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Abstract

Objective To evaluate two different methods to obtain a

dead (0)—full health (1) scale for EQ-5D-5L valuation

studies when using discrete choice (DC) modeling.

Method The study was carried out among 400 respon-

dents from Barcelona who were representative of the

Spanish population in terms of age, sex, and level of

education. The DC design included 50 pairs of health states

in five blocks. Participants were forced to choose between

two EQ-5D-5L states (A and B). Two extra questions

concerned whether A and B were considered worse than

dead. Each participant performed ten choice exercises. In

addition, values were collected using lead-time trade-off

(lead-time TTO), for which 100 states in ten blocks were

selected. Each participant performed five lead-time TTO

exercises. These consisted of DC models offering the

health state ‘dead’ as one of the choices—for which all

participants’ responses were used (DCdead)—and a model

that included only the responses of participants who chose

at least one state as worse than dead (WTD) (DCWTD). The

study also estimated DC models rescaled with lead-time

TTO data and a lead-time TTO linear model.

Results The DCdead and DCWTD models produced rela-

tively similar results, although the coefficients in the

DCdead model were slightly lower. The DC model rescaled

with lead-time TTO data produced higher utility decre-

ments. Lead-time TTO produced the highest utility

decrements.

Conclusions The incorporation of the state ‘dead’ in the

DC models produces results in concordance with DC

models that do not include ‘dead’.

Keywords Discrete choice methodology � Time trade-off �
Health state ‘dead’ � EQ-5D-5L � EuroQol Group

JEL Classification I19

Introduction

The EQ-5D is one of the most widely used preference-based

instruments. In 2009, the EuroQol Group released a new

version (EQ-5D-5L) of the instrument that included five

levels of severity in each dimension, as opposed to three in

the original version [1]. For the new instrument to generate a

set of societal values for the 3,125 health states, it had to

distinguish five levels of severity in five dimensions.

Previous valuation studies had predominantly used time

trade-off (TTO) to obtain social preferences from which

value sets for EQ-5D health states could be modeled [2–5].
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However, increasing the number of health states from 243

to 3,125 made it considerably more costly and complicated

to conduct valuation studies based on an interview method

such as TTO. Conventional TTO also has problems with

health states worse than the state ‘dead’ [6]. These issues

led the EuroQol Group to explore new approaches to obtain

social values for health states, notably discrete choice (DC)

methodology.

In a typical DC task, respondents compare two different

options (paired comparison) and indicate which one they

prefer. Discrete choice experiments (DCE) have been used

extensively in areas such as marketing and transport but not

so much in health economics. The use of DCE for health-

state valuation is a relatively recent development. Potential

advantages include the relative ease of comprehension and

administration of ordinal tasks and its greater reliability.

DC models may also avoid some of the biases associated

with traditional valuation methods [7]. Stolk et al. [8]

demonstrated that DC modeling with the classic EQ-5D

(three-level) instrument produces values that are congruent

with values obtained by other valuation techniques, TTO in

particular. That result confirmed previously published

findings [9–12].

A question that arises about the use of DC for health-

state valuation concerns how to anchor the values produced

by the choice model onto the dead (0)—full health (1) scale

that is required to compute quality-adjusted life years. One

strategy is to use DC data in combination with TTO data.

This would entail deriving values from DC data and then

using values from TTO to rescale those DC values. The

need to collect TTO data alongside a DC study, however,

might make the valuation study more complex than nec-

essary. So, instead, the DC task could be designed in such a

way that a value for ‘dead’ can be extracted from the DC

responses and then used to anchor the values. One way to

do this is by explicitly comparing the health state ‘dead’ to

the EQ-5D-5L health states that are being judged in the DC

task. An objection on theoretical grounds is that responses

obtained from choices comparing heath states to dead may

violate the random utility theory underlying the DC model.

This happens when a subset of respondents consider all

health states to be better than dead—for example, due to

their religious beliefs. The size and effect of the bias are yet

unknown; in practice, the bias may be small. Indeed, when

this approach was adopted for the valuation of EQ-5D-3L

health states [8], the results were promising. Whether or

not this will also be so when it is used for EQ-5D-5L

valuation will be expanded upon in this paper.

