where Dmax denotes the

1U{0, 1, · · · , n} denotes the discrete uniform distribution on {0, 1, · · · , n}
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maximum demand and dxe denotes the minimum integer that is larger than

or equal to x. Notice that the probability of the backlog being larger than

d (l+1)Dmax

p
e is smaller than (Pr(D = Dmax))(l+1) and that of the on-hand in-

ventory being larger than d (l+1)Dmax

p
e is smaller than (Pr(D = 0))(l+1). The

order quantity is restricted to [0, d2Dmax

p
e]. Note that since every ordered

unit is returned with probability p, the expected number of units that need

to be ordered to get one unit returned is 1
p
. Hence, the probability of order

quantity exceeding d2Dmax

p
e is very small. Moreover, in all of our numeri-

cal experiments, the order quantities in the optimal policy did not exceed

d2Dmax

p
e.

5.1.1. Impact of Yield Rate

Next we examine the performance of the OPMD heuristic under different

yield rates. We vary p ∈ {0.4, 0.6, 0.8, 1} and D ∼ U{0, 1, · · · , n}, n = 2, 4

and compare the performance of the OPMD heuristic, the optimal policy and

the safety stock policy. The results are shown in Table 2. The average relative

difference between the OPMD heuristic and the optimal policy is 0.97% and

the maximum difference is 2.35%. As shown in column 4 of Table 2, the

performance of the OPMD heuristic improves when the yield rate increases.

This is due to the fact that the OPMD heuristic assumes independent virtual

demands, which holds if orders from different periods are independent. When

the yield rate is high, the unreturned order quantities are relatively small,

which leads to less correlation among orders.

On the other hand, the performance of the safety stock policy improves

when the yield rate decreases, which can be seen in column 5 of Table 2. The

average and maximum difference between the safety stock and the optimal

18



Table 2: Impact of yield rate

(h=5, l=2, b=495, c=150)

Optimal policy OPMD Safety stock policy

p Demand dist. Average total cost % above optimal % above optimal

0.4 U{0,1,2} 400.08 2.35 0.31

0.6 U{0,1,2} 273.01 1.53 0.76

0.8 U{0,1,2} 208.11 0.71 1.06

1 U{0,1,2}] 165.00 0.00 3.86

0.4 U{0,1,2,3,4} 789.94 1.68 0.52

0.6 U{0,1,2,3,4} 537.07 1.11 0.85

0.8 U{0,1,2,3,4} 408.87 0.40 1.50

1 U{0,1,2,3,4} 329.00 0.00 2.00

policy are 1.36% and 3.86%, respectively. As the results in Table 2 indicate,

when the yield rate is relatively high, our heuristic performs better than

the safety stock policy. The reverse seems to hold for low yield rates. The

same patterns hold for the larger instances shown in Table 3, where D ∼

U{0, 1, ..., 8}, l ∈ {2, 4, 8, 20} and p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Note that for

these instances, since the state space of the dynamic program grows too large,

we only compare the OPMD heuristic with the safety stock policy.

5.1.2. Impact of Lead Time

To study the impact of lead time on the performance of the OPMD heuris-

tic, we first compare it with the optimal and the safety stock policy in small

instances. For this, we modify the base case by first taking D ∼ U{0, 1, 2}

and l ∈ {1, 2, 4, 6, 7} and then D ∼ U{0, 1, 2, 3, 4} and l ∈ {1, 2, 4, 6}. The

results appear in Table 4. For larger lead times, due to state space explo-
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Table 3: Impact of yield rate and lead time

(h = 5, b = 495, c = 150, D ∼ U{0, 1, · · · , 8})

OPMD Safety stock policy

l p Average total cost % above proposed heuristic

2 0.1 6171.94 -1.46

2 0.3 2101.52 -1.06

2 0.5 1278.58 -0.09

2 0.7 922.49 1.07

2 0.9 723.02 2.21

4 0.1 6216.61 -1.85

4 0.3 2129.63 -1.46

4 0.5 1301.46 -0.46

4 0.7 942.59 0.72

4 0.9 743.11 1.73

8 0.1 6273.50 -2.25

8 0.3 2174.27 -2.14

8 0.5 1336.58 -0.97

8 0.7 973.78 0.20

8 0.9 771.22 1.14

20 0.1 6405.41 -3.23

20 0.3 2263.68 -3.22

20 0.5 1409.05 -1.84

20 0.7 1036.35 -0.38

20 0.9 827.79 0.55

sion, it is computationally intensive to find the optimal policy by dynamic

programming. For these instances, we therefore only compare the OPMD

heuristic with the safety stock policy. The results are summarized in Table
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3.

