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Abstract 

 

This paper shows the importance of correcting for sample selection when investing in illiquid 

assets with endogenous trading. Using a large sample of 20,538 paintings that were sold 

repeatedly at auction between 1972 and 2010, we find that paintings with higher price 

appreciation are more likely to trade. This strongly biases estimates of returns. The selection-

corrected average annual index return is 7 percent, down from 11 percent for traditional 

uncorrected repeat-sales regressions, and Sharpe Ratios drop from 0.4 to 0.1. From a pure 

financial perspective, passive index investing in paintings is not a viable investment strategy, 

once selection bias is accounted for. Our results have important implications for other illiquid 

asset classes that trade endogenously. 
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For the last two decades, investors are allocating increasingly larger shares of their portfolios to 

alternative assets. Many of the alternative asset classes, such as private equity and real estate, and 

even certain traditional assets such as corporate bonds, are highly illiquid. This complicates 

return evaluation, especially when trades are endogenously related to the performance of the 

asset. Endogenous trading gives rise to a sample selection problem. This paper demonstrates the 

empirical first-order importance of correcting for sample selection when evaluating performance 

and constructing optimal portfolios that include alternative assets.  

 Among the alternative assets, paintings (and other collectibles) are often considered a 

comparatively safe investment in times of financial turmoil (Dimson and Spaenjers, 2011). 

Finding low or negative correlations between art
1
 and public equity markets, a growing body of 

academic research argues that art investments should be included in optimal asset allocations 

(see, for example, Mei and Moses, 2002; Taylor and Coleman, 2011). Indeed, investors allocate 

about 6 percent of their total wealth to so-called passion investments
2
, and several art funds have 

been created to allow for diversified investments in art. 

The returns and risks of art investments are, however, not beyond debate, and indeed not 

well known. Constructing an art index and computing the return to art investing is a non-trivial 

exercise, as prices are not observed at fixed intervals, but only when the artwork trades. 

Goetzmann (1993, 1996) argues that these trades are endogenous, and he conjectures that 

paintings that have appreciated in value are more likely to come to market, resulting in high 

observed returns for paintings that sell, relative to the population. As a result, the observed price 

appreciation is not representative of the entire market for paintings. In fact, in periods with few 

                                                 
1
 Following the literature, we use the “art” and “paintings” interchangeably throughout the paper. 

2
 See the article “Follow your heart” in the Wall Street Journal on September 20, 2010. Passion investments include 

art, wine, and jewelry. 
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trades, it is possible to observe high and positive returns even though overall values of paintings 

are declining. 

We present an econometric model of art indices, based on the framework developed by 

Korteweg and Sorensen (2010, 2012), that generalizes the standard repeat-sales regression (RSR; 

see Bailey et al. (1963) and Case and Shiller (1987)) to correct for selection bias in the sample of 

observed sales. This model explicitly specifies the entire path of unobserved valuation and 

returns between sales, as well as the probability of observing a trade at each point in time, and 

estimates the selection-corrected price for each individual artwork at each point in time, even 

when it is not traded. We estimate the model using a unique proprietary auction database from 

which we construct one of the largest samples of repeat-sales of paintings in the literature to date, 

with 20,538 paintings being sold a total of 42,548 times between 1972 and 2010. 

We find that selection bias is of first-order importance. Paintings are indeed more likely to 

sell when they have risen in value, consistent with Goetzmann’s hypothesis. The difference 

between our selection-corrected index and the standard (non-corrected) RSR index is 

economically and statistically large, and robust across specifications. Normalizing indices at 100 

in 1972, the RSR index is around 4,300 in 2010, the end of our sample period, whereas the 

selection-corrected index ends around 1,000 to 1,300, depending on the specification of the 

selection model. This finding is in line with findings in the real estate markets, where Case et al. 

(1997) and Korteweg and Sorensen (2012) show that appreciating properties trade faster. 

The selection correction has important implications for asset allocation decisions. The 

annual return to the standard RSR art index over the period 1972 to 2010 is on average 11 

percent, with volatility of 13 percent, a Sharpe Ratio of 0.4, and a negative correlation with 

equity returns. Given these statistics, a mean-variance investor would allocate twice as much of 
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her portfolio to art compared to public equities. She would appear to earn a portfolio Sharpe 

Ratio of 0.5, which is considerably higher than the Sharpe Ratio of 0.3 on a portfolio of equities 

only.  

However, these returns are not what a passive art investor earns, unless she is able to pick a 

portfolio of “winners” that rise in value in similar fashion to the paintings that come to auction 

(such that the RSR index is representative for her portfolio). Instead, it is the selection-corrected 

returns that are more representative for the experience of an investor who has invested in a well-

diversified, passive portfolio of paintings. After correcting for selection bias, we find an average 

annual art index return of 7 percent, four percentage points lower than the non-corrected index. 

The selection-corrected Sharpe Ratio is down to 0.1, and the correlation with stock market 

returns is virtually zero. This makes art a less attractive investment, and the resulting optimal 

portfolio weight on art is less than half the weight on stocks, with no meaningful improvement in 

portfolio Sharpe Ratios relative to a portfolio of only stocks.  

Our model also allows us to separately assess various styles of paintings. We distinguish 

between five styles: Post-war and Contemporary, Impressionist and Modern, Old Masters, 

American, and 19
th

 Century European. In addition, we consider returns to top selling artists. 

Although we observe interesting differences between the selection-corrected returns per style, 

and positive portfolio allocations to either Post-war/Contemporary paintings or paintings from 

top artists, no single style receives non-zero allocations that are robust across all specifications. 

To our knowledge, this is the first paper to show the statistical and economic importance of 

selection effects for price indices of collectibles, and the first to show the importance of selection 

bias for performance evaluation and portfolio allocation for any asset class. A number of papers 

in the literature estimate art returns and assess their usefulness for optimal portfolio construction 
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without accounting for selection bias (see Ashenfelter and Graddy (2003) for an excellent 

overview of this literature, including estimates of art returns from both RSR and hedonic indices 

in their Table 1). Mei and Moses (2002) and more recently Taylor and Coleman (2011) find that 

art has attractive characteristics for diversifying investment portfolios, while Renneboog and 

Spaenjers (2013) estimate average returns that are somewhat lower than the prior literature.  

We should note that this paper takes a passive investor view of art index investing. As in 

real estate, for example, most individuals cannot afford a diversified exposure to the art market 

through the purchase of individual paintings, and investing in an index is a feasible alternative. 

With this view, we ignore any aesthetic return on art, i.e., we assume no consumption utility of 

owning art, since the investor does not have access to the artworks underlying the index. In 

addition, in order to focus on the effect of selection bias on portfolio weights, we ignore certain 

frictions in the art market such as transaction costs, insurance costs, and illiquidity costs (see 

Ang et al., 2013). These frictions all make art less attractive and thus reinforce our main result 

that there is little benefit from passively investing in paintings. Our result is also robust to 

considering higher order moments of art index returns, such as skewness and kurtosis. 

Our paper focuses on repeat-sales regressions, but the sample selection problem is also 

important for other price indices that are estimated from sales or auction data, such as the 

hedonic price index: if artworks that are sold are not representative for the underlying population, 

then shadow prices estimated from those sales will be biased upwards from their true values in 

the population. The impact of selection bias on returns in hedonic regressions is an important 

issue for future work. 