The primary objective of the study reported here was to

examine the results of two different approaches to rescale

DC models incorporating ‘dead’ into the utility scale as an

anchor point and to compare the results with those obtained

anchoring on lead-time TTO. A secondary objective was to

evaluate the effect of excluding DC responses elicited from

those who did not consider any health state to be worse

than the health state dead.

Methods

This pilot study used both a DC and a lead-time trade-off

(lead-time TTO) approach to produce values for the set of

3,125 (55) health states defined by the EQ-5D-5L instru-

ment. As a detailed description of each approach in the

context of health-state valuation can be found elsewhere [8,

13], only a brief summary will suffice here. The study

design followed recommendations from the EuroQol

Group Valuation Task Force and was part of a multi-

country initiative to explore methodological uncertainties

about the valuation protocol for a new EQ-5D-5L value set.

Valuation of EQ-5D-5L health states

DC method

In the DC method, the respondents were asked to state their

preference between two health states, A and B. This

comparison of health states produces data that were sub-

sequently analyzed to produce values on a latent scale. The

profiles did not mention either their duration or what

happens after these states. The DC design was generated

using a Bayesian efficient approach [14] and consisted of

50 pairs of health states allocated to five blocks. These

amounts were set in order to have sufficient power to

estimate health-state values based on the proportions of

choices between the pairs of states. To allow anchoring of

the values on the ‘dead—full health’ scale, we extended the

DC task by asking whether state A was worse than dead

(WTD) and whether state B was WTD.

Lead-time TTO

The lead-time TTO method is an extension of the tra-

ditional TTO [13]. In a classic TTO, participants com-

plete one task for health states considered better than

dead and another task for those considered WTD. Lead-

time TTO consists of a single task: to choose between

Life A (T years in full health) and Life B [10 years in

full health (lead time) plus 5 years in a target health

state (disease time)]. All respondents start with Life A

versus Life B where T = 15 years in 11111; depending

on whether they choose A or B, the value of T is raised

or lowered until the participants feel that A and B are

the same. The lead-time TTO design was constructed

with a Federov algorithm that allowed model parameters

to be estimated without bias and with minimal variance
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[15]. The final lead-time TTO design contained 100

states in ten blocks.

Data collection

Four hundred persons, who were representative of the

Spanish population in terms of age, gender, and education,

took part in this study. An online survey administered via the

EuroQol Valuation Technology (EQ-VT) software was used

to collect DC and lead-time TTO responses. The final survey

included the EQ-5D-5L questionnaire, ten DC tasks, and five

lead-time TTO tasks as well as demographic questions.

Participants were also queried about the difficulty of the DC

and lead-time TTO tasks and how well they had understood

them. The EQ-VT randomly assigned each participant to a

DC block and a lead-time TTO block. In both types of block,

the tasks were presented in random order. Given the number

of participants, the study yielded an average of 80 observa-

tions for each DC pair (400 participants 9 10 states/50

pairs) and 20 observations for each lead-time TTO state (400

participants 9 5 states/100 states).

A survey company administered the study in Barcelona

(June 2011). The researchers JMRG, ME, MH, and JC

supervised the data collection with assistance from the

EuroQol Group. Participants were recruited using tele-

phone directories for the metropolitan area of Barcelona,

personal contacts, a database of panelists, or ‘snowballing’

from contacts of participants included in this study.

Eight groups, each with an average of ten respondents,

were recruited per day during 6 days, yielding the target of

400 participants. Each participant was assigned a computer

and given an ID number and a password. Two computer

rooms were available for each session. Interviews were

conducted by two trained interviewers and four members

of the Spanish Valuation Team (JMRG, ME, MH, and JC).