The average and maximum difference (over all nine scenarios in Table 4)

between the OPMD heuristic and the optimal policy is 0.49% and 0.89%,

respectively. We observe that the OPMD heuristic deviates slightly less from

the optimal policy when lead time increases. To explain this, recall that the

OPMD heuristic assumes independent virtual demands, and hence, indepen-

dent order quantities in the original model. Since an order depends only on

the orders placed k(l+ 1) periods in the past, with k ≥ 1, the larger the lead

time, the less is the correlation among different orders. Moreover, we notice

that the performance of the OPMD heuristic seems insensitive to changes in

lead time. On the other hand, as column 5 in Table 4 shows, the safety stock

policy performs significantly better for larger lead times.

To examine the performance of the OPMD heuristic for larger lead times,

we refer to the rows corresponding to l ∈ {8, 20} in Table 3. As column 4 in

Table 3 indicates, the safety stock policy outperforms our heuristic for large

lead times and relatively low yield rates. The reverse seems to hold for large

lead times and high yield rates (p = 0.9).

5.1.3. Impact of Penalty Cost

In order to study the influence of the penalty cost, we set b ∈ {5, 15, 95, 495}.

Note that the penalty cost influences the optimal order-up-to level through

the optimal fractile in the newsvendor problem in the model with full re-

turns. For h = 5, the optimal fractile b
b+h
∈ {0.5, 0.75, 0.95, 0.99}. Moreover,

we vary the value of the ordering cost in c ∈ {5, 10, 50, 150}. As can be

seen in Table 5,the deviation of the OPMD heuristic from the optimal policy

increases, in general, when the penalty cost (the optimal fractile) increases.
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Table 4: Impact of lead time

(h=5, p=0.8, b=495 and c=150)

Optimal policy OPMD Safety stock policy

l Demand dist. Average total cost % above optimal % above optimal

1 U{0,1,2} 203.56 0.89 2.00

2 U{0,1,2} 208.11 0.71 1.06

4 U{0,1,2} 214.76 0.60 0.98

6 U{0,1,2} 220.04 0.47 0.29

7 U{0,1,2} 222.37 0.44 0.32

1 U{0,1,2,3,4} 401.62 0.36 1.82

2 U{0,1,2,3,4} 408.87 0.40 1.50

4 U{0,1,2,3,4} 419.92 0.28 1.26

6 U{0,1,2,3,4} 428.68 0.24 0.51

However, when the penalty cost is much lower than the ordering cost (e.g.

b = 5, c = 50, 150 and b = 15, c = 150), the OPMD heuristic leads to a large

deviation from the optimal policy. This phenomenon can also be seen when

the safety stock policy is applied. The reason is that the optimal policy is

influenced by the ordering costs, while both the OPMD heuristic and the

safety stock policy are not. When the ordering cost is much higher than the

penalty cost, it is more cost-efficient to backlog demand and incur penalty

cost than to order. Neither of the heuristics takes this aspect into account. If

we exclude the three exceptional cases, the average deviation of the OPMD

heuristic from the optimal policy is 1.20%, with the maximum being 3.46%,

while the average deviation of the safety stock policy is 6.36%, with the

maximum being 14.70%. The OPMD heuristic outperforms the safety stock

policy in all cases shown in Table 5.
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Table 5: Impact of penalty cost

(h=5, l=2, p=0.8 and D ∼ U{0, 1, 2, 3, 4})

Optimal policy OPMD Safety stock policy

b c Average total cost % above optimal % above optimal

5 5 23.29 1.15 6.06

15 5 29.65 1.39 8.11

95 5 39.62 1.78 13.01

495 5 46.37 3.46 14.70

5 10 35.79 0.85 2.76

15 10 42.15 1.08 5.65

95 10 52.12 1.44 9.88

495 10 58.87 2.69 12.00

5 50 65.00 109.38 111.12

15 50 142.15 0.32 0.89

95 50 152.12 0.49 3.85

495 50 158.87 0.90 4.40

5 150 65.00 493.05 498.63

15 150 195.00 101.01 102.66

95 150 402.12 0.03 1.43

495 150 408.87 0.40 1.50

5.1.4. Impact of Mean, Variance and Skewness of Demand Distribution

This section examines the influence of the demand distribution on the

performance of the OPMD heuristic, by varying its mean, variance and

skewness. In order to study the impact of mean, we choose demand dis-

tributions with the same variance and skewness but different means. For

k, n ∈ Z+ and k ≤ n, let U{n− k, n, n+ k} denote the distribution given by

Pr(D = n − k) = Pr(D = n) = Pr(D = n + k) = 1/3. The skewness of
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this distribution is equal to 0. When k = 1, the variance of the distribution