Finally, the results in this paper suggest that sample selection in performance evaluation 

and portfolio allocation is of first-order importance in illiquid markets with endogenous trading, 
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and exploring the strength of this effect in other asset classes is an important avenue for future 

research. 

The remainder of the paper is organized as follows. In Section 1, we describe our model for 

prices and trades of artworks. Section 2 presents a description of our data. We discuss the art 

indices in Section 3, both with and without correcting for sample selection, and perform 

additional tests on the existence and strength of the selection problem in Section 4. In Section 5 

we analyze optimal asset allocations, and Section 6 concludes.  

 

1. A selection model of prices and sales of artworks 

1.1. Selection model 

We decompose the log return of an artwork, i, from time t-1 to t, into two components, 

                   (1)  

The first return component,     , is the log price change of the aggregate art market from 

time t-1 to t. We show below how to use the time series of   to construct a price index for the 

market. The second return component,      , is an idiosyncratic return that is particular to the 

individual artwork. We assume that   has a normal distribution with mean zero and variance   , 

and is independent over time and across artworks.  

If we observe sales of artworks at both time t-1 and t, then the returns are observed, and 

estimation is straightforward. However, art is sold very infrequently. Typically, years pass 

between consecutive sales. With a sale at time t-h and at time t, the observed h-period log return 

is derived from the single-period returns in equation (1) by summation:  

 

  
          

 

       

   
      (1)  
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The error term   
     is normally distributed with mean zero and variance    . By defining 

indicator variables for the periods between sales, the  ’s can be estimated by standard GLS 

regression techniques, scaling return observations by      to correct for heteroskedasticity. This 

is the repeat-sales regression (RSR) technique that is standard in the literature (Bailey et al., 1963, 

and Case and Shiller, 1987).  

The   estimates are consistent as long as the indicator variables in the RSR regression are 

uncorrelated with the error term, i.e., if the probability of a sale is unrelated to the idiosyncratic 

return component. However, in their survey of the literature, Ashenfelter and Graddy (2003) 

highlight the concern that art prices may be exacerbated during booms as “better” paintings may 

come up for sale. Similarly, Goetzmann (1993, 1996) argues that selection biases are important 

in art data because the decision by an owner to sell a work of art may be conditional on whether 

or not the value of the artwork has increased. 

To correct the repeat-sales model for selection bias of this nature, we specify the sales 

behavior of art following the model of Korteweg and Sorensen (2010, 2012) that was developed 

for Venture Capital and real estate. Suppose a sale of artwork i at time t occurs whenever the 

latent variable       is greater than zero, and remains untraded otherwise, i.e., 

            
      

              (2)  

where   
     is the return since the last sale of the artwork, and is mostly unobserved, except 

when        . The vector       contains observed covariates. The error term,      , is i.i.d. 

normal with mean zero and variance normalized to one, and independent of      . The 

normalization is necessary, but without loss of generality, because the parameters in (3) are only 

identified up to scale, as in a standard binary probit model. 
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The selection model, consisting of the observation equation, (1), and the selection equation, 

(3), nests the classic RSR model. If the selection coefficient,   , equals zero, then trades occur 

for reasons unrelated to price, there is no selection bias, and we recover the standard RSR model. 

Conversely, if Goetzmann’s conjecture is correct and artworks that have risen in value are more 

likely to sell, then we should find a positive selection coefficient. By estimating and testing the 

selection coefficient, we allow the data to speak to the importance of selection bias.  

From an econometric perspective, the model is a dynamic extension of Heckman’s (1979, 

1990) selection model. As in Heckman’s model, our model adjusts not only for selection on 

observable variables, such as the size or style of a painting, but also controls for selection on 

unobservable variables. However, Heckman’s model assumes that observations are independent, 

implying that observations for which price data are missing, are only informative for estimating 

the selection model, (3), in the first stage, but do not carry any further information for the price 

index in equation (1) in the second stage. Since prices are path-dependent, this independence 

assumption fails to hold. Each observation carries information about not only the current price, 

but also about past and future prices of a painting, even at times when the artwork does not trade. 

Unlike the standard selection model, our model does not impose the independence assumption, 

and uses all information to make inference about the price path of individual art works, and the 

parameters of interest,    , and   . 

The downside of allowing for the dependencies between observed and missing data is that 

it makes estimation more difficult relative to the standard selection model. We use Markov chain 

Monte Carlo (MCMC), a Bayesian estimation technique, to estimate the model parameters (see 

Korteweg and Sorensen, 2012, for details). 
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Our model extends Korteweg and Sorensen (2012) by allowing for separate indices for 

different styles of artwork, or whether the artist belongs to the top 100 artists. For these 

specifications, we replace equation (1) with 

         
              (3)  

The vector    is a set of dummy variables that indicate to which category the painting 

belongs. The categories need not be mutually exclusive. For example, a painting can belong both 

to the “Old Masters” style and be in the “Top 100 Artists” category (to be defined below).  

 

1.2. Price indices and portfolio returns 

Following the art literature, we focus on the arithmetic price index,     , across N artworks 

relative to base year 0, 

 

           

 

   

        

 

   

  (4)  

where        is the price of painting i at time t. The index can be constructed from the selection 

model estimates by correcting for the Jensen inequality term due to the log operator (see, for 

example, Goetzmann (1992) and Goetzmann and Peng (2002)), 

  
                     

 

 
      (5)  

The return on this index,            , captures the experience of an investor who invests in 

the aggregate market, or who owns a portfolio that is representative of the aggregate market. It 

also represents the expected return to an investor who invests a fixed amount in each painting.  
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2. Art data 

We construct a sample of repeat sales from the Blouin Art Sales Index (BASI), an online 

database that provides data on artworks that are sold at auction at over 350 auction houses 

worldwide.
 3

 The BASI database is presently the largest known database of artworks, containing 

roughly 4.6 million works of art by more than 225,000 individual artists over the period 1922 to 

2010. We solely focus on paintings, which represent 2.3 million artworks in the database.  

For each auction record, the database contains information on the artist, the artwork, and 

the sale. We observe the artist’s name, nationality, year of birth, and year of death (if applicable). 

For the artwork, we know its title, year of creation, medium, size, and style, and whether it is 

signed or stamped. For the sale, we have data on the auction house, date of the auction, lot 

number, hammer price (the price for which the artwork was sold, converted to U.S. dollars at the 

prevailing spot price), and whether the artwork has been bought in or was withdrawn.
4
 

We identify repeat sales by matching auction sales records using artists’ names, artwork 

names, painting size, and medium (similar to the matching procedures in Taylor and Coleman, 

2011, and Spaenjers and Renneboog, 2013). We start our search in 1972, due to the limited 

coverage of the database before that time. We delete buy-ins to avoid Goetzmann’s (1993) 

concern that particular auction records are wrongly classified as sales when the painting fails to 

meet the seller’s reservation price. To eliminate false matches, we remove paintings from the 

same artist with the generic titles “untitled” and “landscape.” We further check whether the 

remaining potential repeat-sales are true repeat-sales by manually searching for the artwork’s 

provenance, which shows the chronology of the artwork’s earlier sales. The provenance is 

typically found on the websites of the auction houses. For instance, Christie’s and Sotheby’s 

                                                 
3
 Art is not only sold in auction but also privately, for example through dealers. Renneboog and Spaenjers (2013) 

note that it is generally accepted that auction prices set a benchmark that is also used in the private market.  
4
 An artwork is “bought in” when the bidding does not reach the reserve price, and the artwork goes unsold. 
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provide online provenance information on all auction sales since 1998. When we are in doubt 

about whether we are dealing with a true repeat sale, we delete it from our sample. Our final 

sample includes 42,548 sales of 20,538 unique paintings.  