Statistical analysis

The sample as well as the DC and lead-time TTO responses

were described with descriptive statistics. Four statistical

models were used to estimate EQ-5D value sets: (1) a

conditional logistic model, which produced the health-state

values based only on choices between health states, thus

ignoring responses to the dead questions (N = 397;

henceforth DCTTO; (2) a rank-ordered logistic model,

which was then used on the full DC dataset and included

responses to the dead questions (N = 397, henceforth

DCdead); (3) a rank-ordered logistic model, which used data

only on those participants who chose at least one state

worse than dead (N = 195, henceforth DCWTD); a linear

regression model, which used the lead-time TTO responses

(N = 373; henceforth called lead-time TTO). The three

models that were estimated with DC responses had to be

rescaled to indicate that 0 stands for dead and that 1 forms

the upper bound for full health. This was achieved using

the additional ‘dead’ questions in the DC experiments in

the case of DCdead and DCWTD. For the DCTTO model, the

worst health state predicted on the lead-time TTO model

(profile 55555) was taken as an anchor point to rescale the

arbitrary scale of the conditional logistic model. Details on

each model are given below.

DCTTO model

In the case of DC, the values are not directly observable

and have to be calculated from the responses to the choice

exercise. We assume that the participants choose the health

state that gives them higher utility, so this can be modeled

as a conditional logistic model. As such, the independent

variable YI represents the choice of participant I between A

or B. The model assumes a value decomposition in two

parts, explainable by ViA plus an error ei. If errors are

assumed to be random and to show a type 1 extreme value

distribution, a conditional logistic model emerges [8, 16,

17]. Let us assume that component V of the value can be

explained with an additive model:

ViA ¼
XJ

j¼1

XiAj � bj ð1Þ

where XiAj are 20 dummies {0, 1}, per participant i, rep-

resenting the severity levels for each dimension of EQ-5D-

5L for state A. Then bj will represent the coefficient for

each independent variable j.

Accordingly, it is possible to estimate the coefficients of

the model and thus to extrapolate values that have not been

observed within the population by using the linear part of

the DCTTO model. The values obtained from the linear part

of the model shown above are on an arbitrary scale. In

order to rescale the values from the DCTTO model, the

extreme negative value estimated in the lead-time TTO

model (55555) was used to anchor the DCTTO 55555 health

state to that value. Therefore, both models produce the

same index value for the 55555 health state. To obtain a

full set of utility decrements, every coefficient of the DC

model is divided by the scalar (55555lead-time TTO - 1)/

(55555DCTTO - 1). The outcome of this transformation for

each coefficient yields the utility decrements for the DCTTO

model.

DCdead model

A rank-order logistic analysis was performed for the

DCdead model [8]. In the same way as for a conditional

logistic model, a two-part decomposition is assumed for the

value. Where ViA, this model can be written as follows:
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ViA ¼
X20

j¼1

XiAj � bj þ Xidead � bdead ð2Þ

Values are therefore obtained from the linear part

(above) of the model on an arbitrary scale, as they are in

the DCTTO model. For this DCdead model, the anchor point

is the health state dead. Since the value for dead has to

be 0, each coefficient is divided by bdeath: ensuring b0death =

-1. The final function to estimate index values is given by:

ViA ¼ 1�
X20

j¼1

XiAj � b
0

j þ Xidead � b
0

dead ð3Þ

where b0j ¼ bj
�
absðbdeadÞ.

DCWTD model

The DCWTD model was estimated as a rank-order logistic

model similar to the DCdead model. For this case, the data

were restricted to responses from participants who chose at

least one state worse than dead. This model was used to

evaluate whether including participants who did not choose

any state worse than dead would bias the coefficient

estimates.

Lead-time TTO model

For lead-time TTO responses, a linear model was esti-

mated. The specification of the model in its general form is:

Yi ¼
Xn

j¼1

xij � bj þ ei ð4Þ

where Yi represents the observed values from lead-time

TTO data for participant i. A continuous variable, which

takes values between -2 and 1, was created. The lead-time

TTO values T from the survey were transformed into a -2

and 1 scale using the formula (T - T_lead)/(T_total -

T_lead). In our design, T_lead = 10 indicates that the

additional years in full health occur at the beginning of the

exercise, and T_total = 15 indicates the sum of T_lead and

disease time (5 years). The independent variables Xij are 20

dummies {0, 1} for each participant i, representing the

severity levels for each dimension of EQ-5D-5L. bj

represents the coefficients for each independent variable

j; ei represents the errors for each participant i. Different

specifications used in previously published examples were

explored in order to fit the best model [2–5]. However,

none of the models led to improved goodness of fit

measured with log-likelihood, nor did they correct any

inconsistencies in the models’ coefficients. Therefore, the

lead-time TTO model presented in this study was estimated

using a simple ordinary least squares model. Finally, a

function to estimate values for each health state was

created using the regression model specified in the

following equation:

Yi ¼ 1� ðb0 þ b1 �mo2i þ b2 �mo3i þ b3 �mo4i þ b4

�mo5i þ � � � þ b20 � ad5i þ eiÞ
ð5Þ

with mo2, mo3, mo4, mo5, sc2, sc3…, ad4, and ad5

indicating the corresponding dummy for the EQ-5D-5L

severity level.