is 2
3

and when k = 2, the variance of the distribution equals 8
3
. Table 6 con-

tains the detailed results for this demand distribution. the OPMD heuristic

seems robust under changes in mean demand, with an average deviation from

the optimal policy of 0.41% and a maximum deviation of 0.67%. Moreover,

the performance of the OPMD heuristic slightly improves when the mean

demand increases.

Table 6: Impact of Mean Demand

(h=5, b=495, c=150, l=2 and p=0.8)

Optimal policy OPMD Safety stock policy

Demand dist. Mean Variance Average total cost % above optimal % above optimal

U{0,1,2} 1 2/3 208.15 0.66 0.92

U{1,2,3} 2 2/3 400.77 0.49 1.79

U{2,3,4} 3 2/3 588.73 0.26 0.37

U{3,4,5} 4 2/3 778.60 0.23 0.27

U{0,2,4} 2 8/3 412.33 0.59 0.17

U{1,3,5} 3 8/3 601.52 0.44 0.08

U{2,4,6} 4 8/3 790.80 0.34 0.05

U{3,5,7} 5 8/3 979.96 0.27 0.08

Next we change the variance of the demand distribution while keeping

constant the mean and the skewness. The results shown in Table 7 testify

that the performance of the OPMD heuristic is also robust against demand

variability. The average deviation from the optimal policy is 0.45% and

the maximum deviation is 0.88%. In our experiments, the OPMD heuristic

outperforms the safety stock policy for small demand variances (var(D) ∈

{0, 2/3}), while the safety stock policy gives better results for larger demand
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variability (var(D) ≥ 1).

Table 7: Impact of Variance of Demand

(h=5, b=495, c=150, l=2 and p=0.8)

Optimal policy OPMD Safety stock policy

Demand dist. Mean Variance Average total cost % above optimal % above optimal

U{1} 1 0 198.11 0.88 4.35

U{0,1,2} 1 2/3 208.15 0.66 0.92

U{0,2} 1 1 210.79 0.75 0.21

U{2} 2 0 391.01 0.49 0.85

U{1,2,3} 2 2/3 400.77 0.49 1.79

U{0,1,2,3,4} 2 2 408.87 0.37 0.15

U{0,2,4} 2 8/3 412.33 0.44 0.08

U{0,4} 2 4 417.00 0.46 0.28

U{3} 3 0 582.12 0.23 1.32

U{2,3,4} 3 2/3 588.73 0.26 0.37

U{1,2,3,4,5} 3 2 598.22 0.29 0.15

U{1,3,5} 3 8/3 601.52 0.44 0.07

U{1,5} 3 4 605.45 0.65 0.27

U{0,6} 3 9 621.57 0.76 0.72

U{4} 4 0 772.56 0.16 0.76

U{3,4,5} 4 2/3 778.60 0.23 0.27

U{2,3,4,5,6} 4 2 787.56 0.28 0.14

U{2,4,6} 4 8/3 790.80 0.35 0.03

U{2,6} 4 4 795.01 0.44 0.13

In the end, we examine the influence of the skewness of demand dis-

tribution by choosing D ∼ NB(r, q), where NB(r, q) denotes the negative

binomial distribution with r being the number of failures until the exper-
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iment stops and q being the probability of success for each trial. In our

experiments, we vary r ∈ {1, 2, 4, 6} and q ∈ {0.2, 0.4}. In order to acquire

distributions with different skewness, we truncate NB(r, 0.2) to take values

in [0, r] and NB(r, 0.4) to take values in [0, 4r/3]. The skewness for the

truncated distributions is shown in column 2 of Table 8. As can be seen in

column 4, the performance of the OPMD heuristic is robust against changes

in the skewness of the demand distribution. The average deviation in average

total costs from the optimal policy is 0.33%, while the maximum deviation is

0.70%. Compared with the safety stock policy, the OPMD heuristic performs

better when the skewness is negative and has a large absolute value. When

skewness is positive and has a small absolute value, the safety stock policy

outperforms the OPMD heuristic.