Figure 1 Panel A shows the number of sales in the repeat-sales sample, broken down by the 

number of first, second, and third or more sales for the artworks in our repeat-sales sample.
5
 For 

comparison, Panel B shows the number for the full BASI dataset since 1972. The full sample 

shows substantial growth in sales over time, peaking in 2006, whereas the repeat-sales sample 

has the highest number of sales in 1989. This difference is due to the drop in the number of first 

sales, as paintings that sell for the first time in the later part of our sample period have a smaller 

probability of being sold for a second time by the end of the sample period and thus have a 

smaller chance of being included in the repeat-sales sample.  

[ Please insert Figure 1 here ] 

Panel A of Table 1 shows descriptive statistics of the paintings in our repeat-sales sample. 

The average hammer price in the full sample is $61,939, with a long right tail of extremely 

expensive paintings. The average surface of the paintings is about 547,000mm
2
, or 0.55m

2
. 

Around 22 percent of sales take place at Christie’s auction house, and 25 percent at Sotheby’s. 

For 20 percent of sales, the auction house is located in London, and another 20 percent are sold 

in New York. Using the same style classifications as Christie’s and Sotheby’s, the BASI 

database distinguishes between six broad styles. The Impressionist and Modern style accounts 

for one third of sales, followed by European 19
th

 Century paintings with one fourth of sales. 

About 16 percent of sales are of the Post-war and Contemporary style, 12 percent are American 

paintings, and 5 percent are Old Masters. The residual “Other style” category makes up the 

                                                 
5
 Observing more than three sales is extremely rare in our sample period: we only observe 26 paintings with four 

sales, and one painting with five sales. 
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remaining 9 percent of sales. Nearly 10 percent of sold paintings are by artists with total dollar 

sales in the top 100 of the BASI database over the sample period.
6
 Finally, more than two 

percent of sales occur within two years after the artist has deceased.  

 [ Please insert Table 1 here ] 

Panel A also shows the descriptive statistics for the full BASI sample over the same period. 

Compared to the full sample, more expensive paintings of higher quality are more likely to be 

sold repeatedly, underscoring the importance of correcting for sample selection. It should be 

noted that even if the repeat-sales sample were statistically indistinguishable from the full sample 

of sales, the sample selection issue that we address in this paper may still be present, as even the 

full sample of sales may not be representative of the underlying population of paintings. 

Panel B provides information about the sale-to-sale returns in the repeat-sales sample. The 

arithmetic price increase between two consecutive sales of the same painting is 123.5 percent on 

average. The median return is 42.4 percent, and the standard deviation is 368.5 percent. With an 

average time between sales of 7.6 years, this translates to an average (median) annualized return 

of 16.5 percent (7.5 percent), with a standard deviation of 32.7 percent. Log returns are lower, on 

average 43.9 percent (6.9 percent annualized), with a median of 35.3 percent (5.7 percent 

annualized) and a standard deviation of 78.1 percent (16.7 percent annualized).  

[ Please insert Figure 2 here ] 

Figure 2 shows the distribution of the annualized sale-to-sale returns. Although the average 

return is positive, the distribution shows negative returns occur regularly. Annualized returns 

below –30 percent or above 70 percent are rare.   

 

 

                                                 
6
 We keep the artists in the top 100 category fixed throughout the sample period. 
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3. Art indices 

In this section we first present the results of estimating art indices without taking selection 

into account. Then we turn to our selection-corrected indices. 

 

3.1. Art indices without selection correction 

Figure 3 plots two estimated arithmetic art price indices that do not take selection into 

account. The first is a standard repeat-sales regression estimated by GLS, weighing each 

observation by the inverse of the square root of the time between trades, to correct for potential 

heteroskedasticity as described above (the “GLS index”). The second is a MCMC specification 

that ignores selection by forcing    in equation (3) to equal zero (the “MCMC index”). We 

assign an index value of 100 to the year 1972 and construct annual end-of-year arithmetic indices 

as shown in equations (5) and (6).  

[ Please insert Figure 3 here ] 

The GLS and MCMC indices practically coincide, mitigating concerns about distributional 

assumptions of the MCMC estimator. Over the early part of the sample period, the indices rise 

until they peak at 1,300 in 1990. After bottoming out at 900 in 1993, following the Japanese real 

estate crisis in the late 1980s/early 1990s, the indices climb again until peaking at around 4,300 

in 2007, showing particularly high growth after 2001. In 2010, the end of our sample period, the 

price indices have largely recovered from the dip in the global financial crisis of 2008/09, and 

are nearing the 4,300 level again.  
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3.2. Selection models 

The selection models require us to take a stance on what drives the sale of an artwork. We 

estimate three specifications of the selection equation. All models include the log return since 

last sale, to capture the direction and strength of the sample selection effect. We also include the 

time since the last sale, both linearly and squared, in all specifications. Time since last sale 

functions as an instrument to identify the model from more than distributional assumptions alone: 

it changes the probability of a sale in the next period without affecting the return on the artwork 

going forward, based on the common-place assumption that prices incorporate all available 

public information, which includes the date that the painting last sold. Other variables that may 

be important for the probability of sale are the size of the painting, whether the artist deceased in 

the past two years, and the growth in worldwide GDP. The size of the painting may be related to 

the probability of sale, because smaller paintings are easier to hang and transport. The death of 

the artist might be relevant as there is a popular belief that artworks are more likely to be sold 

when the artist has recently deceased. We include worldwide GDP growth as Goetzmann (1993) 

and Goetzmann et al. (2011) establish an important relation between art and wealth.  

[ Please insert Table 2 here ] 

Table 2 shows the estimated coefficients of the selection models. Model A only includes 

the log return and the time variables. Most importantly, paintings with higher returns since the 

prior sale are more likely to sell, and hence appear more frequently in the sales data, confirming 

that selection is important in evaluating art returns. As a result, standard indices exaggerate the 

price appreciation of the overall market.  

The magnitude of the selection coefficient is not only statistically significant, it is also 

economically meaningful. For example, a painting that was last sold one year ago and has not 
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changed in value since, has a 3.6 percent probability of being sold in the next year. Had the 

painting increased in value by one standard deviation of the annualized return, or 16.7 percent, 

then the probability of sale would be 4.1 percent. For a two standard deviation increase in price, 

the sale probability is 4.7 percent. 

Controlling for price appreciation, the time since the prior sale has a non-linear relation to 

the probability of a sale. An artwork that has traded very recently is less likely to sell again, but 

as the time since last sale increases, the probability of a sale rises as the coefficient on the 

squared time since sale dominates. All time effects are significant at the one percent significance 

level, suggesting that the time variables improve the statistical identification of the model. 

The estimates for Model B show that our main finding that returns and the probability of 

sale are positively related, is robust to adding additional variables to the selection model. The 

coefficients on these variables provide further insight into what drives sales behavior. A painting 

is more likely to sell within two years after the artist deceases, and when world GDP is declining. 

The latter result is a bit difficult to interpret given that we also control for price appreciation 

separately, but it is in line with situations in which owners are forced to sell in bad times 

(Campbell, 2008). We do not find a significant effect of a painting’s size. 