To compare the four models, we used descriptive sta-

tistics and quantile–quantile plots (Q-Q plots) of the value

sets obtained from the different models. A Q-Q plot sets off

estimates of the quantiles of two distributions against each

other, and the pattern of points it displays is used to

compare the two distributions of value sets. In addition, the

value sets produced for each model are compared using the

mean square difference (MSD) and concordance correla-

tion coefficient (CCC) [18]. All values for the 3,125 health

states are estimated by each of the estimated models. For

each one:one comparison (model 1 vs. model 2), the MSD

is calculated as follows:

MSDmodel1vsmodel2

¼
P3;125

i¼1 ðindexvaluemodel1i
� indexvaluemodel2i

Þ2

3; 125
ð6Þ

All statistical analyses were performed on STATA 11 MP

(StataCorp LP, College Station, TX).

Results

Sample characteristics

The study cohort comprised 400 persons with a mean age

(standard deviation, SD) of 44.1 (16.9) years; and 59.7 %

(239) were male (Table 1). More than half were employed

or freelance and 15 % were retired. Less than half

(43.75 %; 175) were in full health (11111). Few reported

extreme or severe problems in any dimension of the EQ-

5D-5L (three was the maximum number of respondents

reporting extreme problems in the ‘usual activities’

dimension; see Table 2).

Descriptive statistics

The DC responses were 61.7 % for state A and 38.3 % for

state B. Reflecting differences in the impact of dimensions

and levels on health status, not all choices followed the

misery index (sum of the levels across domains) order. For

example, the observed probability for choosing state 55534

over state 33355 was 0.852. Only 2.4 % of all respondents
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thought that state 55534 was WTD and 14.81 % thought

that 33355 was WTD (Table 3). Some inconsistencies were

observed in the estimated lead-time TTO valuations. For

example, health state 55253 had a lower mean value (-0.4)

than health state 55255 (-0.147) (P = 0.0004), even

though the latter clearly dominates in term of severity of

the five health domains (Table 4). A total of 195 (48.75 %)

participants using DC and 216 (54 %) using lead-time TTO

rated at least one state as WTD.

Models

For the estimation of the three DC models, we omitted two

respondents from the analysis because their DC choices

were always A or always B; the 328 responses without a

logical order among state A, state B, and dead were also

omitted. For the lead-time TTO model, it was necessary to

clean the dataset for inconsistencies. In this case 24

respondents with the same value for all TTO tasks were

excluded from the analysis, as were two respondents for

whom data were missing due to technical problems.

Several model specifications were explored. However,

only main effects models are presented here. The others did

not perform better in terms of having fewer inconsistencies

or maximizing the likelihood function. In order to allow

comparison among the models’ coefficients, we present

here the rescaled coefficients for the three final DC models.

The DCWTD model has the highest likelihood value

(-1,401.549), but DCTTO performs better than DCdead

(-1,791.37 vs. -2,700.25 respectively) (Table 5).

Regarding the rescaling method for DC models, the

value for 55555 was estimated with a lead-time TTO model

to be -0.535. This value was used to anchor the DCTTO

model, which previously had a value of -5.491 for state

55555. The ratio to rescale the coefficients was abs

[(-5.491 - 1)/(-0.535 - 1)] = 4.228. The final rescaled

coefficients for DCTTO are b0j = bj/4.228. In DCdead

models, the dead state has a value of 0. The coefficient for

the dead state bdead in the DCdead model is -6.494, since

this coefficient must be -1 (meaning that the dead state has

a value of 0). The rescaled coefficients are then b0j = bj/

6.494. If the coefficient for the dead state bdead in the

DCWTD model is -5.346, then the rescaled coefficients are

b0j = bj/5.346.