Table 8: Impact of Skewness of Demand

(h=5, b=495, c=150, l=2 and p=0.8)

Optimal policy OPMD Safety stock policy

Demand dist. skewness Average total cost % above optimal % above optimal

NB(1,0.2) -23.44 163.45 0.34 0.51

NB(2,0.2) -34.91 364.90 0.39 0.81

NB(4,0.2) -159.86 761.98 0.17 0.40

NB(6,0.2) -934.14 1148.30 0.18 0.52

NB(1,0.4) 0.87 162.21 0.70 0.86

NB(2,0.4) 0.11 363.86 0.32 0.26

NB(4,0.4) 0.02 772.82 0.29 0.08

NB(6,0.4) 0.01 1177.3 0.25 0.12
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5.2. Performance of the Heuristic for the Dual-Sourcing Model (the DOPMD

heuristic)

This section studies the performance of the DOPMD heuristic by com-

paring it with the optimal dual-index order-up-to policy (the optimal DOP)

for the studied model. The reason for using it as a benchmark is twofold:

first, deriving the optimal policy for the dual-sourcing model with general

lead times and random yield is computationally intensive even for small lead

times and demand; second, the DOP has been proven to have a near optimal

performance in dual-sourcing models with general lead times (Veeraragha-

van & Scheller-Wolf, 2008). The optimal DOP is derived by using the two-

dimensional search on both the expedited and the regular order-up-to levels.

For each pair of the order-up-to levels, we run the simulation until either the

95% confidence intervals for both the expected on-hand inventory and the

expected backlogged demand are smaller than 0.025 or the standard error is

below 0.001 times the expected value for both the on-hand inventory and the

backlogged demand. For our heuristic, the order-up-to levels are found by

applying the solution procedure proposed in Veeraraghavan & Scheller-Wolf

(2008) to a dual-sourcing model with full returns and modified demand de-

fined by equation (4). When deriving the distribution of the overshoot, we

run the simulation until either the 95% confidence interval for the expected

overshoot is smaller than 0.01 or the standard error is less than 0.001 times

the expected value for the overshoot. The average total costs, corresponding

to these order-up-to levels are also derived by simulation. The stopping cri-

terion is the same as described above for the optimal DOP. One could also

derive the average costs from the underlying Markov process; however, since
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the state space includes information on both regular and expedited orders

in transit, the dynamic program becomes computationally intractable. Since

we rely on simulation, the average total costs obtained by the heuristic may

occasionally be slightly smaller than those obtained by the optimal DOP.

As in Section 5.1, we start with a base case and construct 32 scenarios by

modifying one or two of its parameters. In the base case, we choose le = 1,

lr = 2, cr = 100, ce = 150, h = 5, b = 495, p = 0.8 and D ∼ Pois(2), where

Pois(λ) denotes the Poisson distribution with mean λ. We fix the values of

h, ce and le in all instances, and then study the respective impact of cr, p, lr,

b and demand on the performance of the DOPMD heuristic. The parameter

values used in this section are summarised in Table 9.

Table 9: Parameter values in the dual-sourcing model

Parameter Values

fD Poisson(λ), λ ∈ {2, 4, 6, 8}

lr 2, 4, 6, 8

cr 10, 40, 70, 100, 130

b 5, 7.5, 9, 12, 15, 95, 495

p 0.6, 0.7, 0.8, 0.9, 1

Impact of yield rate

We begin by examining the impact of yield rate on the performance of the

DOPMD heuristic by taking p ∈ {0.6, 0.7, 0.8, 0.9, 1}, lr ∈ {2, 4} and all of the

other parameters as in the base case. The results appear in Table 10. As can

be seen in column 8, the maximum deviation of the DOPMD heuristic from
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the optimal DOP is 1.64%, while the average deviation is 0.66%. Column

3, 4, 6 and 7 indicate the expected regular and expedited order quantities

for the optimal DOP and the DOPMD heuristic. As can be seen in these

four columns, when p = 0.6 and lr ∈ {2, 4}, both the optimal DOP and the

DOPMD lead to single-sourcing from the expedited supplier, in which case

they lead to the same results. When p = 0.7 and lr = 2, the optimal DOP

chooses dual-sourcing while the DOPMD heuristic uses single-sourcing from

the regular supplier. When p = 0.7 and lr = 4, although both the optimal

DOP and the DOPMD use both suppliers, the optimal DOP relies more on

the regular supplier while the DOPMD relies more on the expedited one.