Model C allows for different selection coefficients and intercepts by decade, where we 

group the 1970s with the 1980s (due to data sparseness), and we split the 2000s in the pre and 

post financial crisis years. Thus, our periods are 1972 to 1989, 1990 to 1999, 2000 to 2006, and 

2007 to 2010. We find evidence for selection in every sub-period. The effect of returns on the 

probability of trade is especially large in the two periods after 2000, indicating that the selection 

effect has become more important since the turn of century.  
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We use Models A, B, and C to construct three selection-corrected indices, which we denote 

Indices A, B, and C, respectively. Panel A of Figure 4 shows the selection-corrected price 

indices over time. The selection correction is quite robust across models, as the differences 

among the three selection-corrected indices are not very large. Panel A also includes the MCMC 

model without selection-correction. The differences between the non-corrected and the selection-

corrected indices are striking. First, the selection-corrected indices are considerably lower than 

the non-corrected indices, conform the intuition about the effect of a positive selection 

coefficient. The peak in 1990, which occurred at a 1,300 index level in the non-selection 

corrected model, occurs at around 850 in the corrected indices. The 2007 peak is around 1,300 

(or 1,000 for model C), rather than the 4,300 of the non-corrected model. Second, the selection-

corrected indices show an additional peak around 2003, which does not occur in the non-

corrected indices. Third, the selection-corrected indices do not recover after the global financial 

crisis of 2008, unlike the non-corrected indices.  

 [ Please insert Figure 4 here ] 

In Panel B, we plot the difference between the natural logarithm of the non-selection 

corrected index and each of the selection-corrected indices. The graph shows that the deviation 

between the non-selection and the selection-corrected indices already starts in the first years of 

our sample period, increases steadily over time, and accelerates in the new millennium. 

Next, we consider potential differences between art styles. Buelens and Ginsburgh (1993) 

find differential performance among styles, and possibly, different styles are in favor in different 

periods. Figure 5 plots the estimated selection-corrected indices. 

 [ Please insert Figure 5 here ] 
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We observe that the price index of Post-war and Contemporary paintings peaks around 1990 and 

2007. Impressionist and Modern paintings show large increases in the early period but are hit 

heavily in 1990, which is in line with the popular interpretation of art observers that the Japanese 

real estate bubble (which burst in 1990) and the corresponding strong yen in the 1980s had 

strong effects on the prices of Impressionist paintings (see for example Wood, 1992). Old 

Masters do not increase as much in value as the other styles over the sample period.  

Figure 5 also shows the selection-corrected price index for paintings of the top 100 artists 

in terms of the total value of sales in our sample period. Top artists outperform all of the styles, 

and the index peaks both around 1990 and 2007. This result relates to the “masterpiece effect”, 

the general belief among art dealers and critics that highly priced paintings are the best buy (e.g., 

Adam (2008)). Several prior academic studies examine masterpieces (Mei and Moses, 2002; 

Renneboog and Spaenjers, 2013), but generally find that masterpieces underperform (Pesando, 

1993; Mei and Moses, 2002). Our results suggest that selection bias is an important determinant 

of this discrepancy, as not controlling for selection biases artificially drives up the returns for 

artworks with which masterpieces are compared. Paintings from top artists do experience 

relatively volatile returns, so it is not clear whether they should get higher weights in optimal 

portfolios. We discuss portfolio allocations after we present further evidence in support of the 

sample selection problem in the next section. 

 

4. Further supporting evidence for sample selection 

The results from the econometric model show that paintings are more likely to trade 

when they have experienced a high return since prior sale, and that correcting for the sample 

selection problem is economically important for index construction. In this section we show 
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further corroborating evidence of the existence and strength of the selection problem in the raw 

data, without relying on the econometric machinery of the selection model.  

First, we consider the relationship between the time between sales and the annualized 

sale-to-sale return. For each painting in the repeat-sales sample, we compute the annualized log 

return between two adjacent sales, and the number of years between the two sales. Both these 

quantities are observed in the raw data. In Figure 6, we graph the average annualized sale-to-sale 

return against the return horizon. For example, for all sale-to-sale returns that occurred over a 

span of one year or less, the average annualized return is 13 percent, compared to 8 percent for 

sales that took place between one and two years apart. For longer return horizons the average 

annualized return is even lower. We also show the median annualized return against the return 

horizon, which follows a nearly identical pattern. 

 [ Please insert Figure 6 here ] 

If there were no sample selection problem (i.e., if the selection coefficient,   , equals zero 

in the econometric model), then there should be no systematic relation between annualized 

returns and the time between sales, and Figure 6 should show a flat, horizontal line. Instead, the 

line is downward-sloping, which is consistent with a sample selection problem in which 

paintings with high returns are more likely to trade. To take an oversimplified example, suppose 

that paintings trade as soon as the return since last sale hits a fixed threshold, say, 10 percent (not 

annualized). Then the paintings that happen (by chance) to have a high return soon after the prior 

sale, will trade quickly and show a high annualized return. The paintings that are slower to hit 

the threshold will trade at a later date and exhibit lower annualized returns. 

Figure 6 also shows that the selection problem is plausibly large. The mean annual index 

return from RSR regressions is essentially an average of the annualized observed returns over all 
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horizons. In a selected sample where the paintings with higher returns are more likely to sell, the 

selection-corrected average annualized return must be lower than the observed returns, and thus 

lower than even the long-horizon returns. Based on the Figure 6, a difference of a few percentage 

points in the mean annual return between the RSR and the selection-corrected indices is not 

surprising. 

The second piece of evidence suggesting sample selection is the relation between 

annualized returns and trading intensity. In Figure 7, we plot the time series of annualized log 

returns, where for a given year we average over  all sale-to-sale returns for which the second sale 

is in that year. We only show the time series starting in 1980, because for many sales in the 

1970s the first sale takes place prior to the start of our sample in 1972, and we see only the short-

horizon returns in the 1970s. In the same graph, we show the time series of trading intensity, 

defined as the percentage of paintings that sold in the calendar year, calculated from the full 

BASI dataset of 2.3 million observations (the results are very similar if we use the repeat-sales 

sample instead). 

[ Please insert Figure 7 here ] 

Without selection, i.e. when paintings trade for reasons unrelated to returns, there should not be a 

systematic relation between trading intensity and annualized returns. This is clearly not what we 

observe in Figure 7, which shows a strong positive correlation between trading intensity and the 

annualized returns. This relation is consistent with the sample selection problem identified in this 

paper, where a positive shock to the value of paintings results in more paintings that are likely to 

trade, and a higher average (annualized) realized return, and vice versa for negative shocks.  

Our third exercise further exploits the variation in the data, by considering the relation 

between trading intensity and annualized returns for individual styles of paintings. Consistent 
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with the aggregate results, Table 3 Panel A shows that both the average and median annualized 

return of a style of painting are strongly positively correlated with the market share of that style, 

where market share is defined as the number of paintings of a style that sold over the year 

relative to the total number of paintings that traded across all styles. Panel B shows that this 

correlation is highly statistically significant in a pooled regression analysis that controls for style 

fixed effects.  

 [ Please insert Table 3 here ] 

To summarize, the evidence in this section is supportive of the result from the 

econometric model that the probability that a painting trades is positively related to its return 

since the prior sale.  