In general, values in the lead-time TTO model were

lower than in any of the DC rescaled models due to the

estimated intercept value of 0.452. However, there are

several inconsistencies for some estimated coefficients. In

all of the estimated models, for example, the coefficient for

moderate problems (level 3) in the pain/discomfort domain

is positive, although not statistically significant. Other

inconsistencies are statistically significant: the lower

coefficients for slight (level 2) compared to moderate

problems (level 3) in the self-care domain for the three DC

models and in the mobility and usual-activities domain for

DC. The value of the 55555 state in the DCdead model

Table 1 Descriptive statistics of study sample (N = 400)

Characteristics Valuea

Age (mean ± SD) 44.1 ± 16.9

Gender

Male 239 (59.7)

Female 161 (41.3)

Employment status

Domestic tasks 13 (3.25)

Employed or freelance 201 (50.25)

Student 39 (9.75)

Retired 59 (14.75)

Unemployed 60 (15)

Data missing 28 (7)

Education

Higher education 110 (27.5)

High school 175 (43.75)

Primary school 86 (21.5)

Data missing 29 (7.25)

Experience severe illness

Self 63 (15.75)

Relatives 278 (69.5)

Other 136 (34)

SD standard deviation
a Data are presented as the number (N) of subjects with the per-

centage of total subject cohort given in parenthesis, unless stated

otherwise

Table 2 Distribution of EQ-5D-5L responses across participants

Level of response Mobility Self care Usual activities Pain/discomfort Anxiety/depression

No problems 337 (84.9) 383 (96.5) 352 (88.7) 239 (60.2) 271 (68.3)

Slight problems 35 (8.8) 8 (2) 31 (7.8) 119 (30) 95 (23.9)

Moderate problems 21 (5.3) 5 (1.3) 10 (2.5) 30 (7.6) 22 (5.5)

Severe problems 3 (0.8) 0 (0) 1 (0.3) 8 (2) 9 (2.3)

Unable/extreme 1 (0.3) 1 (0.3) 3 (0.8) 1 (0.3) 0 (0.0)

Data are presented as the number (N) of subject cohort with the percentage given in parenthesis
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(0.100) was higher than the corresponding value for the

DCWTD model (-0.004); however, for both DCdead models,

these values were much higher than that in the lead-time

TTO model (-0.535).

The two DC dead models are in concordance, with

DCdead versus DCWTD having CCC = 0.848, and DCTTO

versus lead-time TTO having CCC = 0.725 as well.

However, the concordance among the remaing models is

lower: (1) DCWTD vs. DCTTO : CCC: 0.677; (2) DCdead

versus DCTTO: CCC = 0.478; (3) DCdead versus lead-time

TTO: CCC = 0.239; (4) DCWTD vs. lead-time TTO:

CCC = 0.349. Compared to DC models, lead-time TTO

produced lower values for practically every health state

(Fig. 1c, e, f). Both DCdead and DCWTD models estimated

very similar values (Fig. 1a).

The MSD for differences between the 3,125 states in

both DCdead models is 0.009. However, the MSD for the

differences with the lead-time TTO model are 0.217, 0.142,

and 0.045 for the DCdead, DCWTD, and DCTTO models,

respectively. The MSD for the differences with DCTTO are

0.091 and 0.044 for DCdead and DCWTD, respectively.

Discussion and conclusions

In the study reported here we compared two approaches for

rescaling DC values on the dead (0)—full health (0) scale

to obtain an EQ-5D-5L value set that can be used in eco-

nomic evaluation. The two approaches were: (1) DC

incorporating an additional judgmental task in which the

health state ‘dead’ is assessed against other health states;

and (2) a DC model anchoring on lead-time TTO values.

None of the estimated models were completely consis-

tent in terms of regression coefficients. All models had

some positive coefficients. Also, to be consistent, a model

must meet the condition that each dimension should satisfy

an increasing order in the absolute value of the coefficients

for each level of severity. According to the results, each of

the models did satisfy the condition for some dimensions—

but not for all. The DCTTO model did not satisfy the con-

dition more often than the DCdead models, and its rescaled

results produced higher utility decrements than both

rescaled DCdead models. The rescaled DCWTD model dif-

fers less from rescaled DCTTO than from rescaled DCdead.