In these two cases (i.e. row 2 and 7 of Table 10), the DOPMD heuristic

leads to a relatively large deviation from the optimal DOP. For p > 0.7 and

lr ∈ {2, 4}, both the optimal DOP and the DOPMD heuristic derive that

single-sourcing from the expedited supplier is optimal and lead to similar

average total costs.

Impact of regular lead time

To analyze the influence of the regular lead time, we take lr ∈ {2, 4, 6, 8},

b ∈ {95, 495} and the other parameters as in the base case. The results are

reported in Table 11. As can be seen in column 8, the maximum deviation

of the DOPMD heuristic from the optimal DOP is 2.45%, while the average

deviation is 0.74%. The regular lead time seems to have no significant effect

on the performance of the DOPMD heuristic. The reason is that for all of

the cases except row 6 in Table 11, the difference between the average total

costs of the optimal DOP and the DOPMD is below 1%. Since in row 6, the
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Table 10: Impact of yield rate

(cr=100, b = 495 and D ∼ Pois(2))

Optimal DOP DOPMD

lr p E(Xr) E(Xe) Average total cost E(Xr) E(Xe) % above optimal DOP

2 0.6 0.00 2.00 329.98 0.00 2.00 0.03

2 0.7 2.18 2.48 324.02 2.86 0.00 1.64

2 0.8 2.42 0.06 289.19 2.50 0.00 0.78

2 0.9 2.21 0.00 259.53 2.23 0.00 0.39

2 1 1.98 0.00 233.89 2.00 0.00 1.41

4 0.6 0.00 2.00 328.71 0.00 2.00 0.82

4 0.7 1.74 0.78 325.77 0.63 1.56 1.04

4 0.8 2.31 0.15 294.67 2.44 0.05 0.52

4 0.9 2.13 0.09 266.96 2.12 0.09 -0.03

4 1 2.00 0.00 243.33 1.95 0.05 -0.01

expected order quantities of the optimal DOP and the DOPMD are close to

each other, the large difference in the average total costs might be caused by

the confidence interval in simulation.

As can be seen in column 3, 4, 6 and 7, as the regular lead time increases,

the expected expedited order quantity increases slightly while the expected

regular order quantity decreases.

Impact of penalty cost

This part studies the influence of the penalty cost as well as the op-

timal fractile on the performance of the DOPMD heuristic. For this we

take b ∈ {5, 7.5, 12, 15, 95, 495}, which results in an optimal fractile b
b+h
∈

{0.5, 0.6, 0.75, 0.95, 0.99} for the newsvendor problem in the approximate
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Table 11: Impact of regular lead time

(cr=100, p = 0.8 and D ∼ Pois(2))

Optimal DOP DOPMD

b lr E(Xr) E(Xe) Average total cost E(Xr) E(Xe) % above optimal DOP

495 2 2.42 0.06 289.19 2.50 0.00 0.73

495 4 2.31 0.15 294.67 2.44 0.05 0.41

495 6 2.11 0.31 296.93 2.35 0.12 0.59

495 8 2.07 0.34 297.50 2.33 0.13 0.90

95 2 2.46 0.00 278.93 2.50 0.00 0.81

95 4 2.41 0.00 282.12 2.50 0.00 2.45

95 6 2.35 0.12 288.33 2.40 0.08 0.14

95 8 1.86 0.46 287.27 2.37 0.08 -0.09

model with full returns. Recall that the optimal fractile influences the ex-

pedited order-up-to level as z∗e = F−1

D
′(le+1)−O( b

b+h
). As column 7 shows, the

DOPMD heuristic has an average deviation of 1.20% and a maximum devi-

ation of 2.34% compared with the optimal DOP. Moreover, as can be seen

from column 2, 3, 5 and 6, the penalty cost has no impact on the order

quantities. Both the optimal DOP and the DOPMD heuristic derive single-

sourcing from the regular supplier as the optimal and lead to similar expected

regular order quantities for all values of b.