 

5. Optimal portfolio allocation 

In this section, we show that our estimated indices provide important insights regarding the 

role of paintings for diversification and optimal portfolio allocation. More broadly, the results 

underscore the importance of adjusting for sample selection for performance evaluation and 

portfolio optimization in the presence of illiquid assets when trading is endogenous. 

We start our analysis with descriptive statistics of the returns to the art indices. Table 4 

reports means, standard deviations and Sharpe Ratios of arithmetic and log annual returns for the 

art indices. For clarity, it should be noted that these are the returns to the indices, and thus are 

different from the sale-to-sale returns reported in Table 1 and Figures 2, 6, and 7.  

 [ Please insert Table 4 here ] 

Panel A shows that the standard repeat-sales GLS index that does not correct for selection 

has an average arithmetic annual return of 11.1 percent with a standard deviation of 12.8 percent, 
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and an annual Sharpe ratio of 0.39. The non-selection corrected MCMC index returns are nearly 

identical to the GLS index. In contrast, the selection-corrected indices have considerably lower 

average arithmetic returns, ranging from 6.7 percent to 7.3 percent depending on the selection 

model specification. The standard deviations are similar to the non-selected indices, around 12.7 

percent to 13.3 percent. Consequently, the selection-corrected Sharpe Ratios are considerably 

lower than the non-corrected indices, ranging from 0.05 to 0.10. Log returns follow a pattern that 

is similar to the arithmetic returns, but with lower average returns, standard deviations and 

Sharpe Ratios.  

It is important to point out that, as a measure of performance, the standard non selection-

corrected indices implicitly assume that an investor can either pick “winners” that rise in value 

and are thus more likely to sell, or assume that there is no selection problem and that all other 

holdings of the investor follow the same price path as the paintings that are auctioned off. The 

selection-corrected indices do not make such assumptions but rather approximate the rise in 

value of the overall portfolio of paintings, both those that sold and those that did not. The 

selection-corrected returns are therefore more representative of the experience of an investor who 

has invested in a well-diversified, passive portfolio of paintings (as noted by Renneboog and 

Spaenjers (2013), the volatility of investors’ portfolios is likely higher if they are less diversified). 

Panel A of Table 4 also shows descriptive statistics for the sample period returns of a broad 

portfolio of U.S. equities (the CRSP value-weighted index including distributions), and the 

prevailing 1-year U.S. Treasury bill rate at the beginning of the year. Since we use the Treasury 

rate as our risk-free asset, we do not report its Sharpe Ratio in Table 4. 

Despite the low Sharpe Ratios on the selection-corrected art indices relative to the Sharpe 

Ratio on stocks of 0.30, investing in paintings may still be useful for constructing optimal 
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portfolios if the correlations with stocks are low. Indeed, Panel B of Table 4 shows that the art 

indices that do not control for selection are robustly negatively correlated with stock returns. For 

example, the correlation coefficient between the GLS arithmetic art return and equity is -0.08. 

For comparison, Taylor and Coleman (2011) find strong negative correlations (of about -0.30) 

between stocks and aboriginal art. Renneboog and Spaenjers (2013) find a correlation coefficient 

of -0.03 between art and the S&P 500 index. However, Panel B also shows that once we correct 

for sample selection, the art indices are virtually uncorrelated with stock returns, with 

correlations that are less than 0.02 in absolute magnitude.  

To examine the portfolio allocation decision more formally, we construct optimal 

portfolios based on the following assumptions that are common in the literature. First, investors 

have mean-variance utility, and allocate their portfolio among the risk-free asset, a well-

diversified stock index (the CRSP value-weighted market index including distributions), and a 

well-diversified, passive art index. Second, borrowing and short sales are not allowed. Third, 

there are no transaction costs to constructing the indices. Fourth, there is no illiquidity return 

premium on paintings. Fifth, investing in the art index does not provide the investor with access 

to the artworks underlying the index, and we therefore do not consider any consumption utility of 

owning art.  

[ Please insert Table 5 here ] 

Table 5 Panel A shows the portfolio weights for the tangency portfolio of stocks and art 

(i.e., the portfolio with the maximum Sharpe Ratio in the presence of a risk-free asset). We focus 

our discussion on the arithmetic returns. An investor who does not correct for selection bias in 

art returns assigns considerable weight to art. Based on the arithmetic GLS returns, art receives a 

portfolio weight of 65 percent, with the remainder assigned to stocks. The portfolio Sharpe ratio 
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of 0.51 is considerably higher than the Sharpe Ratio of 0.30 that is achieved with stocks alone. 

The MCMC index that ignores selection gives weights that are nearly identical to the GLS index, 

and for brevity we omit them from the portfolio weights tables. The non-selection corrected 

indices thus suggest that paintings should play an important role in asset allocation. 

In contrast, an investor who corrects for sample selection assigns a significantly lower 

weight to paintings of 20 percent to 35 percent, depending on the selection model. The portfolio 

Sharpe Ratio of 0.30 to 0.32 is about 40 percent lower than the Sharpe Ratio of 0.51 from the 

non-corrected indices, and close to the Sharpe Ratio of the pure stock index, indicating that little 

is gained by allocating a share of the portfolio to paintings, despite the non-zero portfolio weight. 

Panels B, C, and D of Table 5 show the portfolio allocations to paintings, stocks, and the 

risk-free asset for a mean-variance utility investor with a risk aversion coefficient equal to two, 

five, and ten, respectively. The results are similar to the tangency portfolio results and 

underscore our main result: an investor who does not correct for sample selection would allocate 

nearly twice as much of her portfolio to paintings compared to public equity. With the selection 

correction, the same investor would put less than half of the weight on paintings relative to 

stocks, and realize virtually no gain in Sharpe Ratios compared to a portfolio of only public 

stocks. The Sharpe Ratios are naturally the same across all panels of Table 5, barring minor 

deviations due to borrowing constraints in Panel B. 

The results for log returns are qualitatively similar to the arithmetic returns, albeit with 

lower weights on paintings for the selection corrected indices. 

The remainder of this section shows the robustness of the portfolio allocation result. For the 

first robustness test, we consider whether investing in particular styles of painting, or in top-

selling artists, would be beneficial for forming portfolios, even after controlling for selection.  
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[ Please insert Table 6 here ] 

Table 6 Panel A reports the results for the different art styles. The only style that receives a 

non-zero portfolio allocation is the Post-war and Contemporary style. Investing in this style and 

stocks yields a portfolio Sharpe Ratio of around 0.38. Panel B further includes the index of the 

Top 100 artists, which drives out the allocation to Post-war and Contemporary paintings in the 

arithmetic returns, but not in the log returns. Altogether, Table 6 shows that none of the styles or 

the Top 100 artists receive a robustly positive portfolio weight when controlling for selection. 

In our second robustness test, we correct for non-synchronous trading using Dimson’s 

(1979) method with one year leads and lags of stock returns. This may be important as art indices 

aggregate pricing information over the calendar year, while stock returns are exact year-to-year 

changes. Goetzmann et al. (2011) show the importance of lagged equity returns on art prices. 

Table 7 shows that the Dimson-corrected portfolio weights on paintings are lower compared to 

the weights without the non-synchronicity correction, but the main result is robust: there is little 

gain in Sharpe Ratios by including art in a portfolio with public equities, after correcting for 

sample selection. 