Table 3 Discrete choice responses for the 50 paired scenarios included in the valuation exercise

Profile A

(misery index)

Profile B

(misery index)

A

(%)

WTD

(%) A

WTD

(%) B

Profile A

(misery index)

Profile B

(misery index)

A

(%)

WTD

(%) A

WTD

(%) B

11445 (15) 32115 (12) 58.02 2.47 8.64 33223 (13) 21232 (10) 85.54 2.41 7.23

13334 (14) 45441 (18) 19.75 3.70 13.58 33432 (15) 15551 (17) 37.04 2.47 6.17

14122 (10) 54231 (15) 55.42 6.02 25.30 34134 (15) 45325 (19) 93.83 2.47 7.41

14533 (16) 21542 (14) 24.69 3.70 13.58 34255 (19) 35221 (13) 44.74 2.63 9.21

14552 (17) 55325 (20) 93.83 7.41 40.74 35235 (18) 42325 (16) 10.53 0.00 15.79

15351 (15) 14312 (11) 51.32 2.63 14.47 35252 (17) 32254 (16) 33.33 7.41 18.52

15555 (21) 53455 (22) 78.31 6.02 24.10 35312 (14) 14422 (13) 74.36 2.56 20.51

21235 (13) 12243 (12) 24.69 2.47 8.64 41114 (11) 24142 (13) 98.72 3.85 37.18

21445 (16) 55141 (16) 24.36 2.56 24.36 41312 (11) 24253 (16) 37.04 2.47 16.05

21522 (12) 25324 (16) 62.96 9.88 24.69 42122 (11) 31325 (14) 88.46 1.28 10.26

22341 (12) 45145 (19) 74.36 2.56 20.51 42153 (15) 53151 (15) 96.15 1.28 17.95

22544 (17) 35452 (19) 85.19 4.94 16.05 42255 (18) 55524 (21) 48.68 3.95 13.16

23122 (10) 12415 (13) 18.42 1.32 5.26 42441 (15) 21415 (13) 71.08 4.82 12.05

23134 (13) 14314 (13) 85.53 6.58 17.11 43245 (18) 34324 (16) 61.73 2.47 6.17

23231 (11) 25323 (15) 70.37 3.70 27.16 43412 (14) 13342 (13) 51.81 8.43 15.66

23442 (15) 25414 (16) 83.95 3.70 19.75 43514 (17) 23321 (11) 83.33 0.00 6.41

23451 (15) 34354 (19) 79.01 6.17 30.86 44115 (15) 21455 (17) 32.53 9.64 39.76

24453 (18) 41331 (12) 87.65 2.47 30.86 44151 (15) 53242 (16) 75.00 6.58 17.11

25235 (17) 13413 (12) 83.95 2.47 13.58 44234 (17) 33441 (15) 60.24 3.61 21.69

31451 (14) 45431 (17) 80.72 4.82 10.84 45515 (20) 34433 (17) 14.10 5.13 24.36

31452 (15) 13141 (10) 37.04 12.35 32.10 51331 (13) 22421 (11) 85.90 7.69 23.08

31521 (12) 43152 (15) 84.21 0.00 18.42 51552 (18) 35513 (17) 13.25 0.00 7.23

32211 (9) 14211 (9) 88.89 1.23 12.35 54121 (13) 44322 (15) 80.77 1.28 12.82

32241 (12) 51525 (18) 40.79 3.95 17.11 54424 (19) 15321 (12) 67.11 1.32 9.21

33111 (9) 32545 (19) 61.45 10.84 19.28 55534 (22) 33355 (19) 85.19 2.47 14.81

WTD heath state assessment of ’worse than dead’
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123



However, we have to take into account that the intercept

for the lead-time TTO model was extremely high, which

leads to health state values that lack face validity. For

example, a person with slight mobility problems has a

value of \0.55, which is ridiculous when compared to the

previous EQ-5D value set [2–5].