Impact of regular ordering cost

To examine the impact of the regular ordering cost, we vary in the base

case cr ∈ {10, 40, 70, 100, 130} and b ∈ {95, 495}. The results appear in Table

13. The average deviation of the DOPMD heuristic from the optimal DOP is
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Table 12: Impact of penalty cost

(lr=2, cr=100, p = 0.8 and D ∼ Pois(2))

Optimal DOP DOPMD

b E(Xr) E(Xe) Average total cost E(Xr) E(Xe) % above optimal DOP

5 2.47 0.00 258.36 2.50 0.00 1.12

7.5 2.47 0.00 260.71 2.49 0.00 0.74

9 2.44 0.00 259.87 2.49 0.00 2.37

12 2.46 0.00 262.47 2.50 0.00 2.14

15 2.49 0.00 266.48 2.50 0.00 0.15

95 2.46 0.00 278.93 2.50 0.00 1.07

495 2.42 0.06 289.19 2.50 0.00 0.79

0.96%, while the maximum deviation is 2.17%. As can be seen from column

3, 4, 6 and 7 of Table 13, when cr ∈ {10, 40, 70, 100} and b ∈ {95, 495}, both

the optimal DOP and the DOPMD heuristic lead to single-sourcing from

the regular supplier and similar expected regular order quantities. When cr

increases to 130, both policies switch to single-sourcing from the expedited

supplier and lead to similar average total costs.

Impact of demand distribution

To examine the robustness of the DOPMD heuristic under different de-

mand distributions, we change in the base case D ∼ Pois(λ), λ ∈ {2, 4, 6, 8}.

We focus on the Poisson distribution because it is commonly used in the liter-

ature and is considered to be a good approximation of the demand processes

in practice. The results are shown in Table 14. As can be seen in col-

umn 7, the maximum and average deviation of the DOPMD heuristic from
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Table 13: Impact of regular ordering cost

(lr=2, p = 0.8 and D ∼ Pois(2))

Optimal DOP DOPMD

b cr E(Xr) E(Xe) Average total cost E(Xr) E(Xe) % above optimal DOP

495 10 2.50 0.00 65.78 2.50 0.00 1.30

495 40 2.51 0.01 139.75 2.50 0.00 1.25

495 70 2.46 0.00 213.39 2.50 0.00 1.67

495 100 2.42 0.06 289.19 2.51 0.00 1.05

495 130 0.00 2.00 332.24 0.00 2.00 -0.23

95 10 2.54 0.00 54.45 2.50 0.00 2.17

95 40 2.47 0.00 129.70 2.49 0.00 0.49

95 70 2.48 0.00 203.81 2.50 0.00 0.93

95 100 2.47 0.00 278.93 2.49 0.00 0.48

95 130 0.00 2.00 319.17 0.00 1.98 0.52

the optimal DOP are 0.83% and 2.44%, respectively. Moreover, although

both policies lead to single-sourcing from the regular supplier, the DOPMD

heuristic seems to always have a higher expected regular order quantity.

Table 14: Impact of demand distribution

(lr=2, cr=100, p = 0.8 and b = 495)

Optimal DOP DOPMD

λ E(Xr) E(Xe) Average total cost E(Xr) E(Xe) % above optimal DOP

2 2.42 0.06 289.19 2.49 0.00 0.44

4 4.94 0.00 548.91 5.02 0.00 2.39

6 7.22 0.14 811.37 7.43 0.00 0.24

8 9.94 0.00 1069.25 10 0.00 0.81
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6. Conclusions and Discussion

This paper studies both the single-sourcing and dual-sourcing inventory

models with positive lead times and random yield. Yield uncertainty has

rarely been considered in models with positive lead times and never in the

dual-sourcing model with general lead times, which is the contribution of

this paper. For both models, we propose simple order-up-to heuristics. The

optimal order-up-to levels are derived based on approximate models with full

returns and modified demand distributions. Numerical results show that the

performance of the proposed heuristic in the single-sourcing model is close

to that of the optimal policy. Compared to the safety stock policy recently

proposed by Inderfurth & Vogelgesang (2013), our heuristic seems to perform

better than the safety stock policy when the yield rate is high or the lead

time is small. For the dual-sourcing model, the numerical results indicate

that the proposed heuristic gives, in most cases, results close to the optimal

DOP. Moreover, the performance is robust with respect to changes in the

main parameters.
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