[ Please insert Table 7 here ] 

In other, non-tabulated robustness tests, we confirm that the main portfolio result is robust 

to using the equally-weighted CRSP index or the S&P composite index instead of the value-

weighted CRSP index, to using the longer 1926 to 2010 period to estimate the average market 

return and its standard deviation (computing the covariance with art from the correlation over the 

1972 to 2010 period but using the standard deviation from the longer time series)
7
, to using the 

return to the Citigroup World Government Bond Index from Datastream instead of the 1-year T-

                                                 
7
 For the 1926 to 2010 period we need to use the 1-month T-bill rate to compute excess market returns, as the 1-year 

rate is only available starting 1959. 
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bill rate, and to adding more asset classes to the optimal portfolio (including real estate returns, 

hedge fund returns, private equity returns, and commodity returns). 

It is important to note that we have abstracted away from certain frictions in the art markets. 

One important friction that we omitted is transaction costs: the typical buyer’s premium in art is 

up to 17.5 percent of the hammer price, and there are storage and insurance fees. These costs 

make paintings less appealing for optimal portfolio allocation and hence reinforce our main 

result. Moreover, Ang et al. (2013) show that illiquidity costs, another potential friction, reduce 

portfolio allocations, further strengthening our result. 

Finally, investors may care about higher moments of returns (for example, if they have 

power utility rather than mean-variance utility), such as skewness (e.g. Ball et al., 1995, and 

Harvey and Siddique, 2000) and kurtosis. However, art returns are significantly negatively 

skewed and have excess kurtosis (results not tabulated), which only makes art less attractive to a 

power utility investor.  

In sum, after correcting for sample selection, we find that paintings play little role in raising 

the Sharpe ratios of optimal portfolios relative to public equities. The additional frictions in art 

markets only serve to reinforce this result. 

 

6. Conclusion 

We estimate an empirical model that adjusts for selection bias in illiquid asset markets with 

endogenous trading, using a large dataset of auction sales of paintings. We find a large selection 

effect of the kind hypothesized by Goetzmann (1993, 1996), namely that paintings that have 

increased in value are more likely to sell. This has a first-order impact on art indices, lowering 

the average annual price increase from 11 percent for a standard repeat-sales index to 7 percent 
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for selection-corrected indices, resulting in a drop in annual Sharpe Ratios from 0.4 to 0.1. 

Ignoring the sample selection problem would lead investors to allocate more than half their 

portfolio to art, and they appear to reap large portfolio Sharpe Ratios on the order of 0.5 annually. 

However, after correcting for selection, the portfolio allocation to art drops dramatically and 

there is little gain in portfolio Sharpe Ratios relative to the 0.3 Sharpe Ratio of pure public 

equities. We conclude that investing in a passive art index is unattractive, even without 

considering transaction and insurance costs, and the risks of forgeries, thefts, and physical 

damage, unless investors are able to pick winners or there is substantial non-monetary utility 

from owning and enjoying art.  

To our knowledge, this is the first paper to show the importance of the endogenous trading 

sample selection problem for performance evaluation and optimal portfolio allocation. It stands 

to reason that other illiquid asset classes exhibit a similar selection problem, and evaluating these 

other asset classes is an important task for future work. 
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Figure 1: Number of sales 

This figure shows the number of auction sales of paintings in the repeat-sales sample (panel A) 

and the full sample (panel B) by calendar year. In the repeat-sales sample in panel A, we 

distinguish between the first, second, and third or more sales of an artwork. 
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Figure 2: Annualized sale-to-sale return distribution 

 

This figure shows histograms of the annualized sale-to-sale returns of paintings in the repeat-

sales sample. Panel A shows the annualized arithmetic sale-to-sale returns, and Panel B shows 

the natural logarithm of the annualized sale-to-sale returns. 

 

Panel A: Arithmetic returns 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Log returns  

 

 

 

 

 

 

 

 

 

 

 

 

 



  32 

Figure 3: Non-selection corrected price indices 

 

This figure shows repeat-sales arithmetic price indices that do not correct for sample selection. 

The indices are normalized to an index value of 100 in 1972. The GLS index is the standard 

repeat-sales regression indices as estimated by Generalized Least Squares, with weights that are 

inverse proportional to the square root of the time between sales. The MCMC index is the index 

estimated by the Markov chain Monte Carlo algorithm when the sample selection problem is 

forcibly ignored, i.e.,    in equation (3) is set to zero. 
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Figure 4: Selection-corrected price indices  

 

Panel A shows price indices corrected for sample selection, and normalized to an index value of 

100 in 1972. Models A through C correspond to the specifications of the selection equation as 

shown in Table 2. For comparison, the figure also shows the MCMC non-selection corrected 

index over this same period (denoted No selection. This is the same index as the MCMC index in 

Figure 3). Panel B graphs the difference between the natural logarithm of the No selection index 

and the selection-corrected indices. 
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Panel B: Logarithm of No selection index minus logarithm of selection-corrected price indices 
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Figure 5: Selection-corrected price indices per style  

 

This figure shows selection-corrected price indices for each style classification, normalized to an 

index value of 100 in 1972. Top 100 refers to the index of paintings by top 100 artists based on 

the total value of sales (in U.S. dollars) of all paintings by the artist over the sample period. 
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Figure 6: Annualized sale-to-sale returns by return horizon 

 

This figure shows the relation between the logarithm of annualized sale-to-sale returns (on the 

left-hand vertical axis) and the time between sales (in years, on the horizontal axis) in the repeat-

sales data. The solid and striped lines represent the average and the median annualized log return 

between observed sales, respectively. The vertical bars are the number of observations in each 

bin, measured on the right-hand vertical axis. 
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Figure 7: Time series of annualized returns and trading intensity 

 

This figure graphs the time series of the average annualized log sale-to-sale returns (represented 

on the left-hand vertical axis) and trading intensity (on the right-hand axis). The average log sale-

to-sale return is computed over consecutive sales of paintings for which the second sale falls in 

the given year. Trading intensity is calculated as the number of sales in a calendar year as a 

percentage of all sales over the 1980 to 2010 period.  
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Table 1: Summary statistics 

This table reports summary statistics for the sample of paintings in the Blouin Art Sales Index 

(BASI) dataset from 1972 to 2010. Panel A presents descriptive statistics for the repeat-sales 

sample that contains paintings that sold at least twice during the sample period (left columns), 

and the full BASI dataset (right columns). The unit of observation is a sale of a painting at 

auction. Hammer price is the auction price in thousands of U.S. dollars. Surface is the surface of 

the painting in thousands of squared millimetres. Deceased < 2 yrs is a dummy variable equal to 

one when the sale occurs within two years after the artist deceases, and zero otherwise. Christie’s 

and Sotheby’s are dummy variables that equal one if the painting is auctioned at Christie’s or 

Sotheby’s, respectively, and London and New York are dummy variables that equal one if the 

painting is auctioned in London or New York, respectively. Top 100 Artists is a dummy variable 

equal to one when the artist is in the top 100 in terms of total value of sales (in U.S. dollars) over 

1972 to 2010, and zero otherwise. The remaining variables in Panel A represent style 

classifications. The last column shows test statistics for the difference in means t-statistics (for 

Hammer price and Surface) and the difference in proportions z-statistic (for the other variables) 

between the full and the repeat-sales samples. The sale-to-sale returns in Panel B are for the 

repeat-sales sample only, and calculated as the natural logarithm of the ratio of the current and 

prior hammer price of a painting. ***, ** and * indicate statistical significance at the 1, 5 and 10 

percent level, respectively. 