The reason for the inconsistencies in the logistic regres-

sion results is not clear. On the one hand, these inconsis-

tencies could be explained by the fact that the DC design

included only 50 pairs of health states, which may be inad-

equate to yield sufficient information (and thus power) to

estimate the logistic models (some coefficients were not

statistically significant). On the other hand, more power

(thus, a larger sample size) may be needed for each pair of

health states when the number of pairs is fixed. When the data

were applied to the Spanish arm of the multi-country study,

the inconsistencies in the DC model disappeared [19];

however that study had both more pairs (200) and more

observations per pair. The questions touching upon dead,

which are necessary for the DCdead models, were only con-

ducted in the Spanish pilot study. Therefore, the analysis of

DCdead models could not be extended to all countries for the

sake of comparison. In that light, it would make sense to

increase the number of pairs in the DC design that touch upon

dead and also to increase the power per pair as this approach

would ensure that future studies conducted by using a DC

model incorporating dead will be consistent for the whole

multi-country dataset.

On comparing the results of the modeling exercise for

all participants versus those who rated at least one state as

WTD, we found that the DCdead and DCWTD models pro-

duced similar results, with the only difference being the

position of ‘dead’. In particular, we found higher utility

decrements and thus lower health state values for EQ-5D-

5L states when the participants who did not rate any state

as WTD were removed from the analysis. However, this

may not amount to bias and may simply reflect the pref-

erences of the population. Whatever the reason, the impact

on actual results was not large. It should be kept in mind

that this was not a direct comparison, as the participants it

covered were not identical. From a mathematical point of

view and based on the RUT theory, estimation may fail

Table 4 Mean lead-time trade-off values and percentage of values WTD for the health states included in the valuation exercise

Profile Value Std

error

WTD

(%)

Profile Value Std

error

WTD

(%)

Profile Value Std

error

WTD

(%)

Profile Value Std

error

WTD

(%)

11112 0.786 0.323 4.76 14335 0.041 0.852 18.18 25555 -0.184 0.978 31.82 44415 -0.068 0.700 36.84

11114 0.363 0.614 10.53 14411 -0.006 0.887 33.33 33133 0.483 0.746 9.52 52221 0.503 0.813 11.76

11115 0.075 0.667 27.78 14413 0.081 0.913 33.33 33331 0.263 0.809 10.53 52225 0.379 0.567 19.05

11121 0.629 0.630 10.53 14415 0.264 0.703 11.11 33333 0.470 0.641 10.00 52251 -0.061 0.933 22.73

11122 0.456 0.739 16.67 14441 -0.277 0.920 40.91 33334 0.471 0.365 10.53 52255 -0.038 0.920 33.33

11141 0.335 0.887 17.65 21111 0.664 0.439 0.00 33345 0.008 0.651 25.00 52324 0.161 0.603 31.58

11144 -0.087 0.719 21.05 21112 0.505 0.647 14.29 35251 -0.129 0.790 38.10 52521 -0.216 0.920 47.37

11145 0.274 0.686 33.33 21115 0.326 0.656 23.81 35525 -0.035 0.929 35.00 52525 0.081 0.901 28.57

11211 0.562 0.781 9.52 22251 -0.050 0.998 37.50 41111 0.635 0.492 5.00 52551 -0.608 1.010 65.00

11212 0.422 0.623 8.70 22521 0.224 0.838 26.09 41115 -0.009 0.906 36.36 52555 -0.406 0.826 50.00

11221 0.534 0.572 9.09 22525 0.183 0.815 17.39 41141 0.161 0.566 26.32 53251 0.150 0.630 33.33

11245 -0.053 0.799 38.89 22551 0.036 0.728 16.67 41143 0.266 0.695 21.05 53521 0.093 0.923 22.73

11411 0.571 0.561 14.29 22553 0.253 0.654 16.67 41145 -0.075 0.733 33.33 53555 -0.337 0.964 47.37

11413 0.447 0.746 5.88 22555 -0.463 0.887 56.25 41343 -0.100 0.823 30.00 55221 0.329 0.605 10.53

11415 0.119 0.860 33.33 23255 -0.187 0.623 31.58 41411 0.421 0.365 5.26 55225 -0.197 0.838 44.44

11441 0.075 0.905 35.00 25221 -0.053 0.972 31.25 41413 0.032 0.863 31.82 55235 0.003 0.942 35.00