 

Panel A. Descriptive statistics for the full and repeat-sales sample 

 Repeat-sales sample  

(42,548 sales) 

 Full sample  

(2,302,738 sales) 

 Difference  

statistic 

 Mean Median St. 

Dev. 

 Mean Median St. 

Dev. 

  

Hammer price 

($000s) 

61.9 6.2 444.2  28.6 3.0 395.5  -15.39*** 

Surface 546.9 331.0 792.1  491.8 306.5 811.8  -14.19*** 

Deceased  < 2yrs 2.12%    1.59%    -8.71*** 

Christie’s 21.54%    15.57%    -33.59*** 

Sotheby’s 25.46%    15.82%    -53.75*** 

London 19.47%    14.15%    -31.07*** 

New York 21.12%    9.75%    -77.66*** 

Top 100 Artists 9.62%    2.77%    -83.52*** 

Post-war and 

Contemporary 

15.81%    11.75%    -25.69*** 

Impressionist 

and Modern 

34.03%    22.32%    -57.29*** 

Old Masters 5.32%    9.87%    31.26*** 

American 11.57%    7.29%    -33.47*** 

European 19
th

 

Century 

23.83%    31.28%    32.89*** 

Other Style 9.44%    17.49%    43.46*** 
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Panel B. Sale-to-sale returns for the repeat-sales sample (22,010 returns for 20,538 paintings) 

 Mean Median St. Dev. 

Sale-to sale return    

     Arithmetic return 123.50% 42.37% 368.54% 

     Log return  43.94% 35.33% 78.08% 

Years between sales 7.61 5.55 6.28 

Annualized sale-to-sale return    

     Arithmetic return 16.50% 7.53% 32.68% 

     Log return  6.90% 5.65% 16.69% 
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Table 2: Selection equation coefficients 

Parameter estimates of three specifications of the selection equation (equation (3) in the text). 

Log return is the natural logarithm of the return since the prior sale of a painting. Time is the 

time in years since the prior sale. Log surface is the natural logarithm of the painting’s surface in 

thousands of mm
2
. World GDP growth is the yearly increase in worldwide GDP, obtained from 

Historical Statistics of the World Economy. The other variables are as defined in Table 1. Sigma 

is the standard deviation of the error term in equation (1). Standard errors are in parentheses. ***, 

** and * indicate statistical significance at the 1, 5 and 10 percent level, respectively. 

  A  B  C 

Log return 0.375 ***  0.372 ***    

  (0.008)   (0.008)     

 1972-1989       0.300 *** 

        (0.014)  

 1990-1999       0.278 *** 

        (0.009)  

 2000-2006       0.581 *** 

        (0.013)  

 2007-2010       0.772 *** 

        (0.027)  

Time (yrs) -0.401 ***  -0.033 ***  -0.022 *** 

  (0.019)   (0.002)   (0.002)  

Time squared 0.090 ***  0.001 ***  0.000 *** 

  (0.009)   (0.000)   (0.000)  

Log surface    0.005   0.002  

     (0.007)   (0.008)  

Deceased  < 2yrs    0.104 ***  0.094 *** 

     (0.031)   (0.031)  

World GDP growth   -1.008 ***  -1.273 *** 

     (0.253)   (0.309)  

        

Intercept -1.517 ***  -1.512 ***    

  (0.007)   (0.042)     

 1972-1989       -1.487 *** 

        (0.044)  

 1990-1999       -1.490 *** 

        (0.044)  

 2000-2006       -1.518 *** 

        (0.045)  

 2007-2010       -1.660 *** 

                (0.046)   

Sigma 0.282 ***  0.282 ***  0.288 *** 

    (0.001)     (0.001)     (0.001)   



  40 

Table 3: Relation between annualized returns and market shares by style 

Panel A shows the correlation between the yearly market share of each style and the mean (left 

column) and median (right column) annualized sale-to-sale return for the style, computed over 

the returns for which the second sale falls in the given year. The market share of a specific style 

is the total sales of this style in a given year relative to all sales in that year, calculated from the 

full BASI dataset. Panel B shows the coefficients of a regression of the yearly style market 

shares on the annualized sale-to-sale returns by style, and dummy variables representing the 

styles (Other Style is the omitted variable). Standard errors are in parentheses. ***, ** and * 

indicate statistical significance at the 1, 5 and 10 percent level, respectively. 

 

Panel A. Correlation coefficients between market shares and returns per style 

 

Mean annualized sale-to-

sale return 

 Median annualized 

sale-to-sale return 

Post-war and Contemporary 0.235  0.257 

Impressionist and Modern 0.411  0.426 

Old Masters 0.083  -0.053 

American 0.391  0.467 

European 19
th

 Century 0.224  0.295 

Other Style -0.080  -0.178 

Top 100 Artists 0.373  0.296 

 

Panel B. Regression analysis (Dependent variable = Yearly market share by style) 

 I   II  

Mean annualized sale-to-sale return 0.116 

(0.035) 

***    

Median annualized sale-to-sale return    0.130 

(0.034) 

*** 

Post-war and Contemporary dummy 0.069 

(0.009) 

***  0.069 

(0.009) 

*** 

Impressionist and Modern dummy 0.240 

(0.009) 

***  0.240 

(0.009) 

*** 

Old Masters dummy -0.033 

(0.009) 

***  -0.033 

(0.009) 

*** 

American dummy 0.019 

(0.009) 

**  0.019 

(0.009) 

** 

European 19
th

 Century dummy 0.145 

(0.009) 

***  0.144 

(0.009) 

*** 

Top 100 Artists dummy -0.001 

(0.009) 

  -0.001 

(0.009) 

 

Intercept 0.086 

(0.007) 

***  0.087 

(0.007) 

*** 

Adjusted R
2
 83.7%  83.7% 

Number of observations 264  264 
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Table 4: Summary statistics of annual index returns, 1972-2010 

Panel A reports descriptive statistics of the annual returns to indices of paintings and stocks, and 

to one-month U.S. Treasuries over the period 1972 to 2010. GLS is the standard repeat-sales 

arithmetic index of paintings as estimated by Generalized Least Squares. The MCMC index is 

the non-selection-corrected index from our Markov chain Monte Carlo estimator. The selection-

corrected art indices A through C are as described in Table 2. The stock index is the CRSP value-

weighted stock index return, including distributions. The left columns show results for arithmetic 

returns, and the right columns show log returns. S.R. stands for the annual Sharpe Ratio. Panel B 

reports the correlation coefficients between excess returns on the stock index and the various art 

indices. 

 

Panel A. Descriptive statistics of annual index returns 

 Arithmetic returns  Log returns 

  Mean St. dev. S.R.   Mean St. dev. S.R. 