11445 -0.134 0.778 42.11 25225 -0.113 0.898 40.00 41415 -0.175 0.921 31.25 55251 -0.287 0.950 52.17

12111 0.681 0.536 11.11 25251 -0.110 0.785 42.86 41441 0.184 0.505 26.32 55253 -0.400 1.062 44.44

12112 0.624 0.525 5.26 25255 0.105 0.595 38.10 41445 0.286 0.736 11.11 55255 -0.147 0.888 41.18

14111 0.266 0.536 15.79 25455 -0.053 0.763 31.58 44111 0.059 0.870 31.25 55521 0.167 0.651 23.81

14113 0.328 0.808 15.00 25521 0.389 0.374 5.26 44113 0.256 0.683 11.11 55523 -0.114 0.772 47.62

14115 0.308 0.650 15.79 25525 0.097 0.937 23.53 44115 -0.289 0.987 50.00 55525 -0.337 0.810 42.11

14141 -0.130 0.907 36.36 25531 0.189 0.694 26.09 44141 0.233 0.582 22.22 55551 -0.289 0.857 44.44

14143 0.002 0.903 40.00 25551 0.074 0.676 23.81 44145 -0.215 1.027 39.13 55553 -0.329 0.909 52.38

14145 0.050 0.703 31.58 25553 0.026 0.795 36.84 44411 0.125 0.645 25.00 55555 -0.545 0.935 52.63

Std error standard error
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when many participants do not choose any WTD option.

Nevertheless, the DCdead model could be estimated and did

not perform much worse than the DCWTD model in terms

of likelihood.

There is some concern about the feasibility of some

elements of the DC and lead-time TTO as conducted in this

survey. In general, the participants understood the hypo-

thetical nature of the health states and lives they were

presented with. They knew they had to choose the health

state/life that they preferred rather than the health state/life

with which they identified the most. However, some

problems arose in the course of both exercises, especially

during the lead-time TTO task. Many individuals were

confused when making choices and did not realize that the

health conditions changed when they answered that ‘both

lives are almost equal’. Although this consequence had

been explained, it was necessary for the administrators to

do the first lead-time TTO exercise together with the par-

ticipants so they could do the rest of the exercises as

required. The general impression was that many of the

A
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Fig. 1 Quantile-quantile plots for comparison of values obtained from DCdead, DCWTD, DCTTO, and lead-time trade-off (TTO) models. For a full

description of each model, see section ‘‘Statistics’’
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respondents did not answer the TTO part of the exercises

appropriately. Some individuals reported that they could

not decide when they were indifferent between both lives

because they always preferred Life B. This indecisiveness

could explain the illogical results obtained with the lead-

time TTO model. In general, the respondents needed less

assistance on the DC part of the survey, but many did

comment on the difficulty of making choices between

health states. The difficulties they encountered in the sur-

vey tasks emphasize the important role of the face-to-face

interviews that are also part of the study design. DC and

lead-time TTO elicitation techniques require the respon-

dents to compare health states with ‘dead’; this question

was posed directly in each of the DC exercises and indi-

rectly in each of the lead-time TTO exercises. From the

results we can deduce that a state was more frequently

considered WTD in indirect (lead-time TTO) than direct

questions (DC ? dead), possibly due to the fact that in

lead-time TTO the distinction between negative and posi-

tive values was not explicitly made. This fact could explain

the lower values observed for the lead-time TTO method

and hence the DCTTO.

Previous studies have investigated the incorporation of

the health state dead in the DC task [8, 16, 17]. However,

none of these used the EQ-5D-5L to allow a direct com-

parison. Stolk et al. [8] used the classic three-level version

of EQ-5D. Our results do not confirm those obtained by

Stolk et al., probably because their comparison was made

with classic instead of lead-time TTO. Also, the five-level

version makes the DC task more complicated for the

respondents, and this complexity might have led some

participants to make random choices when they could not

decide between health states A and B.

DCdead models produce correlated results with slight

differences (no bias). Incorporating the health state dead

into the general DC technique produces results in concor-

dance with the DCTTO. DC modeling warrants further

research to optimize the design if it is to be used to estimate

EQ-5D-5L value sets. The lead-time TTO produces very

high utility decrements, and its consistency among

responses is lower than that of DC models.
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