Returns on non-selection corrected art indices:   

GLS 11.13% 12.84% 0.391  9.88% 11.77% 0.340 

MCMC 11.10% 12.71% 0.393  9.88% 11.66% 0.342 

Returns on selection-corrected art indices:   

A 7.29% 12.72% 0.096  6.34% 11.96% 0.041 

B 7.33% 12.71% 0.099  6.38% 11.96% 0.045 

C 6.70% 13.29% 0.047  5.72% 12.52% -0.011 

Returns on other assets:     

Stocks  11.70% 19.01% 0.297  9.45% 18.83% 0.192 

Treasuries 6.09% 3.34% -  5.86% 3.12% - 

 

Panel B. Correlation coefficients between annual excess returns on stocks and art indices 

 Arithmetic Log 

  returns returns 

GLS -0.075 -0.053 

MCMC -0.067 -0.045 

A -0.022 0.008 

B -0.019 0.012 

C -0.011 0.015 

 



 

 

   

4
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Table 5: Optimal asset allocation 

Panel A shows the mean-variance tangency portfolio weights on paintings (using the non-selection corrected GLS index, and the 

selection-corrected indices A, B, and C from Table 2) and stocks (the CRSP value-weighted index including distributions), based on 

arithmetic (left columns) or log returns (right columns). Panels B, C and D show the optimal weights for a one-period mean-variance 

utility investor with risk aversion (γ) equal to two, five, and ten, respectively. Short sales are not allowed. Returns are measured over 

1972 to 2010. Sharpe Ratios are annual. 

 

 Arithmetic returns  Log returns 

 GLS  selection-corrected  GLS  selection-corrected 

      A B C       A B C 

Panel A. Tangency portfolio weights                     

Paintings 0.649  0.342 0.346 0.198  0.724  0.248 0.260 0.000 

Stocks 0.351   0.658 0.654 0.802   0.276   0.752 0.740 1.000 

Sharpe Ratio 0.510  0.314 0.315 0.301  0.400  0.196 0.197 0.192 

            

Panel B. Mean-variance utility, risk aversion γ = 2       

Paintings 0.625  0.269 0.273 0.169  0.753  0.143 0.154 0.000 

Stocks 0.375  0.731 0.727 0.768  0.247  0.503 0.503 0.506 

Treasuries 0.000   0.000 0.000 0.063   0.000   0.354 0.343 0.494 

Sharpe Ratio 0.509  0.313 0.314 0.301  0.399  0.196 0.197 0.192 

            

Panel C. Mean-variance utility, risk aversion γ = 5       

Paintings 0.648  0.148 0.152 0.061  0.595  0.057 0.062 0.000 

Stocks 0.340  0.310 0.310 0.310  0.218  0.201 0.201 0.203 

Treasuries 0.012   0.542 0.538 0.629   0.187   0.742 0.737 0.797 

Sharpe Ratio 0.510  0.314 0.315 0.301  0.400  0.196 0.197 0.192 

            

Panel D. Mean-variance utility, risk aversion γ = 10       

Paintings 0.322  0.074 0.076 0.031  0.297  0.029 0.031 0.000 

Stocks 0.170  0.154 0.154 0.155  0.108  0.100 0.100 0.100 

Treasuries 0.508   0.772 0.770 0.815   0.595   0.871 0.869 0.900 

Sharpe Ratio 0.510   0.314 0.315 0.301   0.400   0.196 0.197 0.192 
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Table 6: Optimal asset allocation with different painting styles 

Panel A shows mean-variance tangency portfolio weights (in the column Tang ptf), and the 

optimal weights for a one-period mean-variance utility investor with risk aversion (γ) equal to 

two, five, and ten, on paintings of different styles and public stocks (the CRSP value-weighted 

index including distributions). The left columns use arithmetic returns, the right columns on log 

returns. Panel B also includes an index for Top 100 artists (based on total value of sales over the 

sample period). Short sales are not allowed. Returns are measured over 1972 to 2010. Sharpe 

Ratios are annual. 

 

Panel A. Style indices 

 Arithmetic returns  Log returns 

 Tang Risk aversion (γ)  Tang Risk aversion (γ) 

  ptf 2 5 10   ptf 2 5 10 

Post-war and Contemporary 0.391 0.410 0.308 0.154  0.504 0.495 0.217 0.108 

Impressionist and Modern 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

Old Masters 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

American 0.146 0.000 0.007 0.003  0.000 0.000 0.000 0.000 

European 19th Century 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

Other Styles 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

Stocks 0.464 0.590 0.327 0.163  0.496 0.505 0.213 0.107 

Treasuries - 0.000 0.359 0.680   - 0.000 0.570 0.785 

Sharpe Ratio 0.380 0.373 0.377 0.377   0.247 0.247 0.247 0.247 

 

Panel B. Styles indices and index for Top 100 Artists 

 Arithmetic returns  Log returns 

 Tang Risk aversion (γ)  Tang Risk aversion (γ) 

  ptf 2 5 10   ptf 2 5 10 

Post-war and Contemporary 0.057 0.000 0.050 0.024  0.497 0.495 0.217 0.108 

Impressionist and Modern 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

Old Masters 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

American 0.107 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

European 19th Century 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

Other Styles 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

Top 100 Artists 0.303 0.395 0.189 0.096  0.006 0.000 0.000 0.000 

Stocks 0.533 0.605 0.327 0.164  0.497 0.505 0.213 0.107 

Treasuries - 0.000 0.434 0.715   - 0.000 0.570 0.785 

Sharpe Ratio 0.394 0.393 0.393 0.393   0.247 0.247 0.247 0.247 
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Table 7: Optimal asset allocation with Dimson correction 

Panel A shows mean-variance tangency portfolio weights on paintings (using the non-selection corrected GLS index, and the 

selection-corrected indices A, B, and C from Table 2) and stocks (the CRSP value-weighted index including distributions), based on 

arithmetic (left columns) or log returns (right columns). Panels B, C and D show optimal weights for a one-period mean-variance 

utility investor with risk aversion (γ) of two, five, and ten, respectively. The covariance matrix of (excess) returns is computed using 

the Dimson (1979) correction with leads and lags of one year. Short sales are not allowed. Returns are measured over 1972 to 2010. 

Sharpe Ratios are annual. 

 Arithmetic returns  Log returns 

 GLS  selection-corrected  GLS  selection-corrected 

      A B C       A B C 

Panel A. Tangency portfolio weights                     

Paintings 0.476  0.264 0.263 0.147  0.573  0.207 0.207 0.000 

Stocks 0.524   0.736 0.737 0.853   0.427   0.793 0.793 1.000 

Sharpe Ratio 0.455  0.340 0.340 0.326  0.333  0.208 0.208 0.203 

            

Panel B. Mean-variance utility, risk aversion γ = 2       

Paintings 0.463  0.171 0.172 0.055  0.597  0.085 0.086 0.000 

Stocks 0.537  0.829 0.828 0.876  0.403  0.540 0.539 0.538 

Treasuries 0.000   0.000 0.000 0.069   0.000   0.376 0.375 0.462 

Sharpe Ratio 0.455  0.337 0.337 0.325  0.333  0.207 0.207 0.203 

            

Panel C. Mean-variance utility, risk aversion γ = 5       

Paintings 0.352  0.094 0.095 0.022  0.316  0.034 0.035 0.000 

Stocks 0.372  0.355 0.354 0.351  0.221  0.216 0.216 0.216 

Treasuries 0.276   0.551 0.551 0.626   0.463   0.750 0.750 0.784 

Sharpe Ratio 0.455  0.339 0.339 0.325  0.333  0.207 0.207 0.203 

            

Panel D. Mean-variance utility, risk aversion γ = 10       

Paintings 0.174  0.047 0.047 0.011  0.158  0.017 0.017 0.000 

Stocks 0.187  0.177 0.177 0.175  0.110  0.108 0.108 0.108 

Treasuries 0.638   0.775 0.776 0.814   0.732   0.875 0.875 0.892 

Sharpe Ratio 0.455   0.339 0.339 0.325   0.333   0.207 0.207 0.203 

 


